
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

API for data and knowledge exchange. DynaLearn, EC FP7 STREP project
231526, Deliverable D3.2

Liem, J.; Beek, W.; Linnebank, F.; Bredeweg, B.

Publication date
2010
Document Version
Final published version

Link to publication

Citation for published version (APA):
Liem, J., Beek, W., Linnebank, F., & Bredeweg, B. (2010). API for data and knowledge
exchange. DynaLearn, EC FP7 STREP project 231526, Deliverable D3.2. DynaLearn.
http://hcs.science.uva.nl/projects/DynaLearn/DeliverablesPublic/D3.2.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:08 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/api-for-data-and-knowledge-exchange-dynalearn-ec-fp7-strep-project-231526-deliverable-d32(661044f6-9a81-4b6a-9371-e6059ebff0c6).html
http://hcs.science.uva.nl/projects/DynaLearn/DeliverablesPublic/D3.2.pdf

	

	

Delivery	 date:	
Submission	 date:	
Leading	 beneficiary:	
Status:	
Dissemination	 level:	
Authors:	

2010/05/31
2010/05/31
University of Amsterdam (UVA)
Version 15 (final)
PU (public)
Jochem Liem, Wouter Beek, Floris Linnebank, Bert Bredeweg

Delivery date:
Submission date:
Leading beneficiary:
Status:
Dissemination level:
Authors:	

D3.2

API for data and knowledge exchange

Deliverable number:
Deliverable title:	

Project number:
Project acronym:
Project title:

Starting date:
Duration:
Call identifier:
Funding scheme:	

231526
DynaLearn
DynaLearn -7 Engaging and
informed tools for learning
conceptual system knowledge
February 1st, 2009
36 Months
FP7-ICT-2007-3
Collaborative project (STREP)

Project No. 231526	 	

DynaLearn D3.2

Project No. 231526	 	

DynaLearn D3.2

Abstract

This document describes the representations for knowledge exchange between the
different components of the DynaLearn software. The basis of these
representations is the DynaLearn ontology, which formalizes the basic vocabulary
as it is used within the DynaLearn software. Models, simulations, and other
knowledge assets exchanged between the DynaLearn components are
represented based on this ontology. However, for particular tasks this approach
would be suboptimal. For these tasks a tailored representation has been created.
Although the focus of this document is on knowledge structures, it also describes
the communication protocols used to communicate between the different
components.

Internal review

• Jorge Gracia del Río (UPM), Ontology Engineering Group, Universidad
Politécnica de Madrid, Spain.

• Paulo Salles (FUB), Institute of Biological Sciences, University of Brasília,
Brazil.

Acknowledgements

The authors would like to thank Oscar Corcho, Jorge Gracia del Río, Esther
Lozano and Michal Trna for their insightful comments on the OWL representation
of QR models and the extracted vocabulary and for their work on the semantic web
services. We also thank Michael Wißner and René Bü̈hling for implementing the
communication between the CM and VC components and learning to use Semantic
Web technologies to be able to work with the knowledge representations. Finally,
we would like to thank Jorge Gracia del Río (UPM) and Paulo Salles (FUB) for
reviewing this document and providing insightful comments and corrections.

Project No. 231526	 	

DynaLearn D3.2

Document History

Version Modification(s) Date Author(s)
01 Outline 2010-04-12 Liem, Bredeweg
02 DynaLearn Knowledge Representation 2010-04-16 Liem, Beek, Bredeweg
03 Web Ontology Language (OWL) 2010-04-19 Liem
04 An Ontological Perspective on QR 2010-04-21 Liem
05 The DynaLearn QR Ontology 2010-04-27 Liem

06 Representing QR models based on the
DynaLearn QR Ontology 2010-04-29 Liem

07 Representing Support Knowledge 2010-05-05 Beek
08 Summarizing Simulation Results 2010-05-12 Liem

09 Extracting the Domain Vocabulary for
Grounding 2010-05-13 Liem

10 Virtual Character Interaction 2010-05-18 Linnebank
11 Semantic Technology Web Services 2010-05-18 Liem
12 Introduction + Rewriting 2010-05-20 Liem
13 Discussion and Conclusion + Rewriting 2010-05-25 Liem
14 Processed comments by Bert Bredeweg 2010-05-30 Bredeweg, Liem
15 Internal review 2010-06-07 Gracia del Río (UPM)
16 Internal review 2010-06-08 Salles (FUB)

Contents

1 Introduction 5
1.1 Overview of Knowledge Exchange 5
1.2 Document Outline . 6

2 The DynaLearn Knowledge Representation 8
2.1 Learning Space 1: Concept map . 8
2.2 Learning Space 2: Causal model . 10
2.3 Learning Space 3: Causal Model with State Graph 11
2.4 Learning Space 4: Causal Differentiation 13
2.5 Learning Space 5: Conditional Knowledge 13
2.6 Learning Space 6: Generic and Reusable 15
2.7 DynaLearn reasoning using the Garp3 engine 16

3 Web Ontology Language (OWL) 18

4 An Ontological Perspective on QR 21
4.1 Design and Validation . 23
4.2 Implementation . 24

5 The DynaLearn QR Ontology 25
5.1 A Hierarchy of Qualitative Model Ingredients 25

5.1.1 The Hierarchy . 25
5.1.2 Reification of Relations . 26
5.1.3 Property Restrictions . 28

5.2 Qualitative Model Ingredient . 29
5.3 Structural . 30

5.3.1 Entities, Agents, and their Relations 30
5.3.2 Configurations . 30
5.3.3 Attributes . 31

5.4 Assumption Types . 33
5.5 Behavioural . 33

5.5.1 Quantities, Magnitudes, Derivatives and Quantity Spaces . . . 33
5.5.2 Quantity Spaces and Qualitative Values 35
5.5.3 Proportionalities and Influences 38

2

Project No. 231526 DynaLearn D3.2

5.5.4 Correspondences . 38
5.5.5 Inequalities . 40
5.5.6 Operator Relations . 44

5.6 Aggregate . 45
5.6.1 Model Fragments . 45
5.6.2 Scenarios . 47

6 Representing QR models based on the DynaLearn QR Ontology 48
6.1 Representing model fragments, scenarios and expressions 48

6.1.1 Viability of using an OWL reasoner for the QR classification task 49
6.1.2 A pragmatic representation of model fragments 49

6.2 Representing Learning Spaces . 51

7 Summarizing Simulation Results 52

8 Extracting the Domain Vocabulary for Ontology Matching 55

9 Representing Support Knowledge 58
9.1 Support features . 58
9.2 Requirements for representing support knowledge 60

9.2.1 Modularity . 60
9.3 Implementation of support knowledge 61
9.4 Properties of support knowledge modules 63
9.5 Support knowledge modules overview 64

9.5.1 Ingredient . 64
9.5.2 Aggregate . 64
9.5.3 Model Fragment . 65
9.5.4 Agent Fragment . 66
9.5.5 Process Fragment . 66
9.5.6 Static Fragment . 66
9.5.7 Scenario . 66
9.5.8 Definition . 66
9.5.9 Attribute Definition . 67
9.5.10 Configuration Definition . 68
9.5.11 Hierarchical Definition . 68
9.5.12 Agent Definition . 68
9.5.13 Assumption Definition . 69
9.5.14 Entity Definition . 69
9.5.15 Quantity Definition . 69
9.5.16 Quantity Space Definition 69
9.5.17 Value Definition . 70
9.5.18 Instance . 70
9.5.19 Agent Instance . 70
9.5.20 Assumption Instance . 72
9.5.21 Attribute Instance . 72
9.5.22 Entity Instance . 72

Page 3 of 90

Project No. 231526 DynaLearn D3.2

9.5.23 Relation Instance . 72
9.5.24 Operators . 73
9.5.25 Configuration Instance . 73
9.5.26 Correspondence . 73
9.5.27 Full Correspondence . 74
9.5.28 Quantity Space Correspondence 74
9.5.29 Value Correspondence . 74
9.5.30 Identity . 74
9.5.31 Inequality . 75
9.5.32 Influence . 75
9.5.33 Quantity Instance . 75
9.5.34 Quantity Space Instance . 76
9.5.35 Value Instance . 76

10 Virtual Character Interaction 77
10.1 General communication . 77
10.2 Communication of Questions . 78

10.2.1 Teachable Agent Communication 78
10.2.2 Quiz communication . 81

11 Semantic Technology Web Services 83
11.1 Repository . 84
11.2 Grounding . 84
11.3 Ontology-Based Feedback and Recommendations 84
11.4 Authentication . 85

12 Discussion and Conclusion 86

Page 4 of 90

Chapter 1

Introduction

The DynaLearn Interactive Learning Environment (ILE) consists of three interacting
components [10]. The Conceptual Modelling (CM) component allows learners to de-
velop their conceptual ideas by articulating them in qualitative reasoning (QR) models.
Furthermore, the CM component allows learners to simulate their models, and see the
consequences of their ideas. The Virtual Character (VC) component is responsible
for interacting with the learner via on-screen characters, planning and executing dia-
logues leading to a learning goal, and keeping track of a learner’s progress via a learner
model. The Semantic Technology (ST) component allows the storage and retrieval
of QR models, grounds terminology on external resources (i.e. links terms in models
to terms in structured knowledge sources such as DBPedia and WordNet), generates
feedback based on a norm model, and recommendations based on a set of models.

This document describes how the knowledge is exchanged between the different
components within DynaLearn. It focusses particularly on the representation of the QR
models, simulations, vocabulary (extracted from QR models), and the support knowl-
edge required to work with DynaLearn. We argue that if these representations are
well-defined they can provide the basis of derived representations. As such, the other
DynaLearn knowledge assets (such as questions or different kinds of feedback) will be
described in less detail. In addition, deliverables reporting on the tasks that generate a
particular knowledge asset will also discuss their formalisations.

1.1 Overview of Knowledge Exchange
In order to keep the knowledge flowing through the DynaLearn ILE components syn-
chronized, we have opted to use a uniform representation throughout the components.
Furthermore, by making use of a common vocabulary, it becomes relatively easy to cre-
ate new representations of different knowledge assets and adapt them when particular
use-cases require them.

Figure 1.1 shows the main knowledge assets as they are currently communicated.
The semantic repository should function as a model library in which models can be
stored and retrieved. The developed QR model representation is used to be able to

5

Project No. 231526 DynaLearn D3.2

index the models and perform intelligent searches. The Grounding, Ontology-Based
Feedback (OBF) and Recommendation tasks also take a QR model as input. However,
both the OBF and the Recommendations tasks also require an alternative representation
which focusses on the the domain vocabulary used in a model.

The VC component bases the structure of its Learner Model on both the QR model
and a summary of the simulation results. The learner model, which is a cognitive
model about the students current knowledge, keeps track of a learner’s current knowl-
edge about both particular simulations of scenarios, as well as the complete model.
The learner’s knowledge about simulations feeds back into the learner model of the
complete QR model. The support knowledge requires its own representation, that is
closer to natural language in order to create a meaningful dialogue. The same is true
for the questions generated on the basis of a simulation.

1.2 Document Outline
This document is structured as follows. Firstly the DynaLearn knowledge representa-
tion is presented in Section 2. Section 3 describes the Web Ontology Language (OWL),
the language we have chosen as our knowledge exchange format. Since the knowledge
representation of QR models and ontological structures are different, an ontological
perspective is given on QR models in Section 4. The structure that results from the on-
tological perspective leads to the establishment of a DynaLearn ontology (Section 5),
which captures the common vocabulary used to talk about QR models and simulations.
The representation of QR models (Section 6) and (summaries of) simulation results
(Section 7) are a natural extension of the DynaLearn ontology.

The particular representation chosen to represent QR models and their simulations
are insufficient to optimally perform the Ontology-Based Feedback (OBF) and Rec-
ommendations tasks. This is due to the fact that state of the art Ontology Matching
technologies (used by the OBF and recommendation tasks) require knowledge to be
structured in a certain way. As such, we have chosen to create an additional alternative
representation that extracts and represents the domain vocabulary from a QR model for
the specific purpose of optimizing ontology matching results (Section 8). For support
knowledge a similar argument holds. The support knowledge has to be structured in a
particular way in order to be able to easily create natural language dialogues. As such
the Support Knowledge also has its own structure (Section 9). Sections 10 and 11 de-
scribe the particular interaction with the Virtual Character component and the Semantic
Technology component. Finally, Section 12 concludes this document.

Page 6 of 90

Project No. 231526 DynaLearn D3.2

Virtual	 Character	 Component	

Seman2c	 Technology	 Component	

Conceptual	 Modelling	 Component	

Support	
Knowledge	

Ques1on	
Generator	

Domain	
Vocabulary	

(.owl)	

QR	 Model	
(.owl)	

Simula1on	
Summary	
(.owl)	

Ques1ons	
(.owl)	

QR	 Model	 Simula1on	

Grounding	
Seman1c	
Repository	

Support	
Knowledge	

(.owl)	

Learner	
Model	

TA	 /	 Quiz	
Dialogue	

Support	
Dialogue	

Ontology	
Based	

Feedback	

Recommen
da1ons	

QR	 Model	
(.owl)	

Simulator	

Figure 1.1: The knowledge exchange between the CM, VC and ST component. For the
legend see Figure 1.2

Internal	 Representa,on	

Inference	 component	

OWL	 Representa,on	

Transla,on	
Input	

Figure 1.2: Legend for Figure 1.1.

Page 7 of 90

Chapter 2

The DynaLearn Knowledge
Representation

The DynaLearn ILE provides six Learning Spaces (LSs) of increasing complexity (in
terms of the model ingredients that can be used to construct knowledge). Each LS is a
self-contained interactive workspace that can be used to learn specific details about sys-
tem behaviour. The model ingredients that are available in each LS are chosen from the
full set of primitives in such a way that they emphasize a particular type of knowledge,
but also allow for automated reasoning on behalf of the underlying software. The LSs
and the model ingredients introduced in each LS are shown in Table 2.1. The interfaces
that can be used to inspect the simulation results on each LS are shown in Table 2.2.

The goal of the LSs is to ensure that from a (qualitative) System Dynamics per-
spective [16], learners are able to create sensible representations of the phenomena
they perceive when observing the behaviour of a real-world system. Moreover, what
learners express using the software, will have consequences for what the software can
infer. Hence, learners can be confronted with the logical consequences of their ex-
pressions, which may or may not match the behaviour of the observed system (or the
learner’s expectations thereof). Particularly in the case of mismatch there is ample
room for interactive learning. Progression between LSs happens by augmenting the
current level with the smallest subset of possible modelling ingredients, again ensuring
that the next level is self-contained.

2.1 Learning Space 1: Concept map
The first LS in DynaLearn is meant to allow the definition of the key concepts and rela-
tionships in a domain of discourse. As such, the focus of this LS is mostly ontological.
Learners using this LS are encouraged to structure their thoughts.

A concept map (sometimes referred to as an entity-relation graph) is a graphical
representation that consists of two primitives: nodes and arcs. Nodes reflect important
concepts, while arcs show the relationships between those concepts [28]. An example
of a concept map is shown in Figure 2.1.

8

Project No. 231526 DynaLearn D3.2

Nr Learning space Introduced ingredients

1 Concept map Entities
Configurations

2 Causal model Attributes
Quantities
Value assignments
Derivatives
Causal relationships

(+ and -)
3 Causal model Quantity spaces

with state graph Correspondences
4 Causal differentiation Causal relationships:

Influences
Proportionalities

Inequalities
Operators:

(+ and -)
Agents
Assumptions

5 Conditional knowledge Conditional expressions
6 Generic and reusable Scenarios

Model fragments
Entity, agent, and

assumption hierarchies

Table 2.1: Overview of modelling ingredients per Learning Space in the DynaLearn
software. Each LS augments the representation with a new set of model ingredients.

Nr Learning space Introduced simulation views

1 Concept map
2 Causal model Simulation in expression
3 Causal model State graph

with state graph Quantity values
Value history
Transition history

4 Causal differentiation Equation history
5 Conditional knowledge Entities, Configuration,

and Attributes
Dependencies view
Model fragments view

6 Generic and reusable

Table 2.2: Overview of simulation views per LS in the DynaLearn software.

Page 9 of 90

Project No. 231526 DynaLearn D3.2

Deforestation

Afforestation

River

Buffer zone

Agricultural area

Nutrient run off

Intensive agriculture

Requires

Produces

Nutrients

Contains

Decreases

Increases
Forest area

Decreases

Increases

Acts as

Land use conflict between

Absorbs

Increases

Nearby In between agricultural area and

Figure 2.1: Learning Space 1: Land use conflict concept map.

Concept maps do not allow for computer-based reasoning (simulation). However,
having this LS is useful from an educational point of view, as it is the basis from
which more complex knowledge representations emerge. The DynaLearn ILE does not
attempt to replicate the advanced features of other concept map tools (that for instance
allow nested nodes, colouring and adding media) [12].

2.2 Learning Space 2: Causal model
The second LS allows learners to create a causal model (Figure 2.2). As the name
suggest, the main focus of this level is the representation of causal knowledge. There
is a causal relationship that is directed and can be either positive or negative. These
relationships can be placed between quantities. For example: Amount +→Height rep-
resents that changes in the height of a contained liquid is positively affected by changes
in the amount of liquid.

An important ontological distinction that is introduced at this level is that between
structural and behavioural knowledge. The structural aspects of the system are mod-
elled using entities, configurations and attributes. For example: Container Contains−→ Liquid.
The behavioural aspects of the system consist of quantities that are connected to entities
(Liquid : [Amount,Height, Pressure]), their derivatives (δAmount ∈ {N,∅,H}),
derivative value assignments (δAmountv = N), and the two causal relationships men-
tioned above. The learner only defines the names of the quantities, while the possible
derivative values are predefined.

The causal model LS is the first LS that introduces semantics to the representation.
Whereas a concept map only gives a syntactic specification of the structure of a system,
LS2 adds meaning to the model representation, resulting in a simulation of the mod-
elled system’s future behaviour. In this LS, a single state simulation is performed that
is visualised in the model representation that the learner is manipulating (Table 2.2).

Page 10 of 90

Project No. 231526 DynaLearn D3.2

ContainerLiquid

Contains

Amount !

Height Pressure

Width !

Figure 2.2: Learning Space 2: Expression of contained liquid model.

The assigned values (as e.g. shown in Figure 2.2) become grey, while derivative value
assignments that are inferred by the simulator are added in blue. The reasoning engine
computes the derivatives of the quantities based on the derivative value assignments
and the causal relationships between the quantities.

There are several possible outcomes when calculting the derivative of a quantity.
Consider the model in Figure 2.2. Consider that δAmountv = N, but δWidth is
unknown. In the simulation, the values for δHeight and δPressure will also be un-
known. But if δWidthv = ∅, then the values for δHeight and δPressure would
be uniquely derivable (i.e. both would be N). If δWidthv = N, then the competing
causal relations would cause ambiguity, and value assignments would be placed on
all possible derivative values of Height and Pressure. Finally, if the derived val-
ues are inconsistent with the assigned values (e.g. δAmountv = N, δWidthv = H,
and Heightv = H), the expression is considered inconsistent, and a question mark is
visualised on top of the model in order to send a signal the learner.

The representational approach taken for LS2 relates to Betty’s brain [26]. One
difference is that Betty’s brain allows causal relationships with different strengths. In
DynaLearn this kind of knowledge can be represented using inequality statements, but
these are available at LS4 and beyond (Causal differentiation, see below). Another
difference is the explicit inclusion of structural knowledge in DynaLearn at LS2.

2.3 Learning Space 3: Causal Model with State Graph
The representation of the causal model level is augmented with the notion of values
of a quantity (notice that LS2 focussed on the direction of changes only, represented
by the derivatives). Quantities can be assigned a quantity space that indicates which
values a quantity can have (e.g. Pressurev ∈ {zero, low, average, high,max}).
Furthermore, value assignments can be put on these values (Pressurev = low).

