
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On semi-automated matching and integration of database schemas

Ünal Karakaş, Ö.

Publication date
2010
Document Version
Final published version

Link to publication

Citation for published version (APA):
Ünal Karakaş, Ö. (2010). On semi-automated matching and integration of database schemas.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/on-semiautomated-matching-and-integration-of-database-schemas(3051bbf3-e927-432b-a13a-5ba06225729f).html

7621857890579

ISBN 978-90-5776-218-5

ON SEMI-AUTOMATED
MATCHING AND INTEGRATION

OF DATABASE SCHEMAS

Özgül Ünal Karakas

Invitation
for the public defense of

my Ph.D. thesis

On Semi-automated
Matching and
Integration of

Database Schemas

24 November 2010
12:00

Agnietenkapel
University of
Amsterdam

Oudezijds Voorburgwal
231

Reception at the
same location
following the

defense

Özgül Ünal Karakas

Ö
zg

ül Ü
na

l K
a
ra

k
a
s O

n sem
i-a

utom
a
ted

 m
a
tching

 a
nd

 integ
ra

tion of d
a
ta

b
a
se schem

a
s

On Semi-automated Matching and
Integration of Database Schemas

Özgül Ünal Karakaş

The cover was designed by the author.

Copyright © 2010 by Özgül Ünal Karakaş

All rights reserved. No part of this publication may be re-produced or transmitted in any form
or by a means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without written permission from the author.

ISBN: 978-90-5776-218-5

On semi-automated matching and
integration of database schemas

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 24 november 2010, te 12:00 uur

door

Özgül Ünal Karakaş

geboren te Anamur, Turkije

Promotiecommissie

Promotor: Prof. dr. H. Afsarmanesh

Overige Leden: Prof. dr. B. J. Wielinga

 Prof. dr. L. Hardman

 Prof. dr. M. T. Bubak

 Prof. dr. L. M. Camarinha-Matos

 Prof. dr.-ing. B. R. Katzy

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

1 INTRODUCTION 1

1.1 Motivation and Requirements Analysis 1

1.2 Addressed Research Questions 7

1.3 Objectives and Contributions of the Thesis 9

1.4 Scope of the Research 10

1.5 Research Method 11

1.6 Outline of the Dissertation 12

2 INTERLINKING AND INTEGRATING SCHEMAS - BACKGROUND 15

2.1 Related Concepts 15

2.2 Multidatabase Classification Based on Schema Coupling 20

2.3 Schema Matching and Schema Integration 21

2.4 Conclusion 27

3 HETEROGENEITY 29

3.1 Related Concepts 29

3.2 Taxonomy of Heterogeneity Resulted Conflicts 30

3.3 Challenges for Schema Matching 35

3.4 Conclusion 39

4 SASMINT APPROACH 41

4.1 Related Research Approaches 41

4.2 Proposed Approach: SASMINT 53

4.3 Conclusion 92

5 SASMINT DEVELOPMENT ARCHITECTURE 95

5.1 Processing Steps of SASMINT 95

5.2 Technologies Applied 95

5.3 Main Components of the System 97

5.4 How does the System Work? 97

5.5 Conclusions 105

ii Contents

6 EMPIRICAL VALIDATION OF SASMINT 107

6.1 Schema Matching Evaluations in Related Research 107

6.2 Quality Measures Used for Evaluating SASMINT 108

6.3 Test Schemas 112

6.4 Setup for the Experimental Evaluation 115

6.5 Evaluation of Schema Matching–For “select all above threshold” strategy 116

6.6 Evaluation of Schema Matching with Sampler 119

6.7 Evaluation of Schema Integration Performance 125

6.8 Conclusions 129

7 THESIS CONCLUSIONS AND FUTURE WORK 133

7.1 Summary of General Approach 133

7.2 Reflections on the Research Questions 134

7.3 Future Work 136

A LIST OF AUTHOR’S PUBLICATIONS 139

B XSD FOR SDML 141

C CLASS DIAGRAM FOR SDML 145

D TEST SCHEMAS 149

E EVALUATION OF SCHEMA MATCHING – FOR “SELECT MAX ABOVE THRESHOLD”
STRATEGY 159

F EVALUATION OF SCHEMA INTEGRATION-DETAILS OF STEPS 163

BIBLIOGRAPHY 167

SUMMARY 175

SAMENVATTING 177

ACKNOWLEDGMENTS 181

List of Abbreviations

AWT Abstract Windowing Toolkit

CML Conceptual Modelling Language

CN Collaborative Network

CNO Collaborative Networked Organization

COIN COntext INterchange

COMA COmbination of MAtching algorithms

DAG Directed Acyclic Graph

DBMS Database Management System

DDB Distributed Database

DDBMS Distributed Database Management System

DDL Data Definition Language

DL Description Logic

FOAM Framework for Ontology Alignment and Mapping

GRQ General Research Question

GUI Graphical User Interface

ICT Information and Communication Technology

IDE Integrated Development Environment

JWNL Java WordNet Library

MOMIS Mediator EnvirOnment for Multiple Information Sources

MSL Mediator Specification Language

MSNF Mediated Schema Normal Form

NLP Natural Language Processing

iv List of Abbreviations

NOM Naïve Ontology Mapping

ODL Object Definition Language

ODMG Object Data Management Group

OEM Object Exchange Model

OKBC Open Knowledge Base Connectivity

ONION ONtology composition

OWL Web Ontology Language

PORSCHE Performance Oriented SCHEma mediation

PROTOPLASM PROTOtype PLAtform for Schema Matching

QOM Quick Ontology Mapping

RDFS Resource Description Framework Schema

RQ Research Question

SDM Semantic Data Model

SDML SASMINT Derivation Markup Language

SF Similarity Flooding

SIMS Services and Information Management for decision Systems

TSIMMIS The Standford-IBM Manager of Multiple Information Sources

UML Unified Modeling Language

VO Virtual Organization

XDR XML Data Reduced

XMI XML Metadata Interchange

XSD XML Schema Definition

Chapter 1

 Introduction

To effectively use and benefit from the vast amount of information provided online by a large number
of databases, this information needs to be interlinked and integrated. This requirement has become more
evident with the increasing demand for remote collaboration among independent organizations and
individuals. An important first step in this direction is to support the matching of independently
developed meta-data in database schemas of different organizations and individuals. This needs to be
done through resolving variety of their heterogeneities, and identifying correspondences among
concepts defined in these database schemas. Furthermore, for proper interlinking of these databases,
another necessary step is the integration of their database schemas. Resolving these complexities is
challenging and quite inefficient to handle manually. The thesis proposes an automated but supervised
approach, called SASMINT- Semi-Automatic Schema Matching and INTegration, which addresses and
merges the problems of matching and integration of relational database schemas. This chapter provides
some introductory information about the research work carried out towards provision of the proposed
approach. Section 1.1 addresses the motivation for this research. Section 1.2 enumerates the main
research questions, followed by the main objectives and contributions of the research addressed in
Section 1.3. Section 1.4 specifies the scope of this research. Finally, Section 1.5 elucidates the applied
research method, and Section 1.6 outlines the structure of the thesis.

1.1 Motivation and Requirements Analysis

Advances in information and communication technology (ICT) have created new opportunities
for computing world-wide. High speed networks enable us to reach large quantities of
information within fraction of seconds. However, these developments create many new
challenges. One such example is how to link and share large amounts of similar or inter-
related data provided by distributed, heterogeneous, and autonomous parties who wish to work
with each other.

The importance of developing a support infrastructure for data sharing has been addressed
and understood clearly during the last decade, with the increasing need for collaboration
among organizations. The term collaboration among organizations is now used frequently, as
defined in (Camarinha-Matos & Afsarmanesh, 2008b):

2 Chapter 1: Introduction

Collaboration is a process in which entities share information, resources and
responsibilities to jointly plan, implement, and evaluate a program of activities
to achieve common goals.

For companies for instance, in order to remain competitive in a highly aggressive global
market, they need to become more agile in coping with changes and achieve this goal in a
better and faster manner. As a response to this challenge, Collaborative Networks have
emerged.

A collaborative network (CN) is an alliance constituted by a variety of entities
(e.g. organizations and people) that are largely autonomous, geographically
distributed, and heterogeneous in terms of their operating environment, culture,
social capital and goals, but that collaborate to better achieve common or
compatible goals, and whose interactions are supported by computer networks
(Camarinha-Matos & Afsarmanesh, 2008a; Camarinha-Matos et al., 2005).

Several forms of collaborative networks are currently observed, as shown in Figure 1.1. The
two top level collaboration forms in this classification are the ad-hoc collaboration and
Collaborative Networked Organizations (CNOs). The ad-hoc collaboration represents
formation of spontaneous collaborations, without any predefined goal, such as the
instantaneous on the spot formation of a rescue collaboration team to assist with a disaster. On
the other hand, CNOs are carefully established with participating organizations, having
different roles in the network, towards achieving their common goals. There are also two

Collaborative

Network

Ad ‐hoc

Collaboration

Collaborative

Networked

Organization

Goal ‐oriented

network

Long ‐ term

strategic

network

Continuous

production

driven network

Grasping

opportunity

driven network

Supply chain

Virtual government

Virtual enterprise

Virtual organization

Extended enterprise

Virtual team

Dynamic VO

Professional

Virtual

Community

VO Breeding

Environment

Industry cluster

Industrial district

Business ecosystem

Collaborative Virtual lab

Disaster rescue network
Fig. 1.1. Different forms of collaborative networks (Camarinha-Matos & Afsarmanesh, 2008a)

1.1 Motivation and Requirements Analysis 3

forms of CNOs called goal-oriented and long-term strategic networks. Members of a goal
oriented network work together to achieve their common goals, whereas long-term strategic
networks are strategic alliances aimed to prepare their member organizations towards dynamic
establishing of focused collaborative networks at the emergence of new opportunities in the
market/society. Goal-oriented networks can be either continuous production driven networks
or grasping-opportunity driven networks, while long-term strategic networks can be either
professional virtual community or virtual organization breeding environment (Afsarmanesh &
Camarinha-Matos, 2005). At the lowest level of classification, supply chain, virtual
government, virtual organization, virtual enterprise, extended enterprise, virtual team, industry
cluster, industrial district, business ecosystem, collaborative virtual laboratory, and disaster
rescue network represent the main variety of types of networks that are manifested today in
parallel. Details about each of these types of collaborative networks are provided in
(Camarinha-Matos & Afsarmanesh, 2008a).

We take Virtual Organizations as an example. Briefly, a Virtual Organization (VO) is a
gathering of autonomous organizations through a network that pursue the accomplishment of a
set of specific common goals (Camarinha-Matos et al., 2000). There are a number of benefits
associated with VOs (Afsarmanesh & Camarinha-Matos, 1997), including the increased access
to market/society opportunities, sharing risks, reducing costs, and achieving business/societal
goals not achievable by a single organization and thus the motivation for involvement in VOs.
A VO represents a complex and dynamic entity that undergoes a sequence of stages during its
life cycle (Camarinha-Matos & Afsarmanesh, 1999a; Camarinha-Matos & Afsarmanesh,
1999b), as shown in Figure 1.2.

In all stages of the VO lifecycle, ICT support is needed. For example, in order to enable
rapid formation of VOs, it is required to establish a common interoperable infrastructure
(Afsarmanesh & Camarinha-Matos, 2005) that is typically achieved within the VO breeding
environments (Afsarmanesh et al., 2008). Members of VOs need to strongly interact with each
other to achieve the goals of the VOs and one form of this interaction is by means of data

Pre VO-life-cycle
• Infrastructure Setup
• VO node adaptation
and manifestation

VO Creation
• Identification of business
opportunity / VO goals
• Partners search / selection
• VO initial agreement and
topology definition
• Contract negotiation
• VO partners configuration

VO Operation/Evolution
• Basic information exchange
among VO partners
• VO coordination and
monitoring
• VO Evolution
• Exception handling

VO Dissolution
• Assessment of
accomplished VO goals
• “Disassembly ” of VO
structure
• Reconfiguration of access
rights
• Gathering of performance
and historical information

Time

Post VO-
life-cycle

Member NodesOrganization Nodes

Pre VO-life-cycle

•Infrastructure
Setup

•VO node
adaptation and
readiness

VO Creation
•Identification of
business
opportunity / VO
requirements and
goals
•Partners search /
selection
•VO Initial
agreement and
topology definition
•Contract
negotiation
•VO partners
configuration

VO
Operation/Evolution
•Information
exchange among VO
partners
•VO coordination and
monitoring
•VO Evolution
•Exception handling
•VO task
performance

VO Dissolution
•Assessment of
accomplished VO
goals
•“Disassembly” of
VO structure
•Configuration of
rights and
responsibilities
•Gathering of
performance data
and historical
information

Post VO-life-
cycle
•Follow up
maintenance
services

Fig. 1.2. VO Life Cycle

4 Chapter 1: Introduction

sharing, which requires information integration and interlinking.
Although in practice the first examples of collaborative networks come from the

manufacturing domain, the need for collaboration has been well understood recently in
different domains, such as engineering, economy, social sciences, etc. One such example
domain is the biodiversity. Increasing number of biodiversity conservation activities entail
producing more accurate results by comparing and/or merging different biodiversity data
analysis results to make better predictions about the global status and distribution of species,
as well as protection of those who are endangered.
This, in turn requires the collaboration and data resource sharing among many worldwide
distributed biodiversity centers, organizations, and individual researchers (Unal &
Afsarmanesh, 2006a; Unal & Afsarmanesh, 2006b; Unal & Afsarmanesh, 2006c; Unal &
Afsarmanesh, 2009; Unal & Afsarmanesh, 2010). Although the importance of collaboration in
biodiversity has become clear to most involved scientists, so far most biodiversity related
organizations hesitate to actively cooperate. This is mostly due to the sensitivity of some

specific data categories, such as those related to endangered species in biodiversity domain,
where there is the danger of unintentionally creating new business opportunity for illegal
poachers, though announcing the information about species in danger of extinction. Therefore,
new mechanisms and infrastructures are needed, supporting information sharing among
organizations, while taking the needed criteria into account. With the existence of such
mechanisms, organizations can more easily decide to collaborate.

There are however some difficulties facing the infrastructures to support data sharing and
exchange in the biodiversity domain as follow. Different organizations structure biodiversity
data in different formats depending on their specific needs and preferences. The level of detail
that they keep for their managed data also greatly differs. They typically do not use standard
data models and different syntax is used. Likewise, since different centers use their own
controlled terminology and vocabularies, the semantic definitions of their data and used
concepts are heterogeneous. These matters have resulted in a large number of independent and
heterogeneous databases, scattered all over the world. Because of the differences in managing
their data, these databases are quite rarely integrated effectively. Furthermore, any effort spent
on such integration is usually not at the global network level, rather bi-lateral focused on each
pair of databases. Hence, demands for an effective uniform mechanism to integrate/interlink a
number (possibly large number) of databases, to support homogeneous access to
heterogeneous and distributed databases, thus providing a single and integrated interface for
users in biodiversity networks are increasing.

As discussed above, in biodiversity domain, collaborating organizations need to share data
with others and simultaneously access and manipulate data from others, and thus integration of
data is required. Among other challenges, the heterogeneity, distribution, autonomy,
continuous and rapid technologic evolution, and multi-disciplinarity of the area are the main
obstacles faced to achieve the required integration in all levels of collaborative networks
(Camarinha-Matos & Afsarmanesh, 2003), including those of the biodiversity. We can further
elaborate on these common obstacles as follows: 1) Heterogeneity: It arises due to the lack of
common standards, as each organization uses its own format and model for database schema
definitions, which makes the interoperation among nodes much more difficult. Especially if
the number of organizations in a CN is large, an important challenge is how to share and
integrate data represented by heterogeneous database schemas. 2) Distribution: Organizations
are logically and physically distributed. However, improvements in the field of high-speed
networking help to decrease the impact of this obstacle and properly support remote access to
distributed databases. 3) Autonomy: Organizations autonomously decide what to share and
with which other organizations. Furthermore, each data owner in CNs is autonomously
deciding on the representation and modeling of its data, which clearly and vastly increases the

1.1 Motivation and Requirements Analysis 5

heterogeneity. 4) Continuous and Rapid Technologic Evolution: Fast improvements in
technologies lead to continuous changes in the format and amount of data to be exchanged.
This evolution further increases the heterogeneity problems. 5) Multi-disciplinarity: Since
each organization is from different types of areas and disciplines, integration and interlinking
of information needs to handle wide variety of information types and their specificities. Design
and implementation of an integration infrastructure for CNs, needs to take all these obstacles
into account.

Heterogeneity is the most relevant obstacle among the others facing the data sharing for
collaborations. The collaboration infrastructure has to consider such differences for providing
effective mechanisms to integrate/ interlink and for homogeneous access to databases. Rather
than accessing and manipulating single database systems in isolation for CNs, database
research is needed to address simultaneous access and manipulation of different remote
databases, as suggested in federated databases and multidatabase approaches (Hammer &
Mcleod, 1979; Heimbigner & Mcleod, 1985; Sheth & Larson, 1990). However, automatic
resolution of schema heterogeneity still remains as a major bottleneck for provision of
integrated data access/sharing among autonomous, heterogeneous, and distributed databases.

Since each data owner in CNs decides autonomously on the representation and modeling of
his data, data are typically and widely heterogeneous even if from the same domain. In order
to provide transparent access to such remote data and enable the sharing of information among
databases, their schema heterogeneity needs to be identified and resolved and then the
correspondences among different organizations’ schemas need to be identified. This process is
called in research as schema matching. After schema matching process, to support
collaboration, e.g. the possibility of processing federated queries within the network, schemas
usually need to be integrated, to facilitate the needs of the CNs. It is clear that schema
matching and integration constitute two key processes of the ICT infrastructure supporting the
collaboration among organizations. Thus, tools that enable semi-automatic matching and
integration are among the most important components of such infrastructures.

The most difficult part in resolution of heterogeneity of schemas during the schema
matching process is the identification of the semantics introduced at each organization that are
incorporated into their schema definitions. Data semantics are related to database designers’
preference or interpretation of data, according to their understanding of the world within their
organizations. Different interpretations cause different representations of data and thus
different data models. In the process of comparing different database schemas for instance,
semantic heterogeneity arises out of the ambiguity inherent in the separation between names
(words) chosen in a data model and what they represent within the organization that originates
them. Some semantics in general can be inferred from data, schema, and annotations if they
exist. However, to put it simply, this information is most of the time incomplete and such
inferences are not fully accurate, to decide whether an element x of a schema A matches an
element y of another schema B and there is no other element z of this second schema B that
matches x better than y. Therefore, a fully automatic solution for schema matching may not
produce the best results.

Approaches so far proposed in database research for providing access to distributed,
heterogeneous, and autonomous data sources have addressed some aspects of semi-automatic
schema matching and/or schema integration in their approach. However, these approaches
suffer from some or all of the following main limitations:

 No approach deals with both schema matching and schema integration together.
Furthermore, it is generally not addressed how to formalize the result of schema
matching and how to facilitate and support the needed semi-automatic schema
integration.

6 Chapter 1: Introduction

 A fully automatic schema matching and integration is not realistic, considering that
some types of semantic and structural conflicts are difficult to resolve automatically,
as addressed later in Chapter 3. Therefore, a simple but effective user interface is
needed to enable user interaction with the system for modification of the results
generated automatically for both schema matching and schema integration.
Nevertheless, in the proposed approaches so far, the provision of needed user-
friendly interface as a part of the proposed architecture is typically skipped.

 As for schema matching, the suggested approaches typically represent at least one of
the following drawbacks:

 Although the aim is to automate or semi-automate the matching process,
the currently proposed solutions generally require too much manual work.

 A limited number of algorithms are so far implemented each focused on the
automatic resolution of certain specific challenges related to either
syntactic, semantic, or structural conflicts, and there are no comprehensive
solutions suggested. As explained in Chapter 3 and addressed by most other
work, syntactic, semantic, and structural conflicts constitute the main
categories of heterogeneities that exist among database schemas. While
observing both the nature of existing schemas, which generally consist of
elements with different syntactic, semantic, or structural characteristics, and
our test results presented later in Chapter 6, in each case, using a
combination of some of these algorithms, which are suitable for different
types of elements and domains, is necessary for achieving more accurate
results.

There are a number of key requirements that an ICT infrastructure for CNs needs to address
and support for enabling the data sharing and exchange among organizations. Namely, the
base requirements listed below, must be met independent of any specific solution for data
sharing (Guevara-Masis et al., 2004; Unal et al., 2005).

 Organizations should be able to preserve their autonomy when they join a
collaborative network. They should be able to autonomously decide which part of
their data and with which other nodes to share.

 New organizations should be able to join the networks easily, and dynamic evolution
of the schemas, representing the shared data, should be supported.

 Database administrators should be supported with tools to semi-automatically
generate mappings from each of the different schemas to the integrated schema.

 Organizations in CNs should easily collect data from others without needing to deal
with the underlying heterogeneities of databases.

Two of the most important components of an ICT infrastructure, which meet the
requirements above for CNs, are the processes and components for schema matching and
schema integration. Namely, the local schemas of a number of organizations need to be semi-
automatically matched and integrated to generate a global schema for the CN.

Schema matching and integration play important roles in providing data sharing among
distributed, autonomous, and heterogeneous databases. Taking into account the limitations of
existing approaches, a comprehensive solution for semi-automatic schema matching and
integration needs to focus on a number of specific requirements, as addressed below:

1.2 Addressed Research Questions 7

 Semantic information needs to be identified: Inherent in the schemas are large amounts
of semantic information. Identifying semantic relationships is harder than simple
relationships, as there are more possibilities that need to be taken into account. While
observing the explicit relationships among schema elements, identifying implicit
relationships is a problem that makes the automatic detection of elements’
correspondences difficult. Auxiliary resources, such as linguistic dictionaries consisting
of some semantic relationships among concepts, need to be utilized to identify as much
semantic information as possible.

 Both simple and complex matches need to be considered: Most matching approaches
limit their search to only one-to-one (1-to-1) matches (e.g. “email” to “electronic_mail”),
also called as simple matches. Complex matches (e.g. “address” to “street”, “zipcode”,
and “city”) are much more difficult to identify than 1-to-1 matches. Although it is not
realistic to extract all variations of matches automatically, at least complex matches in
form of 1-to-n and n-to-1 need to be also identified to the extent possible.

 Combination of a number of matching algorithms needs to be considered: Schemas
in general consist of element names in different formats. Some similarity algorithms
produce better results when applied to certain specific types of element names. Therefore,
it is not effective to pre-select and use only one or a few comparison algorithms, which
are each suitable for certain types of names, for all kinds of schemas.

 A Supporting user friendly Graphical User Interface (GUI) needs to be provided:
Developing only algorithms for automatic schema matching alone is not sufficient. User
interaction is an important part of the process to be considered when developing the
schema matching and schema integration systems. Especially considering that it is not
possible to identify all matches automatically, a user-friendly and effective user interface
is required to enable users’ modification of the matched results. Furthermore, the results
of schema integration also need final users’ validation.

 Schema matching process needs to be combined with schema integration process:
Schema integration, a challenging process especially considering all the conflicts that
need to be resolved before the integration starts, requires at its base the identification of
the correspondences among the source and target schemas, resulted by the schema
matching. Therefore, a schema integration approach should facilitate the schema
matching process by formalizing its user validated results and applying these results to the
schema integration process. Proposing such a semi-automated schema integration
approach and implementing it as a system provides a significant contribution to the
information sharing and integration within the CNs.

1.2 Addressed Research Questions

In Section 1.1.1, we classified the general data sharing requirements for CNs under the
umbrella of schema matching/integration. Namely, we addressed the CN’s related
requirements to support data sharing among distributed, autonomous, and heterogeneous
databases. Addressing this problem area, we aim at developing formally founded and
empirically validated approach and mechanisms. As such the main General Research Question
(GRQ) for this thesis constitutes:

8 Chapter 1: Introduction

GRQ- How can we effectively and semi-automatically achieve the schema
matching and schema integration, to facilitate data sharing in Collaborative
Networks?

We further refine this general research question into four specific Research Questions (RQs),
which are addressed by this thesis.

In the first question, we address the terminology used in database research related to
approaches and architectures for data sharing among heterogeneous data sources. This leads to
the required understanding of the domain of our research problem:

RQ1- Which effective approaches and architectures can enable data sharing

through interlinking and/or integrating heterogeneous databases of

distributed nodes?

Heterogeneity is the main problem to be tackled when dealing with schema matching and
integration. It is therefore, necessary to differentiate the potential types of heterogeneities in
order to identify those on which we need to focus during the schema matching and integration
processes. This leads to our second research question:

RQ2- What is a representative taxonomy for addressing database schema

heterogeneities, and in turn applicable to formalization of schema matching

and schema integration challenges?

Based on the state of the art and currently open research issues, we need to propose an
appropriate approach for enabling semi-automatic schema matching and integration. This
approach therefore should semi-automatically resolve different kinds of schema conflicts, such
as the syntactic, semantic, and structural conflicts, in order to identify the potential matches
among schema elements. The approach should be verifiable, e.g. a proof of concept as a
working prototype of the system needs to be developed. Another important point that needs to
be supported is the design of proper ‘User Interaction’. These points lead to our third research
question:

RQ3- What are effective mechanisms for semi-automatic schema matching

and schema integration, and how should the user be involved in the

process?

We think the validation is important and necessary, in order to indicate the ‘accuracy’ and
effectiveness of the approach we propose in comparison to other work. So, the final research
question is built around the challenge of validating the developed system. The answer to this
question shall reveal the appropriate measures that can be used for evaluating the accuracy of
schema matching and schema integration, and thus the fourth research question constitutes:

1.3 Objectives and Contributions of the Thesis 9

RQ4- How can we assess and validate the effectiveness of the proposed

semi-automatic approaches for schema matching and schema integration?

1.3 Objectives and Contributions of the Thesis

Aiming to address the main general research question described in Section 1.2, the main
objective of this thesis is to propose an approach for resolving syntactic, semantic, and
structural conflicts for semi-automatic schema matching and integration, facilitating data
sharing and exchange in CNs. The answers to four specific research questions form the
objectives of this thesis. Namely, the first research question (RQ1) is addressed by analyzing
the related architectures and terminology used in database research for data sharing among
heterogeneous data sources, which is the main subject of Chapter 2. The second research
question (RQ2) is addressed by analyzing different taxonomies of heterogeneities proposed in
the literature and defining the taxonomy of heterogeneity related to the challenges for schema
matching and integration. This is the subject of Chapter 3. Our approach for semi-automatic
schema matching and integration and its implementation are described in Chapter 4 and
Chapter 5 in order to meet the research question three (RQ3). Research question 4 (RQ4) is
addressed by carrying out validation against other related research. Chapter 6 describes this
validation work and its results.

To conceptually verify our approach, we design and implement the SASMINT system that
forms the basis for an infrastructure enabling users to query heterogeneous and distributed
databases transparently in a federated database environment. Based on the proposed approach
and its implementation, the main contributions of this thesis can be listed as follows:

 Supporting both simple and complex matches: Unlike many other approaches that
support only simple matches, SASMINT supports both simple and complex matches,
as addressed before.

 Elevating the accuracy of schema matching: In the SASMINT approach and
implementation, we utilize a weighted combination of several schema matching
algorithms. Syntactic, semantic, and structural conflicts are resolved by applying
different specific string and structural similarity algorithms rooted in Natural
Language Processing (NLP) and the Graph Similarity domains. Each algorithm best
suits a specific type of strings and graph structures, and thus compounding some of
them in SASMINT gives rise to more accurate matching results than other proposed
approaches.

 Enabling semi-automatic schema integration: SASMINT interrelates directly the
schema matching results with the schema integration. Heuristic rules are defined that
run on the results of the schema matching and generate derivation formalism for an
integrated schema automatically. We assess this as a novel contribution providing a
strong competitive edge for the research on the SASMINT system.

 Definition and incorporation of an XML-based language (an XML Schema) for
enabling unambiguous interpretation of schema match / integration results:
Within the SASMINT system, we have devised an XML-based derivation language,
which we call the SASMINT Derivation Markup Language (SDML) (in the format
of XML Schema), that captures and supports the creation of a persisting schema

10 Chapter 1: Introduction

match and schema integration results. The value proposition of this particular
contribution is multi-faceted. First, the persisted schema match integration results
enable the external systems/agents to unambiguously interpret/understand the match /
integration results. These external systems/agents could consume this information for
implementing federated query processing, etc. Second, this generic format is
understandable by the match/integration related human agents in-the-loop. What this
means is that the human agents can then easily modify these results. Finally, the
structure of the derivation language is designed to keep the derivation history.
Namely for every entity, its entire derivation tree is preserved. This feature in turn
enables the incremental schema integration procedure.

 Enabling semi-automatic identification of suited weights for the composed
algorithms: A number of algorithms are utilized in the composite approach of the
SASMINT system that calculates their weighted sum. Therefore, it is important to
assign an appropriate weight to them, bearing in mind the suitability of each
algorithm for different types of inputs. SASMINT provides the SAMPLER technique
to semi-automatically identify the appropriate weights for the algorithms used in the
linguistic matching.

 Enabling user-friendly interaction by means of a GUI editor: It is not possible to
automatically extract all types of semantic and resolve all kinds of structural
conflicts. Therefore, a suitable user-friendly GUI editor is provided for SASMINT
for supporting the visual modification of the results of both schema matching and
schema integration processes as well as their storage for further use.

1.4 Scope of the Research

There are different alternatives for representing database schemas. Besides using Data
Definition Language (DDL) for relational database schemas, the XML Schema and the Web
Ontology Language (OWL) are among the most popular representation mechanisms, and
especially related to the increasing interest in the Semantic Web technologies. Since we focus
on relational schemas in this thesis, we use the relational DDL for representing database
schemas. Furthermore, for representing the integrated schemas, we use SDML, based on
XML.

Since our aim is to semi-automatically match and integrate organizations’ database schemas,
and the relational database schemas are frequently used, the relational schemas constitute the
main focus of our research explained as in this thesis. On the other hand, the proposed
approach and the implemented SASMINT system is generalized and can be in principle
extended to support other types of schemas, e.g. object-oriented as well. In the SASMINT
system, relational schemas can be automatically loaded either from a relational database or
from a previously saved XML file. When loading the schemas from a relational database,
related metadata information, such as table and column names, is obtained from the database.

In general, the schema matching can consider different types of information as the base
input, as explained in detail in Section 2.3.2. Our proposed solution however utilizes only the
database schema related information (i.e. the metadata), and not the instance data. Instance
data may not in general be available all the time, and using it might produce misleading and/or
wrong results, if it is used alone, and without schema specification.

Different types of schema matches are addressed in Section 2.3.2. Our focus is on both
simple matches (1-to-1 matches) and complex matches of type 1-to-n, n-to-1, and m-to-n.

1.5 Research Method 11

1.5 Research Method

In the research for this thesis, we followed a method, composed of both theoretical and
empirical work, as categorized in (Sørensen, 2005), which is in line with the standard
scientific method.

An overview of the research phases is shown in Figure 1.3. A description of the steps in this
approach is summarized below:

1. Concept exploration and requirements analysis: This phase constitutes the very first
step of our followed method. Comprised within this step is an initial phase where an
awareness of the concept of Collaborative Networks is achieved, together with an
exploration of collaborative networks’ data and information sharing related
problems. What is further performed is an analysis of the ICT related information
sharing requirements as well as the required supporting tools that would enable
seamless data sharing within collaborative networks. The output of this phase is a
basis, encompassing an awareness of: the collaborative networks, the data sharing
requirements contained therein, the analysis of those requirements, and the resulting
gap analysis, that are used for formulating the specific Research Questions that form
the skeleton of our thesis work. In this step we come up with the finding that semi-
automatic matching and integration of the database schemas used by the
collaborating organizations is a very crucial step in solving their data
interoperability/sharing related problems. We assess in this step that the resolution of
this problem, i.e. the semi-automatic schema matching and integration, is definitely
one main precondition to enable users with performing federated query processing
transparently of its source databases over a network of collaborating entities.

2. Identification and formulation of the Research Questions: Based on the results of the
previous step of the method, this step is where the main focus area of the thesis is
devised and a context for the main research problem is established, around which the
entirety of this thesis evolves. Upon an analysis of the requirements, the conceptual
target area of ‘schema matching and integration’ is focused, and a list of research
questions is built. Within the scope of the carried out research, we try to produce
answers in this research for each research question listed under Section 1.2.

3. Literature Survey and Review: A thorough analysis of the existing theoretical and
practical approaches that contribute to the resolution of the problems put forward
within the context of the ‘Research Questions’ is performed at this step.

4. Elaborating the Proposed Approach: This step encompasses activities where we
design a solution approach and a prototype that can be used as a supporting tool for
matching and integration of heterogeneous schemas. Both the proposed approach and
the prototype capitalize on the elicited data sharing requirements of collaborative
networks. The scope and the objectives of our approach are refined in this step.

5. Evaluation and also further validation of the proposed approach: This step includes
realization of the designed prototype in previous step that is used to evaluate and
validate the proposed solution approach. The prototype is used to validate the
adequacy of the research conducted for enabling the semi-automatic matching and
integrating of database schemas from collaborative networked organizations.

12 Chapter 1: Introduction

Experimental evaluation of the accuracy of the proposed approach is also carried out
in this step. Experiments are done using the prototype.

6. Assessment of the results: This phase unveils what sort of answers we have been able
to produce for the research questions, and it subsumes an analysis of the answers
produced. Also contained is an assessment of the value and contribution of the
overall research work presented in this thesis in comparison to other related research
in the area.

Problem Definition
(Research Questions

Identification)

Literature Research

Proposed Approach

Evaluation/Validation

Assessment

Objective,
Scope

Gap
Analysis

Concept
Exploration

Analysis of
Requirements

Fig. 1.3. Research method

1.6 Outline of the Dissertation

The rest of this thesis is organized as follows:

Chapter 2 provides different definitions presented in state of the art literature to refer to
approaches, architectures, and systems for interlinking and/or integrating heterogeneous data
provided by distributed databases in networks. Taxonomy of the terms related to an integrated
information management system is provided in this chapter. Furthermore, the main features of
schema matching and schema integration are addressed.

Chapter 3 aims at providing information about the heterogeneity as the most important
problem to be tackled in infrastructures that enables data sharing. It addresses a number of
heterogeneity (also called conflict) classifications, proposed in the literature. Furthermore, the

1.6 Outline of the Dissertation 13

heterogeneity related challenges faced by the schema matching process are discussed by
means of some examples.

Chapter 4 is dedicated to the SASMINT approach, proposed in the research work of this
thesis. This chapter first starts with the related research, reviewing approaches focused on
general database integration and interoperability, schema matching, schema integration, and
ontology matching and merging. A number of open issues are addressed then to give a
motivation for the proposed SASMINT approach. The rest of the chapter presents details about
the phases of the SASMINT approach and how it achieves its goals.

Chapter 5 introduces the SASMINT system that is implemented to verify the approach
proposed in this thesis. Details about the main components of the system are provided.

Chapter 6 provides information about the results of experimental assessment of the
SASMINT system. Evaluation work covers schema matching, schema integration, as well as
the Sampler components of SASMINT. Results of experiments comparing the schema
matching approach of SASMINT and that of its closest competitor COMA++ are presented in
this chapter.

Chapter 7 concludes the thesis with a summary of its contributions. It also presents the
possible future improvements and next steps of this research.

The scientific publications related to the dissertation are listed in Appendix A.

14 Chapter 1: Introduction

Chapter 2

Interlinking and integrating schemas -
background

Focusing on interlinking and/or integrating heterogeneous data from distributed nodes, database
management research has introduced a number of approaches, architectures, and systems to enable
their data sharing and data exchange, and in this process, it has also introduced a large variety of terms
and concepts. This chapter addresses these approaches and definitions of these introduced terms and
concepts that are closely related to schema matching and schema integration. Section 2.1 addresses
these variety and it specifically represents our classification of the main concepts related to distributed
information management, which are introduced in previous research. Section 2.2 depicts the main
related categories of approaches from multidatabases research, based on schema coupling. Section 2.3
addresses the notions of schema integration and schema matching. Finally, Section 2.4 summarizes this
chapter and emphasizes the importance of the automation of schema matching and schema integration
processes.

The research results presented in this chapter were partially published in the Journal of Software (Unal
& Afsarmanesh, 2009).

2.1 Related Concepts

High-speed networks have made it possible for the distributed information to be made
available to everybody connected to the Internet. This has facilitated distributed information
management systems, enabling access by authorized users to distributed data. The main
requirements that need to be met with such systems have been summarized by (Kamel &
Kamel, 1992) as follows: authorized users must be able to transparently access distributed and
heterogeneous databases, there must be no changes needed in existing databases and
applications, new databases should be easily added to the system, databases should be
accessible for retrievals and updates, and finally performance of the system should be
comparable to homogeneous systems.

Extensive research to enable data sharing in a distributed environment has given rise to
variety of terms referring to different types of distributed information management systems.
For instance, distributed databases, multidatabases, and federated databases are the most
frequently used terms and concepts in the database research for several decades. However,

16 Chapter 2: Interlinking and integrating schemas - background

there are not yet commonly agreed definitions for these terms and concepts and quite often
different researchers use the same term with different meanings. Therefore, the aim of this
section is to provide enough background for this research, in order to differentiate among
various definitions.

Distributed database (DDB) and distributed database management system (DDBMS)
correspond to two base terms in distributed information management research. DDB and
DDBMS are defined by (Ozsu & Valduriez, 1999) as follows:

“A DDB is a collection of multiple, logically interrelated databases distributed
over a computer network. A DDBMS is the software system that permits the
management of the distributed database and makes the distribution transparent to
the users.”

In a typical distributed database management system, several databases over a network are
managed by one management system. In other words, only one implementation of the database
software is used in each network node.

According to (Ozsu & Valduriez, 1999), if the distributed database systems at various sites
are also autonomous and possibly heterogeneous, they are referred to as multidatabase
systems. Multidatabase systems allow integrated access to distributed, autonomous, and
heterogeneous databases as (Bukhres & Elmagarmid, 1996) defines.

Multidatabase systems can be homogeneous or heterogeneous. Homogeneous database
systems have the same database management systems and use the same data model and
database manipulation language (Heimbigner & Mcleod, 1985) (Ozsu & Valduriez, 1999).
Heterogeneous multidatabase systems on the other hand have different database management
systems and use different data model and database manipulation language.

Another classification in multidatabase systems used by (Sheth & Larson, 1990) divides
them into two types based on the autonomy of the participating database systems
(components): non-federated and federated. Components in a non-federated database system
are not autonomous. On the other hand, the components in a federated database system
preserve their autonomy while also sharing their data in a partial and controlled manner. They
share a part of their data by defining export schemas and making them available only to
specific components. Every component is able to import schemas from other components
according to the defined access permissions. As a consequence of this general interaction, this
approach allows the cooperation between the nodes in the federation to accomplish a common
or global task (Afsarmanesh et al., 2004).

(Sheth & Larson, 1990) categorizes federated databases further as loosely coupled and
tightly coupled. A federated database system is loosely coupled if there is not a single
authority to create and maintain the system; but this is the responsibility of users from each
component system. There is no single global schema in loosely coupled systems. On the other
hand, in tightly coupled systems, there is a central authority to administer the federation. If a
tightly coupled federated database system only supports a single federated schema it is said to
have a single federation, but if it supports multiple federated schemas it is said to have
multiple federations. Users can submit queries applied to the federated schema, and the central
authority is in charge of the distribution of sub-queries between the component databases and
the processing of the individual results to satisfy the global request.

Besides terms referring to different types of distributed information management systems,
another widely used term in database research domain is the data integration. Information
systems mentioned above apply data integration techniques. Data integration aims at
combining data residing at different sources and providing the user with a unified view of

these data (Lenzerini, 2002). Data integration systems can be defined as a triple MSG ,, ,

2.1 Related Concepts 17

where G is the global schema, S is the heterogeneous set of source schemas, and M is the
mapping between G and S. Two approaches are mentioned in the literature for defining M:
Global as View (GAV) (Chawathe et al., 1994) and Local as View (LAV) (Levy et al., 1996). In
the GAV approach, there is a global schema expressed in terms of source schemas (S).
Mappings M between the global schema G and source schemas S are well defined. However,
when there is a new component database entering the system, a large amount of effort is
required to update G. On the other hand, in the LAV approach, global schema is defined
independently from source schemas and the relationships between the global schema and the
sources are established by defining every source as a view over the global schema.
Relationships between source schemas and the global schema may not be well defined here,
which requires more complex query re-writing and thus puts more burdens on the query
processor. Nevertheless, unlike GAV, addition of a new component database to the system
does not require much effort.

Similar to variety of definitions related to distributed information management, there exist
many definitions for database interoperability. For example, Brodie and Ceri (Brodie & Ceri,
1992) referred to interoperability as the ability of different systems to operate with each other.
On the other hand, Silberschatz et al. (Silberschatz et al., 1990) defined interoperability as the
problem of making heterogeneous and distributed databases behave as if they form part of a
single database. Litwin and Abdellatif (Litwin & Abdellatif, 1986) and Zisman (Zisman, 1995)
used the term interoperability to refer to the management and co-operation of multidatabase
systems without using a global schema. Although there is no consensus on these definitions,
database interoperability is a broader term than the terms related to distributed information
management.

As it is clear from the definitions given above, there are many related terms concerning
management of data provided by distributed and possibly heterogeneous and autonomous
databases, whereas there is no consensus of terminology in the database community. In order
to provide our understanding of the terms related to an integrated information management
system, we have organized these definitions as shown in Figure 2.1.

Integrated Information Management System

Multidatabase
System

Distributed
Database System

Federated Inf.
Management System

Non-Federated Inf.
Management System

Fully Federated
Schema

(loosely coupled)

Global Federated
Schema

(tightly coupled)

1-to-1 schema
mapping

(loosely coupled)

Common schema
adaptation
mapping

(tightly coupled)
Fig. 2.1. Integrated Information Management System

18 Chapter 2: Interlinking and integrating schemas - background

Following the definition of (Ozsu & Valduriez, 1999), we mention two types of integrated
information management systems: distributed database systems and multidatabase systems.
Based on the classification of (Sheth & Larson, 1990), we divide the multidatabase systems as
federated information management systems and non-federated information management
systems.

Federated information management systems consist of autonomous nodes that can follow a
fully federated schema or a global federated schema approach. As illustrated in Figure 2.2-a, a
fully federated schema approach (Afsarmanesh et al., 1998) constructs an integrated schema at
each node by merging the local schema of that node with the schemas imported from other
nodes. Import schemas represent the information that other nodes make available to this node.
A global federated schema approach on the other hand, generates a global schema by
integrating the export schemas (representing the shared part of the information) from different
nodes into a single schema, as shown in Figure 2.2-b.

Export
Schema n

Local
Schema A

Integrated
Schema A

Export
Schema n

Export
Schema ..

Export
Schema A1

Export
Schema n

Export
Schema ..

Import
Schema B1

Node A

Export
Schema ..

Export
Schema B1

Export
Schema n

Export
Schema ..

Import
Schema A1

Node B

Local
Schema B

Integrated
Schema B

Fig. 2.2-a. Fully Federated Schema

Export
Schema A

Node A

Export
Schema B

Node B

Export
Schema N

Node N

Global Federated
Schema

…

Fig. 2.2-b. Global Federated Schema

2.1 Related Concepts 19

Nodes of non-federated information management systems are not autonomous. Two
approaches can be mentioned here: 1-to-1 schema mapping and common schema adaptation
mapping. In 1-to-1 schema mapping approach, mappings between the schemas of nodes are
identified in a pair-wise manner. For instance, as represented in Figure 2.3-a, mappings
between the schema of Node A and schemas of each other nodes are independently defined.
Whereas in common schema adaptation mapping approach, mappings are specified between
the common schema and the local schema of each node, as depicted in Figure 2.3-b.

Local
Schema A

Node A

Export
Schema n

Export
Schema ..Mapping B

Local
Schema B

Node B

Export
Schema n

Export
Schema ..Mapping A

Local
Schema N

Node N

Export
Schema n

Export
Schema ..Mapping A

Mapping

Mapping

Fig. 2.3-a. 1-to-1 Schema Mapping

Local
Schema A

Node A

Common
Schema

Mapping

Mappings A

Local
Schema B

Node B

Mappings B

Local
Schema N

Node N

Mappings N

Fig. 2.3-b. Common Schema Adaptation Mapping

20 Chapter 2: Interlinking and integrating schemas - background

2.2 Multidatabase Classification Based on Schema Coupling

In this section, we focus on different types of multidatabase architectures based on schema
coupling. We refer to multidatabase system as the one consisting of distributed and
heterogeneous databases. By following definitions of (Zisman, 1995), we present a general
overview of multidatabase architectures based on schema coupling in Figure 2.4.

Multidatabase
Architectures

Global Schema
Approach

(tightly coupling)

Interoperability
Approach

(loosely coupling)

•ANSI/SPARC Three Level Architecture
•Five Level Architecture
•Federated Database Architecture
•Mediator System

Fig. 2.4. A general overview of Schema Matching Approaches Based on Schema Coupling

In one of the multidatabase architectures, Global Schema Approach (also called as tightly
coupling), there exists a single global schema representing all information across the
databases. Global schema is generated by resolving the conflicts among local schemas and
then integrating them into a single schema. A global schema is usually difficult to create as in
order to create it one needs to fully understand the local database structures of participants.
Generation of a global schema is achieved in several steps (Zisman, 1995). First, schemas are
represented in a canonical data model, in case they are defined using different data models.
Secondly, conflicts are resolved and the integrated schema is generated. In this approach,
queries are created in terms of global schema and when such query arrives, it is decomposed
into sub-queries to be sent to local databases. After this step, sub-queries are translated into the
data language of the local database. When results of each query are received, they are merged
for the final result to be sent to users. Global schema approach is suitable whenever the
schemas are not subject to frequent changes. Advantages of this approach are; it is easy for
querying and information loss is reduced. However, when the number of local schemas to be
integrated is large or the environment is dynamic, this approach becomes complex.

In another multidatabase architecture, instead of creating a global schema, the aim is to make
heterogeneous databases interoperable. In this architecture, either partial or no integration is
required. Two types of interoperability approaches can be mentioned (Zisman, 1995):

1) Direct Interoperability, which consists of direct mappings (translations) among the
components. Direct mapping is difficult when one schema is semantically more
expressive than the other.

2) Indirect Interoperability, where an intermediate (canonical) data model and data
manipulation language is used to manipulate heterogeneous databases. The canonical

2.3 Schema Matching and Schema Integration 21

data model is used to represent other models, bridge the gap between local models,
detect inter-database semantic relationships, and achieve interoperability.

During the 80s, a variety of interoperability architectures were proposed in the literature,
including ANSI/SPARC Three Level Architecture (Tsichritzis, 1981), Five Level Architecture
(Sheth & Larson, 1990), federated database architecture (Hammer & Mcleod, 1979;
Heimbigner & Mcleod, 1985), and mediator systems (Wiederhold, 1992).

Interoperability architecture overcomes the drawbacks of global integrated schema approach.
This approach is appropriate when there are a large number of information sources and/or the
environment is dynamic. However, the query processing costs are high in interoperability
architectures.

An Example of Federated Database Architecture: PEER Federated Database System

The PEER system (Afsarmanesh et al., 1996; Tuijnman & Afsarmanesh, 1993) is a fully
federated system designed and implemented at the University of Amsterdam. PEER is a
generic object-oriented federated information management system enabling information
sharing among autonomous and heterogeneous nodes. In the PEER architecture (see Figure
2.2-a), there is no need to create a global schema, as information stored in different nodes are
interlinked through federated schemas. There are four types of schemas at each node: a local
schema, a number of export schemas, a number of import schemas, and an integrated schema.
The local schema models the local data at the node. Export schemas model the information
that this node wants to share with other nodes of the network. Import schemas model the
information that this node can access from other nodes. In other words, an import schema at
each node is the export schema of another node that shares its data through this export schema.
The integrated schema models the information that the node can access.

2.3 Schema Matching and Schema Integration

Organizations model their data using a variety of schema constructs. However, there is no
single way to represent the same or similar data, which results in diversities in schema
definitions even in the same organization. Distributed information management systems,
introduced in the previous sections, need to tackle conflicts or heterogeneities and identify
correspondences among schemas. As a result, schema matching and schema integration have
become two main facilitating processes of distributed information management systems,
which are mainly performed manually at present.

