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CHAPTER1

Introduction

One of the main goals of modern technology is to design and control the
microscopic world. Quantum information, quantum chemistry and quan-
tum thermodynamics are some aspects of this general trend. Manipulating
quantum systems is an important issue in these fields. Simple quantum me-
chanical systems are the main objects in quantum information. Since in
many situations only two states of a system are important in this subject,
two state systems are the best candidates. Some examples are the ground
state and first excited state of an electron in an atom; the mutually exclu-
sive polarization states of a photon (horizontal and vertical if it is linearly
polarized, or left and right if it is circularly polarized), the respectively up
and down states (when only the spin degree of freedom is considered) of a
spin-1

2
particle possessing a magnetic moment which can be influenced by

some external magnetic field. The Hilbert space of all these examples can
be spanned by two basis states and all operators in the Hilbert space can be
combined from the 2 × 2 Pauli matrices. From the mathematical point of
view any two-level system with non-degenerate energy levels can be described
by the same 2 × 2 matrices and thus is analogous to a spin-1

2
system. The

determination of the unknown state of a spin-1
2

system is one of the most

11



Introduction

important issues in the field of quantum information. In doing so, one needs
to measure the spin components in three different directions. As currently
described in many textbooks, the z-component of the spin of of a spin-1

2
sys-

tem, can statistically be determined by means of a repeated Stern-Gerlach
experiment. In this process, the x and y component of the spin are destroyed
as a consequence of the non-commutation property of the spin operator in
the transversal directions. Likewise, the state of any two-level system can
be determined only through measurement of three linearly independent ob-
servables which do not commute and cannot be simultaneously measured.
In chapter 2 we address this issue and show that it is possible to identify
the state of a two-level system by simultaneous measurements. In particular,
we show that the unknown state of such a system can be determined indi-
rectly by means of a set of measurements performed simultaneously on the
system itself and an auxiliary system which is called assistant. We let the
system which is initially in an unknown state interact with the assistant with
initially a known state. After some elapsed time we perform simultaneous
measurements of an observable of the system of interest and an observable
of the assistant. We show that this process enables us to recover the ini-
tial state of the system. In chapter 2 we study two cases: both employing
another two-level system, for solid state applications, and a single mode of
electromagnetic field as an assistant, for quantum optics applications.

In manipulating quantum systems, controlling their interaction with the
surrounding environment is an important issue. This is best addressed in the
subject of open quantum systems. An open system is nothing more than one
which has interactions with some environment. The dynamics of a closed
system is described by a unitary transformation. A natural way to describe
the dynamics of an open system is to regard it as arising from an interaction
between the system of interest and an environment, which together form a
closed system. This is a recurrent theme in modern physics. Depending
on the type of environment, there are different conditions under which this
procedure is possible. A group of methods, which goes under the name
of system-bath interaction, amounts to isolating a quantum system with a
few degrees of freedom in contact with an equilibrium environment (thermal
bath) which usually is considered to have many degrees of freedom. One
of the main consequences of this approach is the appearance of a Langevin
equation, which supplements the Newton equation of motion for the quantum
system by two additional forces: a random conservative force and a non-
conservative (i.e., non-Lagrangian), velocity-dependent friction force.
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In chapter 3 we focus on the spin-boson model which describes the dynamics
of a two-level system coupled to a thermal bath modeled by a set of harmonic
oscillators. Employing this model we study the dynamics of a pulsed spin-1

2

system in the presence of another spin-1
2

system located at some distance
from it. We show that although the spins are considered non-interacting,
the presence of the bath yields the polarization transfer among them. More
precisely, the back reaction of spins on the bath induces the polarization
transfer. Here the presence of the bath is crucial since it is the only interactive
component between the spins. This is in contrast with the usual school of
thought in spin-boson model were the bath is considered to be a hindrance.

The quantum back reaction force plays an important role in another area
in physics, namely, quantum-classical approximations. It provides a straight-
forward derivation route, in which one starts with a fully quantum treatment
and takes the classical limit for some degrees of freedom. This provides a
powerful scheme that facilitates understanding and manipulating the micro-
scopic world. Quantum-classical approximations are particularly useful when
one can easily identify quantum and classical subsystems by mass, energy,
time scale. This is another set-up that allows studying the dynamics of an
open system. In chapters 4 and 5 we consider a quantum system coupled to
a classical system and identify the two systems by a time scale separation.
Chapter 4 is devoted to the evolution of the fast quantum subsystem. In this
chapter we employ the adiabatic perturbation theory based on time scale
separation and derive higher order corrections to the adiabatic wave func-
tion in terms of a small parameter ε. We define ε as the small ratio of the
characteristic times of the quantum over the classical system, respectively.
According to the adiabatic theorem a quantum system under the influence
of its surrounding environment remains in its instantaneous eigenstate if the
environment which is acting on it evolves slowly enough and if there is a gap
between the initial eigenvalue and the rest of the energy spectrum.
Our ultimate goal is to understand the nature of the back reaction force
exerted by the quantum system on its classical environment. This is the sub-
ject of chapter 5. In this chapter we study the dynamics of the slow classical
system by adiabatically excluding the fast quantum system. We try to under-
stand to which extent the ensuing dynamics of the slow classical system can
be described by autonomous Lagrangian-generated equations for the classi-
cal coordinates. For the quantum-classical dynamics it is well known that in
the leading order the influence of the quantum system on the classical one
can be described by the Born-Oppenheimer potential energy term [1]. It was
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shown by Berry and Robbins that in the first order of ε one gets an effective
magnetic field, which manifests itself as the velocity-dependent term in the
classical Lagrangian [2]. Recently, Goldhaber has shown that in the second
order ε2 one gets in the Lagrangian an additional kinetic energy term, i.e., a
quadratic form in slow velocities [3].
What happens in the next orders? In particular, how far we can continue
the expansion over ε, still keeping the classical system Lagrangian? Most im-
portantly, are there new physical effects essentially related to post-adiabatic
corrections?

Here we answer these questions. It appears that at every order over ε
one can derive Lagrange equations for the dynamics of the classical system.
However, there is an important difference between the orders ε and ε2 and
all successive orders. At the order ε3 the classical dynamics is Lagrangian,
but the Lagrangian starts to depend on the higher-order time-derivatives of
the classical coordinates: While the classical Lagrangians normally depend
on the coordinates and their first-order time-derivatives (velocities), at the
order ε3 we get a Lagrangian that is a functional of the classical coordi-
nates, velocities, and accelerations. Moreover, in the third order of ε, the
Lagrangian depends linearly on the classical accelerations.
This fact is of conceptual relevance. Classical physics is essentially based on
the Newton’s second law that equates acceleration to the force, which de-
pends only on coordinates and velocities. As a consequence, the trajectory
of the classical motion is fixed via initial coordinates and initial velocities.
In its turn, the Newton’s second law is generated by a Lagrangian, which de-
pends on coordinates and velocities. Dependence on higher-order derivatives
in the Lagrangian implies a number of essential changes in the kinematics of
the classical system: the momentum of the classical system depends on the
acceleration, while the full angular momentum tensor is a sum of the usual
orbital part and a term that can be interpreted as the spin of the classical sys-
tem. In the simplest non-trivial case this spin is proportional to the squared
velocity of the classical particle. We show that this implies the existence
of the zitterbewegung effect, where the momentum of the classical particle
(system) is governed by the projected time-derivative of the spin. So far
the zitterbewegung effect was known only in the physics of relativistic Dirac
electron, while we show the same effect appears in a purely non-relativistic
slowly evolved classical system due to its coupling to a fast quantum sys-
tem. It appears now that this effect is a part of the physics generated by
higher-order post-adiabatic corrections. Similar dependence on higher-order
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derivatives is expected at higher orders εn with n ≥ 4, though in this thesis
we restrict ourselves to deriving the effective classical Lagrangian up to the
order ε4.
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CHAPTER2
Quantum State Tomography

In this chapter the question of determining the unknown state of a quantum
system is addressed. First, some of the interpretations of the notion of the
quantum state is mentioned. Then quantum state tomography is introduced
as a procedure of reconstructing the quantum state from measurements of ob-
servables of the system. This method aims to determine the unknown state of
a quantum system from a linear transformation of a set of experimental data.
Then the quantum state tomography of a two-level system or a “qubit” in the
terminology of quantum information by simultaneous measurement of two com-
muting observables is studied. This can be done by letting the qubit interact
with another qubit which is in a known initial state, or with a single mode of
a quantized electromagnetic field. In the latter case, the interaction is studied
within the Jaynes-Cummings Model. It is shown that it is possible to determine
the unknown initial state of the qubit from two sets of measurements of com-
muting observables each belonging to one of the systems. In order to make sure
that the reconstructed density matrix is a Hermitian, semipositive matrix with
a unit trace, the maximum likelihood reconstruction method is applied. In this
approach the density matrix that is most likely to have produced the measured
data set is characterized by numerical optimization.
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2.1 Introduction

The ability to determine and characterize the state of a quantum system is
one of the most important areas in nowadays physical research specifically
in quantum computation, quantum cryptography, and quantum communica-
tion. Given the state of a quantum system, one can calculate the expectation
value of any observable of the system [4]. However, the inverse problem of
determining the state by performing different measurements is not a trivial
task. This problem was first discussed by Pauli in 1933 [5]. He raised the
question of how to reconstruct the unknown wave function of an ensemble
of identical spinless particles via the corresponding position and momentum
probability densities. The interest in the state determination problem grew
considerably since then, and is now a well-recognized subject [6–12].
In general, the process of reconstructing the quantum state (density matrix)
of a system by means of performing measurements on different observables
of the system is called quantum state tomography. In various experimental
setups it is reasonably straightforward to reconstruct the state of a quantum
system employing a linear tomographic technique. This way the elements of
the density matrix can be linearly related to a set of measured quantities. But
since different observables of a quantum system may not commute with each
other, one often has to perform series of successive measurements of observ-
ables which cannot be done simultaneously. Simultaneous measurement of
observables costs less time and energy and is more beneficial. However, there
is one drawback in this method. The recovered state might not correspond to
a physical state due to the experimental noise. For example, density matri-
ces for any quantum system must be semipositive, Hermitian matrices with
unit trace. The matrices resulting from a tomographic measurement may fail
to be positive semidefinite. To avoid this issue the “maximum likelihood”
method is adopted.

In section 2.2 we discuss some of the interpretations of quantum state
and quantum measurement. Then we outline the strategy of quantum state
tomography with simultaneous measurement of observables. Sections 2.3-2.4
are devoted to describe specific models we employ to this end. In section 2.7
we introduce the maximum likelihood method. This method is used to re-
construct the most proper density matrix based on a measured data set by
numerical optimization. The numerical results are demonstrated in appen-
dices A and B.

18



2.2. The state of a quantum system

2.2 The state of a quantum system

In classical physics, the state of a system is characterized by specifying the
values of all physical quantities, for instance the positions and the velocities of
the particles that constitute the system. In quantum mechanics the situation
is complicated by the fact that the physical quantities are mathematically
represented by specific type of operators called observables, which in gen-
eral are elements of a non-commutative algebra. Hence their values cannot
be simultaneously specified, as emphasized in the Heisenberg’s uncertainty
principle. Instead, the measurement results of each observable is charac-
terized by a probability distribution, which involves statistical fluctuations.
The “state of the system” is then represented by a mathematical notion that
allows us to express the probability distribution of all the observables for an
ensemble of identically prepared systems.

Various interpretations have been given to the concept of state in quantum
mechanics. Here we list three of them [13–15]:

• According to the Schrödinger interpretation, a state is represented by
a wave function or by a ket vector in the Hilbert space on which the
observables of the considered system act. In this interpretation, the
wavefunction is regarded as an intrinsic property of the system and it
directly describes its physical properties. The probability distribution
of the position of a particle, for instance, is obtained from the modulus
square of its wave function. The distribution of the momentum is given
by the modulus square of the Fourier transform of the wave function.

• In “information interpretation”, on the opposite point of view, the state
does not pertain to the system itself, but only gathers the information
we have on it [15]. The problem in this concept is that the wave function
of a physical system would depend on the observer in analogy with
classical probability [13]: If two observers have different information on
the same physical system, they should use two different wave functions
for describing it.

• In the statistical interpretation of quantum mechanics [14], to which we
adhere, the state of a system is a mathematical object from which we
can derive any probabilistic prediction about the physical quantities
attached to this system. One typically imagines some experimental
apparatus and procedure which “prepares” this quantum state; the
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mathematical object then reflects the setup of the apparatus. This way,
the quantum state accounts for the full information available about the
preparation of the system, from which we wish to derive consequences
for future experiments. Since this knowledge is probabilistic it does not
refer to a single system or single event. What we call a state, which
is most of the time a mixed state, characterizes a statistical ensemble
of systems of the same type, which are all prepared under identical
physical considerations. The physical state is thus a mathematical
representation of the result of a certain state preparation procedure; it
accounts for our information about this preparation and upon knowing
it we can elaborate consistent probabilistic predictions. It is thus a
concept which merges objective and subjective aspects [16].

A standard tool to implement the statistical definition of state is the den-
sity matrix, which generalizes the pure state represented by a wave function.
Indeed, there is no conceptual difference between wave function and density
matrix which are both mathematical means for evaluating expectation values
of the observables of the system or probabilities.

In the frame work of the statistical interpretation, the laws of quantum
mechanics can be summarized as follows:

• An observable Ô is represented by a self-adjoint linear operator acting
on the Hilbert space pertaining to the system. It has a spectral rep-
resentation, Ô =

∑
i oiP̂i where oi are the eigenvalues of Ô and P̂i are

the orthogonal projection operators related to the orthonormal eigen-
vectors of Ô, i.e., P̂i =

∑
m |m, oi〉〈m, oi|. The parameter m labels the

degenerate eigenvectors of Ô.

• The state of a system at a given time is represented by its density
matrix, ρ̂, which is a self-adjoint operator in Hilbert space with a unit
trace. The density matrix should also be semipositive to ensure that
any variance of the observables of the system is non-negative. Pure
states correspond to the special case

ρ̂2 = ρ̂. (2.1)

• The dynamics of the system can be obtained by

ρ̂(t) = Û(t, t0) ρ̂(t0) Û
†(t, t0), (2.2)

where Û(t, t0) is the unitary time evolution operator.
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2.2. The state of a quantum system

• Given the density matrix ρ̂ of a system, one can find the expectation
value of any observable Ô of the system in the considered situation as

〈Ô〉 = tr[ρ̂ Ô], (2.3)

where tr[· · · ] stands for the trace of a matrix.

Let us emphasize that through out this thesis the operators are always dis-
tinguished by aˆsign.
As it was mentioned earlier, we wish to reconstruct the density matrix of
a quantum system. Consider we are given an ensemble of systems S which
we don’t know its initial state. In other words, the probability to observe
some result or another in the measurement of an observable is unknown.
The following question then is of our interest. How can one determine the
density matrix by identification of a set of observables, the measurement of
which permits the precise determination of ρ̂? In other words, how can one
determine the quantum statistical operator that describes the preparation of
the system?

Procedures of reconstructing the quantum state from measurements are
known as quantum state tomography. Recently, they have found some appli-
cations in quantum information processing [17]. For example, in quantum
cryptography one needs a complete specification of the qubit state both as
it is emitted from the source and as it is received after transmission [18].

In the simplest example of a spin-1
2

system or equivalently any two-level
quantum system the state is described by a 2 × 2 matrix. In the two-
dimensional Hilbert space, any observable is a linear combination of the
Pauli operators, which satisfy

σ̂2
α = 1̂, α = x, y, z,

σ̂xσ̂y = iσ̂z, (2.4)

and are represented by the Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (2.5)

A state is characterized by three real numbers: one for the diagonal el-
ements of the 2 × 2 density matrix ρ̂, and two for its off-diagonal elements.
Equivalently, we can introduce the polarization vector, ~r, the components of
which are the expectation values of the Pauli matrices.

rα = tr (ρ̂ σ̂α) , α = x, y, z. (2.6)
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Once we know the value of these parameters, we are able to determine the
value of the density matrix, making use of the identity

ρ̂ =
1

2

(
1 + ~r · ~̂σ

)
. (2.7)

Thus, according to the above argument, one has to perform three incom-
patible measurements for the unknown state determination, e.g., measuring
the spin components along the x-, y- and z- axes via a Stern-Gerlach setup.
However, during the measurement procedure of each component one loses
the information about the two other components, since the spin operators
in different directions do not commute. Thus, to determine the state of a
spin-1

2
system, one needs to use three sets of Stern–Gerlach measurements

performed along orthogonal directions. In this approach, the state of any
two-level system, represented by a 2× 2 density matrix ρ̂, can be fully deter-
mined only through measurement of three linearly independent observables
which do not commute and cannot be simultaneously measured.

In what follows we show that the unknown density matrix of such a sys-
tem S, in particular the full polarization vector of a spin-1

2
system, can be

determined indirectly. This can be done by means of a single set of measure-
ments performed simultaneously on both the system S and another auxiliary
system (assistant or ancilla) A, where A starts its evolution from a known
state [12,19–22]. The suggested strategy is the following: initially S is in an
unknown state that we wish to determine, while the state of the assistant A
is known. During some time lapse S and A interact in a known fashion. As a
result their joint state is modified: it involves correlations and keeps memory
of the initial state of S. Two commuting observables of the combined sys-
tem S+A are then simultaneously measured. Repeating this process provides
then the necessary statistical data: the expectation values of the observables
and also their correlation. We will show that one can infer the three com-
ponents of the initial polarization vector of S, and hence the state of the
system from these three sets of data. This way, performing one simultaneous
measurement on observables of S+A plays the same role as performing suc-
cessive measurements on three non-commuting observables of S. This type
of information transfer is remarkable. Initially, an unknown information was
embedded in the matrix elements of ρ̂, or equivalently in the components of
the polarization vector of S. It had a quantum nature, and could not be repre-
sented by an ordinary probability distribution, due to the non-commutation
of the three components of the spin operator. After the interaction between
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2.2. The state of a quantum system

S and A this unknown initial information about S, together with the known
information about A, is redistributed among the matrix elements of the joint
density matrix of the overall system, S+A. However, the resulting classical
joint probability distribution for the observables of the system S and the as-
sistant A can keep full memory of the initial quantum information about S.
The process on which we rely amounts to a transformation of quantum in-
formation into classical information, which can be gained by a classical type
of measurement involving commuting observables only. This measurement
modifies the state of S+A, but it can recover all the matrix elements of ρ̂.

The idea of transforming quantum into classical information by using an
assistant system A was first proposed by D’ Ariano [19] who showed the
possibility of mapping the density matrix of S onto a single observable of
S+A. It was explicitly implemented in a dynamical form by Allahverdyan
et al. [12] of which the present work is a continuation. In particular, they
showed that one can determine the unknown state of a spin-1

2
system with

a single apparatus by using another spin-1
2

system as an assistant. This
idea was recently implemented by Peng et al. [21] who used pulses to induce
the proper dynamics of the interaction between the spin-1

2
system and its

assistant. They verified the initial state of the system obtained from this
procedure with the result of the direct measurement of the three components
of the spin vector of the system. Later it was shown that one can employ
a single mode of coherent light as an assistant in order to reconstruct the
initial state of a two-level system [20].