Page 11 of 90

Project No. 231526 DynaLearn D3.2

Liquid: Amount

1 2 3 4

Liquid: Height

1 2 3 4

Container: Width

1 2 3 4

Liquid: Pressure

Zero
Low
Average
High
Max

1 2 3 4

1 2 3 4

Figure 2.3: Learning Space 3: State graph and value history.

The introduction of current values for quantities has the consequence that the simu-
lation results cannot be represented inside the expression (which is a visualisation of a
single state of behaviour). The reason is that it cannot adequately show how the values
of quantities change in time. As such, the simulation results are represented as a state
graph (Figure 2.3), in which each state identifies a qualitatively unique situation and
each transition a possible change from one situation to another (Table 2.2). A sequence
of states from the begin state to the end state is called a behaviour path, and the visu-
alisation of a sequence of values of a quantity in these states is called a value history
(Figure 2.3).

Another notion that is introduced in this LS is co-occurrence. Consider thatHeight
and Pressure should have the same values at the same time, and both have the quantity
space {zero, low, average, high,max}. To represent this notion, correspondences are
introduced. There are quantity correspondences (e.g. Height Q→Pressure), and value
correspondences (e.g. Height(zero) V→Pressure(zero)), which can both be either
directed or undirected. The value correspondence indicates that if Heightv = zero
then Pressurev = zero. If the value correspondence is bidirectional, the reverse
inference is also possible. Quantity correspondences can be considered a set of value
correspondences between each consecutive pair of the values of both quantities. There
are also inverse quantity space correspondences (Q1

Q

�

↔Q2) that indicate that the first
value in the quantity space of Q1 corresponds to the last value in the quantity space of
Q2, the second to the one before last, and so on.

In LS2 and LS3, given Q1
+→Q2

−←Q3, it is not possible to indicate which causal
effect is stronger (i.e. indicating δQ1 > δQ3). The reason is the design choice of not
having introduced inequalities and operators at these LSs.

Page 12 of 90

Project No. 231526 DynaLearn D3.2

2.4 Learning Space 4: Causal Differentiation
The causal differentiation LS (Figure 2.4) focusses particularly on the notion of pro-
cesses. To accommodate this, the causal relationships (+ and -) are refined into in-
fluences and proportionalities [14]. Quantities that represent processes have influence
relationships to other quantities in the system (e.g. Birth rate I+→Size). The structure
of the system exemplifies a particular situation in which the process is applicable.

In order to be able to control the results of simulations, inequalities (Birth ratev >
Death ratev) and operators (+ and -) are introduced (Figure 2.4). The operators
are particularly useful when there are multiple conflicting causal relationships (e.g.
Birth ratev + Immigrationv > Death ratev + Emigrationv , which results in
δSize = N). How inequalities change over time is visualised in the equation history.

Since inequality statement such as the one above show a particular behaviour of the
system (while removing other behaviour), the notion of assumptions becomes impor-
tant. Assumption labels can be used to indicate that particular statements are true for
purposes of the simulation, but are not true in general.

When modelling, learners are encouraged to focus on a constrained set of phenom-
ena in the world. For purposes of modelling this choice constitutes the system, while
all other effect on the modelled phenomena are considered to be outside the system.
For this purpose, this LS introduces the notion of an agent, which models an influence
from outside the system.

At LS4, it becomes possible to model the effects from outside the chosen system.
For this purpose, this LS introduced the notion of agents. For example, in a model
about the euthrophication of lakes due to agriculture runoff, the processes that result in
the runoff can be considered less relevant to the message that the model tries to convey.
Since these processes are also not affected by the eutrophication, the learner can choose
not to model them explicitly. Instead, they can be considered constant influences from
outside the system. This can be modelled by introducing an agent agriculture and
a quantity runoff. The behaviour of the runoff can be provided via an exogenenous
quantity behaviour [7, 6], such as increasing, decreasing, stable, sinusoidal, generate
all values. Such exogeneous behaviour makes the quantity of the agent exhibit specific
behaviour, without the need to explicitly model this behaviour.

The representation in LS4 relates to VMODEL [15]. One difference is that VMODEL
works with single state simulations, while the DynaLearn LS4 allows for multiple state
simulations. Because of that, Dynalearn LS4 also facilitates multiple views to inspect
the simulation results.

2.5 Learning Space 5: Conditional Knowledge
The conditional knowledge LS focusses particularly on the activation conditions of
processes. Consequently, choosing good landmark values in quantity spaces is an im-
portant task to solve. For example, the quantity space for the height of a bathtub should
have a maximum value, as at this point the overflow process occurs.

Learners can create an expression using the same vocabulary as in LS4. The knowl-
edge in the expression (except the value assignments) always applies. However, at this

Page 13 of 90

Project No. 231526 DynaLearn D3.2

Population

Birth plus immigration greater than death plus emigration

Size

Zpm
Max
Positive
Zero

Birth rate

Zp
Plus
Zero

Death rate

Zp
Plus
Zero

Emigration

Zp
Plus
Zero

Immigration !

Zp
Plus
Zero

Figure 2.4: Learning space 4: Expression of population model.

level multiple conditional expressions can be defined. Conditional expressions consist
of the expression and a set of conditional and consequential model ingredients (Fig-
ure 2.5). If the conditions are true, the consequences also apply. For example, in a
model of a pan with water on a stove, the cooking process only becomes active if
the temperature of the water is greater or equal than the cooking point. In the condi-
tional expression of the boiling process (Figure 2.5), the inequality Temperature ≥
Cooking point is the condition that makes Boiling ratev = Positive (the conse-
quence).

The conditional expression introduced in LS5, make modelling assumption more
natural. Where in LS4 all assumptions and related model ingredients are inside a single
expression, in LS5 each assumption (modelled as a condition) can be combined with
a set of consequential model ingredients in a conditional expression. Assumptions can
be added to the expression to run simulations.

The structural and behavioural relationships can dynamically change on LS5, as
conditional expressions can introduce new entities and configurations, or new causal
relationships in certain states. To investigate these newly introduced model ingredients
the entities, configurations and attributes and the dependencies views are made avail-
able (Table 2.2). The former shows the structure of the model, while the latter shows
the behavioural relationships in a particular state. The Model fragment view shows
which of the conditional expressions have become active.

Page 14 of 90

Project No. 231526 DynaLearn D3.2

Expression fragment

Water
PanStove

ContainsHeats

Temperature

Mzpba
Above boiling
Boiling
Below boiling
Zero
Below zero

Temperature !

Mzpba
Above boiling
Boiling
Below boiling
Zero
Below zero

Amount of gas

Zpm
Max
Positive
Zero

Amount of liquid

Zpm
Max
Positive
Zero

Boiling rate

Zp
Plus
Zero

Energy flows

Mzp
Left to right
Zero
Right to left

Burning

Zp
Plus
Zero

Figure 2.5: Learning space 5: Conditional expression of boiling process. The con-
ditional expression introduces Temperature P+→ Boiling rate, if Temperaturev ≥
Boiling. The other content is inherited from the expression.

2.6 Learning Space 6: Generic and Reusable
The main focus of the generic and reusable LS is on generic knowledge and first prin-
ciples. In contrast with the earlier LSs, where it is more natural to talk about specific
instances of situations were certain processes are active, in LS6 the knowledge is rep-
resented in a generic way in Model Fragments (MFs). These can be considered formal-
isations of the generic knowledge that applies in multiple situations. Model fragments
can be considered rules indicating that if certain model ingredients are present (con-
ditions), certain other model ingredients must also apply (consequences). They can
be represented as: conditions ⇒ consequences. Not every ingredient can be used
as both a condition and a consequence. For example, causal relationships should al-
ways be consequences of structure (entities, configurations). The full listing of which
ingredients can be used as conditions and which as consequences is shown in Table 2.3.

Three types of model fragments are distinguished: (1) process fragments are used
to model processes, (2) agent fragments are used to represent the effects of agents, and
(3) static fragments are used for the static structure of the system. Model fragments are
organised in a is-a hierarchy, which causes model ingredients to be inherited to child
model fragments. Furthermore, this LS allows model fragments to be reused in other
model fragments.

Next to model fragments, different scenarios can be modelled. These represent spe-
cific situations that the system can be found in (with specific initial values). As such,
behavioural relationships cannot be modelled in scenarios (only in model fragments),
as these belong to the general knowledge. Note that the possible ingredients in a sce-
nario correspond to the possible conditional model ingredients in a model fragment
(Table 2.3). DynaLearn can run simulations of models based on a particular scenario.
As in the previous LSs, the result of a simulation is a state graph.

At this level the notion of model ingredient definitions becomes important. Entity
definitions are organised in an is-a hiearchy (e.g. a Lion is an animal). By specify-
ing such ontological knowledge, it becomes possible to develop generally applicable

Page 15 of 90

Project No. 231526 DynaLearn D3.2

Possible conditions Impossible conditions
Entities Correspondences
Configurations Proportionalities
Agents Influences
Attributes
Quantities
Inequalities
Minus/Plus
Assumptions
Model Fragments
Possible consequences Impossible consequences
Entities (except in static MF) Agents
Configurations (except in static MF) Assumptions
Attributes Model Fragments
Quantities
Inequalities
Minus/Plus
Correspondences
Proportionalities
Influences

Table 2.3: Possible condition and consequence roles of QR ingredients.

model fragments. The more specific definitions lower in the hierarchy can be used to
model particular cases in scenarios. Simulations then show how the generic knowledge
applies to that particular case.

Examples of models in this LS can be found in a special issue of Ecological Infor-
matics [9].

2.7 DynaLearn reasoning using the Garp3 engine
The formal context and starting point for developing the six LS is Garp3 [6, 8]. In
terms of knowledge representation Garp3 is equivalent to LS6.

The simulations performed by the reasoning engine in Garp3 generate a state graph.
The reasoning works as follows (Figure 2.6). The input for the simulation is a scenario
and a library of model fragments. The scenario, which describes an initial situation
in the system, is considered to be a partial state description. The classification task
searches for model fragments for which the conditions hold. The consequences of
those model fragments are introduced to the partial state description to generate an
augmented state description. This representation contains all the structure (entities,
configuration, etc.) and behavioural aspects of the system (quantities, causal depen-
dencies, and correspondences), i.e. it incorporates all the consequences of the active
model fragments.

The derivatives of the quantities in the augmented state description are still un-

Page 16 of 90

Project No. 231526 DynaLearn D3.2

Determine
States

Partial State
Descriptions

Classification

Determine
Transitions

Influence
Resolution

State
Comparison

Combine
Terminations

Order
Terminations

Find
Terminations

Inequality
Reasoning

Complete
State

Descriptions

Classification

Figure 2.6: The workings of the reasoning engine. The dashed lines indicate that
Classification, Influence Resolution, Find Terminations and Order Terminations all use
the Inequality Reasoning component.

known. In the influence resolution step, a qualitative calculus is used to derive the
derivatives of the quantities based on the causal relationships. This results in a poten-
tial complete state description. The state comparison step checks whether an equiva-
lent state description already exists, in which case the two states are merged in the state
graph. The result is a unique set of complete state descriptions.

Knowing the derivatives in the completed state description allows prediction of
new states of behaviour. The find terminations step determines how current values of
quantities can change (e.g. move to the next value). Order terminations determines
which changes have precedence over others. Finally, the combine terminations step
combines the possible changes to produce a new set of partial state descriptions. To
generate the complete state graph the reasoning loop executed until no new states are
found.

The reasoning engine uses its own internal representation, which is generated on the
basis of the model representation. In order to use the Garp3 reasoner for the DynaLearn
LS2-5, the functionality that generates this internal representation was adapted [27].

Page 17 of 90

Chapter 3

Web Ontology Language (OWL)

OWL is a knowledge representation language based on description logics (DLs) and
being developed as part of the semantic web initiative. This initiative proposes that
making (web) content more machine-processable will simplify and improve search,
improve interoperability among hetrogeneous systems, allow for service discovery and
composition, allow automatic questions answering based on knowledge on the web,
and improve information extraction [4, 21, 38]. Since its inception, OWL has become
the de facto standard for developing ontologies [22]. OWL has a lot of desirable fea-
tures: a large user community, multiple available reasoning engines, multiple program-
ming language libraries to read, manipulate and save OWL files, and tools that allow
non-experts to create OWL ontologies.

The main OWL primitives are classes, properties and instances1. Table 3.1 shows
how these primitives can be used in DL notation. Instances represent occurrences of
things, for example a particular animal. Properties are used to represent relationships
between instances. For example, a particular animal living in a particular forest. Prop-
erty definitions are organised in a hierarchy, meaning that if a property holds between
two instances, the super-properties will also hold between those instances. Classes rep-
resent concepts, and can be seen as sets of instances. For example, the class Animal
can be considered to be the set of all animals. Classes are also organised as hierar-
chies, meaning that being an instance of a class means that it is also an instance of its
super-classes. OWL allows two ways to define classes: extensional and intensional.
Intensional definitions define classes based on the properties their instances should ful-
fil, while extensional definitions indicate that a class consists of exactly a particular set
of instances.

Intensional definitions in OWL are formalised as restrictions, which are sets of
conditions. These restrictions can either represent necessary (N), or necessary and suf-
ficient (N+S) conditions. Necessary conditions indicate that a class must fulfil certain
conditions. Such conditions can be read as implication rules and use the subclass op-
erator (e.g. AntEater v ∀preysOn.(Ant t Termite)). In contrast, N+S conditions
indicate that having certain conditions is enough to belong to that class (in addition

1Note that we use the term instance for what are called individuals in OWL.

18

Project No. 231526 DynaLearn D3.2

to the requirement that instances of the class must fulfil certain conditions). As such,
N+S conditions indicate equivalence, i.e. that two classes cover exactly the same sets
of instances (e.g. Predator ≡ ∃preysOn.LivingBeing). N+S conditions allow in-
stances to be classified as being instances of a particular classes, and classes as being
subclasses of particular classes. Given the definitions in the examples (and assuming
that ants or termites are formalised a being living things), the ant eater class is classified
as being a subclass of the predator class.

In addition to classification, OWL reasoners can infer the inconsistency of classes
and instances. A class is inconsistent when it cannot have instances, while an instance
is inconsistent if it cannot exist. A class defined by the intersection between herbivores
and carnivores is empty and is therefore inconsistent (HerbivoreAndCarnivore v
⊥). An ontology containing inconsistent classes or individuals is said to be inconsis-
tent. Inconsistency informs the knowledge modeller that the formalised knowledge
contradicts itself and should therefore be refined.

To discover inconsistencies in ontologies, it is important that modellers indicate the
disjointness of classes, i.e. specify that the intersection between two classes is empty
(A u B v ⊥). This means that there can be no instance which is an instance of both
classes. This is required since the existence of two classes (without a disjointness state-
ment) has 4 possible interpretations: either the classes have some overlap, no overlap,
the first is a subclass of the second, or the second is a subclass of the first. Indicating
disjointness (and subclass) relationships between classes contributes to OWL reasoners
discovering inconsistencies.

Finally, a point about linking multiple ontologies. All OWL primitives (and def-
initions created using these primitives) are resources defined by a Uniform Resource
Identifier (URI). It is possible to refer to definitions in other files by referring to such
URIs. For example, to indicate that a certain resource is a class, it is required to refer
to the owl:Class concept (e.g. Population v owl:Class). This is possible since OWL
is defined in terms of itself [2], making it possible to refer to OWL definitions via an
URI. The owl: prefix indicates a namespace, which is a shorthand for the part of the
URI.

Page 19 of 90

Project No. 231526 DynaLearn D3.2

C1 v C2 C1 is a subclass of C2.
R1 v R2 R1 is a subproperty of R2.
C1 ≡ C2 C1 is equivalent to C2.
¬C The complement of C.
C1 t C2 The union between classes C1 and C2.
C1 u C2 The intersection between classes C1 and C2.
C1 u C2 = ⊥ C1 and C2 are disjoint.
∀R.C All fillers of relation R should be instances of C.
∃R.C At least one filler of relation R is an instance of C.
≥ 3R There are at least three fillers for relation R.
≥ 3R.C At least three fillers of type C for relation R
≤ 1R Maximum 1 filler for relation R.
o ∈ C1 Instance of type C1.
R1 ≡ R−2 R2 is the inverse role of R1.
〈o1, o2〉 ∈ R Instance o1 is related to o2 through an property R.
〈o, v1〉 ∈ U Instance o is related through property U to value v1.
o1 = o2 o1 and o2 are the same instances.
o1 6= o2 o1 and o2 are different instances.
C ≡ {o1, o2, o3} Class C consists of exactly instances o1, o2, and o3.

Table 3.1: OWL Syntax

Page 20 of 90

Chapter 4

An Ontological Perspective on
QR

The word ontology is used in a number of different ways [35]. In this article, the em-
phasis is on the knowledge representation form in which concepts and relationships
about a domain of discourse are formalised. Ontologies have a number of applications
such as: natural language processing and text mining [11], linking large collections of
(cultural heritage) resources to provide better indexing and search [32], establishing
controlled vocabularies to facilitate knowledge management within communities [36],
and capturing expert knowledge [20]. Particularly, the controlled vocabulary and cap-
turing of expert knowledge applications are similar to the goals of the QR community.

By applying an ontological perspective on QR we aim to come to a structure in
which QR models and simulations can be represented. On the other hand, the ontol-
ogy field is challenged on its ability to accommodate the representations used in QR
models. QR models are well-known for their advanced and detailed representations
[13] and one concern is whether the available ontology languages are rich enough to
encompass these. Furthermore, we investigate whether the reasoning methods used in
the ontology field can be used to solve some of the QR reasoning tasks, including a
form of classification. At the same time it also highlights additional reasoning com-
petence that is required by complex knowledge systems (such as in the QR field) that
currently are not well covered by approaches such as ontology reasoning. The latter
may be informative for setting the ontology research agenda.

An earlier effort to support the interchange and reuse of QR models is the creation
of the Compositional Modelling Language (CML) [5]. CML is a unified representation
language for the different QR model paradigms, and is expressed in the Knowledge
Interchange Format [18]. Formalising DynaLearn models in CML would support the
interchange of models between the different DynaLearn components, by furthering
the goal of establishing a of a common vocabulary for QR models and simulations.
However, the representation would not allow easy processing of the QR knowledge
structures, nor would reasoning with such structures be facilitated, since there are no
KIF interpreters readily available. For these reasons, we have chosen not to formalise

21

Project No. 231526 DynaLearn D3.2

DynaLearn knowledge assets in CML.
Instead of CML, we have chosen the Web Ontology Language (OWL) [2] (Sec-

tion 3) as our knowledge representation language. OWL was developed as part of
the semantic web initiative [4] to make content more computer accessible. OWL is
a knowledge representation language based on description logics [1], and is usually
written in an XML format. OWL has become the de-facto standard for the sharing of
knowledge on the web in the form of ontologies [22]. By formalising the QR models in
OWL, knowledge structures can be easily exchanged between components, interpreted
using existing libraries, and be reasoned with using reasoning engines for OWL. It be-
comes possible to open the QR models in several well-established applications such as
ontology editors (Protégé [25], SWOOP [24], Triple20 [40]), checked for consistency
and applied classification reasoning on using reasoners (FACT++ [37], Pellet [34] and
RacerPro (Racer Systems GmbH & Co. KG, http://www.racer-systems.com), and ma-
nipulated through using API’s (the OWL API [3], and the SWI-Prolog Semantic Web
Library [41]).

An additional benefit is that validity (to the OWL formalism) and consistency of
the models (logical consistency) can be checked using OWL validators and OWL rea-
soners. Describing QR models in an established standard should also make it easier to
develop import functionality in other QR tools.