Schema specification is the main element of the schema matching and schema integration
processes. A schema specifies how data is stored, accessed, and managed in the database
management system (DBMS) and is described in a formal language supported by the DBMS.
Examples of schema related languages include the SQL’s DDL from relational data modeling
domain, the Object Definition Language (ODL) from the object-oriented data modeling
domain, the XML Metadata Interchange (XMI) of the Unified Modeling Language (UML), the
XML Schema Definition (XSD) for XML documents, and the Resource Description
Framework Schema (RDFS) as well as the OWL for ontologies.

The main inputs for the schema matching and schema integration processes are therefore the
schemas. Following sub-sections make the role of schemas in these two processes clear. Also,
more detailed information about schema matching and schema integration is given in these
sub-sections.

22 Chapter 2: Interlinking and integrating schemas - background

2.3.1 Schema Integration

The problem of schema integration in the context of distributed information management
systems is a relatively old challenge. In different approaches to enabling access to distributed
and heterogeneous data, a different level of integration is achieved. Considering the
classification of integrated information management systems, shown in Figure 2.1, schema
integration is necessary in both fully-federated schema and global federated schema
approaches. However, in the case of fully-federated schema approach, each node needs to
integrate its local schema with the import schemas of other nodes to generate a representation
of information that this node can access. On the other hand, in the case of global federated
schema approach, schemas of all nodes, representing the information that these nodes make
available to the network, need to be integrated to generate a single common schema that
defines the information available at the network of nodes.

In database research, schema integration is typically used to refer to both the view
integration and database integration (Batini et al., 1986). View integration aims at producing
an integrated schema of users’ views and is performed during the database design process,
whereas database integration derives a new schema from existing specification. As identified
in (Spaccapietra et al., 1992), view integration methodologies work with views based on the
same data model, but database integration technologies work with schemas that are usually
defined using heterogeneous data models. Considering the goals of the research work
explained in this thesis, the focus is on the database integration. Therefore, when we use the
phrase ‘schema integration’, we actually refer to integration of ‘databases’. Furthermore, while
we devise ways of semi-automatically integrating schemas, we target schemas which are based
on the relational data model; i.e. both source and target schemas that we try to match and
integrate are relational schemas.

There has been an extensive research work on the schema integration subject. A
comprehensive survey of schema integration methodologies were done by (Batini et al., 1986).
In (Batini et al., 1986), an analysis of twelve related methodologies were carried out, and they
were compared based on different criteria, including the used data model, inputs, outputs, and
strategies followed.

Considering all methodologies and approaches for schema integration and adding our own
approach to it, three main integration steps can be identified, namely: 1) the Pre-integration
step, 2) the Matching step, and 3) the Integration step.

1. The Pre-integration step consists of a number of preparation steps before the
integration, such as identifying schemas to be integrated, preferences to be
considered in the integration process, and amount of user input, as (Batini et al.,
1986) mentioned. The type of the integration strategy followed affects the
identification of schemas to be integrated. Two types of strategies are mentioned in
(Batini et al., 1986) for schema integration: binary and n-ary strategies. Binary
strategies allow the integration of two schemas at a time, while n-ary strategies can
integrate n schemas at a time. Because of the complexities of integrating n schemas
at a time, most approaches in the literature prefer a binary strategy.

2. The Matching step, also called the Investigation step by (Spaccapietra et al., 1992),
identifies correspondences among different schemas by resolving their conflicts.
Instead of the Matching step, the (Batini et al., 1986) categorizes two other steps
called: comparison of the schemas and conforming the schemas, which together
constitute the Matching step.

2.3 Schema Matching and Schema Integration 23

3. The Integration step is responsible for integrating the schemas, based on the
correspondences identified in the matching step.

In this direction, the previously suggested schema integration approaches and methodologies
are either fully manual or with some limited degree of automation focused only on the third
step, and not including the matching step. Furthermore, for any automation on the integration
step, it is typically assumed that the full semantics and structural knowledge of the two
schemas are available.

Schema integration is a challenging and complex task: The integration step cannot be fully
automated, since automatic resolution of some types of conflicts is not possible and user input
is required to determine the appropriate meanings and decide on mappings for the integrated
schema. Nevertheless, carrying out this process as automatically as possible and helping the
users with this complicated task are needed in order to cope with the increasing demand for
integrated information management systems.

The research work explained in this thesis addresses the full cycle of semi-automatic schema
integration in three main steps, including: Configuration, Schema Matching, and Schema
Integration, as shown in Figure 2.5. Some limited user input is required at these steps, as
addressed below. The configuration step is responsible for assigning desired weights to the
algorithms used in the linguistic and structure matching components, as well as for identifying
the desired selection strategy for the results of schema matching. The schema matching step
starts with a preparation activity that automatically turns the two source schemas (donor and
recipient schemas) into a common format. Then, this process takes the schemas represented in
the common format, as well as some other required inputs, as described in Section 2.3.2, and
identifies all possible matches between the two schemas. After receiving the user input on the
match results, at the third step, the schema integration takes as input the accepted
correspondences between the two schemas and using a number of predefined integration rules,
it automatically generates both an integrated schema as well as the needed mappings between
the integrated schema and the two source schemas being integrated. The mappings are
expressed in terms of a derivation language introduced in Chapter 4. Finally, the user input is
required for the final validation of the integration results.

Schema Integration

schema matching
results

User Input

the resulted
integrated
schema

mappings between the integrated
schema (target) and the local
schema, expressed in terms of the
derivation language

Configuration Schema Matching

integration
rules

Fig. 2.5. Main Steps of the Schema Integration Process

24 Chapter 2: Interlinking and integrating schemas - background

2.3.2 Schema Matching

To achieve any of the integrated information management systems introduced in Section 2.1,
there is a need to compare their schemas (e.g. two schemas at a time) and identify
correspondences between them. As addressed in Section 2.3.1 on schema integration,
federated information management approaches generate integrated schemas, where schema
matching is one main step for the schema integration. In non-federated information systems
however, the aim is to generate mappings either between the global schema for the network of
databases and each of the local schemas - thus resulting a set of schema adaptation mappings,
or between each pair of the local schemas - thus resulting a set of 1-to-1 schema mappings.
Identifying the correspondences and generating the needed mappings also require support
from the schema matching process.

Schema matching can be defined as the process for finding the correspondences between
different elements of two schemas. The simplest type of matching is the 1-to-1 matching. For
two schemas, e.g. A and B, schema matching process can identify for each element of schema
A, the most similar element of schema B. In addition to 1-to-1 matches, some complex
matches also frequently occur among schema elements. Complex matching identifies
correspondences between each element or a group of elements of the schema A and a group of
elements of schema B. Groups of elements are combined and inter-related with a formula. For
example, suppose that there is a match identified between the ‘name’ element of Schema A
and the ‘fname’ and ‘lname’ elements of Schema B. In this case, ‘fname’ and ‘lname’ can be
combined through concatenation and a mapping can be defined between ‘name’ and this
combination of ‘fname’ and ‘lname’. Most schema matching approaches focus only on the 1-
to-1 matches, considering that it is much easier to identify 1-to-1 matches than complex ones.

As shown in Figure 2.6, which represents a simplified version of the classification provided
in (Rahm & Bernstein, 2001), individual and combined matchers are two top-level classes of
matchers in this classification of schema matching approaches. Combined matchers represent a
set of individual matchers. Individual matchers are further divided into two: instance-based
and schema-based matchers. Instance-based matchers exploit the instance information;
schema-based matchers on the other hand consider the definition of schema itself.
Furthermore, schema-based matchers can be applied to individual schema elements (at
element level) or for combination of elements (at structure level). Element level matchers use
the linguistic characteristics of the element names. They apply techniques such as tokenization
and word separation, removal of stops words and hyphens, expansion of abbreviations, and
lemmatization, the details of which are all given in Chapter 4. Element level matchers consider
both the syntactic as well as the semantic features of names in the schema. Furthermore, these
types of matchers benefit also from the constraint-based techniques, which deal with the
internal constraints being applied to the definitions of entities, such as types, cardinality of
attributes, and keys.

On the other hand, the structure level matchers exploit the graph-based techniques. Graph
matching techniques and the relationships among the graph elements together form the base of
structure level matchers.

In (Shvaiko & Euzenat, 2005), a different classification is introduced, where three main
dimensions are mentioned for the classification of schema matching algorithms, including:

1. Input dimension: This dimension is related to both the kinds of data or conceptual
model to express schemas that the matching algorithms shall use, such as the
relational or object-oriented, as well as the kinds of elements that algorithms shall
exploit, such as the schema level and/or instance level data.

2.3 Schema Matching and Schema Integration 25

Schema Matching

Individual matchers Combined matchers

Schema-based Instance-based

Element level Structure level

Fig. 2.6. A general overview of Schema Matching Approaches (simplified version of (Rahm &
Bernstein, 2001))

2. Process dimension: This dimension considers the nature of the computation in the
matching algorithms, which can be exact or approximate. For the exact algorithms,
the completeness of the solution is considered, whereas for the approximate
algorithms the performance aspects are preferred over exactness.

3. Output dimension: This dimension considers different possible forms of outputs
generated by matching algorithms. For example, one algorithm can determine only 1-
to-1 matches, while another one can also identify 1-to-many matches. Another
example is that the results of some types of algorithms are values in the range [0,1]
for element pairs being compared, whereas some other types of algorithms identify
the match results using some relationship operations, such as ‘equivalent’.

Schema matching process may take a variety of inputs and may produce some outputs
depending on the matching approach that it applies. Figure 2.7 shows briefly the inputs and
outputs for the matching process introduced in this research work, as later explained in this
thesis. The variety of inputs consist of the schema specification, a linguistic dictionary, a
number of linguistic and structural similarity algorithms, and the user input for validating the
results. Output of the matching process is a set of similarity scores for each match identified
for schema elements as well as the relationship operations for complex matches, such as string
concatenation.

Extensive research has been done in the past in relation to the schema matching field. A
number of approaches have been proposed, requiring different amounts of manual intervention
from user. More detailed information about these schema matching approaches is given in
Chapter 4.

A number of other terms and concepts related to schema matching process have been
introduced in the research literature, such as: the ontology matching and mapping discovery.
Especially, the ontology matching has drawn considerable attention in recent years with the
increasing popularity of the Semantic Web. Although ontology and database schemas have
different purposes, the spectrum of “ontology specification” is very broad and a database
schema can be considered as a simple descriptive ontology of an environment. In general,
“Ontology” is assumed with different meanings and details depending on where it is used. For

26 Chapter 2: Interlinking and integrating schemas - background

example, (Gruber, 1993) defines ontology as a specification of a conceptualization. In this
direction, it can be related to a database schema, which in general presents the meta-data
defined for a database containing information about the structure and content of that database.

Schema Matching

Schema
Information

Linguistic
Dictionary

Linguistic &
Structural
Similarity
Measures

User Input

Similarity
Scores &
Relationship
Operators

((a,b), 0.1)
((c,d), 0.0)

x=concat(y,z)
…..

Fig. 2.7. Inputs and Outputs of Schema Matching

Applications of Schema Matching

In addition to its role in the semi-automatic schema integration, the matching process plays an
important role in several other application domains, such as in data warehouses, query
processing, Semantic Web, and e-business (Rahm & Bernstein, 2001) (Do et al., 2002). Each
of these applications needs to deal with some heterogeneous schemas and identify the matches
and mappings either manually or semi-automatically. The following paragraphs briefly
address these application domains and their relation to matching process.

Data Warehouses

The number of data warehousing applications has increased rapidly in the last decade. Data
warehousing has become popular with the need for analyzing large amount of data using
different techniques and algorithms to extract information related to a variety of domains, such
as sales. Data warehouses aim to most optimally support the analysis and reporting of
collected data. In order to form a data warehouse, data from different sources need to be
transformed into a common warehouse format. Schema matching process can help in creating
an appropriate interlinking and transformation.

E-business and E-commerce

Another application area for schema matching is related to the heavy use of the e-commerce
and e-business for transactions among companies. In recent years, these have become popular
among both national and international trading partners, using the opportunities that the Internet
provides. Using these technologies, partners exchange messages, receive product information,

2.4 Conclusion 27

place orders, sign contracts, etc. Each organization may use different tools and thus different
formats for exchanging messages and conducting their transactions, such as the XML, the
Electronic Data Interchange (EDI), etc. In order to exchange messages, they need to be
translated from one format into another, for which the schema matching process can be
applied.

Query Processing on the Web

With the increasing number of data sources available, query processing on the Web has
become important. Users pose queries applying their own terminology and the query
processing systems need to re-write these queries. For this purpose, the query processing
system needs to identify correspondences and mappings between the terms in these queries
and the actual terms introduced in the underlying schemas. This is therefore another potential
application where schema matching can be utilized.

Semantic Web

The Semantic Web mechanisms contribute to semantically enriching the contents of the Web
pages. Semantic enrichment is mainly achieved by associating the concepts on Web pages to
ontologies. In other words, the contents of the Web pages are annotated by definitions within
these ontologies. However, it is not necessary (and not practiced) that all Web pages use the
same ontology. Therefore, before integrating information from different sites, Semantic Web
needs to first identify correspondences among different related ontologies that these sites use
to annotate their concepts. This is therefore another example of the need for schema matching
process, where a semi-automatic schema matching approach can play an important role in
matching different ontology elements for Semantic Web applications.

2.4 Conclusion

There are different definitions introduced in the literature for the terms and concepts related to
data sharing among distributed nodes. For instance, the concept of ‘Federated Database
Architecture’ is interpreted differently by different researchers and authors. This chapter
provides some background on the concepts and definitions used by the past research, as related
to the subject of this thesis.

Furthermore, for the purposes of setting the context for the problem space addressed in the
thesis, and achieving common understanding of the terminology pertaining to the problem area
that we try to tackle, this chapter provides our approach on integrated information
management system taxonomy. Schema integration and schema matching are two important
processes required by the integrated information management systems. As explained in this
chapter, these processes need to be automated to the extent possible in order to facilitate easy
construction of such information management systems.

28 Chapter 2: Interlinking and integrating schemas - background

Chapter 3

Heterogeneity

Heterogeneity corresponds to differences in a wide range of areas related to information systems, and is
considered as the most challenging obstacle standing in the way of achieving seamless interoperability
among independent information systems. This chapter first provides some introductory information
about three dimensions, distribution, autonomy, and heterogeneity, under which information systems
are categorized in relation to accessing information. Then Section 3.2 presents a number of taxonomies
for heterogeneities proposed in the literature. Section 3.3 focuses on the main approaches for dealing
with the schema heterogeneity, since this constitutes one of the main subjects of this thesis. Also
provided under Section 3.3, different types of schema heterogeneities are exemplified. Finally, Section
3.4 concludes this chapter and emphasizes the importance of tackling schema heterogeneity problems
with a semi-automated approach.

The research results presented in this chapter were partially published in the Journal of Knowledge and
Information Systems (Unal & Afsarmanesh, 2010) and in Lecture Notes in Computer Science (Unal &
Afsarmanesh, 2006b).

3.1 Related Concepts

From the viewpoint of accessing the information, the existing information systems are
categorized under three dimensions, including: distribution, autonomy, and heterogeneity
(Sheth & Larson, 1990), as further detailed below:

 Distribution Dimension: Data is typically distributed over different, usually
geographically dispersed data sources. With the advances of the Web, these sources are
now interlinked, hiding their physical locations, and thus making this dimension less
challenging with regards to achieving database interoperability. However, exchanging
large volumes of data over distributed networks have been another challenging aspect,
which can now be easily dealt with through broad bandwidths.

 Autonomy Dimension: Each organization runs some information systems independently
from others. For example, organizations may autonomously decide to share a part of their
local resources or services with others. Furthermore, they may maintain autonomy on
their local data and define/use their own data models. We identify four main types of
autonomy that can be exercised in federated database systems: 1) Design autonomy that
refers to a component’s being independent from others in their information system design,
including data model, query language, constraints, etc. 2) Communication autonomy that
refers to a component’s autonomy in deciding whether or not to communicate with others
and when and how to communicate. 3) Association autonomy that refers to a component’s
autonomy in deciding which parts of its resources and functionalities to share with others.

30 Chapter 3: Heterogeneity

4) Execution autonomy that enables a component to execute local operations and to
decide on the order of these operations without interference of external systems.

 Heterogeneity Dimension: Heterogeneity arises due to autonomy of organizations. It
corresponds to differences in numerous areas of information systems. Heterogeneity has
been the most challenging dimension within the context of database interoperability,
especially considering the large variety of conflicts that may exist among distinct data
providers. Different types of classifications are proposed in the literature for this
dimension, as addressed in the next section.

3.2 Taxonomy of Heterogeneity Resulted Conflicts

Different, but partially overlapping classifications for heterogeneity have been proposed in the
literature. Some classifications only distinguish between the information and schema when it
comes to heterogeneity, while some others consider several other types of heterogeneity in
information systems. In this section, we present five different classifications defined in the
literature, in relation to our research work:

Classification-1: As for conflicts that may exist among schemas, Batini et al. (Batini et al.,
1986) defines two categories, as shown below in Figure 3.1, including: name conflicts and
structure conflicts.

1- Name conflicts arise because of the fact that different database designers typically use
different terminology for the same domain. Typically, there are two types of relationships
among the names used that cause name conflicts:

 Homonyms: The same name is used for different concepts.

 Synonyms: The same concept is described by different names.

2- Structural conflicts arise because of using either different modeling constructs or different
integrity constraints. Structure conflicts are classified by (Batini et al., 1986) as follows:

 Type Conflicts occur as a result of using different modeling constructs (e.g. using
entity versus attribute) for representing the same concept.

 Dependency Conflicts arise when different schemas introduce different
relationships among the same concepts, such as a 1-to-1 relationship is indicated
between two concepts in one schema, while in another schema the concepts have a 1-
to-m relationship.

Fig. 3.1. Taxonomy of Schema Conflicts (Batini et al., 1986)

3.2 Taxonomy of Heterogeneity Resulted Conflicts 31

 Key Conflicts arise when different keys are introduced for the same concept in
different schemas. For example, employee may have the SSN attribute as the key in
one schema, whereas in another schema its key may be the ID attribute.

 Behavioral Conflicts arise due to different insertion / deletion policies introduced in
different schemas for the same concept. For example, in one schema player data
may exist without a related team data, but in another schema when a player is
inserted it has to have a related team data.

Classification-2: In another study, (Sheth & Kashyap, 1992) defines a classification with
the emphasis on the schematic heterogeneities and semantic similarities, as shown in Figure
3.2.

1- Domain Definition Incompatibility corresponds to differences in attribute domain
definitions for representing semantically similar attributes and consists of types of
conflicts listed below:

 Naming Conflicts: Using synonyms and homonyms for defining attributes.

 Data Representation Conflicts: Using different data types for semantically similar
attributes. For example, an attribute may be defined of type string in one schema,
whereas in another schema a similar attribute may be defined of type integer.

 Data Scaling Conflicts: Using different units or measures. For example, price
attribute might have values in dollar in one database and in euro in another database.

 Data Precision Conflicts: Using different precisions. For example, the grade
attribute may have a value between 1-100 in one schema, but it may have a letter
value (A, B, C, etc.) in another schema (Sheth & Kashyap, 1992).

 Default Value Conflicts: Using different default values. For example, default value
for the threshold attribute might be 0.5 in one schema and 0.6 in another schema.

 Attribute Integrity Constraint Conflicts: Using different integrity constraints that
might not be consistent with each other. For example, an attribute X may have the
constraint that X>30 in one schema and X<20 in another schema.

2- Data Value Incompatibility corresponds to using different values for data in different
databases. This type of incompatibility depends on the database state and can arise as a
result of the following inconsistencies:

 Known Inconsistency: Related to inconsistencies, cause of which are known. For
example, it might be known that one database is more reliable than the other. In this
case, the more reliable database can be used to resolve the inconsistency.

 Temporal Inconsistency: Related to inconsistencies, which are temporal. In other
words, information stored in a database is time dependent. In this case, inconsistency
is temporary.

 Acceptable Inconsistency: Related to inconsistencies that are within an acceptable
range and considered tolerable. Therefore, for some types of queries, the errors in the
values of inconsistent databases may be tolerable.

32 Chapter 3: Heterogeneity

3- Abstraction Level Incompatibility corresponds to differences in levels of abstraction that
different databases use to represent semantically similar entities and can be of two types:

 Generalization Conflicts: Using different levels of generalization. For example, car
entity may be represented by the vehicle entity in one schema and car entity in
another schema.

 Aggregation Conflicts: Using aggregation in one database to identify a set of
entities in another database. For example, team in one schema is a set of players in
another schema.

4- Schematic Discrepancies arise when data in one database corresponds to metadata in
another database and consist of three types of conflicts:

 Data Value Attribute Conflict: Arises when the value of an attribute in one
database corresponds to an attribute in another database. For example, letter grades
(A, B, C, D, F) of a student may be stored in a grade attribute in schema S1, whereas
in A, B, C, D, and F attributes in schema S2.

 Entity Attribute Conflict: Arises when an entity is modeled as an attribute in one
database, whereas as a relation in another database. Considering the example in the
Data Value Attribute Conflict, suppose that another schema, S3, has separate
relations for each grade, in the form of A(date, name_of_student,..), B(date,
name_of_student,..), etc. In this case, there is an entity-attribute conflict between the
schemas S3 and S1.

Fig. 3.2. Taxonomy of Schema Conflicts (Sheth & Kashyap, 1992)

3.2 Taxonomy of Heterogeneity Resulted Conflicts 33

 Data Value Entity Conflict: Arises when the value of an entity in one database
corresponds to a relation in another database. Considering the examples in data value
attribute and entity attribute conflicts, there is a data value entity conflict between the
schemas S2 and S3.

5- Entity Definition Incompatibility arises when incompatible entity descriptors are used
and involves the following types:

 Database Identifier Conflicts: Using semantically different identifier records. For
example, employee entity may have the attribute ssn as the key in one schema and
name as the key in another schema.

 Naming Conflicts: Using synonyms and homonyms for defining entities. Name
conflicts here exist among entities, whereas the name conflicts under “Domain
Definition Incompatibility” exist among attributes.

 Schema Isomorphism Conflicts: Using different number of attributes for
semantically similar entities.

 Union Compatibility Conflicts: Having semantically unrelated set of attributes for
semantically similar entities. For example, employee entity having ssn, name, and
address attributes in one schema and ssn, name, and salary attributes in another
schema are union incompatible.

 Missing Data Item Conflicts: Arise when one of the semantically similar elements
has a missing attribute. For example, vehicle entity may have type attribute (for the
types of vehicle, such as car, bus, etc.) in one schema, but in another schema, car
entity may not have this attribute.

Classification-3: Another classification, shown in Figure 3.3, is proposed by Sheth for
defining different types of heterogeneity in information systems (Sheth, 1998):

1- Information Heterogeneity: Corresponds to differences in information that involves
semantic, structural and schematic, and syntactic heterogeneities.

2- System Heterogeneity: Corresponds to differences in information systems, namely in
digital media repository management systems and database management systems

Fig. 3.3. Taxonomy of Information Systems Heterogeneity (Sheth, 1998)

34 Chapter 3: Heterogeneity

(DBMS), as well as disparities in platforms, namely operating systems and
hardware/systems.

Classification-4: (Busse et al., 1999) uses another classification, shown in Figure 3.4,
which divides the heterogeneity into three: syntactical, data model and logical heterogeneity,
as explained below.

1. Syntactical Heterogeneity is divided into two main types; technical and interface
heterogeneity:

 Technical Heterogeneity: Differences in technical aspects such as operating
systems, protocols, etc.

 Interface Heterogeneity: Heterogeneity that arises as a result of using different
access languages. Differences in the following subjects cause interface
heterogeneity:

 Language Heterogeneity: Use of different query languages or language
restrictions.

 Query Restrictions: Allowing only certain types of queries, such as the
maximum number of joins allowed.

 Binding Restrictions: Allowing only certain attribute values in queries.

2. Data Model Heterogeneity: Related to different data models' having different semantics
for their concepts.

3. Logical Heterogeneity: Classified in three sub-categories:

 Semantic Heterogeneity: Differences in semantics of data and schema. Different
semantic schema conflicts can occur: equal names can denote different concepts
(homonyms), different names can be used for the same concept (synonyms), and so
on.

 Schematic Heterogeneity: Differences in encoding of concepts at different elements
of a data model. Attribute name-relationship and attribute name-attribute value
conflicts in relational databases are examples of this kind of heterogeneity.

 Structural Heterogeneity: Occurs if elements are structured in different ways in

Fig. 3.4. Taxonomy of Information Heterogeneity (Busse et al., 1999)

3.3 Challenges for Schema Matching 35

different schemas. For example, grouping attributes into different tables in two
schemas results in this type of heterogeneity.

Classification-5: Another classification of heterogeneity is proposed by (Kahng & Mcleod,
2001), who divides information heterogeneity into two, as depicted in Figure 3.5:

1. Data Model Heterogeneity: Differences in collections of structures, constraints, and
operations that information systems use to describe and manipulate data.

2. Semantic Heterogeneity: Differences in specifications of data. Semantic conflicts among
information systems that use object-based data model are listed by (Kahng & Mcleod,
2001) as follows:

 Category: Two objects coming from different information sources may have
equivalence, sub-concept/super-concept, or partially overlapping relationships
when they represent same or similar real world entities.

 Structure: Two objects coming from compatible categories may have different
structures. For example one object in one system may have one attribute but
another object in another system might not have it.

 Unit: Two objects coming from the compatible categories and having the same
structures may use different units.

 Terminology: Use of synonyms and homonyms may cause semantic
heterogeneities.

 Universe of Discourse: Semantics hidden in the context may result in semantic
heterogeneities.

Fig. 3.5. Taxonomy of Information Heterogeneity (Kahng & Mcleod, 2001)

3.3 Challenges for Schema Matching

As it is clear from the existence of a large number of classifications presented in Section 3.2
above, heterogeneity has been one fundamental problem against enabling interoperability
among information systems. Despite the existence of different classifications of heterogeneity,
there are many commonalities in the terminology that these classifications employ. However,
categories and the terms used in each classification are confusing. For example, Classification-

36 Chapter 3: Heterogeneity

2 places “Naming Conflicts” under both “Domain Definition Incompatibility” and “Entity
Definition Incompatibility”. The first one refers to the attributes, whereas the second one
refers to the entities. Furthermore, for the “Schematic Discrepancies” category, it is difficult to
infer by just looking at the name to which the category is related for its data-metadata
conflicts. As another example, Classification-4 has a category called “Schematic
Heterogeneity”, but another category called “Semantic Heterogeneity” is also defined. But
there is some overlap between these two categories. Furthermore, some classifications miss to
consider heterogeneities corresponding to the different forms of names used in the schemas,
such as using abbreviated vs. extended names.

Since the focus of this thesis is on schema matching and schema integration, we concentrate
on analyzing schema heterogeneities. Hence, the heterogeneities related to instance data and
underlying systems, such as those of the database management system are not considered in
our classification. Furthermore, we aim to define a classification that is clear and simple (as
opposed to those other classifications that are confusing), but at the same time broad enough to
cover a wide variety of different types of database schema conflicts. In this respect, the
research explained in this thesis covers both the structural and linguistic heterogeneities, to
capture the semantic, syntactic, and structural schema conflicts, as indicated in Figure 3.6.

A number of examples are provided below, each of which representing a different kind of
schema conflict that belongs to one of the categories: structural, linguistic, or belong to a
combination of the two. These examples are taken from two specific example schemas S1 and
S2, defined for a university domain, encompassing courses, students, etc., as shown in Figure
3.7. As described in these examples, structural conflicts are more difficult to resolve than
linguistic conflicts. Clearly, the varieties of types of conflicts that exist among databases are
not limited to these given here. However, the conflicts shown in the examples are the ones
which frequently occur in database schemas, and cause bottlenecks for automatic schema
matching and integration. Note that for simplicity reasons, in the example cases only partial
schemas are shown in a simple format. If relevant to the example, some primary and foreign
keys are also shown in the schemas.

Fig. 3.6. Classification of Schema Conflicts Considered in the Thesis

3.3 Challenges for Schema Matching 37

S1

Person (ssn (PK), fname, lname, rank, salary, office, phone, child, depid (FK))

Student (stid (PK), fname, lname, birth_date, sex, address, class, gpa, depid (FK))

GradStudent (stid (PK, FK))

Department (dptID (PK), name_of_department, dphone, doffice, college)

Course (cno, cname, description, section, day, ssn (FK), depid (FK))

Time (timeid, start, end, cno(FK))

Campus (cid (FK), location)

S2

Instructor (id (PK), name, telephone, children, dcode (FK))

Student (studentID (PK), degree, date_birth, name, gender, city, state, zip,

GradePointAverage, dptcode (FK))

GradeReport (studentID (PK, FK), section_number (FK), letter_grade, numeric_grade)

Course (cnumber, coursename, coursedesc, credits, dcode (FK))

Section (section_number (PK), semester, year, instID (FK), day, cnumber (FK))

Time (timeid, start, end, section_number (FK))

Department (dptCode (PK), nameDepartment, officeNumber, officePhone, college)

Campus (cid (PK), city, zipcode)

Apply (studentID (PK, FK), cid (PK, FK))

Fig. 3.7. Example Schemas from University Domain

1) Examples of Structural Conflicts: Structural conflicts exist due to the fact that different
organizations use different constructs and integrity constraints to represent the same concepts.

 Attribute-Entity Conflict: This conflict arises when a concept is represented as an
attribute in one schema and as a separate entity in the second schema. For example, as
shown in Figure 3.8, “section” information is represented by the ‘section’ column of the
“Course” table in schema S1, while schema S2 represents it as a separate table “Section”.

S1 S2

cno (PK)
Course

cname
section
day
…

Course

coursename
cnumber(PK)

coursedesc
…

Section
section_number (PK)
instID (FK)
day
cnumber (FK)
…

Fig. 3.8. Attribute-Entity conflict

 Key Conflict: This conflict arises when different keys are assigned for the same entity in
different schemas. In the example shown in Figure 3.9, the key of the “Department” table
in schema S1 is “dptID”, while that of the “Department” table in schema S2 is “dptCode”

38 Chapter 3: Heterogeneity

S1 S2

dptID (PK)
Department

name_of_department
dphone
doffice
…

Department

nameDepartment
dptCode(PK)

officeNumber

…
officePhone

Fig. 3.9. Key conflict

 Relationship Conflict: This conflict is related to the case, in which relationships between
entities in different schemas are defined differently, as exemplified in Figure 3.10. In S1,
there is a one-to-many relationship between the “Student” and “Campus” tables, while in
S2, this relationship is many-to-many, thus introducing a third table “Apply”, to represent
this relationship.

S1 S2

Apply
studentID (PK, FK)
cid (PK, FK)

Student

fname
stid (PK)

…

Student

name
studentID (PK)

…

Campus

location
stid (FK)

cid (PK)
Campus

cid (PK)
city
zipcode

Fig. 3.10. Relationship conflict

 Attribute-Attribute Conflict: This conflict arises when the same concept is represented
by using different number of attributes in different schemas. For the example shown in
Figure 3.11, “address” data is stored in one column of the “Student” table in S1, while in
S2, it is spread over three columns.

S1 S2

Student

address
stid (PK)

…

Student

city
studentID (PK)

…

state
zip

Fig. 3.11. Attribute-Attribute conflict

2) Examples of Linguistic Conflicts: Linguistic conflicts arise because of different
terminology and names that different organizations use to refer to the same data. Linguistic
conflicts can be of two types: syntactic and semantic. Below are the examples for the syntactic

3.4 Conclusion 39

and semantic conflicts. Since these types of schema conflicts are due to differences in
representation of “names” of columns or tables, we have not provided example schemas but
only some related but different names in the following examples.

 Syntactic Conflicts: These conflicts arise due to using different forms of the names and
can be of the following types:

o Using names that consist of more than 1 token (word) with different order of
tokens, e.g. birth_date vs. date_birth.

o Using abbreviated vs. extended names, e.g. GPA vs. GradePointAverage.

o Existence of stop words, e.g. name_of_department vs. nameDepartment

o Using different forms of a string (plural, singular, etc.), e.g. child vs. children.

o Similar to the use of abbreviated vs. extended names, use of short forms of
strings, e.g. phone vs. telephone.

 Semantic Conflicts: These conflicts arise due to differences in semantics of names and
can be of the following types:

o Use of synonyms, e.g. gender vs. sex.

o Use of hypernymy / hyponymy (representing IS-A), e.g. person vs. instructor.

3) Example of Combined Structural and Linguistic Conflicts: The two types of conflicts
addressed above may occur in a combined form in some parts of the schema. Following figure
(Figure 3.12) shows an example for this case, where the “location” information in S1 can be
matched with the concatenation of “city” and “zipcode” columns of the “Campus” table in S2,
if we apply both the linguistic “IS-A hierarchy” and the structural “one attribute in the first
schema matches two attributes in the second” (attribute-attribute conflict) conflict resolution
techniques.

S1 S2

Campus

location
cid (PK)

Campus
cid (PK)
city
zipcode

Fig. 3.12. Combined Structural and Linguistic conflicts case

3.4 Conclusion

The term heterogeneity, also referred to as conflict in several related reported research, is used
in different contexts, such as those addressing schema heterogeneity, information
heterogeneity, etc. It is generally used to refer to the diversity or difference, which exists
among distinct elements within a domain. Heterogeneity is a big obstacle to interoperability.
In information systems, with the increasing number of efforts during the last years, which aim

40 Chapter 3: Heterogeneity

to enable interoperability, heterogeneity has been addressed as an important issue common
among them.

Different classifications of heterogeneities in information systems have been proposed in the
related research literature. Considering the subject of this thesis, schema heterogeneity is the
one, on which we have focused. We divide schema heterogeneity into two main classes of:
structural and linguistic. Structural conflicts exist due to the fact that different organizations
use different constructs and different integrity constraints to represent the same or similar
concepts. The most frequently occurring structural conflicts include: attribute-entity conflicts,
key conflicts, relationship conflicts, and attribute-attribute conflicts. Linguistic conflicts on the
other hand arise because of the different terminology and names that different organizations
use to refer to the same or similar concept. Linguistic conflicts can be of two types: syntactic
and semantic. Structural conflicts are more difficult to identify and resolve than linguistic
conflicts.

In any approach that attempts to enable data sharing among heterogeneous databases, both
linguistic and structural conflicts need to be considered. Considering that the complete
semantics of the concepts introduced in an environment are not and/or cannot be fully
expressed in database schemas, human intervention is deemed to be necessary, as the decision
maker to resolve ambiguities in this area. Therefore, fully-automated conflict resolution does
not seem realistic for the time being, and hence we hypothesize that semi-automatic
approaches need to be devised to more effectively deal with the problem of heterogeneity.

Chapter 4

SASMINT approach

The increase in the amount of data typically stored in electronically accessible online databases and the
increase in the need for collaboration and sharing of information between various communities of
interest, are among the main factors that have necessitated the development of systems, which can
enable sharing of data among these databases, thereby enabling integrated access to them. This chapter
describes the main related research approaches that are utilized for developing systems to enable
integrated access to electronic databases. Also addressed are the limitations associated with each of
those approaches. Related work presented in Section 4.1 is comprised of four areas: 1) approaches
focusing on integration and interoperability of databases, 2) approaches that mainly focus on database
schema matching, 3) approaches focusing on database schema integration, and 4) approaches focusing
on ontology matching and ontology merging. We then introduce in Section 4.2 the SASMINT
approach, under which we deal with a number of open issues in the field of schema matching and
integration. We introduce the SASMINT derivation language, which is devised and introduced for
automatic capturing of the results of schema matching as well as for formalizing the schema integration
results. Algorithms utilized in schema matching part of the SASMINT approach are described next in
Section 4.2. An overview of rules for automatic generation of integrated schemas, as well as the
derivation constructs that are used to represent and store the derivation history, are addressed in details
in the same section. Finally, Section 4.3 concludes this chapter and emphasizes the main achievements
of the SASMINT approach.

The content of this chapter constitutes materials from three published articles, which appeared in the
Journal of Knowledge and Information Systems (Unal & Afsarmanesh, 2010), in the Journal of
Software (Unal & Afsarmanesh, 2009) and in Lecture Notes in Computer Science (Unal &
Afsarmanesh, 2006b). Earlier version of some part of the research results of this chapter appeared in the
proceedings of the PRO-VE - Network-Centric Collaboration and Supporting Frameworks (Unal &
Afsarmanesh, 2006a), in the proceedings of the International Conference on Software and Data
Technologies (ICSOFT) (Unal & Afsarmanesh, 2006c), and in the proceedings of the Third Biennial
International Conference on Advances in Information Systems (ADVIS) (Guevara-Masis et al., 2004).

4.1 Related Research Approaches

New developments in communication technologies have made accessible large amounts of
data that are stored in databases geographically distributed all over the world. As identified in
Chapter 3, distributed databases are typically heterogeneous, differ both in their systems and
their definitions, namely containing different data models and data semantics. To support
collaboration among distributed nodes, although these databases are independently created and

42 Chapter 4: SASMINT approach

administered, they need to interoperate and cooperate. Furthermore, there is an ever-increasing
demand to create unified databases, to support collaboration, in such a way that users can have
efficient access to distributed information resources. One fundamental question that arises
while dealing with autonomous heterogeneous database systems is related to the resolution of
diversity in their data models and schemas, namely schemas’ syntactic, semantic, and
structural conflicts. This must be addressed in both global schema approaches, where schemas
of participating databases need to be integrated to generate a global schema, as well as for
supporting their interoperability, where correspondences among schema elements need to be
identified.

A number of approaches for providing data sharing and integration among autonomous,
distributed databases have been proposed, aiming at different levels of Integrated Information
Management Systems, as explained in Chapter 2. We investigate these approaches by first
classifying them into four categories: 1) database integration and database interoperability
approaches, 2) schema matching approaches, 3) schema integration approaches, and 4)
ontology matching and ontology merging approaches. The concept map shown in Figure 4.1
lays down the logical relationships between these named approaches. Schema matching is
considered to be a part of (i.e. classified under) schema integration, while ontology
matching/merging is a research subject, which is studied in a manner similar and with overlaps
to both schema matching and schema integration. All three research subjects logically
constitute a part of database integration and interoperability. In the following sections, we
exemplify these four approaches. As explained in these sections, so far the proposed
approaches mostly involve large amounts of manual work. They either require database
designers to explicitly integrate knowledge between data sources, or provide limited
automation to integrate certain specific data sources. Furthermore, manual integration
processes do not scale well when the number and the size of the databases increase.

Schema
Matching

Schema
Integration

Ontology
Matching/
Merging

Database
Integration and
Interoperability

part of

similar to

typically
constitutes
a part of

similar to

Fig. 4.1. Concept Map of Related Research Approaches

In this section, after addressing different classes of related research in sections 4.1.1 to 4.1.4,
in section 4.1.5 a list of open issues for the area are provided, which both reflects a general
analysis of related research in this area, as well as motivating our proposed SASMINT
approach.

4.1.1 Database Integration and Interoperability Approaches

This category consists of approaches that have the main goal of database integration and
database interoperability. Research initiatives and approaches that belong to this category date
back to 1990’s.

4.1 Related Research Approaches 43

An early approach for resolving the semantic heterogeneity to enable interoperability in
federated database management systems is proposed in (Hammer & Mcleod, 1993). A
semantically rich object-based common model is introduced for describing the structure,
constraints, and operations of the sharable exported data. As a result, before any sharing
occurs, export schemas for each participating component databases are defined in terms of this
model, by the domain experts, which is typically a manual process. Each component database
also defines a local lexicon where the semantic information about the sharable objects is
provided using the terms from a dynamic common list of the federation. Through utilizing the
local lexicon as well as a semantic dictionary and a list of meta-functions supported by all
participating databases, semantic heterogeneities are resolved.

The PEER is a federated information management system (Afsarmanesh et al., 1996;
Tuijnman & Afsarmanesh, 1993) developed at the University of Amsterdam and rooted in the
approach addressed above, as also explained in Section 2.2. However, no automation is
provided in PEER for generating the federated database architectures at autonomous nodes.

The MOMIS (Mediator EnvirOnment for Multiple Information Sources) project
(Beneventano & Bergamaschi, 2004; Bergamaschi et al., 2001; Bergamaschi et al., 1998)
follows a semantic approach based on Description Logic (DL) (Brachman & Schmolze, 1985)
to integrate heterogeneous information sources. As a common data model, MOMIS
uses 3I

ODL (Bergamaschi et al., 1998), based on the ODL, which is the standard data

manipulation language of the Object Oriented Database Management Systems. In this
approach, wrappers need to be defined for source schemas to translate them into 3I

ODL

before integrating them into the global schema. More information about the MOMIS system is
given in Section 4.1.3 about schema integration approaches.

The InfoSleuth project (Bayardo et al., 1997) extends the ideas developed in the Carnot
project (Huhns et al., 1992) and uses the agent technology, domain ontologies, brokerage, and
the Internet computing, in order to achieve interoperability. When a data node joins the system
for the first time, it advertises to the Broker Agent the concepts in the common ontologies that
it can understand. Users can then query the system by formulating the query in any of the
common ontologies. Resource Agents handle transformations between data schemas and
ontologies. Queries expressed in ontology terms need to be translated into database schema
terms and the results of queries need to be translated into terms that the requesting agent can
understand. Mapping information is necessary for this task. However, one limitation of the
system is that the mapping information needs to be created by domain experts experienced
with the system during the agent installation time.

In the SIMS (Services and Information Management for decision Systems) Project (Arens et
al., 1996), in order to provide access to heterogeneous and distributed databases, first a
common domain model is created using the Loom knowledge representation language
(Gregor, 1988). When an information source decides to join the SIMS system, first its contents
need to be modeled and then the concepts in information source model need to be correlated
with (i.e. associated with) the corresponding concepts of the domain model. This requirement
is one major drawback of the SIMS project as it requires manual effort. Another limitation is
that the user is assumed to be familiar with Loom as he is required to formulate the queries as
Loom statements. The SIMS translates the query from the Loom statement into the query
language of the information source and executes it. SIMS is an intermediate layer between
data sources and users.

Observer system (Mena et al., 2000) is based on the idea of using multiple pre-existing
domain ontologies expressed in the DL and follows a mediated approach. The system also
uses some pre-defined ontologies such as WordNet and subsets of the Bibliographic-Data

44 Chapter 4: SASMINT approach

ontology. As the main limitation, the Observer system requires manual processing for two
tasks: 1) The content of each data repository is described by one or more ontology, 2) One-to-
one mappings between the ontologies need to be defined to enable query processing.
Furthermore, there is an assumption that users are familiar with the structure of the ontologies
and can navigate through the ontologies and construct their queries by means of a GUI.

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) (Garcia-Molina et
al., 1997) provides tools to facilitate the rapid integration of heterogeneous information
sources. It uses Object Exchange Model (OEM) (Papakonstantinou et al., 1995) to represent
data sources and the Mediator Specification Language (MSL) (Papakonstantinou et al., 1996)
to encode the semantic knowledge as a set of rules. Human intervention is required for these
processes.

COIN (COntext INterchange) project (Goh et al., 1999) aims at integrating data sources by
providing semantic interoperability between them. It uses a domain model (shared vocabulary)
that defines the application domain of data sources. However, one limitation is that once
defined, each data source needs to use this model. COIN performs data integration based on
logical axioms. A context mediator is used for querying to reconcile potential conflicts
between the data source information expressed as axioms. Another drawback of COIN is that
it only uses semantics of data items and does not consider schema level conflicts.

A summary of the above mentioned approaches aimed at solving the problem of data sharing
among distributed and heterogeneous systems is given in Table 4.1. Considering the multi-
database architectures described in Chapter 2, the approaches mentioned in this section follow
either a global schema approach or an interoperability approach. In both approaches, schema
matching plays an important role, although these approaches skip the automation of schema
matching.

4.1.2 Schema Matching Approaches

While on one hand enabling the sharing among distributed, heterogeneous, and autonomous
data sources has been an important topic in the database research for some decades, on the
other hand schema matching has usually been considered as a separate challenging problem.
Therefore, schema matching related challenges have been addressed by a number of other
research and development projects. In these projects, a great deal of efforts has been spent on
studying of and devising ways for increasing the degree of automation of matching process.

However, all these projects are limited in the solutions that they can provide, namely
requiring substantial amounts of manual work. Furthermore, their usage of linguistic
techniques, which are needed in order to increase the overall accuracy of the schema matching
results, is not effective either. Another limitation of these projects is that semi-automatic
schema matching is not combined with other interoperability requirements, such as schema
integration and distributed query processing. Typically, the provided solutions focus only on
some specific parts of the problem and fail to provide a comprehensive solution. These
solutions and the associated shortfalls are discussed below.

SEMINT (SEMantic INTegrator) (Li & Clifton, 2000) system utilizes both schema and
instance information in order to identify mappings between relational schemas. Attributes in
the first database schema are first clustered using neural networks and then similarities
between the categories of attributes from the first database and the features of attributes from
the second database are computed. SEMINT does not support name matching and structure
matching. Furthermore, no GUI is provided within the system.

4.1 Related Research Approaches 45

Cupid system (Madhavan et al., 2001) exploits a combination of the name and structure
matchers. Schemas to be matched are represented as graphs. The first step of name matching is
called the normalization step, which is not comprehensive enough to consider all
normalization issues. Moreover, name matching involves a syntactic matching, which employs
only one string similarity algorithm, which clearly cannot be optimal for all cases.

The COMA (COmbination of MAtching algorithms) system (Do & Rahm, 2002) provides a
library of matchers that utilize elemental and structural properties of schemas. However, it
does not support the pre-processing of element names. COMA++ (Aumueller et al., 2005) is
built on top of COMA, by elaborating in more detail the alignment reuse operation. It provides
more efficient implementations of the COMA algorithms and a sophisticated graphical user
interface. Although it provides a library of different types of matchers, it does not provide
assistance to users for deciding on the best matcher or combination of matchers.

Table 4.1- Database Integration and Interoperability Approaches

Project/System/Approach Description/Aim Multidatabase
Architecture

Degree of
Automation

Approach of (Hammer &
Mcleod, 1993)

Resolving Semantic
Heterogeneity in Federated
Database Systems

Federated database manual

PEER Enabling information sharing
among autonomous and
heterogeneous nodes

Federated database manual

MOMIS Generating integration of
heterogeneous information
sources

Global schema semi-automatic

InfoSleuth Establishing ontology-based
interoperability

Interoperability semi-automatic

SIMS Providing access to
distributed and
heterogeneous databases

Global Ontology manual

Observer Introducing ontology-based
approach for query
processing in global
information systems

Interoperability -
Mediator system

manual

TSIMMIS Enabling integration of
heterogeneous information
sources

Interoperability -
Mediator system

semi-automatic

COIN Enabling integration of
heterogeneous information
sources

Interoperability -
Mediator system

semi-automatic

46 Chapter 4: SASMINT approach

The Similarity Flooding (Melnik et al., 2002) approach converts diverse models into directed
labeled graphs and then identifies the initial maps between elements of two graphs using only
a simple string matcher. These initial maps are then used by a structure matcher. However,
Similarity Flooding (SF) neither applies the knowledge of edge and node semantics, nor it
provides a GUI.

 Similarly, (Wang et al., 2004) borrows the string similarity implementation of Similarity
Flooding. This approach, although extends the structure matching part of the Similarity
Flooding, suffers from the same limitations as Similarity Flooding.

Clio (Miller et al., 2000) generates alternative mappings as SQL view definitions based on
the value correspondences defined by the user. Since the value correspondences are defined by
the user, no linguistic matching techniques are used and substantial manual work is required.

PROTOPLASM (PROTOtype PLAtform for Schema Matching) (Bernstein et al., 2004)
aims at providing a customizable industrial strength matching system that can match real
world schemas. PROTOPLASM follows a composite matcher approach. Inspired from the
COMA system, PROTOPLASM is based on the algorithms of CUPID and Similarity Flooding
and thus has the same limitations as these two systems have. BizTalk Mapper (Biztalk, 2010)
is used as the GUI for manipulating the mappings.

S-Match is a schema-based schema matching system (Giunchiglia et al., 2004). It accepts
two graph structures as input and identifies semantic relationships between their nodes. Its
main goal is the semantic matching and it exploits a number of element level and structure
level match techniques in this process. Structure level match uses propositional satisfiability.
Unlike many other matching systems, the result is not in the range [0,1] but it represents the
identified semantic relations using the terms of equivalence, more general, less general,
mismatch, and overlapping. Furthermore, it does not provide any GUI.