In the next section 2.3 we briefly review the proposed procedure by Al-
lahverdyan et al [12] about determination of the state of a spin-1

2
system

employing another spin-1
2

system as an assistant.
Then we specifically show that the unknown density matrix of an ensem-
ble of two-level systems (atom or spin) can be determined via interaction
with a single mode of the electromagnetic field. The atom-field interaction
is studied within the Jaynes-Cummings model (JCM) [23] . The unknown
state of a two-level system is characterized by repeated measurement of two
commuting observables: the population difference of the system σ̂z, and the
photon number of the field â†â. This measurement supplies three averages:
〈σ̂z〉, 〈â†â〉, and 〈σ̂z â†â〉, which will be linearly related to the elements of the
initial density matrix of the ensemble of the two-level systems. Note that
since σ̂z and â†â commute, 〈σ̂z â†â〉 is recovered from the gathered data of σ̂z
and â†â by counting the number of coincidences.
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2.3 Spin-1
2 assistant

Consider a two-level system, S, the state of which we wish to determine.
The aim is to find an indirect procedure involving only measurements of
commuting observables, which therefore can be performed by means of a
single apparatus. To this end, we let the system S be coupled to an auxiliary
two-level system A. A is in a known state.
Let us recall the general form of an unknown state of S from (2.7)

ρ̂ =
1

2

(
1 + ~r · ~̂σ

)
, (2.8)

where the polarization vector ~r is defined as

~r = tr [ρ̂ σ̂α] , α = x, y, z. (2.9)

The state is called pure if |~r| = 1. |~r| < 1 represents a mixed state, and
|~r| > 1 is physically excluded.

We choose the state of the assistant, represented by R̂ as

R̂ =
1

2
(1 + λŝz) , 0 ≤ λ ≤ 1 (2.10)

where ŝx, ŝy, and ŝz are the Pauli matrices in the Hilbert space belonging to
the assistant A.
Initially there is no interaction between S and A. Therefore the initial state
of the overall system, Ω̂0, can be written as

Ω̂0 = R̂⊗ ρ̂ =
1

4


(1 + λ)

(
1 + ~r · ~̂σ

)
0

0 (1− λ)
(
1 + ~r · ~̂σ

)

 . (2.11)

Now we let the two systems interact for some time. The interaction can be
described with the help of a 4×4 unitary matrix Û = e−iĤ , where we set t = 1.
Here, we don’t specify our Hamiltonian and consider a general unitary matrix
and we parametrize it such that it generates a proper time-evolved overall
density matrix at later time t = 1, given by Ω̂f such that the initial state of
S can be read off easily. The observables of which the measurements yields
the determination of the initial state of S are the final polarization of each
spin of the overall system S+A [12]. They can be measured simultaneously
and the correlation of the two can be derived from the gathered data. We
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show that it is possible to read off the initially unknown state of the system
S from the three above mentioned sets of data. Let us decompose Û into the
following 2× 2 block matrix,

Û =

(
Â Ĉ

B̂ D̂

)
, (2.12)

and express the unitarity of Û in terms of the 2× 2 matrices Â, B̂, Ĉ, D̂ in
the Hilbert space of S. The polar decomposition of Â and B̂ yields

Â = v̂k̂, B̂ = ŵk̂′, (2.13)

where v̂, and ŵ are unitary matrices while k̂ and k̂′ are semi-positive Her-
mitian matrices. Since v̂, and ŵ are unitary, it is easy to see that k̂ and k̂′

are the non-negative square roots of Â†Â and B̂†B̂, respectively. If k̂ and k̂′

have a vanishing eigenvalue, these representations of Â and B̂ still hold but
are no longer unique. We shall restrict ourselves to the case where k̂ and k̂′

are strictly positive.
The condition Û Û † = 1 implies

ĈĈ† = 1− ÂÂ†, D̂D̂† = 1− B̂B̂†, (2.14)

ÂB̂† + ĈD̂† = 0, (2.15)

while Û †Û = 1 implies

Â†Â+ B̂†B̂ = 1, Ĉ†Ĉ + D̂†D̂ = 1, (2.16)

Â†Ĉ + B̂†D̂ = 0. (2.17)

Implementing (2.16) on the polar decomposition of Â and B̂ given by (2.13)
yields

k̂′ =
√

1− k̂2. (2.18)

Thus ĈĈ† and D̂D̂† can be simplified as

ĈĈ† = v̂k̂′2v̂†, D̂D̂† = ŵk̂2ŵ†. (2.19)

Since k̂ and k̂′ are strictly positive and û and ŵ are unitary matrices, we can
define unitary matrices x̂ and ŷ such that Ĉ and D̂ have the form

Ĉ = v̂k̂′x̂, D̂ = ŵk̂ŷ. (2.20)
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The remaining unitary condition Â†Ĉ + B̂†D̂ = 0 reads k̂k̂′(x̂ + ŷ) = 0.
Again, since k̂ and k̂′ are strictly positive this implies ŷ = −x̂, which fixes ŷ
in a unique way.
The unitary matrix Û then becomes:

Û =

(
v̂ 0
0 ŵ

)(
k̂ k̂′

k̂′ −k̂
)(

1 0
0 x̂

)
. (2.21)

In order to get a more symmetric form for Û , we introduce a unitary matrix
X̂ such that (X̂†)2 = x̂ and define the matrices V̂ = v̂X̂† and Ŵ = ŵX̂†,
K̂ = X̂k̂X̂†, K̂ ′ = X̂k̂′X̂†. We can then write the 4×4 unitary transformation
operator Û as

Û =

(
V̂ 0

0 Ŵ

)(
K̂ K̂ ′

K̂ ′ −K̂
)(

X̂ 0

0 X̂†

)
, (2.22)

in terms of the three unitary matrices V̂ , Ŵ , X̂ and the non-negative hermi-

tian matrices K̂ and K̂ ′ =
√

1− K̂2. Since K̂ and K̂ ′ are strictly positive,
this decomposition is unique, provided we fix the signs of the eigenvalues of
X̂ =

√
x̂† by some convention, for instance, (X̂ + X̂†) ≥ 0.

Having the unitary matrix given by (2.22) we can calculate the state of the
overall system at later time as

Ω̂f = ÛΩ̂0Û
†, (2.23)

where Ω̂0 is given by (2.11). The observables that can be simultaneously mea-
sured by means of the same apparatus on the state Ω̂f are the z-components
of the spin of each system. In case S and A are generally two-level systems,
the z component of quasi-spin is related to the level occupation and thus the
energy of the system. This corresponds to the following averages

〈ŝz〉 = tr
[
Ω̂f ŝz

]
,

〈σ̂z〉 = tr
[
Ω̂f σ̂z

]
,

〈ŝz σ̂z〉 = tr
[
Ω̂f (ŝz σ̂z)

]
. (2.24)

We notice that the correlation 〈Ωf (ŝz σ̂z)〉 can be recovered form the gathered
data of σ̂z and ŝz via the number of coincidences.
Inserting the unitary time-evolution operator in the expectation values (2.24)
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we get a linear relation between the gathered data of measurements of ŝz, σ̂z
and their correlation on one hand and the the elements of the initial density
matrix of S given by rx, ry and rz on the other hand. But before calculating
the above mentioned expectation values, let us first parametrize the unitary
time evolution operator Û .
Since K̂ is a Hermitian matrix with 0 ≤ K̂ ≤ 1, we can parametrize it as

K̂ = cos θ cosφ+ sin θ sinφ (~χ · ~̂σ), (2.25)

where ~χ is a unit vector and 0 < φ ≤ θ ≤ π
2
− φ. It is straightforward to see

that K̂ ′ is given by

K̂ ′ = sin θ cosφ− cos θ sinφ (~χ · ~̂σ). (2.26)

Since the initial overall density matrix Ω̂0 is block diagonal, multiplication
of the unitary matrix X̂ by a phase factor does not affect ÛΩ̂0Û

† although
it modifies Û . Therefore, we can parametrize X̂ as

X̂ = eiψ(~ξ·~̂σ) = cosψ + i(~ξ · ~̂σ) sinψ, (2.27)

where ~ξ is a unit vector which we assume to be perpendicular to ~χ for sim-
plicity, and 0 ≤ ψ ≤ π.
Parametrization of V̂ and Ŵ can be done due to the fact that we are not
interested in the off-diagonal block elements of Ω̂f . In other words, the three
expectation values (2.24) do not require the determination of the off-diagonal
elements of the overall density matrix and it would be sufficient to determine
the action of V̂ and Ŵ on the σ̂z:

V̂ †σ̂zV̂ = ~η · ~̂σ, Ŵ †σ̂zŴ = ~ζ · ~̂σ, (2.28)

where η and ζ are three dimensional unit vectors.
Inserting the expression for Ω̂f from (2.23) into (2.24) using the parametriza-
tion introduced by (2.25)-(2.28) yields

〈ŝz〉 = λ cos 2θ cos 2φ+ λ (~χ · ~r) sin 2θ sin 2φ cos 2ψ

+
[
(~ξ × ~χ) · ~r

]
sin 2θ sin 2φ sin 2ψ, (2.29)
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and

〈σ̂z〉+ 〈ŝz σ̂z〉 = λ(~χ · ~η) sin 2θ sin 2φ

+(~χ · ~η) (~χ · ~r) (1− λ cos 2θ)(1− cos 2φ) cos 2ψ

+(~χ · ~η)
[
(~ξ × ~χ) · ~r

]
(λ− cos 2θ)(1− cos 2φ) sin 2ψ

+(~ξ · ~η)
(
~ξ · ~r

)
(cos 2φ+ λ cos 2θ)(1− cos 2ψ)

+ (~η · ~r) (cos 2φ+ λ cos 2θ) cos 2ψ

+
[
(~ξ × ~η) · ~r

]
(λ cos 2φ+ cos 2θ) sin 2ψ. (2.30)

Finally, 〈σ̂z〉 − 〈ŝz σ̂z〉 can be obtained by transforming 2θ to 2θ + π and

replacing ~η with ~ζ in (2.30).

For the sake of simplicity, we assume that ~ξ is the unit vector in the
x−direction and that the unit vector ~χ lies in the y−direction:

~ξ = (1, 0, 0), ~χ = (0, 1, 0), ~ξ × ~χ = (0, 0, 1). (2.31)

Therefore the components of the two vectors ~η and ~ζ on ~ξ and ~χ can be
defined as

ηx
def
= ~ξ · ~η, ηy

def
= ~χ · ~η, ηz = [~ξ × ~χ] · ~η

ζx
def
= ~ξ · ~ζ, ζy

def
= ~χ · ~ζ, ζz = [~ξ × ~χ] · ~ζ. (2.32)

The important issue in this part of parametrization is to consider the vectors
~χ and ~ξ are perpendicular to each other which substantially simplifies the
calculation of the expectation values. Within the above choice of the unit
vectors we can relate the measured values of the population difference of the
two energy-levels of A and S to the initial state of the system S as




〈ŝz〉
〈σ̂z〉
〈ŝz σ̂z〉


 = C



rx
ry
rz


 + F , (2.33)
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where C is a 3× 3 matrix of the coefficients whose elements are given by

c11 = 0,

c12 = λ sin 2θ sin 2φ cos 2ψ,

c13 = sin 2θ sin 2φ sin 2ψ, (2.34)

c21 = (ηx + ζx) cos 2φ+ λ(ηx − ζx) cos 2θ,

c22 = (ηy + ζy) cos 2ψ + λ(ηy − ζy) cos 2θ cos 2φ cos 2ψ

− sin 2ψ [λ(ηz + ζz) cos 2φ+ (ηz − ζz) cos 2θ] ,

c23 = λ(ηy + ζy) sin 2ψ + (ηy − ζy) cos 2θ cos 2φ sin 2ψ

+ cos 2ψ [(ηz + ζz) cos 2φ+ λ(ηz − ζz) cos 2θ] ,

c31 = (ηx − ζx) cos 2φ+ λ(ηx + ζx) cos 2θ,

c32 = (ηy − ζy) cos 2ψ + λ(ηy + ζy) cos 2θ cos 2φ cos 2ψ

− sin 2ψ [λ(ηz − ζz) cos 2φ+ (ηz + ζz) cos 2θ] ,

c33 = λ(ηy − ζy) sin 2ψ + (ηy + ζy) cos 2θ cos 2φ sin 2ψ

+ cos 2ψ [(ηz − ζz) cos 2φ+ λ(ηz + ζz) cos 2θ] ,

(2.35)

and F is the vector of constants given by:

F = λ




cos 2θ cos 2φ
(ηy − ζy) sin 2θ sin 2φ
(ηy + ζy) sin 2θ sin 2φ


 . (2.36)

The elements of the initially unknown density matrix of S which are encoded
by ~r are related to these expectation values, so they can be recovered if
and only if the determinant of the coefficient matrix C is non-zero. With
some algebra we can calculate the determinant of the coefficient matrix,
represented by D, as

8D

sin 2θ sin 2φ
=

(1− λ2) sin 4ψ

2
[(cos 2φ+ λ cos 2θ) ηxζy

− (cos 2φ− λ cos 2θ) ηyζx]

+ ηzζx(cos 2φ− λ cos 2θ)[λ cos 2φ

+ cos 2θ(λ2 cos2 2ψ + sin2 2ψ)]

− ηxζz(cos 2φ+ λ cos 2θ)[λ cos 2φ

− cos 2θ(λ2 cos2 2ψ + sin2 2ψ)]. (2.37)
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Thus the initial state of the system S can be determined from 〈ŝz〉, 〈σ̂z〉 and
〈ŝz σ̂z〉 provided that the determinant D is non-zero.
In what follows we consider two limiting cases: i) when the assistant is
initially in a completely disordered state (λ = 0), and ii) when it starts its
evolution from a pure state, i.e. λ = 1. Then we maximize the value of D
over the parameters of Û and reconstruct the initial state of S.

2.3.1 Assistant with completely disordered initial state

Inserting λ = 0 in the expression for the determinant given by (2.37) yields

D =
1

16
sin 2θ sin 4φ sin 2ψ[cos 2ψ(ηxζy − ηyζx)

+ cos 2θ sin 2ψ(ηzζx + ηxζz)]. (2.38)

It is clear that this determinant is maximized over the parameter φ if φ = ±π
8
.

Furthermore, the maximum of D = 1
16

sin 2θ sin 2ψ[cos 2ψ(ηxζy − ηyζx) +

cos 2θ sin 2ψ(ηzζx + ηxζz)] over ~η and ~ζ is reached when

~η = ~ζ = (
1√
2
, 0,

1√
2
). (2.39)

Thus we have

D =
1

16
sin 2θ sin 2ψ

√
1− sin2 2θ sin2 2ψ. (2.40)

The determinant (2.40) reaches its maximum value 1/32 for θ = π/8 and ψ =
π/4. Such non-zero determinant guarantees the procedure of inversion and
characterizing the initial state of the system. Inserting the above values of the
parameters in the expressions for the expectation values of the z-component
of spins, (2.29), (2.30) we can reconstruct the initial density matrix of S:

rx = 2〈σ̂z〉,
ry = −2〈ŝz σ̂z〉,
rz = 2〈ŝz〉. (2.41)

We see that for a suitable choice of the evolution operator Û it is possible to
determine the initial state of a spin-1/2 system implying an assistant which
is initially in completely disordered state.
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2.3.2 Assistant with a pure initial state

Considering the assistant starts its evolution from a pure state is equivalent
to set λ = 1 in the general expression for the determinant given by (2.37),
which yields

D =
1

8
sin 2θ sin 2φ(cos2 φ− cos2 θ)(ηzζx − ηxζz). (2.42)

The maximum value of the determinant, |D| = 1/12
√

3, in this case is reached

when ~η and ~ζ are perpendicular to each other

~η = (
1√
2
, 0,

1√
2
), ~ζ = (

1√
2
, 0,− 1√

2
), (2.43)

φ = ±π
4
, and sin2(2θ) = 1/3 while ψ which determines a phase in the unitary

operator remains an arbitrary parameter.
Thus the initial state of S can be determined as

rx =
√

3〈ŝz σ̂z〉,
ry =

√
3 (cos 2ψ〈ŝz〉 − sin 2ψ〈σ̂z〉) ,

rz =
√

3 (sin 2ψ〈ŝz〉+ cos 2ψ〈σ̂z〉) . (2.44)

If we choose the phase ψ = π/4, we get

rx =
√

3〈ŝz σ̂z〉,
ry = −

√
3〈σ̂z〉,

rz =
√

3〈ŝz〉. (2.45)

We conclude this section by mentioning that one can fully determine
the unknown state of a spin-1

2
system by simultaneous measurements of the

population difference of the system and the assistant provided that the de-
terminant D is non-zero. Very small determinant means the errors made in
the measurement procedures are substantial and one cannot infer the initial
state from the gathered data. Comparing the maximum values of D when
the assistant is in pure state and when it is in completely random state,
shows that there is not much gain in using an assistant in a pure state. In
other words, it is possible to characterize the initial state of S by coupling
it to an assistant being in completely disordered state. Such assistants are
much easier to produce from a technical point of view.
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2.4 The Jaynes-Cummings model

In previous section we did not restrict ourselves to a specific Hamiltonian
in order to describe the interaction between S and A. The next section will
be devoted to the case where a single coherent mode of electromagnetic field
plays the role of the assistant. In this case the interaction Hamiltonian is
known as the Jaynes-Cummings model. We will first introduce the model
and then implement it for characterizing the initial state of a two-level atom
by simultaneous measurements.

The Jaynes-Cummings model (JCM) [23] plays an important role in quan-
tum optics and atomic physics [24–26]. This model describes the interaction
of a two-level atom with a single mode of electromagnetic field, and it was
employed by Jaynes and Cummings for studying the quantum features of
spontaneous emission. Later on, the model generated several non-trivial the-
oretical predictions such as collapse and revivals of the atomic population
that are related to the discretness of the photon [27, 28]. These predictions
were successfully tested in experiments [29]. In particular, the model ex-
plains experimental results on one-atom masers [29], and on the passage of
(Rydberg) atoms through cavities [30–33]. JCM is also used for describing
quantum correlation and formation of macroscopic quantum states. It was
recently employed in quantum information theory [34, 35]. More recently,
the JCM has found applications in semiconductors [36], and in Josephson
junctions [37–39]. JCM has denoted a family of models, since the original
model of Jaynes and Cummings. It has been generalized several times for
more adequate description of the atom-field interaction (e.g., multi-mode
fields, multi-level atoms, damping) [40–42]. We shall however study the sim-
plest original realization of JCM that involves a two-level atom interacting
with a single mode of electromagnetic field. In particular, we neglect the
effects of noise and dissipation. This situation has direct experimental re-
alizations [29, 43, 44] . For instance with superconducting microcavities one
can achieve ∼ 0.1s for the average lifetime of the cavity photon. This is much
larger than the typical field-atom interaction time ∼ 100− 500µs [30, 33].

2.4.1 Atom-field interaction Hamiltonian

The Jaynes-Cummings Hamiltonian is an specific type of a general atom-field
interaction Hamiltonian. In this section we cast the JC Hamiltonian from
this interaction Hamiltonian.
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The interaction of a radiation field ~̂E with an atom within the dipole ap-
proximation can be written as

Ĥ = ĤA + ĤF − e~̂% · ~̂E. (2.46)

Here ĤA and ĤF represent the Hamiltonian of the atom and field, respec-

tively, in the absence of interaction. ~% is the position of the electron and ~̂E
represents the electric field.

In the dipole approximation the atom size is considered to be much
smaller than the wavelength of the radiation field. Hence, the field is as-
sumed to be uniform over the whole atom.