To determine how the QR models can be formalised as ontologies, an ontological
perspective on QR is taken. Previous research distinguishes different types of ontolo-
gies based on the type of ontological commitments they make [39]. For example,
the ontological commitments of a knowledge representation language consist of the
concepts that can be used as ingredients in the language. However, a domain model
created by a knowledge engineer using such a language defines new concepts based
the concepts in the knowledge representation language. These are are a different kind
of ontological commitments, since knowledge representation language tries to define
a domain-independent perspective free language, while the domain model defines a
domain-specific vocabulary. We frame the QR knowledge representation on these dif-
ferent types of ontologies (Figure 4.1).

Since we chose OWL as our representation language for QR models, OWL be-
comes our representational ontology, and defines the concepts that we can use for our
formalisation. The model ingredients provided in the QR vocabulary (Section 5) are
formalised as an OWL ontology, called the DynaLearn Ontology. These model in-
gredients are generic building blocks such as the concept entity, causal relations, and
inequalities. The DynaLearn QR ontology is a generic ontology that extends the onto-
logical commitments made by OWL (i.e. defines new concepts based on the concepts
provided by representational ontology). This generic ontology is domain-independent.

When modellers create QR models, they extend the QR vocabulary by defining
domain specific model ingredients, called domain building blocks, such as entities,
configurations, and quantities. Creating such a domain specific vocabulary can be seen
as refining some of the generic building blocks in the generic ontology to define a
domain ontology. In that sense, the QR models can be defined in OWL by extending
the ontological commitments of the DynaLearn QR ontology for a specific domain.
This ontology is called a QR model ontology.

The generic building blocks in the DynaLearn QR ontology, and the domain build-

Page 22 of 90

Project No. 231526 DynaLearn D3.2

ing blocks in the QR model ontology can be used to define the aggregates (model frag-
ments and scenarios) that represent specific situations and processes. These aggregates
are part of the domain ontology.

Ideally, the application specific information in a QR model (e.g. for visualisation)
is stored in an application ontology separate from the domain ontology. However, from
a user perspective it is more convenient to work with a single model file. Therefore,
some application specific information has to be stored in the QR model ontology.

Representation
Ontology

Generic
Ontology

Domain
Ontology

Application
Ontology

Web Ontology
Language

Qualitative
Reasoning
Ontology

QR Model Ontology

Domain
Aggregates

Domain
Building Blocks

Figure 4.1: Correspondences between the QR ontologies and ontology types based on
the type of ontological commitments made.

4.1 Design and Validation
We followed a step-wise approach. First, we manually created the DynaLearn QR
ontology in which all model ingredient types in the QR vocabulary (i.e. the terminology
used when talking about QR models) are defined. The details for this were derived
from the DynaLearn workbench, Garp3, the Garp3 documentation, articles about QR,
and discussions with experts. By running an OWL reasoner the consistency of the
ontology was tested. Inconsistent concepts were refined until a consistent ontology
was established that covered the entire QR vocabulary. This vocabulary was then used
as the basis for the formalisation of QR models in OWL.

The main idea of creating the DynaLearn QR ontology is to restrict how model
ontologies can be formalised. This is done by specifying necessary restrictions for
each of the model ingredients. Consequently, QR models in OWL that are invalid from
a QR point of view are inferred to be inconsistent. This helps to determine the structure
of the OWL model format, and makes it possible to validate the model ontologies.

The second step was to manually define a set of simple QR models in OWL. The
concepts in these domain ontologies refer to concepts defined in the QR vocabulary.
These model ontologies were validated by searching for inconsistencies using OWL
reasoners. Inconsistent ontologies were either to blame on the definitions in the generic
ontology (which were then refined), or on definitions in the hand-made model ontolo-
gies.

Thirdly, the OWL export code was implemented. To validate the correctness of the
resulting OWL code (and the vocabulary) increasingly complex models were exported

Page 23 of 90

Project No. 231526 DynaLearn D3.2

to OWL and checked for inconsistencies using OWL reasoners (Section 4.2). Incon-
sistencies were resolved by refining both the vocabulary and the OWL export code.

Finally, the OWL import code was implemented. This made it possible to fur-
ther validate the QR ontology defined in OWL, and the accompanying export and im-
port code, by comparing the original QR model (and its simulation results) with the
exported-and-imported version of that model. These two should be identical.

4.2 Implementation
Several OWL editors and reasoners have been used to test the validity of the QR ontol-
ogy and the QR models represented in OWL: Protégé 3 and 4 [25], SWOOP [24] and
Triple20 [40]. The following reasoners have been used to test for consistency and to do
classification: FACT++ [37], Pellet [34] and RacerPro (Racer Systems GmbH & Co.
KG1).

The OWL import and export functionality was implemented using the SWI-Prolog
Semantic Web Library [41]. Notice that in the OWL file format only the model it-
self is represented, as the simulations can be recreated using the software. However,
functionality was added to export summaries of simulations (Section 7).

1http://www.racer-systems.com

Page 24 of 90

Chapter 5

The DynaLearn QR Ontology

This chapter discusses the formalisation of the QR vocabulary used in the DynaLearn
ILE. It provides the basis of the formalisation of QR models in OWL (Section 6).
It presents both the generic ontology of QR model ingredients, which introduces the
necessary vocabulary in terms of OWL, and the domain ontologies (Section 4), which
can be used to capture domain specific QR models. The basis of the DynaLearn QR
ontology is LS6, since it uses the most complete QR vocabulary. The formalisations of
the other learning spaces is derived from the representation of LS6 models (Section 6).
For clarity, the vocabulary used in the following chapter is as follows:

QR vocabulary The terminology that is used to talk about QR models. That is, all the
possible model ingredients, the categorizations of these model ingredients, the
different views on simulation results, such as the state graph, states, transitions,
value history etc. Note that domain specific terminology is not part of the QR
vocabulary.

(DynaLearn) QR Ontology The formalisation of the QR vocabulary in OWL.

QR Models in OWL The formalisation of the QR models in OWL based on the Dy-
naLearn QR Ontology. These QR models use domain specific terms, but refer to
the QR Ontology to indicate of which type specific terms are.

5.1 A Hierarchy of Qualitative Model Ingredients

5.1.1 The Hierarchy
The formalisation of the QR domain starts with the ordering of the vocabulary in a class
hierarchy. Figure 5.1 shows the taxonomy of the QR model ingredients. The taxonomy
shows both the QR concepts and relations, as the latter are reified (treated as classes,
see section 5.1.2). The top node of is called QualitativeModelIngredient, as every class
is a possible ingredient of a qualitative model. The model ingredients are divided into
the sets BuildingBlock and Aggregate. The former describes separate model ingredi-
ents, while the latter describes collections of related model ingredients. The aggregate

25

Project No. 231526 DynaLearn D3.2

concepts ModelFragment and Scenario are described in section 5.6. As mentioned in
chapter 2, qualitative models describe both the structural and the behavioural aspects
of systems. Therefore, the building blocks are subdivided into the sets Structural (sec-
tion 5.3), Behavioural (section 5.5), and AssumptionType (section 5.4). Assumptions
are considered to be separate, as they do not describe inherent aspects of the system.

One of the most difficult problems when developing an ontology is finding proper
names for the defined concepts. Whenever a vocabulary concept is described in this re-
port, its position in the hierarchy will be discussed along with the naming (if it differs
from the standard QR vocabulary). The formalisation of the hierarchy in OWL, how-
ever, is straight forward. The classes are defined by giving them an id, label, comment,
and specifying their superclasses. As OWL assumes that the sets which the classes
model overlap, the siblings on each level have been specified as being disjoint. In the
rest of this chapter, the definitions of the concepts are extended by adding restrictions.

5.1.2 Reification of Relations
All relations in the QR vocabulary have been reificated. This was necessary, as some
QR relation ingredients are tertiary in nature. Furthermore, in order to render models
in a graphical model editor, the position on the screen of each model ingredient must be
stored. Treating the relations as classes (reification) allows instances of those relations
to be connected to multiple objects, and have data type properties (for the position
information).

The reification of relations in OWL is a familiar problem and can be solved by us-
ing existing reification patterns [29]. There are two ways to reify a relation depending
on the objects that take part in the relation. Generally, there is at least one independent
object participating in a relation. An independent object exists without any other ob-
jects, while a dependent object, such as a property value, needs another object to exist.
For the first pattern (Figure 5.2) to apply, there must be only one independent object,
which is the owner of the relation. If there is more than one independent object taking
part in the relation, and there is no clear distinguishable owner, the second pattern is
suggested to be used (Figure 5.3).

The single independent object in the first pattern (Figure 5.2) must be the owner of
the relation, as the dependent objects would not exist without it. Relations with only
one independent object usually model properties of classes. Properties should have
only one dependent object which is the value. For this reason, in this report relations
from a reified relation to the dependent objects are defined as having cardinality 1. The
standard pattern mentioned before uses functional properties instead of a cardinality
restriction. The difference is that a cardinality restriction restricts the number of re-
lations to 1, while a functional property indicates that all values of the property are
the same individual. So, a cardinality imposes a restriction, while making the relation
functional allows the reasoner to make an inference. For the QR domain the restriction
is more appropriate, as it decreases the number of possible models with the same mean-
ing. Furthermore, it is also possible for a reified relation to have an optional dependent
object as a value. This restriction can be formalised by using maxCardinality, instead
of cardinality=1. The second existing reification pattern applies when the relation has
multiple independent objects as arguments, instead of just one. In this case, there is no

Page 26 of 90

Project No. 231526 DynaLearn D3.2

C
lo

se
dS

ta
te

C
au

sa
lM

od
el

P
ro

po
rt
io

na
li
ty

N
eg

at
iv

eP
ro

po
rt
io

na
li
ty

is
-a

P
os

it
iv

eP
ro

po
rt
io

na
li
ty

is
-a

S
im

ul
at

io
nP

er
sp

ec
ti
ve

is
-a

E
qu

at
io

nH
is
to

ry
is

-a

S
im

ul
at

io
nR

un
T
hr

ou
gh

is
-a

V
al

ue
H

is
to

ry
is

-a

S
tr
uc

tu
ra

lM
od

el

is
-a

T
ra

ns
it
io

nH
is
to

ry

is
-a

O
pe

ra
to

r

O
pe

ra
to

rO
nM

ag
ni

tu
de

It
em

is
-a

M
in

us
is

-a

O
pe

ra
to

rO
nD

er
iv

at
iv

eI
te

m
is

-a

P
lu

s

is
-a

P
oi

nt
B
el

on
gi

ng
T
oD

er
iv

at
iv

e

S
up

er
S
ta

te

G
re

at
er

T
ha

n

C
au

sa
lD

ep
en

de
nc

y

is
-a

In
fl
ue

nc
e

is
-a

B
eh

av
io

ur
G

ra
ph

S
ta

te
G

ra
ph

is
-a

V
al

ue
C
or

re
sp

on
de

nc
e

B
eh

av
io

ur
al

B
ui

ld
in

gB
lo

ck

Q
ua

nt
it
yA

ss
um

pt
io

n
is

-a

M
ag

ni
tu

de
is

-a
M

ag
ni

tu
de

It
em

is
-a

D
er

iv
at

iv
eI

te
m

is
-a

Q
ua

nt
it
yS

pa
ce

is
-a

D
er

iv
at

iv
e

is
-a

Q
ua

li
ta

ti
ve

V
al

ue

is
-a

D
ep

en
de

nc
y

is
-a

Q
ua

nt
it
y

is
-a

B
ui

ld
in

gB
lo

ck

is
-a

A
ss

um
pt

io
n

is
-a

S
tr
uc

tu
ra

lB
ui

ld
in

gB
lo

ck
is

-a

Id
en

ti
ty

is
-a

S
ce

na
ri
o

A
tt
ri
bu

te
V
al

ue

T
ra

ns
it
io

n

O
rd

er
ed

S
ta

te
is

-a

A
gg

re
ga

te
is

-a

M
od

el
F
ra

gm
en

t
is

-a

E
xp

re
ss

io
n

is
-a

N
eg

at
iv

eI
nf

lu
en

ce

S
m

al
le

rT
ha

n
A

ge
nt

F
ra

gm
en

t
is

-a

S
ta

ti
cF

ra
gm

en
t

is
-a

P
ro

ce
ss

F
ra

gm
en

t

is
-a

E
nt

it
y

P
oi

nt

is
-a

P
oi

nt
B
el

on
gi

ng
T
oM

ag
ni

tu
de

is
-a

is
-a

P
os

it
iv

eI
nf

lu
en

ce

is
-a

T
er

m
in

at
io

n

is
-a

is
-a

C
on

fi
gu

ra
ti
on

is
-a

A
tt
ri
bu

te

is
-a

A
ge

nt

is
-a

P
re

di
ct

io
n

S
im

ul
at

io
n

B
eh

av
io

ur
P
at

h

T
er

m
in

at
ed

S
ta

te
is

-a

S
im

ul
at

io
nO

ut
pu

t

is
-a

Q
ua

li
ta

ti
ve

M
od

el
In

gr
ed

ie
nt

is
-a

is
-a

In
te

rp
re

te
dS

ta
te

is
-a

G
re

at
er

O
rE

qu
al

T
o

In
eq

ua
li
ty

is
-a

is
-a

is
-a

E
qu

al
T
o

is
-a

S
m

al
le

rO
rE

qu
al

T
o

is
-a

is
-a

In
te

rv
al

is
-a

is
-a

M
at

he
m

at
ic

al
D

ep
en

de
nc

y

is
-a

C
or

re
sp

on
de

nc
e

is
-a

Q
ua

nt
it
yS

pa
ce

C
or

re
sp

on
de

nc
e

is
-a

is
-a

ha
sV

al
ue

is
-a

is
-a

is
-a

F
ul

lC
or

re
sp

on
de

nc
e

is
-a

T
hi

ng

is
-a

is
-a

is
-a

is
-a

is
-a

is
-a

is
-a

is
-a

is
-a

S
ta

te

is
-a

is
-a

Fi
gu

re
5.

1:
T

he
Q

R
in

gr
ed

ie
nt

ta
xo

no
m

y
de

fin
in

g
th

e
Q

R
vo

ca
bu

la
ry

.

Page 27 of 90

Project No. 231526 DynaLearn D3.2

Relation
Optional

Dependent
Object

Required
Dependent

Object

(allValuesFrom,
cardinality=1)

(allValuesFrom)

Relation
Owner

(allValuesFrom)

Figure 5.2: Relation Reification Pattern 1: One independent object which is the owner
of the relation.

Relation

Required
Independent

Object2

Optional
Independent

Object

Optional
Dependent

Object

Required
Dependent

Object

(allValuesFrom)

(allValuesFrom)

(allValuesFrom,
cardinality=1)

(allValuesFrom)

(allValuesFrom,
cardinality=1)

Required
Independent

Object

Figure 5.3: Relation Reification Pattern 2: Multiple independent objects with no clear
owner. Note that the restrictions apply to the relations from the reificated relation.

clear owner of the relationship (see Figure 5.3). For this reason, relations are modelled
from the reified relation to the arguments. The inverse relations of the independent
object should be defined, as the relations these objects take part in should be deducible.
This second pattern is not applied in the QR ontologies as restriction semantics are not
defined in the relation, but the class which owns the relation (see section 5.1.3). As
this requires the ownership relations to point to the reificated relation, the first pattern
is more appropriate.

5.1.3 Property Restrictions
The defined QR hierarchy specifies that classes inherit the properties defined in their
superclasses. In this case the properties are the restrictions which specify how model
ingredients may be related using object properties. This section describes how such
restrictions have to be formalised. For brevity, the restrictions used in this chapter are
formalised in the logical notation shown in Table 3.1.

A common mistake made when modelling properties in OWL is using domain and
range definitions of properties as restrictions [31]. These fields specify that the domain
and range of the property are of a specific type. This means that if a relation playsIn-
strument with domain Person and range MusicalInstrument is used to model a robot

Page 28 of 90

Project No. 231526 DynaLearn D3.2

playing piano, the statement is not inconsistent. It merely allows the reasoner to infer
that the robot is a person. OWL users are advised not to specify these fields, as the
resulting ontologies are very hard to debug [31].

The correct way to restrict the use of relations is by specifying the restrictions in
the class owning the relation. Examples of the specification of such restrictions have
been shown in chapter 3. These restrictions become more complex when relations
have been reificated, as it becomes possible to model the restrictions directly in the
relation. This should not be done, as it makes it impossible to reuse the relation. If
the playsInstrument relation from the previous paragraph would be reificated, and the
domain and range restricted, the statement that the robot plays piano would become
inconsistent.

playsInstrument v ∀ hasP layer Human
playsInstrument v ∀ hasInstrument Instrument

In order to be able to reuse reificated patterns a new pattern was developed. Instead
of modelling the restrictions in reificated relations, they should be defined in the classes
using the relation. This is possible as OWL allows the creation of new anonymous class
definitions within restrictions. In the robot pianist example, the person class would be
restricted to having a relation with a reificated playsInstrument relation, which has a
relation with an instrument. This definition allows reuse, as now the robot class can be
formalised using the same restrictions. It is even possible to allow different instruments
for the robot by replacing the Instrument class in the restriction.

Human v ∀ hasP laysInstrumentRelation(playsInstrument u
(∀ hasInstrument Instrument))

Robot v ∀ hasP laysInstrumentRelation(playsInstrument u
(∀ hasInstrument Instrument))

5.2 Qualitative Model Ingredient
The qualitative model ingredients used in model fragments and scenarios have to be vi-
sualised. Therefore, the concept has the two data type properties has xposition on screen
and has xposition on screen. As not every model ingredient has a specific position
which needs to be stored (because the position is indicated by other ingredients), fill-
ing these values is not always necessary. Therefore, instead of cardinality restrictions,
maximum cardinality restrictions are used.

Qualitative Model Ingredient v has xposition on screen ≤ 1
Qualitative Model Ingredient v has yposition on screen ≤ 1

Page 29 of 90

Project No. 231526 DynaLearn D3.2

5.3 Structural
This section describes structural ingredients set of the qualitative model ingredients,
which are used to describe the structure of a system. This class encompasses the con-
cepts (1) entities, (2) agents, (3) configurations, (4) attributes and (5) attribute values.

5.3.1 Entities, Agents, and their Relations
Entities describe the objects which exist in a system. Agents are very similar in the
kind of relations they can take part in, but are used to model ’outside forces’ on the
system. They are both structural ingredients, and are alike in the kinds of relations they
can take part in. It is possible for entities and agents to have attributes (section 5.3.3)
and quantities (section 5.5.1) as is shown in Figure 5.4. These necessary restrictions are
shown below. Entities and agents can have configuration relations with other entities
and agents, which are described in section 5.3.2. The formalisation below applies to
the Agent concept as well as the Entity class.

Entity v ∀ hasAttribute Attribute
Entity v ∀ hasQuantity Quantity

Developers of qualitative models can define their own entities and agents in a sub-
type hierarchy. These entities and agent definitions are stored in the domain ontology.
The formalisation of these hierarchies in OWL is similar to the formalisation of the QR
vocabulary hierarchy (section 5.1.1). Again, the classes are defined with their respec-
tive superclasses, and disjointness axioms have to be added to indicate that individuals
of classes cannot be members of the sibling classes. The top nodes of these hierarchies
are the general entity and agent concepts defined in the generic ontology. Therefore,
every model imports the generic ontology, and refers to these concepts though the cor-
rect namespace.