The results of several other schema matching efforts have been published in (Bernstein et al.,
2004; Embley et al., 2004; Rahm et al., 2004). The main focus of all the work reported there is
on matching large schemas or extensibility of the developed system. Moreover, some research
has been carried out focused on the issue of uncertainty (Gal, 2006; Gal, 2007), which exists
especially because of semantic differences. However, they share similar problems with most
previous efforts mentioned above. Namely, they either require much manual work rendering
the system ineffective to use, or if they use linguistic techniques, it is typically a limited use of
these techniques. Table 4.2 shows an overview of schema matching systems and prototypes
addressed in the previous paragraphs, also denoting the schema types supported by each
system.

4.1.3 Schema Integration Approaches

One specific application of the schema matching approaches is for merging a set of schemas
into a single global schema (Batini et al., 1986; Elmagarmid & Pu, 1990; Sheth & Larson,
1990). This problem has been studied since the early 1980s and is applied to building a
common database system comprising several distinct databases, and in designing an integrated
schema for a database from the local schemas supplied by several user databases. The
integration process requires establishing semantic correspondences between the component
schemas, and then using the matching results to merge schema elements (Batini et al., 1986;
Pottinger & Bernstein, 2003). However, establishment of semantic correspondences is
handled manually in most previous approaches.

4.1 Related Research Approaches 47

Table 4.2- Schema Matching Systems

Matchers Used Project/System

Instance-
Based

Schema-
Based

Schema
Type

Internal
Representation

Result GUI

SEMINT Neural
Network

constraint-
based

SQL attribute-based similarity
in [0,1]

no

Cupid - string-based,
synonyms,
thesauri
lookup, tree
matching

SQL
and
XDR

tree similarity
in [0,1]

no

COMA / COMA++ - string-based,
synonyms,
thesauri
lookup, type
use, reuse,
tree
matching

SQL,
XDR,
XSD,
OWL

graph similarity
in [0,1]

yes

SF - string-based,
fix point
computation

SQL,
graph

graph similarity
in [0,1]

no

Clio Naïve
Bayes

string-based SQL,
XSD

graph mapping
query

yes

Protoplasm - string-based,
synonyms,
thesauri
lookup, path,
fix point
computation

XSD,
SQL,
ODMG

graph similarity
in [0,1]

Yes

S-Match - string-based,
sense-based,
gloss-based,
propositional
satisfiability

XSD graph semantic
relations

no

As for schema integration, a number of systems or approaches have been introduced in the

database literature. MOMIS has a component responsible for schema integration, called
Artemis. In order to avoid confusion, from here on we will refer to it as the MOMIS-Artemis
system, instead of its Artemis component. MOMIS-Artemis requires that all elements of
schemas are annotated by the database designer manually using the appropriate meanings in

48 Chapter 4: SASMINT approach

the WordNet lexical database. Common thesaurus is generated by MOMIS-Artemis describing
inter and intra schema relationships. It uses the schema and annotation information.
Furthermore, it allows users to define any other relationships manually. DL is used to infer
new relationships from the existing ones. Similar classes are identified by using the
relationships defined in the common thesaurus. For this purpose, affinity coefficients of two
classes are identified based on their names and their attributes, corresponding to name and
structural affinity coefficients. Name and structural affinity only consider semantic
relationships between the names. These coefficients are then combined into global affinity
coefficients. Hierarchical clustering uses global affinity coefficients to classify classes. For
each cluster, a global class with attributes is generated. Mappings between the local and global
attributes are defined in a mapping table. MOMIS-Artemis requires a database specialist to
assist with the integration process at each phase of integration.

One approach for schema merging that is introduced as part of a prototype system, is called
Rondo (Melnik et al., 2003). Rondo is developed as a model management tool. Since the focus
of Rondo is simplicity, it is developed to show how a number of model management
operations can be supported by means of a model management tool. Rondo represents models
as directed labeled graphs and manipulates models and mappings among models by providing
a number of operators, such as match, delete, traverse, extract, and invert. For the Match
operator, Similarity Flooding is used, and thus it suffers the same limitations as those of the
Similarity Flooding. The Merge operator is based on heuristics to automate the merge process.
However, its automation is limited and requires human intervention. For example, it cannot
automatically satisfy the condition that merged schema is at least as expressive as the input
models.

Pottinger and Bernstein (Pottinger & Bernstein, 2003) propose another algorithm for
merging models. The authors define a meta-meta-model called Vanilla. They aim to support
models in both Vanilla and any other meta-meta-model. However, a limitation is that they
assume that correspondences between two models to be merged are given beforehand.
(Pottinger & Bernstein, 2008) extends this work with the work on both merging models and
also generating view definitions by means of defining mappings between source schemas and
the merged schema. Authors introduce a normal form, named Mediated Schema Normal Form
(MSNF), for the mediated schemas and view definitions. Similar to the main limitation of
(Pottinger & Bernstein, 2003) approach, they assume that correspondences are defined
manually before their merge algorithm executes.

COMA++, introduced above among the schema matching systems, provides functionality
for schema merging, but since schema matching is the main focus of COMA++, its schema
merging approach is limited and it is not possible to see how the elements of merged schema
relate to the local schemas, namely no mappings are defined between the merged schema and
the local schemas.

A recent schema integration system is PORSCHE (Performance ORiented SCHEma
mediation) (Saleem et al., 2008). PORSCHE aims at creating a mediated schema from a set of
large XML Schemas and identifying mappings from the source schemas to the mediated
schema. It accepts a set of schema trees. PORSCHE has a linguistic matcher component,
which uses tokenization, abbreviations, and synonyms. Abbreviation and synonym tables are
generated by users. It uses tree mining and clustering techniques for calculating contextual
semantics and for grouping similar labels to support performance oriented schema matching.
PORSCHE follows incremental binary ladder integration. There is no GUI provided by
PORSCHE.

Similar to Pottinger and Bernstein, Chiticariu, Kolaitis, and Popa (Chiticariu et al., 2008)
propose another algorithm for integrating relational or XML Schemas. Besides providing an
algorithm that enables generation of a single integrated schema, they also propose an

4.1 Related Research Approaches 49

enumeration algorithm that can generate all plausible integrated schemas. Both of these
algorithms require substantial amounts of user input. Moreover, it is assumed that
correspondences among source schemas are specified beforehand. In their earlier work
(Chiticariu et al., 2007), they show how their algorithm uses the correspondences identified by
Clio and how Clio can help in generating mappings between the source schemas and the
integrated schema. However, since their main focus is on schema integration, they generate the
correspondences only manually using the GUI of Clio.

Although there is some work on semi-automatic schema integration, as summarized in Table
4.3, these proposed solutions are not generic. Instead of generating a comprehensive system
and providing a complete solution, each work focuses on supporting certain specific subject,
as represented in the second column of this table. In most cases it is assumed that
correspondences among source schemas are already given as input. Furthermore, it is not clear
how to further use the results of schema integration, for example for executing the query
processing over the integrated schema.

Table 4.3- Schema Integration/Merging Approaches

Project/System/Approach Main Purpose Semi-Automatic
Schema Matching

Support

GUI

MOMIS-Artemis Integration of
heterogeneous information
sources

Name and structural
affinity based on
semantic relations

Yes

Rondo Model Management Similarity Flooding is
used for matching

Yes

Approach of (Pottinger &
Bernstein, 2003)

Model Management /
Model Merging

No No

COMA ++ Schema Matching A comprehensive
library of matchers

Yes

PORSCHE Schema Integration and
Mediation

Linguistic Matching
(Abbreviation and
synonym tables
generated by the user),
tree mining for
contextual semantics

No

Approach of (Chiticariu et
al., 2008)

Schema Integration No Yes

4.1.4 Ontology Matching and Ontology Merging Approaches

Another area of research similar to schema matching and schema integration is the ontology
matching and ontology merging. This has been an active research area especially with the

50 Chapter 4: SASMINT approach

increasing popularity of Semantic Web, and so far a number of systems have been developed
in this area, which we describe below. Since the aim of this thesis is schema matching and
schema integration, only brief information about the ontology matching and merging systems
is provided here and also our proposed SASMINT approach does not contribute much to this
area. Ontology matching and merging systems described below are shown in Table 4.4.

The ONION (ONtology compositION) (Mitra et al., 2001) system uses a graph-oriented
model for representation of ontologies. Since ontologies are translated into this model before
matching process, ONION can accept ontologies represented in any ontology language. It
identifies candidate matches between concepts specified in two ontologies and expects a
domain expert to verify the results. It is assumed that the relationships among concepts are
defined using a set of relationships with pre-defined semantics. Here, a number of heuristic
matchers are used, such as the linguistic matching, the structure matching, and inference-based
matching. Extensive manual effort is required for defining the relationships among concepts.

GLUE (Doan et al., 2002) requires ontologies to be represented as taxonomies, in which
concepts are represented as nodes and is-a relationships between concepts are represented with
edges between them. It provides a name matcher and several instance-level matchers by
extending the schema matching system LSD (Doan et al., 2001). It uses machine-learning
techniques. However, in order to train learners, ontologies are first mapped manually.
Moreover, a set of domain synonyms and constraints are defined before any matching occurs.
Thus, it requires extensive manual effort. Another extension of LSD is iMap (Dhamankar et
al., 2004). Besides one-to-one matches, iMap can determine complex matches among
relational schemas by using a number of machine learning matchers.

Naïve Ontology Mapping (NOM) (Ehrig & Sure, 2004) and Quick Ontology Mapping
(QOM) (Ehrig & Staab, 2004) are the components of FOAM (Framework for Ontology
Alignment and Mapping). FOAM is a tool that enables semi-automatic ontology alignment
and mapping by using a number of similarity heuristics (Ehrig & Sure, 2005). NOM requires
ontologies to be represented in RDFS format. Using a number of similarity functions, it
computes similarity between each possible pairs of entities from two ontologies. QOM
optimizes the NOM with an efficient mapping algorithm. However, this optimization causes
the mapping quality to decrease.

MAPONTO (An et al., 2006) is developed as a plug-in for Protégé, which is an open source
ontology editor and knowledge-base framework (Protege, 2010). MAPONTO is a semi-
automatic tool helping users to identify mapping rules between database schemas and
ontologies. It uses a generic conceptual modeling language (CML) for representing ontologies.
This language contains common aspects of different ontology languages, UML, etc. It is
assumed that user provides simple correspondences between a schema and ontology. Although
this feature is regarded as an advantage by (An et al., 2006), the amount of required user input
increases when the size of the schema and ontology grows, turning this feature to a
disadvantage. Based on the user provided correspondences, MAPONTO infers complex
formulas to represent semantic mappings.

Chimaera (Mcguinness et al., 2000) is a web-based tool that supports ontology merging as
well as ontology testing and diagnosing. It accepts ontologies in a wide variety of languages.
Its aim is to help users with these tasks by means of editing tools, where merging process is
user-oriented and requires a lot of user intervention.

The PROMPT suite consists of a set of tools that have the purpose of ontology alignment,
merging, and versioning (Noy & Musen, 2003). Its ontology merging tool is called as
iPROMPT (Noy & Musen, 2000) and the ontology alignment tool is called as Anchor-
PROMPT (Noy & Musen, 2001). iPROMPT guides the user through the merging process.
Anchor-PROMPT takes as input two ontologies represented in graph format and finds
correlations between the concepts of these different ontologies. The main limitation of

4.1 Related Research Approaches 51

Anchor-PROMPT, declared by (Noy & Musen, 2001) is that it does not work well when one
ontology is deep and the other ontology is shallow. PROMPT is implemented as an extension
to the Protégé 2000 ontology development environment (Protege, 2010). PROMPT supports
RDFS and OWL and as the underlying knowledge model, it uses Open Knowledge Base
Connectivity (OKBC) (Chaudhri et al., 1998).

OntoMerge (Dou et al., 2003) is a tool that aims at ontology translation by ontology merging
and automated reasoning. It supports ontologies represented in DAML or DAML+OIL and
converts them into an internal representation. An ontology expert generates a merged ontology
by taking the union of concepts and axioms from two source ontologies. Axioms define the
relationships between instances of concepts. Experts add bridging axioms to relate terms from
two ontologies. Therefore, the main limitation of OntoMerge is that it requires large amount of
user involvement.

Table 4.4- Ontology Matching and Merging Approaches

Project/System/Approach Main Purpose Ontology Language

ONION Ontology matching Ontology in any language
is translated into directed
labeled graphs

GLUE and iMap Ontology matching Taxonomies

NOM and QOM Ontology matching RDFS

MAPONTO Ontology mapping CML – ontologies are
translated into this
language

Chimaera Ontology merging, testing, and
diagnosing

Wide variety of languages,
such as OWL, RDFS, etc.

PROMPT Ontology merging RDFS, OWL, OKBC, and
other languages

OntoMerge Ontology merging DAML, DAML+OIL

4.1.5 Open Issues and the Proposed Approach

As exemplified above, there have been many proposals and research prototypes within the last
decades, aimed at achieving interoperability, matching, and integration of autonomous and
heterogeneous databases. The need for schema matching in large number of applications has
led to the development of many algorithms that to certain level semi-automatically solve the
matching and integration problem. However, there are a number of open issues, which are not
yet addressed sufficiently in previous work and thus required further investigation, as
addressed in the four categories below:

52 Chapter 4: SASMINT approach

a) Providing possibility to combine match algorithms

As specified under Section 4.1.2, there exist several well-known matching algorithms
addressed in different literature. Each algorithm is suited for certain specific schema matching
case. With this said, the proposed schema matching efforts tend to apply a limited number of
these algorithms. However, in order to achieve high matching accuracy, research has shown
(Aumueller et al., 2005; Bernstein et al., 2004) that it is necessary to combine a variety of
types of algorithms, that can consider syntactic, semantic, as well as structural differences
among schemas.

Several previous systems have used either hybrid or composite combinations of different
match approaches. Hybrid approach uses multiple criteria or properties (e.g. name and data
type) within a single algorithm, whereas the composite approach combines the results of
several independently executed match algorithms. Since poor match candidates can be filtered
out early in the process, the hybrid approach in general can identify better match candidates
than the composite approach. However, the criteria and the order of evaluation in the hybrid
approach are fixed, which makes it difficult to extend the algorithm used in this approach. On
the other hand, since the composite approach uses different independent algorithms, it is easy
to add or remove an algorithm to it, which makes this approach more flexible and applicable to
different domains that require different types of matchers. Any schema matching approach
needs to consider all these aspects before choosing between the hybrid and composite
approaches.

b) Providing graphical user interface

A user-friendly interface is necessary considering the fact that not all the semantic
correspondences between schema elements can be automatically identified by the system. User
input is required both for specifying some parameters (such as the threshold value for similar
pairs and weights for the algorithms), as well as for correcting and validating both the match
results and the integration results. Unfortunately, all prototypes developed so far and
mentioned in this chapter offer either none or only a rudimentary user interface, except for
COMA (Do & Rahm, 2002) and Clio (Miller et al., 2000). Although these two offer a GUI,
they have other limitations in the solutions that they offer for semi-automatic schema
matching, which we discussed in Section 4.1. Consequently, one of the key aims of our
schema matching and integration system is providing a user-friendly GUI.

c) Supporting use of match results for schema integration and providing a
comprehensive approach

Efforts in the literature are mostly focused on matching algorithms and they do not consider
developing complete systems enabling database integration and interoperability. These
algorithms are useful as being the base for schema matching and schema integration and for
developing the interoperability systems. But these efforts do not address how to use the results
of schema matching for semi-automatic schema integration, which is necessary for our
proposed approach, and limiting the applicability of the approach only to specific cases.

d) Supporting accuracy evaluation in comparison to other approaches

In order to assess the accuracy of any suggested approach, it is required to first generate
different types of schemas covering a variety of syntactic, semantic, and structural
heterogeneities and then test the approach against these schemas. It is also important to
perform the same tests with other available systems or compare all approaches with certain

4.2 Proposed Approach: SASMINT 53

standard other evaluation results. However, the evaluations carried out in the literature for the
related research does not typically apply the same test cases, so their published results cannot
be used for our comparison.

Considering the limitations of previous work as addressed in this chapter, this thesis defines
an approach, called the SASMINT, which aims at automatically resolving syntactic, structural,
and semantic conflicts among relational schemas as well as efficiently integrating them and
formalizing their integration. It creates a composite merge of some standards and widely
accepted research algorithms that are suggested and applied for 1) natural language
processing, 2) graph theory, and 3) meta-data design, to create a semi-automatic schema
matching and integration methodology used for identification of mappings among elements
and construction of integrated schemas, thus providing access to autonomous, distributed, and
heterogeneous databases.

4.2 Proposed Approach: SASMINT

Automatic resolution of schema heterogeneity to enable semantic interoperability among
networked databases is vital for collaborative networks of organizations. Therefore, due to
growing increase in emerging collaborative networks in many domains, this area of research is
timely and important. Integration and interoperability infrastructures to support these networks
require effective mechanisms not only to interlink database schemas, but also to provide
homogeneous access and integrated interface to heterogeneous distributed databases. In a
network of organizations, whenever a new organization joins the network, its schema (referred
here as donor schema) needs to be matched and integrated into the common
integrated/federated schema of the network (referred here as recipient schema), which results
in the new extended common integrated schema.

Research literature represents a variety of approaches for addressing these needs, as stated in
the previous section. Aiming to overcome the limitations of other presented approaches, we
propose the SASMINT approach (Unal & Afsarmanesh, 2006a; Unal & Afsarmanesh, 2006b;
Unal & Afsarmanesh, 2006c; Unal & Afsarmanesh, 2009; Unal & Afsarmanesh, 2010). Some
of the main features of the SASMINT are shown in Table 4.5. The main purpose of SASMINT
is schema matching and schema integration, which is done semi-automatically. It supports a
combination of schema-based matchers. Since instance data is not available all the time,
SASMINT does not utilize any instance-level matchers. The main distinctive feature of our
approach, when compared to other approaches in the literature is that besides suggesting a
generic way to effectively identify the matches between schemas, these match results are also
used for schema integration. Furthermore, SASMINT formalizes the results of schema
matching and schema integration in an effective format, called as the SASMINT Derivation
Markup Language (SDML).

The SASMINT approach can be used in different types of application domains, and for
different purposes, as shown in Figure 4.2-a, 4.2-b, and 4.2-c:

1. Database Federation with a Common Schema: In some application cases, a common
schema is predefined for the network of nodes and each node is required to develop
mappings from its local schema to this common schema. SASMINT can help with
identification of these mappings in a semi-automatic fashion. Sections 4.2.3 and
4.2.4 explain how these mappings are generated by SASMINT.

2. Full Database Federation: In fully federated systems, each node autonomously
decides to share a part of its data with others, by defining export schemas. Then other

54 Chapter 4: SASMINT approach

Table 4.5- Main features of SASMINT

Project/
System/

Approach

Main
Purpose

Schema
Type

Internal
Repr.

Schema-based
Matchers

Degree of
Automation

Result GUI

SASMINT Schema
Matching

and
Schema

Integration

SQL
DDL

DAG
in

SDML
format

syntactic and
semantic (from

NLP),
structure (from
graph theory

and from
schema

matching)

semi-
automatic

similarity
scores in

[0,1].
Results

represented
in SDML

format

yes

nodes import these schemas and integrate them with their own local schemas. For
this purpose, SASMINT supports the semi-automated generation of individually
integrated schemas at each node.

3. Incremental Generation of Integrated Schema: In this case, the aim is to
incrementally generate a global schema, representing the sharable information of all
participating nodes, as introduced in Chapter 2, and shown in Figure 4.2-c.

Fig. 4.2-a. Database
Federation with
common schema

Fig. 4.2-b. Full database
federation

Fig. 4.2-c. Incremental generation of a
global integrated schema

SASMINT achieves its goals by following the phases shown in Figure 4.3. It involves the
main phases of Configuration, Automatic Schema Matching, User Modification/Validation (of
match results), Schema Integration, and User Modification/Validation (of integration results).

This chapter first introduces the SDML, as it forms the base for formalizing both the results
of schema matching and schema integration. More details about different phases of the
SASMINT approach are provided next, starting with the configuration phase (4.2.2). Then, the
automatic schema matching phase is described (4.2.3), followed by the user modification and
user validation of the results generated by the automatic schema matching process (4.2.4).
Details of how we use the results of schema matching for generating the integrated schema, as
well as how the derivation constructs are used for defining the integrated schema are then
explained in the section labeled as the schema integration phase (4.2.5). Finally, the user
modification and the validation phase required on the resulted integrated schema are explained
(4.2.6).

Local
Schema-1

Local
Schema-n….

Common
Schema

Mappings

Integrated
Schema

Imported
Schema-1

Imported
Schema-n

..

Local
Schema

Integrated
Schema I1

Schema
S1

Schema
S2

……

Schema
S3

Integrated
Schema I2

4.2 Proposed Approach: SASMINT 55

Configuration
Phase

Identified
Weights for
metrics and
methodology
algorithms

Automatic
Schema
Matching

Phase

Generated
Preliminary

Match
Results

User
Modification/
Validation (of
match results)

Phase

Modified and
Validated

Match
Results

Schema
Integration

Phase

Continue with
integration?

Generated
Integrated
Schema

User
Modification/
Validation (of

integration
results)
Phase

Modified and
Validated
Integrated
Schema

Stored
Validated

Match Results

yes

Stored
Validated

Integration
Results

P1

P2
P3

P4
P5

stop
stop

no

Fig. 4.3. Main Phases of SASMINT

4.2.1 SASMINT Derivation Markup Language (SDML)

In order to formally capture and store the final results of schema matching and schema
integration, an XML-based SASMINT Derivation Markup Language (SDML) format is
introduced and used by SASMINT. For this purpose, XML is chosen, as it provides a flexible
format for storing and exchanging graphs. Furthermore, there is a wide range of tools available
for parsing and querying XML. The SDML format is similar to other existing XML-based
formats for representing graphs, such as the Graph eXchange Language (GXL) (Gxl, 2010)
and the GraphML (Graphml, 2010). Nevertheless, the SDML is extended so that it can store
both the results of the matching and those of the integration stages.

In Figure 4.4, a simple generic schema is represented in graph format, and its corresponding
SDML representation is also presented in this figure. The root element of the SDML document
is sgraph, which consists of two main sub-elements: snode and sedge, as explained below:

 snode: represents a node of the graph and contains derivation constructs as
subelements. More information and examples for these derivation types are given
later in this chapter. The snode element consists of the following attributes:

o id: is a unique value in the entire document.

o name: represents the name of the node, which comes from the name of
schema, table, or column, depending on which type of schema element this
node represents.

56 Chapter 4: SASMINT approach

Schema1

Table1

Column1

<?xml version="1.0" encoding="UTF-8"?>
<ns1:sgraph xmlns:ns1="http://namespaces.sasmint.org/2007/04/GraphModel">

<ns1:snode ns1:id=“urn:sasmint:schema:Schema1" ns1:name=“Schema1“
ns1:type=“SCHEMA">

</ns1:snode>
<ns1:snode ns1:id=“urn:sasmint:table:Schema1:Table1" ns1:name=“Table1“

ns1:schema=“Schema1” ns1:type=“TABLE">
</ns1:snode>
<ns1:snode ns1:id=“urn:sasmint:column:Schema1:Table1:Column1"

ns1:name=“Column1“ ns1:schema=“Schema1” ns1:table=“Table1”
ns1:type=“COLUMN">

</ns1:snode>
<ns1:sedge ns1:id="urn:sasmint:hastable:c55a2772-e985-4ca5-8a7a-2dcaa2a6c72c"

ns1:sourceNodeId="urn:sasmint:schema:Schema1"
ns1:targetNodeId="urn:sasmint:table:Schema1:Table1"
ns1:type="HASTABLE"/>

<ns1:sedge ns1:id="urn:sasmint:hastable:d3ac69d7-0caf-4d4c-89cd-b361d4fef635"
ns1:sourceNodeId="urn:sasmint:table:Schema1:Table1"
ns1:targetNodeId="urn:sasmint:table:Schema1:Table1:Column1"
ns1:type="HASCOLUMN"/>

</ns1:sgraph>
Fig. 4.4. A simple graph representing a generic schema and its SDML
representation

o type: indicates whether the schema element that this node represents is of
type schema, table, or column.

o schema: represents the name of the schema, where this node exists. This
attribute is optional. If the node is of type schema, corresponding snode
definition does not include the schema attribute.

o table: represents the name of the table, where this node exists. This
attribute is optional. If the node is of type table, corresponding snode
definition does not include the table attribute.

 sedge: represents an edge of the graph and has a sub-element called similarity, if this
is an edge connecting two similar nodes. The similarity element contains the
similarity value. The sedge element consists of the following attributes:

o id: is a unique value in the entire document.

o sourceNodeId: identifies the id of the source node, which is the starting
point of the edge.

o targetNodeId: identifies the id of the target node, which is the end point of
the edge.

o type: indicates the type of the edge. The value is HASTABLE if the edge is
from a schema node to a table node, HASCOLUMN if it is from a table
node to a column node, and SIMILARTO if it is an edge representing the
similarity of source and target.

A class diagram, corresponding to the complete features of SDML is given in Appendix C.
As shown in Appendix C, SDML captures the derivation results of schema integration, by
means of a number of derivation elements, including the following seven specific elements:

 tableRenameDerivation

4.2 Proposed Approach: SASMINT 57

 tableUnionDerivation
 tableSubtractDerivation
 tableRestrictDerivation
 columnRenameDerivation
 columnUnionDerivation
 columnStringAdditionDerivation.

Everyone of these specific operations, as well as different steps involved for their
corresponding schema integration are described later in Section 4.2.5.1. The
‘columnStringAdditionDerivation’ operation is also used at the end of the schema matching
process. This operation enables to define a mapping for specification of the fact that one
column in one schema equals to the concatenation of n number of columns in the other
schema. For example, in order to define a mapping for the matches between the “name”
column in the recipient schema and the “first name” and “last name” columns in the donor
schema, the ‘columnStringAdditionDerivation’ operation is applied to “first name” and “last
name”.

All SDML files generated by SASMINT need to be validated for being compliant with the
defined format of SDML. For this purpose, an XML Schema Definition (XSD) is defined in
SASMINT for SDML, which is presented in Appendix B. As an example, a part of this XSD,
related to snode and its derivation constructs is shown in Figure 4.5. Please note that in this
example only one type of derivation, the tableRenameDerivation, is shown in detail in the
figure due to the space considerations. As it can be seen, each derivation consists of one or
more (depending on the derivation type) derivationNode and zero or one derivationType
elements. The element named derivationNode represents the node(s) from donor and/or
recipient schemas participating in the derivation. On the other hand, the element named
derivationType is a recursive definition and aimed for representing derivations generated at
previous integration steps.

4.2.2 Configuration Phase – P1

Configuration phase, as represented in Figure 4.3 is the stage for deciding on and assigning
proportional weights to each algorithm used for the linguistic and structure matching
components of the SASMINT. This phase is also responsible for identifying the selection
strategy and setting the threshold regarding the results of the schema matching phase.

Three methods for weight assignment are introduced and supported by SASMINT:

1) Users can choose to apply the SAMPLER component of SASMINT in order to
identify the appropriate weights for Linguistic Matching algorithms. The details of
this process are provided in Section 4.2.2.1.

2) Users can choose to manually assign weights using their expert advance knowledge
about the case, either from past experience with the donor schemas, or their general
expertise in information integration.

3) In case neither (1) nor (2) are opted for, SASMINT assumes an equal weight
distribution on all applicable algorithms. Needless to say that this might lead to some
imprecision and reduce the accuracy of the mapping results. Therefore, in case the
user is not experienced, it is always advised by SASMINT approach to apply the
SAMPLER component.

58 Chapter 4: SASMINT approach

<xs:element name="snode">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0">
 <xs:element ref="ns1:tableRenameDerivation"/>
 <xs:element ref="ns1:tableUnionDerivation"/>
 <xs:element ref="ns1:tableSubtractDerivation"/>
 <xs:element ref="ns1:tableRestrictDerivation"/>
 <xs:element ref="ns1:columnRenameDerivation"/>
 <xs:element ref="ns1:columnUnionDerivation"/>
 <xs:element ref="ns1:columnStringAdditionDerivation"/>
 </xs:choice>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="schema" type="xs:string"/>
 <xs:attribute name="table" type="xs:string"/>
 <xs:attribute name="pkColumn" type="xs:string"/>
 <xs:attribute name="refTable" type="xs:string"/>
 </xs:complexType>
</xs:element>
<xs:element name="tableRenameDerivation">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>
<xs:element name="derivationNode">
 <xs:complexType>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="schema" type="xs:string" use="required"/>
 <xs:attribute name="table" type="xs:string"/>
 <xs:attribute name="pkColumn" type="xs:string"/>
 <xs:attribute name="refTable" type="xs:string"/>
 </xs:complexType>
</xs:element>
<xs:element name="derivationType">
 <xs:complexType mixed="true">
 <xs:choice>
 <xs:element ref="ns1:tableRenameDerivation"/>
 <xs:element ref="ns1:tableUnionDerivation"/>
 <xs:element ref="ns1:tableSubtractDerivation"/>
 <xs:element ref="ns1:tableRestrictDerivation"/>
 <xs:element ref="ns1:columnRenameDerivation"/>
 <xs:element ref="ns1:columnUnionDerivation"/>
 <xs:element ref="ns1:columnStringAdditionDerivation"/>
 </xs:choice>
 <xs:attribute name="refDerivationNode" use="required"/>
 </xs:complexType>
</xs:element>

Fig. 4.5. Part of XSD for SDML

Furthermore, user can also influence the process for identifying the strategy used for
automatic selection of the results of schema matching, as described below:

4.2 Proposed Approach: SASMINT 59

Method-1. Setting up of a threshold value by user: The user is asked to provide a threshold
value for matches, which is used subsequently in this process. Threshold would
be defined as a boundary value between 0.0 and 1.0. In similarity calculations,
the realized similarity values are compared against this threshold value, and in
case they are higher, those pairs are accepted by SASMINT as being similar. If
no threshold value is specified by user, a value of 0.5 is defaulted.

Method-2. Getting user’s preference (i.e. input) on strategy for selection of match results:
The user is provided with the following two strategies to choose from. If
nothing is specified by user, the default strategy is select max above threshold.

a. Select all above threshold - selecting all matching pairs with similarity
above the threshold.

b. Select max above threshold - selecting only those with the highest
similarity values. If an element of a schema is simultaneously similar to n
elements of another schema with different similarity values above some
threshold, only the highest similarity match is selected for displaying to the
user.
However, if the difference between some similarity values of pairs is
smaller than 0.01, then it is checked if the parent tables of the pairs match,
in order to identify which of the pairs shall be presented to the user as the
matched pairs. The algorithm for this strategy is presented in Figure 4.6.
Example: The two cases (Case 1 and Case 2 below) shown in the algorithm
of Figure 4.6 are better clarified below through examples, where threshold
value is assumed to be 0.5.
Case 1: Suppose that: X is an element of schema S1 and Y and Z are two
elements in schema S2. Assuming that similarities of (X,Y) and (X,Z) are
computed as 0.6 and 0.7 respectively, SASMINT selects (X,Z) as the
matched pair to display to the user.

Similarity values computed by SASMINT:

(X,Y) 0.6
(X,Z) 0.7

Match result displayed to user:

(X,Z)

Case 2: Suppose that: X, Y, and Z are all columns and X is a column of
table T1, Y is a column of table T2, and Z is a column of table T3.
Moreover, T1 is a table of schema S1 and T2 and T3 are tables of schema
S2. As shown below, suppose that the similarity values computed for both
(X,Y) and (X,Z) is 0.7. In order to decide which one of (X,Y) and (X,Z)
shall be selected as the matched pair, similarities between the parent table
of X (T1) and the parent tables of Y (T2) and Z (T3) are checked. Suppose
that similarity of (T1, T2) is above the threshold, but that of (T1, T3) is not.
Then the pair whose parent tables match will be selected as the final
matched pair to be presented to the user, which is (X,Y) in this example.

Similarity values computed by SASMINT:

(X,Y) 0.7
(X,Z) 0.7
(T1,T2) >= threshold
(T1,T3)< threshold

Match result displayed to user:

(X,Y)

60 Chapter 4: SASMINT approach

}

)},{()},{(

){)3,1(())2,1((

)},{(

){)3,1(())2,1((

}

)},{(

){)3,1(())2,1(({

))01.0|(|

),(,),(

)(3),(2),(1

3,2,1

,,

3,2,,1,|3,2,1,,,

:2

2

)},{()01.0)((

)},{()01.0)((

),(,),(

,,|,,

),(,,

:1

,

),()}(|{:

)}(|{:,)}(|{:)},(|{:

21

221

21

ZXYXSimSSimS

thresholdTTsimANDthresholdTTsimelseif

ZXSimSSimS

thresholdTTsimANDthresholdTTsimelseif

YXSimSSimS

thresholdTTsimANDthresholdTTsimif

if

ZXsimYXsim

ZeparentTablTYeparentTablTXeparentTablT

TTTT

CZYX

STTZYandSTXTTTZYX

Case

Casegotoelse

ZXSimSSimSelseif

YXSimSSimSif

ZXsimYXsim

SZSYSXZYX

CTZYX

Case

SSS

SimSinitiallySetSimilaritypPairpSimS

sSchemasScColumncCtTabletTGiven

Fig. 4.6. Algorithm of select max above threshold strategy

4.2.2.1 Sampler Mechanism

SASMINT introduces and implements a composite matching approach. In this approach, the
linguistic matching process utilizes a number of algorithms, and combines them by their
weighted summation. Linguistic matching algorithms operate on the names of elements. The
main reason behind using different algorithms is the complexity and variety of differences
between the element names that are compared. Certain algorithms perform better than others
in different cases, depending on the element names being matched.

Generating accurate matchings is important in order to reduce the amount of required user
input in the process. We consider appropriate distribution of weights as a pre-requisite for
achieving accurate matchings. However, deciding on the weights, and assigning them
manually by users is not an easy task, and assistance to the user is required. For this reason,
SASMINT provides a component called “Sampler”, whose function is to guide the user in
assigning weights to algorithms that are used in the linguistic matching process. In Figure 4.7,

4.2 Proposed Approach: SASMINT 61

components involved in the operation of the Sampler Component and their interrelationships
are illustrated.

Linguistic
Matching

Algorithms

Linguistic
Matching

Algorithms

SamplerSampler
Final

Calculated
Weights

Some User
Provided

Similar Pairs

Evaluate Accuracy
&

Calculate Weight

Fig. 4.7 Operation of Sampler

In order to use the Sampler component, users supply a set of similar pairs of element names
from their database domain. If the user wishes to have the Sampler calculate suitable weights
for syntactic similarity algorithms, then the user needs to provide a set of syntactically similar
pairs of names to the Sampler. Similarly, the user needs to provide a set of semantically
similar pairs of names for calculating the suitable weights for semantic similarity algorithms.

For a given set of pairs S: {P1, P2, … , PN}, which will be provided by the user and the
maximum size of which is suggested to be 5 (N=5) in the current SASMINT implementation,
the Sampler runs the syntactic or semantic similarity algorithms for each given pair P in S, and
determines their calculated similarity values. The outcome of the calculated similarity for each
Pair P is a value between 0 and 1. After the computation of the similarity values, the Sampler
starts measuring the accuracy level of each algorithm, using the f-measure (Rijsbergen, 1979)
method. F-Measure is a technique used in information retrieval for measuring the quality of a
variety of processes, such as the schema matching process. Further details about f-measure are
provided in Chapter 6. Using the following formula, the Sampler calculates the suitable weight
for each algorithm; where F represents the sum of all f-measure values resulted for all

algorithms used, and mF represents the f-measure value calculated for the algorithm ‘m’.

mm F
F

w *
1

As the last step of the weight computation and weight assignment process, the calculated
weight of each algorithm suggested by Sampler is provided to the user, through the GUI. At
this stage, the user has the option of either accepting the proposed weights, or modifying them
as desired.

4.2.3 Automatic Schema Matching Phase – P2

Schema matching phase, as represented in Figure 4.3, is the process that aims at identifying all
correspondences between the elements of two schemas. This is a crucial component in many

62 Chapter 4: SASMINT approach

different applications, such as for the general schema integration, for federation of different
databases, for providing common access to databases on the Web, etc. Considering the
classification of schema matching approaches given in Chapter 2, which is a simplified version
of the classification provided in (Rahm & Bernstein, 2001), the SASMINT approach focuses
on the schema level matching, while utilizing both the element level information, which
corresponds to linguistic characteristics of names of schema elements, as well as the structure
level information. Furthermore, SASMINT on one hand exploits a combination of different
automatic schema matching techniques for resolving both syntactic and semantic
heterogeneity and on the other hand uses the results achieved from schema matching for semi-
automatic schema integration. As explained in Section 4.2.2.1, if only a single criterion (for
example, name matching) is considered, it is unlikely that achieving high match accuracy for a
large variety of schemas will be achieved. As a consequence, it is necessary to combine and
utilize multiple techniques at the same time to increase the chances of generating successful
results. For this purpose, SASMINT follows a composite matching approach that combines the
results of several independently executed match algorithms. This allows for high flexibility, as
it creates for all users the potential of applying the best fitting match algorithms to each case
based on the specific match task at hand.

Three main activities are involved in the automatic schema matching phase of SASMINT:
i) preparation, which translates database schemas into a common Directed Acyclic Graph
(DAG) format, ii) comparison, which identifies the correspondences between the two schemas
represented as DAGs, resolves their conflicts, and finds out the appropriate matches, using
both Linguistic and Structure Matching, iii) preliminary result generation, which displays the
results of the schema matching in a graph format. Details of these three main activities are
provided in the following sub-sections.

4.2.3.1. Automatic Schema Matching Phase of SASMINT – Preparation
Activity

The Preparation activity of schema matching phase deals with the translation of source
schemas defined in the typical DDL of their DBMS - the relational DDL - into a common
representation format. Searching the literature extensively, we have identified several different
alternatives as outstanding candidates for the common representation format, which included
the relational data modeling, object-oriented data modeling, UML, XML Schema, Semantic
Data Model (SDM) (Hammer & Mcleod, 1981), and Directed Acyclic Graph (DAG). The
following criteria have been considered in selecting the common format for representing
schemas in SASMINT:

1- Considering the complex nature of semantic interoperability process, the common
format to be chosen must be powerful enough to express all different schemas,

2- It must facilitate the automatic matching of schemas, which resolves their syntactic /
semantic heterogeneities.

3- It should not be complex for users to understand, as during the Result Generation
step, the users are supposed to accept, reject, or modify the suggested mappings by
looking at the results in this common format.

Consequently, for SASMINT, the DAG with labeled edges has been chosen as the common
format to represent all schemas, considering that it provides a balanced format among other
alternatives, supporting the representation of a relational schema, while it can also represent an

4.2 Proposed Approach: SASMINT 63

object-oriented schema, etc. as a graph. Furthermore, existing graph theory concepts and
algorithms can help with comparing two graphs. Additionally, since DAG is not a complex
format, users can easily understand schemas represented with these graphs, and therefore it
improves the system’s understandability by users.

The two schemas that need to be matched in SASMINT are called as the recipient and the
donor. User can load the donor schema from a new database system to integrate with others
and the recipient schema – the currently integrated schema - either from a different database or
from a previously saved XML file. The XML file could have been created at the previous step
of incremental schema integration, to capture the integrated schema for federation of several
databases. This file is generated in the SDML format, which is introduced in Section 4.2.1. If
user chooses to load a schema from a relational database, SASMINT connects to that database
and directly downloads the schema related definitions, including tables and columns
information from the underlying database’s meta-information. During the preparation activity,
SASMINT automatically translates the schema definitions into a DAG format. The pseudo
code of the preparation activity of SASMINT for loading schemas from a database is shown in
Figure 4.8.

metadata = getDatabaseMetadata;

tableNameSet = metaData.getTables();

schemaName = metaData.getSchemaName();

schema = generateSchema(schemaName);

graph.addVertex(schema);

while(tableNameSet.hasNext())

tableName = tableNameSet.next();

table = generateTable(tableName);

graph.addVertex(table);

graph.addEdge(schema, table, hasTable())

columnNameSet = metaData.getColumns(tableName);

while(columnNameSet.hasNext())

columnName = columnNameSet.next();

column = generateColumn(columnName);

graph.addVertex(column);

graph.addEdge(table, column, hasColumn);

endWhile

endWhile

Fig. 4.8. Pseudo Code for Loading Database Schemas

4.2.3.2 Automatic Schema Matching Phase of SASMINT – Comparison
Activity

The Comparison activity of schema matching automatically identifies the likely matches
between two schemas, using a number of algorithms from NLP and Graph Theory, to resolve
their syntactic and semantic as well as their structural heterogeneities. This comparison
involves two kinds of matching: Linguistic and Structure, as will be addressed in details in the
following sections. The linguistic matching considers only the names of schema elements. On
the other hand, the structure matching takes into account the structural aspects of the schemas.
In addition to using a combination of algorithms for matching, a heuristic method is also used
at this stage for relational schema matching in SASMINT’s approach, where the primary key
columns of the recipient schema are only compared with primary key columns of the donor
schema, and similarly the foreign key columns are only compared with foreign key columns.

64 Chapter 4: SASMINT approach

Results from linguistic and structure matching are then combined by their weighted
summation, in order to determine the similarity of schema elements of the two schemas being
compared.

However, before any matching occurs, element names (strings) from the two schemas must
be first pre-processed to bring them into a common representation and ready for comparison
activity. This is therefore called the pre-processing step and involves the following operations:

1. Tokenization and Word Separation: By means of tokenization and word separation, strings
containing multiple words are split into lists of words, called tokens. For example, the
“First Name” is split into “First” and “Name”.

2. Elimination of stop words: Stop words are the common words, such as the prepositions,
adjectives, and adverbs that may occur frequently but do not have much effect on the
meaning of strings. Hence, they are removed from the names. For example, ‘of’, ‘the’, and
‘at’ prepositions are among the most often used stop words, which will be removed.

3. Elimination of special characters and De-hyphenation: Similar to stop words, special
characters such as ‘/’ and ‘-’ are considered irrelevant for the schema matching process and
will be removed from the schema names.

4. Abbreviation expansion: Since abbreviations are used in schema names extensively, they
need to be identified and expanded. For this purpose, a dictionary of well-known
abbreviations as well as those specific to the domain for the donor/recipient schemas, is
used. For instance, by means of such abbreviation expansion “qty” is expanded to
“quantity”.

5. Normalizing terms to a standard form using Lemmatization: Multiple forms of the same
word need to be brought into a common base form. Lemmatization is a technique widely
used in information retrieval. By means of lemmatization, different forms of the verbs are
reduced to the infinitive; also plural nouns are converted to their singular forms, e.g.
“knives” is normalized into “knife” and “ate” is normalized into “eat”.

4.2.3.2.1 Linguistic Matching

After the element name pairs from two schemas are pre-processed and brought into a common
format, their similarity is calculated using a number of matching algorithms from NLP. This
process is called Linguistic Matching. The linguistic matching has two main goals, namely
identifying both the syntactic and the semantic similarity between pairs of element names. A
combination of string similarity algorithms are utilized to determine syntactic similarity, while
semantic similarity algorithms in SASMINT use the WordNet, which is a lexical database, and
considers a variety of relationships between the terms, such as synonymy (e.g. “price” is a
synonym of “cost”), hypernymy (e.g. “color” is an hypernym of “blue”), hyponymy (e.g.
“blue” is a hyponym of “color”), holonymy (e.g. “hand” is a holonym of “finger”), and
meronymy (e.g. “finger” is a meronym of “hand”). Linguistic matching algorithms are
typically called as measure or metric. Both measure and metric have the same meaning when
these algorithms are considered, and thus they are used interchangeably.

The result of the linguistic matching is the similarity value between each considered pairs,
which is in the range of [0,1], where the value 1 indicates the full equality between the terms
compared. For linguistic matching, the syntactic and semantic similarity results are combined
in the following manner: First, the syntactic similarity of a pair of element names is identified.

4.2 Proposed Approach: SASMINT 65

If this similarity is above the similarity threshold, which is set at the configuration phase as
described in 4.2.2, then the semantic similarity is not checked, and the result of the linguistic
matching value for this pair becomes the calculated syntactic similarity value. Otherwise, the
semantic similarity of the pair is determined. Again, if this result is above the threshold, then
the result of linguistic similarity of this pair becomes the semantic similarity value. However,
if neither syntactic and nor semantic similarity values of the pair are above the threshold, then
the linguistic matching value is the average of the two resulted values. A pseudo code of the
Linguistic Matching is given in Figure 4.9. Further details of syntactic and semantic similarity
are provided in the following subsections.

Inputs: S1 in Graph Format, S2 in Graph Format

List_of_Nodes_S1 = getAllNodeNames (S1)

List_of_Nodes_S2 = getAllNodeNames (S2)

for each pair P(n1,n2) in List_of_Nodes_S1 X List_of_Nodes_S2

preprocessed P’(n1,n2) = preprocess (P(n1,n2))

syn = SyntacticMatch(P’(n1,n2))
if (syn < threshold)

sem= SemanticMatch(P’(n1,n2))

endIf

else

LinguisticMatch = syn

endElse

if (sem > threshold)

LinguisticMatch = sem
endIf

else

LinguisticMatch = weight(syntactic) * syn + weight(semantic)*sem

endElse

endFor
Fig. 4.9. Pseudo Code for Linguistic Matching

I. Syntactic Similarity

There is a large number of well known algorithms coming from the natural language
processing community, which try to identify the syntactic similarity values. As stated in the
previous section, these algorithms are usually called metrics or measures.

Syntactic similarity metrics are classified as string-based, token-based, and hybrid (Cohen
et al., 2003). String-based similarity metrics consider strings as streams of characters and do
not divide multi-word strings into substrings. Token-based similarity metrics view strings as
unordered sets of tokens. Hybrid similarity metrics combine string-based and token-based
similarity metrics such that strings are split into tokens, but then a string-based metric is
applied to each token. For example, consider two strings “student number” and “number of
students”. A string-based metric would operate on these two given strings as they are stated,
while a token-based similarity metric would first perform the decomposition of these two
strings into their tokens, i.e. {“student”, “number”} for the first string and {“number”, “of”,

66 Chapter 4: SASMINT approach

“students”} for the second string and then treat each token as a separate string when applying
the formula (such as the formula of Jaccard) for computing the similarity.

Another dimension considered for classification of metrics deals with how the results from
running algorithms are represented. One type of metrics, called similarity metrics, results in a
value between zero and one, i.e. [0,1], where higher values indicate closer similarity. On the
other hand, the result generated by another type of metrics, called distance metrics, is an
integer number bigger than or equal to zero, where higher values indicate less similarity
between the strings that are being compared.

As addressed in Section 4.1.2, previous schema matching approaches typically depend on
only one metric. However, considering that each of these existing metrics is in practice best
suited for a different class (i.e. type) of strings, this approach for schema matching is not
effective. Namely, for some types of element names, some similarity metrics do not perform
well, while another metric performs adequately. Aiming to overcome the limitations of
utilizing only a single metric, as a part of the SASMINT approach, a weighted sum of a
combination of several mainstream syntactic similarity metrics is used to syntactically
compare every two character strings introduced in schemas, thus making it a more generic
automated tool to be used for different types of strings. Each of the metrics considered in
SASMINT is briefly explained below. In order to help the reader better understand these
metrics, a glossary of the terms and symbols used by syntactic similarity metrics is provided in
Table 4.6.

Table 4.6- A Glossary of Terms and Symbols Used by Syntactic Similarity Metrics

Term/Symbol Definition

String distance Measure of how dissimilar two strings are. Higher value indicates less similarity

String similarity Measure of how similar two strings are. Higher value indicates more similarity

Operation Inserting, deleting, or substituting one or more characters

Modification Act of changing a string by removing or introducing characters

Cost Measuring operation complexity, by application of a unit of algorithmic
complexity (e.g. one letter modification may cost 1)

|x| Number of characters in a given string, i.e. the length of a string

Affine gap model A measure that is used in sequence alignment and encourages the extension of
gaps rather than the introduction of new gaps

Character An alphanumeric symbol which is the smallest indivisible entity of a string.

x y Union of strings x and y, i.e. union of words in strings x and y

x y Intersection of strings x and y, i.e. common words of strings x and y

1. Levenshtein Distance (Edit Distance) (Levenshtein, 1966), also known as Edit
Distance, is based on the idea of minimum number of modifications required to
change one string into another. Each modification has a cost of 1. Levenshtein
distance is a string-based distance metric. Since the result of the syntactic similarity
process in our approach is a value between [0,1] the distance value obtained by the

4.2 Proposed Approach: SASMINT 67

Edit Distance metric is converted to a similarity value in this range using the
following formula that we have introduced:

)
),max(

),(
(1),(

BA

BALD
BAsim

Levenshtein distance is suitable for common typing mistakes, but not suitable for
some cases. For example, when this metric is used, “Blue Apartment” and “Blue
Apt.” are found as less similar than “Blue Apartment” and “Bold Apartment”.