The energy of the free field is given in terms of the bosonic creation â†k
and annihilation âk operators, where k is the number of modes. Neglecting
the zero-point energy we have

ĤF =
∑

λ

∑

k

~νkλâ†kλâkλ, (2.47)

where νk is the frequency of the k−th mode, and λ is the polarization index.
ĤA and e~̂r can be expressed by the atom transition operator

σ̂ij = |i〉〈j|, (2.48)

where {|i〉} represents a complete set of atomic energy eigenstates, i.e.,

∑
i

|i〉〈i| = 1. (2.49)

It then follows
ĤA =

∑
i

Ei|i〉〈i| =
∑
i

Eiσ̂ii, (2.50)

also
e~% =

∑
i,j

e|i〉〈i|~̂%|j〉〈j| =
∑
i,j

~Dijσ̂ij. (2.51)

The coefficient ~Dij = e〈i|~̂%|j〉 is the electric-dipole transition matrix element.
In the dipole approximation, the electric field operator is evaluated at the

position of the point atom. For the atom being at the origin it the follows

~̂E =
∑

k,λ

~εkλEkλ(âkλ + â†kλ), (2.52)
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where Ekλ = (~νkλ/2ε0V )1/2. Here V represents the volume. ~εkλ are the real
unit vectors of the linear polarization basis.

Inserting ĤA, ĤF , e~̂r, and ~̂E from Eqs. (2.47), (2.50), (2.51), and (2.52)
into the total Hamiltonian given by (2.46) for a polarized field we get

Ĥ =
∑

k

~νkâ†kâk +
∑
i

Eiσ̂ii + ~
∑
i,j

∑

k

gijk σ̂ij(âk + â†k), (2.53)

where

gijk = −
~Dij · ~εkEk
~

. (2.54)

We now proceed to the case of a two-level atom and single mode radiation
field.

We denote the eigenstates of the two-level atom by |+〉, and |−〉 with the
eigenenergies E+, and E−, respectively.

We notice that in this case gijk reduces to a single scalar parameter, known
as the atom-field coupling constant:

gijk = g. (2.55)

The energy of the two-level system reads as

ĤA = E+|+〉〈+|+ E−|−〉〈−|. (2.56)

Defining σ̂z as

σ̂z =
1

2
(|+〉〈+| − |−〉〈−|) , (2.57)

the Hamilton of the atom up to an irrelevant constant energy reads

ĤA = ~ωσ̂z, (2.58)

where ω = (E+ −E−)/~ is the atom frequency and a shift (E+ +E−)/2 has
been omitted.

Therefore, the Hamiltonian for the interaction of a two-level system with
a single mode field reads

Ĥ = ~ωσ̂z + ~νâ†â+ ~g(â† + â)σ̂x (2.59)
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In quantum optical realizations of JCM the coupling constant g is nor-
mally much smaller than ω and ν, e.g., it is typical to have ν ∼ ω ∼ g × 105

(ω ∼ ν =10GHz, g ∼ ∆ =10–100KHz). Therefore the subsequent reasoning
based on the interaction representation is legitimate. We note that in the
interaction representation the coupling term reads:

~g(â† e−iνt + â eiνt)(σ̂− e−iωt + σ̂+e
iωt), (2.60)

where we introduced the raising and lowering spin operators

σ̂+ = σ̂x + iσ̂y, σ̂− = σ̂x − iσ̂y,

with the following commutation rules:

[σ̂±, σ̂z] = ∓σ̂±, [σ̂+, σ̂−] = 2σ̂z, σ̂+σ̂− + σ̂−σ̂+ = 1.

We now apply the rotating wave approximation to (2.59): the atom and
field frequencies are assumed to be close to each other, therefore the factors
proportional to e±it(ν+ω) in (2.59) oscillate in time much stronger than those
proportional toe±it(ν−ω). Thus the rapidly oscillating terms can be neglected
within this approximation and we arrive at

Ĥ = ~ωσ̂z + ~νâ†â+ ~g(σ̂+â+ σ̂−â†), (2.61)

which is called the JC Hamiltonian We shall denote

∆
def
= ω − ν,

for the detuning parameter. For our future purposes we note that ∆ is a
tunable parameter. Within the atom-cavity realizations of the JCM, the
detuning ∆ can be controlled by changing the shape of the cavity and this
changes the mode frequency ν. Alternatively, ∆ can be changed via the atom
frequency ω by applying an electric field across the cavity [45]. Then ω is
modified due to the Stark effect.

The above standard derivation of (2.61) is based on small detuning ∆
and weak atom-mode coupling g:

∆ ¿ min(ω, ν), g ¿ min(ω, ν).

Both these conditions are normally satisfied for quantum optical realizations
of JCM.
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There are however situations—especially for the solid state physics appli-
cations of the Hamiltonian (2.59)—where the atom-field interaction constant
g is not small. It is useful to know that sometimes the counter-rotating terms
∝ e±it(ν+ω) vanish due to specific selection rules, and then JCM applies in
the strong-coupling situation as well. This can be achieved by proper choice
of circular polarization basis for the electromagnetic field [46].

In the next section we use the fact that the Hamiltonian (2.61) is exactly
solvable and derive the corresponding unitary time evolution operator. Hav-
ing that at hand, we would be able to calculate the expectation value of the
observables of the overall system at any time t.

2.4.2 The unitary time evolution operator

In this section, we show that the time evolution operator of the Jaynes-
Cummings (JC) Hamiltonian can be calculated exactly.
We begin with rewriting the JC Hamiltonian as the sum of two commuting
terms:

Ĥ = Ĥ1 + Ĥ2,

where

Ĥ1 = ~νσ̂z + ~νâ†â, (2.62)

Ĥ2 = ~∆σ̂z + ~g
(
σ̂+â+ σ̂−â†

)
. (2.63)

Since the two parts of the JC Hamiltonian commute with each other, the
unitary time evolution operator can be factorized:

Û(t, 0) = e−iĤt/~ = e−iĤ1t/~e−iĤ2t/~. (2.64)

The first factor in the expression (2.64) is diagonal:

Û1(t) = e−iĤ1t/~ = e−iνtâ
†â

(
e−iνt/2 0

0 eiνt/2

)
.

(2.65)

In order to calculate Û2, we expand the expression e−iĤ2t/~:

Û2(t) = e−iĤ2t/~ =
∞∑
n=0

(−it/~)n
n!

(Ĥ2)
n

=
∞∑
n=0

(−i)n t
n

n!

(
∆
2

gâ
gâ† −∆

2

)n

, (2.66)
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where we have inserted the expression (2.63) for Ĥ2.
Decomposing the matrix power series into even and odd powers, it is

straight forward to see that for any integer number l, the even powers read

(
∆
2

gâ
gâ† −∆

2

)2l

=

(
(ϕ̂+ g2)

l
0

0 ϕ̂l,

)
(2.67)

where

ϕ̂ = g2â†â+
∆2

4
. (2.68)

Note that ϕ̂ is not commuting with â and â†. We notice that

âϕ̂ = (ϕ̂+ g2)â. (2.69)

It then follows that for the odd powers we get

(
∆
2

gâ
gâ† −∆

2

)2l+1

=

(
∆
2
(ϕ̂+ g2)l g(ϕ̂+ g2)lâ
gϕ̂lâ† −∆

2
ϕ̂l

)
, (2.70)

which then yields

Û2(t) =


cos[t

√
ϕ̂+ g2]− i∆

2

sin[t
√
ϕ̂+g2]√

ϕ̂+g2
−ig sin[t

√
ϕ̂+g2]√

ϕ̂+g2
â

−ig sin[t
√
ϕ̂]√

ϕ̂
â† cos[t

√
ϕ̂] + i∆

2
sin[t

√
ϕ̂]√

ϕ̂


 . (2.71)

Equations (2.65) and (2.71) determine time evolution operator Û = Û1Û2.
In the eigenbasis of the two-level system Û reads:

Û(t) = e−iνt(â
†â+ 1

2
)

(
cos[t

√
ϕ̂+ g2]− i

∆

2

sin[t
√
ϕ̂+ g2]√

ϕ̂+ g2

)
|+〉〈+|

−ige−iνt(â†â+ 1
2
) sin[t

√
ϕ̂+ g2]√

ϕ̂+ g2
â|+〉〈−|

−ige−iνt(â†â− 1
2
) sin t

√
ϕ̂√

ϕ̂
â†|−〉〈+|

+e−iνt(â
†â− 1

2
)

(
cos t

√
ϕ̂+ i

∆

2

sin t
√
ϕ̂√

ϕ̂

)
|−〉〈−|, (2.72)

where |±〉 are the eigenstates of σ̂z with eigneenergies E±.
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The unitarity of Û(t) is satisfied because of the identities

sin
[
t
√
ϕ̂+ g2

]
√
ϕ̂+ g2

â = â
sin

[
t
√
ϕ̂
]

√
ϕ̂

,

cos
[
t
√
ϕ̂+ g2

]
â = â cos

[
t
√
ϕ̂
]
. (2.73)

Having Û at hand, we can calculate any property of S + A we wish.

2.5 Initial states

We consider the most general form of the initial state for the atom. This is
described by some general mixed density matrix ρ̂S:

ρ̂S =

(
1

2
+ rz

)
|+〉〈+|+ (rx − iry) |+〉〈−|

+ (rx + iry) |−〉〈+|+
(

1

2
− rz

)
|−〉〈−|, (2.74)

where we have written the initial state of S in the eigen-basis of σ̂z, and
where ~r defines unknown elements of the initial state of S.

For the assistant, we shall assume that the single cavity mode starts its
evolution from a coherent state with a known parameter α:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (2.75)

where |α〉 is the eigenvector of the annihilation operator â,

â|α〉 = α|α〉,

and where |n〉 is the eigenvector of the photon number operator â†â,

â†â|n〉 = n|n〉.

The assumption (2.75) on the initial state of the field is natural since these
are the kinds of fields produced by classical currents [47], and also, to a good
approximation, by sufficiently intense laser fields.
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We assume the system and the assistant are initially separated and do not
interact with each other. As a result, the overall initial density matrix is
factorized,

ρ̂(0) = ρ̂S ⊗ |α〉〈α|. (2.76)

The initial state of the field is given by

|α〉〈α| = e−|α|
2
∞∑
n=0

∞∑
m=0

αnα∗m√
n!
√
m!
|n〉〈m|. (2.77)

The state of S + A at a later time t can be calculated with the help of
the unitary operator (2.72) calculated in section 2.4.2:

ρ̂(t) = Û(t) ρ̂(0) Û †(t). (2.78)

Then the expectation value of any observable Ô of the overall system at time
t is

〈Ô〉 = tr
[
ρ̂(t)Ô

]
. (2.79)

2.6 Commuting observables

The siplest set of two commuting observables of S + A with which we can
build up the initial state of the atom are the energies of each system, which
are described by the atom population difference σ̂z and â†â. Using (2.72),
(2.74), (2.77), and (2.78), the atom population difference at later time t,
denoted by 〈σ̂z〉t reads

〈σ̂z〉t =
g2

2

∞∑
n=0

(n+ 1)(cn+1 − cn)
sin2 (Ωnt/2)

(Ωnt/2)2

+4g rx

∞∑
n=0

cn
sin (Ωnt/2)

Ωn

={χn(t)} (2.80)

+4g ry

∞∑
n=0

cn
sin (Ωnt/2)

Ωn

<{χn(t)}

+rz

{
1− g2

∞∑
n=0

(n+ 1)(cn+1 + cn)
sin2 (Ωnt/2)

(Ωn/2)2

}
,
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where rx, ry, and rz, are the unknown elements of the initial atom density
matrix, which we want to find out. < and = stand for the real and the
imaginary parts, respectively. The parameters χn(t), cn are defined as

χn(t)
def
= α

[
cos

(
Ωn t

2

)
+ i∆

sin (Ωnt/2)

Ωn

]
, (2.81)

and

cn
def
= e−|α|

2 α2n

n!
, (2.82)

where the corresponding Rabi frequency, Ωn, is defined as

Ωn
def
=

√
4(n+ 1)g2 + ∆2. (2.83)

The average number of photons in the cavity, 〈â†â〉t, can be calculated in a
similar way

〈â†â〉t =
∞∑
n=0

ncn − g2

2

∞∑
n=0

(n+ 1)(cn+1 − cn)
sin2(Ωnt/2)

(Ωn/2)2

−4g rx

∞∑
n=0

cn
sin (Ωnt/2)

Ωn

={χn(t)} (2.84)

−4g ry

∞∑
n=0

cn
sin (Ωnt/2)

Ωn

<{χn(t)}

+g2 rz

∞∑
n=0

(n+ 1)(cn+1 + cn)
sin2(Ωnt/2)

(Ωn/2)2
.

The correlation of the two observables, 〈σ̂z â†â〉t, which amounts to the num-
ber of coincidences, reads

〈σ̂z â†â〉t =
g2

4

∞∑
n=0

(n+ 1) [(2n+ 3)cn+1 − (2n+ 1)cn]
sin2(Ωnt/2)

(Ωn/2)2

+2g rx

∞∑
n=0

cn(2n+ 1)
sin (Ωnt/2)

Ωn

={χn(t)} (2.85)

+2g ry

∞∑
n=0

cn(2n+ 1)
sin (Ωnt/2)

Ωn

<{χn(t)}

+rz

{ ∞∑
n=0

ncn − (n+ 1)g2

2
[(2n+ 3)cn+1 + (2n+ 1)cn]

sin2(Ωnt/2)

(Ωn/2)2

}
.
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Expectedly, these three quantities, i.e., the atom population difference 〈σ̂z〉t,
the average number of photons 〈â†â〉t, and the correlation of these two ob-
servables 〈σ̂z â†â〉t are linearly related to the three unknown parameters rx,
〈ry, rz of the initial atom density matrix:




〈σ̂z〉t
〈â†â〉t
〈σ̂z â†â〉t


 = M



rx
ry
rz


 + B, B =



b1
b2
b3


 . (2.86)

The elements of the 3 × 3 matrix M and the vector B are read off from
Eqs. (2.80) – (2.85). They depend on the parameter α of the initial assistant
state, on the detuning parameters ∆, coupling g of the JC Hamiltonian, and
on the interaction time t. Thus, if the matrix M is non-singular, i.e., the
determinant of M is not zero, one can invert M and express the unknown
parameters of the initial atom density matrix via known quantities. Although
the elements of M are complicated, the determinant itself is much simpler.
It takes the explicit form

D(t)
def
= det[M] = 4∆ g2e−2|α|2

∞∑
n=0

∞∑
m=0

|α|2(n+m+1)

n!m!
(n−m)×

[
sin2 (Ωnt/2) sin Ωm t

Ω2
nΩm

− sin2 (Ωmt/2) sin Ωn t

Ω2
mΩn

]
. (2.87)

We note that the determinant D(t) is real. At the initial time t = 0,
D(0) is naturally zero, since the initial state of the overall system is factor-
ized. According to the expression (2.87) a non-zero detuning ∆ is essential
for a non vanishing determinant. Thus some non-zero detuning is crucial
for the present scheme of the state determination. Although in the resonant
case, i.e., when the frequency of the two-level system is equal to the cavity
mode frequency, it is not possible to determine the initial state of a two-level
system by measuring the the energies of the system and the assistant, how-
ever, this scheme is still applicable for spin-1

2
systems because in order to

recover the initial state of the spin-1
2

system one can measure the transver-
sal component of spin (x or y component) instead of the z component [48].
But in general, for two-level systems other than spins, it is rather difficult
to measure the transversal component since it cannot be defined well. While
the z component of quasi-spin is related to the level occupation and thus
the energy of the two-level system. The crucial point in this case is that
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(d) n̄ = 5,∆ = 100 KHz.
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(e) n̄ = 10, ∆ = 10 KHz.
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(f) n̄ = 10,∆ = 100 kHz.

Figure 2.1: The dynamics of the determinant of the matrix M in the Jaynes-
Cummings model for different values of the mean photon number in the cavity
n̄ = 2, 5, 10 with two detuning parameters: ∆ = 10 KHz and ∆ = 100 KHz The
coupling constan g = 50 KHz in all different cases.

there should be a detuning between the frequency of the field and that of
the system of interest in order to invert the relevant relations between simul-
taneously measured observables in one hand and the elements of the initial
density matrix of the two-level system on the other hand [20].
It is seen in Figs. 2.1(a)–2.1(f) that for a non-zero detuning, the determinant
D(t) is non-zero for a certain initial period t > 0. On the other hand, large
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D(t) implies that the state of the atom and the field are entangled [49].
Comparing figures Fig. 2.1(a) and Fig. 2.1(c) we see that although higher
initial photon numbers n̄ lead to bigger values for the determinant, they
cause rapid oscillations in the value of the determinant. This makes the
measurement process more difficult. (Note in this context that the determi-
nant depends on the absolute value of α and n̄ = |α|2 is the average number
of photons.)

If the average number of photons n̄ = |α|2 in the initial state of the field
is sufficiently large, the determinant is nearly zero for intermediate times; see
Figs. 2.1(e) and 2.1(f). This collapse can be understood by looking at (2.87).
It has the same origin as the collapse of the atomic population difference well
known for the JCM [26]. Each term in the right hand side of (2.87) oscillates
with a different frequency. With time these oscillations get out of phase and
D(t) vanishes (collapses). However, since the number of significant oscilla-
tions in D(t) is finite, they partially get in phase for later times producing
the revival of D(t), as seen in the Figs. 2.1(e) and 2.1(f).

It is seen that D does not depend on separate frequencies ω and ν of the
two-level system and the field, only their difference ∆ = ω − ν is relevant.
This is due to the choice of the measurement basis—see the left hand side of
(2.86)—that involves quantities which are constants of motion for g → 0. The
value of D(t) changes by varying the detuning parameter ∆. Comparing the
figures Fig. 2.1(a) with Fig. 2.1(b), Fig. 2.1(c) with Fig. 2.1(d), and Fig. 2.1(e)
with Fig. 2.1(f) one observes that the value of the highest peak of D(t)
increases by an order of magnitude when the detuning parameter changes
from 10kHz to 100kHz. Note that in Eq. (2.87) for the determinant D(t)
the contribution from the diagonal n = m matrix elements of the assistant
initial state |α〉〈α| cancels out. Thus, it is important to have an initial state
of the assistant with non-zero diagonal elements in the {|n〉} basis. In other
words, if we consider an initial Gibbsian state for the electromagnetic field,
i.e., a thermal bath at equilibrium with temperature T , the determinant
vanishes and we cannot deduce the initial state of the atom by performing
simultaneous measurements of the bath’s photon number and the population
difference of the atom beam.

The principal message of this section is that the determinant D(t) is not
zero for a realistic range of the parameters. This means that the initial
unknown state of the two level system can be determined by specifying the
average atom population difference 〈σ̂z〉t, the average number of photons
〈â†â〉t, and their correlation 〈σ̂z â†â〉t. These quantities are obtained from
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measuring two commuting observables: the atom population difference σ̂z
and the photon number â†â. Having at hand the proper measurement data
for these two observables, one can calculate 〈σ̂z〉t, 〈â†â〉t, and find 〈σ̂z â†â〉t
via the number of coincidences.

2.6.1 Random interaction time

We saw in the previous sections that the success of the presented scheme is
to a large extent determined by the ability to select properly the interaction
time t, since this ultimately should ensure a non-zero (and sufficiently large)
determinant D(t) (It is clear that a small determinant will amplify numerical
errors. This is illustrated in appendix B.