5.3.2 Configurations
Configurations are used to describe the structural relations between entities and agents.
A configuration is a relation between two independent objects, but it is a directed re-
lation. This means that the owner of the relation can be clearly identified. This means
that both the first (a clear owner of the relation can be identified) and the second re-
lation reification pattern (participants in the relation are independent) could apply. As
mentioned in section 5.1.2, the second reification patterns is not used. Therefore the
configuration is modelled as a mixture of the two patterns, as is shown in Figure 5.4.
The difference with the first pattern is that the inverse relations have been defined, so
the configurations which entities and agents take part in can be derived.

Configurations have exactly one owner and one target, therefore the hasConfigu-
rationTarget and hasConfigurationOwner relations are defined as having cardinality 1.

Page 30 of 90

Project No. 231526 DynaLearn D3.2

Configuration

Agent

QuantityAttribute

Entity

hasConfiguration

hasConfigurationOwner
(cardinality=1) isConfigurationTargetOf

hasConfigurationTarget
(cardinality=1)

QuantityAttribute

hasAttribute hasQuantity hasAttribute hasQuantity

Figure 5.4: The possible relations of entities and agents. Note that both the entity may
be changed to agent, and the agent into entity.

By defining inverse relations the owner belonging to the configuration, and the config-
uration which targets an entity or agent can be derived.

Configuration v hasConfigurationOwner = 1
Configuration v hasConfigurationTarget = 1

As mentioned in section 5.1.3, the restrictions which apply to relations are defined
in the class which utilises them. In this case the semantics of the configuration relation
are defined in the agent and entity classes. This allows new model ingredients to be
defined which also use the configuration relation. Entities and agents can participate
in configuration relations with other entities and agents. The formalisation for entities
below also applies to the Agent class.

Entity v ∀ hasConfiguration (Configuration u
(∀ hasConfigurationTarget (Entity t Agent)))

Developers of qualitative models can define their own configurations. In contrast
with entities and agent, configurations are not arranged in a taxonomy. As a result
every configuration is a subclass of the concept configuration defined in the generic
ontology.

5.3.3 Attributes
Attributes describe the features of entities and agents that do not change gradually.
Models can define their own attributes, which consist of an attribute name, and its
possible values. Attributes are considered to be properties of entities and agents, and
should have exactly one attribute value. As OWL does not make a distinction be-
tween relations between objects and properties of objects1, a pattern has to be used

1Not to be confused with ObjectProperties in OWL

Page 31 of 90

Project No. 231526 DynaLearn D3.2

to formalise properties in OWL. An existing pattern to model property values uses an
enumeration of individuals [30].

Property Values as an enumeration of individuals In the enumeration pattern the
values of a property are considered to be a set of individuals, as shown in Figure 5.5.
As a result, the values are unique in the ontology, and objects with the property all refer
to a value from the same set of individuals. It is necessary to explicitly state that the
values are different using the owl:differentFrom statement, as OWL does not make the
Unique Name Assumption (two individuals with different names are not necessarily
different objects).

Meat
Readiness

Rare Medium-Rare Medium Well-Done

(allValuesFrom,
functional)

Meat

oneOfoneOfoneOfoneOf

hasReadiness

Figure 5.5: Values as an enumeration of individuals.

Back to the formalisation of attributes. The attribute value is defined to be an
enumeration of individuals (see Figure 5.6). This allows the same value set to be used
for each instance of an attribute. This formalisation works for attribute values, since
these instances do not have relationships themselves. As will be shown in Section 5.5.2,
this pattern does not work for qualitative values, since they do have relationships with
other instances (e.g. inequalities).

Attribute relations are a typical example of reification pattern 1. The attribute itself
is an independent object, while the attribute values are dependent on the existence of the
attribute. Since an attribute always has a relation with an attribute value, the semantics
are stored in the attribute class instead of in the classes having attributes.

Attribute v ∀ hasAttributeV alue AttributeV alue
Attribute v ∀ hasAttributeV alue = 1

The attributes defined in the domain ontology have some further restrictions. The
attribute is prohibited to have any other attribute value, other than an instance of the
associated attribute value class. The attribute value class is defined as the enumeration
of the possible values.

OpenOrClosed v ∀ hasAttributeV alue OpenOrClosedV alue
OpenOrClosedV alue ≡ {Open,Closed}

Page 32 of 90

Project No. 231526 DynaLearn D3.2

Attribute Attribute Value

Attribute Value 2Attribute Value 1 Attribute Value 3

hasAttributeValue
(allValuesFrom,

functional)

oneOfoneOf oneOf

Figure 5.6: The attribute components and its relations.

5.4 Assumption Types
As it is likely that new types of assumptions will be introduced in the QR vocabu-
lary, the AssumptionType concept is defined. For now, the only class which is part of
this set is the generic assumption. Assumptions are neither structural nor behavioural
ingredients, as they describe knowledge about the model, and not about the system.

Assumptions are used as conditions in model fragments to assert that something
is true. They are usually used in combination with inequalities to reduce the possible
behaviour of a system. As assumptions have no further relations with other QR ingre-
dients, no restrictions have to be imposed in the ontology. Model builders can define
their own assumptions in the same way they can define entities and agents. The for-
malisation of this subsumption hierarchy in OWL is equivalent to those of the entities
and agents.

5.5 Behavioural
Behavioural ingredients describe the model ingredients used to describe the behaviour
of a system. They include: (1) magnitudes, (2) derivatives, (3) quantities, (4) quantity
spaces, (5) qualitative values, and (6) dependencies. Qualitative values can be further
divided into points and intervals.

Dependencies are the possible relations between the behavioural ingredients of a
system. They are used to model the processes causing change, constrain what changes
can occur, and how these changes occur. The dependency ingredients include: (1) the
causal dependencies: proportionality and influence, (2) correspondences, and (3) the
mathematical operators: plus/minus and all (in)equalities.

5.5.1 Quantities, Magnitudes, Derivatives and Quantity Spaces
Quantities describe the changeable features of entities and agents. These behavioural
ingredients consist of exactly one magnitude and exactly one derivative (see Figure 5.7).
Both the magnitude and the derivative have exactly one quantity space.

The magnitude is actually the zero derivative of the quantity, while the derivative
is the first derivative. Forbus uses the term amount to refer to the zero derivative, and

Page 33 of 90

Project No. 231526 DynaLearn D3.2

Quantity

DerivativeMagnitude

Quantity
Space

Quantity
Space

hasMagnitude
(allValuesFrom,
cardinality=1)

hasDerivative
(allValuesFrom,
cardinality=1)

hasQuantitySpace
(allValuesFrom,
cardinality=1)

hasQuantitySpace
(allValuesFrom,
cardinality=1)

Figure 5.7: The quantity has one magnitude and one derivative, which both have quan-
tity spaces.

magnitude to refer to the value of the magnitude or derivative [14]. The term amount
is not used in our approach, because it it has multiple meanings. Next to Forbus’ use,
it could also be used to refer to the quantity “amount”. Another alternative is the term
value, but that word has the problem that the qualitative values within a quantity space
are also referred to as values. Magnitude does not have these problems, and is an
appropriate name in this context. Quantities can have proportionality and influence
relations (section 5.5.3). Magnitudes and Derivatives can participate in (in)equality
relations (section 5.5.5) and Plus/Minus relations (section 5.5.6).

Quantity v ∀ hasMagnitude Magnitude

Quantity v hasMagnitude = 1
Quantity v ∀ hasDerivative Derivative
Quantity v hasDerivate = 1

Magnitude v ∀ hasQuantitySpace QuantitySpace
Magnitude v hasQuantitySpace = 1

Derivative v ∀ hasQuantitySpace QuantitySpace
Derivative v hasQuantitySpace = 1

Qualitative model builders can define their own quantities. A quantity can have a
number of allowed quantity spaces (section 5.5.2). This information has to be stored
in the specific quantity concept in the domain ontology. The formalisation in OWL
is done using a restriction. The quantity has a magnitude, which has a quantity space
relation with one of the quantity spaces in a union.

Page 34 of 90

Project No. 231526 DynaLearn D3.2

Flow v ∃ hasMagnitude(Magnitude u
(∀ hasQuantitySpace(Minimumnegativezeropositivemaximum t
Negativezeropositive t Zeropositivemaximum)))

5.5.2 Quantity Spaces and Qualitative Values
The quantity space is a behavioural ingredient which defines the possible qualitative
values a quantity can have. A quantity space consists of at least one qualitative value.
These values are also behavioural ingredients, and can be either a point or an interval.
The quantity space describes a total order, meaning that a magnitude or derivative can
only change to a value directly above or below its current value. Quantity spaces can
participate in a correspondence relations (section 5.5.4).

QuantitySpace v ∀ hasQualitativeV alue QualitativeV alue
hasQualitativeV alue ≥ 1

As each qualitative value in a model fragment can participate in (in)equality rela-
tions, it is impossible to formalise them as an enumeration of individuals. It is more
graceful to model each value which can participate in a relation as a separate individual.
Therefore, “the property values as a set of individuals” pattern cannot be used. Another
existing pattern which is more appropriate formalises each value as a class [30].

Property Values as classes Values of properties can be thought of as a set of sub-
classes forming a parent class (see Figure 5.8). This class binds all the possible value
classes of the property using the owl:unionOf construct. It is necessary to explicitly
state that the subclasses are disjoint, as otherwise a property could have two values at
the same time (because they are the same, i.e. the value is an instance of both sub-
classes). In contrast with the ’property values as individuals’ pattern, values are not
unique, but a new instance of the value is created for each property instance. A prob-
lem with this pattern is that the property values do not have an explicit order, which is
needed for quantity spaces. An existing pattern which might solve this problem is to
model the values as a sequence in a list.

Property Values as a Sequence in a List This pattern is described in the n-ary re-
lations document of the Semantic Web Working Group [29]. If the possible values of
a property have a strict sequence, the previous patterns are not expressive enough, as
they do not enforce an ordering. A possible solution to this problem is to model the
values as a list. Unfortunately, using rdf:List in an OWL ontology causes it to become
OWL Full. A solution is to model a list in OWL (see Figure 5.9), which is then used to
store values.

A list consists of a number of arguments, each pointing to the next item in the list.
Each argument item has as has content relation with the an object. The list pattern can

Page 35 of 90

Project No. 231526 DynaLearn D3.2

Meat
Readiness

unionOf

Rare Medium-Rare Medium Well-Done

(allValuesFrom,
functional)

MeathasReadiness

Sirloin Steak Well-Done_1
hasReadiness

Figure 5.8: Property values as the instances of classes which form a union.

Argument_List

Relationship
Owner

(functional)
OWL:Thinghas_contents

rest_of_list
(functional)

owns_list

Figure 5.9: The definition of a list in OWL.

be used in combination with both the “property values as an enumeration of individ-
uals”, and the “property values as a set of classes” patterns. To formalise a quantity
space the latter pattern must be used. The values are ordered in a list to model their
sequence, as is shown in Figure 5.10.

However, there are two problems with the list pattern. Firstly, a list has no ontolog-
ical meaning, as it is a data structure. A list with the cities Amsterdam, Brussel, and
Paris has little meaning. They could indicate a travel route, cities with the around the
same amount of inhabitants, or something else entirely. Secondly, it is awkward to de-
termine the owner of a list from one of the possible values. One has to “reason through”
all the values. In order to solve these problems a new pattern had to be developed; the
ontological sequence.

Ontological Sequence In order to formalise a quantity space the ordering of the val-
ues has to be made explicit. The quantity space is connected with its points and inter-
vals using containsQualitativeValue relations, as is shown in Figure 5.11. The ordering
is established by using inequalities (section 5.5.5). Each consecutive value in the order
must have another type than the previous one. For that reason, the (in)equality restric-
tions are formalised in the intervals. This still allows connecting two points, but that is

Page 36 of 90

Project No. 231526 DynaLearn D3.2

Meat
Readiness

has_readiness
sequence

has_contents

has_contents

has_contents

has_contents

Rare

Medium-Rare

Medium

Well-Done

rest_of_list

rest_of_list

rest_of_list

List_1

List_2

List_3

List_4

rest_of_list

Empty_List

Figure 5.10: The application of a list in OWL.

necessary for the other (in)equality relations (section 5.5.5). The point Zero is univer-
sal among quantity spaces, and is therefore defined in the generic ontology. Qualitative
model builders can specify their own quantity spaces. These have the form shown in
Figure 5.11.

containsQualitativeValue
Quantity

Space

Interval

Point

Interval

Point

GreaterThan

SmallerThan

GreaterThan

hasInequality

hasInequalityTarget

hasInequalityTarget

hasInequality

Figure 5.11: The formalisation of a quantity space and its values using inequalities.

Page 37 of 90

Project No. 231526 DynaLearn D3.2

Quantity v ∀ containsQualitativeV alue QualitativeV alue
Quantity v containsQualitativeV alue ≥ 1

NegativeZeroPositive v ∃ containsQualitativeV alue(Positive u
(∃ hasInequality(GreaterThan u (hasInequalityTarget 3 Zero))))

NegativeZeroPositive v ∃ containsQualitativeV alue(Negative u
(∃ hasInequality(SmallerThan u (hasInequalityTarget 3 Zero))))

NegativeZeroPositive v containsQualitativeV alue 3 Zero

5.5.3 Proportionalities and Influences
Proportionalities and Influences are relations between quantities which indicate what
quantities in a model change. These relations can be either positive or negative. A pos-
itive proportionality indicates that the derivative of the target quantity is positive if the
derivative of the origin quantity is positive, and is negative if the derivative of the origin
quantity is negative. For a negative proportionality this is just the opposite. A positive
influence indicates that the target quantity derivative is positive if the magnitude of the
origin quantity is greater than zero, and negative if it less than zero (if it is the only
influence on the target quantity). For the negative influence this is just the other way
around.

The semantics of the causal dependencies are modelled in the owner class, in this
case the quantity class. Quantities can have influences and proportionalities as causal
dependency relations, and they must have exactly one quantity as a target (see Fig-
ure 5.12).

Quantity v ∀ hasCausalDependency(
(Influence t Proportionality) u
(∀ hasCausalDependencyTarget Quantity) u
(hasCausalDependencyTarget = 1))

5.5.4 Correspondences
Correspondences specify that values occur simultaneously. They normally occur be-
tween qualitative values of different quantity spaces, but it is also possible to create a
correspondence relation between quantity spaces themselves. Those relations are an
abbreviation for value correspondence relations between each of the quantity values
of the different quantity spaces. Directed and undirected correspondences are distin-
guished. The former states that the target value may be derived from the origin value,
while the latter allows the derivation of the value in both directions.

Page 38 of 90

Project No. 231526 DynaLearn D3.2

Quantity Quantity

Proportionality

Influence

hasCausalDependencyTarget
(allValuesFrom,cardinality=1)

hasCausalDependency
(allValuesFrom)

hasCausalDependency
(allValuesFrom)

hasCausalDependencyTarget
(allValuesFrom,cardinality=1)

Figure 5.12: The use of proportionality and influences relations. Note that the restric-
tions applied to the hasCausalDependencyTarget relation are modelled in the Quantity
class which owns the relation, and not in the influence or proportionality class.

The semantics of quantity space correspondences is unclear when the quantity
spaces have a different amount of values, as it is unknown between which values value-
correspondences would exist. The only way to formalise this in OWL is to create
classes for each quantity space size, and restrict correspondences to members with the
same number of qualitative values. The correct formalisation would take an infinite
number of classes, therefore this restriction is not implemented. It would be benefi-
cial if it would be possible to express in OWL that a domain and range should have
the same cardinality. Another problem is that correspondences, just as configurations,
should not be reflexive. It is a known problem that this restriction is inexpressible in
OWL. For value correspondences a restriction is needed that restricts value correspon-
dences to members of different quantity spaces. As OWL restrictions can only state
that a range has to be of a specific type, this is impossible to implement. This leaves
the basic restrictions that correspondences should be between members of the same
class, and should have exactly one target, as is shown in Figure 5.13.

Quantity Space Quantity SpaceCorrespondence

hasCorrespondence
(allValuesFrom)

hasCorrespondenceTarget
(allValuesFrom, cardinality=1)

Qualitative Value Qualitative ValueCorrespondence

hasCorrespondence
(allValuesFrom)

hasCorrespondenceTarget
(allValuesFrom, cardinality=1)

Figure 5.13: The only valid correspondence relations are between two quantity spaces,
or two qualitative values.

Page 39 of 90

Project No. 231526 DynaLearn D3.2

QualitativeV alue v ∀ hasCorrespondence(V alueCorrespondence u
(∀ hasCorrespondenceTarget QualitativeV alue) u
(hasCausalCorrespondenceTarget = 1))

QuantitySpace v ∀ hasCorrespondence(QuantitySpaceCorrespondence u
(∀ hasCorrespondenceTarget QuantitySpace) u
(hasCausalCorrespondenceTarget = 1))

5.5.5 Inequalities
Inequalities are dependencies which can be used by a lot of ingredients. They indicate
the difference between, or equality of values. The same reificated (in)equality rela-
tions SmallerThan, SmallerOrEqualTo,EqualTo,GreaterOrEqualTo and GreaterThan
are reused for each possible domain/range combination. This reuse is possible as the
restrictions are formalised in the classes owning the relations, as was discussed in sec-
tion 5.1.3.

The first (in)equality relation which is described are the inequalities between points.
These relations are only valid if both points belong to either a magnitude or a derivative.
As it is undesirable to have to distinguish between these type of points in a qualitative
model, a pattern is developed to formalise these specific restrictions.

Restrictions for Classes Meeting Specific Conditions There are cases when the
relations of an individual have to be restricted depending on the relations that individual
has. For example, a workspace meant for a desktop computer should also contain a
monitor, but a workspace meant for a laptop does not. Because of the option between a
laptop or computer the necessity of having a monitor cannot be modelled as a condition
in the workspace class.

This problem can be solved by defining a new class workspaceWithDesktop in
which necessary and sufficient, and necessary conditions are combined. Recall that
necessary conditions are restrictions a consistent individual has to adhere to. Being
an individual (or subclass) of such a class implies that its conditions apply (class ⇒
conditions). Necessary and sufficient conditions should be read as an equivalence re-
lation. Fulfilling the conditions means the individual is an instance of the class, and
being an individual of the class means the conditions apply (class⇐⇒ conditions).

The class WorkspaceWithDesktop (see Figure 5.14) has “being of the class Workspace”
and “having a desktop as a computer” as necessary and sufficient conditions, meaning
that individuals fulfilling these conditions are classified as being a WorkspaceWith-
Desktop. Individuals of this class have to fulfil the necessary conditions, in this case
containing a monitor. As shown combining necessary and sufficient, and necessary
conditions allows modelling additional restrictions to individuals adhering to certain
conditional relations.

Page 40 of 90

Project No. 231526 DynaLearn D3.2

WorkspaceFor
Computer

Necessary & Sufficient Conditions

Necessary Conditions

∃ hasComputer Desktop
Workspace

∃ hasMonitor Monitor
implies

equivalence

Figure 5.14: Combining necessary and sufficient, and necessary conditions.

Inequalities from Points Belonging to Magnitudes or Derivatives Points belong-
ing to magnitudes (or derivatives) can be classified as such by combining necessary,
and necessary and sufficient conditions. Points belonging to magnitudes (or deriva-
tives) can have (in)equality relations with other points belonging to magnitudes (or
derivatives). Using the presented pattern necessary and sufficient conditions are stated
to classify points, after which the necessary restrictions on the (in)equality apply. The
range of the (in)equality should not be a value in the same quantity space, but this is, as
mentioned before, not expressible in OWL. The restrictions can be seen in Figures 5.15
and 5.16.