2. Monge-Elkan Distance (Monge & Elkan, 1996) is another string-based distance
function using an “affine gap model”. Affine gap model takes its roots from the
sequence alignment, which is used to identify the similar regions in DNA, RNA, and
protein sequences. Affine gap model is based on two types of costs: one for opening
the gap and another for extending the gap. This model encourages the extension of
gaps rather than the introduction of new gaps. The cost of a gap is computed as

lbagt *)(cos where a is the cost of opening a gap, b is the cost of extending a

gap, and l is the length of a gap. Monge Elkan Distance works better than the
Levenshtein Distance for the shortened strings, such as “Ilker Murat Karakas” vs.
“Ilker M. Karakas”. It allows sequences of mismatched characters.

3. Jaro (Jaro, 1995), a string-based metric, well known in the record linkage
community, is intended for short strings. This metric takes into account insertions,
deletions, and transpositions as well as the spelling variations, such as “Isabella” and
“Isabel”. Given two strings A and B, Jaro similarity metric is calculated as follows:

)
,

(*3/1),(
ACT

BATACT

B
BCT

A
ACT

BAJaro

where ACT is the number of terms in A that match some terms in B, and BCT is the

number of terms in B that match some terms in A. Two terms ia in A and jb in B

are considered matching if HijHi where
2

/)//,min(/ BA
H . For

example, consider the two strings “credit” and “reditc”. Although other characters
match, these two “c”s do not match, because “c”’s position in the second string needs
to be somewhere in 1-3< j< 1+3, but its position is 6. The BAT , in the formula of

Jaro is half the number of transposed characters for both strings. Transposed
characters are the ones that are matching, but in different order in the two strings. For
example, in SUIT and SUTI, I and T are the transposed characters.

4. TF*IDF (Term Frequency*Inverse Document Frequency)(Salton & Yang, 1973) is a
vector-based approach from the information retrieval research. Weights are assigned
to terms in respect to their frequency within the predefined corpus, (typically the
internet) and the inverse frequency within the test string or document. For each of the
document to be compared, first a weighted term vector is composed. Then, the
similarity between the documents is computed as the cosine between their weighted
term vectors (Cohen et al., 2003).

68 Chapter 4: SASMINT approach

5. Jaccard Similarity (Jaccard, 1912) is a token-based similarity measure yielding a
similarity value between 0 and 1. The Jaccard similarity between two strings A and B
consisting of one or more words is defined as the ratio of the number of shared words
of A and B to the number of words contained in A or B. In other words, it is defined
as the size of the intersection divided by the size of the union of the two strings. For
example, suppose that string A is “student_grade” and B is “student_phone”. Then,
the number of shared words of A and B is 1 (“student”) and the number of words
owned by A or B is 3 (“student”, “phone”, and “grade”, where “student” is counted
only one time). The formula for the Jaccard similarity is as follows:

BA

BA
BAJaccard

),(

where BA is the number of words in BA and BA is the number of words

in BA .
The Jaccard is suitable for comparing long strings consisting of a number of words,
such as addresses. Since it compares the words in strings, it is word order
independent. Especially in shorter strings, this metric is sensitive to misspelled terms.
For example, while Jaccard measure finds 100% match between the strings “Ozgul
Unal 2. Street 06560 Ankara” and “Unal Ozgul 2. Street Ankara 06560”, it performs
badly for strings “Ozgul Unal” and “Unal Ozgur”.

6. Longest Common Subsequence (LCS) is a special case of edit distance. The longest
common subsequence of A and B is the longest run of characters that appear in order
inside both A and B. Both A and B may have other extraneous characters along the
way, and thus LCS is suitable for the cases where strings might have spelling errors.
For example, the LCS of two strings “ACGGA” and “CGAG” is “CGA”. Different
from the edit distance, if the value of LCS is higher, strings are more similar. We use
the length of the LCS to identify the similarity of scores using the following formula:

),min(
),(

BA

LCS
BALCS

where LCS is the length of the LCS of two strings compared, which are A an B.

Syntactic Similarity Metrics Used in SASMINT

SASMINT uses all six metrics described above in order to effectively and automatically
identify the syntactic similarity between every two schema element names. Considering that
on one hand each metric is in fact most suitable for certain specific type of strings (e.g. Jaro is
intended for short strings, Monge-Elkan distance allows sequence of mismatched characters,
etc.), and that on the other hand schemas usually consist of mixed sets of element names
(strings), the approach of SASMINT benefits from applying a combination of these metrics
and therefore obtains more accurate results. At the high level, these metrics are combined by
their weighted summation, using the following formula:

),(*),(*),(*

),(*),(*),(*),(

balcsmlcwbajcsmjcwbatfsmtfw

bajrsmjrwbamesmmewbalvsmlvwbaWSyntacticsim

4.2 Proposed Approach: SASMINT 69

where ‘sm’ is the similarity score, ‘w’ is the weight, ‘lv’ stands for Levenshtein, ‘me’ for
Monge-Elkan, ‘jr’ for Jaro, ‘jc’ for Jaccard, ‘tf’ for TF-IDF, and ‘lc’ for Longest Common
Subsequnce. As explained in section 4.2.2, the weight (‘w’) for each metric is identified and
set at the Configuration phase. After being set, the weights are not changed throughout the
schema matching and schema integration phase.

II. Semantic Similarity

Identifying the semantic similarity between two words or concepts has been the subject of
many applications in Natural Language Processing (NLP), information retrieval, and federated
databases among other areas. Another term that is frequently used together with semantic
similarity is the semantic relatedness. If two concepts are related using any kind of relation,
then that means they are semantically related. As (Budanitsky & Hirst, 2001) emphasizes,
semantic relatedness is more general than semantic similarity and covers a broader range of
relationships, while semantic similarity is mostly limited to IS-A relations. A number of
semantic similarity and semantic relatedness algorithms that are widely used in NLP research
domain are described below.

Typically, the semantic similarity measures utilize a variety of knowledge resources, e.g.
Roget’s Thesaurus (Kirkpatrick, 1998) and WordNet (Fellbaum, 1998). Most measures in fact
utilize WordNet.

The WordNet is a dictionary of nouns, verbs, adjectives, and adverbs, which are organized
into synonym sets, each representing one underlying lexical concept. Synonym sets, also
called as synset, are interlinked by different relations, such as hypernymy, hyponymy,
antonymy, meronymy, holonymy, etc. Since in our application we deal with schema element
names, which are mainly nouns, and hypernymy / hyponymy (representing IS-A) is the most
dominant relationship linking nouns in schemas, we only apply this relationship and the
synonymy, as introduced in the WordNet, when identifying semantic similarity of element
names. A concept X is hyponym of a concept Y, if X ‘is a kind of’ Y. On the other hand,
hypernym represents a more general entity than the hyponym. For example, “art student” is a
hyponym (e.g. subclass) of “student”, whereas “person” is a hypernym (e.g. superclass) of
“student”. In order to find the hyponyms of a concept, one needs to go down in the WordNet
IS-A hierarchy.

Partially inspired by the approach of (Pedersen et al., 2005), we categorize semantic
similarity and semantic relatedness measures into three groups: a) path-based measures, b)
information content measures, and c) gloss-based measures, which are discussed at length
below.

a) Path-based Measures: The main idea behind these measures is calculating the shortest
path between the concepts in the IS-A hierarchy, such as the IS-A hierarchy of WordNet.
As an example, the measure introduced by Leacock and Chodorow (Leacock &
Chodorow., 1998) is based on the length of paths between noun concepts in an IS-A
hierarchy. They compute the shortest number of links from one node in WordNet to
another, using breadth-first search. Another semantic similarity measure, which also uses
path length, is that of Wu and Palmer (Wu & Palmer, 1994). They focus however on
verbs and take into account the lowest common subsume of the concepts. Hirst and St-
Onge (Hirst & St-Onge, 1998) extend the path length measure to include all relations in
WordNet and penalizing the changes in direction. Also, since it is not restricted to IS-A
relations, it is called as semantic relatedness measure. It clusters the relations in WordNet

70 Chapter 4: SASMINT approach

in three ways, namely as horizontal, up, and down. Hirst and St-Onge also define four
levels of relatedness: extra strong, strong, medium strong, and weak. Within the scope of
SASMINT, we only focus on measures based on IS-A hierarchies, and therefore do not
apply the details of the Hirst and St-Onge measure.

b) Information Content Measures: Using only the path length may cause some problems.
For example, in the lower part of the WordNet hierarchy, terms have more similarity and
thus links between them represents a shorter semantic distance than links between the
terms near the root, where terms are less similar. Path length cannot differentiate between
these two cases. For example, semantic distance of “cat” and “tiger” is shorter than that of
“animal” and “organism”, but path length may identify these pairs as equally similar. In
order to deal with these problems, other types of measures have been proposed, which
exploit the Information Content. These measures typically employ text corpus statistics
about the concepts, in order to assign the information content value to them. In order to
compute the information content value, measures follow the formulation of information
theory, where information content IC for any concept c is defined as:

)(log)(cpcIC

In this formula, p(c) is the probability of encountering an instance of concept c. The
probability of concepts that are higher in the hierarchy will also be higher, as the
frequency of a concept includes the frequencies of its subordinates. However, higher
probability means lower information content, so the concepts appearing higher in the
hierarchy are less informative than the ones appearing at lower levels.
The measure of Resnik (Resnik, 1995) is an example of information content measure,
which uses hyponymy relation. The information content values are derived from the word
frequencies in the Brown Corpus. The frequency of a word is calculated by counting the
number of occurrences of the word type in a corpus, and dividing that count by the
number of different concepts / senses associated with that word. The semantic similarity
between two concepts is then proportional to the amount of information that they have in
common and defined as follows:

)),((),(2121 cclcsICccsimres

where ressim is the Resnik semantic similarity and lcs is the lowest common subsumer

(also known as maximally specific superclass) of concepts .
One limitation of the measure of Resnik is that a large number of concepts might have the
same least common subsumer, and thus have identical values of similarity.
Another measure, using information content of nodes in a IS-A hierarchy is proposed by
Jiang and Conrath (Jiang & Conrath, 1997). They consider the information content of the
concepts themselves along with the information content of their lowest common
subsumer. Instead of semantic similarity, they calculate semantic distance jcdist of two

concepts, 21, cc , as follows:

),((*2)()(),(212121 cclcsICcICcICccdist jc

c) Gloss-based Measures: These types of measures utilize gloss overlaps. Gloss refers to a
brief description of a word. For example, the gloss provided by WordNet for one sense of
the word “building” is “a structure that has a roof and walls and stands more or less

4.2 Proposed Approach: SASMINT 71

permanently in one place”. One disadvantage of this kind of measure might be that since
glosses are short, they may not provide adequate information.
Lesk (Lesk, 1986) uses gloss overlaps for word sense disambiguation. Lesk counts the
number of common words between the glosses of each sense of a target word, and glosses
of other words in a sentence.
Banerjee and Pedersen (Banerjee & Pedersen, 2002) modify the Lesk algorithm such that
in addition to computing the overlaps between the glosses of the senses of two concepts,
they also consider the glosses of the senses of the concepts that are semantically or
lexically related to the two concepts.

SASMINT utilizes the two measures of the Path-based and Gloss-based. The information
content measures are not utilized, because the choice of corpus (i.e. information content
source) might have an unpredictable impact on the results that one gets from using these types
of measures. The performance of information content measures is influenced by the corpus
used (Patwardhan, 2003). Furthermore, the fact that one cannot foresee how the selection of a
particular corpus would affect the matching performance makes the selection of the corpus
even more difficult. Among several introduced alternative approaches for the path-based and
gloss-based measures, we have chosen two that are widely known measures. These are
explained below:
1. Path-based Measure: SASMINT utilizes the measure introduced by Wu and Palmer (Wu &

Palmer, 1994) as the path-based measure. Wu and Palmer calculate the semantic similarity
of two concepts, using the following formula:

321

3
21 *2

*2
),(

NNN

N
ccsimwup

where wupsim is the Wu and Palmer semantic similarity, 3N is the number of nodes on the

path from root to the maximally specific superclass 3c of the 1c and 2c . 1N is the number

of nodes on the path from 1c to 3c , and 2N is the number of nodes on the path from 2c to

3c .

Resnik has modified this formula slightly, resulting in the following formula (Resnik, 1999):

)()(

)),((*2
),(

21

21
21 cdepthcdepth

cclcsdepth
ccsimwup

where wupsim is the modified Wu and Palmer semantic similarity, depth is the distance

from the root node and),(21 cclcs is the maximally specific superclass of 1c and 2c .

2. Gloss-based Measure: The other type of measure used in SASMINT for determining
semantic similarity is based on the gloss overlaps. We get the gloss information from
WordNet. The measure of Lesk (Lesk, 1986) forms the base for the gloss-based measure
used in SASMINT. A word can have different senses, depending on the context. In
SASMINT, we customize the algorithm of Lesk to compute the semantic similarity of two
concepts 1c and 2c as follows: for each of the senses of 1c , we compute the number of

common words between its glosses and the glosses of each of the senses of 2c .

72 Chapter 4: SASMINT approach

Semantic Similarity Metrics Used in SASMINT

Similar to the case in the approach for syntactic similarity of SASMINT, the approach for
semantic similarity also considers the combined weighted sum of two semantic similarity
measures, as addressed above. Following formula is used for computing the final result of
semantic similarity in SASMINT:

),(*),(*),(baglosssmglosswbawupsmwupwbaWSemanticsim

where ‘wup’ stands for Wu and Palmer’s measure and ‘gloss’ stands for the gloss-based
measure, wupw is the weight for Wu and Palmer’s measure,),(bawupsm is the similarity value

calculated by using the Wu and Palmer’s measure, glossw is the weight for the gloss-based

measure, and),(baglosssm is the similarity value calculated by using the gloss-based measure.

By default, the weight is equally distributed over these two measures. Alternatively, the
sampler component of SASMINT can be used to determine the appropriate weights.
SASMINT uses WordNet as the base to identify the path between the concepts being
compared. Similarly, it benefits from the gloss information provided in the WordNet for
calculating its Gloss-based similarity.

4.2.3.2.2 Structure Matching

In addition to linguistic differences, other types of differences are also frequently observed
among database schema definitions related to the structures defined among schema elements.
Structural differences are more difficult to resolve than linguistic differences and they can be
only semi-automated, typically requiring the user’s involvement and input. Therefore, the
second step of schema matching in SASMINT is focused on the structure matching. As
explained in Section 4.2.3.1, before the comparison activity starts, two schemas are
represented as graphs. Structure matching takes as input these two graph representations and
uses the results generated by linguistic matching step, in order to as much as possible identify
the structural similarity between these two schemas. SASMINT’s approach for structure
matching of schemas is mostly based on the idea that if two elements have been found to be
similar, then their adjacent elements in the schemas (parent and children nodes) may also
match. Moreover, similarity of two nodes is directly affected by the number and quality of the
similarity among their children.

For the purpose of structure matching, a variety of graph similarity and graph matching
algorithms from the Graph Theory as well as the web searching, and the schema matching
were considered. A number of different notions are introduced for similarity in graphs, as
stated in (Zager, 2005), each addressing certain specific questions, including: Are the two
graphs identical copies of each other? How much change is needed to convert one graph into
the other? Do they contain a common subgraph? Aiming to answer these questions has
resulted in the introduction of different types of similarity notions in graphs, such as the graph
isomorphism, maximum common subgraphs, minimum common supergraphs, and error
tolerant matchings.

Graph isomorphism shows that graphs are structurally equivalent. The complexity of
isomorphism algorithms is still vague but it is thought to lie between the P- and NP-complete
complexity classes (Foggia et al., 2001; Zager, 2005). The “subgraph isomorphism” is the

4.2 Proposed Approach: SASMINT 73

generalization of the graph isomorphism, where isomorphic copies of a graph are searched
within another graph.

Other definitions related to graph similarity are maximum common subgraph and minimum
common supergraph, which are generalizations of the subgraph isomorphism. The maximum
common subgraph of two graphs G1 and G2 is the largest graph contained in both G1 and G2.
The minimum common supergraph of two graphs G1 and G2 is the smallest graph that
contains both G1 and G2 (Bunke, 2000).

Another notion in graph similarity is error tolerant matching using graph edit distance
(Bunke, 2000), which is the extension of string edit distance. Edit operations of type insertion,
deletion, and substitution can be applied to the nodes and edges of graphs. Graph edit distance
measures the minimum number of edit operations required to transform one graph into
another.

In graph similarity research field, there are several iterative algorithms introduced, which are
based on the mere idea that two nodes of two graphs are similar if the neighbors of these nodes
are also similar. One such iterative algorithm is that of Kleinberg, which is named as Hub and
Authority Scoring (Kleinberg, 1999). The algorithm is motivated by the fact that the
information content of a web page is not only the sum of the information in the page itself, but
also includes the other pages linked to or being linked by this page. Kleinberg’s algorithm
identifies in a set of pages, relevant to a query search, the subset of pages that are good hubs or
good authorities. Then, the result of the query return both the authorities, which contain the
primary content related to the query, and the hubs which points at sources containing primary
content related to the query (authorities). The iterative method assigns an authority score and a
hub score to every vertex of a given graph. The hub score of a vertex is equal to the sum of the
authority scores of all vertices pointed to by the vertex itself. The authority score of a vertex is
equal to the sum of the hub scores of all vertices pointing to the vertex. Given that B is the
adjacency matrix of a graph G, and that h and a are the vectors of hub and authority score, the
iterative method is defined as follows:

k
T

k
a

h

B

B

a

h

 0

0

1

A generalization of the Kleinberg’s algorithm that computes the similarity of two graphs

AG and BG with the vertices An and Bn and edges AE and BE is proposed in (Blondel et

al., 2004). For Bni ,..,1 and Anj ,..,1 the similarity scores are updated iteratively using the

following equation:

AXBABXX k
TT

kk 1

where kX is the Bn x An matrix of entries ijx at iteration k, A and B are the adjacency

matrices of AG and BG , and TA and TB are the transpose of A and B. Then, based on this

equation, (Blondel et al., 2004) define the following equation to iteratively compute the
similarity matrices of graphs:

F
k

TT
k

k
TT

k
k

AZBABZ

AZBABZ
Z

1

 k=0,1,….

74 Chapter 4: SASMINT approach

where kZ is the similarity matrix at iteration k. The matrix norm, which is
F

. , used here,

is known as the Euclidean or Frobenius norm and equals to the square root of the sum of all
squared entries. The matrix subsequences kZ 2 and 12 kZ converge to evenZ and oddZ .

Iteration continues an even number of times and stops upon convergence.
In addition to graph similarity and matching algorithms in Graph Theory domain, a number

of other algorithms are also proposed for the schema matching domain, such as the structure
matching algorithms of Cupid (Madhavan et al., 2001) and the Similarity Flooding (Melnik et
al., 2002). Structure matching by Similarity Flooding (Melnik et al., 2002) is based on a fix
point computation. It is based on the assumption that whenever any two elements are found to
be similar, similarity of their adjacent elements increases. Over a number of iterations, the
initial similarity of any two nodes propagates through graphs. The algorithm terminates after
the similarities of all model elements stabilize.

After examining the above mentioned types of graph similarity and structure matching
algorithms, two approaches described above were identified as most relevant and applicable
for the specific case of schema structure matching and therefore SASMINT has adapted and
applied the graph similarity algorithm proposed in (Blondel et al., 2004) and the structure
matching by Similarity Flooding proposed in (Melnik et al., 2002).

Structure Similarity Algorithms used in SASMINT

The graph similarity algorithm of (Blondel et al., 2004) and the structure matching algorithm
of Similarity Flooding (Melnik et al., 2002) together form the base for the structure matching
in the schema matching phase of SASMINT. Similar to the method followed in linguistic
matching, structure matching uses the combined weighted sum of these two structural
similarity algorithms, as shown in the formula below:

),(*),(*),(basfsmsfwbablondelsmblondelwbaWStructuresim

where ‘blondel’ stands for the algorithm of (Blondel et al., 2004) and ‘sf’ stands for the
algorithm of Similarity Flooding.

Since it is not possible to automatically identify the weights of structure similarity
algorithms by only providing the element-name pairs, unlike for the linguistic matching, the
SASMINT’s Sampler component cannot be applied to the structure matching algorithms.
Furthermore, success of structure matching also depends on the accuracy of the results of
linguistic matching. Therefore, either the weight for each of the structure matching algorithms
is defined by the user, or the SASMINT approach assumes equal weight distribution for the
above two algorithms as the default.

SASMINT aims to resolve a number of structural conflicts, as addressed in Section 3.3.
While in most cases, SASMINT is able to fully automize this process, in some cases the
process is semi-automated, since user input is required to resolve some structural conflicts.
Consider a simple example, related to the case of attribute-attribute conflict: Suppose that
name information is stored in the "name" column of the first schema and in the "first_name"
and "last_name" columns of the second schema. Although SASMINT can identify the match
between (name - first_name) and (name - last_name), users need to then specify through the
GUI of SASMINT that "name" is equal to the concatenation of the "first_name" and
"last_name".

As such, in general, fully automatic resolution is not realistic to be expected for all types of
semantic and structural conflicts. Therefore, although some user input might be required in
some cases, SASMINT addresses and handles all the conflicts addressed in Section 3.3.

4.2 Proposed Approach: SASMINT 75

4.2.3.3 Automatic Schema Matching Phase of SASMINT – Preliminary Result
Generation Activity

In the SASMINT approach, the results of the linguistic and structure matching are combined
in order to generate the final similarity values between each element name pairs. Namely, in
SASMINT, final similarity is calculated using the following formula:

),(*),(*),(baWStructuresimwbacWLinguistisimwbaFinalsim StructureLinguistic

where cWLinguistisim is the result of linguistic matching. It is computed based on the

WSyntacticsim and WSemanticsim values, applying the algorithm, presented in Figure 4.9. In the

above formula, WStructuresim represents the result of structure matching, Linguisticw is the

weight of linguistic matching, and Structurew is the weight of structure matching. Since

structure matching uses the results of linguistic matching as the base and linguistic properties
have higher effect on the similarity of schema elements, the linguistic matching also has
higher influence on the final similarity calculation results. Therefore, the weight of linguistic
matching in SASMINT formula is currently defaulted as 0.70, while the weight of structure
matching is set to 0.30, in the implementation of SASMINT. These weights are selected since
they proved to be appropriate for all the experiments that we have performed in this research
work (see sections 6.5 and Appendix E), nevertheless they are modifiable by user through the
GUI if needed to better fit other potential cases.

The Comparison activity results in similarity values between all element name pairs. Based
on the threshold value and the selection strategy defined in the configuration phase, similar
pairs are identified. Results consisting of these similar pairs are displayed to users in two
formats: 1) graph format, with edges between the tables and their columns as well as between
the nodes identified as similar. 2) text format showing the results of each algorithm used in the
comparison activity. This format is necessary in order to guide users for the future match
processes, to decide on what weight to assign to which algorithm for what kind of schema
elements as well as for enabling clear understanding of the results.

4.2.4 User Modification and Validation Phase – P3

The fact that the Schema Matching and Integration are activities, which do not lend
themselves to a fully automated set of computational activities (i.e. requiring no user
involvement), there is always the need to support a human in the loop. This is especially the
case considering the typical existence of a large amount of implicit semantics involved in
schema descriptions, which may be discovered or assumed by human intelligence. Therefore,
we identify this phase of the SASMINT approach; the human-in-the-loop phase, which takes
place after the Automatic Schema Matching Phase. This phase is called the ‘User Modification
and Validation’ phase in the SASMINT system. Without such a phase, it would not be
possible to assure the identification of all the matches between the two schemas. In order to
facilitate the user interaction, a GUI plays an important role in this phase.

From a process point of view, the logical order of activities that take place in this phase are
recapped as follows:

a) The visualization of the candidate matching results to the user by means of a GUI.

76 Chapter 4: SASMINT approach

b) Application of user’s modifications on the match results. Here, the set of possible
modifications comprise:

1) Introduction of some new match relationships by the user

2) Removal of some computer proposed match relationships

3) Modification of some computer-proposed match types

c) Capturing and persistence of the match results

An example case, for which the user input is essential, occurs in all complex cases, such as
for 1-to-n matches (one column in one schema matches more than one column in the other
schema). For this case, it is not possible to only automatically decide whether a column in the
first schema is a combination of n columns in the second schema and even if so, it may not be
known how to combine these n columns, e.g. through using: concatenation, summation, etc.
As a simple example for clarifying this case, suppose that schema matching system has
identified a match between the “address” element in one schema and two other elements,
namely “addr” and “dress” in the second schema. In this case, user is supposed to delete the
match between “address” and “dress” as it is a meaningless match, and perhaps validate the
other match. As another example, suppose that the system has identified a match between the
“address” element in one schema and “street”, “zip”, and “city” elements in the second
schema. In this case, user is supposed to further select/specify that “address” is the
concatenation of “street”, “zip”, and “city”.

4.2.5 Schema Integration Phase – P4

Schema integration phase, as represented in Figure 4.3, is a key process in different database
applications. Schema integration is a necessary step for database interoperability, federation,
and supporting the ultimate co-working among different nodes in the network. Nevertheless, it
is a difficult process because of the many structural and linguistic conflicts among schemas,
and performing it manually for all nodes in the network is very time consuming, cumbersome,
and error prone. Consequently, it is highly desirable to assist the users through semi-
automation of this process. Therefore, in SASMINT introducing novel approaches are aimed
to automate the schema integration using the results generated through the schema matching
phase. For instance, in federated database systems, in order to generate a federated schema, the
schema that is local at a participating node needs to be integrated with the parts of schemas
that other nodes share with this node. As another example, and following the global schema
approach, schemas of all nodes in a collaborative network need to be integrated together, with
the aim of generating a single global schema for the network. SASMINT facilitates the schema
integration process by providing supervised automated means to achieve schema integration.
As such, for every two schemas, after saving the results of their validated schema matching
results, the option exists for the user to continue with generating their integrated schema.

Two important components of schema integration in SASMINT are the derivation constructs
and the integration rules. Derivation constructs are used to keep the derivation history for
integration purposes, as explained in details later in Section 4.2.5.1. Considering that a number
of different integration conflicts need to be resolved for reaching a successful integration of
schemas, a number of rules are defined in SASMINT to be used for automatic integration of
relational schemas. Explanations at length related to each of these rules are provided later in
Section 4.2.5.2. These integration rules operate on different types of match results, to generate
their automatic integration. For example, these rules identify which tables and columns need to

4.2 Proposed Approach: SASMINT 77

be inserted in the resulting schema and with which structure they need to be merged etc. in
order for the integrated schema to represent all elements of the two participating schemas.

Using the derivation constructs and the integration rules, introduced in SASMINT, the
schema integration operates as follows: First, the schema integration rules are applied in the
order given in Section 4.2.5.2. Whenever a rule is applicable, one or more derivation
constructs are used to automatically generate the derivation of integration results. In other
words, for each newly generated table and column in the integrated schema, the derivation
constructs in the SDML format formally specifies where this new element comes from (all
source nodes) and how it is generated from its source nodes. When the recipient and donor
schemas are integrated, both the elements of this integrated schema as well as the derivation
information for each of these elements are displayed to the user.

In order to make the process of schema integration more clear, as a very simple example,
suppose that there are following two schemas that need to be integrated. These schemas are
called as the recipient and the donor respectively. Column and table names in recipient
schemas are the ones that shall remain in the integrated schema.

Recipient Schema: apartment (no, address)

Donor Schema: building (number, addr, floor)

After the schema matching phase of SASMINT, the identified and validated similar pairs are
as follow: (apartment, building), (no, number), and (address, addr). The schema integration
process operates on these results of the schema matching as follows:

1) Rule 3 (Section 4.2.5.2) is applied for (apartment, building) match;

a. A new table in the integrated schema is generated using the name of the table
in the recipient schema: apartment

b. Non matching columns of recipient and donor tables are added to this new
table: apartment (floor)

c. Table Union derivation rule is applied to define that the table apartment in the
integrated schema is the union of the two tables, apartment and building from
the recipient and donor schemas respectively.

d. Column Rename derivation rule is applied to define that the floor column of
the apartment table in the integrated schema is the renamed version of the
corresponding column of the building table.

2) Rule 13 is applied to the match pair (no,number), therefore:

a. A new column, named no is generated as a column of the new apartment table
in the integrated schema.

b. Column Union derivation rule is applied to define that this new column is the
union of the no and number columns from the apartment and building tables
(as the recipient and donor schemas) respectively.

3) Rule 13 is applied for (address,addr) match:

a. A new column named address is generated as a column of the new apartment
table in the integrated schema.

78 Chapter 4: SASMINT approach

b. Column Union derivation rule is applied to define that this new column is the
union of the address and addr columns from the apartment and building tables
(as the recipient and donor schemas) respectively.

The final integrated schema would be as follows: apartment (no, address, floor). The
integrated schema together with the specification of the schema elements, and the derivation
information will be represented and stored in the SDML format.

Below, as a first step, subsection 4.2.5.1 defines the SASMINT’s derivation constructs and
provides examples for each of them. Then, as a second step, subsection 4.2.5.2 provides the
details of the SASMINT’s schema integration rules.

4.2.5.1 Schema Integration Phase of SASMINT - Derivation Constructs

The Schema Integration phase of SASMINT introduces the usage of a number of derivation
constructs for representing the integrated schemas. Derivation constructs enable definition of
how and from which elements of recipient and/or donor schemas, the elements of integrated
schema are generated. The definition of these constructs are rooted in and presents a variation
of the PEER derivation language (Afsarmanesh et al., 1994). Two main types of derivation
constructs are defined for relational schemas: 1) Table Derivations - consisting of the
derivation constructs related to “Table Rename”, “Table Union”, “Table Subtract”, and “Table
Restrict”; 2) Column Derivations - comprising of derivation constructs related to “Column
Rename”, “Column Union”, and “Column Extraction”. Some of these derivation operations,
namely: Table Rename, Table Union, Column Rename, Column Union, and Column
Extraction are those frequently used by the SASMINT’s automated schema integration
approach. Formal representation of the above mentioned derivation constructs is given below:

1) Table Derivation: A Derived Table is defined by the following expression:

derived –table-definition :=derived-table-name = <T-expr>

T-list:= <T-expr> | <T-expr> , <T-list>

T-expr:= table-name@schema-name | union (<T-expr> , <T-list>) |

subtract (<T-expr> , <T-expr>) | restrict (<T-expr> , <restriction>)

Table derivation primates, used in the expression above are defined further below, where
every Ti stands for table-name@schema-name and T represents the derived table:

1. Table Rename

T = 1T

2. Table Union

T =),..,(1 nTTunion

3. Table Subtract

T =),(21 TTsubtract

4. Table Restrict

T =),(1 nrestrictioTrestrict

4.2 Proposed Approach: SASMINT 79

2) Column Derivation: A Derived Column is defined by the following expression:

derived–column-definition :=derived-column-name = <c-expr>

c-list:= <c-expr> | <c-expr> , <c-list>

c-expr:= column-name@table-name@schema-name | {<c-list>} |

<c-expr> OPR <c-expr>

Following is the list of derivation primitives for column integration, where every ci stands for
column-name@table-name@schema-name and c stands for derived column@table-name,
union primitive is represented by “{,}”, and extraction primitive is represented by “OPR”:

1. Column Rename

c = 1c

2. Column Union

c = },..,{ 1 ncc

3. Column Extraction

c = mcOPROPRcc ,..21 where OPR can be any type of arithmetic operation

if ic ’s are of type numeric, and of string operation if ic ’s are of type string. The

right and left hand side of the operation must be the same type.

As stated earlier, results of the schema integration process are stored in SDML. SDML
uses the derivation constructs introduced above in order to specify and store the derivation
history. An example for each type of derivation is provided below to show how these
derivation constructs are used. Only the related part of the XML document is shown in the
examples.

 Table Rename Derivation - renames a table and is used to specify that a table of the
integrated schema is derived from a table of either donor or recipient schema by
giving it a new name. An example is given below.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:student"
graph:name="student" graph:type="TABLE" graph:schema="INTEGRATED_1">

<graph:tableRenameDerivation>
<graph:derivationNode graph:name="student"

graph:id="urn:sasmint:table:targetsc:student" graph:type="TABLE"
graph:schema="targetsc"/>

</ graph:tableRenameDerivation >
</graph:snode>

 Table Union Derivation - is used to specify that a table in the integrated schema is
the union of two or more tables in the recipient and donor schemas. An example is
given below.

80 Chapter 4: SASMINT approach

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:person"
graph:name="person" graph:type="TABLE" graph:schema="INTEGRATED_1">

<graph:tableUnionDerivation>
<graph:derivationNode graph:schema="sourcesc" graph:name="person"

graph:id="urn:sasmint:table:sourcesc:person" graph:type="TABLE" />
<graph:derivationNode graph:schema="targetsc" graph:name="contact"

graph:id="urn:sasmint:table:targetsc:contact" graph:type="TABLE"/>
</graph:tableUnionDerivation>

</graph:snode>

 Table Subtract Derivation - is used to specify that a table in the integrated schema is
constructed by subtracting a table in recipient or donor schema from another table in
the other schema. An example is given below.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:math_students"
graph:name="math_students" graph:type="TABLE"

graph:schema=" INTEGRATED_1">
<graph:tableSubtractDerivation>

<graph:derivationNode graph:schema="sourcesc " graph:name="students"
graph:id="urn:sasmint:table:sourcesc:students" graph:type="TABLE" />

<graph:derivationNode graph:schema="targetsc" graph:name="physics_students"
graph:id="urn:sasmint:table:targetsc:physics_students "

graph:type="TABLE"/>
</graph:tableSubtractDerivation>

</graph:snode>

 Table Restrict Derivation - is used to specify that a table in the integrated schema is
derived from a table of either recipient or donor schema by applying a restriction
criteria (predicate). An example is given below.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:studentspassed"
graph:name="studentspassed" graph:type="TABLE"

graph:schema="INTEGRATED_1">
<graph:tableRestrictDerivation>

<graph:derivationNode graph:schema="targetsc" graph:type="TABLE"
graph:id="urn:sasmint:table:targetsc:students" graph:name="students" />
<graph:restrictionExpression graph:value="grade>60"/>

</graph:tableRestrictDerivation>
</graph:snode>

 Column Rename Derivation - renames a column and is used to specify that a column
of the integrated schema is derived from a column of either donor or recipient
schema by giving it a new name. An example is given below.

<graph:snode graph:id="urn:sasmint:column:INTEGRATED_1:person:contactid"
graph:name="contactid" graph:type="COLUMN"
graph:schema="INTEGRATED_1" graph:table="person">

<graph:columnRenameDerivation>
<graph:derivationNode graph:name="contactid" graph:table="contact"

graph:id="urn:sasmint:column:targetsc:contact:contactid"
graph:schema="targetsc" graph:type="COLUMN"/>

</graph:columnRenameDerivation>
</graph:snode>

4.2 Proposed Approach: SASMINT 81

 Column Union Derivation - is used to specify that a column in the integrated schema
is the union of two columns in the recipient and donor schemas.

<graph:snode graph:id="urn:sasmint:column:INTEGRATED_1:person:phone"
graph:name="phone" graph:type="COLUMN"
graph:schema="INTEGRATED_1" graph:table="person">

<graph:columnUnionDerivation>
<graph:derivationNode graph:name="phone" graph:table="person"

graph:id="urn:sasmint:column:sourcesc:person:phone"
graph:schema="sourcesc" graph:type="COLUMN"/>

<graph:derivationNode graph:name="phoneno" graph:table="contact"
graph:id="urn:sasmint:column:targetsc:contact:phoneno"
graph:schema="targetsc" graph:type="COLUMN"/>

</graph:columnRenameDerivation>
</graph:snode>

 Column Extraction Derivation – is used to specify that a column either in recipient or
donor schema equals n columns of the other schema, which are combined using an
arithmetic or string operation, such as concatenation. Currently, one type of Column
Extraction Derivation is defined, called “columnStringAdditionDerivation”, which is
used to define that a column in one schema equals the concatenation of two or more
columns in the other schema, as exemplified below:

<graph:snode graph:id="urn:sasmint:column:INTEGRATED_1:person:name"
graph:name="name" graph:type="COLUMN"
graph:schema="INTEGRATED_1" graph:table="person">

<graph:columnUnionDerivation>
<graph:derivationNode graph:name="name" graph:table="person"

graph:id="urn:sasmint:column:sourcesc:person:name"
graph:schema="sourcesc" graph:type="COLUMN"/>

<graph:derivationNode graph:name="intname" graph:table=“contact"
graph:id="urn:sasmint:column:targetsc:contact:intname"
graph:schema="targetsc" graph:type="COLUMN"/>

<graph:derivationType
graph:refDerivationNode="urn:sasmint:column:targetsc:contact:intname">
<graph:columnStringAdditionDerivation>

<graph:derivationNode graph:name="lname" graph:table=“contact"
graph:id="urn:sasmint:column:targetsc:contact:lname"
graph:schema="targetsc" graph:type="COLUMN"/>
<graph:derivationNode graph:name="fname" graph:table=“contact"
graph:id="urn:sasmint:column:targetsc:contact:fname"
graph:schema="targetsc" graph:type="COLUMN"/>

</ graph:columnStringAdditionDerivation>
</graph:derivationType>

</graph:columnUnionDerivation>
</graph:snode>

4.2.5.2 Schema Integration Phase of SASMINT - Rules

Automatic integration of two relational schemas is challenging and not straightforward. When
applying different cases resulted from the schema matching stage of the SASMINT, while for
the majority of cases we have introduced automatic rules for their schema integration, there
are still a few cases left for which the automation is not supported by our system at this stage,
and therefore are left to the users to decide on how to perform their integration. These cases
typically represent a large difference in the semantics applied by the designers of the donor

82 Chapter 4: SASMINT approach

and recipient schemas, for which its complete automation would represent selecting only one
integration option among many, which may not be the best solution.

Considering that the two schemas are labeled as the donor and the recipient, Table 4.7
represents the variety of cases of schema matching results that can be produced. For each case,
a description is also provided, and then it is indicated whether the case is or is not supported
by the introduced automatic schema integration approach of SASMINT. As listed in Table 4.7,
the eleven match result cases given in 1, 2, 3, 5, 7, 9, 10, 11, 12, 13, and 14 are considered for
automatic schema integration in SASMINT. The remaining match result cases (namely: 4, 6,

Table 4.7. Different possibilities after schema matching

Case Match Result Case description Automated
Integration

1 Column X (1 1) Column Y Column X in the recipient schema
matches Column Y in the donor
schema

Applied

2 Column X (1 n) Column Column X in the recipient schema
matches n columns of donor schema

Applied

3 Column X (1 1) Table A Column X in the recipient schema
matches Table A in the donor schema

Applied

4 Column X (1 n) Table Column X in the recipient schema
matches n tables of donor schema

Not applied

5 Column (m 1) Column Y m columns of the recipient schema
match Column Y in the donor schema

Applied

6 Column (m n) Column m columns of the recipient schema
match n columns of the donor schema

Not applied

7 Column (m 1) Table B m columns of the recipient schema
match Table B in the donor schema

Applied

8 Column (m n) Table m columns of the recipient schema
match n tables of the donor schema

Not applied

9 Table A (1 1) Table B Table A in the recipient schema
matches Table B in the donor schema

Applied

10 Table A (1 n) Table Table A in the recipient schema
matches n tables of the donor schema

Applied

11 Table A (1 1) Column Y Table A in the recipient schema
matches Column Y in the donor
schema

Applied

12 Table A (1 n) Column Table A in the recipient schema
matches n columns of the donor
schema

Applied

13 Table (m 1) Table B m tables of the recipient schema
match Table B in the donor schema

Applied

14 Table (m n) Table m tables of the recipient schema
match n tables of the donor schema

Applied

15 Table (m 1) Column Y m tables of the recipient schema
match Column Y in the donor schema

Not applied

16 Table (m n) Column m tables of the recipient schema
match n columns of the donor schema

Not applied

4.2 Proposed Approach: SASMINT 83

8, 15, and 16) correspond to certain highly complex integration cases, for which an automatic
solution is not advisable by SASMINT approach and therefore it will not be applied for them.

In order to automatically generate integrated schema based on the results of schema
matching, a number of heuristic rules are defined in SASMINT. These rules cover the cases
marked as “Applied” in Table 4.7.

Integration process starts with table matches and continues with column matches. This
means the match pairs, of which one side is a table, are processed first. All tables that do not
appear in any match pair, as well as all their non-matching columns are directly added to the
(recipient) integrated schema. The first five rules in table 4.7 are related to table names. Rules
6, 7, 8, and 9 are related either to the table-to-column or to column-to-table matches. After the
first nine rules are applied, non-matching columns of all tables are checked one more time in
order to see if they are all already covered in the integrated schema. This check is handled by
Rule 10. All non-matching columns of tables that are not yet covered at this stage will then be
directly added to the integrated schema. After this step, rules 11, 12, and 13 are applied only to
the column-to-column match results. More details about the schema integration rules are
provided below.

Rule 1: This rule applies when a match is identified between one table (1rT) of the recipient

schema and m tables (dmdT ..1) of the donor schema. Its algorithm is represented as follows:

Begin

Generate a new table node, 1iT , based on the table 1rT of the recipient schema and

add it to the integrated schema.

For each column of 1rT which do not match anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

 For each column of m tables, dmdT ..1 , of the donor schema which do not match

 anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

Apply the Table Union Derivation operator to specify that the newly generated table,

1iT is the union of 1rT and dmdT ..1 . Include this derivation in the integration result.

84 Chapter 4: SASMINT approach

Apply the Column Rename Derivation to the columns newly added to the integrated
schema to specify that these columns of the integrated schema are the renamed
versions of the related columns of 1rT and dmdT ..1 .

End

Rule 2: This rule applies when a match is identified between one table (1dT) of the donor

schema and m tables (rmrT ..1) of the recipient schema. Its algorithm is represented as follows:

Begin

Generate a new table node, 1iT , based on the table 1dT of the donor schema and add

it to the integrated schema.

For each column of 1dT which do not match anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

 For each column of m tables, rmrT ..1 , of the recipient schema which do not match

 anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

Apply the Table Union Derivation operator to specify that the newly generated table,

1iT is the union of 1dT and rmrT ..1 . Include this derivation in the integration result.

Apply the Column Rename Derivation to the columns newly added to the integrated
schema to specify that these columns of the integrated schema are the renamed
versions of the related columns of 1dT and rmrT ..1 .

End

Rule 3: This rule applies when a match is identified between a table (1rT) of the recipient

schema and a table (1dT) of the donor schema. Its algorithm is represented as follows:

Begin

Generate a new table node, 1iT , based on the table 1rT of the recipient schema and

add it to the integrated schema.

4.2 Proposed Approach: SASMINT 85

For each column of 1rT which do not match anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

 For each column of 1dT which do not match anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

Apply the Table Union Derivation operator to specify that the newly generated table,

1iT is the union of 1rT and 1dT . Include this derivation in the integration result.

Apply the Column Rename Derivation to the columns newly added to the integrated
schema to specify that these columns of the integrated schema are the renamed
versions of the related columns of 1rT and 1dT .

End

Rule 4: This rule applies when a match is identified between m tables (rmrT ..1) of the recipient

schema and n tables (dndT ..1) of the donor schema. Its algorithm is represented as follows:

Begin

Generate a new table node, 1iT , based on the table 1rT of the recipient schema and

add it to the integrated schema.

For each column of m tables, rmrT ..1 , of the recipient schema, which do not match

anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

For each column of n tables, dndT ..1 , of the donor schema, which do not match

anything

86 Chapter 4: SASMINT approach

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table 1iT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, 1iT

Apply the Table Union Derivation operator to specify that the newly generated table,

1iT is the union of rmrT ..1 and dndT ..1 . Include this derivation in the integration

result.

Apply the Column Rename Derivation to the columns newly added to the integrated
schema to specify that these columns of the integrated schema are the renamed
versions of the related columns of rmrT ..1 and dndT ..1 .

End

Rule 5: This rule applies to the tables that are not involved in any match pair and all such
tables and their columns that do not match anything are directly added to the integrated
schema. Its algorithm is represented as follows:

Begin

Identify all non-matching tables, rmrT ..1 and dndT ..1 in recipient and donor schemas

respectively

For each rmrT ..1 and dndT ..1

Generate a new table, ixT and add it to the integrated schema

For each column of rmrT ..1 and dndT ..1 , which do not match anything

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of the newly generated table ixT

and add a reference to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of the newly generated table, ixT

Apply Table Rename Derivation to specify that the newly generated tables are the
renamed versions of rmrT ..1 and dndT ..1 .

Apply the Column Rename Derivation to the columns newly added to the integrated
schema, to specify that these columns of the integrated schema are the renamed
versions of the related columns of tables rmrT ..1 and dndT ..1 of recipient and donor

schemas.

End

4.2 Proposed Approach: SASMINT 87

Rule 6: This rule applies when a match is identified between a table (1rT) of the recipient

schema and m columns (dmdC ..1) of a table of the donor schema. Its algorithm is represented

as follows:

Begin
Generate a new table node, 1iT , based on the table 1rT of the recipient schema and

add it to the integrated schema.

For each column of table 1rT of the recipient schema, which do not match anything

Add the column to the integrated schema as the column of the newly generated

table, 1iT

For each column of table 1rT of the recipient schema, which is added to the

integrated schema in the previous step

Add Column Union Derivation to specify that the newly generated column of the
integrated schema is the union of this column and m columns (dmdC ..1) of the

donor schema

Apply Table Rename Derivation to specify that the newly generated table is the
renamed version of table 1rT .

End

Rule 7: This rule applies when a match is identified between a table (1rT) of the recipient

schema and a column (1dC) of a table of the donor schema. Its algorithm is represented as

follows:

Begin
Generate a new table node, 1iT , based on the table 1rT of the recipient schema and

add it to the integrated schema.

For each column of table 1rT of the recipient schema, which do not match anything

Add the column to the integrated schema as the column of the newly generated

table, 1iT

For each column of table 1rT of the recipient schema, which is added to the

integrated schema in the previous step

Add Column Union Derivation to specify that the newly generated column of the
integrated schema is the union of this column and column (1dC) of the donor

schema

Apply Table Rename Derivation to specify that the newly generated table is the
renamed version of table 1rT .

End

88 Chapter 4: SASMINT approach

Rule 8: This rule applies when a match is identified between a table (1dT) of the donor

schema and m columns (rmrC ..1) of a table of the recipient schema. Its algorithm is

represented as follows:

Begin

Generate a new table node, 1iT , based on the table 1dT of the donor schema and add

it to the integrated schema.

For each column of table 1dT of the donor schema, which do not match anything

Add the column to the integrated schema as the column of the newly generated

table, 1iT

For each column of table 1dT of the donor schema, which is added to the integrated

schema in the previous step

Add Column Union Derivation to specify that the newly generated column of the
integrated schema is the union of this column and m columns (rmrC ..1) of the

recipient schema

Apply Table Rename Derivation to specify that the newly generated table is the
renamed version of table 1dT .

End

Rule 9: This rule applies when a match is identified between a table (1dT) of the donor

schema and a column (1rC) of a table of the recipient schema. Its algorithm is represented as

follows:

Begin
Generate a new table node, 1iT , based on the table 1dT of the donor schema and add

it to the integrated schema.

For each column of table 1dT of the donor schema, which do not match anything

Add the column to the integrated schema as the column of the newly generated

table, 1iT

For each column of table 1dT of the donor schema, which is added to the integrated

schema in the previous step

Add Column Union Derivation to specify that the newly generated column of the
integrated schema is the union of this column and (1rC) of the recipient schema

Apply Table Rename Derivation to specify that the newly generated table is the
renamed version of table 1dT .