To quantify the robustness of the presented scheme it is reasonable to
assume that there is no perfect control in choosing the interaction time. To
this end let us assume that the interaction time t is a random, Gaussian
distributed quantity centered at t0 with a dispersion σ and that an ensemble
of measurements is performed to map out this spread. The corresponding
probability distribution P (t) of thus reads

P (t) =
1

2πσ
e−(t−t0)2/(2σ). (2.88)

We notice that the expectation value of each observable as it is described
in section 2.2, is calculated by making an its ensemble average. Now we
have to take into account that the repeated measurement of counting the
number of the photon in the cavity and the population difference of atoms
are performed at a random t in each set of measurement, which obeys the
Gaussian distribution. Thus we have to perform a time-average in the rel-
evant time window as well. Since we just want to get a rough estimation
about the consequence of such way of measurement on the value of the de-
terminant, we avoid the tedious time-averaging calculation of 〈â†〉, 〈σ̂z〉, and
their correlation by making a shortcut and perform the time-averaging of the
determinant itself.
Averaging the determinant D(t) over this distribution yields

D(t0) = 4∆ g2e−2|α|2
∞∑
n=0

∞∑
m=0

|α|2(n+m+1)

n!m!
× (2.89)

×(n−m) [w(Ωn,Ωm; t0)− w(Ωm,Ωn; t0)] ,
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Figure 2.2: The time averaged determinant D̄ in the Jaynes-Cummings model as
a function of t0 when the mean photon number in the cavity is n̄ = 2, and g = 50
KHz for different values of ∆ and σ; see Eqs. (2.88)–(2.90).

where

w(Ωn,Ωm; t0) =
1

4Ω2
nΩm

{
2e−

σ
2
Ωm

2

sin[t0Ωm]

− e−
σ
2
(Ωm+Ωn)2 sin[t0(Ωm + Ωn)]

− e−
σ
2
(Ωm−Ωn)2 sin[(Ωm − Ωn)t0]

}
. (2.90)

It is seen that the oscillations of D(t) turn after averaging into expo-

nential factors e−
σ2

2
(Ωm±Ωn)2 and e−

σ2

2
Ω2

m in (2.89, 2.90), due to which the
averaged determinant D(t0) gets suppressed for a sufficiently large “indeter-
minacy” σ. This suppression is illustrated in Fig. 2.2(a) and Fig. 2.2(b). By
comparing Fig. 2.2(a) and Fig. 2.2(b) we realize that when the dispersion
σ grows by one order of magnitude, the value of the averaged determinant
drops dramatically.

2.7 Maximum likelihood method

In section 2.5 we have shown how one determines the initial spin density ma-
trix of a spin-1

2
system given the three averages 〈σ̂z〉t, 〈â†â〉t, and 〈σ̂z â†â〉t.

However, there is one important issue about this method: the recovered state
from the above mentioned three averages might not correspond to a physical
state because of experimental noise. By a physical state we mean a density
matrix which is Hermitian, semipositive matrix with unit trace. In order to
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avoid this problem, we employ the method of “maximum likelihood” recon-
struction [50,51] in the following section. In this approach the density matrix
that is “mostly likely” to have produced the above mentioned measured data
set is determined by numerical optimization.

Our scheme operates by measuring only the commuting variables. As
a result, for the approximate state reconstruction we do not need anything
beyond the most standard (classical) Maximum Likelihood (ML) method.
Since one measures the number of photons and the spin direction along the
z-axes (these quantities are represented by the operators â†â and σ̂z, respec-
tively), the incomplete data in our case means that we are given frequencies
νa(m) of events, where one registered m photons (m = 0, 1, . . .), and where,
simultaneously, the spin component assumed values a = ±1. In the ML
method the probabilities pa(m) (given the frequencies νa(m)) are obtained
by maximizing the likelihood function over pa(m) 1

L[pa(m)] =
∑
a=±1

∞∑
m=0

νa(m) ln [pa(m)] . (2.91)

This maximization over pa(m) is to be carried out in the presence of relevant
constraints. For our case the initial spin density matrix ρ̂S must be a positive-
definite, normalized matrix. Thus we get a single constraint

r2
x + r2

y + r2
z ≤ 1. (2.92)

Working out (2.86) we write this constraint as a function of the probabilities
pa(m):

(u− B)TC(u− B) ≤ 1, (2.93)

where T means the transpose of a matrix.

C def
= (MMT )−1. (2.94)

The matrix M and the vector B are defined in (2.86), and where finally

u =




∑
a=±1

∑∞
m=0 a pa(m)∑

a=±1

∑∞
m=0mpa(m)∑

a=±1

∑∞
m=0 ampa(m)


 . (2.95)

1Equivalently, one can minimize over pa(m) the relative entropy∑
a=±1

∑∞
m=0 νa(m) ln νa(m)

pa(m) . This measure of distinguishability between pa(m)
and νa(m) is equal to zero if and only if pa(m) = νa(m).
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If the constraint (2.93) is satisfied automatically, the maximization of L[pa(m)]
in (2.91) produces

pa(m) = νa(m), (2.96)

i.e., that the sought probabilities are equal to the frequencies, as one would
expect intuitively [52]. However, in general this constraint is not satisfied au-
tomatically and has to be included explicitly in the maximization of L[pa(m)]
over pa(m). Indeed, looking at (2.91) and (2.93) we may deduce qualitatively
that the constraint (2.93) will be satisfied automatically by (2.96), if the fre-
quencies are not very far from the actual probabilities (the ones that would
be obtained in the perfect experiment) and, simultaneously, the determinant
det[M] is not very close to zero.

2.8 Conclusion

In this chapter we described a method for quantum state tomography. The
usual way of solving this inverse problem of quantum mechanics is to make
measurements of non-commuting quantities. Single apparatus tomography
proceeds differently employing controlled interaction and measuring com-
muting observables. This is done via coupling the system of interest to an
auxiliary system (assistant) that starts its evolution from a known state. The
essence of the method is that the proper coupling is able to transfer the infor-
mation on the initial state of the system to a commuting basis of observables
for the composite system (system + assistant).

It is important to implement the single-apparatus tomography for a sit-
uation with a physically transparent measurement base and with a realistic
system-assistant interaction. Here we carried out this program for a two-level
atom (system) interacting with a single mode of electromagnetic field (assis-
tant). The atom-field interaction is given by the Jaynes-Cummings Hamilto-
nian, which has direct experimental realizations in quantum optics [25,29–33],
superconductivity [37–39], semiconductor physics [36], etc. As the measure-
ment base we have taken the simplest set of observables related to the en-
ergies of the atom and field: population difference of the atoms σ̂z and the
number of photons â†â in the field. We have shown that one can determine
the unknown initial state of the atom via post-interaction values of 1) the
average atomic population difference 〈σ̂z〉, 2) the average number of photons
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〈â†â〉 and 3) the correlation of these quantities 〈σ̂z â†â〉. The third quantity
does not need a separate measurement, since it can be recovered from the
simultaneous measurement of the two basic observables σ̂z and â†â.

Since our scheme is based on measuring commuting observables, we can
apply the classical Maximum Likelihood setup for an approximate recon-
struction of the unknown density matrix given the incomplete (noisy) mea-
surement data.
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CHAPTER3
Spin Cooling and Polarization Transfer

In this chapter the spin polarization transfer among two non-interacting spatially
separated spins coupled to a common heat bath is studied. The bath is modeled
by an ensemble of harmonic oscillators. Under certain considerations the model
is exactly solvable making it possible to derive the exact time-evolution of the
spin components. It is shown that by introducing external forces in the form of
short and strong pulses acting on one spin one can purify its state, i.e. can make
relatively pure states from initially mixed ones in the presence of the other spin.

3.1 Introduction

It was shown in the previous chapter that it is possible to recover the initial
state of a system by letting it interact with another quantum system. In
this chapter two non-interacting quantum systems surrounded by a common
environment are studied.
Quantum mechanics usually deals with the dynamics of isolated systems,
but in the real world there are no perfectly closed systems. Quantum sys-
tems always interact with their surrounding environment, which are typically
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modeled by thermal baths.
The interaction between a quantum system with one or a few degrees of free-
dom and a thermal bath with many degrees of freedom is the central concept
in the theory of open quantum systems and quantum information [47,53,54].
Common approaches to study open quantum systems are based on system-
plus-bath models so that the overall closed system can be described by a
Hamiltonian of the general form

Ĥ = ĤS + ĤB + ĤI, (3.1)

where ĤS corresponds to the Hamiltonian of the system, ĤB represents the
Hamiltonian of the bath, and ĤI stands for the interaction Hamiltonian be-
tween the system and the bath. It is worth noting that the Hilbert space
belonging to Ĥ is composed of the tensor product of the Hilbert space of the
system S and the bath B: S ⊗B.
Thus the state of S changes as a consequence of its internal dynamics as
well as its interaction with the surrounding environment. Hence, in order to
study the dynamics of an open quantum system, one has to consider the dy-
namics of its surroundings as well. In fact, the dynamics of the environment
can imply substantial changes in the dynamics of the quantum system. For
instance, the action of many variables of the bath on the system modifies the
time-evolution of observables of the system by inclusion of random terms [55].
In order to describe only the dynamics of the system one usually traces out
the environment degrees of freedom. This results in an effective description
of the dynamics of the subsystem, the so-called reduced dynamics.
As for the quantum system one usually considers a two-level system. These
are the simplest quantum systems to work with and the only physical sys-
tems whose Hilbert space corresponds exactly to that of a qubit in quantum
information theory. Two-level systems describe many physical and chemical
systems with discrete degrees of freedom such as spin-1

2
particles, the po-

larization of a photon or a many level system where the two lowest levels
are the only accessible ones. Systems having continuous degree of freedom
subject to a potential energy function with two separated minima can also
be modeled by two-level systems. Examples of such situations could be some
type of chemical reaction involving electron transfer processes or the motion
of defects in some crystalline solid [54]. Since two-level systems mathemat-
ically can be described by Pauli matrices for spin-1

2
systems and, the bath

is usually considered as an ensemble of bosons, the global model system has
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been dubbed the spin-boson model.
The Hamiltonian of a two-level system may be expressed by

ĤS = −δ
2
σ̂x +

ε

2
σ̂z, (3.2)

where σ̂x and σ̂z are the x and z components of the Pauli matrices. In the
continuous degree of freedom example δ corresponds to the transition proba-
bility between wells of the potential and ε stands for their energy difference.
In the case of spin-1

2
systems, δ and ε correspond to a static magnetic field

acting on the z and x direction, respectively.

The bosonic bath is modeled by a set of harmonic oscillators, thus bosons.
Harmonic oscillators can represent a bath of phonons to describe the electron
spin resonance(ESR) [53]. The set of harmonic oscillators is also used in
quantum optics when one wants to describe a two-level atom interacting
with a photonic bath [56].
The most important properties of a bosonic bath are:

• The bath is a macroscopic entity in a stable equilibrium state with
temperature T .

• The interaction between the system and the bath weakly perturbs the
equilibrium state of the bath. Thus the system is influenced by the
excitations, which can be considered as harmonic oscillator excitations.
Hence the Hamiltonian of the bath is taken as

ĤB =
∑

k

~ωkâ†kâk, [âk, â
†
l ] = δkl, (3.3)

where â†k and âk are bosonic creation and annihilation operators of the
bath mode of wave vector k with frequency ωk.

• The coupling of the system to the bath operator is linear in the bath
harmonic oscillator operators. This corresponds to energy transfer to
and from the bath by the absorption or emission of a bath quanta.
This is due to the assumption of set of harmonic oscillators for the
bath and the weak perturbation of the bath’s state by the system.
As a result, a linear interaction is sufficient to bring the system in
equilibrium state with the bath at temperature T [57, 58]. Thus the
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interaction Hamiltonian in the spin-boson model may be written as

ĤI =
~
2

∑
α=x,y,z

∑

k

σ̂α

(
gαk â

†
k + gα∗k âk

)
, (3.4)

where gαk is the coupling of the α component of the system to the bath
mode of wave vector k and gα∗k is its complex conjugate. This interac-
tion couples the bath to all spin components. It is usually simplified
by considering the bath is only coupled to σ̂z.

• The spectrum of oscillator frequencies is smooth and dense. Thus the
effect of the interaction between the bath and the system can be de-
scribed by a single spectral function J(ω). This is the case when the
thermodynamic limit is taken for the bath. As a result, all quantities
involving the interaction with the bath will be composed of integrals of
the spectral density.

• The coupling constant of the system to operators of the bath is a
smooth function of the frequency of the oscillators. In the thermo-
dynamic limit, it is not important to consider the coupling to each of
the harmonic oscillators and a global description for the spin-bath in-
teraction suffices to obtain all the interesting physics.
The couplings gk are parameterized via the spectral density function
J(ω) as

J(ω) =
∑

k

|gk|2 δ(ω − ωk). (3.5)

Within the above mentioned properties of the spin-boson model the problem
is completely defined by the parameters ε and δ and the function J(ω).
However, it cannot be solved analytically. Here we study a simplification of
this model that enables us to calculate the dynamics of the spin-1

2
system

in a specific range of parameters. More precisely, we study the possibility
of the polarization transfer between two spatially separated non-interacting
spin-1

2
systems coupled to a common heat bath by means of an external

perturbation of one of them. We show that if the initial polarization of both
spins, i.e., the occupation of their ground states, is low, by applying short
and strong pulses on one of them we can improve its final polarization (cool
it down). Cooling spins, i.e., generating pure states from initially mixed ones
is important in fields such as NMR spectroscopy and quantum information.
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In NMR experiments the result depends strongly on the initial polarization
of spins. Enhancing the polarization, enhances the output signal in the
experiment. It is also important to have pure states in quantum information
so that one can address them properly within a quantum algorithm.
The origin of cooling effect in the present model is in shifting the spins
frequency by factors arising from the enhanced back reaction of the spin(via
the pulses) on the collective coordinate of the bath. In the presence of another
spin, this effect gets shared between the two spins.
On the other hand, the presence of the other spin yields the polarization
transfer. If its initial polarization is considerable, it can be incompletely
transferred to the initially unpolarized spin by applying external pulses on
the latter. The existence of a thermal bath is crucial in our consideration and
this process can take place due to the presence of the common thermal bath.
Clearly, the effect could not survive the independent-bath approximation.

The content of this chapter is the following: In sections 3.2 we consider
two independent spins at a distance r from each other both immersed in a
common heat bath. We show that under specific considerations the spin-
boson model describing the situation is exactly solvable. Sections 3.3-3.5
are devoted to the study of the dynamics of spins observables as well as the
dynamics of the bath. Then we introduce an external field in the form of
sharp pulses acting on one spin in section 3.6. In section 3.7 we show how
one can achieve the cooling and spin transfer via external perturbations of
one spin. We also show that the results could not be achieved without the
presence of the bath. This is in contrast to the usual belief that the bath is
a serious hindrance one can not get rid of.

3.2 The model

Our model consists of two spatially separated non-interacting spin-1
2

systems
(qubits) coupled to a common heat bath [59]. spins S1 and S2 are subjected
to static magnetic fields in the z−direction with the Zeeman Hamiltonian

ĤSi
=
~Ωi

2
σ̂(i)
z , i = 1, 2 (3.6)

where σ̂
(i)
x , σ̂

(i)
y , σ̂

(i)
z are Pauli matrices describing two spins.

The energy levels of each spin are then ±1
2
εi:

εi = ~Ωi, i = 1, 2, (3.7)
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and where Ωi is the frequency of the i−th spin. We consider S1 and S2 to be
separated by a distance r along the z−axis and be surrounded by a common
bosonic bath with the Hamiltonian

ĤB =
∑

k

~ωk â†kâk. (3.8)

As for the interaction between the bath and spins we notice that the main role
of a thermal bath is to derive spins initially in non-stationary state toward
a stationary state. In this respect, for two-level systems (spin-1

2
systems)

we distinguish two types of relaxation processes and the corresponding time-
scales [60]:

• The T2-time scale related to the relaxation of the average transverse
components 〈σ̂(i)

x 〉, and 〈σ̂(i)
y 〉 of the i−th spin (decoherence), where

i = 1, 2.

• The T1-time scale related to the relaxation1of 〈σ̂(i)
z 〉, i = 1, 2

It is customary to have situations where

T2 ¿ T1. (3.9)

The physical reason of this assumption is that the transversal components
(in the sense of Zeeman Hamiltonian for the spins) are not directly related
to the energies of the spins.
It is worth mentioning that there are experimentally realized examples of
two-level systems with sufficiently long T2 time scale properties with T1 be-
ing several orders of magnitude larger than T2. For example, for atoms in
optical traps T2 ∼ 1 s, while the response time of the bath is 10−8s [61]. For
an electric spin injected or optically excited in a semiconductor T2 ∼ 1µs [62]
and for an exciton created in a quantum dot T2 ∼ 10−9s [63], where in both
situations the response time of the bath is of order 10−9 − 10−13 s. Typical
femtosecond (10−15s) laser pulses then are suitable for the pulsed dynamics
that our model is based on. In NMR physics T2 ranges between 10−6−103 s,
with bath’s response time of the order of one micro second and the duration
of the pulses can vary between 1 ps and 1µs [64].In all these examples the

1 There is also a third relaxation time which has a different origin. It appears due to
different energies or de-phasing of the non-interacting spins. In our model we assume that
ε1 and ε2 are close to each other such that this time scale is large enough
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response time of the bath is much shorter than the internal time of spins.
We restrict ourselves to times much less than the relaxation time T1 of the
longitudinal components 〈σ̂(i)

z 〉 of the two spins. We choose the spin-bath
interaction Hamiltonian such that the bath induces only transversal relax-
ation [65,66].

Ĥint =
∑
i=1,2

~
2
X̂(i) σ̂(i)

z , i = 1, 2 (3.10)

where X̂(1) and X̂(2) are collective coordinates of the bath seen by each spin
and are defined as

X̂(1) def=
∑

k

(
g1
k â

†
k + g1∗

k âk

)
, (3.11)

X̂(2) def=
∑

k

(
g2
k â

†
k + g2∗

k âk

)
, (3.12)

In general the couplings are complex and out of phase with each other. We
choose different couplings to the bath labeled by g1

k and g2
k since S1 and

S2 have an explicit spatial separation. To make this evident, we assume
two spins are separated by distance r in the z−direction such that the local
interaction of each spin with the bath can be represented by

g1
k = gk e

(i/2) kr cos θk (3.13)

g2
k = gk e

−(i/2) kr cos θk (3.14)

where θ is the polar angle measured against the z−axis in k−space, and

|g1
k| = |g2

k| = gk. (3.15)

This form of coupling is capable of preserving the translational invariance of
the system in the absence of an external potential. Couplings of the form
(3.14-3.14) appear in the interaction of a particle with a fermionic bath [67]
or in the polaron problem [54].
The bath spectral density function J(ω) is parameterized as

J(ω) =
∑

k

|gk|2 δ(ω − ωk). (3.16)

We notice that due to (3.15) it is the same for both spins. The thermody-
namic limit of the bath will be taken later in section 3.5.
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The overall system can be studied within the spin-boson model [57, 65,
66,68–73] with the the Hamiltonian

Ĥ = ĤS1 + ĤS2 + ĤB + Ĥint, (3.17)

Ĥ =
2∑
i=1

~Ωi

2
σ̂(i)
z +

∑

k

~ωk â†kâk +
~
2

2∑
i=1

X̂(i)σ̂(i)
z . (3.18)

It is seen that the z−components of both spins commute with Ĥ and hence
they are conserved, so the energy of the spins are constant of motion2. This
is due to restricting the model to times much less than the relaxation time
T1 and omitting the related terms form (3.18). On the other hand 〈σ̂(i)

x 〉,
and 〈σ̂(i)

y 〉 do undergo an evolution. In other words, this model describes a
purely decohering mechanism, where no energy exchange between the spins
and the bath is present. In fact, energy exchange processes typically involve
time scales much longer than the decoherence mechanisms.
In all the above mentioned examples the response time of the bath is much
shorter than the internal time 1/Ω1 of the spin. Although this model now
has a restricted validity, it is exactly solvable under the above imposed con-
straints. The last ingredient of this model is to introduce external fields
acting on one of the spins. This will be discussed in section 3.6 where we
formulate the external field as short pulses in order to keep the model ana-
lytically solvable.