PointBelongingToMagnitude ≡ ∃ belongsToQuantitySpace
(QuantitySpace u (∃ isQuantitySpaceOf Magnitude))

PointBelongingToMagnitude v
∀ hasInequality PointBelongingToMagnitude

PointBelongingToDerivative ≡ ∃ belongsToQuantitySpace
(QuantitySpace u (∃ isQuantitySpaceOf Derivative))

PointBelongingToDerivative v
∀ hasInequality PointBelongingToDerivative

Page 41 of 90

Project No. 231526 DynaLearn D3.2

not the same individuals
(impossible in OWL)

Point PointInequality

hasInequality hasInequalityTarget

belongsToQuantitySpace

belongsToMagnitude

Quantity
Space

Quantity
Space

MagnitudeMagnitude

belongsToQuantitySpace

belongsToMagnitude

Figure 5.15: Points belonging to magnitudes can only have (in)equality relations with
points belonging to magnitudes.

not the same individuals
(impossible in OWL)

Point PointInequality

hasInequality hasInequalityTarget

belongsToQuantitySpace

belongsToDerivative

Quantity
Space

Quantity
Space

DerivativeDerivative

belongsToQuantitySpace

belongsToDerivative

Figure 5.16: Points belonging to derivatives can only have (in)equality relations with
points belonging to derivatives.

Inequalities originating from Magnitudes and Derivatives Magnitudes (or deriva-
tives) can have (in)equality relations with other magnitudes (or derivatives) (Figure 5.17
and 5.18). Again non-reflexivity is impossible to formalise. Magnitudes (or deriva-
tives) can also have (in)equality relations with qualitative values from their own quan-
tity space (Figure 5.19 and 5.20). As it is not possible to refer to the individual to
which the restriction applies, this restriction is also not formalised. As a result, unde-
sirable (in)equality relations can be formalised, while the ontology remains consistent.
Firstly, reflexive inequalities can be described, which are not valid in the reasoning en-
gine underlying DynaLearn. Secondly, inequalities from magnitudes (or derivatives)
to qualitative values of other magnitudes (or derivatives) can be described, which are
also not allowed by the qualitative simulator.

Page 42 of 90

Project No. 231526 DynaLearn D3.2

Magnitude v ∀ hasInequality(Inequality u
(∀ hasInequalityTarget (Magnitude t Point)))

Derivative v ∀ hasInequality(Inequality u
(∀ hasInequalityTarget (Derivative t Point)))

Magnitude Magnitude

not the same individuals (impossible in OWL)

Inequality

hasInequality hasInequalityTarget

Figure 5.17: A valid (in)equality relations between two magnitudes.

Derivative Derivative

not the same individuals (impossible in OWL)

Inequality

hasInequality hasInequalityTarget

Figure 5.18: A valid (in)equality between two derivatives.

QuantitySpace

containsQualitativeValue

Magnitude PointInequality

Point

hasInequality hasInequalityTarget

hasQuantitySpace
same individuals (impossible in OWL)

Figure 5.19: An (in)equality relations between a magnitude and a point.

Inequalities Used to Model the Total Order in Quantity Spaces The inequalities
used to model the total order in quantity spaces were already discussed in section 5.5.2.
Given that inequalities between points are valid, it is impossible to enforce the strict
alternation between points and values in a quantity space. In order not to complicate
the restrictions in points, the (in)equality relations used to specify the quantity space
order are modelled in the interval class (see Figure 5.11).

Interval v ∀ hasInequality(Inequality u (hasInequalityTarget ≥ 1) u
(∀ hasInequalityTarget Point))

Page 43 of 90

Project No. 231526 DynaLearn D3.2

QuantitySpace

containsQualitativeValue

Derivative PointInequality

Point

hasInequality hasInequalityTarget

hasQuantitySpace
same individuals (impossible in OWL)

Figure 5.20: An (in)equality relations between a derivative and a point.

The hasValue Relation In order to facilitate easier modelling of (in)equality re-
lations, user-interface introduces hasValue relations. These relations are visualised
as arrows which point at values of quantity spaces, indicating that the magnitude or
derivative has that specific value. Unlike inequalities, hasValue relations may point
to intervals. The qualitative reasoner translates hasValue relations with intervals to 2
inequalities. One stating that the magnitude (or derivative) has a value smaller than the
point above the interval, and one stating the value is greater than the point below the
interval.

hasV alue v ∀ hasV alueTarget QualitativeV alue

5.5.6 Operator Relations
The plus and minus (operator) relations are tertiary relations which add or substract two
values, and indicate that a magnitude, derivative or point is equal to the result. Two dif-
ferent operator relations may be distinguished. In the first, only magnitudes and point
belonging to magnitudes may participate in the relation (see Figure 5.21). In the sec-
ond only derivatives may participate in the relation (see Figure 5.22). Both plus/minus
relations should have exactly one left-handside and one right-handside. Any number of
inequalities may be placed from the plus/minus relations to valid targets. The restric-
tions for the first plus/minus relation are formalised in both the PointBelongingToMag-
nitude class and the Magnitude class. The restrictions for the second is formalised in
the derivative class.

Page 44 of 90

Project No. 231526 DynaLearn D3.2

PointBelongingToMagnitude Restrictions:
∀ isLefthandSideOf(Operator u (hasLefthandSide = 1) u

(∀ hasRighthandSide (Magnitude t PointBelongingToMagnitude)) u
(hasRighthandSide = 1) u
(∀ hasInequality(Inequality u
(∀ hasInequalityTarget(Magnitude t PointBelongingToMagnitude)))))

Magnitude Restrictions:
∀ isLefthandSideOf(Operator u (hasLefthandSide = 1) u

(∀ hasRighthandSide(Magnitude t PointBelongingToMagnitude)) u
(hasRighthandSide = 1) u
(∀ hasInequality(Inequality u
(∀ hasInequalityTarget(Magnitude t PointBelongingToMagnitude)))))

Derivative Restrictions:
∀ isLefthandSideOf(Operator u (hasLefthandSide = 1) u

(∀ hasRighthandSide Derivative) u
(hasRighthandSide = 1) u
(∀ hasInequality(Inequality u
(∀ hasInequalityTarget Derivative))))

5.6 Aggregate
Aggregates are model constituents consisting of multiple QR ingredients. Model Frag-
ments and Scenarios are aggregate types. Model Fragments can be further subdivided
into (1) static fragments, (2) process fragments, and (3) agent fragments.

5.6.1 Model Fragments
Model fragments consist of multiple model ingredients. As these ingredients are in-
corporated as either conditions or consequences, model fragments have the possible
relations hasCondition and hasConsequence. As was already discussed in section 2
there are restrictions on what kind of ingredients may be used as conditions and conse-
quences in model fragments. These restrictions were described in Table 2.3.

Page 45 of 90

Project No. 231526 DynaLearn D3.2

Point Magnitude

Inequality

PlusMin

Magnitude

QuantitySpace

Magnitude

hasInequality
(allValuesFrom)

hasLeftHandSide
(allValuesFrom,cardinality=1)

hasRightHandSide
(allValuesFrom,cardinality=1)

hasInequalityTarget
(allValuesFrom,cardinality=1)

belongsToQuantitySpace

belongsToMagnitude

Figure 5.21: The possible Plus and Minus relations between magnitudes and points
belonging to magnitudes. Note that every magnitude and the point belonging to the
magnitude could be interchanged.

Derivative Derivative

Inequality

PlusMin

Derivative

hasInequality
(allValuesFrom)

hasLeftHandSide
(allValuesFrom,cardinality=1)

hasRightHandSide
(allValuesFrom,cardinality=1)

hasInequalityTarget
(allValuesFrom,cardinality=1)

Figure 5.22: The possible Plus and Minus relations between derivatives.

Page 46 of 90

Project No. 231526 DynaLearn D3.2

ModelFragment v ∀ hasCondition(Structural t Behavioural t
AssumptionType t Inequality t Operator t ModelFragment)

ModelFragment v ∀ hasConsequence(Entity t Configuration t
Attribute t AttributeV alue t Behavioural t Dependency)

Static fragments are used to describe partial structures of systems. No influences
causing change are formalised in static fragments, and thus no new entities, agents and
configurations may be introduced (as consequences). Furthermore, no agents may be
included as conditions.

StaticFragment ≡ ¬(∃ hasCondition Agent) u
¬(∃ hasConsequence Configuration) u
¬(∃ hasConsequence Entity) u
¬(∃ hasConsequence Influence) u
¬(∃ hasConsequence Agent)

Process fragments are used to describe the processes which take place in a system.
The processes in process fragments may not be caused by agent, which are therefore
prohibited in these fragments.

ProcessFragment ≡ ¬(∃ hasCondition Agent) u
∃ hasConsequence Influence

Agent fragments describe situations in which an agent may interact with a system.
Every model fragment which contains an agent should be an agent fragment.

AgentFragment ≡ ∃ hasCondition Agent

5.6.2 Scenarios
Scenarios describe situations of the modelled system which becomes the start node
of the state graph. All the ingredients which may be used as conditions in model
fragments (Table 2.3), except Model Fragments, may be used in scenarios.

Scenario v ∀ hasConsequence(Structural t Behavioural t
AssumptionType t Inequality t Operator)

Page 47 of 90

Chapter 6

Representing QR models based
on the DynaLearn QR Ontology

The representation of QR models requires formalisations on different levels. Firstly,
the model ingredient definitions need to be represented. Secondly, and more complex,
is the representation of model fragments and scenarios. The representation of model in-
gredient definitions is relatively straight-forward given the structure of the DynaLearn
QR Ontology (Section 5).

Representations of models are natural extensions to the DynaLearn QR ontology.
Each model has its own unique namespace (URI on the web), but each model references
concepts in the QR ontology. This assures that each model uses a common vocabulary
and can be compared. For example, when representing an entity hierarchy, the enti-
ties refer to the Entity concept in the QR ontology (qrm : Animal v qr : Entity,
qrm : Lion v qrm : Animal). Similarly the definitions of the other model ingre-
dients are created by creating subclasses of the QR ingredient definitions in the QR
ontology. Human readable names and remarks are represented using the RDFS label
and comment properties (qrm : Lion rdfs : label Lion@en, qrm : Lion rdfs :
comment A Lion is a species in the genus Panthera@en). The xml:lang attribute of
the label and comment properties are used to store multilingual models. Examples of
the representation of more complex model ingredient definitions, i.e. attributes, quan-
tities and quantity spaces are discussed in (Section 5).

6.1 Representing model fragments, scenarios and ex-
pressions

One benefit of using OWL is the possibility of using a reasoning engine to make in-
ferences. The classification inference in DynaLearn reasoning engine (Section 2) is
similar to the classification task that OWL reasoners perform. As such, we investigated
the viability of using an OWL reasoner to perform the QR classification task.

48

Project No. 231526 DynaLearn D3.2

6.1.1 Viability of using an OWL reasoner for the QR classification
task

OWL reasoners can classify instances with certain properties to particular concepts
(with necessary and sufficient conditions). The QR classification task finds model
fragments whose conditions are satisfied by a particular scenario. As such, if (the
conditional aspects of) model fragments could be represented as concepts in OWL,
and scenarios as instances, the OWL reasoner could classify a scenario as being an
instance of particular model fragments. Conceptually this can be viewed as that the
particular situation described in the scenario is an instance of one or more general sit-
uations described by certain model fragments.

The consequences should not be part of the necessary and sufficient conditions, as
these model ingredients should be introduced to a scenario when the conditions are
met. As such, they would require a separate representation. It might be possible to
introduce the consequences of a model fragment in a scenario using the Semantic Web
Rule Language [23]. There would be two problems which would have to be solved.
The first problem is that part of the classification task in QR context (see section 2)
is the derivation of inequalities. From existing inequalities, new inequalities can be
derived, which make it possible for a scenario to match on new model fragments. It
is not possible to do such reasoning using an OWL reasoner. The second problem is
that if no more model fragments can be found which match on the scenario, inequalities
may be assumed by the QR reasoner. Again, this allows new model fragments to match
on the scenario. This kind of reasoning is not supported by the OWL reasoner to solve.

However, a representation of model fragments that allows for classification by an
OWL reasoner is not possible, since the language cannot distinguish between two ob-
jects of the same type within the restrictions of a class. For example, it is not possible to
specify that that a container x is full and has a relation with container y, and container
y has a relation with container z. As OWL does not have the expressiveness to refer
to specific individuals in this way, modelling model fragments as classes is impossible.
In OWL it is only possible to describe the restriction as: “There is a container which
is full, which is connected to a container, which is connected to a container.” Such
a restriction has multiple interpretations, and is as such unusable. It would even be
possible to create a scenario with only 2 containers which would fulfil the restrictions.

6.1.2 A pragmatic representation of model fragments
As a results of the lack of expressiveness to represent model fragments as classes in
OWL, we have chosen for a formalisation that uses individuals. However, this intro-
duces a new issue, which is that model fragments are organised in a subtype hierarchy
and model fragments can be reused in other model fragments. The subclasses con-
tain exactly the same model ingredients as its parent. However, in the subclass they
are all conditional. Furthermore, the subclass introduces new model ingredients in the
form of conditions and consequences. The only way to create subclasses in OWL is
from classes. The incorporated model fragments are instances of the generic model
fragment. This is another reason model fragments have to be formalised as classes,
as it is impossible to create instances of instances in OWL. To summarise, the model

Page 49 of 90

Project No. 231526 DynaLearn D3.2

max
plus
zero

positive
zero
negative

Container

Contains

Liquid

Height

Magnitude Derivative

Quantity Space Quantity Space

ContainedLiquid

Amount

Magnitude Derivative

Quantity Space Quantity Space

Pressure

Magnitude Derivative

Quantity Space Quantity Space

Positive
Proportionality

Positive
Proportionality

Quantity Space
Correspondence

Quantity Space
Correspondence

max
plus
zero

max
plus
zero

positive
zero
negative

positive
zero
negative

hasCondition

hasCondition

hasCondition

hasCondition

hasConsequence

hasConsequence

Figure 6.1: An example of the formalisation of a model fragment. Note that that most
of the hasCondition and hasConsequence relations have not been drawn.

fragments have to be formalised as classes, but the conditions and consequences as
individuals.

This problem can only be solved by treating the model fragment classes as in-
dividuals in OWL, thus making domain ontologies OWL Full. The model fragment
definitions are classes, so a class hierarchy of model fragments can be created. These
classes have hasCondition and hasConsequence relations with instances of the QR in-
gredients they incorporate. This is ontologically not the most desirable solution, as
the conditions in model fragments do not correspond to the conditions in OWL. A
further disadvantage is that the individuals which model the model fragments pose no
restrictions. Therefore, it is impossible to use an OWL reasoner in any way to clas-
sify scenarios on model fragments, as individuals cannot be classified on individuals.
Furthermore, when model fragments are reused in other model fragments, the reasoner
does not indicate the domain ontology is inconsistent when not all of the conditions
or consequences belonging to the incorporated model fragment are mentioned in the
incorporating model fragment.

An example of a model fragment formalisation using the OWL Full solution is
shown in Figure 6.1. Note that not all the hasCondition and hasConsequence relations
have been drawn from the model fragment class to the incorporated individuals. Also
the names of the relations have been left out, in order to create a readable figure. Sce-
narios and expressions have a similar representation. However, they are simpler due to
the fact that they are not organised in a hierarchy, nor can model fragments be imported
into them.

Page 50 of 90

Project No. 231526 DynaLearn D3.2

6.2 Representing Learning Spaces
Each of the LSs (Section 2) have a knowledge representation that is a subset of the
knowledge representation of the most complex level generic and reusable knowledge.
As such, the representation of this level in OWL, can also be used for the representation
of the lower levels. One key difference are the concepts of expressions and conditional
expressions in the lower LSs, in contrast with the scenarios and model fragments in
LS6. As such, to deal with LSs the LS6 OWL import and export functionality has been
adapted to deal with these concepts. The other model ingredients on the lower LSs that
seem to differ from LS6 are actually based on the same knowledge representation. For
example, the causal relationships on LS2-3 are actually proportionalities. The nodes
and relationships on UL1 are actually entities and configurations. The lack of magni-
tude quantity spaces on UL2 is achieved by hiding a quantity space with a single inter-
val value. As such, models on lower LS can be almost fully considered to be particular
LS6 models. A such, the implementation has added an ontology annotation property
that indicates which LS a particular model represents. Using this annotation the LS is
set when importing the model, which, together with the particular changes mentioned
above, is enough to successfully export and import QR models with different LSs from
and to OWL.

Page 51 of 90

Chapter 7

Summarizing Simulation
Results

For particular use-cases in DynaLearn the simulation results are important. For exam-
ple, the learner model maintained by the VC component is based on both the model
representation and the particular simulation that is currently being run. As such there
is a need for a representation of the simulation results.

There are several views that can be taken on QR simulations. For example, the
state graph shows how, from the initial state described by the scenario, the system
transitions into other distinct qualitative states. The value history shows the values
and trends for certain quantities in different states. The dependency view shows the
complete structural and behavioural structure in a particular state, which includes the
entities, quantities, causal relationships and the particular values of quantities in that
state.

The most complete representation would consist of the complete state graph and
the complete knowledge in each state. However, although this representation can be
generated based on a simulation and the QR formalisation presented in this report,
it is not the most appropriate for the knowledge exchange between the DynaLearn
components. The main reason is the size of the knowledge structure. Simulations can
have many states (into the hundreds), as such having complete descriptions for each of
them would results in a large knowledge structure (on average 10Mb). An additional
concern is how this knowledge structure can be used in a meaningful way by the other
DynaLearn components.

Due to these concerns we have developed a simulation summary, called a super
state which consists of the union of all the states in the state graph. As such, this super
state consists of all the model ingredients that are present in each of the states (except
particular value assignments).

The representation we have developed is similar to the one used for model frag-
ments, scenarios and expressions. The representation is shown in Figures 7.1 and 7.2
(in two images for clarity). Figure 7.1 shows some concepts from the DynaLearn QR
Ontology. Within the simulation representation the required model ingredient types

52

Project No. 231526 DynaLearn D3.2

rdfs:subClassOf	

qr:Quan0ty	

qrm:Growth	

qr:En0ty	

qrm:Tree	

rdfs:subClassOf	

qrm:Tree1	

qrm:Size	

qrm:Size1	 qrm:Growth1	

qrm:SuperState1	

qrm:Posi0veInfluence1	

qr:SuperState	

Figure 7.1: Part of the super state representation showing the subclass relationships,
and the instance relationships.

from the QR model are added (e.g. Tree v qr : Entity). The main node in the super
state representation is the SuperState1 instance, which is an instance of the SuperState
concept in the QR ontology. Figure 7.2 shows how the SuperState instance is related
to the ingredients in the SuperState. Notice that this representation is equivalent to the
representation of model fragments and scenarios.

Page 53 of 90

Project No. 231526 DynaLearn D3.2

qr:hasQuan*ty	

rdfs:subClassOf	

qr:Quan*ty	

qrm:Growth	

qr:En*ty	

qrm:Tree	

rdfs:subClassOf	

qrm:Tree1	

qrm:Size	

qrm:Size1	 qrm:Growth1	

qrm:SuperState1	
qr:hasContents	

qrm:Posi*veInfluence1	

qr:hasCausalDependency	 qr:hasCausalDependencyTarget	

qr:SuperState	

Figure 7.2: Part of the super state representation showing the relationships between
within the super state.

Page 54 of 90

Chapter 8

Extracting the Domain
Vocabulary for Ontology
Matching

For storing and retrieving QR models, as well as the Ontology Based Feedback (OBF),
recommendations and grounding tasks, the rich QR representation (Section 6) is es-
sential (Figure 1.1). However, for the Ontology Matching techniques used by the OBF
and recommendation tasks, an additional adapted representation is required.