End

4.2 Proposed Approach: SASMINT 89

Rule 10: This rule applies to the columns of tables that are not involved in any match pair and
all such columns that do not match anything are directly added to the integrated schema. Its
algorithm is represented as follows:

Begin

For each column of rmrT ..1 and dmdT ..1 of recipient and donor schemas, which do

not match anything and not processed before

Identify its original parent table in the integrated schema. Search all table
derivations to find out where this table exists and identify the related table ixT

in the integrated schema

If it is a foreign key column and the table that this column refers to is already
covered in the derivation of a table T of the integrated schema, then add this
column to the integrated schema as the column of table ixT and add a reference

to the table T.

If it is not a foreign key column, then add the column to the integrated schema
as the column of table, ixT

End

Rule 11: This rule applies when a match is identified between a column (1rC) of a table (1rT)

in the recipient schema and m columns (dmdC ..1) of a table (1dT) of the donor schema. Its

algorithm is represented as follows:

Begin

Identify the parent table 1rT of the column 1rC in the integrated schema. Search all

table derivations to find out where this table 1rT exists and identify the related table

1iT in the integrated schema.

Generate a new column 1iC based on the 1rC and add it to the integrated schema as

the column of 1iT .

Check whether 1rC is a foreign key column. If so, search all table derivations to find

out the table that this column refers to and identify the related table T in the
integrated schema. Add a reference to this table T from the newly generated column

1iC .

Check whether a derivation rule is specified by the user after schema matching, for
these m columns dmdC ..1 of the donor schema.

If no rule is specified, apply Column Union Derivation to specify that the newly
generated column 1iC is the union of 1rC and dmdC ..1

90 Chapter 4: SASMINT approach

If Column String Addition Derivation is defined, apply this integration rule to get an
intermediary column 1xC . Then, apply Column Union Derivation to specify that the

newly generated column 1iC is the union of 1rC and 1xC

End

Rule 12: This rule applies when a match is identified between a column (1dC) of a table

(1dT) in the donor schema and m columns (rmrC ..1) of a table (1rT) of the recipient schema.

Its algorithm is represented as follows:

Begin

Identify the parent table 1dT of the column 1dC in the integrated schema. Search all

table derivations to find out where this table 1dT exists and identify the related table

1iT in the integrated schema.

Generate a new column 1iC based on the 1dC and add it to the integrated schema as

the column of 1iT .

Check whether 1dC is a foreign key column. If so, search all table derivations to find

out the table that this column refers to and identify the related table T in the
integrated schema. Add a reference to this table T from the newly generated column

1iC .

Check whether a derivation rule is specified by the user after schema matching, for
these m columns rmrC ..1 of the recipient schema.

If no rule is specified, apply Column Union Derivation to specify that the newly
generated column 1iC is the union of 1dC and rmrC ..1 .

If Column String Addition Derivation is defined, apply this integration rule to get an
intermediary column 1xC . Then, apply Column Union Derivation to specify that the

newly generated column 1iC is the union of 1dC and 1xC

End

Rule 13: This rule applies when a match is identified between a column (1rC) of a table (1rT)

in the recipient schema and a column 1dC of a table (1dT) of the donor schema. Its algorithm

is represented as follows:

Begin

Identify the parent table 1rT of the column 1rC in the integrated schema. Search all

table derivations to find out where this table 1rT exists and identify the related table

1iT in the integrated schema.

4.2 Proposed Approach: SASMINT 91

Generate a new column 1iC based on the 1rC and add it to the integrated schema as

the column of 1iT .

Check whether 1rC is a foreign key column. If so, search all table derivations to find

out the table that this column refers to and identify the related table T in the
integrated schema. Add a reference to this table T from the newly generated column

1iC .

Apply Column Union Derivation to specify that the newly generated column 1iC is

the union of 1rC and 1dC .

End

4.2.5.3 Schema Integration Phase of SASMINT - Result Generation

The result of schema integration phase of SASMINT is displayed both in graph format and in
SDML format. The automatically generated integrated schema is shown as a DAG, while the
SDML representation of the result formally shows which elements of the input schemas are
represented using which element of the integrated schema and using what kind of a derivation
this new element of the integrated schema is generated.

4.2.6 User Modification and Validation Phase – P5

Since schema integration is a challenging process, user modification and validation are also
necessary after the automatic generation of the integrated schema, as represented in Figure 4.3.
Therefore, users’ validation and/or modification of both the integrated schema and the
derivation results at this stage guarantee the success of the automated schema integration
process. Similar to the User Modification and Validation Phase after schema matching, GUI
resides at the heart of this phase, to better facilitate users’ validations and modifications.

Schema integration in SASMINT enables iterative development of a global integrated
schema for a network of databases within a collaborative network environment, through the
integration of two schemas at a time. Namely, in any network, first, the schemas 1S and 2S of

two nodes are selected by the user and identified as donor and recipient. After the completion
of schema matching, 1S and 2S get integrated. This result is displayed in graph as well as in

SDML format. Then the user will have the opportunity to check and validate these results, or
apply any necessary modifications.

In principle, the user applies the required modifications on the SDML representation of the
result. User modification is required in two cases:

1) When automatic schema integration is not performed by SASMINT: For example, for the
match result of “Column X (1 n) Table”, no integration rule is defined in SASMINT, and
thus this type of match is not processed by the automatic schema integration, which needs
human interference.

2) When the result generated by SASMINT is not valid: Since SASMINT generates the
integrated schema based on the schema matching results, if there are any mistakes in those

92 Chapter 4: SASMINT approach

results that the user has missed to correct after schema matching phase, then the schema
integration phase may produce invalid results. In this case, the user is advised to back track
and make any necessary corrections on the schema matching results and repeat the schema
integration phase, unless the user is certain about the needed correction and wishes to directly
make the corrections on the SDML representation of the integrated schema.

After applying all desired modifications on the integrated schema generated by SASMINT,
the user can save the result, which corresponds to 1intS for 1S and 2S . The 1intS will then

become the new recipient schema for any further integration. Namely, to continue with
generation of a globally common schema for a collaborative environment, the user (schema
integrator) may then select 1intS and another donor schema 3S (from another node) and

repeat the process to integrate them into 2intS . This process continues until all schemas from

the network nodes are integrated, resulting in a final global integrated schema intS .

4.3 Conclusion

Providing infrastructures for supporting data sharing among heterogeneous, distributed, and
mostly autonomous databases has been an important open research question in the database
research area. We categorize the related studies under four groups: 1) studies focusing on
database integration and interoperability problems, 2) studies focusing on schema matching, 3)
studies focusing on schema integration, and 4) studies focusing on ontology matching and
ontology merging.

Most current research addresses one problem area and suggests solution that typically
requires large amount of manual work. In order to resolve heterogeneity and enable semi-
automation of both matching and integration of schemas, and to support interoperability and
data sharing within networks of databases, we propose the SASMINT approach. As for the
target application problem space, SASMINT is applicable to different types of applications
and purposes, as addressed in Section 4.2, including: 1) database federation with a common
schema, 2) full database federation, and 3) incremental generation of an integrated global
schema.

In the introduced SASMINT approach, covered in this chapter, the following main goals
have been addressed and discussed:

 Using a Combination of Applicable Match Algorithms: A combination of linguistic
and structure matching algorithms from the NLP and Graph Theory domains are
addressed.

 Enabling Semi-Automatic Schema Integration: Using the results of schema matching
for the purpose of automatically generating an integrated schema.

 Providing a Graphical User Interface: An intuitive GUI for assisting the users with
the process of manual intervention in cases where automatic conflict resolution is not
possible.

For the SASMINT approach to achieve these goals, it introduces five main phases: 1)
Configuration Phase, 2) Automatic Schema Matching Phase, 3) User Modification/Validation
(of match results) Phase, 4) Schema Integration Phase, and 5) User Modification/Validation
(of integration results) Phase.

4.3 Conclusion 93

We showed in this chapter that the SASMINT approach is more comprehensive and can
produce more accurate results, when compared to previous approaches for data sharing among
heterogeneous databases. In addition to using a combination of widely accepted matching
algorithms, SASMINT also introduces the use of schema matching results for schema
integration purposes. Other key innovations incorporated in our approach involve: 1)
Introduction of the SAMPLER component for semi-automatic identification of the appropriate
weights of the algorithms used in linguistic matching, 2) proposing an XML-based derivation
language called the SDML, for formalization of SASMINT and capturing the results of both
schema matching and schema integration processes.

94 Chapter 4: SASMINT approach

Chapter 5

SASMINT development architecture

We have implemented the SASMINT system to verify, test, and validate the approach proposed in this
research as well as to compare it with other approaches. Details of the development architecture of
SASMINT are provided in the following sections, together with a number of screenshots of this system.
Section 5.1 goes over the processing steps of SASMINT. Section 5.2 briefly addresses the technologies
applied in the development of SASMINT. Section 5.3 lists the main components of the system. Detailed
explanations about the operation of the SASMINT system are provided in Section 5.4. Finally, Section
5.5 concludes this chapter.

A part of the research results presented in this chapter was previously published in two articles, of
which one appeared in the Journal of Knowledge and Information Systems (Unal & Afsarmanesh,
2010), and the other appeared in the Journal of Software (Unal & Afsarmanesh, 2009).

5.1 Processing Steps of SASMINT

SASMINT realizes the approach described in Chapter 4, following the processing steps shown
in Figure 5.1. To state it briefly, the configuration step allows the user to first identify the
weights for matching algorithms and then identify the strategy for selection of the results of
schema matching. Schema matching step starts with the preparation sub-step that translates
both recipient and donor schemas into the DAG format. Then, based on the approaches
explained in Chapter 4, in the comparison sub-step, the linguistic and structure matching take
place. After the matching results are generated by SASMINT, users apply their desired
modifications and/or validate the proposed matches before the eventual match results are
formally defined and persisted. Using these results, the SASMINT system then starts
generating an integrated schema, by applying a set of integration rules defined for relational
databases. When the results of schema integration are ready, these are again presented to the
user for modification/validation of their integration.

5.2 Technologies Applied

Considering the practical environment of collaborative networks that will need to run
SASMINT, this system is implemented in Java programming language on Microsoft Windows
operating system environment. Being java-based, SASMINT can actually run on multiple
operating platforms/systems; i.e. it runs cross-platform. We have therefore also tested it for

96 Chapter 5: SASMINT development architecture

this purpose and within hours, this system was up and running on MacOSX platform, which
actually is a Unix clone from the Operating System point of view. SASMINT is a standalone
java swing based application. As far as its architecture is concerned, it has a 2-tiered
architecture, where its ‘business’ tier provides services/functions to its presentation tier. These
business layers tiers encapsulate implementations of several business rules.

We have focused our development efforts on supporting the matching and integration of
relational schema based systems. The specific technologies and tools exploited in the
development of SASMINT are listed below.

 Eclipse: Java Integrated Development Environment (IDE). It is a platform for
building integrated web and application development tooling (Eclipse, 2010).

 NetBeans: Java Integrated Development Environment (IDE). It is a platform for
building integrated java applications. We have extensively used NetBeans for
the GUI design phases.

 AWT (Abstract Windowing Toolkit) and Swing: Java’s Graphical User Interface
(GUI) libraries.

 JGraphT: Free Java graph library to create (model) graphs (Jgrapht, 2010). It
supports various types of graphs, such as weighted, unweighted, directed,
undirected, and labeled graphs.

 JGraph: Graph component for visualization and layout (Jgraph, 2010). Graphs
generated using JGraphT can be visualized and the layout can be applied by
means of JGraph.

 WordNet: A lexical dictionary (Fellbaum, 1998; Wordnet). Nouns, verbs,
adjectives and adverbs are grouped into sets of cognitive synonyms (synsets),
each expressing a distinct concept. Synsets are interlinked by a number of
semantic relationships, such as hypernymy and hyponymy.

 JWNL (Java WordNet Library): A Java API for accessing WordNet (Jwnl,
2010).

 XML-Beans: Technology for accessing XML by binding it to Java types
(Xmlbeans, 2010). XMLBeans uses XML Schema to compile Java interfaces
and classes that can be used to access and modify XML instance data.

 SecondString: An open source Java package consisting of implementation of a
number of string similarity metrics (Secondstring, 2010). For the purpose of

Fig. 5.1. Processing Steps of SASMINT

5.3 How does the System Work? 97

syntactic matching in SASMINT we modified this package for implementing
the Levenshtein, Monge-Elkan, Jaro, TF*IDF, and Jaccard metrics.

5.3 Main Components of the System

The main components of the SASMINT system are illustrated in Figure 5.2. The Sampler
Component helps users identify appropriate weight for each algorithm used in the linguistic
matching. The Graph Representation Component of SASMINT is responsible for representing
schemas in Graph format, more specifically in the DAG format. SASMINT uses JGraph for
graphical representation (visualization) and specifying the layout of the graphs. This system
utilizes the Java graph libraries of JGraphT, for creating a graph and performing some
operations on the graph, such as getting all its vertices and edges and traversing the graph.
Users interact with the system using the GUI Component. After the schemas, represented as
graphs, have been displayed using the GUI and the user has selected the Match option, the
GUI component calls the Schema Matching Component. This component matches source and
target schemas using a combination of Linguistic and Structure Matching techniques, as
explained in Chapter 4. After modifying and validating the match results, the user may
continue with schema integration. The Schema Integration Component integrates the schemas
using a number of pre-defined rules and represents the automatically generated integrated
schema to the user, while also formalizing it in a derivation language. Results of integration
will go again through the user validation stage.

GUI
-JGraph-

Graph
Representation

-JGraphT-

Schema Integration
•Rules

•Derivation Language

Schema Matching
•Linguistic
•Structural

WordNet
JWNL

Integrated
Schema in
Derivation
Language

Integration
Rules

Sampler
weights

Fig. 5.2. Components of SASMINT

5.4 How does the System Work?

The main flow of information in the SASMINT system as well as the technologies used in
different stages is given in Figure 5.3. Firstly, weight for each schema matching algorithm is
assigned and the strategy for selecting the match results is identified and threshold value is set,
as explained in details in Section 5.4.1. Secondly, the two schemas, called as recipient and

98 Chapter 5: SASMINT development architecture

donor, are translated into the graph format and then loaded into the system to be visualized by
the SASMINT GUI. Thirdly, correspondences between these two schemas are identified.
Finally, the match results are presented to the user, and after modifying and/or validating the
match results, if the user continues with the schema integration according to specified
matches, these two schemas are integrated into a single schema and then it will be formalized
in the SDML, which again requires user validation.

Load and
Translate
schemas

Match
Schemas

Linguistic
Match

Structural
Match Integrate

Schemas
Modified
Match
Results

Integration
rules

Recipient
Schema

Donor
Schema

or

JDBC
XML
Beans JDBC

JGraph&JGraphT

WordNet

Recipient
Schema

Donor
Schema Integrated

Schema

Assign Weights &
Identify Selection
Strategy

weights
1

2

3

4

Modified
integrated
schema

Formalized
specification
of integrated
schema in
the
derivation
language

Fig. 5.3. Information Flow in SASMINT

In the following sections, some more details of the operation of the SASMINT system are
provided. For this purpose example schemas shown in Figures 5.4-a and 5.4-b are used.
Through the screenshots, also the matching and integration of recipient and donor schemas are
explained.

CREATE TABLE ̀ employee ̀(
`empid ̀int(10) unsigned NOT NULL

auto_increment,
f̀name ̀varchar(45) NOT NULL,
l̀name ̀varchar(45) NOT NULL,
`address ̀varchar(45) NOT NULL,
PRIMARY KEY (̀ empid)̀

)
Fig. 5.4-a. Recipient Schema

CREATE TABLE ̀ address̀ (
`addrid ̀int(10) unsigned NOT NULL auto_increment,
`street̀ varchar(45) NOT NULL,
`zip ̀varchar(45) NOT NULL,
`citỳ varchar(45) NOT NULL,
PRIMARY KEY (̀ addrid)̀

)
CREATE TABLE ̀ person ̀(
`pid ̀int(10) unsigned NOT NULL auto_increment,
`name ̀varchar(45) NOT NULL,
`birth ̀varchar(45) NOT NULL,
`addressid̀ int(10) unsigned NOT NULL,
PRIMARY KEY (̀ pid)̀,
KEY ̀ FK_person_1 ̀(̀ addressid)̀,
CONSTRAINT ̀ FK_person_1 ̀FOREIGN KEY (̀ addressid̀) REFERENCES

`address̀ (̀ addrid̀)
)

Fig. 5.4-b. Donor Schema

5.4 How does the System Work? 99

5.4.1 Assigning Weights and Identifying the Selection Strategy

In the three methods introduced for the configuration phase of SASMINT in Chapter 4
(Section 4.2.2), it is stated that in one method, the weights for each algorithm used for schema
matching can be manually assigned, as shown in Figure 5.5, while in another method, default
weights are assigned by the SASMINT system. The default weight for each algorithm is the
equal weight in the related category of matching. For example, the default weight for the six
considered metrics in the syntactic similarity is 1.0 / 6, which is ≈0.16. Furthermore, for
combining the results of linguistic and structure matching for the final result, default weight of
linguistic matching is 0.7 and that of structure matching is 0.3. As explained in Section
4.2.3.3, these weights are also modifiable through the GUI, shown in Figure 5.5.

Since it may be difficult for an average user to identify appropriate weights, SASMINT
introduces and supports a third method implemented by the Sampler component for automatic
weight identification, indicating which algorithm/algorithms better suited for the specific
domain of the schemas. Sampler can be applied to the calculation of both syntactic and
semantic similarity metrics.

With the current implementation, the Sampler component can work with up to five known
sample pairs (this is merely a design feature, and is thus easily customizable). Through the
GUI provided by the Sampler component, as shown in Figure 5.6, the user has the freedom to
provide: a) syntactically similar pairs in case he/she would like the system to compute the
weights of syntactic matching metrics, or b) semantically similar pairs in case he/she requires
to compute the weights of metrics for semantic matching. The user is expected to input these
pairs to the Sampler component from his/her schema domain. For instance, the user might
want to see how syntactic similarity metrics would perform for the pair P: ["student_name",
"name_of_student"]. On the other hand, he might want to see how semantic similarity metrics
would perform for the pair P: [“employee”, “worker”]. After doing some computations, as
explained in Chapter 4, the Sampler component outputs the appropriate weights for the
schemas’ domain, as can be seen in Figure 5.6.

Fig. 5.5. Manual Weight Assignment

100 Chapter 5: SASMINT development architecture

Fig. 5.6. Use of Sampler

For identifying the selection criteria for the results of schema matching, user is required to
set a threshold value as well as the strategy to use for selecting the results of schema matching.
Figure 5.7 shows the screenshot relevant to this example from SASMINT. The meanings of
‘select all above threshold’ and ‘select max above threshold’ are explained in Chapter 4
(Section 4.2.2). If nothing is specified by the user, default value for threshold is 0.5 and default
strategy is “select max above threshold”.

Fig. 5.7. Identifying Result Selection Strategy

5.4 How does the System Work? 101

5.4.2 Loading and Translating Schemas

After assigning weights to the algorithms and identifying the selection strategy (e.g. ‘select all
above threshold’ and ‘select max above threshold’), two schemas, called the recipient and
donor respectively, are loaded by the user into SASMINT, through its GUI, as shown in
Figure 5.8. The recipient schema is taken as the base schema in the integration process. It can
be loaded either from a database or from an XML file, which contains a previously generated
integrated schema and all its related derivation information. Format of this file is described in
the following paragraphs about the SDML. It is assumed that XML file contains an SDML-
based representation of the integrated schema, which is loaded as the recipient schema. On the
other hand, donor schema can be loaded from any database. During the loading process,
schemas specified in the language of their database are translated into a Directed Acyclic
Graph (DAG) format. In other words, table and column names as well as the primary and
foreign keys will all be represented in graphs for the recipient and donor schemas, before their
processing starts. When a recipient schema is loaded from an XML file, only this information
is shown in the graph, not its derivation information. DAG is used as the common format for
representing schemas. SASMINT uses JGraphT, a free Java graph library (Jgrapht, 2010), to
create the DAG.

When the two graphs, corresponding to donor and recipient schemas are generated, they are
displayed for user through the SASMINT GUI. A graph component, called JGraph and its
subcomponent, JGraph Layout are used for graph visualization and layout (Jgraph, 2010). The
processes of SASMINT, responsible for loading schemas and translating them into the graph
format constitute the Preparation sub-step.

Schema to Graph

Vertices: Schema,
Table, Column
Edges: Schema <-> Table,
Table <-> Column

JGraphT
JGraph

RDBMS

MySql,
Postgress, etc

XML

Fig. 5.8. Preparation Sub-step

102 Chapter 5: SASMINT development architecture

Figure 5.9 illustrates the screenshots of the two schemas given in Figure 5.4 in the MySQL
database. Figure 5.10 shows how they are represented as graphs when loaded into SASMINT.
Schemas, tables, and columns are shown in different colors to help users during the
modification and validation of the schema matching results. Furthermore, primary and foreign
key columns are also indicated in the views, by appending a “(P)” for a primary key and a
“(F)” for a foreign key in the node name. JGraph provides a flexible visualization for graphs. It
allows users to easily move the nodes in order to modify the appearance of a graph.

Tables in
Schema
‘university2’

Table in
Schema
‘university1’

Fig. 5.9. Recipient and Donor Schemas in the Database

5.4.3 Matching Schemas

After displaying recipient and donor schemas, user selects the Match option from the menu.
This option computes the similarities between the elements of these two schemas using the
matching algorithms explained in Chapter 4. Results are filtered first based on the threshold
value. As explained in Section 5.3.1 and shown in Figure 5.7, the value for threshold is set by
the user before schema matching starts or default value is used. This value is used by schema
matching for selecting the pairs, for which their similarities are above the threshold, and then
the second filtering is applied using the selection strategy.

After applying these two filters, remaining similar pairs are displayed to the user for
modification and validation. For the example university schemas, a screenshot of the system
after schema matching is shown in Figure 5.11. In addition to a graph with “Similar To” edges

5.4 How does the System Work? 103

Fig. 5.10. Recipient and Donor Schemas Loaded

Fig. 5.11. Result of Schema Matching after User Validation

104 Chapter 5: SASMINT development architecture

between matching nodes, detailed information about the results of each metric for pairs is also
displayed on the GUI. User can modify the results on the graph. He can delete incorrect
matches and introduce new ones and specify which kind of operation to use for combining n
columns in 1-to-n or n-to-1 match cases. When the modifications are completed, the user can
save the match results. A portion of the saved XML file for the example schemas is shown in
Figure 5.12. This file can be used by a query processor to rewrite the query in terms of local
schemas.

…………………………………………………………………..
…………………………………………………………………..
<graph:snode graph:id="urn:sasmint:column:university1:employee:empid" graph:name="empid“

graph:schema="university1" graph:table="employee" graph:type="COLUMN“ graph:pkColumn=“yes“ />
<graph:snode graph:id="urn:sasmint:column:university1:employee:fname" graph:name="fname"

graph:schema="university1" graph:table="employee" graph:type="COLUMN"/>
<graph:snode graph:id="urn:sasmint:column:university1:employee:lname" graph:name="lname"

graph:schema="university1" graph:table="employee" graph:type="COLUMN"/>
<graph:snode graph:id="urn:sasmint:column:university1:employee:address" graph:name="address"

graph:schema="university1" graph:table="employee" graph:type="COLUMN"/>
<graph:snode graph:id="urn:sasmint:schema:university2" graph:name="university2" graph:type="SCHEMA"/>
<graph:snode graph:id="urn:sasmint:table:university2:address" graph:name="address" graph:schema="university2"

graph:type="TABLE"/>
…………………………………………………………………..
…………………………………………………………………..
<graph:sedge graph:id="urn:sasmint:hastable:683bb557-0d3d-4d2f-a3b2-840f3065254a“

graph:sourceNodeId="urn:sasmint:schema:university1“
graph:targetNodeId="urn:sasmint:table:university1:employee" graph:type="HASTABLE"/>

<graph:sedge graph:id="urn:sasmint:hascolumn:79b02ca1-9572-41af-b9d7-7db0b4d3390f“
graph:sourceNodeId="urn:sasmint:table:university1:employee“
graph:targetNodeId="urn:sasmint:column:university1:employee:empid" graph:type="HASCOLUMN"/>

…………………………………………………………………..
…………………………………………………………………..
<graph:sedge graph:id="urn:sasmint:similarTo:3a38c020-d184-4f11-8297-d58125f1784d"

graph:sourceNodeId="urn:sasmint:column:university1:employee:lname"
graph:targetNodeId="urn:sasmint:column:university2:person:name" graph:type="SIMILARTO">

<graph:similarity>0.5142156907717128</graph:similarity>
</graph:sedge>
<graph:sedge graph:id="urn:sasmint:similarTo:e6738592-356d-4b97-9841-3e90b2cde8aa"

graph:sourceNodeId="urn:sasmint:column:university1:employee:fname"
graph:targetNodeId="urn:sasmint:column:university2:person:name" graph:type="SIMILARTO">

<<graph:similarity>0.5142156907717128</graph:similarity>

</graph:sedge>
…………………………………………………………………..
…………………………………………………………………..

Fig. 5.12. Result of Schema Matching in XML format

5.4.4 Integrating Schemas

After validating the results of schema matching, the user can continue with the schema
integration step. Schema integration applies a number of heuristic rules, explained in Chapter
4, in order to automatically generate an integrated schema of recipient and donor schemas. For
the example university schemas, SASMINT automatically produces the integrated schema
shown in Figure 5.13. Both the graph and XML (based on SDML) representations of the
integrated schema are generated by SASMINT. The XML representation defines the
derivations used to generate the elements of the integrated schema from the elements of input

5.5 Conclusions 105

schemas. User can modify the generated XML result and then save it. Since for integrating
schemas of all nodes in a network, two schemas are integrated at a time, the XML file will
expand after each integration process, with the definitions of the new nodes and edges as well
as their derivations.

Fig. 5.13. Result of Schema Integration

5.5 Conclusions

In this chapter, we provide the details of the SASMINT implementation, which has been
realized in order to both verify and to serve as a proof of concept for our proposed approach.
The implementation functionally comprises the processing steps (i.e. called phases), and is
made available to the user by means of a GUI, which we consider to be an important aspect of
the overall proposed system solution. We observed that most existing schema matching and/or
integration tools lacked sophisticated GUI's, which is why we decided to implement a GUI for
SASMINT.

The majority of our implementation efforts have been dedicated to implementing 1) The
construction of GUI, and 2) The schema integration rules (heuristics)

106 Chapter 5: SASMINT development architecture

For implementing the SASMINT system, the platform-independent Java programming
language and runtime has been utilized. A number of additional Java libraries, IDE's and add-
ons have also been used to enhance our implementation.

Chapter 6

Empirical validation of SASMINT

In order to measure the quality and performance of our approach to schema matching and integration,
we have performed a number of experiments. These experiments consider and make use of schemas that
include different types of schema heterogeneities, as addressed in Chapter 3. This chapter describes
these experiments and their results. In this respect, in Section 6.1 we first address a number of related
experiments performed by other main research efforts. A number of specific quality measures used for
assessing the results of our schema matching and schema integration components of SASMINT are
described next in Section 6.2. The main characteristics of test schemas are addressed in Section 6.3. The
setup and details related to the performed experimental evaluations are given in Section 6.4. Our
evaluation results are addressed in Sections 6.5 to 6.7. Finally, Section 6.8 concludes the chapter with a
summary of evaluation results.

This chapter contains some research results, which were previously published in the Journal of
Knowledge and Information Systems (Unal & Afsarmanesh, 2010).

6.1 Schema Matching Evaluations in Related Research

The evaluation performed in most existing schema matching research does not use any
benchmark; rather they each use their own test schemas in evaluating specific aspects of their
proposed system.

A comparison of different evaluations introduced by different research for schema matching
systems is provided in (Do et al., 2002). It specifies four different types of criteria to compare
existing evaluations, including the evaluation of COMA (Do & Rahm, 2002), Cupid
(Madhavan et al., 2001), Similarity Flooding (Melnik et al., 2002), SEMINT (Li & Clifton,
2000), and GLUE (Doan et al., 2002). These criteria include:

1) Input: Types of input data used, such as dictionaries used and schema specification.

2) Output: Information included in the match result, such as the mappings between different
schema elements.

3) Quality measures: Measures used to assess the accuracy of the match result.

4) Effort: Types of needed manual effort measured in evaluations, such as pre-match and
post-match efforts.

As (Do et al., 2002) concludes, it is difficult to compare results of different schema matching
evaluations with each other, as these evaluations have been carried out in different ways and
aimed at specific features. Authors further point at the requirement for a schema matching

108 Chapter 6: Empirical validation of SASMINT

benchmark to make the comparison of results of different research evaluations possible. Such
a generic benchmark has however not yet been defined and/or considered in any research
work. So far, only a benchmark for evaluating the systems, which match XML Schemas is
proposed in (Duchateau et al., 2007). This benchmark, called XBenchMatch, consists of
quality measures for both schema matching and schema integration. It also provides some
evaluation of the matching performance. In XBenchMatch it is assumed that for evaluating the
quality of schema matching, mappings must be given as XML path correspondences (e.g.
person.person_name - person.lastName). Furthermore, for evaluating the quality of “integrated
schema”, a number of measures are introduced as a part of XBenchMatch. However, these
measures assume that also the correct (ideal) integrated schema is provided to the
XBenchMatch. As such, the integrated schema which is generated as the output of the schema
integration tool is compared against the ideal integrated schema. Both of these schemas need
to be in the XML Schema format. For the purpose of evaluating the quality of “schema
matching”, XBenchMatch applies the four measures of Precision, Recall, F-measure, and
Overall, as most other evaluation approaches also apply some of these methods. Detailed
description of these measures is provided in the next section.

In summary, most evaluation approaches consider only the quality of schema matching.
Although the XBenchMatch prototype measures the quality of both the schema matching and
schema integration, it can only support the XML Schema formats. Furthermore, there are
some assumptions of XBenchMatch (e.g. the availability of the ideal integrated schema) as
explained in the previous paragraph, which makes the general use of this benchmark difficult.
Since SASMINT works with relational schemas and due to other reasons addressed above, we
could not apply XBenchMatch for the evaluation of SASMINT. Nevertheless, as addressed in
Section 6.2 below in details, nearly all measures introduced in other competitive research are
considered and applied for validation of SASMINT.

6.2 Quality Measures Used for Evaluating SASMINT

The main goal of SASMINT is to automate the schema matching and integration processes to
the extent possible. In other words, our main concern for SASMINT is its effectiveness, in
how accurately the system can identify the matching pairs and generate the integrated schema
automatically. For this reason, we consider only the quality and accuracy measures in our
evaluations of the SASMINT system, and do not take into account the time performance
related measures and assessment. Performance measures depend on the underlying
environment and the technologies used, and thus it is challenging to obtain neutral objective
evaluations. Furthermore, for schema matching and integration, when performance is
considered, it is not only related to how fast the system works but also how much time the user
spends correcting the results manually. Therefore, when the system produces more accurate
results, the user needs to spend less manual time and the overall performance increases.
Therefore, the accuracy aim of SASMINT also improves the performance of its schema
matching and schema integration.

We apply two types of quality measures in our experiments: 1) quality measures for schema
matching, and 2) quality measures for schema integration. Details of these measures are
provided in the next sub-section.

6.2 Quality Measures Used for Evaluating SASMINT 109

6.2.1 Quality Measures for Schema Matching

Similar to most other schema matching evaluations, we used the concepts of precision and
recall from the information retrieval field (Cleverdon & Keen, 1966) for measuring the quality
of schema matching. Precision (P) and Recall (R) are computed as follows:

zx

x
P

 and

yx

x
R

where x is the number of correctly identified similar strings (i.e. true positives), z is the
number of strings found as similar, while actually they were not (i.e. false positives), and y is
the number of those similar strings, which the system missed to identify (i.e. false negatives).
As such the higher the precision value is and the higher the recall value is, the better is the
system.

Although precision and recall measures are widely used for a variety of evaluation purposes,
neither of them alone can accurately assess the match quality. For instance, recall can be
increased by returning all pairs as similar, but increasing the number of false positives and thus
decreasing the precision. Therefore, a measure combining precision and recall is better suited
for accuracy evaluation. F-measure (Rijsbergen, 1979) is one such measure, combining recall
and precision using the following formula. As such the higher the f-measure value is, the
better is the system.

RP

F
11

2

Another such measure, called Overall, is proposed by (Melnik et al., 2002). It is different
from f-measure in that overall takes into account the amount of work needed to correct the
results, namely to add the relevant needed matches that have not been discovered (false
negatives) and to remove those matchers, which are incorrect but have been extracted by the
matcher (false positives). Overall is always lower than f-measure, and if the precision is lower
than 0.5, the result for overall becomes negative (Melnik et al., 2002) (Do et al., 2002).
Overall, represented by O, and also called as accuracy, is defined by the following formula. As
such the higher the overall value is, the better is the system.

)
1

2(*
P

RO

As an example, assume that an automatic schema matching system correctly identifies 10
matches out of 25 real matches that can be identified manually by the user, and incorrectly
identifies 4 other matches. In this case, the number of true positives (x) is 10, false negatives
(y) is 25-10 = 15, and false positives (z) is 4. As a result, the system has the following
precision, recall, f-measure, and overall values:

71.0
410

10

P 40.0

1510

10

R

51.0
40.0/171.0/1

2

F 24.0))71.0/1(2(*40.0 O

110 Chapter 6: Empirical validation of SASMINT

6.2.2 Quality Measures for Schema Integration

Quality measures used for the assessment of schema integration in SASMINT benefit from the
ideas presented in (Batini et al., 1986). Schema merging and restructuring processes described
in (Batini et al., 1986) aim at improving the resulting schema with respect to the following
three qualities:

1) Completeness: Merged or integrated schema must cover concepts of all participating
schemas.

2) Minimality: If the same concept is represented in more than one participating
schemas, then the integrated schema must contain only a single representation of this
concept. In other words, redundancies must be eliminated.

3) Understandability: Resulting integrated schema must be easily understandable by the
user.

In evaluation of SASMINT, we are interested in quantitative objective measures. For this
reason, we only consider measuring the completeness and minimality which will produce
objective results. The understandability of SASMINT, while not measured rigorously, was
satisfactory for the empirical tests we performed in the lab. The two measures of completeness
and minimality applied to SASMINT are inspired by (Batini et al., 1986). However, within
each of these measures, we have introduced two other measures for key completeness and key
minimality to validate the generated primary and foreign keys when measuring the quality of
SASMINT’s schema integration approach. We belive that these added measures, which are
missing from Batini’s approach, are required for proper validation of schema integration.
These measures are explained below:

 Completeness Measure: In the resulting integrated schema, all concepts (i.e. tables
and columns in the relational schema) of both the donor and recipient schemas must
be covered. Completeness measure determines how much this goal has been
achieved.
Therefore, },..,{ 21 ki cccc , where ic is a concept in the donor or recipient schema

and k is the total number of concepts in that donor or recipient schemas,
},..,{ 21 lj cccc where jc is a concept of the integrated schema and ij cc and l

is the number of concepts in the integrated schema. Taking this definition as the
base, completeness of an integrated schema in SASMINT is measured using the
following formula:

total

complete
sscompletene n

n
m ,

where completen is the number of concepts of recipient and donor schemas that are

covered in the integrated schema and totaln (also l above) is the total number of

concepts involved in donor and recipient schemas.

Schema integration in SASMINT also handles primary and foreign keys, which will
be referred to as “keys” from this point onward. Therefore, another completeness
measure, called key completeness, is also defined for SASMINT to measure how
many of the keys of the recipient and donor schemas are covered in the integrated

6.2 Quality Measures Used for Evaluating SASMINT 111

schema. Given that ycompleteKen is the number of keys of recipient and donor

schemas that are covered in the integrated schema and totalKeyn is the total number

of keys involved in donor and recipient schemas, the following formula measures the
key completeness, ssKeycompletenem , of an integrated schema in SASMINT:

totalKey

ycompleteKe
ssKeycompletene n

n
m

 Minimality Measure: The amount of redundancy in the resulting integrated schema
must be minimal to the extent possible. Each joint and/or related concept of the
donor and recipient schemas shall appear only once in the integrated schema.
Namely, if the donor and recipient schemas have common concepts, only one of
them must be represented in the integrated schema. Minimality measure identifies
how many redundant concepts exist in the integrated schema.
Suppose that },..,{ 21 ki cccc , where ic is a concept of the donor schema and k its

total number of concepts, and },..,{ 21 lj cccc , where jc is a concept of the

recipient schema and l its total number of concepts. If },..,{, 21 myx ccccc , where

xc and yc are concepts of the integrated schema and m its total number of

concepts, such that yxji cccc , then either xc or yc is redundant. Following

formula is used to calculate the amount of redundancy in an integrated schema:

total

redundant
redundancy n

n
m ,

where redundantn is the number of redundant concepts in the integrated schema and

totaln is the total number of concepts introduced in the donor and recipient

schemas.
Based on this formula, we derive the following formula to measure the minimality
of the SASMINT integrated schema.

total

redundant
minimality n

n
m -1

Similar to the case of completeness measure, another minimality measure, called
key minimality, is also defined for SASMINT to determine if the resulting
integrated schema is minimal considering its primary and foreign keys. Key
minimality, Keyminimalitym , is measured using the following formula:

totalKey

eyredundantK
Keyminimality n

n
m -1

112 Chapter 6: Empirical validation of SASMINT

where the eyredundantKn is the number of redundant primary and foreign keys in the

integrated schema and the totalKeyn is the total number of such keys introduced in

the donor and recipient schemas.

6.3 Test Schemas

We have carried out the experimental evaluation of SASMINT using six pairs (donor and
recipient) of “test schemas”, characteristics of each of which are shown in Table 6.1 and the
six pairs of schemas are represented in Appendix D. As for the evaluation of schema
matching, each pair was matched by the SASMINT, and then the results were compared
against the correct matches shown in Table 6.2. We carried out the same tests for schema
matching in COMA++ (a leading competitor) and compared its results with the results of
SASMINT. On the other hand, for evaluation of schema integration, three pairs of schemas
all from the university domain (in Table 6.1) were integrated. Moreover, in order to evaluate
the Sampler component, first five schema pairs were used in the Sampler tests. Details of these
tests are provided in the next sections.

Table 6.1. Characteristics of Test Schemas

Test
Schema
Pair #

Short
Name Domain

Donor/

Recipient
Number of

Tables
Number of
columns

Recipient 5 27
1 PO

Purchase
Order Donor 5 25

Recipient 6 21
2 Hotel Hotel

Donor 5 14

Recipient 9 21
3 SDB Biology

Donor 9 22

Recipient 9 30
4 Univ1 University

Donor 5 22

Recipient 9 38
5 Univ2 University

Donor 7 27

Recipient 5 17
6 Univ3

University

 Donor 3 10

We used schemas from four different domains: Schema Pair#1 contains two purchase order

schemas that we generated ourselves. Schema Pair#2 consists of two hotel schemas. We
modified the hotel schemas used for MAPONTO (An et al., 2006) evaluation tests. Similarly,
in Schema Pair#3, we used a modified version of MAPONTO SDB schemas from the biology
domain. In Schema Pair#4, we used MAPONTO schemas from the university domain, again
after modifying them. Schema Pair#5 consists of university schemas that we generated. As
Schema Pair#6, we modified the test schemas of Similarity Flooding (Melnik et al., 2002)
from the university domain. We intentionally selected three pairs from the university domain
in order to also use them for the schema integration evaluation. Therefore, the schema
integration tests integrated six schemas from the university domain.

The correct matches represented in Table 6.2 are matches that are generated manually by
ourselves. These constitute the source for verification of correctness of automatic matchings.

6.3 Test Schemas 113

Table 6.2. Correct Matches between Schema Pairs

Schema
Pair#

Type Correct Matches

table-table purchase_order=po, customer=buyer, product=item

1 Colum-
column

purchase_order:custNo=po:buyer_no,
purchase_order:deliverDate=po:deliver_date,
purchase_order:deliverCity=po:deliver_city,
purchase_order:deliverStreet=po:deliver_street,
purchase_order:deliverZip=po:deliver_zip,
purchase_order:purchaseOrderNo=po:po_no, customer:street=buyer:buyer_street,
customer:name=buyer:f_name, customer:telephone=buyer:phone,
customer:city=buyer:buyer_city, customer:custNo=buyer:buyer_No,
customer:name=buyer:l_name, customer:zip=buyer:buyer_zip,
product:stock=item:stock, product:price=item:cost,
product:productNo=item:item:item_no, product:productName=item:item_name

table-table
one_room=room, suite=room, town_house=room,
num_beds=num_beds_attribute, on_floor=on_floor_attribute,
smoking_preference=smoking_attribute

2

column-
column

one_room:roomNum=room:roomNum,
one_room:hasNumBedsAttribID=room:numBedsAttribID,
one_room:hasOnFloorAttribID=room:onFloorAttribID,
one_room:hasSmokingPreferenceAttribID=room:smokingOrNoAttribID,
one_room:oneRoomID=room:roomID, suite:suiteID=room:roomID,
suite:roomNum= room:roomNum,
suite:hasNumBedsAttribID=room:numBedsAttribID,
suite:hasOnFloorAttribID=room.onFloorAttribID,
suite:hasSmokingPreferenceAttribID=room.smokingOrNoAttribID,
town_house:townHouseID=room.roomID,
townhouse:roomNum=room.roomNum,
town_house:hasNumBedsAttribID=room:numBedsAttribID,
town_house:hasOnFloorAttribID=room:onFloorAttribID,
town_house:hasSmokingPreferenceAttribID=room:smokingOrNoAttribID,
num_beds:numBedsID=num_beds_attribute:numBedsAttributeID,
num_beds:numBedsAttrib=num_beds_attribute:numBedsAttrib,
on_floor:onFloorID=on_floor_attribute:onFloorAttributeID,
on_floor:onFloorAttrib=on_floor_attribute:onFloorAttrib,
smoking_preference:smokingPreferenceID=smoking_attribute:smokingAttributeI
D,
smoking_preference:smokingPreferenceAttrib=smoking_attribute:smokingAttrib

table-table

diagnoses=diagnoses, donor=donor, sample=sample,
family_history=family_history, life_style_factors=life_style_factors,
lab_test=lab_test, medications=medications, animal_donor=donor,
human_donor=donor

3

column-
column

animal_donor:strain=donor:strain, diagnoses:diagID=diagnoses:diagID,
donor:gender=donor:gender, donor:id=donor:id, donor:species=donor:species,
family_history:histID=family_history:histID, human_donor:dob=donor:dob,
lab_test:testID=lab_test:testID,
life_style_factors:factID=life_style_factors:factID,
medications:medicID=medications:medicID, sample:name=sample:name,
animal_donor:species=donor:species, animal_donor:animalID=donor:id,
human_donor:gender=donor:gender, human_donor:humanID=donor:id

4 table-table course=course, student=student, faculty_member=academic_staff

114 Chapter 6: Empirical validation of SASMINT

Schema
Pair#

Type Correct Matches

column-
table

faculty_member:researchInterest=areasOfInterest

Column-
column

faculty_member:email=academic_staff:email,
faculty_member:faculty_member_id=academic_staff:academic_staff_id,
faculty_member:personName=academic_staff:name,
course:number=course:courseNumber, course:courseTitle=course:courseTitle,
course:instructor=course:instructor, course:prerequisites=course:prerequisite,
course:description=course:description,
student:studentName=student:student_name, student:email=student:email,
student:advisor=student:supervisor, student:student_id=student:student_id,

table-table

university=acedemic_institution, program=program,
academic_programme=academic_programme, department=department,
course=academic_course,
academic_staff_member=university_academic_instructor

5

column-
column

university:university_ID= academic_institution:academic_institution_ID,
university:UNIVERSITY_NAME=
academic_institution:ACADEMIC_INSTITUTION_NAME,
university:UNIVERSITY_WEBSITE=academic_institution:ACADEMIC_INSTI
TUTION_WEBSITE, program:program_ID= program:program_ID,
program:PROGRAM_NAME=program:PROGRAM_NAME,
program:PROGRAM_DESC=program:PROGRAM_DESC,
academic_programme:academic_programme_ID=academic_programme:
academic_programme_ID,
academic_programme:ACADEMIC_YEAR=academic_programme:YEAR,
academic_programme:ACADEMIC_SEMESTER=academic_programme:SEME
STER, academic_programme:PROGRAM_REF=
academic_programme:PROGRAM_REF,
department:department_ID=department:department_ID,
department:DEPT_NAME=department:DEPT_NAME,
course:course_ID=academic_course:academic_course_ID,
course:COURSE_NAME=academic_course:ACADEMIC_COURSE_NAME,
course:COURSE_CREDITS =
academic_course:ACADEMIC_COURSE_CREDITS,
course:COURSE_PROVIDER=academic_course:ACADEMIC_COURSE_PRO
VIDER, course:COURSE_INSTRUCTOR=
academic_course:ACADEMIC_COURSE_INSTRUCTOR,
academic_staff_member:academic_staff_member_ID =
university_academic_instructor:university_academic_instructor_ID,
academic_staff_member:STAFF_NAME=university_academic_instructor:NAME
, academic_staff_member:STAFF_EMAIL =
university_academic_instructor:ELECTRONIC_MAIL,
academic_staff_member:STAFF_PHONE=university_academic_instructor.TELE
PHONE

table-table professor=professor, student=student, workson=workson

table-
column

address=professor:address

6

column-
column

professor:Id=professor:Id, professor:Name=professor:Name,
professor:Sal=professor:Salary, student:Name=student:Name,
student:GPA=student:GradePointAverage, student:Yr=student:Year,
workson:Name=workson:StudentName, workson:Proj=workson:Project

6.4 Setup for the Experimental Evaluation 115

6.4 Setup for the Experimental Evaluation

We compared the “schema matching” component of SASMINT against one of the state of the
art system, COMA++ (Aumueller et al., 2005). We selected COMA++ research prototype,
because it is the most complete schema matching tool so far developed, consisting of a library
of variety of matching algorithms and a sophisticated GUI. SASMINT and COMA++ are
comparable, since they both support matching of relational schemas and aim at providing
similar functionalities. Of course not all algorithms or metrics that these two systems apply are
the same. Furthermore, how they combine the results of different algorithms is not the same
either. Output of the schema matching is given in the range [0-1] in both systems. However, it
is not clear in COMA++, in what format the results of schema matching are stored internally.
In other words, COMA+++ has an internal repository where the results are stored, but how the
results are represented there is not clear.

Before starting the evaluation tasks, we inserted a number of abbreviations and their long
forms into the abbreviation lists of both systems. One important difference between
SASMINT and COMA++ is that SASMINT uses WordNet for semantic matching, whereas
COMA++ requires the user to add all needed synonyms in the schema domains manually.
Since WordNet might not contain all semantic relationships among the concepts of schemas,
in order to make a fair comparison, we did not make any addition to COMA++'s default
synonyms list, to make a fair comparison. Furthermore, COMA++ uses only the synonymy
relationship; on the other hand, SASMINT also makes use of the IS-A relationships as well as
gloss overlaps, which are available in the WordNet dictionary.

Representation of schemas through the GUI is also different for the two systems. COMA++
does not explicitly show foreign keys. Instead of showing the foreign key column, it displays
the table that is pointed by the foreign key. However, in some cases this functionality of
COMA++ does not work as expected.

Several different metrics or algorithms are considered and combined in both systems, in the
manner that is explained below:

 For SASMINT: We selected the default strategy of SASMINT for combining the
algorithms, which is the weighted sum of them with equal weights applied to each
algorithm in each group of syntactic, semantic, and structure matching. Although not
the default approach, rather assigning appropriate weights for each match task would
give better results, we decided to use SASMINT’s default strategy in order to make a
fair comparison with COMA++. In other words, in real practice, the results of
SASMINT would be better than what they are in these tests. Sampler could help the
user to identify appropriate weights for the linguistic matching algorithms. The
reported evaluation results in Section 6.5 and Appendix E are without applying the
Sampler component of SASMINT. Results of experiments showing how Sampler can
accomplish this improvement of results accuracy, i.e. how these weights affect the
match results, are addressed in Section 6.7.

 For COMA++: We used the default matching strategy of COMA++, which is called
COMA. The COMA matcher combines the name, path, leaves, parents, and siblings
matchers, by averaging them. In their tests, this combination was the winner and that
is why we selected it.

We used the default threshold, which is 0.5, in the experiments. As for the selection of
match results, we used two different approaches that we call as “select all above threshold”
and “select max above threshold”, as detailed below. Please note that while the results of

116 Chapter 6: Empirical validation of SASMINT

“select all above threshold” are presented in Section 6.5, the results of “select max above
threshold” are presented in Appendix E.