3.3 Time evolution of the bath and spin op-

erators

In this section we calculate the time evolution of the components of the spin
of two systems as well as the time evolution of the bath collective coordinate
using the Heisenberg equation:

˙̂
A =

i

~
[Ĥ, Â], (3.19)

2We notice that if the two spins were identical, i.e. Ω1 = Ω2 and they were sitting
on top of each other, e.g. at r = 0, besides the quantities σ̂

(1)
z , σ̂

(2)
z , and σ̂

(1)
z ⊗ σ̂

(2)
z , the

quantities σ̂
(1)
+ ⊗ σ̂

(2)
− and σ̂

(2)
+ ⊗ σ̂

(1)
− would be conserved as well. This means, any initial

density matrix of the two spins that can be presented as a linear combination of these
operators will remain unchanged in the course of time under the evolution given by (3.18).
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3.3. Time evolution of the bath and spin operators

where Â stands for any observable of the overall system and
˙̂
A represents the

time derivative of Â.

3.3.1 Time evolution of the bath operators

The dynamics of the bath annihilation operator is given by

˙̂ak = −iωkâk − i

2
σ̂(1)
z gk e

(i/2)kr cos θk − i

2
σ̂(2)
z gk e

−(i/2)kr cos θk . (3.20)

This differential equation can be solved by a Laplace transformation and one
gets

âk(t) = e−iωktâk(0) +
gk
2ωk

σ̂(1)
z e(i/2)kr cos θk

(
e−iωkt − 1

)

+
gk
2ωk

σ̂(2)
z e−(i/2)kr cos θk

(
e−iωkt − 1

)
. (3.21)

The complex conjugate of (3.21) gives the dynamics of the creation operator.
Thus for X̂(1)(t) and X̂(2)(t) given by (3.11, 3.12) we have [see appendix C]

X̂(1)(t) = η̂r(t)− σ̂(1)
z G(t)− σ̂(2)

z Gr(t), (3.22)

X̂(2)(t) = η̂−r(t)− σ̂(1)
z G−r(t)− σ̂(2)

z G(t). (3.23)

The functions G(t) and G±r(t) are the response functions quantifying the
back reaction of S1 and S2 on the collective coordinate operator of the bath.

G±r(t) =
∑

k

g2
k

ωk
[cos (kr cos θk)− cos (ωkt± kr cos θk)] . (3.24)

While G(t) is defined as Gr=0(t)

G(t) =
∑

k

|gk|2
ωk

(1− cosωkt) . (3.25)

We define the time integral of G±r(t) by F±r(t), as the back reaction factor
of spin at distance ±r

F±r(t)
def
=

∫ t

0

dsG±r(s) = (3.26)

∑

k

|gk|2
ω2
k

[ωkt cos (kr cos θk)− sin (ωkt± kr cos θk)] .
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while F (t), the back reaction factor of the very same spin under the study,
is defined as

F (t) =
∑

k

|gk|2
ω2
k

[ωkt− sin (ωkt)] . (3.27)

In a similar fashion, when both spins are sitting on top of each other,
Fr=0(t) = F (t).

In the following sections we will see that the back reaction factor plays
an important role in the cooling and polarization transfer process and the
presence of the bath is essential in this scheme.
The operator η̂r(t) in (3.22), and (3.23) is defined as

η̂r(t)
def
=

∑

k

gk

[
â†k(0)ei(

kr
2

cos θk+ωkt) + âk(0)e−i(
kr
2

cos θk+ωkt)
]
. (3.28)

Setting r = 0 yields

η̂(t) =
∑

k

gk

[
â†k(0)eiωkt + âk(0)e−iωkt

]
. (3.29)

η̂r(t) is named quantum noise operator which acts as a random force on spins
separated by distance r. We notice that η̂r(t) is determined directly in terms
of bath operators at the initial time t = 0. Therefore the nature of the
initial state of the bath plays a significant role. It is also remarkable that the
commutator of the noise operator is a c−numbered function of time [55] and
it is independent of r [see appendix D]

[η̂r(t), η̂r(t
′)] = −2 i sign(t− t′)

∑

k

|gk|2 sin[ωk(t− t′)], (3.30)

where sign(t − t′) represents the sign function. This commutator can be
written in terms of the back reaction factor F (t) as

[η̂r(t), η̂r(t
′)] = −2iF̈ (t− t′). (3.31)

This is a straightforward consequence of the definition (3.28) and the creation
and annihilation operator commutation relations.

3.3.2 Time evolution of spin operators

We are interested in spin subsystems properties, in particular, in expectation
values of the spin operators S1 and S2 at later times after coupling to the bath.
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Choosing the Heisenberg representation we can exactly solve the Heisenberg
equations of motion of the spin operators and then calculate their ensemble
averages.
Let us first recall the following standard relations between the spin operators

σ̂
(i)
± = σ̂(i)

x ± σ̂(i)
y , i = 1, 2, (3.32)[

σ̂(i)
z , σ̂

(i)
±

]
= ±2σ̂

(i)
± , (3.33)

σ̂(i)
z σ̂

(i)
± = ±σ̂(i)

± . (3.34)

Since the overall Hamiltonian (3.18) commutes with σ̂
(i)
z , for i = 1, 2, the

Heisenberg equation for σ̂
(i)
z reads

˙̂σ(i)
z = 0, σ̂(i)

z (t) = σ̂(i)
z (0). (3.35)

It is easier to calculate the time evolution of the raising and lowering oper-
ators σ̂

(i)
± , which act on the energy eigenstates of spins rather than working

out transversal components σ̂
(i)
x and σ̂

(i)
y ,

˙̂σ
(i)
± =

i

~

[
Ĥ, σ̂

(i)
±

]
. (3.36)

Inserting Ĥ from (3.18) and implying (3.33), for the spin S1 we have

˙̂σ
(1)
± = ±iΩ1σ̂

(1)
± ± iX̂(1) σ̂

(1)
± . (3.37)

Inserting X̂(1)(t) given by (3.22) into (3.37) and using (3.34) relations yields

˙̂σ
(1)
± = i

[±Ω1 ± η̂r(t)−G(t)∓Gr(t)σ̂
(2)
z

]
σ̂

(1)
± . (3.38)

The equation (3.38) is a quantum Langevin-type equation with quantum
noise η̂r(t), and back reactions G(t) and Gr(t).
Solving the differential equation (3.38) yields

σ̂
(1)
± (t) = exp [±iΩ1t− iF (t)] Π̂±

r (0, t) σ̂
(1)
± (0) exp

[∓iFr(t) σ̂(2)
z

]
, (3.39)

where Π̂±
r (t0, t1) is defined as

Π̂±
r (t0, t1)

def
= T exp

[
±i

∫ t1

t0

ds η̂r(s)

]
, (3.40)

59



Spin Cooling and Polarization Transfer

and where T stands for the time-ordering operator. The explicit expression
for Π̂±

r (t0, t1) will be given later.
The dynamics of S2 located at distance r from S1 can be straightforwardly

derived using the same analogy

σ̂
(2)
± (t) = exp [±iΩ2t− iF (t)] Π̂±

−r(0, t) exp
[∓iF−r(t)σ̂(1)

z

]
σ̂

(2)
± (0), (3.41)

where Π̂±
−r(t0, t1) is defined as

Π̂±
−r(t0, t1)

def
= T exp

[
±i

∫ t1

t0

ds η̂−r(s)
]
. (3.42)

It is seen from (3.39) and (3.41) that there are three effects generated by the
spin-bath interaction:

• random influences of the common bath on each spin due to the quantum
noise operator; this is understandable since two non-interacting spins
are open (not isolated) systems, their dynamics are not deterministic
but rather contain stochastic elements due to the interaction with the
thermal bath.

• A deterministic influence generated by the back reaction term of the
spin under study,

• the influence generated by the back reaction term of the other spin at
distance r which initially assumed not to be directly interacting with
the other one.

For later considerations, it is useful to calculate the time evolution of
Π̂±
±r(t0, t1).

Defining EtÂ as the Heisenberg time evolution of an operator Â over a period
t,

EtÂ ≡ eitĤ/~ Â e−itĤ/~, (3.43)

the Heisenberg dynamics of the quantum noise operator reads

Etη̂r(s) =

η̂r(t+ s) + σ̂(1)
z

∑

k

|gk|2
ωk

{cos [ωk(t+ s)]− cos (ωks)} (3.44)

+σ̂(2)
z

∑

k

|gk|2
ωk

{cos [ωk(t+ s) + kr cos θk]− cos (ωks+ kr cos θk)} .
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Inserting the expressions for the back reaction given by (3.24) in the expres-
sion for Etη̂r,θ(s) [see appendix D] we get

Etη̂r(s) = η̂r(t+ s) + [G(s)−G(t+ s)] σ̂(1)
z

+ [Gr(s)−Gr(t+ s)] σ̂(2)
z . (3.45)

By analogy,

Etη̂−r(s) = η̂−r(t+ s) + [G−r(s)−G−r(t+ s)] σ̂(1)
z

+ [G(s)−G(t+ s)] σ̂(2)
z . (3.46)

Thus, the of the operator Π̂±
±r(0, t1) reads

EtΠ̂±
r (0, t1) = (3.47)

Π̂±
r (t, t+ t1) exp

[±iχ(0, t1, t)σ̂
(1)
z

]
exp

[±iχr(0, t1, t)σ̂(2)
z

]
,

EtΠ̂±
−r(0, t1) = (3.48)

Π̂±
−r(t, t+ t1) exp

[±iχ−r(0, t1, t)σ̂(1)
z

]
exp

[
iχ(0, t1, t)σ̂

(2)
z

]
.

where χr(0, t1, t) is defined as

χ±r(0, t1, t)
def
=

∫ t

0

ds[G±r(s)−G±r(t1 + s)], (3.49)

= F±r(t1) + F±r(t)− F±r(t1 + t), (3.50)

When deriving (3.50), we used the definition F±r(t1) ≡
∫ t1

0
dsG±r(s).

3.4 Factorized initial state

We assume that the spins are prepared independently from each other and
the bath an then brought in contact with the bath at time t = 0. Thus
at initial time t = 0 the common density matrix of the bath and spins,
represented by ρ̂(0) is factorized:

ρ̂(0) = ρ̂B(0)⊗ ρ̂S1(0)⊗ ρ̂S2(0), (3.51)

where ρ̂S1(0) and ρ̂S2(0) are the initial density matrices of each spin. ρ̂B

stands for the Gibbs state of the bath, which is initially in equilibrium at
inverse temperature β,

ρ̂B =
e−βĤB

tr
[
e−βĤB

] . (3.52)
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Since the spins and the bath are initially independent, ρ̂(0) can be written
as

ρ̂(0) =
e−βĤ0

tr
[
e−βĤ0

] , (3.53)

where Ĥ0 is the Zeeman Hamiltonian of each spin added to the bath Hamil-
tonian and is described by

Ĥ0 =
1

2

∑
i=1,2

~Ωiσ̂
(i)
z +

∑

k

~ωkâ†kâk. (3.54)

The factorized initial state (3.53) implies

〈σ̂(i)
± (0)〉 = 0 i = 1, 2, (3.55)

〈σ̂(i)
z (0)〉 = − tanh

(
β~Ωi

2

)
. (3.56)

We note that depending on the response of spins to an external static mag-
netic field, the initial polarization |〈σ̂(i)

z 〉| varies. This is best characterized
by frequency/field ratio, which is for example 42 MHz/T for a proton. For
an electron this ratio is 103 times larger due to the difference between atomic
and nuclear Bohr magnetons. Thus at temperature T = 1 K and magnetic
field B = 1 T, the equilibrium polarization of proton is only

|〈σ̂z〉| = tanh

(
~µB

2KBT

)
= 10−3, (3.57)

while for an electron it is 1000 times larger, |〈σ̂z〉| ∼ 1.
Since the bath is initially in a Gibbs state, employing (3.51) we have

〈âk(0)〉 = 〈â†k(0)〉 = 0, (3.58)

〈âk(0)â†k′(0)〉 = (〈nk〉+ 1)δkk′ , (3.59)

〈â†k(0)âk′(0)〉 = δkk′〈nk〉, (3.60)

〈â†k(0)âk(0) + âk(0)â†k(0)〉 = coth

(
β~ωk

2

)
, (3.61)

where 〈nk〉 =
[
eβ~ωk − 1

]−1
is the thermal occupation of mode k.

The relation (3.58) implies that the quantum noise has the property of

〈η̂r(t)〉 = 0. (3.62)
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We recall that η̂r(t) is determined via âk(0) and â†k(0).
Taking the average of the commutator of the noise given by (3.31) over the
initial state of the bath yields

〈[η̂r(t), η̂r(t′)]〉 = −2 i Ġ(t− t′) = −2 i F̈ (t− t′), (3.63)

where the back reaction factor F (t) is given by (C.22).
We notice that thermal state of the bath and the anticommutation rules
between the creation and annihilation operators of the bath implies (3.63)
which is independent of the distance r between two spins.
Implying (3.61) we can also calculate the average of the anticommutator of
the noise operator [see the appendix D] as

〈{η̂r(t), η̂r(t′)}〉 = 2
∑

k

|gk|2 coth

(
β~ωk

2

)
cos [ωk(t− t′)] , (3.64)

which is independent of the separation distance r between two spins due
to the initial thermal state of the bath and the anti-commutation relations
betwee the bath creation and annihilation operators.
From (3.64) the symmetrized correlation function of quantum noise operator
K(t− t′) reads

K(t− t′) =
1

2
〈{η̂r(t), η̂r(t′)}〉 . (3.65)

Then, the time-order correlation function of the noise operator defined by

KT (t− t′)
def
=

〈T (
η̂r(t) η̂r(t

′)
)〉

(3.66)

can be described in terms of the symmetrized correlation function given by
(3.64) and the back reaction forces as

KT (t− t′) = K(t− t′)− iĠ(t− t′),

= K(t− t′)− iF̈ (t− t′). (3.67)

Since 〈η̂r(t)〉 = 0, we can use Wick’s theorem for decomposing higher-order
products of the noise operator [74]. This is important since our ultimate
goal is to calculate the ensemble average of the time-evolved spin operators.
Wick’s theorem is related to the fact that the commutator of the quantum
noise operator is a c−number. According to this theorem if 〈η̂r(t)〉 = 0,
any correlation of an odd number of η̂r(t) vanishes. A correlation of an
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even number of η̂r(t) is equal to the sum of products of pair correlations,
the sum being taken over all pairings. Thus the Wick’s decomposition of
〈T (

η̂r(t1) · · · η̂r(t2k)
)〉 will be a sum of (2k − 1)!! = (2k − 1)(2k − 3) · · · 3

terms. These are the characteristic properties of a classical stationary Gaus-
sian stochastic process [75]. Therefore, the operators η̂r(t) are called Gaus-
sian operators [76].
We employ this property in order to calculate the time-ordered exponen-
tial of the time integral of the quantum noise which appears in (3.48) and
(3.40) [66]:

〈Π̂±
r (t0, t1)〉 =

∞∑

k=0

(−1)k

(2k)!

∫ t1

t0

· · ·
∫ t1

t0

ds1 · · · ds2k〈T
(
η̂r(s1) · · · η̂r(s2k)

)〉

= exp

[
−1

2

∫ t1

t0

∫ t1

t0

ds1ds2KT (s1 − s2)

]

= exp [−ξ(t1 − t0) + i F (t1 − t0)] . (3.68)

The function ξ(t1 − t0) is defined in terms of the symmetrized correlation
function of the quantum noise as

ξ(t1 − t0) =
1

2

∫ t1

t0

∫ t1

t0

ds1ds2K(s1 − s2). (3.69)

Since the commutator and the anticommutator of the noise operator is inde-
pendent of r, in the same fashion

〈Π̂±
−r(t0, t1)〉 = exp [−ξ(t1 − t0) + i F (t1 − t0)] . (3.70)

having the expressions for the time-evolved transversal components of
the spins given by (3.39), (3.41), we can calculate their ensemble averages as
following:

〈σ̂(1)
± (t)〉 = e±iΩ1t−iF (t)〈Π±

r (0, t)〉 〈σ(1)
± (0)〉 〈e∓iFr(t)σ̂

(2)
z 〉, (3.71)

〈σ̂(2)
± (t)〉 = e±iΩ2t−iF (t)〈Π±

−r(0, t)〉 〈e∓iF−r(t)σ̂
(1)
z 〉 〈σ(2)

± (0)〉. (3.72)

Inserting the averaged time-ordered operator from (3.68), we see that the
back reaction forces F (t) cancel out. As a result the transversal components
of spins decay due to the interaction with the bath as

〈σ̂(1)
± (t)〉 = e±iΩ1t−ξ(t) 〈σ(1)

± (0)〉 〈e∓iFr(t)σ̂
(2)
z 〉, (3.73)

〈σ̂(2)
± (t)〉 = e±iΩ2t−ξ(t) 〈e∓iF−r(t)σ̂

(1)
z 〉 〈σ(2)

± (0)〉. (3.74)
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Thus the factor e−ξ(t) with ξ(t) defined by (3.69) leads to decoherence for a
general factorized initial state.
In section 3.6 we show that F (t) which disappears from(3.74) plays an
important role when S1 undergoes a perturbation by implying short pulses.

3.5 Ohmic spectrum of the bath

For the spin-bath interaction, we shall consider the ohmic regime [57]. The
most studied ohmic case corresponds to an environment which induces a
dissipative force linear in the velocity of a Brownian particle moving in it.
In the ohmic regime the spectral density function reads

J(ω) = γ ω e−ω/Γ, (3.75)

where γ is a dimensionless coupling constant, and where Γ (usually much
larger than Ω1 and Ω2) is the maximal characteristic frequency of the bath’s
response.
For the inverse dispersion relation we take the most natural one

k =
ωk
c
, (3.76)

where c is the phonon velocity in the bath.
The symmetrized correlation function of the quantum noise operator in

ohmic case is given by

K(t) =

∫ ∞

0

dω J(ω) coth

(
β~ω
2

)
cos(ωt)

= γ

∫ ∞

0

dω e−ω/Γ ω coth

(
β~ω
2

)
cos(ωt), (3.77)

where we have inserted (3.16) and (3.75) into the expression for the quantum
noise correlator given by (3.64).
We notice that the decay factor ξ(t) is related to K(t) via Eq. (3.69). Thus
we can get an exact expression for ξ(t) [66]

ξ(t) = γ ln

[
Γ2 (1 +Θ)

√
1 + Γ2t2

Γ (1 +Θ − iΘ Γ t) Γ (1 +Θ + iΘ Γ t)

]
, (3.78)
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where Γ is Euler’s gamma function, and Θ is defined as

Θ
def
=

1

β~Γ
, (3.79)

which is called a dimensionless temperature [65]. This implies that in low
temperatures the decay behaves as the following power-law expression

Θ ¿ 1 : e−ξ(t) =
(
1 + Γ2t2

)−γ/2
. (3.80)

For Θ & 1 e−ξ(t) starts as a Gaussian, but continues as e−t/T2 with T2 =
~/2βγ [66, 69,70,72].

In order to calculate the time derivative of the back reaction factor Gr(t)
in the ohmic regime, we first average Gr(t) given by (3.24) over all θk and
denote it by Ḡr(t)

Ḡr(t) =
1

2

∫ π

0

dθk sin θkGr(t) (3.81)

=
∑

k

g2
k

2ωk

1

kr
[2 sin(kr)− sin (ωkt+ kr) + sin (ωkt− kr)] .