One issue with the model representation when used for the OBF and recommenda-
tion tasks is the particular knowledge representation patterns that are used in order to
have a complete representation of the model. For example, configurations and causal
relationships are represented as classes and instances in order to be able to add remarks
and screen positioning information to them (the reification pattern described in Sec-
tion 5.1.2). Another issue concerns the peculiarities of the QR knowledge representa-
tion in contrast to knowledge representation as used typically in ontologies. Ontologies
tend to describe concepts based on their possible relationships (e.g. by specifying re-
strictions on concepts in OWL). However, in DynaLearn, such knowledge about such
properties is not explicitly represented for the model ingredient definitions (i.e. the
general concepts). Instead, the way such ingredients are used in model fragments gives
knowledge about their conceptual meaning (i.e. on the instance level).

Both these issues are problematic for the state of the art ontology matching tech-
niques [33, 17] that are used in DynaLearn (in Work Package 4). These techniques
assume that the ontologies being aligned have an ideal ontological structure. As such,
to improve the performance of these techniques an adapted representation has been
made for the domain vocabulary used in QR models that suits the alignment techniques
better.

The domain vocabulary representation uses the same base QR ontology as the QR
models, however, relationships such as configurations and causal dependencies are rep-
resented as properties instead of classes. As a consequence, this representation is not
rich enough to represent a full model. As such, both representations are required for

55

Project No. 231526 DynaLearn D3.2

the OBF and recommendation tasks.
The adapted QR ontology has a hierarchy of different causal relationships as prop-

erties:

• hasCausalRelationShipWith

– causes

∗ influences
· positivelyInfluences
· negativelyInfluences

∗ proportionalTo
· positivelyProportionalTo
· negativelyProportionalTo

Also, the configurations become a hierarchy of properties. However, where the
causal relationships are predefined, the configurations in the hierarchy are defined by
the learner.

• hasStructuralRelationship

– structurallyConnectedTo

∗ Connected to
∗ Contains

Another key difference is that the properties of domain concepts are defined in the
model ingredient definitions instead of in model fragments as done in the QR models.
This allows ontology alignment techniques to use their semantics to improve ontology
matching performance. However, since such properties are not defined at the model in-
gredient definitions level in DynaLearn, they have to be inferred from model fragments
and scenarios. The resulting representation is as follows:

Container v Entity
Container v ∃contains Liquid
Container v ∃contains Oil
Container v ∃connected to P ipe
F low v Quantity
F low v ∃negativelyInfluences Amount
F low v ∃positivelyInfluences Amount

This adapted representation for model ingredient definitions allows ontology align-
ment techniques to make use of the properties of the domain vocabulary in their com-
parison with vocabulary in other ontologies. As such, we assume that the ontology

Page 56 of 90

Project No. 231526 DynaLearn D3.2

matching results will improve in comparison to using the full model representation.
Further investigation is required to verify that this assumption holds.

The algorithm to create the adapted representation works as follows. Firstly, loop
through each of the model ingredient definitions in the model and create classes for
each of them. Secondly, walk through each of the model ingredient instances in the
model fragments, scenarios and expression. For each element, check each of the rela-
tionships with other model ingredient instances. For each relationship of an element,
indicate at the model ingredient definition of this element (i.e. the concept level) that
it has this property. In a way, the algorithm abstracts the definition of the model in-
gredient definitions based on instance data. One issue is that some of the properties
might not be generally true for the concept. However, whether this will be problematic
is something that has to be investigated within the context of Work Package 4.

Page 57 of 90

Chapter 9

Representing Support
Knowledge

In order to assist the learner in his modelling attempt, the DynaLearn ILE provides
automated support. Automated support starts with the learner who wants to know
something. The learner’s request for knowledge is established via interaction with the
DynaLearn UI. In response to the learner’s request, Virtual Characters present the re-
quired knowledge in a communicatively effective way. The responses of the Virtual
Characters are custom-tailored towards the learner’s needs. Also, the learner is able to
interact with the VC’s dialogue in order to gain more in-depth knowledge. By assist-
ing the learner in his knowledge-requests, the automated support feature realizes the
a-teacher-for-every-learner paradigm. This section discusses the content and repre-
sentation of the support knowledge that is transmitted between learner and VC.

9.1 Support features
Broadly speaking, there are three kinds of support knowledge that the learner may be
interested in: model support, User Interface support, and simulation support. We shall
now discuss these three forms of automated support.

Model support

Model support explains the characteristics of every ingredient in the model. Since the
model is created by the learner based on the broad array of elements and operations
that the DynaLearn ILE provides, model support will be different for each model and
at any point during the creation of that model. Therefore, the knowledge for the model
support feature must be generated dynamically, and must be presented to the learner in
conformity with the complexity of both the use level and the status of the model. For
every model ingredient on the screen, the learner can pose a “What is?”-question. A
Virtual Character will consequently communicate the relevant model support knowl-
edge.

58

Project No. 231526 DynaLearn D3.2

Because of the structured nature of system dynamics models, most model ingredi-
ents are connected to other model ingredients. Often support knowledge regarding a
certain ingredient X will mention of other model ingredients Y and Z. In such cases,
an understanding of Y and Z may be required for a more thorough understanding ofX .
For instance, knowing what an entity Column (representing a column filled with liq-
uid) is, depends on understanding what its quantities V olume, Height, and Pressure
are. Alternatively, a learner may be interested in a logically connected chain of model
ingredients. For instance, knowing that V olume is positively proportional to Height,
the learner may want to know more about Height (which is positively proportional to
Pressure).

Because of the inherent connectedness of model ingredients, there is not a clear end
to the number of relations and related ingredients, that may be explained by the Virtual
Character. Rather than choosing some predefined subset of the totality of available
model support knowledge, the learner is given interaction handles that allow him to
decide what knowledge he is interested in.

Task support

The second form of support is tailored towards the tasks that a learner can perform.
The DynaLearn ILE is divided into different screen contents (or views) and dialogues.
Each view and every dialogue addresses a specific functionality. In every such context
the learner is able to ask a set of “How to?”-questions, namely those questions that
pertain to the current view.

For instance, in the entity hierarchy view, showing the entity definitions of the
model, the task support allows questions regarding operations that can be performed
in that view: e.g. “How to add an entity?”, “How to remove an entity?”, “How to add
remarks to an entity?” But there are also questions that are conceptually related, even
though they belong to a different view. For instance the question “How to add an entity
instance?” seems logical once we are concerned with entity definitions. However,
instances of those definitions are added in a different view. The task support must
communicate this (and similar) knowledge.

Simulation support

The third form of support concerns the simulation results. For the learner it is valuable
to know why certain behaviours are generated and why specific values occur in the
simulation of his model. The simulation support feature allows the learner to pose a
“Why?”-question with respect to the simulated values that are displayed in the simu-
lation results. E.g. when the relation results show an increase of in V olume (i.e. a
positive derivative for that quantity), then the user can select that value and as “Why
does Volume increase?”.

Page 59 of 90

Project No. 231526 DynaLearn D3.2

9.2 Requirements for representing support knowledge
In the OBF and the recommendation tasks, the whole model is considered and logi-
cal properties of the representation are important. The goal of the support function-
ality is more lightweight, either pertaining to a single model ingredient, a single UI
view/dialogue, or a single simulation result. This is because the information that the
Virtual Characters communicate to the learner should be concise. More elaborate in-
formation requests are accessible via additional hyperlinks in the Virtual Character’s
speech balloons, but each individual information request should be kept small. A sur-
plus of information would distract the learner too much.

Support information should be made available immediately based upon the learner’s
interaction with the User Interface or the Virtual Character. Therefore, complex in-
formation extraction and/or logical derivation methods should be avoided as much as
possible. Instead, the representation of the support knowledge should make complex
processing superfluous by being particularly tailored towards the support effort.

We call this the modularity requirement. Additionally, a second requirement for
the knowledge architecture of the support functionality is that it should be as close to
natural language as possible. We shall now explain how both requirements are met.

9.2.1 Modularity
In order to address the lightweight nature of the support interactions between learner
and Virtual Character, we want the representation to be inherently modular. A sup-
port interaction typically consists of a to-and-fro between learner requests and Virtual
Character elucidations. Modular chunks of knowledge should be communicated by
the Virtual Character to the learner, and the learner can click any of the follow-up hy-
perlinks that occur in the VC’s text balloons in order for the VC to communicate yet
another modular chunk of knowledge.

One disadvantage of an OWL representation is that the information is not repre-
sented in terms of model ingredients, but in terms of the axiomatic restrictions between
those ingredients. The information pertaining to a single model ingredient is therefore
typically distributed throughout the OWL representation of the entire model.

The modular chunks of support information are not only ideal for the to-and-fro
request-and-follow-up interaction mode that characterizes support interactions. Also,
these modular chunks of data can be combined without any further restrictions. E.g.
it is possible to aggregate the information regarding a quantity one level deep. This
would encompass the modular data chunk describing the quantity itself (including the
relations that it has to other ingredients) and the data chunks for all of these related
ingredients. Another example is the aggregate of all entity definition chunks. Putting
these together automatically forms the entity definition hierarchy (including all the
parent/child-relationships). We hope to make ample use of this modular knowledge
aggregation feature when we implement further feedback functionalities that make
use of specific subsets of knowledge.

Page 60 of 90

Project No. 231526 DynaLearn D3.2

Natural language

The second requirement is that the support knowledge representation stays as close
to natural language as possible. The reason for this is that the knowledge should be
communicated by a Virtual Character. Natural language is the most accessible and
expressive way of doing this. Artificial languages are less natural and must first be
learnt, whereas the support functionality should also help starters, i.e. learners without
prior knowledge of the DynaLearn ILE. Schematic representations, although poten-
tially powerful, would not be adequate for the support functionality, since its purpose
is to explain aspects of the schematic representation of qualitative systems knowledge.
Introducing yet another schematic representation would thus be counter-productive.

9.3 Implementation of support knowledge
In order to be modular, each ingredient is associated with its own RDF/XML structure.
Any combination of these modules forms a valid RDF/XML file. This means that every
combination of knowledge chunks the support features might generate are each of the
following things: (1) a well-formed and valid XML document, (2) a well-formed RDF
document, (3) input that can be directly used by Semantic Web processors, (4) input
that can be directly parsed by the Virtual Character component of the DynaLearn ILE.

Each collection of support information chunks has the following RDF/XML struc-
ture wrapped around. UNIQUE-MODEL-ID is the name of the model (as given by the
user) appended with the date and time at which the model was created.

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE rdf:RDF [

<!ENTITY qr
’http://www.science.uva.nl/˜jliem/ontologies/QRvocabulary.owl#’>

<!ENTITY xsd "http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/">
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>

]>

<rdf:RDF
xmlns:qr="&qr;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xml:base="http://www.dynalearn.eu/models/UNIQUE-MODEL-ID.owl"

>

CONTENT

</rdf:RDF>

In the above code wrapper, CONTENT can be any number of modular information
chunks.

A modular chunk of support information has the following structure.

<rdf:Description rdf:about="SUBJECT-URI">
PREDICTATE-OBJECT-STATEMENTS

</rdf:Description>

Page 61 of 90

Project No. 231526 DynaLearn D3.2

SUBJECT-URI is the unique web address for the subject ingredient that this in-
formation chunk is about. The subject ingredient is described by a number of
PREDICATE-OBJECT-STATEMENTS. There are two types of predicate-object state-
ments: data and object properties.

Data property

A data property predicates a data value of the subject ingredient. A data value is itself
not a model ingredient, but is defined by XML Schema. The structure of a data property
is as follows.

<PREDICATE-URI xml:lang="LANGUAGE-CODE"
rdf:datatype="DATA-TYPE-URI">

CONTENT
</PREDICATE-URI>

PREDICATE-URI is the URI of the data property. These are all part of the qr:
namespace, which is specifically defined for the DynaLearn project. LANGUAGE-CODE
indicates the language of the data content. The name can be set in the DynaLearn ILE.
The language code only applies to some data values, most notably strings. DATA-TYPE-URI
refers to the type of data value that is used. Data types all refer to the xsl: names-
pace for XML-Schema. CONTENT is the data value itself. The kinds of content that is
allowed here depends on the specified data type in DATA-TYPE-URI.
An example of a data property instance is given.

<qr:hasName xml:lang="en" rdf:datatype="&xsd;#string">
Container left

</qr:hasName>

Object property

An object property predicates an object ingredient of the subject ingredient. Since
the object term is itself a model ingredient, the object term is itself defined in another
modular information chunk. The structure of an object property is as follows.

<PREDICATE-URI rdf:resource="OBJECT-URI"/>

PREDICATE-URI is the URI of the object property. These are all part of the qr:
namespace, which is specifically defined for the DynaLearn project. OBJECT-URI is
the unique address of the object ingredient. An example of an complete information
chunk for the request in is given.

<rdf:Description
rdf:about="entityInstance#Container_right_000000068">
<qr:hasName xml:lang="en" rdf:datatype="&xsd;#string">

Container left
</qr:hasName>
<qr:hasRemarks xml:lang="en" rdf:datatype="&xsd;#string">
</qr:hasRemarks>
<qr:hasCategory xml:lang="en" rdf:datatype="&xsd;#string">

entityInstance

Page 62 of 90

Project No. 231526 DynaLearn D3.2

</qr:hasCategory>
<qr:hasState xml:lang="en" rdf:datatype="&xsd;#string">

condition
</qr:hasState>
<qr:inAggregate

rdf:resource="modelFragment#Contained_liquid_000000023"/>
<qr:hasRelationFrom

rdf:resource="configurationInstance#Contains_000000048"/>
<qr:hasRelationTo

rdf:resource="configurationInstance#Tube_000000058"/>
</rdf:Description>

Natural language

In order to stay close to natural language, we want to represent the knowledge in a flat,
i.e. non-nested manner. The standard OWL export provides deeply nested represen-
tation structures, even for relatively simple model ingredients. As seen in the previous
section, the RDF/XML representation takes these considerations into account.

In addition to avoiding nesting as much as possible, the structure of the represen-
tation should itself be similar to natural language’s grammatical structure. The general
form of a sentence is SubjectPredicateObject, so that the Object term is predicated
of the Subject term. As seen in the previous section, the RDF/XML statements have
exactly the right structure.

9.4 Properties of support knowledge modules
In the next section we give an exhaustive overview of the knowledge that will be trans-
mitted in the support interactions in the DynaLearn ILE. Every model ingredient has
its own information pattern. We will first enumerate the properties that every model in-
gredient’s information pattern has, and will then provide an overview of all the model
ingredient’s information patterns. A model ingredient information patters consists of
the following components.

Name

Each model ingredient has a unique name. The name is one of the properties of a class,
i.e. the qr:hasCategory property.

Description

Each model ingredient has exactly one description which describes the class’ purpose
in an informal way. The description is for informal purposes exclusively and is unre-
lated to the OWL representation.

Properties

Each model ingredient has a number of properties that describe it. Data and object
properties (see Section 9.3 and 9.3) are both included in this list.

Page 63 of 90

Project No. 231526 DynaLearn D3.2

Subclasses list

Each model ingredient has a, possibly empty, list of child model ingredients. A child
ingredient takes over all properties that are defined for the parent ingredient. E.g. ‘enti-
tyInstance’ incorporates the properties that are defined for ‘Instance’ and ‘Ingredient’,
because ‘entityInstance’ is an ‘Instance’, and each ‘Instance’ is an ‘Ingredient’ as well.

9.5 Support knowledge modules overview
In this section we give an exhaustive overview of the knowledge that will be transmitted
in the support interactions in the DynaLearn ILE.

9.5.1 Ingredient
Properties:

• qr:hasCategory (‘AgentDefinition’ | ‘AgentFragment’ |
‘AgentInstance’ | ‘AssumptionDefinition’ |
‘AssumptionInstance’ | ‘AttributeDefinition’ |
‘AttributeInstance’ | ‘Operator’ |
‘ConfigurationDefinition’ | ‘ConfigurationInstance’ |
‘CorrespondenceDefinition’ | ‘CorrespondenceInstance’ |
‘EntityDefinition’ ‘EntityInstance’ |
‘ExpressionFragment’ | ‘FullConfiguration’ |
‘ProcessFragment’ | ‘QuantityDefinition’ |
‘QuantityInstance’ | ‘QuantityRelation’ |
‘QuantitySpaceConfiguration’ |
‘QuantitySpaceDefinition’ |
‘QuantitySpaceInstance’ | ‘Scenario’ |
‘StaticFragment’ | ‘Identity’ |
‘Inequality’ | ‘ValueConfiguration’ |
‘ValueDefinition’ | ‘ValueInstance’)

• qr:hasName string

Subclasses:

• Aggregate 9.5.2

• Definition 9.5.8

• Instance 9.5.18

9.5.2 Aggregate
Description: An aggregate is a collection of instances 9.5.18. Aggregates are either
entirely conditional, i.e. scenarios 9.5.7, or both conditional and consequential, i.e.
model fragments 9.5.3.
Properties:

Page 64 of 90

Project No. 231526 DynaLearn D3.2

-hasChild* : ModelFragment
-hasParent? : ModelFragment
-isActive : bool

ModelFragmentExpressionFragment Scenario

-hasInstance*
-hasRemarks : string

Aggregate

StaticFragmentProcessFragmentAgentFragment

Figure 9.1: The knowledge that is transmitted for aggregate ingredients

• hasCategory (‘AgentFragment’ |
‘ExpressionFragment’ | ‘ProcessFragment’ |
‘Scenario’ | ‘StaticFragment’)

• qr:hasInstance* Instance

• qr:hasRemarks string

Subclasses:

• Model Fragment 9.5.3

• Scenario 9.5.7

9.5.3 Model Fragment
Description: A model fragment is a consequential aggregation 9.5.2 of instances
9.5.18.
Properties:

• qr:hasCategory ‘AgentFragment’,
‘ProcessFragment’, ‘StaticFragment’

• qr:hasChild ModelFragment

• qr:hasParent ModelFragment

• qr:isActive boolean, indicates whether a model fragment is operational
in the current simulation or not.