1) Select All above Threshold: Selecting all matched pairs that have the similarity
above a certain threshold value.

2) Select Max above Threshold: Selecting the pairs with the maximum similarity.
In other words, whenever there is more than one concept matching a single
concept in a schema, the one with the highest similarity is selected as the
matching candidate. SASMINT and COMA++ use different strategies for
selecting the maximal similar pairs. SASMINT's approach is explained in
Chapter 4. COMA++'s default strategy works as follows: When there is more
than one match to the same concept, the one with the highest similarity is
selected if the difference between the similarity values is more than 0.0080.

We also carried out tests in order to validate the Sampler component that helps to identify
appropriate weights for each linguistic matching algorithm in the schema matching process.
The results of these tests are presented in Section 6.6. The first five schema pairs (Schema
Pairs #1, 2, 3, 4, and 5) were selected as the test schemas when evaluating Sampler.

Although we compared SASMINT with COMA++ for the purpose of schema matching, we
could not carry out functionality comparison for schema integration between them. COMA++
provides a simple schema merging functionality, but it is limited and not comparable to
SASMINT’s schema integration. To the best of our knowledge, there is no other system
supporting both schema matching and schema integration. Therefore, we evaluated the
integration component of SASMINT alone. For this purpose, we used the six schemas from
the university domain, introduced as Schema Pair#4, 5, and 6. Since the aim of schema
integration is integrating two schemas at a time, based on the correspondences between them,
we corrected the wrong or missing matches after the schema matching step and then continued
with the integration process.

6.5 Evaluation of Schema Matching – For “select all above
threshold” strategy

In the first experiment that we performed to evaluate SASMINT and compare it with
COMA++, we used the “select all above threshold” strategy. We present the results of this
experiment in Figures 6.1 through 6.8. Correspondingly, we provide detailed explanations
about the four comparison results of precision, recall, f-measure, and overall in the following
paragraphs 6.5.1 to 6.5.4. Although the results gained from applying this strategy are worse
than the “select max above threshold” strategy, this strategy is important when there is a need
for suggesting multiple candidates for each schema element and leaving it to the user to
identify the correct match among the alternatives. Namely, instead of proposing only one
matched candidate for each schema element, which could be incorrect, the system suggests all
possible match candidates, which makes it easier for the user to determine the final match
result.

6.5 Evaluation of Schema Matching – For “select all above threshold” strategy 117

6.5.1 Evaluation of Schema Matching Using Precision

Precision shows how correct the system works. Precision values for COMA++ and SASMINT
are shown in Figure 6.1 and Figure 6.2 respectively. Since in the “select all above threshold”
strategy, all match pairs with similarity above the threshold are selected, the number of false
positives was high for some schema pairs. Especially for schemas that consisted element
names with more than one token, precision was low. In our test cases, these schemas are the
purchase order schemas (Schema Pair#1), university schemas of Maponto (Schema Pair#4),
and the university schema that we generated ourselves (Schema Pair#5). In these cases, the
low precision was due to the fact that for element names containing similar tokens, although
the whole names were different, the final similarity result was usually above the threshold.
Furthermore, the systems interpreted and treated all tokens equally, while some tokens had
none or little effect in the meaning. For example, “deliverDate” and “deliver_zip” were
identified as similar because both names contained the token “deliver”. However, the first one
is the name of the column that contains the date of delivery, whereas, the second one is the
name of the column that contains the zip code information. In such situations, SASMINT and
COMA++ both found similarity values around 0.5. These cases could have been prevented by
raising the threshold value, but then some correct matches could have been also missed. When
precision was considered, SASMINT achieved almost 9 times better than COMA++ for the
Hotel schemas test case. For other schemas, except for Schema Pair#6 from the university
domain, for which COMA++ achieved just a little bit better (around 1.05 times), SASMINT
achieved on average 2 times better than COMA++. Precision of SASMINT was on the average
0.58, whereas that of COMA++ was 0.26. This result was because of the high number of false
positives identified by COMA++. In other words, COMA++ identified high number of
irrelevant matches, which can be a bigger problem when schemas being compared are large.

6.5.2 Evaluation of Schema Matching Using Recall

Recall shows how well the system finds all true matches and thus it indicates the completeness
of the applied system. The average recall for COMA++ was 0.92, whereas for SASMINT it
was 0.85. Figures 6.3 and 6.4 show the recall values for COMA++ and SASMINT

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Precision

Fig. 6.1. Precision values for COMA++ - select
all above threshold strategy

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Precision

Fig. 6.2. Precision values for SASMINT -
select all above threshold strategy

118 Chapter 6: Empirical validation of SASMINT

respectively. For UNIV-3 schemas, they both had the recall value of 1.0 and for SDB schemas,
SASMINT was 1.14 times better than COMA++. For the remaining schemas, which were
purchase order, hotel, UNIV-1, and UNIV-2, COMA++ achieved a bit (on the average 1.17
times) higher than SASMINT. However, it should be noted that this happened at the expense
of very low precision values for COMA++. That means, in order to achieve just a bit higher
recall values, COMA++ sacrificed the precision, resulting in very low precision values for
these test cases, as indicated in Figures 6.1 and 6.2. This is due to the fact that there is an
inverse relationship between precision and recall. Since COMA++ tries to find all possible
matches, it also identifies a large number of false positive matches, which decrease the
precision. SASMINT missed some of the correct matches, mostly due to low semantic
similarity values that it could compute for some name pairs, such as (product, item) and (suite,
room). Especially the gloss-based measure was not as successful as expected. Since the last
version of WordNet (3.0) is not available yet for the Windows operating system, we had to use
the previous version (2.0) of WordNet. We think that when the new version is ready, WordNet
will provide more types of semantic relationships, and therefore the semantic similarity values
for both path-based and gloss-based measures of SASMINT will be much more enhanced.

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Recall

Fig. 6.3. Recall values for COMA++ - select
all above threshold strategy

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Recall

Fig. 6.4. Recall values for SASMINT - select

all above threshold strategy

6.5.3 Evaluation of Schema Matching Using F-Measure

As stated before, f-measure is used to combine the results of precision and recall. In other
words, the higher the f-measure value, the better is the quality of the system. Most evaluation
experiments in fact use f-measure as the measure to compare the systems, and not the
individual precision and recall values. When f-measure is considered, the difference between
SASMINT and COMA++ becomes clearer. This is due to the fact that f-measure considers
both the precision and recall, and although recall values for COMA++ were a bit higher than
those for SASMINT, precision of SASMINT was much better than that of COMA++, which
results in higher f-measure values for SASMINT. As it is clear from the Figures 6.5 and 6.6, f-
measure values for SASMINT were on average 2.2 times higher than those for COMA++ for
all schema pairs, except the last schema pair (UNIV-3), for which they almost achieved the
same. What can be inferred from these results is that the quality of results achieved by the
SASMINT system is much higher than COMA++, considering the f-measure evaluation.

6.6 Evaluation of Schema Matching with Sampler 119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

F-Measure

Fig. 6.5. F-measure values for COMA++ -
select all above threshold strategy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

F-Measure

Fig. 6.6. F-measure values for SASMINT -
select all above threshold strategy

6.5.4 Evaluation of Schema Matching Using Overall

Similar to f-measure, overall also represents a combination of precision and recall. Its value is
smaller than both Precision and Recall and it can even have negative values, if the number of
the false positives is more than the number of true positives. The overall indicator measures
the overall accuracy of the system. It aims to identify how much manual effort is required in
order to identify all correct matches. Overall values for SASMINT were consistently much
higher than those for COMA++. In some cases, for example the hotel schemas, SASMINT
achieved overall value around 0.7. In the case of UNIV-2 and purchase order schemas, on the
other hand, it did not do very well because of the high number of false positive matches that
SASMINT identified for these schemas. Since the number of false positive matches for
COMA++ was very high, it had very low overall values, which means a lot of manual
intervention by user is required in order to remove these wrongly identified matches. This
result is very clear especially for the first five schema pairs (purchase order, hotel, SDB, and
the UNIV-1, and UNIV-2 schemas). Evaluation results for COMA++ and SASMINT, based
on the overall values are shown in Figures 6.7 and 6.8 respectively. Since the aim of such
systems is to achieve the schema matching as automatically as possible, the amount of
required human intervention is an important measure for comparing these systems. The lesser
manual effort is required, the better the system is.

6.6 Evaluation of Schema Matching with Sampler

In order to evaluate the Sampler component, we carried out tests using the first five schema
pairs introduced in Table 6.1. As explained before, Sampler is used to compute the weights
only for linguistic matching algorithms. In test cases where the element names from two
schemas were highly similar, we set the threshold to a value higher than 0.5. In other cases, we
used the default threshold value, which was 0.5.
After setting the threshold value, we performed the tests using both equal weights for the

linguistic matching algorithms and the weights suggested by Sampler for these algorithms. We

120 Chapter 6: Empirical validation of SASMINT

used the “select max above threshold” strategy for the Sampler tests. Furthermore, we did not
use the last schema pair (schema pair#6) in the tests, because for this pair, precision, recall, f-
measure, and overall values were already identified as 1 in the tests using the “select max
above threshold” strategy, when equal weights were used. Details of tests with the Sampler
component are explained below.

6.6.1 Test with Purchase Order Schemas-PO (Schema Pair#1)

In this test, we used the default threshold value, which was 0.5. We provided the similar pairs
shown in Table 6.3 to Sampler, which computed the weights for semantic similarity
algorithms shown in the same table. Results for precision, recall, f-measure, and overall were
already high before the Sampler component was used. With the use of Sampler, (product,
item) pair was correctly identified as similar, which was false negative before. As the result,
Sampler helped to increase the values of recall, f-measure, and overall, as shown in Figure 6.9.
Precision was 1 both before and after the use of the Sampler component.

Table 6.3. Similar Pairs and Computed weights for Schema Pair#1

Similar Pairs

Semantically Similar Pairs:
customer - buyer
product – item

Computed Weights

Wu and Palmer: 1.0
Gloss: 0.0

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

‐7

‐6

‐5

‐4

‐3

‐2

‐1

0

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Overall

 Fig. 6.7. Overall values for COMA++ - select
all above threshold strategy

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Overall

Fig. 6.8. Overall values for SASMINT -
select all above threshold strategy

6.6 Evaluation of Schema Matching with Sampler 121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F‐measure Overall

Without Sampler

With Sampler

Fig. 6.9. Results of the Test with Schema Pair#1

6.6.2 Test with Hotel Schemas-Hotel (Schema Pair#2)

In this test, we set the threshold value as 0.7. We provided the similar pairs shown in Table 6.4
to Sampler, which computed the weights for syntactic similarity algorithms shown again in
Table 6.4. When SASMINT used these weights for matching the hotel schemas, results for
recall, f-measure, and overall were on the average 1.75 times (57%) better than the case
without the use of Sampler. This result can be seen in Figure 6.10.

Table 6.4. Similar Pairs and Computed weights for Schema Pair#2

Similar Pairs

Syntactically Similar Pairs:
smoking_Preference_Attrib - smoking_Attrib
smoking_Preference_ID - smoking_Attribute_ID
hasSmokingPreferenceAttribID - smokingOrNoAttribID
on_floor - on_Floor_attribute
numBedsID – numBedsAttributeID

Computed Weights

Levenshtein: 0.0
Jaccard: 0.11
LCS: 0.20
Monge-Elkan: 0.22
Jaro: 0.22
TF*IDF: 0.25

122 Chapter 6: Empirical validation of SASMINT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F‐measure Overall

Without Sampler

With Sampler

Fig. 6.10. Results of the Test with Schema Pair#2

6.6.3 Test with Biology Schemas-SDB (Schema Pair#3)

Two schemas (donor and recipient) in Schema Pair#3 use the same names for most of their
schema elements. We set the threshold value to 0.9 and provided the two similar pairs of
(animal_donor-donor) and (human_donor-donor). Sampler computed 1.0 for the weight of
Monge-Elkan distance metric and 0.0 for other syntactic similarity metrics, as shown in Table
6.5. When we ran SASMINT with these weights, the results were as shown in Figure 6.11.
There was a slight decrease in Precision when Sampler was used. This was due the two false
positives (donor, donor_visit) and (donorID, donorVisitID). However, recall, f-measure, and
overall were all improved.

Table 6.5. Similar Pairs and Computed weights for Schema Pair#3

Similar Pairs

Syntactically Similar Pairs:
animal_donor - donor
human_donor – donor

Computed Weights

Levenshtein: 0.0
Jaccard: 0.0
LCS: 0.0
Jaro: 0.0
TF*IDF: 0.0
Monge-Elkan: 1.0

6.6 Evaluation of Schema Matching with Sampler 123

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F‐measure Overall

Without Sampler

With Sampler

Fig. 6.11. Results of the Test with Schema Pair#3

6.6.4 Test with University Schemas-UNIV1 (Schema Pair#4)

For the test with these schema pairs, we set the threshold value as 0.7. We provided
syntactically similar pairs, shown in Table 6.6. As shown in Figure 6.12, precision was slightly
better before, whereas recall, f-measure, and overall values were higher with the use of
Sampler. Since we provided Sampler (personName, name) as the syntactically similar pair, the
personName column of the faculty_member table was successfully matched to the name
column of the academic_staff table. However, at the same time, it incorrectly matched the
personName column of the faculty_member and the name column of the admin_staff table.
This in turn, increased the number of false positives, and thus slightly decreased the precision.
However, since Sampler helped to identify more number of similar pairs, recall was much
better than the case without the Sampler. As the result, f-measure and overall were better with
the use of Sampler, as shown in Figure 6.12.

Table 6.6. Similar Pairs and Computed weights for Schema Pair#4

Similar Pairs

Syntactically Similar Pairs:
number - courseNumber
personName - name
researchInterest – areasOfInterest

Computed Weights

Levenshtein: 0.0
Jaccard: 0.0
Jaro: 0.15
LCS: 0.15
TF*IDF: 0.3
Monge-Elkan: 0.4

124 Chapter 6: Empirical validation of SASMINT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F‐measure Overall

Without Sampler

With Sampler

Fig. 6.12. Results of the Test with Schema Pair#4

6.6.5 Test with University Schemas-UNIV2 (Schema Pair#5)

In this test, we set the threshold value to 0.7 and provided the pairs shown in Table 6.7 to
Sampler. Weights computed by Sampler for syntactic similarity algorithms are presented in
Table 6.7. Similar to the case addressed in Section 6.7.4, with the use of Sampler the precision
decreased because some new false positive pairs were introduced. For example, the
university_name column of the university table and the name column of the university_student
table were identified as similar, which was incorrect. However, since the value of recall was
much higher when Sampler was used, f-measure and overall increased, as presented in Figure
6.13 also.

Table 6.7. Similar Pairs and Computed weights for Schema Pair#5

Similar Pairs

Syntactically Similar Pairs:
academic_semester - semester
course_id - academic_course_id
course_instructor - academic_course_instructor
staff_name - name
course - academic_course

Computed Weights

Levenshtein: 0.0
Jaccard: 0.0
Jaro: 0.0
LCS: 0.18
Monge-Elkan: 0.35
TF*IDF: 0.47

6.7 Evaluation of Schema Integration Performance 125

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F‐measure Overall

Without Sampler

With Sampler

Fig. 6.13. Results of the Test with Schema Pair#5

6.7 Evaluation of Schema Integration Performance

In order to evaluate the schema integration component of SASMINT, we used schema pairs
from the university domain. The three university schema pairs introduced in Table 6.1 which
are Schema Pairs#4, 5, and 6 are used for this purpose. As addressed further below, please
note that the Appendix F provides details of the steps of evaluation.

Figures 6.14 through 6.16 show the elements of these pairs. SASMINT integrates two
schemas at a time, therefore, incrementally generating the final integrated schema. The steps
we followed for integrating these six schemas are explained below. We have selected to start
with larger schemas first, namely Schema Pair#5.

First Schema
academic_programme {academic_programme_ID,
ACADEMIC_YEAR, ACADEMIC_SEMESTER,PROGRAM_REF}

academic_staff_member {academic_staff_member_ID,
STAFF_NAME, STAFF_EMAIL, STAFF_PHONE, STAFF_FAX,
STAFF_IDENTIFICATION_NUM, STAFF_BIRTHDATE}

campus {campus_ID, CAMPUS_NAME, CAMPUS_LOCATION,
UNVCAMPUS}

course {course_ID, COURSE_NAME, COURSE_CREDITS,
COURSE_PROVIDER, COURSE_INSTRUCTOR}

department {department_ID, DEPT_NAME, FACULTY_REF}

faculty {faculty_ID, FACULTY_NAME, DEAN_REF,
UNIVERSITY_REF}

program {program_ID, PROGRAM_NAME, PROGRAM_DESC}

registration {registration_ID,
REGISTRATION_ACADEMICSTAFFMEMBER_REF,
REGISTRATION_COURSE_REF,
REGISTRATION_ACADEMICPROGRAMME_REF}

university {university_ID, UNIVERSITY_NAME,
UNIVERSITY_WEBSITE,
UNIVERSITY_ESTABLISHMENT_DATE }

Second Schema

academic_course {academic_course_ID,
ACADEMIC_COURSE_NAME,
ACADEMIC_COURSE_CREDITS,
ACADEMIC_COURSE_PROVIDER,
ACADEMIC_COURSE_INSTRUCTOR}

academic_institution {academic_institution_ID,
ACADEMIC_INSTITUTION_NAME,
ACADEMIC_INSTITUTION_WEBSITE}

academic_programme {academic_programme_ID,
YEAR, SEMESTER, PROGRAM_REF }

department {department_ID, DEPT_NAME,
UNIVERSITY_REF}

program {program_ID, PROGRAM_NAME,
PROGRAM_DESC}

university_academic_instructor
{university_academic_instructor_ID,
NAME, ELECTRONIC_MAIL, OFFICE_ADDRESS,
TELEPHONE}

university_student {university_student_ID, NAME,
ELECTRONIC_MAIL, TELEPHONE}

Fig. 6.14. Schema Pair#5 (UNIV-2)

126 Chapter 6: Empirical validation of SASMINT

First Schema

address {Id, Street, City, PostalCode}

payrate {Rank, HrRate}

professor {Id, Name, Sal, addr}

student {Name, GPA, Yr}

workson {Name, Proj, Hrs, ProjRank}

Second Schema

professor {Id, Name, Salary, Address}

student {Name, GradePointAverage, Year}

workson {StudentName, Project, Expenses}

Fig. 6.15. Schema Pair#6 (UNIV-3)

First Schema

course {number, courseTitle, description,
prerequisites, instructor}

faculty_member {faculty_member_id, personName,
personTitle, homepage, researchInterest, email}

paper {paperTitle, description, publicationYear}

paper_author {paperTitle, author}

person_project {person, projectTitle}

project {projectTitle, description, link}

seminar {about, speaker, date, location}

student {student_id, studentName, advisor, email}
year {yr}

Second Schema

academic_staff {academic_staff_id, name, office,
email, phone}

admin_staff {admin_staff_id, name, office, email,
phone}

areas_of_interest {interest_id, area}

course {courseNumber, courseTitle, instructor, area,
description, prerequisite}

student {student_id, student_name, email,
supervisor}

Fig. 6.16. Schema Pair#4 (UNIV-1)

Step-1: First Schema of Schema Pair#5 + Second Schema of Schema Pair#5

At the first step of schema integration test, SASMINT system has integrated two schemas of
the Schema Pair#5, shown in Figure 6.14, resulting in the integrated schema, elements of
which are shown in Figure 6.17. During the integration process, one redundancy was
automatically generated, which was the “UNIVERSITY_REF” column of the “department”
table. Therefore, the result of minimality measure was 0.99, which is a substantial automated
achievement. When key minimality is considered, one redundant foreign key relationship was
defined on the same “UNIVERSITY_REF” column, which resulted in a key minimality of
97%. Although the resulting integrated schema had one redundant element and foreign key, it
covered all the elements and keys of two source schemas. Therefore, the result is considered as
100% complete and 100% key complete, which is again a substantial automated achievement.
Further details of this step are provided in Appendix F.

Step-2: Integrated Schema#1 + First Schema of Schema Pair#6

At this step, SASMINT integrated the Integrated Schema#1 and the first schema of the
Schema Pair#6, generating the Integrated Schema#2. Figure 6.18 shows only newly added
tables and those tables that had changes in their columns. Due to the redundant
“UNIVERSITY_REF” column and the foreign key defined on it, the result of minimality
measure was 0.99 and the key minimality measure was 0.97. However, since all the concepts
and keys of the first three schemas integrated (first schema of the Schema Pair#5, second
schema of the Schema Pair#5, and first schema of the Schema Pair#6) were covered in the
integrated schema, completeness and key completeness were again 100%.

6.7 Evaluation of Schema Integration Performance 127

INTEGRATED_1:university {university_ID (PK), UNIVERSITY_NAME, UNIVERSITY_ESTABLISHMENT_DATE,
UNIVERSITY_WEBSITE}

INTEGRATED_1:program{program_ID (PK), PROGRAM_NAME, PROGRAM_DESC}

INTEGRATED_1:academic_programme{academic_programme_ID (PK), ACADEMIC_YEAR,
ACADEMIC_SEMESTER, PROGRAM_REF}

INTEGRATED_1:department{department_ID (PK), DEPT_NAME, UNIVERSITY_REF(FK), FACULTY_REF(FK)}

INTEGRATED_1:course{course_ID (PK), COURSE_NAME, COURSE_CREDITS, COURSE_PROVIDER (FK),
COURSE_INSTRUCTOR(FK)}

INTEGRATED_1:academic_staff_member{academic_staff_member_ID (PK), STAFF_NAME,
STAFF_IDENTIFICATION_NUM, STAFF_FAX, STAFF_BIRTHDATE, OFFICE_ADDRESS, STAFF_EMAIL, STAFF_PHONE}

INTEGRATED_1:campus{campus_ID (PK), CAMPUS_NAME, CAMPUS_LOCATION, UNVCAMPUS (FK)}

INTEGRATED_1:faculty{faculty_ID (PK), FACULTY_NAME, DEAN_REF(FK), UNIVERSITY_REF (FK)}

INTEGRATED_1:registration{registration_ID (PK), REGISTRATION_ACADEMICSTAFFMEMBER_REF(FK),
REGISTRATION_COURSE_REF(FK), REGISTRATION_ACADEMICPROGRAMME_REF(FK)}

INTEGRATED_1:university_student{university_student_ID (PK), NAME, ELECTRONIC_MAIL, TELEPHONE}

Fig. 6.17. Elements of Integrated Schema#1

INTEGRATED_2:payrate{Rank (PK), HrRate}

INTEGRATED_2:workson{Name, Proj, Hrs, ProjRank (FK)}

INTEGRATED_2:address{Id (PK), Street, City, PostalCode}

INTEGRATED_2:academic_staff_member{academic_staff_member_ID (PK), STAFF_NAME,
STAFF_IDENTIFICATION_NUM, STAFF_FAX, STAFF_BIRTHDATE, STAFF_EMAIL, STAFF_PHONE, Sal, addr(FK)}

INTEGRATED_2:university_student{university_student_ID (PK), NAME, ELECTRONIC_MAIL, TELEPHONE, GPA, Yr}

Fig. 6.18. New Elements of Integrated Schema#2

Step-3: Integrated Schema#2 + Second Schema of Schema Pair#6

At Step-3, SASMINT generated Integrated Schema#3, by integrating the Integrated Schema#2
and the second schema of the Schema Pair#6. The only change in the new integrated schema
was the addition of one new column, called “Expenses” to the “workson” table. Due to the
redundant “UNIVERSITY_REF” column and the foreign key defined on it, the resulting
schema was again 99% minimal and 97% key minimal. However, it was again 100% complete
considering both the concepts and keys.

Step-4: Integrated Schema#3 + First Schema of Schema Pair#4

In Step-4, SASMINT integrated the Integrated Schema#3 and the first schema of the Schema
Pair#4, resulting in the Integrated Schema#4. Figure 6.19 shows only the newly added tables
and those tables that had changes in their columns at this step. Minimality and key minimality
were 0.99 and 0.98 respectively, because of the redundant “UNIVERSITY_REF” column and
the foreign key. Considering the concepts, schema was 100% complete, but since three foreign
keys were missed, as explained in Appendix F, the key completeness was 0.95 after this step.

128 Chapter 6: Empirical validation of SASMINT

INTEGRATED_4:academic_staff_member{academic_staff_member_ID (PK), STAFF_NAME,
STAFF_IDENTIFICATION_NUM, STAFF_FAX, STAFF_BIRTHDATE, STAFF_EMAIL, STAFF_PHONE, Sal, addr(FK)
personTitle, homepage, researchInterest}

INTEGRATED_4:university_student{university_student_ID (PK), NAME, ELECTRONIC_MAIL, TELEPHONE, GPA, Yr,
advisor(FK)}

INTEGRATED_4:paper{paperTitle (PK), description, publicationYear(FK)}

INTEGRATED_4:paper_author{paperTitle(PK)(FK), author(PK)(FK) }

INTEGRATED_4:person_project{person (PK)(FK), projectTitle (PK)(FK)}

INTEGRATED_4:seminar{about (PK), speaker (FK), location, date}

INTEGRATED_4:year{yr (PK)}

INTEGRATED_4:project{projectTitle (PK), description, link}

INTEGRATED_4:workson{Name, Hrs, ProjRank, Expenses}

Fig. 6.19. New Elements of Integrated Schema#4

Step-5: Integrated Schema#4 + Second Schema of Schema Pair#4

In the final step of schema integration, SASMINT integrated the Integrated Schema#4 and the
second schema of the Schema Pair#4. Final integrated schema is called Integrated Schema#5.
Figure 6.20 shows the elements of the final integrated schema. This schema was 99% minimal
and 99% key minimal. Redundancy was again due to the “UNIVERSITY_REF” column and
the foreign key defined on it. Although all the concepts of six schemas integrated were
covered in the final schema, resulting in 100% completeness, two more foreign keys were

INTEGRATED_5:university {university_ID (PK), UNIVERSITY_NAME, UNIVERSITY_ESTABLISHMENT_DATE,
UNIVERSITY_WEBSITE}

INTEGRATED_5:program{program_ID (PK), PROGRAM_NAME, PROGRAM_DESC}

INTEGRATED_5:academic_programme{academic_programme_ID (PK), ACADEMIC_YEAR,
ACADEMIC_SEMESTER, PROGRAM_REF}

INTEGRATED_5:department{department_ID (PK), DEPT_NAME, UNIVERSITY_REF(FK), FACULTY_REF(FK)}

INTEGRATED_5:course{course_ID (PK), COURSE_NAME, COURSE_CREDITS, COURSE_PROVIDER (FK),
COURSE_INSTRUCTOR(FK), description, prerequisites, area}

INTEGRATED_5:campus{campus_ID (PK), CAMPUS_NAME, CAMPUS_LOCATION, UNVCAMPUS (FK)}

INTEGRATED_5:faculty{faculty_ID (PK), FACULTY_NAME, DEAN_REF(FK), UNIVERSITY_REF (FK)}

INTEGRATED_5:registration{registration_ID (PK), REGISTRATION_ACADEMICSTAFFMEMBER_REF(FK),
REGISTRATION_COURSE_REF(FK), REGISTRATION_ACADEMICPROGRAMME_REF(FK)}

INTEGRATED_5:payrate{Rank (PK), HrRate}

INTEGRATED_5:workson{Name, Hrs, ProjRank, Expenses}

INTEGRATED_5:address{Id (PK), Street, City, PostalCode}

INTEGRATED_5:academic_staff_member{academic_staff_member_ID (PK), STAFF_NAME, STAFF_IDENTIFICATION_NUM,
STAFF_FAX, STAFF_BIRTHDATE, STAFF_EMAIL, STAFF_PHONE, Sal, addr(FK) personTitle, homepage}

INTEGRATED_5:university_student{university_student_ID (PK), NAME, ELECTRONIC_MAIL, TELEPHONE, GPA, Yr,
advisor(FK)}
INTEGRATED_5:paper{paperTitle (PK), description, publicationYear(FK)}

INTEGRATED_5:paper_author{paperTitle (PK)(FK), author (PK)(FK) }

INTEGRATED_5:person_project{person (PK)(FK), projectTitle (PK)(FK)}

INTEGRATED_5:seminar{about (PK), speaker (FK), location, date}

INTEGRATED_5:year{yr (PK)}

INTEGRATED_5:project{projectTitle (PK), description, link}

INTEGRATED_5:admin_staff{admin_staff_id (PK), name, email, phone}

INTEGRATED_5:areas_of_interest{interest_id (PK), area (PK)}

Fig. 6.20. Elements of the Final Integrated Schema

6.8 Conclusions 129

missed in this step, in addition to the ones in the previous step. Therefore, the key
completeness was 0.93, as explained in detail in Appendix F.

6.8 Conclusions

This chapter presents the results of our evaluation of the SASMINT system. In this chapter,
first the state of the art in the schema matching evaluations is addressed, and then the quality
measures that were applied during our experiments are explained. After that, the set of six test
schemas that were used for evaluating the SASMINT system are introduced. Since there was
not any benchmark for relational schema matching systems, we generated our own test
schemas, a number of which were the same or modified versions of schemas from the
evaluations of similar matching systems in related research.

After the introductory part, the results of our experiments are presented in this chapter.
Schema matching in SASMINT was compared against one leading state of the art schema
matching system, the COMA++. A brief summary of this comparison based on the input, the
combination of matchers, the output, the persistence store, and the quality criteria is given
below:

 Input: SASMINT accepts relational schemas, bearing in mind that most data are still
stored in relational databases and corresponding schemas are represented as
relational DDLs. As stated in Chapter 7 about the Future Steps, it may be possible to
extend SASMINT to also support matching of XML Schema. The COMA++ accepts
relational schema, XML Schema, and OWL as input to its matching procedure. In
addition to the schemas to be matched, SASMINT uses a number of auxiliary inputs.
A file consisting of a number of well-known abbreviations is exploited. Users can
update (extend) this file with other abbreviations from the domain of schemas. As
the second auxiliary input, SASMINT uses the WordNet for identifying semantic
relationships between schema elements. Similar to SASMINT, COMA++ also
utilizes a user-modifiable list of abbreviations. On the other hand, in order to detect
synonymy relationships, COMA++ requires a user-provided list of synonyms. The
disadvantage of this approach is that users are required to continuously update this
list with pairs of synonyms from the domain of schemas.

 Combination of Matchers: SASMINT and COMA++ both provide a library of
matchers. SASMINT provides the possibility of user assigned weights to different
algorithms and a Sampler component, which helps the user to identify the
appropriate weight for each linguistic matching metric. On the other hand, COMA++
supports different alternatives for combining, aggregating, and selecting match
results from different metrics. But the user should decide and select the approaches
to be applied. This feature makes it difficult for an inexperienced user to identify the
best combination.

 Output: The output of a match system is a mapping, indicating which elements of the
recipient and donor schemas correspond to each other. Both SASMINT and
COMA++ represent these correspondences using a value between 0 and 1.
Furthermore, they both can support 1-to-1, 1-to-n, n-to-1, and m-to-n types of
matches.

130 Chapter 6: Empirical validation of SASMINT

 Persistence store for the results: For matching and integration of schemas,
SASMINT stores the results based on SDML. This allows the results to be used for
federated query processing and for decomposition of queries to be sent to different
local schemas, as well as for formal representation of the semi-automatically
generated integrated schema from the recipient and donor schemas. COMA++ has an
internal repository for the results, but users cannot see in which format results are
stored and it is not clear how to use these results outside of the system.

 Quality of Schema Matching: The quality of schema matching supported by
SASMINT and COMA++ was compared using their default settings for the
combination of different matchers. SASMINT's default approach for combining
linguistic and structure matching metrics calculates their weighted sum. However,
then the Linguistic metrics have a higher impact (0.7) than the structure ones (0.3),
on the final result. But in the evaluation between the two systems, each metric in
groups of the linguistic matching and structure matching was considered with equal
weight. Namely, in order to make a fair comparison with COMA++, we did not give
higher weights to the metrics that could be more appropriate for some schema types.
COMA matcher combines name, path, leaves, parents, and siblings matchers by
averaging them. We updated the abbreviation lists of both systems with new
abbreviations related to schemas. However, we did not update the synonyms list of
COMA++, because manually adding into this list some complex semantic
correspondences would also lead to unfair comparisons. We carried out experiments
based on two types of result selection strategies that we call as: 1) Select all above
threshold and 2) select max above threshold. Both systems performed better in the
second approach. When the first approach was used, results for COMA++ were
worse than those of SASMINT. For the second approach, the systems performed the
same for some schema pairs, for the remaining pairs, SASMINT performed better
than COMA++.

In order to evaluate the Sampler component of SASMINT, we performed some tests using
the same set of test schemas. For this purpose, after setting the threshold value, we provided
the Sampler component with a number of similar pairs from the two schemas being compared.
We performed schema matching using both the Sampler’s computed weights as well as the
equal weights for linguistic matching algorithms. In some cases, using Sampler’s computed
weights resulted in an increase in the number of false positives, and thus a decrease in the
precision. However, in every such case since Sampler identifies higher number of correct
matches, by assigning appropriate weights, the corresponding recall was much better than the
case where Sampler was not used. Therefore, even in these cases, this resulted in an increase
in f-measure and overall performance of SASMINT. Therefore, using Sampler was shown to
improve the quality of match results.

After evaluating the schema matching approach of SASMINT against the leading system
COMA++, we evaluated the schema integration approach of SASMINT. Since COMA++’s
schema merging feature is very primitive and there were no other systems at the level of
SASMINT, which can use their schema matching results for semi-automatic schema
integration, we could unfortunately not compare the results of schema integration approach of
SASMINT with any other system. Nevertheless, we performed the incremental integration of
six schemas to be able to evaluate SASMINT against the state of the art criteria defined for
automated schema integration. During the empirical evaluation, SASMINT achieved a high
percentage of minimality and completeness for its integrated schemas procedure, which
applies its user-validated matches.

6.8 Conclusions 131

To sum up, schema matching and schema integration are two challenging tasks in
SASMINT. Different types of schema heterogeneities, such as semantic and structural, make
these tasks more difficult to achieve automatically. A semi-automatic system might perform
badly on such schemas. Evaluation data sets need to be carefully selected to cover different
types of schema heterogeneities. Furthermore, in order to fairly evaluate the schema matching
and schema integration systems, measures need to be carefully selected and defined to
consider all aspects of a system in evaluation, such as quality of the match and integration
results, how the results are represented, how easily these results can be modified/corrected by
the user, and whether it is possible to use these results in other processes like query
decomposition in federated query processing.

132 Chapter 6: Empirical validation of SASMINT

Chapter 7

Thesis conclusions and future work

7.1 Summary of General Approach

The importance of developing a supporting infrastructure for data sharing has been understood
clearly during the last years, with the increasing need for collaboration among organizations in
a wide variety of domains, from manufacturing and service industry to scientific virtual
laboratory and disaster management. In order to facilitate and enable collaboration among
distributed, heterogeneous, and autonomous organizations, one of the first requirements that
needs to be met is enabling access to certain data that is to be shared among the stakeholder
organizations. However, before any sharing of data could possibly occur, many existing
syntactic, semantic, and structural heterogeneities among the stakeholder database schemas
need to be resolved. Manual resolution of schema heterogeneities is very time consuming,
cumbersome, and error prone. This becomes more challenging when scaling up is required in
large networks. Namely, without automated ways of removing such heterogeneities between
separate database schemas of participants, data interoperability and therefore effective
collaboration goals cannot be met.

Consequently, provision of automated schema matching and integration tools is an active
area of research with numerous technical challenges. One of the biggest challenges in this area
is the automatic resolution of database schema heterogeneity, without which provision of
integrated data access and sharing among autonomous, heterogeneous, and distributed
databases will remain difficult to achieve.

In this thesis, we propose a supervised automated approach to solve both the problem of
schema matching and the schema integration assisting the users with removal of
heterogeneities among source database schemas and to integrate them effectively. We also
provide an implementation of this approach in the form of a software system, which we call
the Semi-Automatic Schema Matching and INTegration (SASMINT).

As the first step towards the provision of a supporting infrastructure for data sharing in
collaborative networks of organizations, we have performed an analysis of different types of
information sharing heterogeneities. Furthermore, we have identified the varieties of
heterogeneities that represent the most important obstacles to Schema Matching and Schema
Integration tasks.

As the second step, we have analyzed related research on Schema Matching and Schema
Integration approaches. Based on this survey and the identified open issues, we have devised

134 Chapter 7: Thesis conclusions and future work

our approach to deal with many challenges, and have proposed a new approach for schema
matching and schema integration in relational databases. In order to not reinvent the wheel, we
have combined a number of well-known algorithms suggested in related research tackling
some of the challenges of matching terms from different domains. We have generated an
innovative mechanism and format to represent the results generated by the schema matching
and schema integration processes. Furthermore, we have proposed an approach for
automatically generating an integrated schema using the results of schema matching through
the design and development of a number of heuristic rules. Finally, we have defined a
derivation language to formally specify and store how the integrated schema is derived from
its input donor and recipient schemas.

As the third step, we have implemented our approach to semi-automatic schema matching
and schema integration both as a proof of concept and in order to verify and validate it. The
main components of the SASMINT system architecture, which are implemented in this thesis
comprise:

a) Sampler Component, which helps users with automatic identification of appropriate
weight for each algorithm used for linguistic matching.

b) Graph Representation Component, which is responsible for representing schemas in the
DAG format.

c) GUI Component, which enables users to interact with the system to configure needed
parameters and to modify and accept the results generated by schema matching and
schema integration processes.

d) Schema Matching Component, which matches the recipient and the donor schemas
using a combination of linguistic and structure matching techniques.

e) Schema Integration Component, which both integrates the donor and recipient schemas
using the set of pre-defined rules and generates the formal specification of integrated
schema results using a derivation language.

As the fourth step, we have finally evaluated our approach for Schema Matching in
comparison with the most closely related approach and system, the COMA++’s approach,
through experimenting with six pairs of schemas consisting of a variety of heterogeneities.
Furthermore, we have also evaluated our schema integration approach. We could not compare
this part against other schema integration approaches, since there was no other system similar
to SASMINT that uses its results from schema matching for the purpose of semi-automatic
schema integration. Our experiment results for schema matching and schema integration have
shown that SASMINT provides good quality results and higher than its closely related
competitor.

7.2 Reflections on the Research Questions

RQ1. Which effective approaches and architectures can enable data
sharing through interlinking and/or integrating heterogeneous
databases of distributed nodes?

Before establishing a solution for a problem, it is important to understand all concepts and
terminology related to it. In order to meet this requirement, in Chapter 2, we provided
definitions of a variety of terms in the database management research domain concerning
approaches, architectures, and systems for interlinking and/or integrating heterogeneous data
provided by distributed nodes, in order to enable data sharing among them. Since in the
research literature quite often the same term was used to mean different things and different
terms were used to refer to the same concept, we thought that it was crucial to differentiate

7.2 Reflections on the Research Questions 135

among these definitions and clarify the terminology used in the research work explained in this
thesis. For this purpose, in Chapter 2, we described a number of concepts related to distributed
information management and we provided our classification for multidatabases, based on
schema coupling. We then defined schema matching and schema integration and specified
how they relate to distributed information management.

RQ2. What is a representative taxonomy for addressing database schema
heterogeneities, and in turn applicable to formalization of schema matching
and schema integration challenges?

Heterogeneity is the biggest obstacle to schema matching and schema integration. In Chapter
3, we presented different types of heterogeneities that exist among information systems.
Information systems heterogeneity ranges from the heterogeneity of information and its
definition and classification, to the systems heterogeneity. Considering the aim of schema
matching and schema integration processes, schema conflicts are the ones that need to be
tackled. We categorize schema conflicts as structural and linguistic and the linguistic conflicts
further as syntactic and semantic. Especially semantic and structural conflicts are difficult to
automatically resolve. The more a schema matching and integration approach can
automatically resolve such conflicts, the higher the value of the approach, as less user input is
required.

RQ3. What are effective mechanisms for semi-automatic schema
matching and schema integration, and how should the user be involved
in the process?

In Chapter 4, we addressed a number of efforts and systems related to providing access to
heterogeneous databases. We examined them in four main groups: 1) database integration and
interoperability approaches, 2) schema matching approaches, 3) schema integration
approaches, and 4) ontology matching and merging approaches. Database integration and
interoperability approaches typically do not consider any automation in schema matching.
Schema matching approaches, on the other hand, are either limited in the solutions that they
provide or utilize a few match algorithms resolving only specific heterogeneities. They still
require a lot of manual input. Furthermore, most of these schema matching approaches do not
provide any GUI for helping users to modify match results and do not address using their
results for schema integration. While very much related, the schema matching is seen as a
separate problem than schema integration, and using the match results for semi-automatic
schema integration is not taken into account. As for the schema integration approaches, their
provided solutions are not generic enough. They generally assume that correspondences
among schemas are already a given input. We proposed the SASMINT approach to overcome
the limitations of previous approaches. It supports both semi-automatic schema matching and
schema integration. SASMINT addresses and handles all types of conflicts addressed in
Section 3.3. However, a fully automatic resolution is not possible for some types of semantic
and structural conflicts, as described earlier and thus user input might be required in some
cases. SASMINT uses a combination of linguistic and structure matching metrics and
algorithms in order to resolve different types of conflicts addressed in Section 3.3. A novel
way of identifying appropriate weights for each metric and algorithm is also proposed. It also
represent that once formally specified, the results of schema matching can be exploited for
semi-automatic schema integration. By means of a GUI, users can easily modify and store the
match and integration results. SASMINT defines an XML-based derivation language as the
storage format for the results of matching and integration. In order to verify and validate the
SASMINT approach, we have implemented it. In Chapter 5, we provided details of the
development architecture of SASMINT together with a number of screenshots of this system.

136 Chapter 7: Thesis conclusions and future work

RQ4. How can we assess and validate the effectiveness of the
proposed semi-automatic approaches for schema matching and schema
integration?

In order to validate the proposed approach, its evaluation needs to be done against the
leading competitors and/or the well defined generic measures. In Chapter 6, we explained how
we evaluated the approach of SASMINT. In order to measure the quality of schema matching,
a number of well-known measures are addressed, namely, the precision, recall, f-measure, and
overall. Then, SASMINT is compared applying these measures, against a leading competitor.
For the schema integration, completeness and minimality measures are introduced and applied
to identify how well the input schemas are combined by the integrated schema approach and
whether the integrated schema is optimal or if it contains redundant elements or keys. After
identifying the set of test schemas, quality of schema matching approach of SASMINT was
compared to that of COMA++. It was shown that SASMINT was at least as good as if not
better than one of the leading state of the art schema matching systems. Evaluation of schema
integration experiment of SASMINT also generated very promising results. Furthermore, we
also performed some tests to evaluate the Sampler component. In these tests, we identified that
Sampler helped to improve the quality of the match results.

7.3 Future Work

There are several areas of research that can continue and further extend certain aspects and
features of the work presented in this thesis:

 Support for XML Schema
Considering the current extensive use of relational databases, the implementation of the
proposed SASMINT system that is provided in this thesis supports matching and integration of
relational schemas only. However, both the system and the data architecture of SASMINT
have been designed to also be able to support matching and integration of other frequently
used data model representations, such as the XML Schema. For supporting matching of XML
Schemas, the adapter framework that is now in place needs to be extended with XML Schema
import features for incorporating XML Schema support features. In order to integrate XML
Schemas, new integration rules need to be defined into SASMINT.

 Support for Ontology
Similar to what is stated above for XML Schema support, SASMINT could be extended with
the support for Ontologies. This extension would require more work compared to XML
Schema support, since the semantics of Ontologies could entail incorporation of
technologies/tools like inference/reasoning engines.

 Using Machine Learning Techniques for the Sampler Component
At present Sampler applies an approach based on f-measure to identify the best applicable
weights for each linguistic matching algorithm in relation to the considered specific schemas.
However, it could be further extended to also utilize machine learning techniques for this
purpose. Machine learning algorithms can examine large amounts of data and make intelligent
decisions based on these data. Therefore, by learning from the true and false positive matches,
machine learning algorithms might identify more appropriate weights.

7.3 Future Work 137

 Creating a benchmark for schema matching and integration
In our evaluation studies, one challenge was to find/design objective (relational) schemas that
we could use to measure the functional performance of our schema matching and integration
system. The test schemas used by other schema matching and evaluation research were
designed for a specific need in mind and consisted of only certain types of schema
heterogeneities. As a future work, the creation of a benchmark would be valuable, in order to
generate more generic schemas to serve as the base for comparable evaluation between
systems.

 Fragmented Matching and Integration
Current focus of SASMINT is to address and resolve different types of heterogeneities, when
two schemas are compared, and not addressing very large schemas. However, future work
could consider matching and integrating very large schemas. This would require enabling the
fragmented matching and integration in order to make it easier to compare and integrate big
schemas, and in turn require the identification of most appropriate fragments for this purpose.

138 Chapter 7: Thesis conclusions and future work

Appendix A

List of author’s publications

Journal Articles

1. Unal, O., & Afsarmanesh, H. (2010). Semi-automated schema integration with
SASMINT. Journal of Knowledge and Information Systems, 23(1), ISSN:
0219-1377, pp. 99-128.

2. Unal, O., & Afsarmanesh, H. (2009). Schema matching and integration for data
sharing among collaborating organizations. Journal of Software, 4(3),
ISSN:1796-217X, pp.248-261.

3. Unal, O., & Afsarmanesh, H. (2006). SASMINT System for Database
Interoperability in Collaborative Networks. Lecture Notes in Computer Science
(LNCS 4275), ISBN: 978-3-540-48287-3, Springer Berlin/Heidelberg, pp. 91-
108.

Book Chapters

1. Unal, O., Kaletas, E. C., Afsarmanesh, H., Yakali, H. H., & Hertzberger, L. O.
(2005). Collaborative information management system for science domains. In
S. Dasgupta (Ed.), Encyclopedia of virtual communities and technologies. Idea
Group Publishing.

140 Appendix A: List of author’s publications

Peer Reviewed International Conference Papers

1. Unal, O., & Afsarmanesh, H. (2006). Interoperability in collaborative network
of biodiversity organizations. In: Proceedings of the PRO-VE - Network-
Centric Collaboration and Supporting Frameworks, Helsinki, Finland.
Springer, pp.515-524.

2. Unal, O., & Afsarmanesh, H. (2006). Using linguistic techniques for schema
matching. In: Proceedings of the International Conference on Software and
Data Technologies (ICSOFT), Setubal, Portugal. INSTICC Press, pp.115-120,
ISBN:972-8865-69-4.

3. Guevara-Masis, V., Unal, O., Kaletas, E. C., Afsarmanesh, H., & Hertzberger,
L. O. (2004). Using ontologies for collaborative information management:
Some challenges & ideas. In: Proceedings of the Third Biennial International
Conference on Advances in Information Systems (ADVIS), Izmir, Turkey.
Springer Lecture Notes in Computer Science (LNCS 3261), pp.107-116,
ISBN:3-540-23478-0.

4. Garita, C., Afsarmanesh, H., Unal, O., Hertzberger, L.O. (2003). Building a
virtual laboratory for scientific experimentation in molecular biology. In:
Proceedings of PRO-VE'03 - Processes and Foundations for Virtual
Organizations, Kluwer Academic Publishers, pp. 181-190.