We notice that
Ḡr(t) = Ḡ−r(t). (3.82)

Implying k = ωk/c and inserting the bath spectral density in (3.81) we get

Ḡr(t) =

∫ ∞

0

dω
J(ω)

2ω2t̃

{
2 sinωt̃− sin

[
ω(t+ t̃)

]
sin

[
ω(t− t̃)

]}
, (3.83)

where we define t̃ as the time spent by phonons to travel between S1 and S2

t̃
def
=

r

c
. (3.84)

Considering the ohmic regime and inserting (3.75) into (3.87) we get

Ḡr(t) =
γ

2t̃

∫ ∞

0

dω

ω
e−ω/Γ

{
2 sinωt̃− sin

[
ω(t+ t̃)

]
sin

[
ω(t− t̃)

]}
, (3.85)

which can be worked out [see appendix C] as

Ḡr(t) = (3.86)
γ

2t̃

{
2 arctan(Γt̃)− arctan

[
Γ(t+ t̃)

]
+ arctan

[
Γ(t− t̃)

]}
.
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3.6. Pulsed dynamics

Let us recall G(t) given by (3.25)

G(t) =

∫ ∞

0

dω
J(ω)

ω
(1− cosωt) . (3.87)

In the ohmic regime this function reads

G(t) = γ

∫ ∞

0

dω e−ω/Γ (1− cosωt)

= γΓ

(
1− 1

1 + Γ2t2

)
. (3.88)

We notice that in the limit where r approaches zero, Ḡr(t) corresponds to
G(t).
Calculation of the back reaction factor Fr(t) in the ohmic regime yields [see
appendix C]

F̄r(t) =
γ

2t̃

{
1

2Γ
ln

(
1 +

[
Γ(t+ t̃)

]2

1 +
[
Γ(t− t̃)

]2

)
+ 2t arctan

(
Γt̃

)
(3.89)

− (t+ t̃) arctan
[
Γ(t+ t̃)

]
+ (t− t̃) arctan

[
Γ(t− t̃)

] }
.

We notice that setting r = 0 in (3.86) reproduces the result for a single spin
coupled to a heat bath in the ohmic regime [66]. Moreover, for fixed r, at
the characteristic time 1/Γ, Ḡr(t) and F̄r(t) become constant. It is remark-
able that the time-scale of the back reaction factor F̄r(t) is temperature-
independent while the decoherence time does depend on T .

3.6 Pulsed dynamics

In this section we study the case where one of the spins, say S1, is acted
on by two successive pulses. The aim is to see how this would result to
a higher polarized spin state for S1. The reason for applying two pulses
and not just one lies in the no-cooling principle [77]. According to the no-
cooling principle which is related to the second law of thermodynamics, an
equilibrium system cannot be cooled by means of a cyclic external field. One
cannot achieve cooling by implying a single pulse since it sees the initial local
equilibrium state of the spin, and then according to the no-cooling principle
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it can only heat the spins state up. Thus we have to employ at least two
pulses [65].

The external field acting on S1 is described by a time-dependent Hamil-
tonian as

ĤP =
1

2

∑
α=x,y,z

hα(t)σ̂
(1)
α , (3.90)

with magnitudes hα(t). We consider HP to be a pulse. A pulse of duration δ
is defined by sudden switching on the external field at some time t > 0, and
then suddenly switching off at time t+ δ.
Adding ĤP to the Hamiltonian Ĥ of the overall system given by (3.18) makes
the total Hamiltonian time-dependent

Ĥ(t) = Ĥ + ĤP(t). (3.91)

In the pulsed regime [68] ~h(t) differs from zero only for a very short time

interval δ being there very large, ~h(t)δ ∼ 1, to achieve a finite effect. This
kind of interaction was used to describe spin-echo phenomena [78], which
deals with the refocusing of the precessing of nuclear spin magnetization. It
is also implied in the processes of switching off undesired interactions, such
as those causing decoherence [73].
It is well known that during a sudden switching on and and switching off,
the density matrix of the system does not change [79] while the Hamiltonian
gets a finite change. For the moment, we keep an arbitrary form of the
external field Hamiltonian in the time interval (t, t + δ). The operator for
the Hamiltonian Ĥ(t) given by (3.91) in the time interval (0, t + τ), where
τ > δ reads

T exp

[
− i

~

∫ t+τ

0

dsĤ(s)

]
=

e−i[t+τ−(t+δ)]Ĥ/~T exp

[
− i

~

∫ t+δ

t

dsĤ(s)

]
e−iĤt/~, (3.92)

where T represents the time-ordering operator. In (3.92) we have separated
out the time intervals (0, t) and (t + δ, t + τ), at which the system evolves
freely and the actual time-dependence of the Hamiltonian appears only in
(t, t+ δ).
We denote the pulse evolution operator Ûp(t) as

ÛP(t)
def
= eiδĤ/~T exp

[
− i

~

∫ t+δ

t

dsĤ(s)

]
, (3.93)
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and want to show that it can be represented by a rotation operator acting
on the spin of S1.
We notice that the expression (3.93) satisfies the same first-order differential
equation in δ with the same boundary condition δ = 0 as the following
expression:

T exp

[
− i

~

∫ δ

0

ds eisĤ/~ ĤP(s+ t) e−isĤ/~
]
. (3.94)

This can be shown by calculating the derivative of (3.93) and (3.94) with
respect to δ. For the derivative of (3.93) with respect to δ we have

∂

∂δ
eiδĤ/~T exp

[
− i

~

∫ t+δ

t

dsĤ(s)

]
=

=
i

~

[
Ĥ − eiδĤ/~Ĥ(t+ δ)e−iδĤ/~

]
eiδĤ/~T exp

[
− i

~

∫ t+δ

t

dsĤ(s)

]

= − i

~
eiδĤ/~ĤP(t+ δ)e−iδĤ/~ eiδĤ/~T exp

[
− i

~

∫ t+δ

t

dsĤ(s)

]
, (3.95)

where we have used Ĥ(t) = Ĥ + ĤP(t).
On the other hand the derivative of (3.94) with respect to δ reads

∂

∂δ
T exp

[
− i

~

∫ δ

0

ds eisĤ/~ ĤP(s+ t) e−isĤ/~
]

= (3.96)

− i

~
eiδĤ/~ ĤP(t+ δ) e−iδĤ/~ T exp

[
− i

~

∫ δ

0

ds eisĤ/~ ĤP(s+ t) e−isĤ/~
]
.

Thus ÛP(t) can be written as

ÛP(t) = eiδĤ/~T exp

[
− i

~

∫ t+δ

t

dsĤ(s)

]

= T exp

[
− i

~

∫ t+δ

t

ds ei(s−t)Ĥ/~ ĤP(s) ei(t−s)Ĥ/~
]

= T exp

[
− i

~

∫ δ

0

ds eisĤ/~ ĤP(s+ t) e−isĤ/~
]
. (3.97)

Now we show that by considering very short pulses, we can mathematically
represent them with unitary operators. When the pulses acting on S1 are
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very short so that during the time interval (t, t+ δ) the terms containing σ̂
(1)
z

in the Hamiltonian can be neglected, we can take the first term in the Taylor
expansion

eisĤ/~ ĤP(s+ t) e−isĤ/~ = ĤP(s+ t) +
is

~

[
Ĥ, ĤP(s+ t)

]
+ · · ·

≈ ĤP(s+ t). (3.98)

Thus for the pulse evolution operator we get

ÛP(t) = T exp

[
− i

~

∫ δ

0

dsĤP(s+ t)

]
. (3.99)

Thus a very short pulse can be represented by a unitary operator in the
Hilbert space of the spin it is acting on. This means that a pulse rotates the
Bloch vector 〈~̂σ(1)〉. We parameterize pulses by coefficients cn,ab as

Pασ̂(1)
a

def
= Û †P(t)σ̂(1)

a ÛP(t) =
∑

b=±,z
cn,abσ̂

(1)
b , a = ±, z, n = 1, 2, (3.100)

where n = 1, 2 counts the number of pulses.
We notice that there is no need to neglect the bath and S2 Hamiltonian
during application of pulses, since external fields are acting on S1 only and
the influence of the bath and S2 Hamiltonian disappear automatically. For
a more detailed application, we will need the explicit form of Û †P(t) given by
(3.99). We parameterize the pulse by a 2× 2 unitary matrix as

Û †P(t) =

(
e−iϕ cosϑ −e−iψ sinϑ
eiψ sinϑ eiϕ cosϑ

)
, (3.101)

where

ϕ ≥ 0, ψ ≤ 2π 0 ≤ ϑ ≤ π

2
. (3.102)

Such parameterizations are common in experiments where the spin is rotated
in certain degrees over a well-defined axis [78]. For this specific form of
parametrization of the pulse, the coefficients ck,ab read

cn,+z = −ei(ψn−ϕn) sin 2ϑn, cn,++ = e−2iϕn cos2 ϑn,

cn,+− = −e2iψn sin2 ϑn, cn,zz = cos 2ϑn, (3.103)

cn,z+ =
1

2
e−i(ψn+ϕn) sin 2ϑn, cn,z− =

1

2
ei(ψn+ϕn) sin 2ϑn,

where n = 1, 2 stands for the index of the pulses.
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3.7. Cooling and polarization transfer

3.7 Cooling and polarization transfer

The problem we address in this section is set up as follows. Two non-
interacting spins S1, and S2 separated at distance r in the z−direction are
coupled to a common thermal bath. Suddenly at time t, which we set to
be much larger than the response time of the thermal bath, S1 undergoes
two successive pulses one at time t and the other at time t + τ . As a result
S1 cools down. Since the spins are coupled to the same bath, we observe
polarization transfer between two spins. In order to study spin cooling and
polarization transfer, we calculate the final polarization of both spins as well
as the final averaged transversal components of spins.

The final expressions for σ
(1)
z after applying two pulses P1 at time t and

P2 at time t+ τ reads

σ(1)
z (t+ τ) = EtP1 Eτ P2 σ̂

(1)
z . (3.104)

Implying (3.100) for P2 σ̂
(1)
z we get

σ(1)
z (t+ τ) = EtP1 Eτ

[
c2,zzσ̂

(1)
z + 2<{c2,z+σ̂(1)

+ }
]
. (3.105)

The operator Eτ acting on σ̂
(1)
z does not change it while for σ̂

(1)
+ (τ) we can

insert the expression (3.39) into (3.105) and get

σ(1)
z (t+ τ) = EtP1

[
c2,zzσ̂

(1)
z (3.106)

+ 2<
{
c2,z+e

i[Ω1τ−F (τ)]Π̂+
r (0, τ) σ̂

(1)
+ e−iF̄r(τ)σ̂

(2)
z

} ]
,

where, for brevity, we drop the initial time t = 0 argument of σ̂
(i)
± and σ̂

(i)
z .

Operation of the pulse P1 on S1 results in

σ(1)
z (t+ τ) = c2,zz Et

[
c1,zzσ̂

(1)
z + 2<{c1,z+σ̂(1)

+ }
]

+2Et<
{
c2,z+ e

i[Ω1τ−F (τ)]Π̂+
r (0, τ)×

×
[
c1,z+σ̂

(1)
z + c1,++σ̂

(1)
+ + c1,+−σ̂

(1)
−

]
e−iF̄r(τ)σ̂

(2)
z

}
. (3.107)
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Applying the time evolution operator Et on the spin components using (3.39),
(3.49), (3.69), and (3.49) finally yields

σ(1)
z (t+ τ) = c2,zzc1,zzσ

(1)
z (3.108)

+2 c2,zz<
{
c1,z+e

i[Ω1t−F (t)] Π̂+
r (0, t) σ̂

(1)
+ e−iF̄r(t)σ̂

(2)
z

}

+2<
{
c2,z+c1,+ze

i[Ω1τ−F (τ)]Π̂+
r (t, t+ τ) σ̂(1)

z eiχ(τ,t)σ̂
(1)
z ei[χ̄r(τ,t)−F̄r(τ)]σ̂(2)

z

}

+2<
{
c2,z+ c1,++e

i[Ω1(t+τ)−F (t+τ)] Π̂+
r (t, t+ τ)Π̂+

r (0, t) σ̂
(1)
+ e−iF̄r(t+τ)σ̂

(2)
z

}

+2<
{
c2,z+ c1,+−ei[Ω1(τ−t)−χ(τ,t)−F (t)−F (τ)] Π̂+

r (t, t+ τ)Π̂−
r (0, t) σ̂

(1)
− ×

× eiσ̂
(2)
z [χ̄r(τ,t)−F̄r(τ)+F̄r(t)]

}
,

where we have used the definition of χ̄r(τ, t) as the averaged value of χr(τ, t)
over θk, which is given by

χ̄r(τ, t) = F̄r(t) + F̄r(τ)− F̄r(t+ τ), (3.109)

where F̄r(t) is given by (3.90). We notice that the back reaction factor F (t)
shifts the frequency Ω1 of S1. In other words, applying pulses amounts to
enhancement of the back reaction force of the spin on the collective coordi-
nates of the bath.
Averaging (3.108) over the bath and both spin states results the final polar-
ization of S1 as

〈σ̂(1)
z (t+ τ)〉 = c1,zz c2,zz〈σ̂(1)

z 〉 (3.110)

+2e−ξ(τ)<
{
c2,z+ c1,+z e

iΩ1τ 〈eiχ(τ,t)σ̂
(1)
z σ̂(1)

z 〉 〈ei[χ̄r(τ,t)−F̄r(τ)]σ̂(2)
z

}
,

where implied the initial condition (3.56) and set 〈σ̂(1)
± 〉 = 0 in deriving

(3.110).
We notice that there are two factors that come from the bath:

• e−ξ(τ) which amounts to the decoherence of the transversal spin compo-
nents, of the system located at the origin, in the time period τ between
the two pulses. Note that the transversal terms are generated by the
first pulse.
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• χ(τ, t), and χr(τ, t), defined by (3.50), representing back reaction fac-
tors of both spins on the collective coordinate operator of the bath. As
we saw in section 3.4, Eqs. (3.74–3.74), this effect is not relevant for
decoherence, but it is crucial in this context.

We now work out the second term of the expression (3.110) for the final
polarization of the pulsed spin after two successive pulses.

2e−ξ(τ)<
{
c2,z+ c1,+z e

iΩ1τ 〈eiχ(τ,t)σ̂
(1)
z σ̂(1)

z 〉 〈ei[χ̄r(τ,t)−F̄r(τ)]σ̂(2)
z 〉

}

= 2e−ξ(τ)<{
c2,z+ c1,+z e

iΩ1τ Pr
}
, (3.111)

where

Pr
def
= i sin [χ(τ, t)] cos [χr(τ, t)− Fr(τ)]

+ i〈σ̂(1)
z 〉 〈σ̂(2)

z 〉 cos [χ(τ, t)] sin [χr(τ, t)− Fr(τ)]

+ 〈σ(1)
z 〉 cos [χ(τ, t)] cos [χr(τ, t)− Fr(τ)]

− 〈σ(2)
z 〉 sin [χ(τ, t)] sin [χr(τ, t)− Fr(τ)] . (3.112)

For the following results we set Γt À 1 which means we wait long enough
so the systems and the bath reach the equilibrium. Then we apply two
successive pulses on the spin S1. This guaranties the independency of the
outcome result on the details of the initial state preparation. In this limit
χ(τ, t) and χr(τ, t)− Fr(τ) read [see appendix C]

χr(τ, t)− Fr(τ) = −γτc
r

arctan

(
Γr

c

)
, (3.113)

χ(τ, t) = −γ arctan(Γτ). (3.114)

Inserting (3.113) into the expression of Pr given by (3.112) yields

Pr = −i sin [γ arctan(Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]

− i〈σ̂(1)
z 〉 〈σ̂(2)

z 〉 cos [γ arctan(Γτ)] sin

[
γτc

r
arctan

(
Γr

c

)]

+ 〈σ(1)
z 〉 cos [γ arctan(Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]

− 〈σ(2)
z 〉 sin [γ arctan(Γτ)] sin

[
γτc

r
arctan

(
Γr

c

)]
. (3.115)
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Inserting (3.112) and the parameters describing the pulses from (3.103) into
(3.110), the final polarization of the pulsed spin reads

〈σ(1)
z (t+ τ)〉 = cos 2ϑ1 cos 2ϑ2〈σ(1)

z 〉 (3.116)

− sin 2ϑ1 sin 2ϑ2 e
−ξ(τ)<{

eiΩ1τ eiς Pr
}
,

where Pr is defined by (3.115) and

ς
def
= ψ1 − ψ2 − ϕ1 − ϕ2. (3.117)

This expression is one of our main results. We notice that due the presence of
the first term in the expression for Pr given by (3.115) the final polarization
of the pulsed spin can be non-zero even if both spins are initially completely
unpolarized, i.e. in the case where 〈σ̂(1)

z 〉 = 0 = 〈σ̂(2)
z 〉. In this case the

expression for Pr given by (3.115) reads

Pr = −i sin [γ arctan(Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]
. (3.118)

Thus the final polarization of S1 will be

〈σ(1)
z (t+ τ)〉 = −e−ξ(τ) sin 2ϑ1 sin 2ϑ2 × (3.119)

× sin [γ arctan(Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]
={eiΩ1τ eiς}.

Since Ω1 is negligible due to the initial conditions,

〈σ(1)
z (t+ τ)〉 = −e−ξ(τ) sin 2ϑ1 sin 2ϑ2 × (3.120)

× sin [γ arctan(Γτ)] cos [γΓτ cos(kr cos θ)] ={eiς}.

This expression can be maximized over the pulse parameters by choosing

ϑ1 = ϑ2 =
π

4
, ς =

π

2
. (3.121)

In terms of pulses this means to apply a π
2

pulse along the x−axis at time t
followed by another −π

2
pulse along the y−direction at time t+ τ .

We represent a π
2

pulse along the x−axis as [66]

P1

(
x,
π

2

)
, (3.122)
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Figure 3.1: The final polarization of S1 after two successive pulses in terms of Γτ
for different temperatures when the dimensionless bath coupling constant γ = 2
and γ = 0.1. We compare these two cases when both spins are initially unpolarized
and are located at the same place, r = 0.

where
P1

(
x,
π

2

)
σ̂z ≡ eiσ̂xπ/4 σ̂z e

−iσ̂xπ/4. (3.123)

The first π
2

pulse in the x−direction applied on σ̂
(1)
z can be described by

P1

(
x,
π

2

)
σ̂(1)
z =

1

2i
σ̂

(1)
+ − 1

2i
σ̂

(1)
− , (3.124)

which in terms of the pulse coefficients cn,ab means

c1,zz = 0, c1,z+ =
1

2i
. (3.125)

Therefore
ψ1 + ϕ1 =

π

2
. (3.126)

Applying −π
2

pulse in the y−direction on σ̂
(1)
z gives

P2

(
y,−π

2

)
σ̂(1)
z = e−iσ̂

(1)
y π/4 σ̂(1)

z eiσ̂
(1)
y π/4, (3.127)

which yields

P2

(
y,−π

2

)
σ̂(1)
z =

1

2
σ̂

(1)
+ +

1

2
σ̂

(1)
− . (3.128)

Therefore the pulse coefficients read

c2,zz = 0, c2,z+ =
1

2
. (3.129)
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c2,z+ = 1
2

implies

ψ2 + ϕ2 = 0. (3.130)

As a result the final polarization of S1 is

〈σ(1)
z (t+ τ)〉 = (3.131)

−e−ξ(τ) sin [γ arctan(Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]
.