Subclasses:

Page 65 of 90

Project No. 231526 DynaLearn D3.2

• Agent fragment 9.5.4

• Process fragment 9.5.5

• Static fragment 9.5.6

9.5.4 Agent Fragment
Description: An agent fragment is a model fragment 9.5.3 that contains at least one
agent instance 9.5.19 and that may contain one or more influences 9.5.32. They are
used to describe the influences that agent instances (= exogenous entity instances) have
on the system.
Properties:

• qr:hasCategory ‘AgentFragment’

9.5.5 Process Fragment
Description: A process fragment is a model fragment 9.5.3 that contains at least one
influence 9.5.32, but no agent instances 9.5.19. They are used to describe processes
that take place within the system.
Properties:

• qr:hasCategory ‘ProcessFragment’

9.5.6 Static Fragment
Description: A static fragment is a model fragment 9.5.3 that does not contain agent
instances 9.5.19 nor influences 9.5.32. They describes parts of the structure of the
system, together with the proportionalities that exist between the quantity instances
9.5.33.
Properties:

• qr:hasCategory ‘StaticFragment’

9.5.7 Scenario
Description: A scenario is a conditional aggregation 9.5.2 of instances 9.5.18.
Properties:

• qr:hasCategory ‘Scenario’

9.5.8 Definition
Properties:

Page 66 of 90

Project No. 231526 DynaLearn D3.2

-hasInstance* : ConfigurationInstance

ConfigurationDefinition

-hasChild* : chain
-hasParent? : HierarchicalDefinition

HierarchicalDefinition

-hasChild* : EntityDefinition
-hasInstance* : EntityInstance
-hasParent? : EntityDefinition

EntityDefinition

-hasChild* : AgentDefinition
-hasInstance* : AgentInstance
-hasParent? : AgentDefinition

AgentDefinition

-hasChild* : AssumptionDefinition
-hasInstance* : AssumptionInstance
-hasParent? : AssumptionDefinition

AssumptionDefinition

-hasAllowedQuantitySpace+ : QuantitySpaceDefinition
-hasInstance* : QuantityInstance

QuantityDefinition

-hasValue+ : ValueDefinition
-hasInstance* : QuantitySpaceInstance

QuantitySpaceDefinition -hasInstance* : AttributeInstance
-hasValue+ : ValueDefinition

AttributeDefinition

-hasValueType : string
-hasInstance* : ValueInstance
-hasNextValue? : ValueDefinition
-hasPreviousValue? : ValueDefinition

ValueDefinition
-hasInstance* : Instance

Definition

Figure 9.2: The knowledge that is transmitted for definition ingredients

• qr:hasCategory (‘AgentDefinition’ |
‘AssumptionDefinition’ | ‘AttributeDefinition’ |
‘ConfigurationDefinition’ | ‘EntityDefinition’ |
‘QuantityDefinition’ | ‘QuantitySpaceDefinition’ |
‘ValueDefinition’)

• qr:hasInstance Instance

Subclasses:

• Attribute Definition 9.5.9

• Configuration Definition 9.5.10

• Hierarchical Definition 9.5.11

• Quantity Definition 9.5.15

• Quantity Space Definition 9.5.16

• Value Definition 9.5.17

9.5.9 Attribute Definition
Description: Attributes are properties of entities 9.5.22 that remain static during simu-
lation (i.e. that do not change). They have an associated set of possible attribute values
9.5.17.
Properties:

Page 67 of 90

Project No. 231526 DynaLearn D3.2

• qr:hasCategory ‘AttributeDefinition’

• qr:hasInstance* AttributeInstance

• qr:hasValue* ValueInstance

9.5.10 Configuration Definition
Description: A configuration represents a relation between instances of entities 9.5.22
and agents 9.5.19.
Properties:

• qr:hasCategory ‘ConfigurationDefinition’

• qr:hasInstance* ConfigurationInstance

9.5.11 Hierarchical Definition
Properties:

• qr:hasCategory ‘AgentDefinition’ |
‘AssumptionDefinition’ | ‘EntityDefinition’

• qr:hasChild* HierarchicalDefinition

• qr:hasInstance* (AgentInstance |
AssumptionInstance | EntityInstance)

• qr:hasParent? HierarchicalDefinition

Subclasses:

• Agent Definition 9.5.12

• Assumption Definition 9.5.13

• Entity Definition 9.5.14

9.5.12 Agent Definition
Description: An agent represents an entity outside of the modelled system. Agents can
have quantities 9.5.33 influencing 9.5.32 the rest of the system. Influences that start at
agents are called exogenous or external influences.
Synonyms:

• exogenous entity

Properties:

• qr:hasCategory ‘AgentDefinition’

• qr:hasChild* AgentDefinition

• qr:hasInstance AgentInstance

• qr:hasParent? AgentDefinition

Page 68 of 90

Project No. 231526 DynaLearn D3.2

9.5.13 Assumption Definition
Properties:

• qr:hasCategory ‘AssumptionDefinition’

• qr:hasChild* AssumptionDefinition

• qr:hasInstance AssumptionInstance

• qr:hasParent? AssumptionDefinition

9.5.14 Entity Definition
Description: An entity represents a physical object or an abstract concept that plays a
role within the modelled system. Entities are themselves arranged in a subtype/supertype-
hierarchy.
Properties:

• qr:hasCategory ‘EntityDefinition’

• qr:hasChild* EntityDefinition

• qr:hasInstance* EntityInstance

• qr:hasParent? EntityDefinition

9.5.15 Quantity Definition
Description: A quantity represent a changeable feature of an entity 9.5.22 or agent
9.5.19. Each quantity has two associated quantity spaces 9.5.16: a definable one for
the magnitude, and the default quantity space {Min,Zero, P lus} for the derivative of
the quantity.
Properties:

• qr:hasAllowedQuantitySpace* QuantitySpaceDefinition

• qr:hasCategory ‘QuantityDefinition’

• qr:hasInstance* QuantityInstance

9.5.16 Quantity Space Definition
Description: A quantity space specifies a range of qualitative values 9.5.17 a quantity’s
9.5.33 magnitude or derivative can have. The qualitative values in a quantity space
form a total order. Each qualitative value is either a point or an interval, and within the
quantity spaces these two types consecutively alternate.
Properties:

• qr:hasCategory ‘QuantitySpaceDefinition’

• qr:hasInstance* QuantitySpaceInstance

• qr:hasValue* ValueDefinition

Page 69 of 90

Project No. 231526 DynaLearn D3.2

9.5.17 Value Definition
Description: A value definitions, either a points or intervals, form the quantity space
definitions 9.5.16 of quantity definitions 9.5.15, as well as the derivative quantity space
definition 9.5.16.
Properties:

• qr:hasCategory ‘ValueDefinition’

• qr:hasNextValue? ValueDefinition

• qr:hasPreviousValue? ValueDefinition

• qr:hasValueType (‘interval’ | ‘point’)

9.5.18 Instance
Properties:

• qr:hasCategory (‘AgentInstance’ |
‘AssumptionInstance’ | ‘Attribute Instance’ |
‘EntityInstance’ | ‘Operator’ |
‘FullConfiguration’ | ‘QuantitySpaceConfiguration’ |
‘ValueConfiguration’ | ‘CorrespondenceInstance’ |
‘Identity’ | ‘Inequality’ |
‘Influence’ | ‘QuantityRelation’ |
‘ValueInstance’)

• qr:hasState ‘condition, ‘consequence’

Subclasses:

• Agent Instance 9.5.19

• Assumption Instance 9.5.20

• Attribute Instance 9.5.21

• Entity Instance 9.5.22

• Relation Instance 9.5.23

• Value Instance 9.5.35

9.5.19 Agent Instance
Description: An agent represents an entity outside of the modelled system. Agents can
have quantities 9.5.33 influencing 9.5.32 the rest of the system. Influences that start at
agents are called exogenous or external influences.

• qr:hasCategory ‘AgentInstance’

• qr:hasDefinition AgentDefinition

Page 70 of 90

Project No. 231526 DynaLearn D3.2

-hasDefinition : ConfigurationDefinition

ConfigurationInstance

-hasFromArgument : instanceElement
-hasToArgument : instanceElement

Relation

-hasAttribute* : AttributeInstance
-hasConfiguration* : ConfigurationInstance
-hasDefinition : EntityDefinition
-hasQuantity* : QuantityInstance

EntityInstance
-inAggregate : Aggregate
-hasState : string

Instance

-hasCalculus* : Calculus
-hasDefinition : quantityDefinition
-hasDerivativeValue : ValueInstance
-hasInfluence* : Influence
-hasMagnitude : ValueInstance
-hasQuantitySpace+ : quantitySpaceDefinition
-isQuantityOf : EntityInstance

QuantityInstance

Identity

-hasFromArgumentType : string
-hasToArgumentType : string
-hasInequalityType : string
-isDerivative : bool
-isLocal : bool

Inequality

-isDerivative : bool
-isDirected : bool
-isFull : bool
-isMirrored : bool
-isVCorrespondence : bool

Correspondence

-hasSign : string
-hasType : string

QuantityRelation

-hasDefinition : AssumptionDefinition

AssumptionInstance

-hasDefinition : AttributeDefinition
-hasValue+ : ValueDefinition
-underEntity : EntityInstance

AttributeInstance

-hasCorrespondence* : ValueCorrespondence
-hasDefinition : ValueDefinition
-hasNextValue? : ValueInstance
-hasPreviousValue? : ValueInstance
-hasValueType : string
-isValueOf : QuantityInstance

ValueInstance

-hasCalculusType : string

Calculus

-hasDefinition : assumptionDefinition

AssumptionInstance

-hasDefinition : agentDefinition

AgentInstance

-hasCorrespondence* : QuantityInstance
-hasDefinition : QuantitySpaceDefinition
-hasValue+ : ValueInstance
-isQuantitySpaceOf : QuantityInstance

QuantitySpaceInstance

-hasFromArgument : QuantityInstance
-hasToArgument : QuantityInstance

FullCorrespondence

-hasFromArgument : QuantitySpaceInstance
-hasToArgument : QuantitySpaceInstance

QuantitySpaceCorrespondence

-hasFromArgument : ValueInstance
-hasToArgument : ValueInstance

ValueCorrespondence

-hasFromArgument : QuantityInstance
-hasToArgument : QuantityInstance

CausalRelation

-hasInfluenceSign : string
-hasInfluenceType : string

Influence

Figure 9.3: The knowledge that is transmitted for instance ingredients

Page 71 of 90

Project No. 231526 DynaLearn D3.2

9.5.20 Assumption Instance
Description: Assumptions are labels that are used to indicate that certain conditions
are assumed to be true. They are often used to constrain the possible behaviour of a
model.
Properties:

• qr:hasCategory ‘AssumptionInstance’

• qr:hasDefinition AssumptionDefinition

9.5.21 Attribute Instance
Properties:

• qr:hasCategory ‘AttributeInstance’

• qr:hasDefinition AttributeDefinition

• qr:hasValue+ ValueDefinition

9.5.22 Entity Instance
Properties:

• qr:hasAttribute* AttributeInstance

• qr:hasCategory ‘EntityInstance’

• qr:hasConfiguration* ConfigurationInstance

• qr:hasDefinition EntityDefinition

• qr:hasQuantity* QuantityInstance

9.5.23 Relation Instance
Properties:

• qr:hasCategory (‘Operator’ |
‘CorrespondenceInstance’ | ‘FullConfiguration’ |
‘Identity’ | ‘Inequality’ | ‘Influence’ |
‘QuantityRelation’ | ‘QuantitySpaceConfiguration’ |
‘ValueConfiguration’)

• qr:hasState ‘condition, ‘consequence’

Subclasses:

• Operator 9.5.24

• Configuration Instance 9.5.25

Page 72 of 90

Project No. 231526 DynaLearn D3.2

• Correspondence 9.5.26

• Identity 9.5.30

• Inequality 9.5.31

9.5.24 Operators
Description: Operators (or calculi) are used to calculate the sum (plus) or difference
(minus) of two value items. Operator relations can also be the target or source of an
inequality relation. There are nine different ways in which plus/minus relations can be
used, depending on the type of the two arguments in the relation. Using operator rela-
tions, more complex expressions can be created than is possible with only inequalities.
Properties:

• qr:hasCategory ‘Operator’

• qr:hasOperatorType (‘minus’ | ‘plus’)

9.5.25 Configuration Instance
Properties:

• qr:hasCategory ‘ConfigurationInstance’

• qr:hasDefinition ConfigurationDefinition

9.5.26 Correspondence
Description: A correspondence represents that different qualitative values belonging
to different quantity spaces are the current value at the same time. Correspondences
can be either directed or undirected.
Properties:

• qr:hasCategory (‘FullConfiguration’ |
‘QuantitySpaceConfiguration’ | ‘ValueConfiguration’)

• qr:isDerivative boolean

• qr:isDirected boolean

• qr:isFull boolean

• qr:isMirrored boolean

• qr:isVCorrespondence boolean

Properties:

• Full Correspondence 9.5.27

• Quantity Space Correspondence 9.5.28

• Value Correspondence 9.5.29

Page 73 of 90

Project No. 231526 DynaLearn D3.2

9.5.27 Full Correspondence
Description: A full correspondence is both a quantity space correspondence 9.5.28
between the quantity spaces 9.5.34 of the magnitudes, as well as a quantity space cor-
respondence between the quantity spaces of the derivatives.

• qr:hasCategory ‘FullCorrespondence’

• qr:hasFromArgument QuantityInstance

• qr:hasToArgument QuantityInstance

9.5.28 Quantity Space Correspondence
Description: A quantity space correspondence is a correspondence between two quan-
tity spaces 9.5.34, indicating that each of the values 9.5.35 of the quantity spaces cor-
respond to each other.

• qr:hasCategory ‘QuantitySpaceCorrespondence’

• qr:hasFromArgument QuantitySpaceInstance

• qr:hasToArgument QuantitySpaceInstance

9.5.29 Value Correspondence
Description: A value correspondence 9.5.29 is a relations between qualitative values
9.5.35 of quantity spaces 9.5.34 belonging to different quantities 9.5.33.

• qr:hasCategory ‘ValueCorrespondence’

• qr:hasFromArgument ValueInstance

• qr:hasToArgument ValueInstance

9.5.30 Identity
Description: Identities are relations that are used to specify that two entities 9.5.22
in different imported model fragments 9.5.3 are the same. There are two possible
applications for identities.
Properties:

• qr:hasState ‘condition’

• qr:hasCategory ‘Identity’

• qr:hasFromArgument (AgentInstance | EntityInstance)

• qr:hasToArgument (AgentInstance | EntityInstance)

Page 74 of 90

Project No. 231526 DynaLearn D3.2

9.5.31 Inequality
Description: An inequalities specifies an ordinal relation between two items. It ex-
presses that the two items are different from (or equal to) one another. (Because in-
equalities specify an order between items, they are sometimes referred to as ordinal
relations. There are eleven ways to use inequalities, depending on the type of the two
items related by it.)
Properties:

• qr:hasCategory ‘Inequality’

• qr:hasFromArgumentType string

• qr:hasInequalityType (‘SmallerThan’,
‘SmallerThanOrEqualTo’, ‘EqualTo’,
‘GreaterThanOrEqualTo’, ‘GreaterThat’)

• qr:hasResult boolean

• qr:hasToArgumentType string

• qr:isDerivative boolean

• qr:isLocal boolean

9.5.32 Influence
Definition Influences are directed relations between two quantities, and are either pos-
itive or negative. Influences are the cause of change within a model, and are therefore
said to model processes. Depending on the magnitude of the source quantity and the
type of influence, the derivative of the target quantity either increases or decreases.
Properties:

• qr:hasCategory ‘Influence’

• qr:hasInfluenceType (‘influence’ | ‘proportionality’)

• qr:hasInfluenceSign (‘minus’ | ‘plus’)

9.5.33 Quantity Instance
Properties:

• qr:hasOperator* Operator

• qr:hasCategory ‘QuantityInstance’

• qr:hasDefinition QuantityDefinition

• qr:hasDerivativeValue ValueInstance

• qr:hasInfluence* Influence

Page 75 of 90

Project No. 231526 DynaLearn D3.2

• qr:hasMagnitude ValueInstance

• qr:hasQuantitySpace+ QuantitySpaceInstance

• qr:isQuantityOf (EntityInstance | Agentinstance)

9.5.34 Quantity Space Instance
Properties:

• qr:hasCategory ‘quantitySpaceInstance’

• qr:hasCorrespondence* QuantitySpaceCorrespondence

• qr:hasDefinition QuantitySpaceDefinition

• qr:hasValue+ ValueInstance

• qr:isQuantitySpaceOf QuantityInstance

9.5.35 Value Instance
Description: A value instance is either a point or interval which can become the cur-
rent magnitude or current derivative of a quantity instance 9.5.33. Qualitative value
instances are organised in quantity space instances 9.5.34.
Data properties:

• qr:hasCategory ‘ValueInstance’

• qr:hasCorrespondence* CorrespondenceInstance

• qr:hasNextValue? ValueInstance

• qr:hasPreviousValue? ValueInstance

• qr:hasValueType (‘interval’ | ‘point’)

• qr:isValueOf QuantityInstance

Page 76 of 90

Chapter 10

Virtual Character Interaction

This section discusses the function calls and responses between the Conceptual Mod-
elling (CM) component and the Virtual Character (VC) component. As can be seen in
Figure 1.1, the main functions are communicating model content, simulation content,
questions, and support knowledge. Model and simulation content are discussed in Sec-
tions 6 and 7 respectively. Support knowledge is discussed in Section 9. This Section
therefore deals with the questions, but also with the some low-level functionality too
detailed to be shown in Figure 1.1.

10.1 General communication
This section discusses general communication between the (CM) component and the
VC component. When required the CM component starts the VC components by call-
ing their executables. The CM component then acts as a server to which the VC com-
ponent connects. The knowledge exchange between the components is done via this
persistent socket connection (Figure 10.1). Both the CM component and the VC com-
ponent can send request to each other. However, the CM requests are only meant to
start specific use-cases. Once a use case has started the VC has the initiative. Note
that this corresponds with the user initiative. Initiative is with the CM component if
the user manipulates the CM, initiative is with the VC component if the user interacts
with the virtual characters. The data format used in the communication is XML, so
that messages can be easily parsed. However, for larger knowledge structures OWL is
incorporated into the XML messages.

The general approach is to have each request have an immediate response. In gen-
eral, if no specific output has to be generated, the CM component responds to the VC
with <response>ok</response>. When the VC component is has performed a
specific task it responds to the CM with:

<notification>hamsterLabReady</notification>

77

Project No. 231526 DynaLearn D3.2

Virtual	
Character	
Component	

Conceptual	
Modelling	
Component	

request	
response	

request	
response	

persistent	
connec6on	

Figure 10.1: In the interaction between the CM and VC components, a persistent socket
connection is established. Both the CM and the VC components can send requests to
each other.

10.2 Communication of Questions
This section discusses the communications of questions, these are output of the ques-
tion and answer generator subcomponent (as will be described in Deliverable ’D3.3
Question generation and answering’). Questions about model simulations are relevant
in both the Teachable Agent and the quiz use case. Their relevant function calls are
discussed respectively.

10.2.1 Teachable Agent Communication
The Teachable Agent interaction is started by a learner manipulation of the CM compo-
nent. The CM sends the VC the following request <request type="pickPet"/>.
The Teachable Agent selection screen appears on screen. After the learner has chosen
a virtual character, the following options can be chosen ask, explain, repeat and chal-
lenge.

Selecting Ask generates a dialogue to ask a question about the model in progress:
How will a quantity behave given a certain behaviour of another quantity? The VC
sends the CM the request <request>startTeachableAsk</request>, and
the ok response is sent back. A dialogue is then started in which the learner constructs
the question. Upon completion of the dialogue, the question generator checks the sim-
ulation and returns a set of questions to the VC:

<assessmentQuestion id="1" type="whatHappensTo">
<text>

What happens to biomass if nutrients increases?
</text>
<answer type="solution">biomass increases.</answer>
<relevantConcepts>

<concept type="relation">
owl_q_nutrients2, owl_q_biomass2

</concept>
<concept>

owl_q_biomass2_Derivative
</concept>

</relevantConcepts>

Page 78 of 90

Project No. 231526 DynaLearn D3.2

</assessmentQuestion>

Selecting Explain generates an explanation of the answer given to an Ask question.
This is especially relevant for longer causal paths. These are explained step by step.
The request sent to the CM is <request>startTeachableExplain</request>.
If no ask question has been asked yet the CM responds:

<response>
<say>

Please ask a question first.
</say>

</response>

And if an explanation was already given the response is:

<response>
<say>

Please use the repeat button.
</say>

</response>

If an Ask question was asked previously, the question generator consults the simu-
lation and generates an explanation to send to the VC.

<response id="1" type="explanationWhatHappensTo">
<say highlight="nutrients" gesture="up">

If nutrients increases, and has a
positive effect on carrying capacity...

</say>
<say highlight="carrying_capacity" gesture="up">

Then carrying capacity increases.
And if carrying capacity increases,
and has a positive effect on biomass...

</say>
(...)
<assessmentQuestion id="1" type="whatHappensTo">
</assessmentQuestion>

</response>

The TA will then go over this explanation and at each ingredient send a highlight
request which signals the CM component to highlight the given ingredient.

<highlight name="nutrients"/>
The CM does this and responds with the screen coordinates so that the virtual char-

acter may point at the correct quantity.