Appendix B

XSD for SDML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="http://namespaces.sasmint.org/2007/04/GraphModel"
targetNamespace="http://namespaces.sasmint.org/2007/04/GraphModel" elementFormDefault="qualified"
attributeFormDefault="qualified" version="0.9">
 <xs:element name="derivationType">
 <xs:complexType mixed="true">
 <xs:choice>
 <xs:element ref="ns1:tableRenameDerivation"/>
 <xs:element ref="ns1:tableUnionDerivation"/>
 <xs:element ref="ns1:tableSubtractDerivation"/>
 <xs:element ref="ns1:tableRestrictDerivation"/>
 <xs:element ref="ns1:columnRenameDerivation"/>
 <xs:element ref="ns1:columnUnionDerivation"/>
 <xs:element ref="ns1:columnStringAdditionDerivation"/>
 </xs:choice>
 <xs:attribute name="refDerivationNode" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="columnRenameDerivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="columnStringAdditionDerivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode" maxOccurs="unbounded"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="columnUnionDerivation">

142 Appendix B: XSD for SDML

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode" maxOccurs="unbounded"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="derivationNode">
 <xs:complexType>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="schema" type="xs:string" use="required"/>
 <xs:attribute name="table" type="xs:string"/>
 <xs:attribute name="pkColumn" type="xs:string"/>
 <xs:attribute name="refTable" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="sedge">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:similarity" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="sourceNodeId" type="xs:string" use="required"/>
 <xs:attribute name="targetNodeId" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="sgraph">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="ns1:snode" maxOccurs="unbounded"/>
 <xs:element ref="ns1:sedge" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="snode">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0">
 <xs:element ref="ns1:tableRenameDerivation"/>
 <xs:element ref="ns1:tableUnionDerivation"/>
 <xs:element ref="ns1:tableSubtractDerivation"/>
 <xs:element ref="ns1:tableRestrictDerivation"/>
 <xs:element ref="ns1:columnRenameDerivation"/>
 <xs:element ref="ns1:columnUnionDerivation"/>
 <xs:element ref="ns1:columnStringAdditionDerivation"/>
 </xs:choice>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="schema" type="xs:string"/>
 <xs:attribute name="table" type="xs:string"/>
 <xs:attribute name="pkColumn" type="xs:string"/>
 <xs:attribute name="refTable" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="restrictionExpression">
 <xs:complexType>

Appendix B: XSD for SDML 143

 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="similarity" type="xs:double"/>
 <xs:element name="tableRenameDerivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tableRestrictDerivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode"/>
 <xs:element ref="ns1:restrictionExpression"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tableSubtractDerivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode" maxOccurs="unbounded"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tableUnionDerivation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ns1:derivationNode" maxOccurs="unbounded"/>
 <xs:element ref="ns1:derivationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

144 Appendix B: XSD for SDML

Appendix C

Class diagram for SDML

SDML class diagram of SASMINT

Partial SDML class diagram
(some details dropped to create better visibility)

Appendix D

Test schemas

Purchase Order Schemas (PO)

Recipient Schema

CREATE TABLE `customer` (
 `custNo` int(10) unsigned NOT NULL,
 `name` varchar(70) NOT NULL,
 `city` varchar(45) NOT NULL,
 `street` varchar(50) NOT NULL,
 `zip` varchar(10) NOT NULL,
 `telephone` varchar(15) NOT NULL,
 PRIMARY KEY (`custNo`)
)

CREATE TABLE `product` (
 `productNo` int(10) unsigned NOT NULL,
 `productName` varchar(45) NOT NULL,
 `price` varchar(45) NOT NULL,
 `stock` varchar(45) NOT NULL,
 `supplierNo` int(10) unsigned NOT NULL,
 PRIMARY KEY (`productNo`),
 KEY `FK_product_1` (`supplierNo`),
 CONSTRAINT `FK_product_1` FOREIGN KEY
(`supplierNo`) REFERENCES `supplier`
(`supplierNo`)
)

CREATE TABLE `purchase_order` (
 `purchaseOrderNo` int(10) unsigned NOT NULL,
 `custNo` int(10) unsigned NOT NULL,
 `purchaseOrderDate` datetime NOT NULL,

Donor Schema

CREATE TABLE `buyer` (
 `buyer_No` int(10) unsigned NOT NULL,
 `f_name` varchar(45) NOT NULL,
 `l_name` varchar(45) NOT NULL,
 `phone` varchar(45) NOT NULL,
 `buyer_street` varchar(45) NOT NULL,
 `buyer_city` varchar(45) NOT NULL,
 `buyer_zip` varchar(45) NOT NULL,
 PRIMARY KEY (`buyer_No`)
)

CREATE TABLE `item` (
 `item_no` int(10) unsigned NOT NULL,
 `item_name` varchar(45) NOT NULL,
 `cost` double NOT NULL,
 `stock` varchar(45) NOT NULL,
 `item_arrival_date` datetime NOT NULL,
 `item_color_id` int(10) unsigned NOT NULL,
 `item_size_id` int(10) unsigned NOT NULL,
 PRIMARY KEY (`item_no`),
 KEY `FK_item_1` (`item_color_id`),
 KEY `FK_item_2` (`item_size_id`),
 CONSTRAINT `FK_item_1` FOREIGN KEY
(`item_color_id`) REFERENCES `item_color`
(`item_color_id`),
 CONSTRAINT `FK_item_2` FOREIGN KEY
(`item_size_id`) REFERENCES `item_size`

150 Appendix D: Test schemas

 `status` varchar(45) NOT NULL,
 `deliverDate` datetime NOT NULL,
 `deliverCity` varchar(45) NOT NULL,
 `deliverStreet` varchar(50) NOT NULL,
 `deliverZip` varchar(10) NOT NULL,
 PRIMARY KEY (`purchaseOrderNo`),
 KEY `FK_purchase_order_1` (`custNo`),
 CONSTRAINT `FK_purchase_order_1` FOREIGN
KEY (`custNo`) REFERENCES `customer` (`custNo`)
)

CREATE TABLE `purchase_order_line` (
 `purchaseOrderLineNo` int(10) unsigned NOT
NULL,
 `purchaseOrderNo` int(10) unsigned NOT NULL,
 `productNo` int(10) unsigned NOT NULL,
 `quantity` int(10) unsigned NOT NULL,
 `deliverDate` datetime NOT NULL,
 PRIMARY KEY (`purchaseOrderLineNo`),
 KEY `FK_purchase_order_line_1`
(`purchaseOrderNo`),
 KEY `FK_purchase_order_line_2` (`productNo`),
 CONSTRAINT `FK_purchase_order_line_1`
FOREIGN KEY (`purchaseOrderNo`) REFERENCES
`purchase_order` (`purchaseOrderNo`),
 CONSTRAINT `FK_purchase_order_line_2`
FOREIGN KEY (`productNo`) REFERENCES
`product` (`productNo`)
)

CREATE TABLE `supplier` (
 `supplierNo` int(10) unsigned NOT NULL,
 `supplierName` varchar(70) NOT NULL,
 `supplierAddress` varchar(80) NOT NULL,
 PRIMARY KEY (`supplierNo`)
)

(`item_size_id`)
)

CREATE TABLE `item_color` (
 `item_color_id` int(10) unsigned NOT NULL,
 `color_description` varchar(45) NOT NULL,
 PRIMARY KEY (`item_color_id`)
)

CREATE TABLE `item_size` (
 `item_size_id` int(10) unsigned NOT NULL,
 `size_description` varchar(45) NOT NULL,
 PRIMARY KEY (`item_size_id`)
)

CREATE TABLE `po` (
 `po_no` int(10) unsigned NOT NULL,
 `buyer_no` int(10) unsigned NOT NULL,
 `item_no` int(10) unsigned NOT NULL,
 `deliver_street` varchar(45) NOT NULL,
 `deliver_city` varchar(45) NOT NULL,
 `deliver_zip` varchar(10) NOT NULL,
 `deliver_date` datetime NOT NULL,
 PRIMARY KEY (`po_no`),
 KEY `FK_po_1` (`buyer_no`),
 KEY `FK_po_2` (`item_no`),
 CONSTRAINT `FK_po_1` FOREIGN KEY
(`buyer_no`) REFERENCES `buyer` (`buyer_No`),
 CONSTRAINT `FK_po_2` FOREIGN KEY
(`item_no`) REFERENCES `item` (`item_no`)
)

Hotel Schemas (HOTEL)

Recipient Schema

CREATE TABLE `num_beds` (
 `numBedsID` varchar(50) NOT NULL,
 `numBedsAttrib` varchar(50) default NULL,
 PRIMARY KEY (`numBedsID`)
)

CREATE TABLE `one_room` (
 `oneRoomID` varchar(50) NOT NULL,
 `roomNum` varchar(50) default NULL,
 `hasNumBedsAttribID` varchar(50) default NULL,
 `hasOnFloorAttribID` varchar(50) default NULL,
 `hasSmokingPreferenceAttribID` varchar(50) default
NULL,
 PRIMARY KEY (`oneRoomID`),
 KEY `hasNumBedsAttribID`

Donor Schema

CREATE TABLE `num_beds_attribute` (
 `numBedsAttributeID` varchar(50) NOT NULL,
 `numBedsAttrib` varchar(50) default NULL,
 PRIMARY KEY (`numBedsAttributeID`)
)

CREATE TABLE `on_floor_attribute` (
 `onFloorAttributeID` varchar(50) NOT NULL,
 `onFloorAttrib` varchar(50) default NULL,
 PRIMARY KEY (`onFloorAttributeID`)
)

CREATE TABLE `room` (
 `roomID` varchar(50) NOT NULL,
 `roomNum` varchar(50) default NULL,

Appendix D: Test schemas 151

(`hasNumBedsAttribID`),
 KEY `hasOnFloorAttribID` (`hasOnFloorAttribID`),
 KEY `hasSmokingPreferenceAttribID`
(`hasSmokingPreferenceAttribID`),
 CONSTRAINT `oneroom_ibfk_1` FOREIGN KEY
(`hasNumBedsAttribID`) REFERENCES `numbeds`
(`numBedsID`),
 CONSTRAINT `oneroom_ibfk_2` FOREIGN KEY
(`hasOnFloorAttribID`) REFERENCES `onfloor`
(`onFloorID`),
 CONSTRAINT `oneroom_ibfk_3` FOREIGN KEY
(`hasSmokingPreferenceAttribID`) REFERENCES
`smokingpreference` (`smokingPreferenceID`)
)

CREATE TABLE `on_floor` (
 `onFloorID` varchar(50) NOT NULL,
 `onFloorAttrib` varchar(50) default NULL,
 PRIMARY KEY (`onFloorID`)
)

CREATE TABLE `smoking_preference` (
 `smokingPreferenceID` varchar(50) NOT NULL,
 `smokingPreferenceAttrib` varchar(50) default
NULL,
 PRIMARY KEY (`smokingPreferenceID`)
)

CREATE TABLE `suite` (
 `suiteID` varchar(50) NOT NULL,
 `roomNum` varchar(50) default NULL,
 `hasNumBedsAttribID` varchar(50) default NULL,
 `hasOnFloorAttribID` varchar(50) default NULL,
 `hasSmokingPreferenceAttribID` varchar(50) default
NULL,
 PRIMARY KEY (`suiteID`),
 KEY `hasNumBedsAttribID`
(`hasNumBedsAttribID`),
 KEY `hasOnFloorAttribID` (`hasOnFloorAttribID`),
 KEY `hasSmokingPreferenceAttribID`
(`hasSmokingPreferenceAttribID`),
 CONSTRAINT `suite_ibfk_1` FOREIGN KEY
(`hasNumBedsAttribID`) REFERENCES `numbeds`
(`numBedsID`),
 CONSTRAINT `suite_ibfk_2` FOREIGN KEY
(`hasOnFloorAttribID`) REFERENCES `onfloor`
(`onFloorID`),
 CONSTRAINT `suite_ibfk_3` FOREIGN KEY
(`hasSmokingPreferenceAttribID`) REFERENCES
`smokingpreference` (`smokingPreferenceID`)
)

CREATE TABLE `town_house` (
 `townHouseID` varchar(50) NOT NULL,
 `roomNum` varchar(50) default NULL,
 `hasNumBedsAttribID` varchar(50) default NULL,
 `hasOnFloorAttribID` varchar(50) default NULL,
 `hasSmokingPreferenceAttribID` varchar(50) default
NULL,

 `numBedsAttribID` varchar(50) default NULL,
 `smokingOrNoAttribID` varchar(50) default
NULL,
 `onFloorAttribID` varchar(50) default NULL,
 `sizeOfRoomAttribID` varchar(50) default NULL,
 PRIMARY KEY (`roomID`),
 KEY `numBedsAttribID` (`numBedsAttribID`),
 KEY `smokingOrNoAttribID`
(`smokingOrNoAttribID`),
 KEY `onFloorAttribID` (`onFloorAttribID`),
 KEY `sizeOfRoomAttribID`
(`sizeOfRoomAttribID`),
 CONSTRAINT `room_ibfk_1` FOREIGN KEY
(`numBedsAttribID`) REFERENCES
`numbedsattribute` (`numBedsAttributeID`),
 CONSTRAINT `room_ibfk_2` FOREIGN KEY
(`smokingOrNoAttribID`) REFERENCES
`smokingattribute` (`smokingAttributeID`),
 CONSTRAINT `room_ibfk_3` FOREIGN KEY
(`onFloorAttribID`) REFERENCES
`onfloorattribute` (`onFloorAttributeID`),
 CONSTRAINT `room_ibfk_4` FOREIGN KEY
(`sizeOfRoomAttribID`) REFERENCES
`sizeofroomattribute` (`sizeOfRoomAttributeID`)
)

CREATE TABLE `size_of_room_attribute` (
 `sizeOfRoomAttributeID` varchar(50) NOT
NULL,
 `sizeOfRoomAttrib` varchar(50) default NULL,
 PRIMARY KEY (`sizeOfRoomAttributeID`)
)

CREATE TABLE `smoking_attribute` (
 `smokingAttributeID` varchar(50) NOT NULL,
 `smokingAttrib` varchar(50) default NULL,
 PRIMARY KEY (`smokingAttributeID`)
)

152 Appendix D: Test schemas

 PRIMARY KEY (`townHouseID`),
 KEY `hasNumBedsAttribID`
(`hasNumBedsAttribID`),
 KEY `hasOnFloorAttribID` (`hasOnFloorAttribID`),
 KEY `hasSmokingPreferenceAttribID`
(`hasSmokingPreferenceAttribID`),
 CONSTRAINT `townhouse_ibfk_1` FOREIGN
KEY (`hasNumBedsAttribID`) REFERENCES
`numbeds` (`numBedsID`),
 CONSTRAINT `townhouse_ibfk_2` FOREIGN
KEY (`hasOnFloorAttribID`) REFERENCES
`onfloor` (`onFloorID`),
 CONSTRAINT `townhouse_ibfk_3` FOREIGN
KEY (`hasSmokingPreferenceAttribID`)
REFERENCES `smokingpreference`
(`smokingPreferenceID`)
)

Biology Schemas (SDB)

Recipient Schema

CREATE TABLE `animal_donor` (
 `animalID` varchar(50) NOT NULL,
 `strain` varchar(50) default NULL,
 `species` varchar(50) default NULL,
 PRIMARY KEY (`id`),
 CONSTRAINT `animal_donor_ibfk_1` FOREIGN
KEY (`id`) REFERENCES `donor` (`id`)
)

CREATE TABLE `diagnoses` (
 `diagID` varchar(50) NOT NULL,
 `donor` varchar(50) default NULL,
 PRIMARY KEY (`diagID`),
 KEY `donor` (`donor`),
 CONSTRAINT `diagnoses_ibfk_1` FOREIGN
KEY (`donor`) REFERENCES `human_donor`
(`humanID`)
)

CREATE TABLE `donor` (
 `id` varchar(50) NOT NULL,
 `gender` varchar(50) default NULL,
 `species` varchar(50) default NULL,
 PRIMARY KEY (`id`)
)

CREATE TABLE `family_history` (
 `histID` varchar(50) NOT NULL,
 `donor` varchar(50) default NULL,
 PRIMARY KEY (`histID`),
 KEY `donor` (`donor`),
 CONSTRAINT `family_history_ibfk_1` FOREIGN
KEY (`donor`) REFERENCES `human_donor` (`id`)

Donor Schema

CREATE TABLE `diagnoses` (
 `diagID` varchar(50) NOT NULL,
 `visitUpdate` varchar(50) default NULL,
 PRIMARY KEY (`diagID`),
 KEY `visitUpdate` (`visitUpdate`),
 CONSTRAINT `diagnoses_ibfk_1` FOREIGN KEY
(`visitUpdate`) REFERENCES `visit_update`
(`updateID`)
)

CREATE TABLE `donor` (
 `id` varchar(50) NOT NULL,
 `gender` varchar(50) default NULL,
 `species` varchar(50) default NULL,
 `strain` varchar(50) default NULL,
 `dob` varchar(50) default NULL,
 PRIMARY KEY (`id`)
)

CREATE TABLE `donor_visit` (
 `donor_visit_id` varchar(50) NOT NULL,
 `donor` varchar(50) default NULL,
 `content` varchar(50) default NULL,
 PRIMARY KEY (`id`),
 KEY `donor` (`donor`),
 CONSTRAINT `donor_visit_ibfk_1` FOREIGN
KEY (`donor`) REFERENCES `donor` (`id`)
)

CREATE TABLE `family_history` (
 `histID` varchar(50) NOT NULL,
 `visitUpdate` varchar(50) default NULL,
 PRIMARY KEY (`histID`),

Appendix D: Test schemas 153

)

CREATE TABLE `human_donor` (
 `humanID` varchar(50) NOT NULL,
 `dob` varchar(50) default NULL,
 `gender` varchar(50) default NULL,
 PRIMARY KEY (`id`),
 CONSTRAINT `human_donor_ibfk_1` FOREIGN
KEY (`humanID`) REFERENCES `donor` (`id`)
)

CREATE TABLE `lab_test` (
 `testID` varchar(50) NOT NULL,
 `donor` varchar(50) default NULL,
 PRIMARY KEY (`testID`),
 KEY `donor` (`donor`),
 CONSTRAINT `lab_test_ibfk_1` FOREIGN KEY
(`donor`) REFERENCES `donor` (`id`)
)

CREATE TABLE `life_style_factors` (
 `factID` varchar(50) NOT NULL,
 `donor` varchar(50) default NULL,
 PRIMARY KEY (`factID`),
 KEY `donor` (`donor`),
 CONSTRAINT `life_style_factors_ibfk_1`
FOREIGN KEY (`donor`) REFERENCES
`human_donor` (`id`)
)

CREATE TABLE `medications` (
 `medicID` varchar(50) NOT NULL,
 `donor` varchar(50) default NULL,
 PRIMARY KEY (`medicID`),
 KEY `donor` (`donor`),
 CONSTRAINT `medications_ibfk_1` FOREIGN
KEY (`donor`) REFERENCES `human_donor` (`id`)
)

CREATE TABLE `sample` (
 `name` varchar(50) NOT NULL,
 `donorID` varchar(50) NOT NULL,
 PRIMARY KEY (`name`),
 KEY `FK_sample_1` (`donorID`),
 CONSTRAINT `FK_sample_1` FOREIGN KEY
(`donorID`) REFERENCES `donor` (`id`)
)

 KEY `visitUpdate` (`visitUpdate`),
 CONSTRAINT `family_history_ibfk_1` FOREIGN
KEY (`visitUpdate`) REFERENCES `visit_update`
(`updateID`)
)

CREATE TABLE `lab_test` (
 `testID` varchar(50) NOT NULL,
 `visitUpdate` varchar(50) default NULL,
 PRIMARY KEY (`testID`),
 KEY `visitUpdate` (`visitUpdate`),
 CONSTRAINT `lab_test_ibfk_1` FOREIGN KEY
(`visitUpdate`) REFERENCES `visit_update`
(`updateID`)
)

CREATE TABLE `life_style_factors` (
 `factID` varchar(50) NOT NULL,
 `visitUpdate` varchar(50) default NULL,
 PRIMARY KEY (`factID`),
 KEY `visitUpdate` (`visitUpdate`),
 CONSTRAINT `life_style_factors_ibfk_1`
FOREIGN KEY (`visitUpdate`) REFERENCES
`visit_update` (`updateID`)
)

CREATE TABLE `medications` (
 `medicID` varchar(50) NOT NULL,
 `visitUpdate` varchar(50) default NULL,
 PRIMARY KEY (`medicID`),
 KEY `visitUpdate` (`visitUpdate`),
 CONSTRAINT `medications_ibfk_1` FOREIGN
KEY (`visitUpdate`) REFERENCES `visit_update`
(`updateID`)
)

CREATE TABLE `sample` (
 `name` varchar(50) NOT NULL,
 `donorVisitID` varchar(50) default NULL,
 PRIMARY KEY (`name`),
 KEY `donorVisitID` (`donorVisitID`),
 CONSTRAINT `sample_ibfk_1` FOREIGN KEY
(`donorVisitID`) REFERENCES `donor_visit`
(`donor_visit_id`)
)

CREATE TABLE `visit_update` (
 `updateID` varchar(50) NOT NULL,
 `visit` varchar(50) default NULL,
 PRIMARY KEY (`updateID`),
 KEY `visit` (`visit`),
 CONSTRAINT `visit_update_ibfk_1` FOREIGN
KEY (`visit`) REFERENCES `donor_visit`
(`donor_visit_id`)
)

154 Appendix D: Test schemas

University Schemas-1 (UNIV-1)

Recipient Schema

CREATE TABLE `course` (
 `number` varchar(50) NOT NULL,
 `courseTitle` varchar(50) default NULL,
 `description` varchar(50) default NULL,
 `prerequisites` varchar(50) default NULL,
 `instructor` varchar(50) default NULL,
 PRIMARY KEY (`number`),
 KEY `instructor` (`instructor`),
 CONSTRAINT `course_ibfk_1` FOREIGN KEY
(`instructor`) REFERENCES `faculty_member`
(`faculty_member_id`)
)

CREATE TABLE `faculty_member` (
 `faculty_member_id` varchar(50) NOT NULL,
 `personName` varchar(50) default NULL,
 `personTitle` varchar(50) default NULL,
 `homepage` varchar(50) default NULL,
 `researchInterest` varchar(50) default NULL,
 `email` varchar(50) default NULL,
 PRIMARY KEY (`faculty_member_id`)
)

CREATE TABLE `paper` (
 `paperTitle` varchar(50) NOT NULL,
 `description` varchar(50) default NULL,
 `publicationYear` varchar(50) default NULL,
 PRIMARY KEY (`paperTitle`),
 KEY `publicationYear` (`publicationYear`),
 CONSTRAINT `paper_ibfk_1` FOREIGN KEY
(`publicationYear`) REFERENCES `year` (`yr`)
)

CREATE TABLE `paper_author` (
 `paperTitle` varchar(50) NOT NULL,
 `author` varchar(50) NOT NULL,
 PRIMARY KEY (`paperTitle`,`author`),
 KEY `FK_paper_author_3` (`author`),
 CONSTRAINT `FK_paper_author_3` FOREIGN
KEY (`author`) REFERENCES `student`
(`student_id`),
 CONSTRAINT `FK_paper_author_2` FOREIGN
KEY (`author`) REFERENCES `faculty_member`
(`faculty_member_id`),
 CONSTRAINT `paper_author_ibfk_1` FOREIGN
KEY (`paperTitle`) REFERENCES `paper`
(`paperTitle`)
)

Donor Schema

CREATE TABLE `academic_staff` (
 `academic_staff_id` varchar(50) NOT NULL,
 `name` varchar(50) default NULL,
 `office` varchar(50) default NULL,
 `email` varchar(50) default NULL,
 `phone` varchar(50) default NULL,
 PRIMARY KEY (`academic_staff_id`)
)

CREATE TABLE `admin_staff` (
 `admin_staff_id` varchar(50) NOT NULL,
 `name` varchar(50) default NULL,
 `office` varchar(50) default NULL,
 `email` varchar(50) default NULL,
 `phone` varchar(50) default NULL,
 PRIMARY KEY (`admin_staff_id`)
)

CREATE TABLE `areas_of_interest` (
 `interest_id` varchar(50) NOT NULL,
 `area` varchar(50) NOT NULL,
 PRIMARY KEY (`interest_id`,`area`),
 CONSTRAINT `areasofinterest_ibfk_1` FOREIGN
KEY (`interest_id`) REFERENCES `student`
(`student_id`),
 CONSTRAINT `areasofinterest_ibfk_2` FOREIGN
KEY (`interest_id`) REFERENCES `academic_staff`
(`academic_staff_id`)
)

CREATE TABLE `course` (
 `courseNumber` varchar(40) NOT NULL,
 `courseTitle` varchar(50) default NULL,
 `instructor` varchar(50) default NULL,
 `area` varchar(50) default NULL,
 `description` varchar(200) default NULL,
 `prerequisite` varchar(200) default NULL,
 PRIMARY KEY (`courseNumber`),
 KEY `instructor` (`instructor`),
 CONSTRAINT `course_ibfk_1` FOREIGN KEY
(`instructor`) REFERENCES `academic_staff`
(`academic_staff_id`)
)

CREATE TABLE `student` (
 `student_id` varchar(50) NOT NULL,
 `student_name` varchar(50) NOT NULL,
 `email` varchar(50) default NULL,
 `supervisor` varchar(50) default NULL,

Appendix D: Test schemas 155

CREATE TABLE `person_project` (
 `person` varchar(50) NOT NULL,
 `projectTitle` varchar(50) NOT NULL,
 PRIMARY KEY (`person`,`projectTitle`),
 KEY `projectTitle` (`projectTitle`),
 CONSTRAINT `FK_person_project_3` FOREIGN
KEY (`person`) REFERENCES `student`
(`student_id`),
 CONSTRAINT `FK_person_project_2` FOREIGN
KEY (`person`) REFERENCES `faculty_member`
(`faculty_member_id`),
 CONSTRAINT `person_prject_ibfk_2` FOREIGN
KEY (`projectTitle`) REFERENCES `project`
(`projectTitle`)
)

CREATE TABLE `project` (
 `projectTitle` varchar(50) NOT NULL,
 `description` varchar(50) default NULL,
 `link` varchar(50) default NULL,
 PRIMARY KEY (`projectTitle`)
)

CREATE TABLE `seminar` (
 `about` varchar(50) NOT NULL,
 `speaker` varchar(50) default NULL,
 `date` varchar(50) default NULL,
 `location` varchar(50) default NULL,
 PRIMARY KEY (`about`),
 KEY `speaker` (`speaker`),
 CONSTRAINT `FK_seminar_1` FOREIGN KEY
(`speaker`) REFERENCES `faculty_member`
(`faculty_member_id`)
)

CREATE TABLE `student` (
 `student_id` varchar(50) NOT NULL,
 `studentName` varchar(50) default NULL,
 `advisor` varchar(50) default NULL,
 `email` varchar(50) default NULL,
 PRIMARY KEY (`student_id`),
 KEY `advisor` (`advisor`),
 CONSTRAINT `FK_student_2` FOREIGN KEY
(`advisor`) REFERENCES `faculty_member`
(`faculty_member_id`)
)

CREATE TABLE `year` (
 `yr` varchar(50) NOT NULL,
 PRIMARY KEY (`yr`)
)

 PRIMARY KEY (`student_id`),
 KEY `supervisor` (`supervisor`),
 CONSTRAINT `student_ibfk_1` FOREIGN KEY
(`supervisor`) REFERENCES `academic_staff`
(`academic_staff_id`)
)

156 Appendix D: Test schemas

University Schemas-2 (UNIV-2)

Recipient Schema

CREATE TABLE `academic_programme` (
 `academic_programme_ID` int(11) NOT NULL,
 `ACADEMIC_YEAR` char(10) NOT NULL,
 `ACADEMIC_SEMESTER` varchar(50) NOT NULL,
 `PROGRAM_REF` int(11) default NULL,
 PRIMARY KEY (`academic_programme_ID`),
 KEY `parent_programme` (`PROGRAM_REF`),
 CONSTRAINT `parent_programme` FOREIGN KEY
(`PROGRAM_REF`) REFERENCES `program`
(`program_ID`)
)

CREATE TABLE `academic_staff_member` (
 `academic_staff_member_ID` int(11) NOT NULL,
 `STAFF_NAME` varchar(150) NOT NULL,
 `STAFF_EMAIL` varchar(75) default NULL,
 `STAFF_PHONE` varchar(50) default NULL,
 `STAFF_FAX` varchar(75) default NULL,
 `STAFF_IDENTIFICATION_NUM` varchar(100) NOT
NULL,
 `STAFF_BIRTHDATE` date NOT NULL,
 PRIMARY KEY (`academic_staff_member_ID`),
 UNIQUE KEY `ACADEMICSTAFF_EMAIL_UNIQUE`
(`STAFF_EMAIL`)
)

CREATE TABLE `campus` (
 `campus_ID` int(11) NOT NULL,
 `CAMPUS_NAME` varchar(150) NOT NULL,
 `CAMPUS_LOCATION` varchar(150) default NULL,
 `UNVCAMPUS` int(11) default NULL,
 PRIMARY KEY (`campus_ID`),
 KEY `parentuniversity` (`UNIVERSITY_REF`),
 CONSTRAINT `parentuniversity` FOREIGN KEY
(`UNVCAMPUS`) REFERENCES `university`
(`university_ID`)
)

CREATE TABLE `course` (
 `course_ID` int(11) NOT NULL,
 `COURSE_NAME` varchar(150) NOT NULL,
 `COURSE_CREDITS` smallint(6) NOT NULL default '3',
 `COURSE_PROVIDER` int(11) NOT NULL,
 `COURSE_INSTRUCTOR` int(11) NOT NULL,
 PRIMARY KEY (`course_ID`),
 KEY `parent_instructor` (`COURSE_INSTRUCTOR`),
 KEY `provider_department` (`COURSE_PROVIDER`),
 CONSTRAINT `parent_instructor` FOREIGN KEY
(`COURSE_INSTRUCTOR`) REFERENCES
`academic_staff_member` (`academic_staff_member_ID`),
 CONSTRAINT `provider_department` FOREIGN KEY
(`COURSE_PROVIDER`) REFERENCES `department`
(`department_ID`)
)

Donor Schema

CREATE TABLE `academic_course` (
 `academic_course_ID` int(11) NOT NULL,
 `ACADEMIC_COURSE_NAME`
varchar(150) NOT NULL,
 `ACADEMIC_COURSE_CREDITS`
smallint(6) NOT NULL default '3',
 `ACADEMIC_COURSE_PROVIDER`
int(11) NOT NULL,
 `ACADEMIC_COURSE_INSTRUCTOR`
int(11) NOT NULL,
 PRIMARY KEY (`academic_course_ID`),
 KEY `parent_instructor`
(`ACADEMIC_COURSE_INSTRUCTOR`),
 KEY `provider_department`
(`ACADEMIC_COURSE_PROVIDER`),
 CONSTRAINT `parent_instructor`
FOREIGN KEY
(`ACADEMIC_COURSE_INSTRUCTOR`)
REFERENCES
`university_academic_instructor`
(`university_academic_instructor_ID`),
 CONSTRAINT `provider_department`
FOREIGN KEY
(`ACADEMIC_COURSE_PROVIDER`)
REFERENCES `department`
(`department_ID`)
)

CREATE TABLE `academic_institution` (
 `academic_institution_ID` int(11) NOT
NULL,
 `ACADEMIC_INSTITUTION_NAME`
varchar(150) NOT NULL,
 `ACADEMIC_INSTITUTION_WEBSITE`
varchar(150) NOT NULL,
 PRIMARY KEY
(`academic_institution_ID`)
)

CREATE TABLE `academic_programme` (
 `academic_programme_ID` int(11) NOT
NULL,
 `YEAR` char(10) NOT NULL,
 `SEMESTER` varchar(50) NOT NULL,
 `PROGRAM_REF` int(11) default NULL,
 PRIMARY KEY
(`academic_programme_ID`),
 KEY `parent_programme`
(`PROGRAM_REF`),
 CONSTRAINT `parent_programme`
FOREIGN KEY (`PROGRAM_REF`)
REFERENCES `program` (`program_ID`)
)

CREATE TABLE `department` (

Appendix D: Test schemas 157

CREATE TABLE `department` (
 `department_ID` int(11) NOT NULL,
 `DEPT_NAME` varchar(150) NOT NULL,
 `FACULTY_REF` int(11) NOT NULL,
 PRIMARY KEY (`department_ID`),
 KEY `parent_faculty` (`FACULTY_REF`),
 CONSTRAINT `parent_faculty` FOREIGN KEY
(`FACULTY_REF`) REFERENCES `faculty` (`faculty_ID`)
)

CREATE TABLE `faculty` (
 `faculty_ID` int(11) NOT NULL,
 `FACULTY_NAME` varchar(150) NOT NULL,
 `DEAN_REF` int(11) NOT NULL,
 `UNIVERSITY_REF` int(11) NOT NULL,
 PRIMARY KEY (`faculty_ID`),
 KEY `parent_dean` (`DEAN_REF`),
 KEY `parent_university` (`UNIVERSITY_REF`),
 CONSTRAINT `parent_dean` FOREIGN KEY
(`DEAN_REF`) REFERENCES `academic_staff_member`
(`academic_staff_member_ID`),
 CONSTRAINT `parent_university` FOREIGN KEY
(`UNIVERSITY_REF`) REFERENCES `university`
(`university_ID`)
)

CREATE TABLE `program` (
 `program_ID` int(11) NOT NULL,
 `PROGRAM_NAME` varchar(150) NOT NULL,
 `PROGRAM_DESC` varchar(150) default NULL,
 PRIMARY KEY (`program_ID`)
)

CREATE TABLE `registration` (
 `registration_ID` int(11) NOT NULL,
 `REGISTRATION_ACADEMICSTAFFMEMBER_REF`
int(11) default NULL,
 `REGISTRATION_COURSE_REF` int(11) default NULL,
 `REGISTRATION_ACADEMICPROGRAMME_REF`
int(11) NOT NULL,
 PRIMARY KEY (`registration_ID`),
 KEY `parent_academic_entity`
(`REGISTRATION_ACADEMICSTAFFMEMBER_REF`),
 KEY `parent_academic_programme`
(`REGISTRATION_ACADEMICPROGRAMME_REF`),
 KEY `parent_course`
(`REGISTRATION_COURSE_REF`),
 CONSTRAINT `parent_academic_entity` FOREIGN KEY
(`REGISTRATION_ACADEMICSTAFFMEMBER_REF`)
REFERENCES `academic_staff_member`
(`academic_staff_member_ID`),
 CONSTRAINT `parent_academic_programme` FOREIGN
KEY
(`REGISTRATION_ACADEMICPROGRAMME_REF`)
REFERENCES `academic_programme`
(`academic_programme_ID`),
 CONSTRAINT `parent_course` FOREIGN KEY
(`REGISTRATION_COURSE_REF`) REFERENCES
`course` (`course_ID`)

 `department_ID` int(11) NOT NULL,
 `DEPT_NAME` varchar(150) NOT NULL,
 `UNIVERSITY_REF` int(11) NOT NULL,
 PRIMARY KEY (`department_ID`),
 KEY `parent_university`
(`UNIVERSITY_REF`),
 CONSTRAINT `parent_university`
FOREIGN KEY (`UNIVERSITY_REF`)
REFERENCES `academic_institution`
(`academic_institution_ID`)
)

CREATE TABLE `program` (
 `program_ID` int(11) NOT NULL,
 `PROGRAM_NAME` varchar(150) NOT
NULL,
 `PROGRAM_DESC` varchar(150) default
NULL,
 PRIMARY KEY (`program_ID`)
)

CREATE TABLE
`university_academic_instructor` (
 `university_academic_instructor_ID` int(11)
NOT NULL,
 `NAME` varchar(150) NOT NULL,
 `ELECTRONIC_MAIL` varchar(75) default
NULL,
 `OFFICE_ADDRESS` varchar(150) default
NULL,
 `TELEPHONE` varchar(50) default NULL,
 PRIMARY KEY
(`university_academic_instructor_ID`)
)

CREATE TABLE `university_student` (
 `university_student_ID` int(11) NOT NULL,
 `NAME` varchar(150) NOT NULL,
 `ELECTRONIC_MAIL` varchar(75) default
NULL,
 `TELEPHONE` varchar(50) default NULL,
 PRIMARY KEY (`university_student_ID`)
)

158 Appendix D: Test schemas

)

CREATE TABLE `university` (
 `university_ID` int(11) NOT NULL,
 `UNIVERSITY_NAME` varchar(150) NOT NULL,
 `UNIVERSITY_WEBSITE` varchar(150) NOT NULL,
 `UNIVERSITY_ESTABLISHMENT_DATE` date default
NULL,
 PRIMARY KEY (`university_ID`),
 UNIQUE KEY `NAME_CONSTRAINT`
(`UNIVERSITY_NAME`)
)

University Schemas-3 (UNIV-3)

Recipient Schema

 CREATE TABLE `address` (
 `Id` int(11) NOT NULL,
 `Street` text,
 `City` text,
 `PostalCode` int(11) default NULL,
 PRIMARY KEY (`Id`)
)

CREATE TABLE `payrate` (
 `Rank` int(11) NOT NULL,
 `HrRate` double default NULL,
 PRIMARY KEY (`Rank`)
)

CREATE TABLE `professor` (
 `Id` int(11) NOT NULL,
 `Name` text,
 `Sal` double default NULL,
 `addr` int(11) default NULL,
 PRIMARY KEY (`Id`),
 KEY `FK_professor_1` (`addr`),
 CONSTRAINT `FK_professor_1` FOREIGN KEY
(`addr`) REFERENCES `address` (`Id`)
)

CREATE TABLE `student` (
 `Name` text,
 `GPA` double default NULL,
 `Yr` int(11) default NULL
)

CREATE TABLE `workson` (
 `Name` text,
 `Proj` text,
 `Hrs` int(11) default NULL,
 `ProjRank` int(11) default NULL,
 KEY `FK_workson_1` (`ProjRank`),
 CONSTRAINT `FK_workson_1` FOREIGN KEY
(`ProjRank`) REFERENCES `payrate` (`Rank`))

Donor Schema

CREATE TABLE `professor` (
 `Id` int(11) NOT NULL,
 `Name` text,
 `Salary` double default NULL,
 `Address` text,
 PRIMARY KEY (`Id`)
)

CREATE TABLE `student` (
 `Name` text,
 `GradePointAverage` double default NULL,
 `Year` int(11) default NULL
)

CREATE TABLE `workson` (
 `StudentName` text,
 `Project` text,
 `Expenses` double default NULL
)

Appendix E

Evaluation of Schema Matching – For “select
max above threshold” strategy

In the second type of experiments, we used the “select max above threshold” strategy. Results
of precision, recall, f-measure, and overall measures for SASMINT and COMA++ are shown
in Figures E.1 through E.8. In general, this strategy achieves better than the “select all above
threshold” strategy, when precision, f-measure, and overall are considered. This is due to the
fact that not all matches above the threshold are selected, but only those with higher similarity
values. This brings about less number of false positives, which means precision is higher than
the “select all above threshold” strategy. However in some cases, this strategy may lead to
lower recall values because of missing some correct matches. This effect is little compared to
the high increase in precision. Therefore, in general, the values for f-measure and overall were
higher for both SASMINT and COMA++, when “select max above threshold” strategy was
used, but again on average SASMINT performed slightly better then COMA++ .

E.1 Evaluation of Schema Matching Using Precision

Precision values for SASMINT and COMA++ were the same for the purchase order, UNIV-2,
and UNIV-3 schemas. For the purchase order and UNIV-3 schemas, they both had the
precision of 1.0. For hotel and UNIV-1 schemas, SASMINT performed around 1.08 times
better than COMA++, but for the SDB schema, COMA++ had 1.05 times higher precision
value. The reason for the difference between the performances of the two systems was because
of the false positives introduced by the systems. For example, for the SDB schema, SASMINT
identified “donorID” and “donorVisitID” as similar, which was incorrect and thus resulted in a
decrease in the precision. On the average, SASMINT achieved 0.94 precision over all schema
pairs, whereas the average precision of COMA++ was 0.93. Compared to the “select all above
threshold” strategy, precision of “select max above threshold” strategy was very high for both
systems. This is due to the fact that, in this second strategy only the most relevant matches
were selected, which had the higher similarities than irrelevant matches. For example in the
test with UNIV-2, although the first strategy identified “STAFF_EMAIL” column of the
“academic_staff_member” table and “ELECTRONIC_MAIL” column of the
“university_student” table as similar, the second strategy did not make this mistake. Figures
E.1 and E.2 show the complete results for COMA++ and SASMINT.

160 Appendix E: Evaluation of Schema Matching – For “select max above threshold” strategy

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Precision

 Fig. E.1. Precision values for COMA++ -
select max above threshold strategy

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Precision

Fig. E.2. Precision values for SASMINT -
select max above threshold strategy

E.2 Evaluation of Schema Matching Using Recall

Recall values in the case of “select max above threshold” strategy were either the same or a bit
lower than the ones in the “select all above threshold” strategy for SASMINT. For COMA++,
recall was lower in the “select max above threshold” strategy for all schema pairs. This was
because of missing some correct matches. SASMINT and COMA++ both had the same recall
values for the SDB and UNIV-2 schemas, as shown in Figures E.3. and E.4. For the hotel
schemas, COMA++ was 1.1 times better than SASMINT. This was because of some table-to-
table and column-to-column matches that could not be identified by SASMINT. Namely,
similar to the case in “select all above threshold” strategy, these matching pairs were
semantically similar, but since the current version of WordNet did not provide high “semantic”
similarity values for these pairs, SASMINT could not identify them as similar. However,
SASMINT achieved for the purchase order and UNIV-3 schemas 1.2 times and for the UNIV-
1 schemas 1.1 times better than COMA++. On average, SASMINT had recall of 0.77, whereas
COMA++ had 0.72.

E.3 Evaluation of Schema Matching Using F-Measure

When precision and recall values are combined using f-measure, SASMINT and COMA++
accomplished almost the same for the hotel, SDB, and UNIV-2 schemas. However, for the
remaining schemas, SASMINT performed around 1.1 times better than COMA++. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Recall

 Fig. E.3. Recall values for COMA++ - select
max above threshold strategy

0

0.2

0.4

0.6

0.8

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Recall

Fig. E.4. Recall values for SASMINT -
select max above threshold strategy

Appendix E: Evaluation of Schema Matching – For “select max above threshold” strategyE.4
Evaluation of Schema Matching Using Overall 161

average f-measure for SASMINT was 0.84, whereas for COMA++ it was 0.80 and thus the
quality of SASMINT’s results is better than COMA++. F-measure values for COMA++ and
SASMINT over all schema pairs are shown in Figures E.5 and E.6 respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

F-Measure

 Fig. E.5. F-measure values for COMA++ -
select max above threshold strategy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

F-Measure

Fig. E.6. F-measure values for SASMINT -
select max above threshold strategy

E.4 Evaluation of Schema Matching Using Overall

Situation for the overall measure was similar to f-measure, except for the SDB schema. For
this pair, the value for COMA++ was slightly (1.05 times) better than SASMINT. For the
hotel and UNIV-2 schemas, overall values for SASMINT and COMA++ were the same.
However, for the purchase order, UNIV-1, and UNIV-3 schemas, SASMINT performed 1.2
times better than COMA++. The average overall value for SASMINT was 0.72, whereas for
COMA++ it was 0.66. Complete results for COMA++ and SASMINT are shown in Figures
E.7 and E.8 respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Overall

Fig. E.7. Overall values for COMA++ - select
max above threshold strategy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV‐1 UNIV‐2 UNIV‐3

Overall

Fig. E.8. Overall values for SASMINT - select
max above threshold strategy

162 Appendix E: Evaluation of Schema Matching – For “select max above threshold” strategy

Appendix F

Evaluation of Schema Integration - Details of
Steps

As explained in Section 6.7, Schema Pair#4, #5 and #6 are used in the schema integration
tests. In order to clarify the calculations for the completeness and minimality, we list below the
number of concepts and keys in schemas of all these three schema pairs:

x1: number of concepts in the first schema of Schema Pair#4 = 39

a1: number of keys in the first schema of Schema Pair#4 = 21

y1: number of concepts in the second schema of Schema Pair#4 = 27

b1: number of keys in the second schema of Schema Pair#4 = 10

x2: number of concepts in the first schema of Schema Pair#5 = 47

a2: number of keys in the first schema of Schema Pair#5 = 19

y2: number of concepts in the second schema of Schema Pair#5 = 34

b2: number of keys in the second schema of Schema Pair#5 = 11

x3: number of concepts in the first schema of Schema Pair#6 = 22

a3: number of keys in the first schema of Schema Pair#6 = 5

y3: number of concepts in the second schema of Schema Pair#6 = 13

b3: number of keys in the second schema of Schema Pair#6 = 1

Step-1: First Schema of Schema Pair#5 + Second Schema of Schema Pair#5

We show in Table 6.2, the matches between two schemas of Pair#5. By exploiting these
matches and using the integration rules explained in Chapter 4, SASMINT generated the first
integrated schema, called Integrated Schema#1. The integrated schema in SASMINT is
represented in the XML format, based on the SDML. SASMINT’s XML representation of
integrated schema specifies both the new elements of the integrated schema and how these

164 Appendix F: Evaluation of Schema Integration - Details of Steps

elements are derived from the elements of the two schemas being integrated. During the
integration process, one redundancy was automatically generated, which was the
“UNIVERSITY_REF” column of the “department” table. Therefore, the result of minimality
measure was 0.99, as shown below, which is a substantial automated achievement.

99.0
3447

1
1

2y2x

1
11

total

redundant
minimality n

n
m

When key minimality is considered, one redundant foreign key was generated on the same
“UNIVERSITY_REF” column. Therefore, the key minimality is computed as 0.97, as shown
below:

97.0
1119

1
1

2b2a

1
11

totalKey

eyredundantK
Keyminimality n

n
m

Although the resulting integrated schema had one redundant element and foreign key, it
covered all the elements and keys of two source schemas. Therefore, the result was considered
as 100% complete and 100% key complete, which is again a substantial automated
achievement.

Step-2: Integrated Schema#1 + First Schema of Schema Pair#6

At the second step, using the matches that we identified between the Integrated Schema#1 and
the first schema of the Schema Pair#6, SASMINT generated the Integrated Schema#2. There
is no “OFFICE_ADDRESS” column in the Integrated Schema#2 anymore. This is due to the
fact that the first schema of Schema Pair#6 had a table for the address information and the
“professor” table had a foreign key to the “address” table. Since the “academic_staff_member”
and “professor” are matched, in the new integrated schema, the “academic_staff_member” had
a new foreign key to the “address” table, and therefore, “OFFICE_ADDRESS” column is
replaced with a foreign key. Moreover, some new tables and columns were also added in the
Integrated Schema#2. Since the “department” table still had the redundant
“UNIVERSITY_REF” column and the foreign key, the results of minimality and key
minimality were 0.99 and 0.97 respectively, as shown below:

99.0
223447

1
1

3x2y2x

1
11

total

redundant
minimality n

n
m

97.0
51119

1
1

3a2b2a

1
11

totalKey

eyredundantK
Keyminimality n

n
m

Since all the concepts and keys of the three schemas (first and second schema of Schema
Pair#5 and the first schema of Schema Pair#6) were represented in the integrated schema,
completeness and key completeness were both 100% after this step.

Step-3: Integrated Schema#2 + Second Schema of Schema Pair#6

In this step, we first determined the matches between the Integrated Schema#2 and the second
schema of the Schema Pair#6. SASMINT generated Integrated Schema#3, based on these
matches. Considering the concepts (columns and tables) and keys, the resulting schema was

Appendix F: Evaluation of Schema Integration - Details of Steps 165

again complete. Redundant “UNIVERSITY_REF” column and the foreign key defined on it
still existed after this step. Therefore, minimality and key minimality after this step were
calculated as 0.99 and 0.97 respectively, as shown below:

99.0
13223447

1
1

3y3x2y2x

1
11

total

redundant
minimality n

n
m

97.0
151119

1
1

3b3a2b2a

1
11

totalKey

eyredundantK
Keyminimality n

n
m

Step-4: Integrated Schema#3 + First Schema of Schema Pair#4

In Step 4, we identified the matches among the elements of the Integrated Schema#3 and the
first schema of the Schema Pair#4 and then integrated these two schema pairs. Resulting
integrated schema is called Integrated Schema#4. Although a match was specified between the
“Proj” column of the “workson” table of Integrated Schema#3 and the “project” table of the
first schema of the Schema Pair#4, the resulting integrated schema missed a foreign key
column in “workson” table referencing to the “project” table. Furthermore, the “author”
column of the “paper-author” table originally had a foreign key reference to two different
tables. However, in the resulting Integrated Schema#4, only one of them was kept. The same
case happened to the “person” column of the “person-project” table. Considering the concepts
schema was 100% complete, but since three foreign keys are missed, the key completeness
decreased after this step, as shown in the calculations below. Redundancy was again due to the
“UNIVERSITY_REF” column and the foreign key defined on it.