The physical reason of getting non-zero final polarization is the back reaction
of both spins which is now shared between them. The generation of coherence
by the first π

2
pulse couples S1 to the bath and S2. The polarization of S1

changes under the shifted frequency. We notice that the final polarization of
S1 depends on the distance between the two spins and the time τ between two
pulses. The final polarization decays with the factor e−ξ(τ), which describes
the decoherence of the transversal terms produced by the first pulse in the
time interval between the two pulses. Thus the time interval between two
pulses should be such that it does not let the decoherence overcome the
influence of the first pulse. The factor e−ξ(τ) implies that the final value
of the polarization of S1 decreases with γ (weaker back reaction) and 1/T
(larger decoherence).

When we set r → ∞ which means we consider two separates spins each
with its own bath, cos

[
γτc
r

arctan
(

Γr
c

)]
= 1 and we get the same result as in

the single qubit case [65]:

〈σ(1)
z (t+ τ)〉 = −e−ξ(τ) sin [γ arctan(Γτ)] . (3.132)

While considering both spins sitting on top of each other, r = 0 yields

〈σ(1)
z (t+ τ)〉 = −e−ξ(τ) sin [γ arctan(Γτ)] cos (γΓτ) . (3.133)

Another interesting phenomenon is the case of spin transfer, which takes
place if the initial polarization of S2 is larger than the initial polarization of
S1. This can be seen from the last term in the expression (3.116) for Pr given
by

− 〈σ(2)
z 〉 sin [γ arctan(Γτ)] sin

[
γτc

r
arctan

(
Γr

c

)]
. (3.134)

Thus when S2 is initially highly polarized while S1 is unpolarized, Pr given
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Figure 3.2: The final polarization of S1 after two successive pulses in terms of Γτ
for different temperatures when the dimensionless bath coupling constant γ = 2
and γ = 0.1. We compare these two cases when both spins are initially unpolarized
and are located at the same place, r À 0.

by (3.115) reads

Pr = −i sin [γ arctan(Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]
(3.135)

−〈σ̂(2)
z 〉 sin [γ arctan(Γτ)] sin

[
γτc

r
arctan

(
Γr

c

)]
,

and the final polarization of an initially unpolarized spin reads

〈σ(1)
z (t+ τ)〉 = −e−ξ(τ) sin 2ϑ1 sin 2ϑ2<

{
eiς Pr

}
, (3.136)

where Pr is given by (3.135).
The polarization transfer from S2 to S1 takes place when we consider to
following pulse parameters

ϑ1 = ϑ2 =
π

4
, ς = 0. (3.137)

The above condition can be fulfilled by applying a−π
2

pulse in the x−direction
followed by a −π

2
pulse in the y−direction after a time period of τ . A −π

2

pulse in the x−direction means

P1

(
x,−π

2

)
σ̂(1)
z = e−iσ̂

(1)
x π/4 σ̂(1)

z eiσ̂
(1)
x , (3.138)
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Figure 3.3: The final polarization of S1 after two successive pulses in terms of the
dimensionless distanceΓr/c for different pulse durations Γτ . The dimensionless
bath coupling constant γ = 2, and T

~Γ = 0.1. Both spins are initially unpolarized.
The dotted curve: Γτ = 1.5, the dashed curve: Γτ = 2, and the solid curve:
Γτ = 2.5.

which yields to

P1

(
x,−π

2

)
σ̂(1)
z = − 1

2i
σ̂

(1)
+ +

1

2i
σ̂

(1)
− . (3.139)

Therefore

ψ1 + ϕ1 =
3π

4
. (3.140)

Thus the final polarization of S1 in this case reads

〈σ(1)
z (t+ τ)〉 = (3.141)

e−ξ(τ) 〈σ̂(2)
z 〉 sin [γ arctan(Γτ)] sin

[
γτc

r
arctan

(
Γr

c

)]
.

Thus we see the initial polarization of S2 is partially transferred to S1

without modifying the initial polarization of S2. This is not in contradiction
with the no-cloning theorem, which states that no well-defined state can
be attributed to a subsystem of an entangled state. Since in our case the
quantum states are represented by commuting density matrices, they can be
cloned (copied) exactly.
Thus the existence of S2 improves the cooling effect via polarization transfer
provided it is initially sufficiently polarized.
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Now we calculate 〈σ̂(1)
± (t + τ)〉 to see how the transversal components of

S1 which initially are zero evolve after applying two successive pulses on S1.
Following the same analogy as we employed in deriving the final polarization
of S1 we have

σ̂
(1)
± (t+ τ) = EtP1EτP2σ̂

(1)
± , (3.142)

which then yields

σ̂
(1)
± (t+ τ) = c2,±z c1,zzσ̂(1)

z (3.143)

+2 c2,±z<
{
c1,z±ei[Ω1t−F (t)] Π̂+

r (0, t) σ̂
(1)
+ e−iF̄r(t)σ̂

(2)
z

}

+c2,±+ c1,+z e
i[Ω1τ−F (τ)] Π̂+

r (t, t+ τ) eiχ(τ,t)σ̂
(1)
z σ̂(1)

z ei[χ̄r(τ,t)−F̄r(τ)]σ̂(2)
z

+c2,±− c1,−z e−i[Ω1τ+F (τ)] Π̂−
r (t, t+ τ) e−iχ(τ,t)σ̂

(1)
z σ̂(1)

z e−i[χ̄r(τ,t)−F̄r(τ)]σ̂(2)
z

+c2,±+ c1,++ e
i[Ω1(t+τ)−F (t+τ)] Π̂+

r (t, t+ τ)Π+
r (0, t) σ̂

(1)
+ e−iF̄r(t+τ)σ̂

(2)
z

+c2,±− c1,−− e−i[Ω1(τ+t)+F (τ+t)] Π−
r (t, t+ τ) Π̂−

r (0, t) σ̂
(1)
− eiF̄r(t+τ)σ̂

(2)
z

+c2,±+ c1,−+ e
−i[Ω1(τ−t)−F (t+τ)+2F (τ)+2F (t)] Π̂−

r (t, t+ τ)Π̂+
r (0, t)×

×σ̂(1)
+ ei[F̄r(t+τ)−2F̄r(t)]σ̂(2)

z

+c2,±+ c1,+− ei[Ω1(τ−t)+F (t+τ)−2F (τ)−2F (t)] Π̂+
r (t, t+ τ)Π̂−

r (0, t)×
×σ̂(1)

− e−i[F̄r(t+τ)−2F̄r(t)]σ̂(2)
z .

Taking the ensemble averages and implying the initial condition

〈σ̂(1)
± 〉 = 0, (3.144)

yields

〈σ̂(1)
± (t+ τ)〉 = c2,±z c1,zz 〈σ̂(1)

z 〉+ (3.145)

+c2,±+ c1,+z e
iΩ1τ−ξ(τ) 〈eiχ(τ,t)σ̂

(1)
z σ̂(1)

z 〉 〈ei[χ̄r(τ,t)−F̄r(τ)]σ̂
(2)
z 〉

+c2,±− c1,−z e−iΩ1τ−ξ(τ) 〈e−iχ(τ,t)σ̂
(1)
z σ̂(1)

z 〉 〈e−i[χ̄r(τ,t)−F̄r(τ)]σ̂
(2)
z 〉,

Inserting the pulse coefficients from (3.103) and employing the definition of

Pr from (3.115) for 〈σ̂(1)
+ (t+ τ)〉 we get

〈σ̂(1)
+ (t+ τ)〉 = (3.146)

−e−i(ψ2−ϕ2) sin 2ϑ2 cos 2ϑ1〈σ̂(1)
z 〉 − sin 2ϑ1 e

−ξ(τ) ×
×{

cos2 ϑ2 e
i(ψ1−ϕ1−2ϕ2)eiΩ1τ Pr − sin2 ϑ2 e

−i(ψ1−ϕ1−2ψ2)e−iΩ1τ P ∗r
}
,
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where P ∗r is the complex conjugate of Pr.
Let us now consider the case where both spins are initially unpolarized;
〈σ̂(1)

z 〉 = 0 = 〈σ̂(1)
z 〉. Applying a π

2
pulse along the x−direction followed by a

−π
2

pulse along the y−direction on S1 with the pulse parameter

ϑ1 = ϑ2 =
π

4
, ς =

π

2
, (3.147)

results in

P1

(π
2
, x

)
σ̂

(1)
+ =

1

2
σ̂

(1)
+ +

1

2
σ̂

(1)
− − iσ̂(1)

z (3.148)

P2

(
−π

2

)
σ̂

(1)
+ =

1

2
σ̂

(1)
+ − 1

2
σ̂

(1)
− − σ̂(1)

z . (3.149)

Thus inserting ϑ1 = ϑ2 = π
4

in the expressions for c1,+z, c1,++, and c2,+z given
by (3.103) we get

ψ1 = 0, ϕ1 =
π

2
ψ2 = ϕ2 = 0. (3.150)

Now the expression for 〈σ̂(1)
+ (t+ τ)〉 reads

〈σ̂(1)
+ (t+ τ)〉 = −ie−ξ(τ)<{Pr}, (3.151)

where we take into account that Ω1τ is negligible. We notice that Pr given
by the expression (3.118) is a purely imaginary expression and thus

〈σ̂(1)
x (t+ τ)〉 = 0 = 〈σ̂(1)

y (t+ τ)〉. (3.152)

Thus while the polarization of initially unpolarized S1 increases by applying
a π

2
pulse in the x-direction and a −π

2
in the y−direction, its transversal

components will remain the same when S2 is also initially unpolarized.
On the other hand, when S2 is initially highly polarized, |〈σ̂(2)

z 〉| ∼ 1, follow-
ing the same lines of calculation we get a non-zero final transversal compo-
nent in the y-direction by applying two successive −π

2
pulses in the x and y

direction. In this case we have

ψ1 = ϕ1 =
3π

4
, ψ2 = ϕ2 = 0. (3.153)
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Therefore

〈σ̂(1)
+ (t+ τ)〉 = −ie−ξ(τ)={Pr}, (3.154)

where Pr is given by (3.135). Thus for the final transversal components of
the S1 spin we have

〈σ̂(1)
x (t+ τ)〉 = 0, (3.155)

〈σ̂(1)
y (t+ τ)〉 = e−ξ(τ) sin [γ arctan (Γτ)] cos

[
γτc

r
arctan

(
Γr

c

)]
.

We recall that since there are no external forces applying on S2, the process
does not affect its state.

3.8 Conclusion

Spin-1
2

systems are quantum systems for which the Hilbert space is two-
dimensional and thus can be considered as qubits. Recently, nuclear spins as
examples of spin-1

2
systems have been suggested as good candidates for realiz-

ing quantum information processing [80–82]. Before any quantum algorithm
can be executed, the qubits themselves must be initialized into a well-defined
state which in most cases should be pure. Unfortunately, the nuclear spin
systems are surrounded by the environment. That is to say, they are usu-
ally found in a highly mixed state and thus unpolarized. However, there are
several techniques for increasing the polarization of nuclear spin. The most
common ones are optical pumping [83] in which light is used to enhance
the polarization and dynamic nuclear polarization [84], which is based on
transferring the spin polarization of electrons to nuclei in a coupled two-spin
system with the help of radio frequency pulses applied on both spins. Here
we describe another polarization enhancement method based on the back
reaction of the environment. In this scheme we consider two spatially non-
interacting qubits coupled to a common bath. By applying two successive
pulses on one of spins, we can increase its polarization (cool it down) even if
the initial polarization of both spins is negligible. When one spin is initially
highly polarized, applying two successive pulses on the initially unpolarized
spin results in polarization transfer, hence enhancement of polarization of an
initially unpolarized spin. We studied this situation within the spin-boson
model. We showed that under certain considerations the model can be ex-
actly solvable. For the spectral density of the bath we considered the ohmic
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regime. We showed that the origin of polarization enhancement mechanism
lies in the shared back reaction of spins to the common bath. Thus the pres-
ence of the bath is necessary. In fact, it is the only interactive component
between the spins which intermediates the polarization transformation. By
applying strong pulses on two non-interacting spins coupled to a common
bath, it is possible to reach final non-zero polarization even when both spins
are initially unpolarized. In case the pulsed spin is initially unpolarized while
the other spin has high initial polarization we obtain rather good polarization
transfer.
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CHAPTER4

Adiabatic Perturbation Theory

This chapter is devoted to the adiabatic perturbation theory. It is presented in a
different way from the standard presentations by a careful accounting of higher-
order terms. The idea is based on the time-scale separation which is usually
the case when a massive slow system interacts with a light fast system. In
the previous section the spin-boson model was employed to study the evolution
of an open quantum system. In this chapter we consider another category of
open systems in which the quantum system evolves much faster than its slow
classical surrounding environment. The Hamiltonian of the fast system then can
be considered as a function of the slowly varying parameters of the slow system.
The wavefunction of the fast quantum system is separated into fast and slow
components and the slow component is expanded in terms of a small parameter.
This parameter is defined as the ratio of the characteristic time scales of the two
systems. Within this time scale separation it is possible to determine the state
of the open quantum system.
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4.1 Introduction

A recurrent theme in modern physics is to study the dynamics of an open
system, i.e., a system that interacts with its environment [54]. Depending
on the type of environment, there are different conditions under which this
procedure is possible. A group of methods, which goes under the name of
system-bath interaction, amounts to isolating a relatively small system in
contact to an equilibrium environment (thermal bath) [54]. This was the
subject of chapter 3. One of the main consequences of this approach is the
Langevin equation, which supplements the Newton equation of motion for the
small system by two additional forces: random conservative force and non-
conservative (i.e., non-Lagrangian), velocity-dependent friction force [54].

There is another set-up that allows studying the dynamics of an open
system. Here the essential condition is that the target system is much faster
than its environment [2, 3, 85, 86]. Separation of scales plays a fundamental
role in understanding the dynamical behavior of the hybrid (slow + fast)
systems. It is often possible to drive simple laws for certain slow variables
from the underlying fast dynamics whenever the scales are well separated.
As an example consider the spinning top. While the top rotates very fast,
the rotation axis is usually precessing much slower. The earth is an example
of a top where these time scales are well separated. It turns once a day, but
the frequency of precession is about 26000 years.
The prototype example in quantum mechanics is a molecule, i.e. a system
consisting of two types of particles with very different masses. Electrons are
lighter than nuclei by a factor at least 2000, depending on the type of nucle-
usand and are moving much faster than the nuclei. In this case the fast scale
is also the quantum mechanical time scale described by Planck’s constant ~
and the relevant energies. The slow scale is “slow” with respect to the fast
quantum scale. For the sake of clarity in the time-scale separation, we define
a dimensionless small parameter, ε, as the ratio of the characteristic time
scales of the two systems. By “the characteristic time” of the fast system
we mean the time over which the dynamical quantities associated to the fast
system change considerably, while the dynamical quantities associated with
the slow system experience a small change. In the adiabatic regime this pa-
rameter, ε, approaches zero. By adiabatic we mean the regime, where the
slow system evolves infinitely slowly in time. This situation is best described
by the adiabatic theorem which implies that a system prepared in the instan-
taneous eigenstate of a time-dependent Hamiltonian will remain close to the
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instantaneous eigenstate of the Hamiltonian provided that the Hamiltonian
changes sufficiently slowly [87–89]. The adiabatic theorem in quantum me-
chanics was developed in its early days and it is a useful and a powerful tool
for studying the dynamics of a quantum system where the Hamiltonian of
the system evolves very slowly (adiabatically) in time. The theory has lots
of applications, in the name of adiabatic approximation, in quantum physics
(Berry phase) [90], quantum control [91] and adiabatic quantum computa-
tion [92].
In the adiabatic regime, the effective dynamics for the slow degrees of free-
dom, e.g. for the nuclei, is known as Born-Oppenheimer approximation and
it is important for understanding the molecular dynamics. In this regime
the dynamics of the nucleus can be described by considering an effective
potential generated by one energy level of the electrons, while the state of
the electrons instantaneously adjusts to an eigenstate corresponding to the
momentary configuration of the nuclei.
The phenomenon that fast degrees of freedom become slaved by slow degrees
of freedom which in turn evolve autonomously is called adiabatic decoupling.
In the following two chapters we show that if the slow system, doesn’t evolve
infinitely slowly, i. e., ε is small but not zero, the effective dynamics of the
slow system can be described by additional forces exerted on it from the fast
quantum system. In doing so, we discuss the adiabatic perturbation theory
in section 4.3. Section 4.4 is devoted to the precision of this method. The
dynamics of the slow classical system is the subject of the next chapter.

4.2 Slowly evolving systems

Usually the Hamiltonian discussed in the quantum mechanical text books
does not depend on time. But in reality it does depend on time due to the
presence of the external or environmental factors. Therefore, it is important
to study time-dependent Hamiltonians in modeling the real quantum sys-
tems. One of the most interesting aspects of time-dependent Hamiltonians is
the occurrence of the geometric phase, which had been ignored in quantum
physics for half a century. It had not been forgotten but was thought to be
unimportant. In 1928, Fock showed that such a phase could be set to unity
by redefinition of the phase of the initial wave function . Although Fock’s
proof was limited to non-cyclic evolutions only, his conclusion was generally
accepted until around 1980 when Mead and Truhlar [93] and Berry [90] re-
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considered cyclic evolutions.
In the quantum mechanical description of a physical system, one has a finite
or infinite dimensional Hilbert space of state vectors and a set of observables
described by linear operators acting on these state vectors. If a quantum sys-
tem is not isolated from its environment, the observables can be described
by operators that depend on a set of parameters, q = (q1, q2, . . . , qK), where
K is the number of degrees of freedom of the environment. Each value of q
characterizes a particular configuration of the environment. In particular, a
changing environment is described by time-dependent parameters, q = q(t).
For a quantum system in a classical environment, the parameters q label the
points of a smooth manifold M. Every change of the environment is then
described by a curve C : [0, T ] → M, with points q(t) ∈ C. The manifold
M is called the parameter space of the quantum system. The geometric
properties of the parameter space depend of the specifications of the system.
In general, the Hamiltonian is a smooth and single valued function of q ∈M.
By the smoothness of the Hamiltonian we mean that the eigenvalues and the
eigenvectors are smooth functions of q.
The evolution of the states of the quantum system in the external environ-
ment is described by the time-dependent Schrödinger equation

i∂t|Ψ〉 = Ĥ (q(t)) |Ψ〉, (4.1)

where ∂t = ∂
∂t

, and we set ~ = 1.
Here |Ψ〉 denotes the state vector which belongs to the Hilbert space H and
represents a pure state of the system. The general mixed state is described
by a density matrix ρ̂ whose evolution is given by the Liouville-von Neumann
equation

i∂tρ̂ =
[
Ĥ (q(t)) , ρ̂

]
. (4.2)

For the sake of simplicity, we shall assume the pure state case.
The adiabatic energy levels {Ek (q(t))}dk=1 and the corresponding eigen-vectors
{|k; q(t)〉}dk=1 are defined via the eigen-resolution of the Hamiltonian Ĥ (q(t))
at fixed values of q = (q1, . . . , qK):

Ĥ (q) |k; q〉 = Ek(q)|k; q〉, 〈k; q|l; q〉 = δkl, k = 1, . . . , d, (4.3)

where d is the total number of energy levels. By |k; q(t)〉 we mean the eigen
state |k〉 which depend on the time-varying set of parameters q(t).
We shall assume that the adiabatic energy levels are not degenerate.
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4.2. Slowly evolving systems

Given an environmental process along with a time parametrization q(t),
one obtains a time-dependent Hamiltonian

Ĥ (q(t)) =
d∑

k=1

Ek (q(t)) P̂k (q(t)) , (4.4)

where
P̂k (q(t)) = |k; q(t)〉〈k; q(t)|, (4.5)

are the time-dependent projectors corresponding to the eigenstates of Ĥ (q(t)).
We note that the adiabatic representation (4.3) has a gauge freedom:

|k; q(t)〉 → eiαk(q(t))|k; q(t)〉, (4.6)

where αk (q(t)) is an arbitrary single-values function of q = (q1, . . . , qK).
Hence all physical observables have to be gauge-invariant.