<response>
<quantityPosition quantity="nutrients" x="82" y="361" />

</response>

Page 79 of 90

Project No. 231526 DynaLearn D3.2

Selecting repeat reproduces the ask or explain behaviour. The VC sends the CM
<request>startTeachableRepeat</request>. The response being the Ask
or Explain question. If no ask or explain question was generated yet this is communi-
cated the CM responds:

<response>
<say>

No question or explanation to repeat
and challenges can be reviewed
via the quizmaster.

</say>
</response>

Selecting challenge will have the question generator compose a quiz made up of
questions derived from an expert model associated with the assignment the student is
working on. The answers to the questions are generated by the model made by the stu-
dent. The VC sends the CM <request>startTeachableChallenge</request>.
The response to the VC is:

<response type="teachableAgentChallenge">
<quizSummary>

<score correct="2" incorrect="3" percentage="40"/>
<aboutModel>Stage1</aboutModel>
<learnerID>dummyLearnerID</learnerID>

</quizSummary>
<questionlist>

<question id="1" state="1" questiontype="14">
<header></header>
<text>

What happens to cyanotoxins if carrying
capacity decreases?

</text>
<answer type="solution">

cyanotoxins decreases.
</answer>
<answer type="teachableAgent">

Sorry, cyanotoxins is unknown to me.
</answer>
<relevantConcepts>

<concept type="relation">
owl_q_carrying_capacity, owl_q_cyanotoxins

</concept>
</relevantConcepts>
</question>
(...)

</questionlist>
</response>

Page 80 of 90

Project No. 231526 DynaLearn D3.2

The quizmaster will appear and present this quiz to the TA which will give the
answers. The TA trained by the student hereby obtains a score indicating the quality of
his knowledge and thereby the student’s modelling effort.

10.2.2 Quiz communication
The quiz use case involves a multiple choice quiz concerning the currently loaded
model to test the user understanding of this model. This use case is started from the VC
which sends the CM: <request type="startquiz"/>. The VC component
requires model content information (Section 7) for modelling learner knowledge. The
request sent to the CM is <request type="superstate"/>. The CM responds
with the XML representation of the OWL formalisation of the super state.

From the model of learner knowledge a focus is generated for the question genera-
tor containing the topics in the model that should be quizzed. An initial formalisation
of the question request has been made in OWL (Figure 10.2). The question reques-
tion consists of a single instance of the question request class, which has a number of
relationships:

withConcept indicates which QR concept the question should be about, e.g. causal
relationships, derivatives, or correspondences.

withSystemScope indicates which parts of system (in terms of entities) the question
should be about.

withSubjectQuantity indicates which quantities the question should be about.

withNonSubjectQuantity indicates which quantities the question cannot be about.

The fillers of these relationships are all either concepts from the DynaLearn QR
ontology or of concepts in the model or simulation representations. The questions are
still returned in an XML representation (although concepts in the OWL representation
are included). However, for the final version these questions will also be formalised in
OWL.

The response to the question request is generated by the question generator which
consults the model simulation and constructs a set of appropriate questions and multi-
ple choice answers given the requested focus. The question list consists of questions,
which in turn have question content, correct and incorrect answers and relevant con-
cepts addressed by the question. The latter information is necessary to update the
model of the user knowledge given his or her answer. The CM returns the following
message to the VC:

<questionlist>
<question id="1" state="1" questiontype="3">
<header>Now look at state 1</header>
<text>

What will be the value of size in the
next state?

</text>

Page 81 of 90

Project No. 231526 DynaLearn D3.2

qr:Deriva)ve	

qrm:Size1	

qrm:Ques)onRequest1	

dl:withConcept	 dl:Ques)onRequest	

qrm:Growth1	

qrm:Shade1	

qr:CausalDependency	

dl:withSubjectQuan)ty	

dl:withNonSubjectQuan)ty	

qrm:Tree1	
dl:withSystemScope	

Figure 10.2: An example of the formalisation of a question request.

<answer type="solution">
size‘s value will rise from small to
medium from this state to state 2

</answer>
<answer>

Nothing will happen with size.
</answer>
<answer>

size‘s value will rise from small to large
from this state to state 2

</answer>
<relevantConcepts>

<concept>
owl_q_size1_Magnitude

</concept>
</relevantConcepts>
</question>
(...)

</questionlist>

Page 82 of 90

Chapter 11

Semantic Technology Web
Services

This section discusses the interaction between the Conceptual Modelling (CM) com-
ponent and the Semantic Technology (ST) component. The ST component functions
as a server on the web to which the CM component connects. Due to the difficulties
of direct connections over the web, such as redirects, firewalls, and increased load on
the server side, we have chosen not to use permanent connections between the CM
and ST component. Instead we have opted for a synchronous request-response pattern.
The CM component acts as a client that connects to the ST component, sends a re-
quest, and disconnects after it has either received a response, or the connection times
out (Figure 11.1).

Seman&c	
Technology	
Component	

Conceptual	
Modelling	
Component	

request	
response	

Figure 11.1: In the interaction between the CM and ST component, only the CM com-
ponent is sending requests, to which the ST component responds. The protocol for
knowledge exchange are SOAP Web Services.

The functionality of the ST component is externalised via a Web Services API.
As such, the communication between the CM and ST is done via HTTP calls that
exchange XML wrapped in SOAP envelopes (Figure 11.2) [19]. A SOAP Web Service
client was implemented in SWI-Prolog to allow the CM component to interact with the
ST component.

83

Project No. 231526 DynaLearn D3.2

Soap	 Envelope	

Header	

Body	

Figure 11.2: The SOAP Web Service protocol requires requests and responses to be
wrapped in a SOAP envelope, which consists of a header and a body. The header
consists of authentication information, while the body consists of the knowledge that
is to be communicated.

11.1 Repository
The semantic repository allows the storage and retrieval or QR models. Furthermore, it
also allows for search for specific models based on keywords, and a full listing of all the
models in the repository. The results of a search and a full listing is a list of URIs that
identify specific models. Storage, as can be seen in Figure 1.1, exchanges a QR model
(described in Section 6). However, in order to utilize models for the Ontology-Based
feedback and Recommendation tasks, the extracted vocabularies (Section 8) are also
stored. More details on the specific calls will be detailed in deliverable ’D4.1 Semantic
repository and ontology mapping’.

11.2 Grounding
The grounding functionality takes a concept in a QR model and links it to a concept an
external resource such as DBPedia or WordNet. The grounding establishes a common
vocabulary between QR models so that they can be compared. The grounding function-
ality makes use of the QR model representation (Section 6). The functionality returns a
list of possible groundings to the CM components including URIs, labels, and descrip-
tions. The specific calls will be detailed in deliverable ’D4.1 Semantic repository and
ontology mapping’.

11.3 Ontology-Based Feedback and Recommendations
The Ontology-Based Feedback and Recommendation functionality take a QR model
and an extracted domain vocabulary as input, and generate feedback or recommen-
dations based on the models (and their vocabularies) in the Semantic Repository. As

Page 84 of 90

Project No. 231526 DynaLearn D3.2

such, it used the model representation (Section 6) and the extracted vocabulary (Sec-
tion 8). The specific functionality and the form of the output will be described in de-
liverables ’D4.2 Ontology based feedback on model quality’ and ’D4.3 Model-based
and memory-based Collaborative Filtering algorithms for complex knowledge mod-
els’. Also, for M18, the Ontology-Based Feedback will only be available via the CM
component. From M18 onward, the feedback will be provided as input for the tutorial
planner task (deliverable D5.4 ’Integration of tutorial planner and animated agent’).
The VC component will request the CM component for feedback and recommenda-
tions. The CM component will call the ST component to get this knowledge, format
the knowledge so that it is easy to use for the VC component and send it to the VC
component. The VC component will then create a dialogue based on a specific learn-
ing goal.

11.4 Authentication
The ST component contains knowledge that should not be accessible for learners at
all times. For example, when creating a model about climate change, a teacher might
choose to have access to existing models about climate change to be limited. Further-
more, in the Teachable Agent use-case in which a learner should construct a model
that corresponds to an expert model, the learner should not be able to download this
expert model from the repository. As such, there is a need for user authentication in
the CM-ST interaction.

The user authentication has been implemented using SOAP Message Security 1.1.
In every request to the server, a security element is added to the SOAP header. The
username and password are stored in order to add them to each request. The canonical
form of the SOAP header is:

<soapenv:Header
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<wsse:Security xmlns:wsse=

"http:// (...) oasis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="1">

<wsse:UsernameToken>
<wsse:Username>

username@example.com
</wsse:Username>
<wsse:Password Type=

"http:// (...) oasis-200401-wss-username-token-profile-1.0\#PasswordText">
secretpassword

</wsse:Password>
</wsse:UsernameToken>

</wsse:Security>
</soapenv:Header>

User account can be made and managed via the web1. The user administration al-
lows for the assignment of roles. As such, teachers can be distinguished from students.

1http://elnath.dia.fi.upm.es/DLadmin/

Page 85 of 90

Chapter 12

Discussion and Conclusion

The DynaLearn Interactive Learning Enviroment (ILE) consists of the Conceptual
Modelling (CM), Virtual Character (VC) and Semantic Technology (ST) components.
This document describes the formalisation of QR models, simulations and other key
knowledge structures. These formalisations provide the basis for all the knowledge
exchange between the three components.

The formalisation of QR has been estabished by applying an ontological perspec-
tive on QR models (Section 4). Based on this perspective the QR Ontology has been
developed (Section 5). The QR models and simulations are a natural extension to this
ontology (Sections 6 and 7). However, for the Ontology-Based Feedback and Recom-
mendation tasks an additional alternative knowledge representation had to be devel-
oped (Section 8). Similarly, for the support knowledge that has to be communicated
via a dialogue also an alternative representation is required (Section 9).

The communication between the CM and the VC components is established using
socket communication. The connection between these components is persistent. Be-
tween the CM and ST components however, the connection is not persistent. The ST
API is externalised via Semantic Web services that are called by the CM component.

There are a few open issues to be resolved in the remainder of the project. Firstly,
the precise formalisation of each of the outputs of specific tasks has to be developed.
These formalisation will be based on the QR ontology, or refer to specific URIs within
its namespace, or URIs within specific models. Secondly, the Ontology-Based Feed-
back and Recommendation output has to be communicated with learners using the
virtual characters. Currently, the CM component communicates with the ST for feed-
back. However, in the future the VC will send a request to the CM for feedback or
recommendations. The CM wil in turn interact with the ST to retrieve the results, and
forward them to the VC.

To summarize, the goal of establishing knowledge exchange between the different
DynaLearn components has been successfully completed. The formalisation of QR
models and simulations in the Web Ontology Language has proved to be a stable basis
to derive representations for different tasks.

86

Bibliography

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider. The description logic handbook: theory, implementation,
and applications. Cambridge University Press, New York, NY, USA, 2nd edition,
August 2007.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL web ontology language reference. W3C
recommendation, W3C, February 2004. http://www.w3.org/TR/owl-ref/ (visited
August 2009).

[3] Sean Bechhofer, Phillip Lord, and Raphael Volz. Cooking the semantic web with
the OWL API. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors,
Proceedings of the 2nd International Semantic Web Conference (ISWC 2003),
volume 2870 of Lecture Notes in Computer Science, pages 659–675, Sanibel Is-
land, Florida, USA, October 2003. Springer.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, May 2001.

[5] D. Bobrow, B. Falkenhainer, A. Farquhar, R. Fikes, K. Forbus, T. Gruber,
Y. Iwasaki, , and B. Kuipers. A compositional modeling language. In Y. Iwasaki
and A. Farquhar, editors, Proceedings of the Tenth International Workshop for
Qualitative Reasoning(QR-96), AAAI Technical Report WS-96-01, pages 12–21,
Menlo Park, 1996. AAAI Press.

[6] B. Bredeweg, F. Linnebank, A. Bouwer, and J. Liem. Garp3 - workbench for
qualitative modelling and simulation. Ecological informatics, 4(5-6):263–281,
2009.

[7] B. Bredeweg, P. Salles, and T. Nuttle. Using exogenous quantities in qualitative
models about environmental sustainability. AI Communications, 20(1):49–58,
2007.

[8] Bert Bredeweg and Paulo Salles. Handbook of Ecological Modelling and In-
formatics, chapter Mediating conceptual knowledge using qualitative reasoning,
pages 351–398. WIT Press, Southampton, UK, 2009.

87

Project No. 231526 DynaLearn D3.2

[9] Bert Bredeweg and Paulo Salles. Qualitative models of ecological systems –
editorial introduction. Ecological Informatics, 4(5-6):261 – 262, 2009. Special
Issue: Qualitative models of ecological systems.

[10] B. Bredeweg (ed.), E. André, N. Bee, R. Bühling, J. M. Gómez-Pérez, M. Häring,
J. Liem, F. Linnebank, N. Thanh Tu, M. Trna, and M. Wißner. Technical design
and architecture. Technical Report Deliverable D2.1, STREP project FP7 no.
231526, DynaLearn, 2009.

[11] Paul Buitelaar, Philipp Cimiano, Anette Frank, Matthias Hartung, and Stefania
Racioppa. Ontology-based information extraction and integration from heteroge-
neous data sources. Int. J. Hum.-Comput. Stud., 66(11):759–788, 2008.

[12] Alberto J. Cañas, Greg Hill, Roger Carff, Niranjan Suri, James Lott, Gloria
Gómez, Thomas C. Eskridge, Mario Arroyo, and Rodrigo Carvajal. Cmaptools:
A knowledge modeling and sharing environment. In A. J. Cañas, J. D. Novak,
and F. M. González, editors, Concept maps: Theory, methodology, technology.
Proceedings of the first international conference on concept mapping, pages 125–
133, Universidad Pública de Navarra, Pamplona, Spain, 2004.

[13] K. de Koning, B. Bredeweg, J. Breuker, and B. Wielinga. Model-based reasoning
about learner behaviour. Artificial Intelligence, 117(2):173–229, 2000.

[14] K. D. Forbus. Qualitative process theory. Artificial Intelligence, 24(1-3):85–168,
December 1984.

[15] K. D. Forbus, K. Carney, B. L. Sherin, and L. C. Ureel II. Vmodel - a visual quali-
tative modeling environment for middle-school students. AI Magazine, 26(3):63–
72, 2005.

[16] Andrew Ford. Modeling the Environment, Second Edition. Island Press, second
edition edition, November 2009.

[17] Avigdor Gal and Pavel Shvaiko. Lecture Notes In Computer Science. Advances
in Web Semantics I: Ontologies, Web Services and Applied Semantic Web, chap-
ter Advances in Ontology Matching, pages 176–198. Springer-Verlag, Berlin,
Heidelberg, 2009.

[18] M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version 3.0
reference manual. Technical Report Technical Report Logic-92-1, Stanford Uni-
versity Logic Group, 1992.

[19] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Lafon Yves. SOAP version 1.2 part
1: Messaging framework (second edition). W3C recommendation, W3C, April
2007.

[20] Pat Hayes, Thomas C. Eskridge, Raul Saavedra, Thomas Reichherzer, Mala
Mehrotra, and Dmitri Bobrovnikoff. Collaborative knowledge capture in ontolo-
gies. In K-CAP ’05: Proceedings of the 3rd international conference on Knowl-
edge capture, pages 99–106, New York, NY, USA, 2005. ACM.

Page 88 of 90

Project No. 231526 DynaLearn D3.2

[21] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-
bastian Rudolph. OWL 2 web ontology language primer. W3C recommendation,
World Wide Web Consortium, October 2009.

[22] Ian Horrocks. Semantic web: the story so far. In W4A ’07: Proceedings of
the 2007 international cross-disciplinary conference on Web accessibility (W4A),
pages 120–125, New York, NY, USA, 2007. ACM Press.

[23] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A semantic web rule language combining OWL
and RuleML. W3C member submission, W3C, May 2004.

[24] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and James
Hendler. Swoop: A ’web’ ontology editing browser. Journal of Web Semantics,
4(2):144–153, June 2006.

[25] H. Knublauch, R. Fergerson, N.F. Noy, and M.A. Musen. The Protege OWL plu-
gin: An open development environment for semantic web applications. In S. A.
McIlraith, D. Plexousakis, and F. van Harmelen, editors, International Semantic
Web Conference, pages 229–243, Hiroshima, Japan, November 2004. Springer.

[26] Krittaya Leelawong and Gautam Biswas. Designing learning by teaching agents:
The betty’s brain system. International Journal of Artificial Intelligence in Edu-
cation, 18:181–208, August 2008.

[27] Jochem Liem, Wouter Beek, and Bert Bredeweg. Multi use level workbench.
Technical Report Deliverable D3.1, STREP project FP7 no. 231526, DynaLearn,
2010.

[28] J. D. Novak and D. B. Gowin. Learning how to learning. Cambridge University
Press, Cambridge and New York, 1984.

[29] N. Noy and A. Rector. Defining n-ary relations on the semantic web. W3C
working group note, April 2006. http://www.w3.org/TR/swbp-n-aryRelations/.

[30] A. Rector. Representing specified values in OWL: ”value partitions” and ”value
sets”. W3C working group note, May 2005. http://www.w3.org/TR/swbp-
specified-values/.

[31] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. OWL pizzas: Practical experience of teaching OWL-
DL: Common errors & common patterns. In E. Motta, N. Shadbolt, A. Stutt,
and N. Gibbins, editors, Proceedings of the European Conference on Knowledge
Acquisition, pages 63–81, 2004.

[32] Guus Schreiber, Alia Amin, Mark van Assem, Viktor de Boer, Lynda Hard-
man, Michiel Hildebrand, Laura Hollink, Zhisheng Huang, Janneke van Kersen,
Marco de Niet, Borys Omelayenko, Jacco van Ossenbruggen, Ronny Siebes, Jos
Taekema, Jan Wielemaker, and Bob Wielinga. MultimediaN E-Culture demon-
strator. In Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel

Page 89 of 90

Project No. 231526 DynaLearn D3.2

Schwabe, Peter Mika, Mike Uschold, and Lora Aroyo, editors, Proceedings of the
Fifth International Semantic Web Conference (ISWC’06), number 4273 in Lecture
Notes in Computer Science, pages 951–958, Athens, Georgia, USA, november
2006. Springer-Verlag.

[33] Pavel Shvaiko and Jérôme Euzenat. Ten challenges for ontology matching. In
OTM ’08: Proceedings of the OTM 2008 Confederated International Confer-
ences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the Move
to Meaningful Internet Systems, pages 1164–1182, Berlin, Heidelberg, 2008.
Springer-Verlag.

[34] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–
53, 2007.

[35] Barry Smith and Christopher Welty. FOIS introduction: Ontology—towards a
new synthesis. In FOIS ’01: Proceedings of the international conference on
Formal Ontology in Information Systems, pages 3–9, New York, NY, USA, 2001.
ACM.

[36] The Gene Ontology Consortium. Gene ontology: tool for the unification of biol-
ogy. Nature Genetics, 25:25–29, 2000.

[37] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

[38] Frank van Harmelen and Grigoris Antoniou. A Semantic Web Primer. The MIT
Press, 2004.

[39] G. van Heijst, S. Falasconi, A. Abu-Hanna, G. Schreiber, and M. Stefanelli. A
case study in ontology library contruction. Artificial Intelligence in Medicine,
7(3):227–255, June 1995.

[40] J. Wielemaker, G. Schreiber, and B. Wielinga. Using triples for implementation:
the Triple20 ontology-manipulation tool. In Y. Gil, E. Motta, V. R. Benjamins,
and M. A. Musen, editors, International Semantic Web Conference, pages 773–
785, Berlin, Germany, November 2005. Springer Verlag. LNCS 3729.

[41] Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and
the web. Theory and Practice of Logic Programming, 8(3):363–392, 2008.

Page 90 of 90

	

	

	D3.2-front.pdf
	D3.2-core
	D3.2-back