99.0
3913223447

1
1

1x3y3x2y2x

1
11

total

redundant
minimality n

n
m

98.0
21151119

1
1

1a3b3a2b2a

1
11

totalKey

eyredundantK
Keyminimality n

n
m

95.0
21151119

321151119

1a3b3a2b2a

31a3b3a2b2a

totalKey

ycompleteKe
ssKeycompletene n

n
m

Step-5: Integrated Schema#4 + Second Schema of Schema Pair#4

In the final step of schema integration, we identified the matches between Integrated
Schema#4 and the second schema of the Schema Pair#4. There was a match between the
“researchInterest” column of the “academic_staff_member” table and the “areas_of_interest”
table of the second schema. Furthermore, in the original schema of Schema Pair#4,
“interest_id” was a foreign key to the “student” and to the “academic_staff” tables. The
“student” table matched the “university_student” table and the “academic_staff” table matched
the “academic_staff_member” table of Integrated Schema#4. However, in the final integrated
schema, these foreign key relationships were missed. The automated removal of
“researchInterest” column was correct, but there had to be a foreign key reference from the
“areas_of_interest” table to the “academic_staff_member” and “university_student” tables.
Besides missing these two relationships, there was no concept of the recipient and donor

166 Appendix F: Evaluation of Schema Integration - Details of Steps

schemas that were not represented in the Integrated Schema#5, meaning that integration was
100% complete. Therefore, final integrated schema was 100% complete, 93% key complete,
99% minimal, and 99% key minimal as shown below. Redundancy was again due to the
“UNIVERSITY_REF” column and the foreign key defined on it.

99.0
273913223447

1
1

1y1x3y3x2y2x

1
11

total

redundant
minimality n

n
m

99.0
1021151119

1
1

1b1a3b3a2b2a

1
11

totalKey

eyredundantK
Keyminimality n

n
m

93.0
1021151119

2321151119
1b1a3b3a2b2a

231b1a3b3a2b2a

totalKey

ycompleteKe
ssKeycompletene n

n
m

Bibliography

Afsarmanesh, H., Benabdelkader, A., & Hertzberger, L. O. (1998). A flexible approach to information sharing in
water industries. In: Proceedings of the International Conference on Information Technology - CIT98,
Bhubaneswar, India. Tata McGraw-Hill Publishing Company Limited, pp.135-142.

Afsarmanesh, H., & Camarinha-Matos, L. M. (1997). Federated information management for cooperative virtual
organizations. In: Proceedings of the VIII International Conference on Database and Expert System Applications
- DEXA’97, Toulouse, France. Springer Verlag Lecture Notes in Computer Science (LNCS 1308), pp.561-572.

Afsarmanesh, H., & Camarinha-Matos, L. M. (2005). A framework for management of virtual organizations
breeding environments. In: Proceedings of PRO-VE'05-Collaborative Networks and their Breeding
Environment, Valencia, Spain. pp.35-48.

Afsarmanesh, H., Camarinha-Matos, L. M., & Ermilova, E. (2008). Vbe reference framework. In L. M.
Camarinha-Matos, H. Afsarmanesh & M. Ollus (Eds.), Methods and tools for collaborative networked
organizations. (pp. 35-68). 978-0-387-79423-5, New York, Springer.

Afsarmanesh, H., Guevara-Masis, V., & Hertzberger, L. O. (2004). Federated management of information for
telecare. In: Proceedings of the TELECARE 2004 - Int. Workshop on Tele-Care and Collaborative Virtual
Communities in Elderly Care, Porto, Portugal. INSTICC Press, pp.49-62, ISBN:972-8865-10-4.

Afsarmanesh, H., Wiedijk, M., Hertzberger, L. O., Gomes, F. J. N., Provedel, A., Martins, R. C., et al. (1996).
Cooperation of cim expert systems supported by peer. Special issue of Journal of Studies in Informatics and
Control, 5(2), pp.157-169.

Afsarmanesh, H., Wiedijk, M., Tuijnman, F., Bergman, M., & Trenning., P. (1994). The peer information
management language user manual, Technical Report, CS-94-14, Dept. of Computer Science, University of
Amsterdam.

An, Y., Mylopoulos, J., & Borgida, A. (2006). Building semantic mappings from databases to ontologies. In:
Proceedings of the Twenty-First National Conference on Artificial Intelligence - (AAAI-06), Boston,
Massachusetts, USA. AAAI Press, pp.1557-1560, ISBN:978-1-57735-281-5.

Arens, Y., Knoblock, C. A., & Shen, W.-M. (1996). Query reformulation for dynamic information integration.
Journal of Intelligent Information Systems, 6(2/3), pp.99-130.

Aumueller, D., Do, H. H., Massmann, S., & Rahm, E. (2005). Schema and ontology matching with coma++. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland,
USA. ACM, pp.906-908, ISBN:1-59593-060-4.

Banerjee, S., & Pedersen, T. (2002). An adapted lesk algorithm for word sense disambiguation using wordnet.
In: Proceedings of the Third International Conference on Intelligent Text Processing and Computational
Linguistics, Mexico City - Mexico. Springer, pp.136-145.

Batini, C., Lenzerini, M., & Navathe, S. (1986). A comparative analysis of methodologies for database schema
integration. ACM Computing Surveys, 18(4), pp.323-364.

168 Bibliography

Bayardo, R. J., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., et al. (1997). Infosleuth: Agent-based
semantic integration of information in open and dynamic environments. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Tucson, Arizona, USA. ACM, pp.195-206.

Beneventano, D., & Bergamaschi, S. (2004). The momis methodology for integrating heterogeneous data
sources. In: Proceedings of the IFIP Congress Topical Sessions, Toulouse, France. Kluwer, pp.19-24, ISBN:1-
4020-8156-1.

Bergamaschi, S., Castano, S., Beneventano, D., & Vincini, M. (2001). Semantic integration of heterogeneous
information sources. Data and Knowledge Engineering, 36(1), pp.215-249.

Bergamaschi, S., Castano, S., Vimercati, S. D. C. d., Montanari, S., & Vincini, M. (1998). A semantic approach
to information integration: The momis project. In: Proceedings of the Sesto Convegno della Associazione
Italiana per l'Intelligenza Artificiale - AI*IA98, Padova, Italy.

Bernstein, P. A., Melnik, S., Petropoulos, M., & Quix, C. (2004). Industrial-strength schema matching. SIGMOD
Record, 33(4), pp.38-43.

BizTalk. (2010). Microsoft corporation: Biztalk mapper, Last accessed 2010, from
http://www.microsoft.com/biztalk.

Blondel, V. D., Gajardo, A., Heymans, M., Senellart, P., & Dooren, P. V. (2004). A measure of similarity
between graph vertices: Applications to synonym extraction and web searching. SIAM Review, 46(4), pp.647-
666.

Brachman, R. J., & Schmolze, J. G. (1985). An overview of the kl-one knowledge representation system.
Cognitive Science, 9(2), pp.171-216.

Brodie, M. L., & Ceri, S. (1992). On intelligent and cooperative information systems: A workshop summary.
International Journal of Intelligent and Cooperative Information Systems, 2(2), pp.249-290.

Budanitsky, A., & Hirst, G. (2001). Semantic distance in wordnet: An experimental, application-oriented
evaluation of five measures. In: Proceedings of the Workshop on WordNet and Other Lexical Resources, Second
meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, USA.
pp.29-34.

Bukhres, O., & Elmagarmid, A. (Eds.). (1996). Object-oriented multidatabase systems: A solution for advanced
applications. Englewood Cliffs, NJ: Prentice Hall.

Bunke, H. (2000). Graph matching: Theoretical foundations, algorithms and applications. In: Proceedings of the
International Conference on Vision Interface, Montreal, Quebec, Canada. pp.82-88.

Busse, S., Kutsche, R.-D., Leser, U., & Weber, H. (1999). Federated information systems: Concepts,
terminology and architectures,Technical report, 99-9, Technische Universitat Berlin.

Camarinha-Matos, L. M., & Afsarmanesh, H. (1999a). The prodnet goals and approach. In: Proceedings of PRO-
VE'99- Infrastructures for Virtual Enterprises, Porto, Portugal. Kluwer Academic Publishers, pp.97-108, ISBN:
0-7923-8639-6.

Camarinha-Matos, L. M., & Afsarmanesh, H. (1999b). The virtual enterprise concept. In: Proceedings of the
Infrastructures for Virtual Enterprises, Porto, Portugal. Kluwer Academic Publishers, pp.3-14, ISBN:0-7923-
8639-6.

Camarinha-Matos, L. M., & Afsarmanesh, H. (2003). Designing the information technology subsystem for
enterprise integration. In P. Bernus, L. Nemes & G. Schmidt (Eds.), Invited chapter in handbook on enterprise
architecture (pp. 617-680), ISBN: 3-540-00343-6, Springer.

Camarinha-Matos, L. M., & Afsarmanesh, H. (2008a). Classes of collaborative networks. In G. Putnik & M. M.
Cunha (Eds.), Encyclopedia of networked and virtual organizations. Idea Group.

Camarinha-Matos, L. M., & Afsarmanesh, H. (2008b). Concept of collaboration. In G. Putnik & M. M. Cunha
(Eds.), Encyclopedia of networked and virtual organizations. Idea Group.

http://www.microsoft.com/biztalk�

Bibliography 169

Camarinha-Matos, L. M., Afsarmanesh, H., & Erbe, H. (Eds.) (2000). Advances in networked enterprises -
virtual organizations, balanced automation, and systems integration. ISBN: 0-7923-7958-6, Boston, Kluwer
Academic Publishers.

Camarinha-Matos, L. M., Afsarmanesh, H., & Ollus, M. (2005). Ecolead: A holistic approach to creation and
management of dynamic virtual organizations. In: Proceedings of PRO-VE'05- Collaborative Networks and their
Breeding Environments, Valencia, Spain. Springer, pp.3-16.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., & Rice, J. P. (1998). Okbc: A programmatic foundation for
knowledge base interoperability. In: Proceedings of the Artificial intelligence/Innovative applications of
artificial intelligence, Madison, Wisconsin, USA. American Association for Artificial Intelligence, pp.600-607.

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., et al. (1994). The
tsimmis project: Integration of heterogeneous information sources. In: Proceedings of the 10th Meeting of the
Information Processing Society of Japan, Tokyo, Japan.pp.7-18.

Chiticariu, L., Hernández, M. A., Kolaitis, P. G., & Popa, L. (2007). Semi-automatic schema integration in clio.
In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (Demo Track), Vienna,
Austria. pp.1326-1329.

Chiticariu, L., Kolaitis, P. G., & Popa, L. (2008). Interactive generation of integrated schemas. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada. ACM,
pp.833-846.

Cleverdon, C. W., & Keen, E. M. (1966). Factors determining the performance of indexing systems. Cranfield,
England, Aslib-Cranfield research project.

Cohen, W., Ravikumar, P., & Fienberg, S. E. (2003). A Comparison of String Distance Metrics for Name-
Matching Tasks. In: Proceedings of the IJCAI-2003 Workshop on Information Integration on the Web, Acapulco,
Mexico. pp.73-78.

Dhamankar, R., Lee, Y., Doan, A., Halevy, A., & Domingos, P. (2004). Imap: Discovering complex semantic
matches between database schemas. In: Proceedings of the ACM Sigmod Conference on Management of Data,
Paris, France. ACM, pp.383-394, ISBN:1-58113-859-8.

Do, H. H., Melnik, S., & Rahm, E. (2002). Comparison of schema matching evaluations. In: Proceedings of the
NODe 2002 Web and Database-Related Workshops on Web, Web-Services, and Database Systems. Springer
Lecture Notes in Computer Science (LNCS 2593), pp.221-237, ISBN:3-540-00745-8.

Do, H. H., & Rahm, E. (2002). Coma - a system for flexible combination of schema matching approaches. In:
Proceedings of the International Conference on Very Large Databases (VLDB), Hong Kong, China. pp.610-621.

Doan, A. H., Domingos, P., & Halevy, A. (2001). Reconciling schemas of disparate data sources - a machine-
learning approach. In: Proceedings of the ACM SIGMOD International Conference on Management of Data,
Santa Barbara, California, USA. ACM, pp.509-520.

Doan, A. H., Madhavan, J., Domingos, P., & Halevy, A. (2002). Learning to map between ontologies on the
semantic web. In: Proceedings of the World-Wide Web Conference, Honolulu, Hawaii, USA. pp.662-673.

Dou, D., McDermott, D., & Qi, P. (2003). Ontology translation on the semantic web. In: Proceedings of the
International Conference on Ontologies, Databases and Applications of Semantics - ODBASE'03. Springer
Lecture Notes in Computer Science (LNCS 2888), pp.952-969.

Duchateau, F., Bellahsene, Z., & Hunt, E. (2007). Xbenchmatch: A benchmark for xml schema matching tools.
In: Proceedings of the International Conference on Very Large Databases (VLDB), Vienna, Austria. pp.1318-
1321, ISBN:978-1-59593-649-3.

Eclipse. (2010). Eclipse, Last accessed 2010, from http://www.eclipse.org/.

Ehrig, M., & Staab, S. (2004). Qom - quick ontology mapping. In: Proceedings of the International Semantic
Web Conference (ISWC), Hiroshima, Japan. Springer Lecture Notes in Computer Science (LNCS 3298), pp.683-
697.

http://www.eclipse.org/�

170 Bibliography

Ehrig, M., & Sure, Y. (2004). Ontology mapping - an integrated approach. In: Proceedings of the European
Semantic Web Symposium (ESWS), Heraklion, Crete, Greece. Springer Lecture Notes in Computer Science
(LNCS 3053), pp.76-91, ISBN:3-540-21999-4.

Ehrig, M., & Sure, Y. (2005). Foam - framework for ontology alignment and mapping - results of the ontology
alignment evaluation initiative. In: Proceedings of the K-CAP (International Conference on Knowledge Capture)
2005 Workshop on Integrating Ontologies, Banff, Canada. pp.72-76.

Elmagarmid, A., & Pu, C. (1990). Guest editors' introduction to the special issue on heterogeneous databases.
ACM Computing Surveys, 22(3), pp.175-178.

Embley, D. W., Xu, L., & Ding, Y. (2004). Automatic direct and indirect schema mapping: Experiences and
lessons learned. SIGMOD Record, 33(4), pp.14-19.

Fellbaum, C. (1998). An electronic lexical database., Cambridge, MA, MIT press.

Foggia, P., Sansone, C., & Vento, M. (2001). A performance comparison of five algorithms for graph
isomorphism. In: Proceedings of the IAPR TC-15 Workshop on Graph-based Representations in Pattern
Recognition, Ischia, Italy. pp.188-199.

Gal, A. (2006). Managing uncertainty in schema matching with top-k schema mappings. Journal on Data
Semantics VI: Special Issue on Emergent Semantics, v. 4090, pp.90-114.

Gal, A. (2007). Why is schema matching tough and what can we do about it? SIGMOD Record, 35(4), pp.2-5.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., et al. (1997). The
tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems, 8(2),
pp.117-132.

Giunchiglia, F., Shvaiko, P., & Yatskevich, M. (2004). S-match: An algorithm and an implementation of
semantic matching. In: Proceedings of the European Semantic Web Symposium (ESWS), Heraklion, Crete,
Greece. Springer Lecture Notes in Computer Science, pp.61-75, ISBN:3-540-21999-4.

Goh, C., Bresson, S., Madnich, S., & Siegel, M. (1999). Context interchange: New features and formalisms for
the intelligent integration of information. ACM Transactions on Information Systems, 17(3), pp.270-293.

GraphML. (2010). Graphml, Last accessed 2010, from http://graphml.graphdrawing.org/.

Gregor, R. M. M. (1988). A deductive pattern matcher. In: Proceedings of the National Conference on Artificial
Intelligence (AAAI), Saint Paul, Minnesota, USA. Morgan Kaufmann Publisher, pp.403-408.

Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge Acquisition, 5(2), pp.199-220.

Guevara-Masis, V., Unal, O., Kaletas, E. C., Afsarmanesh, H., & Hertzberger, L. O. (2004). Using ontologies for
collaborative information management: Some challenges & ideas. In: Proceedings of the Third Biennial
International Conference on Advances in Information Systems (ADVIS), Izmir, Turkey. Springer Lecture Notes
in Computer Science (LNCS 3261), pp.107-116, ISBN:3-540-23478-0.

GXL. (2010). Graph exchange language (gxl), Last accessed 2010, from http://www.gupro.de/GXL/.

Hammer, J., & McLeod, D. (1993). An approach to resolving semantic heterogeneity in a federation of
autonomous, heterogeneous database systems. International Journal of Intelligent & Cooperative Information
Systems, World Scientific, 2(1), pp.51-83.

Hammer, M., & McLeod, D. (1979). On database management system architecture, Technical Report
MIT/LCS/TM-141, MIT Lab for Computer Science.

Hammer, M., & Mcleod, D. (1981). Database description with sdm: A semantic database model. ACM
Transactions on Database Systems, 6(3), pp.351-386.

Heimbigner, D., & McLeod, D. (1985). A federated architecture for information management. ACM Transaction
on Information Systems, 3(3), pp.253-278.

http://graphml.graphdrawing.org/�
http://www.gupro.de/GXL/�

Bibliography 171

Hirst, G., & St-Onge, D. (1998). Lexical chains as representations of context for the detection and correction of
malapropisms. In C. Fellbaum (Ed.), Wordnet: An electronic lexical database and some of its applications.,
Cambridge, MIT Press.

Huhns, M., Jacobs, N., Ksiezyk, T., Shen, W., Singh, M., & Cannata, P. (1992). Enterprise information modeling
and model integration in carnot. In C. J. Petrie (Ed.), Enterprise integration modeling (pp. 290-299). MIT Press.

Jaccard, P. (1912). The distribution of flora in the alpine zone. The New Phytologist, 11(2), pp.37-50.

Jaro, M. A. (1995). Probabilistic linkage of large public health data files. Statistics in Medicine, v. 14, pp.491-
498.

JGraph. (2010). Jgraph, Last accessed 2010, from http://www.jgraph.com/.

JGraphT. (2010). Jgrapht, Last accessed 2010, from http://jgrapht.sourceforge.net/.

Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. In:
Proceedings of the International Conference on Research in Computational Linguistics., Taipei, Taiwan. pp.19-
33.

JWNL. (2010). Jwnl, Last accessed 2010, from http://jwordnet.sourceforge.net/.

Kahng, J., & McLeod, D. (2001). Dynamic classificational ontologies. In M. A. Arbib & G. J.S. (Eds.),
Computing the brain: A guide to neuroinformatics (pp. 241-254). Academic Press.

Kamel, M. N., & Kamel, N. (1992). Federated database management system: Requirements, issues and
solutions. Computer Communications, 15(4), pp.270-280.

Kirkpatrick, B. (1998). Roget's thesaurus of english words and phrases., Harmondsworth, Middlesex, England,
Penguin.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), pp.604-
632.

Leacock, C., & Chodorow., M. (1998). Combining local context with wordnet similarity for word sense
identification. In C. Fellbaum (Ed.), Wordnet: A lexical reference system and its application. Cambridge, MIT
Press.

Lenzerini, M. (2002). Data integration: A theoretical perspective. In: Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems - PODS, Madison, Wisconsin. ACM,
pp.233-246, ISBN:1-58113-507-6.

Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: How to tell a pine code
from an ice cream cone. In: Proceedings of the 5th International Conference on Systems Documentation,
Toronto, Ontario, Canada. pp.24-26.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Cybernetics
and Control Theory, 10(8), pp.707-710.

Levy, A. Y., Rajaraman, A., & Ordille, J. J. (1996). Querying heterogeneous information sources using source
descriptions. In: Proceedings of the International Conference on Very Large Database (VLDB), Bombay, India.
Morgan Kaufmann, pp.251-262, ISBN:1-55860-382-4.

Li, W., & Clifton, C. (2000). Semint: A tool for identifying attribute correspondence in heterogeneous databases
using neural networks. Journal of Data and Knowledge Engineering, 33(1), pp.49-84.

Litwin, W., & Abdellatif, A. (1986). Multidatabase interoperability. Computer, 19(12), pp.10-18.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic schema matching with cupid. In: Proceedings of the
International Conference on Very Large Databases (VLDB), Roma, Italy. Morgan Kaufmann, pp.49-58,
ISBN:1-55860-804-4.

http://www.jgraph.com/�
http://jgrapht.sourceforge.net/�
http://jwordnet.sourceforge.net/�

172 Bibliography

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000). An environment for merging and testing large
ontologies. In: Proceedings of the Seventh International Conference on Principles of Knowledge Representation
and Reasoning (KR2000), Breckenridge, Colorado. pp.483-493.

Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity flooding: A versatile graph matching algorithm
and its application to schema matching. In: Proceedings of the International Conference on Data Engineering
(ICDE), San Jose, CA, USA. IEEE Computer Society, pp.117-128.

Melnik, S., Rahm, E., & Bernstein, P. A. (2003). Rondo: A programming platform for generic model
management. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, San
Diego, California, USA. ACM, pp.193-204, ISBN:1-58113-634-X.

Mena, E., Illarramendi, A., Kashyap, V., & Sheth, A. (2000). Observer: An approach for query processing in
global information systems based on interoperation across pre-existing ontologies. Distributed and Parallel
Databases Journal, 8(2), pp.223-271.

Miller, R. J., Haas, L. M., & Hernandez, M. A. (2000). Schema mapping as query discovery. In: Proceedings of
the International Conference on Very Large Databases (VLDB), Cairo, Egypt. Morgan Kaufmann, pp.77-88,
ISBN:1-55860-715-3.

Mitra, P., Wiederhold, G., & Decker, S. (2001). A scalable framework for the interoperation of information
sources. In: Proceedings of the International Semantic Web Working Symposium (SWWS), California, USA. IOS
press, pp.317-329, ISBN:1-58603-255-0.

Monge, A. E., & Elkan, C. (1996). The field matching problem: Algorithms and applications. In: Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA. AAAI
Press, pp.267-270, ISBN:1-57735-004-9.

Noy, N., & Musen, M. (2001). Anchor-prompt: Using non-local context for semantic matching. In: Proceedings
of the Workshop on Ontologies and Information Sharing at the International Joint Conference on Artificial
Intelligence (IJCAI). pp.63-70.

Noy, N. F., & Musen, M. A. (2000). Prompt: Algorithm and tool for automated ontology merging and alignment.
In: Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Austin, Texas,
USA. AAAI Press/The MIT Press, pp.450-455, ISBN:0-262-51112-6.

Noy, N. F., & Musen, M. A. (2003). The prompt suite: Interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies, 59(6), pp.983-1024.

Ozsu, T., & Valduriez, P. (1999). Principles of distributed database systems. ISBN: 0-13-659707-6, New Jersey,
Prentice Hall.

Papakonstantinou, Y., Garcia-Molina, H., & Ullman, J. (1996). Medmaker: A mediation system based on
declarative specifications. In: Proceedings of the International Conference on Data Engineering (ICDE), New
Orleans, Louisiana, USA. IEEE Computer Society, pp.132-141, ISBN:0-8186-7240-4.

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object exchange across heterogeneous
information sources. In: Proceedings of the International Conference on Data Engineering (ICDE), Taipei,
Taiwan. IEEE Computer Society, pp.251-260, ISBN:0-8186-6910-1.

Patwardhan, S. (2003). Incorporating dictionary and corpus information into a context vector measure of
semantic relatedness.Master’s thesis, University of Minnesota.

Pedersen, T., Banerjee, S., & Patwardhan, S. (2005). Maximizing semantic relatedness to perform word sense
disambiguation., Research Report UMSI 2005/25, University of Minnesota Supercomputing Institute.

Pottinger, R., & Bernstein, P. A. (2008). Schema merging and mapping creation for relational sources. In:
Proceedings of the International Conference on Extending Database Technology (EDBT), Nantes, France.
ACM, pp.73-84, ISBN:978-1-59593-926-5.

Pottinger, R. A., & Bernstein, P. A. (2003). Merging models based on given correspondences. In: Proceedings of
the International Conference on Very Large Databases (VLDB), Berlin, Germany. Morgan Kaufmann, pp.826-
873, ISBN:0-12-722442-4.

Bibliography 173

Protege. (2010). Protege, Last accessed 2010, from http://protege.stanford.edu/.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. VLDB Journal,
10(4), pp.334-350.

Rahm, E., Do, H. H., & Massmann, S. (2004). Matching large xml schemas. SIGMOD Record, 33(4), pp.26-31.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI'95). Montréal, Québec, Canada.
pp.448-453.

Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based measure and its application to
problems of ambiguity in natural language. Journal of Artificial Intelligence Research (JAIR), 11, pp.95-130.

Rijsbergen, C. J. V. (1979). Information retrieval. London, U.K., Butterworth.

Saleem, K., Bellahsene, Z., & Hunt, E. (2008). Porsche: Performance oriented schema mediation. Information
Systems, 33(7-8), pp.637-657.

Salton, G., & Yang, C. S. (1973). On the specification of term values in automatic indexing. Journal of
Documentation, 29, pp.351-372.

SecondString. (2010). Secondstring, Last accessed 2010, from http://secondstring.sourceforge.net/.

Sheth, A. (1998). Changing focus on interoperability in information systems: From system, syntax, structure to
semantics. In M. F. Goodchild, M. J. Egenhofer, R. Fegeas & C. A. Kottman (Eds.), Interoperating geographic
information systems. Kluwer.

Sheth, A., & Kashyap, V. (1992). So far (schematically), yet so near (semantically). In: Proceedings of the
Proceedings of the IFIP WG2.6 Conference on Semantics of Interoperable Database Systems, Lorne, Victoria,
Australia. North-Holland Publishing, pp.283-312, ISBN:0-444-89879-4.

Sheth, A., & Larson, J. (1990). Federated database systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys, 22(3), pp.183-236.

Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching approaches. Journal of Data Semantics
IV, v. 3730, pp.146-171.

Silberschatz, A., Stonebraker, M., & Ullman, J. D. (1990). Database systems: Achievements and opportunities.
SIGMOD Record, 19(4).

Sørensen, C. (2005). This is not an article-just some thoughts on how to write one, Technical Report 121,
London School of Economics and Political Science. United Kingdom.

Spaccapietra, S., Parent, C., & Dupont, Y. (1992). Model independent assertions for integration of heterogeneous
schemas. VLDB Journal, 1(1), pp.81-126.

Tsichritzis, D. (1981). Integrating data base and message systems. In: Proceedings of the International
Conference on Very large Data Bases (VLDB), Cannes, France. IEEE Computer Society, pp.356-362.

Tuijnman, F., & Afsarmanesh, H. (1993). Management of shared data in federated cooperative peer
environment. International Journal of Intelligent and Cooperative Information Systems (IJICIS), 2(4), pp.451-
473.

Unal, O., & Afsarmanesh, H. (2006a). Interoperability in collaborative network of biodiversity organizations. In:
Proceedings of PRO-VE - Network-Centric Collaboration and Supporting Frameworks, Helsinki, Finland.
Springer, pp.515-524.

Unal, O., & Afsarmanesh, H. (2006b). Sasmint system for database interoperability in collaborative networks.
Springer Lecture Notes in Computer Science (LNCS 4275), Springer, pp.91-108, ISBN:978-3-540-48287-3.

Unal, O., & Afsarmanesh, H. (2006c). Using linguistic techniques for schema matching. In: Proceedings of the
International Conference on Software and Data Technologies (ICSOFT), Setubal, Portugal. INSTICC Press,
pp.115-120, ISBN:972-8865-69-4.

http://protege.stanford.edu/�
http://secondstring.sourceforge.net/�

174 Bibliography

Unal, O., & Afsarmanesh, H. (2009). Schema matching and integration for data sharing among collaborating
organizations. Journal of Software, 4(3), ISSN:1796-217X, pp.248-261.

Unal, O., & Afsarmanesh, H. (2010). Semi-automated schema integration with sasmint. Journal of Knowledge
and Information Systems., 23(1), ISSN:0219-1377, pp.99-128.

Unal, O., Kaletas, E. C., Afsarmanesh, H., Yakali, H. H., & Hertzberger, L. O. (2005). Collaborative information
management system for science domains. In S. Dasgupta (Ed.), Encyclopedia of virtual communities and
technologies. Idea Group Publishing.

Wang, G., Goguen, J., Nam, Y., & Lin, K. (2004). Critical points for interactive schema matching. In:
Proceedings of the Sixth Asia Pacific Web Conference, Hangzhou, China. Springer Lecture Notes in Computer
Science, pp.654-664, ISBN:3-540-21371-6.

Wiederhold, G. (1992). Mediators in the architecture of future information systems. IEEE Computer, 25(3),
pp.38-49.

WordNet. (2010). Wordnet, Last accessed 2010, from http://www.cogsci.princeton.edu/~wn/.

Wu, Z., & Palmer, M. (1994). Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting
of the Association for Computational Linguistics, Las Cruces, New Mexico. Association for Computational
Linguistics, pp.133-138.

XMLBeans. (2010). Xmlbeans, Last accessed 2010, from http://xmlbeans.apache.org/.

Zager, L. (2005). Graph similarity and matching S.M. Thesis, Massachusetts Institute of Technology.

Zisman, A. (1995). Towards interoperability in heterogeneous database systems, Technical Report 11,
Department of Computing, Imperial College of Science, Technology and Medicine.

http://www.cogsci.princeton.edu/~wn/�
http://xmlbeans.apache.org/�

Summary

On semi-automated matching and integration
of database schemas

Today, increasingly more organizations understand the need to collaborate in order to better
achieve their common goals. As a result of this tendency towards increased collaboration, a
line of research and development has focused on addressing data sharing and interoperation
among organizations, and developing ICT tools and systems to support them. But many open
challenges still remain in this area. Focusing on sharing and integration of information among
independent nodes within collaborative networks, and to provision transparent access to the
information stored in their databases, form the base for their effective co-working. But clearly,
independent nodes model their information heterogeneously in their database schemas. Thus,
before any information sharing can occur among these databases, the main challenges to be
addressed include: (i) identification and establishment of correspondences among concepts
defined in independent database schemas, (ii) resolution of existing heterogeneities among
database schemas of the involved nodes, and (iii) integration of these database schemas.
Typically these three tasks are complicated, even to handle manually, and this difficulty
intensifies by the number of nodes within the collaborative network, as well as the size of their
database schemas. A number of research approaches and prototypes have therefore aimed at
automating the matching of schemas, while a few others have independently attempted at
automating the integration of schemas. However, in spite of the related past efforts both in
research and in commercial developments, today the matching and integration of schemas still
involve a large amount of manual work and there are a large number of open research issues
that remain in these areas.
 This thesis proposes an automated but supervised combined approach that addresses and
merges the problems of matching and integration of relational database schemas. Thus the
main contribution of the thesis is a new combined schema matching/integration approach. A
proof of concept for this approach is provided, as an implemented prototype system called
SASMINT – Semi-Automatic Schema Matching and INTegration. The SASMINT system
automatically identifies a large number of syntactic, semantic, and structural heterogeneities
among relational database schemas. It then attempts to resolve their heterogeneity, proposing
for user validation a list of potential matches among the compared schemas. The system then
automatically generates an integrated schema from this list.

The Chapter 1 of this thesis presents the motivation for this work, the main research
questions, the objectives, and the main contributions of this research.

176 Summary

Chapter 2 elaborates on the base definitions and the classification of concepts from the
state of the art, in relation to architectures, approaches, and systems that enable sharing and
exchange of distributed and heterogeneous information.

As heterogeneity stands at the center of the schema matching and integration processes,
identification and resolution of different types of heterogeneities are crucial for the success of
these processes. Chapter 3 presents different taxonomies introduced for heterogeneities, and
narrows them down to the database schema heterogeneity, the main subject of the thesis.

After establishing the base for our research in the first three chapters, the rest of this
dissertation addresses the design and development of our proposed approach. As a main
chapter of this thesis, Chapter 4 contains a literature survey focused on (i) database integration
and interoperability, (ii) database schema matching, (iii) database schema integration, and (iv)
ontology matching and merging. Then our proposed solution, SASMINT, is introduced, to
address a number of identified open issues. The SASMINT approach increases the accuracy of
schema matching, through the weighted combination of a number of schema matching
algorithms, where each algorithm resolves a different specific kind of syntactic, semantic, or
structural conflicts. Furthermore, another contribution of SASMINT covered in Chapter 4 is
the introduction of our so called SAMPLER technique, which semi-automatically identifies for
every target domain the appropriate weights for each algorithm planned to be applied in the
linguistic matching process. Chapter 4 also introduces an overview of a set of rules that enable
the automatic generation of both the integrated schemas as well as the derivation constructs
that represent the history of the integration process in the collaboration network. Our
development of SASMINT Derivation Markup Language (SDML), which captures and
supports the creation of both persisting schema match results and persisting schema integration
results, is also described in this chapter.

Similar to any other research work, it is important to verify and validate the approach
proposed by our research. For this purpose, we have implemented our approach in the
SASMINT system, which is the focus of Chapter 5. The main components of the SASMINT
system, as well as its operation are described in this chapter. While in our opinion, supporting
user interactions through a GUI is fundamental for the semi-automated schema matching and
schema integration processes, this component is typically missing from the research and
development work in this area. A GUI is required to support the user with verification of the
automatically identified schema conflicts and matches, as well as the proposed integrated
schema. Through SASMINT’s GUI, users interact with the system, set proper weights for its
processes, approve/modify/disapprove its automatically generated results, and save the results
of both schema matching and schema integration.

To demonstrate and evaluate the results of this research and to measure the quality of the
SASMINT system, we have carried out a number of experiments. Specifically, the schema
matching component of SASMINT is compared and evaluated against another state of the art
schema matching system. But the approach of SASMINT is unique in that it merges the
schema matching and schema integration processes. Hence, we could not find a counterpart to
compare the schema integration component of SASMINT. Therefore, in our evaluation
experiments we have only measured its success rate in producing accurate results. These
experiments are elaborated at length in Chapter 6 of this thesis.

This thesis concludes by explaining how it has addressed the main research questions.

Samenvatting

Semiautomatische Vergelijking en Integratie
van Database Schema's1

Tegenwoordig zien steeds meer organisaties het belang in van samenwerking om hun
gezamenlijke doelstellingen beter te kunnen realiseren. Als een gevolg van deze sterker
wordende impuls tot samenwerken zijn er onderzoeks- en ontwikkelingsgebieden ontstaan die
zich richten op de studie naar het delen van gegevens en de coöperatie tussen organisaties, en
het ontwikkelen van ICT gereedschap en systemen ter ondersteuning hiervan. Er bestaan echter
nog vele open uitdagingen op dit gebied. Een focus op het delen en integreren van informative
tussen onafhankelijke knooppunten binnen coöperatieve netwerken, en het faciliteren van
transparante toegang tot de informatie in hun databases, vormen de basis voor een efficient
samenwerking. Het is echter duidelijk dat onafhankelijke knooppunten hun eigen informative
heterogeen modelleren in hun database schema's. Voordat het uitwisselen van enige
informative tussen deze databases kan plaatsvinden zal daarom een aantal uitdagingen
aangegaan moeten worden, waaronder: (i) identificatie en vaststelling van overeenkomsten
tussen concepten gedefinieerd in onafhankelijke database schema's, (ii) oplossing van
bestaande heterogeniteiten tussen database schema's van de betrokken knooppunten, en (iii)
integratie van deze database schema's. Over het algemeen zijn dit gecompliceerde taken, zelfs
om met de hand uit te voeren, en deze moeilijkheidsgraad neemt toe met het aantal
knooppunten in het federatieve netwerk, alsook met de grootte van de database schema's. Een
aantal onderzoeksrichtingen en -prototypes heeft zich dan ook bezig gehouden met het
automatiseren van het vergelijken van schema's, terwijl anderen zich onafhankelijk hiervan
gericht hebben op het automatiseren van het integreren van schema's. Ondanks deze eerdere
pogingen in zowel academische als commerciële omgevingen, vraagt het vergelijken en
integreren van schema's vandaag de dag nog steeds een grote hoeveelheid handwerk en zijn er
vele open onderzoeksvragen op deze gebieden.
 Dit proefschrift beschrijft een geautomatiseerde maar onder supervisie opererende
gecombineerde benadering waarbij de concepten van het vergelijken en integreren van
relationele database schema's aangepakt en samengevoegd worden. De belangrijkste

1 Vertalling door Leo Breebaart

178 Samenvatting

contributie van dit proefschrift is derhalve een nieuwe gecombineerde
schemavergelijkings/integratie benadering. Een proof of concept voor deze aanpak wordt
gegeven door de implementatie van een prototype systeem genaamd SASMINT – Semi
Automatic Schema Matching and INTegration. Het SASMINT systeem identificeert
automatisch een groot aantal syntactische, semantische en structurele heterogeniteiten tussen
relationele database schema's. Vervolgens probeert het deze heterogeniteiten op te lossen door
de gebruiker ter validatie een lijst van mogelijke correspondenties tussen de vergeleken
systemen voor te leggen. Het systeem genereert dan automatisch uit deze lijst een geïntegreerd
schema.
 Hoofdstuk 1 van dit proefschrift presenteert de motivatie voor dit werk, de primaire
onderzoeksvragen, de doelstellingen, en de belangrijkste contributies van dit onderzoek.
 Hoofdstuk 2 gaat dieper in op de basisdefinities en de classificatie van concepten uit de
huidige state of the art, in relatie tot architecturen, methodes, en systemen die het delen en
uitwisselen van gedistribueerde en heterogene informatie mogelijk maken.
 Daar heterogeniteit centraal staat in de schemavergelijkings en -integratie processen, zijn
identificatie en oplossing van verschillende types heterogeniteit cruciaal voor het succes van
deze processen. Hoofdstuk 3 presenteert verschillende taxonomieën voor heterogeniteiten, en
reduceert deze vervolgens tot database schema heterogeniteiten, het hoofdonderwerp van dit
proefschrift.
 Na in deze eerste drie hoofdstukken de basis gelegd te hebben voor ons onderzoek,
behandelt de rest van dit proefschrift het ontwerp en de uitwerking van onze voorgestelde
benadering. Als centraal hoofdstuk van dit proefschrift bevat Hoofdstuk 4 een literatuurstudie
die zich richt op (i) database-integratie en -interoperabiliteit, (ii) database schemavergelijking,
(iii) database schema-integratie en (iv) ontologievergelijking en -samenvoeging. Vervolgens
introduceren wij onze voorgestelde oplossing, SASMINT, om een aantal benoemde open
problemen aan te pakken. De SASMINT benadering verhoogt de nauwkeurigheid van de
schemavergelijking door het gebruik van een gewogen combinative van een aantal
schemavergelijkingsalgoritmes, waar elk algoritme een specifieke categorie syntactische,
semantische of structurele conflicten aanpakt. Een andere bijdrage van SASMINT die in
Hoofdstuk 4 wordt behandeld is de introductie van onze zogenaamde SAMPLER techniek, die
voor elk doeldomein semiautomatisch de juiste gewichten bepaalt voor de algoritmes die
toegepast zullen worden in het linguïstische vergelijkingsproces. Hoofdstuk 4 introduceert
tevens een overzicht van de verzameling regels die automatische generatie mogelijk maakt van
zowel de geïntegreerde schema's als van de afgeleide constructies die representatief zijn voor
de geschiedenis van het integratieproces in het coöperatieve netwerk. Ook onze ontwikkeling
van de SASMINT Derivation Markup Language (SDML), waarmee het creëren van zowel
persistente schemavergelijkingsresultaten als persistente schema-integratieresultaten
beschreven en ondersteund wordt, wordt behandeld in dit hoofdstuk.
 Net als bij ieder ander onderzoek is het belangrijk om de door ons voorgestelde benadering
te verifiëren en te valideren. Om dit te bewerkstelligen hebben wij een implementatie van onze
aanpak ontwikkeld in de vorm van het SASMINT systeem, waar in Hoofdstuk 5 het focus op
gericht is. In dit hoofdstuk worden zowel de belangrijkste onderdelen als de werking van
SASMINT beschreven. Alhoewel naar onze mening het ondersteunen van gebruikersinteractie
door middel van een GUI fundamenteel is voor het proces van semiautomatische
schemavergelijking en -integratie, is dit typisch een component die ontbreekt in het
onderzoeks- en ontwikkelwerk op dit gebied. Een GUI is nodig om de gebruiker te
ondersteunen in het verifiëren van zowel de automatisch geïdentificeerde schemaconflicten en
-correspondenties als van het voorgestelde geïntegreerde schema. Via SASMINTs GUI kunnen

Samenvatting 179

gebruikers met het systeem interacteren, de juiste procesweegfactoren aangeven, de
automatisch gegenereerde resultaten goedkeuren/veranderen/afkeuren, en de resultaten
bewaren van zowel schemavergelijking als schema-integratie.
 Om de resultaten van dit onderzoek te demonstreren en te evalueren en om de kwaliteit van
het SASMINT systeem te meten, hebben wij een aantal experimenten uitgevoerd. In het
bijzonder is de schemavergelijkende component van SASMINT vergeleken met, en
geëvalueerd tegen een ander state of the art vergelijkingssysteem. De benadering van
SASMINT is echter uniek in het feit dat het een fusie is van zowel schemavergelijkings- als
schema-integratieprocessen. Het was daarom niet mogelijk een tegenhangen te vinden
waarmee de schema-integratiecomponent van SASMINT vergeleken kon worden. In onze
evaluatie-experimenten hebben we derhalve alleen maar gemeten hoe succesvol er correcte
resultaten geproduceerd worden. Deze experimenten worden uitvoerig behandeld in Hoofdstuk
6 van dit proefschrift.
 Dit proefschrift eindigt met een uitleg over hoe de primaire onderzoeksvragen zijn
beantwoord.

180 Samenvatting

Acknowledgments

Finally … I have gotten to reach the happy end .

During the last couple of years, there have been times I thought I would not be able to finish
my PhD. However, the stubborn side of me said that I would finish, which proved to be true
eventually! This really makes me feel proud; especially considering that I had to go back to
Turkey after spending two years as AiO in the Netherlands and having to complete the
research from remote. Of course, this success does not only belong to me. It is now a pleasure
to thank those who have contributed to this success.

First of all, I am truly thankful to my promoter, Hamideh Afsarmanesh, whose support,
encouragement, and guidance from beginning to the end genuinely pushed me towards
finishing my PhD. She has been an excellent promoter and strived to teach me how to do
research and write academic papers. I really appreciate Hamideh for her confidence on myself
and my research.

Furthermore, I owe my special thanks to Bob Hertzberger, for accepting me to the institute
in the first place, and supporting my research even after I returned back to Turkey. I also would
like to thank the evaluation committee members, Prof. Dr. Bob J. Wielinga, Prof. Dr. Lynda
Hardman, Prof. Dr. Marian T. Bubak, Prof. Luis M. Camarinha-Matos, and Prof. Dr.-Ing.
Bernhard R. Katzy for spending their time on my thesis and on the promotion activities.

I also thank to Erik Hitipeuw, Jacqueline van der Velde, Saskia van Loo, and Virginie Mes
for their help and assistance during my PhD. Erik, I am grateful to all your help with the
administrative tasks during the graduation process.

My thanks also go to my colleagues at UvA for their support. I first of all thank to former
members of the COLNET group: Cesar Garita, who helped me at the beginning of my PhD and
did courage me for writing my first publication. Ammar Benabdelkader, for helping me
through my ‘course assistant’ period. Ersin Kaletaş, both for guiding me throughout the PhD,
and also for the time we spent together during the coffee breaks. Thanks to Victor Guevara, for
his help and advises and also for the nice chats. Thanks to Simon Msanjila and Ekaterina
Ermilova for helping me after I got back to Turkey. Thanks to Naser Ayat and Jafar Tanha
also, who are the newest members of the COLNET group.

I am also thankful to members of our ‘Turkish gang’ for making my life more pleasant at the
Institute: Ersin, Hakan Yakalı, Çağkan Erbaş. Also thanks to my other Turkish friends in the
Netherlands, Başak Kükrer and Selin Erbaş, for the fun we had.

I owe my deepest gratitude to Leo Breebaart for helping me with the translation of my
English summary to Dutch.

I appreciate my friends who gave me support when writing my thesis. My special thanks to
my friends Deniz Yazıcı and Yasemin Seydim for both encouraging me and also for reading

182 Acknowledgments

my thesis thoroughly. I would like to also thank my ex-home mate Almıla Kından, for her
support and encouragement.

I would like to thank my mother Aynur, my father Necat, my brother Özgür, my sister-in-
laws Canan and Cansu, and my niece Öykü, for all their support, help, and patience. My
mother and father helped me a lot with taking care of my son as I was busy with the thesis.
Thank you so much.

Last but not least, I thank my dear husband, İlker. We had very fruitful discussions all the
times about my research subject. His love and support carried me through the rough times. And
of course, my little son, Egemen, your existence always encouraged me to finish my PhD. I am
sorry that you were told your mommy was at work, though I was working on my thesis in the
next room. However, you will be proud of me when you are old enough to understand the
meaning and the value of doing a PhD. Sizi çok seviyorum…

	Introduction
	1.1 Motivation and Requirements Analysis
	1.2 Addressed Research Questions
	1.3 Objectives and Contributions of the Thesis
	1.4 Scope of the Research
	1.5 Research Method
	1.6 Outline of the Dissertation

	Interlinking and integrating schemas - background
	2.1 Related Concepts
	2.2 Multidatabase Classification Based on Schema Coupling
	2.3 Schema Matching and Schema Integration
	2.3.1 Schema Integration
	2.3.2 Schema Matching

	2.4 Conclusion

	Heterogeneity
	3.1 Related Concepts
	3.2 Taxonomy of Heterogeneity Resulted Conflicts
	3.3 Challenges for Schema Matching
	3.4 Conclusion

	SASMINT approach
	4.1 Related Research Approaches
	4.1.1 Database Integration and Interoperability Approaches
	4.1.2 Schema Matching Approaches
	4.1.3 Schema Integration Approaches
	4.1.4 Ontology Matching and Ontology Merging Approaches
	4.1.5 Open Issues and the Proposed Approach

	4.2 Proposed Approach: SASMINT
	4.2.1 SASMINT Derivation Markup Language (SDML)
	4.2.2 Configuration Phase – P1
	4.2.2.1 Sampler Mechanism

	4.2.3 Automatic Schema Matching Phase – P2
	4.2.3.1. Automatic Schema Matching Phase of SASMINT – Preparation Activity

	4.2.4 User Modification and Validation Phase – P3
	4.2.5 Schema Integration Phase – P4
	4.2.6 User Modification and Validation Phase – P5

	4.3 Conclusion

	SASMINT development architecture
	5.1 Processing Steps of SASMINT
	5.2 Technologies Applied
	5.3 Main Components of the System
	5.4 How does the System Work?
	5.4.1 Assigning Weights and Identifying the Selection Strategy
	Fig. 5.5. Manual Weight Assignment
	5.4.2 Loading and Translating Schemas
	5.4.3 Matching Schemas
	5.4.4 Integrating Schemas

	5.5 Conclusions

	Empirical validation of SASMINT
	6.1 Schema Matching Evaluations in Related Research
	6.2 Quality Measures Used for Evaluating SASMINT
	6.2.1 Quality Measures for Schema Matching
	6.2.2 Quality Measures for Schema Integration

	6.3 Test Schemas
	6.4 Setup for the Experimental Evaluation
	6.5 Evaluation of Schema Matching – For “select all above threshold” strategy
	6.5.1 Evaluation of Schema Matching Using Precision
	6.5.2 Evaluation of Schema Matching Using Recall
	6.5.3 Evaluation of Schema Matching Using F-Measure
	6.5.4 Evaluation of Schema Matching Using Overall

	6.6 Evaluation of Schema Matching with Sampler
	6.6.1 Test with Purchase Order Schemas-PO (Schema Pair#1)
	6.6.2 Test with Hotel Schemas-Hotel (Schema Pair#2)
	6.6.3 Test with Biology Schemas-SDB (Schema Pair#3)
	6.6.4 Test with University Schemas-UNIV1 (Schema Pair#4)
	6.6.5 Test with University Schemas-UNIV2 (Schema Pair#5)

	6.7 Evaluation of Schema Integration Performance
	6.8 Conclusions

	Thesis conclusions and future work
	7.1 Summary of General Approach
	7.2 Reflections on the Research Questions
	7.3 Future Work

	List of author’s publications
	XSD for SDML
	Class diagram for SDML
	Test schemas
	Evaluation of Schema Matching – For “select max above threshold” strategy
	E.1 Evaluation of Schema Matching Using Precision
	E.2 Evaluation of Schema Matching Using Recall
	E.3 Evaluation of Schema Matching Using F-Measure
	E.4 Evaluation of Schema Matching Using Overall

	Evaluation of Schema Integration - Details of Steps