The qualitative sufficient condition for the time-scale separation is that
the characteristic time of the classical motion is much larger than ~

∆
, where

∆ is the minimal adiabatic energy gap: ∆ ≡ mink 6=l(|Ek − El|). 1

To reflect mathematically the fact of time-scale separation we shall write
the dependence of the quantum Hamiltonian on the classical coordinates as

H (q1(εt), q2(εt), . . .) , (4.7)

where ε is defined as a small dimensionless parameter representing the ratio
of the two time-scales.

ε¿ 1. (4.8)

The time-scale separation, i.e., condition (4.7), can be generated, e.g., by
a large mass M of the classical particle. Then the classical particle moves
slowly—provided that its initial velocity is small—and ε ∼ 1/

√
M . This

scenario of time-scale separation is normally met in chemical physics (heavy
classical nuclei versus light quantum electrons) [94] and semi-quantum grav-
ity [95].

In the Schrödinger equation (4.1) we shall assume that the initial state
|Ψ(0)〉 is an eigenstate:

|Ψ(0)〉 = |n; q(0)〉. (4.9)

1 This condition is sufficient, but not necessary for the validity of the time-scale sep-
aration and the consequent adiabatic approach, e.g., the latter can still hold if certain
level-crossings are allowed. We shall not consider this more general situation.
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Within the adiabatic approach the choice (4.9) does not imply any serious
loss of generality. We note that it is sufficient to take a single initial wave
vector and not a superposition of them, since any superposition will bring
in the adiabatic limit strong oscillations for non-diagonal elements of the
resulting density matrix. This will reduce the superposition to the mixture of
adiabatic eigen-vectors, which amounts to studying the consequences of (4.9),
and then taking the average over the index n with certain time-independent
weights.

In the following section we present adiabatic perturbation theory [96,97].
It is a method to solve the time-dependent Schrödinger equation (4.1) under
the time-scale separation (4.7) and the adiabatic assumption (4.8).

4.3 Adiabatic perturbation theory

The adiabatic theorem mentioned in section 4.1 yields an approximate solu-
tion and it seems natural to ask what will be the non-adiabatic corrections
to the solution provided by this approximation especially if the characteristic
time scale of the process is not too large.

In this section we study the higher order corrections to the adiabatic
wave-function up to any order for non-degenerate adiabatic wave-function.
The method we motivate here despite other methods is based on a careful
separation of the slow and fast components of the wave-function of the fast
quantum system which is under the influence of the slowly varying parameters
of its environment. To this end, we define the slow time-variable as

s
def
= εt.

As in any theory that is based on time-scale separation, we should start with
dividing the sought solution to the time-dependent Schrödinger equation with
the Hamiltonian (4.7) into fast and slow components:

|Ψ〉 = |ψn(ε, q(s)〉 eiαn(t), (4.10)

where

αn(t) ≡ −
∫ t

0

dτ En (q(ετ)) ,

is the dynamical phase.
eiαn(t) is the fast component of the sought solution since it changes fast, i.e.,
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4.3. Adiabatic perturbation theory

as ∼ eis/ε. Inserting (4.10) into (4.1) we get

iε|ψ̇n (ε, q(s))〉 =
[
Ĥ (q(s))− En (q(s))

]
|ψn (ε, q(s))〉, (4.11)

where dot is defined as differentiation with respect to the slow time s.
Now we expand the slow wave-function, ψn (ε, q(s)), in the powers of small
parameter ε:

|ψn (ε, q(s))〉 = eiγn(q(s))
[ |n; q(s)〉+ ε|n1; q(s)〉+ ε2|n2; q(s)〉+ . . .

]
, (4.12)

where

γn (q(s)) = i

∫ s

0

du 〈n; q(u)|ṅ; q(u)〉, (4.13)

is the Berry phase factor. We separated the Berry phase, γn (q(s)) out to facil-
itate further calculations and ensure the proper gauge-covariance. We notice
that 〈n; q(u)|ṅ; q(u)〉 is purely imaginary (due to the fact 〈n; q(u)|n; q(u)〉 =
1).

Substituting power series expansion (4.12) into (4.11) and comparing
terms of equal order of ε, we get a set of recursive equations

0 =
(
Ĥ (q(s))− En (q(s))

)
|n; q(s)〉, (4.14)

i|ṅ; q(s)〉 − i〈n; q(s)|ṅ; q(s)〉 |n; q(s)〉 = (4.15)(
Ĥ (q(s))− En (q(s))

)
|n1; q(s)〉,

i|ṅ1(s)〉 − i〈n; q(s)|ṅ; q(s)〉 |n1; q(s)〉 =(
Ĥ (q(s))− En (q(s))

)
|n2; q(s)〉, (4.16)

...,

or in general

i|ṅm−1; q(s)〉 − i〈n; q(s)|ṅ; q(s)〉|nm−1; q(s)〉 =(
Ĥ (q(s))− En (q(s))

)
|nm; q(s)〉. (4.17)

Eq. (4.14) holds automatically for the adiabatic regime, i.e., O(ε0).
To solve the higher order equations we introduce the projection operator

P̂ (q(s)) and its orthogonal complement Q̂ (q(s)):

P̂ (q(s)) (s) = |n; q(s)〉〈n; q(s)|, Q̂ (q(s)) =
∑′

k
|k; q(s)〉〈k; q(s)|,

P̂ + Q̂ = 1̂, P̂ Q̂ = Q̂P̂ = 0. (4.18)
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where
∑′

k means the term k = n is excluded from the summation
∑d

k=1.

4.3.1 Post-adiabatic corrections

We start with deriving the first order correction to the adiabatic wave-
function. Then an analogous argument straightforwardly yields all higher
order correction as well.
In order to solve the first order equation (4.15), we operate the orthogonal
complement projector Q̂ (q(s)) from left to the both sides of (4.15). Since

Q̂ (q(s)) |n; q(s)〉 = 0, (4.19)

Q̂ (q(s)) Ĥ (q(s)) =
∑

k

′
Ek (q(s)) |k; q(s)〉〈k; q(s)|,

we get

i
∑

k

′|k; q(s)〉〈k; q(s)|ṅ; q(s)〉 = (4.20)

∑

k

′
∆kn (q(s)) |k; q(s)〉〈k; q(s)|n1; q(s)〉,

where we have defined

∆kn (q(s))
def
= Ek (q(s))− En (q(s)) . (4.21)

Since ∆k 6=n (q(s)) is non-zero, due to the non-degenerate adiabatic energy
level assumption, we get

〈k; q(s)|n1; q(s)〉 def
= c

[1]
k 6=n (q(s)) = −i〈k; q(s)|ṅ; q(s)〉

∆nk (q(s))
. (4.22)

Thus the projection of the first order correction to the adiabatic energy level
on Q̂, denoted by |n⊥1 ; q(s)〉, is defined as

|n⊥1 ; q(s)〉 def=
∑

k

′
c
[1]
kn (q(s)) |k; q(s)〉. (4.23)

where c
[1]
k 6=n (q(s)) is defined by (4.22).

The above expression means that the state makes transitions between its
energy levels during its evolution in contrast to the adiabatic regime. But
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4.3. Adiabatic perturbation theory

this is not the whole story, in order to define |n1; q(s)〉 completely we have
to derive its projection on P̂ (q(s)) as well. In doing so, we operate the
projection operator P̂ (q(s)) from the left on both sides of the second-order
equation (4.16). Keeping in mind that

P̂ (q(s)) (Ĥ (q(s))− En (q(s))) = 0, (4.24)

we get

〈n; q(s)|ṅ1(s)〉 − 〈n; q(s)|ṅ(s)〉〈n; q(s)|n1; q(s)〉 = 0. (4.25)

Therefore, calculating 〈n; q(s)|n1; q(s)〉 requires the calculation of
〈n; q(s)|ṅ1; q(s)〉. This can be done by differentiating with respect to the slow
time, s, both sides of the following identity:

|n1; q(s)〉 = P̂ (s)|n1; q(s)〉+ |n⊥1 (s)〉, (4.26)

and then multiplying both sides from left by 〈n; q(s)| from left:

〈n; q(s)|ṅ1; q(s)〉 =

d

ds
[〈n; q(s)|n1; q(s)〉] + 〈n; q(s)|ṅ; q(s)〉〈n; q(s)|n1; q(s)〉

+
∑

k

′
c
[1]
knq(s)〈n; q(s)|k̇(s)〉, (4.27)

where we have used the definition 〈k; q(s)|n1; q(s)〉 = c
[1]
kn (q(s)).

Inserting (4.27) into (4.25) yields

ċ[1]
nn (q(s)) = −

∑

k

′〈n; q(s)|k̇(s)〉c[1]
kn (q(s)) , (4.28)

where we define

c[1]
nn (q(s))

def
= 〈n; q(s)|n1; q(s)〉. (4.29)

Inserting the definition of c
[1]
k 6=n (q(s)) in the above expression we get

c[1]
nn (q(s)) = −

∑

k

′
∫ s

0

du〈n; q(u)|k̇; q(u)〉c[1]
kn (q(u)) =

− i
∑

k

′
∫ s

0

du
|〈k; q(u)|ṅ; q(u)〉|2

∆nk (q(u))
. (4.30)
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It is seen that c
[1]
nn (q(s)) is purely imaginary.

Summarizing the above calculations, we can write the first-order correction
to the adiabatic wave-function as

|n1; q(s)〉 = c[1]
nn (q(s)) |n; q(s)〉+ |n⊥1 ; q(s)〉, (4.31)

where |n⊥1 ; q(s)〉 is defined by (4.23) and c
[1]
nn (q(s)) is given by (4.30).

It is remarkable that for the first-order adiabatic correction equation (4.22),
which describes the transition to the other eigen energy levels in the post-
adiabatic regime, is well-known [2, 3]. It is certainly less known that the
consistent adiabatic perturbation theory generates another O(ε) term, i.e.,

c
[1]
nn (q(s)) [97, 98]. This term is purely imaginary and represents a memory

effect of the transitions to other energy levels during the evolution of the
quantum system. This term drops out from post-adiabatic corrections to the
averaged force.
Following an analogous argument, the higher order post-adiabatic corrections
to the wave-function, represented by |nm; q(s)〉, with m > 1, read

|nm; q(s)〉 = c[m]
nn (q(s)) |n; q(s)〉+ |n⊥m; q(s)〉, (4.32)

|n⊥m; q(s)〉 =
∑

k

′
c
[m]
kn (q(s)) |k; q(s)〉, (4.33)

where c
[m]
k 6=n (q(s)) is derived from the following recursive expression

c
[m]
k 6=n (q(s)) =

i〈n; q(s)|ṅ; q(s)〉 c[m−1]
k 6=n (q(s))− i〈k; q(s)|ṅm−1; q(s)〉

∆nk (q(s))
, (4.34)

and the scalar function c
[m]
nn (q(s)) is given by

ċ[m]
nn (q(s)) = −〈n; q(s)|ṅ⊥m; q(s)〉, (4.35)

c[m]
nn (q(s)) = −

∑

k

′
∫ s

0

du c
[m]
kn (q(u)) 〈n; q(u)|k̇; q(u)〉. (4.36)

Altogether |ψn(ε, (q(s)))〉 in (4.12) can be written as

|ψn(ε, (q(s)))〉 = eiγn(q(s))
∑

k

ckn (q(s)) |k; q(s)〉, (4.37)

where ckn (q(s)) is given by the following expansion over the small parameter
ε

ckn (q(s)) = δkn + εc
[1]
kn (q(s)) + ε2c

[2]
kn (q(s)) + · · · . (4.38)
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4.3. Adiabatic perturbation theory

The normalization condition of the wave-function implies relations between
the coefficients ckn (q(s)):

∑

k

|ckn (q(s)) |2 = 1, (4.39)

which should be satisfied at each order of ε. By separating the term regarding
to k = n in the above expression (4.39) for the first few orders we have

|cnn (q(s)) |2 = (4.40)

1 + ε
[
2<{c[1]

nn (q(s))}] + ε2
[
2<{c[2]

nn (q(s))}+ |c[1]
nn (q(s)) |2]

+ε3
[
2<{c[3]

nn (q(s)) + c[1]
nn (q(s)) c∗[2]

nn (q(s))}]

+ε4
[
2<{c[4]

nn (q(s)) + c[1]
nn (q(s)) c∗[3]

nn (q(s))}+ |c[2]
nn (q(s)) |2] + · · · ,

∑

k

′|ckn (q(s)) |2 = (4.41)

ε2
[
|c[1]
kn (q(s)) |2

]
+ ε3

[
2
∑

k

′<{c[1]
kn (q(s)) c

∗[2]
kn (q(s))}

]

+ε4

[
|c[2]
kn (q(s)) |2 + 2

∑

k

′<{c[1]
kn (q(s)) c

∗[3]
kn (q(s))}

]
+ · · · .

Inserting the expressions (4.41) and (4.42) into the normalization condition
(4.39) brings the following relations at the orders ε and ε2, ε3, and ε4 respec-
tively,

<{c[1]
nn (q(s))} = 0, (4.42)

2<{c[2]
nn (q(s))}+ 〈n1; q(s)|n1; q(s)〉 = 0, (4.43)

<{c[3]
nn (q(s)) + 〈n1; q(s)|n2; q(s)〉} = 0, (4.44)

2<{c[4]
nn (q(s)) + 〈n1; q(s)|n3; q(s)〉}+ 〈n2; q(s)|n2; q(s)〉 = 0, (4.45)

...

where we have used the expression of |n1; q(s)〉 given by (4.31) in (4.42), and
the expression for |nm; q(s)〉 for m = 2 and m = 3 given by (4.32) in (4.44)
and (4.45).
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4.4 Precision of the adiabatic approximation

The precision of the adiabatic approximation is studied in details by G. A.
Hagedorn and A. Joye [97]. They rigorously proved that the adiabatic pertur-
bation theory is correct up to exponentially small errors for time-dependent
Hamiltonians. They employed the standard Cauchy estimates in order to
estimate the error resulting from the truncation of the asymptotic expansion
of the wavefunction and proved that when the expansion is truncated after
an optimal number of terms, the resulting approximation , i.e., the difference
between the exact and the approximated solution, is exponentially accurate
as it is described in the following.
According to (4.12) let us define

|ψnN (ε, q(s))〉 = eiγn(q(s))

N∑
m=0

εm|nm; q(s)〉. (4.46)

Let {a} define the integer part of a real number a, and let we are given a
positive number g. Then it is shown that [97]:

∣∣ |ψ{g/ε}(ε, s)〉 − |ψexact(ε, s)〉
∣∣ ≤ C(g)e−Γ(g)/ε, (4.47)

where |ψexact(ε, s)〉 is the exact solution of the time-dependent Schrödinger
equation (4.11) and at the initial time

|ψ{g/ε}(ε, 0)〉 = |ψexact(ε, 0)〉, (4.48)

and where C(g) and Γ(g) are bounded positive functions of g. This result
implies that the precision of the adiabatic approximation is exponential over
ε.

4.5 Summary

In this chapter we considered a fast quantum system which is under the in-
fluence of a slowly evolving classical system. To describe the situation, we
represented the Hamiltonian governing the motion of the fast quantum sys-
tem as a function of slowly varying parameters of the classical system. We
defined a small dimensionless parameter ε as the ration of the time scales
of the two system and divided the sought solution of the time-dependent
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Schrödinger equation into fast and slow components. Within the adiabatic
perturbation theory we expanded the slow component over the small param-
eter ε and derived the higher order corrections. The results of this chapter
will be employed in the next chapter where we study the dynamics of the
slow classical system.
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CHAPTER5
Post Adiabatic Forces

The post-adiabatic corrections to the adiabatic wave function of a fast quantum
system coupled to a slow classical system was calculated in the previous chapter.
In this chapter some dynamical properties of a slow classical system coupled to
a fast quantum system is considered. In particular, the result of the previous
chapter is employed in order to calculate the postadiabatic forces exerted by the
quantum system on the classical one. Up to higher orders in the small parameter
ε, which represents the ratio of the time-scales of the two systems, the exerted
force can be derived from a Lagrangian. However, at orders higher than two the
Lagrangian is not just a functional of the coordinate and velocity of the classical
system but it also depends on the acceleration and higher time-derivatives of the
slowly varying coordinates. This brings new physical concepts such as spin and
zitterbewegung effect in the purely classical regime.

5.1 Introduction

In this chapter we employ the results of the previous chapter and study
the dynamics of the classical slow part of the quantum-classical (also called
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mean-field or hybrid) dynamics, which describes coupled quantum and classi-
cal systems in the adiabatic regime where the characteristic time scale of the
system of interest is much slower than that of its fast counterpart. [2,3]. We
focus on the slow classical system adiabatically exclude the quantum system
and construct an autonomous dynamics for the classical particle in successive
orders of the small ratio ε of the characteristic times.
One of the well-established results in this direction known from 1922 is the
Darwin Lagrangian [85,99] for a system of slowly moving charges. We know
that in electrodynamics the propagation velocity is finite and the fields must
be considered as independent systems with their own degrees of freedom.
As a result, if we want to build up a Lagrangian for a system of interact-
ing charges in a rigorous way, we have to encounter the quantities related
to the internal degrees of freedom of the fields as well as the velocity and
the coordinates of the particles in the Lagrangian. However, if the veloc-
ities of all the particles in the system are small compared to the velocity
of light, the system can be described by a certain approximate Lagrangian
called Darwin Lagrangian, named after Charles Galton Darwin a grandson
of the great naturalist and has important applications in plasma physics and
astrophysics [85]. It turns out to be possible to derive the equation of motion
for the particles through a Lagrangian up to (v/c)2 order. This can be done
since the radiation of electromagnetic waves by moving charges occurs only
in third order of (v/c).
Here, we assume the classical system is slow —a condition that is normally
fulfilled in practice. We introduce a small parameter ε defined as the ratio
of the characteristic times for the quantum over the classical system, re-
spectively. Then we exclude the fast quantum system and study to which
extent the ensuing dynamics of the slow classical system can be described
by an autonomous Lagrangian-generated equations for the classical coordi-
nates. In the leading order and order of ε1 this includes respectively the
Born-Oppenheimer potential and an effective magnetic field related to the
Berry phase. Within the order ε2 the motion of the classical particle is de-
scribed by a Lagrangian that depends on its coordinate and momenta. We
show that in the order ε3 the motion of the classical particle is still described
by a Lagrangian, but the latter linearly depends on the particle’s acceler-
ation [98]. This implies the existence of a spin tensor [non-orbital angular
momentum] for the particle. This spin tensor is related to the momentum via
an analogue of the zitterbewegung effect. The Hamiltonian structure of the
classical system is non-trivial and is defined via non-linear Poisson brackets.
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The linear dependence of the effective classical Lagrangian on higher-order
derivatives is seen as well in the higher orders εn [98].
This chapter is organized as the following. In section 5.2 we introduce the
quantum-classical dynamics. Section 5.3 is devoted to derivation of the higher
order corrections to the post-adiabatic force. In section 5.4 we review the
derivation of the classical Lagrangian in the orders ε. In particular, we repro-
duce in a systematic way the results obtained by Berry and Robbins [2]. It
is well known that at the zero order of ε the influence of the quantum system
on the classical one can be described by the Born-Oppenheimer potential
energy term [2,3, 94,95,100,101].

It was shown by Berry and Robbins that in the first order of ε one gets
an effective magnetic field, which manifests itself as the velocity-dependent
term in the classical Lagrangian [2].

Section 5.5 describes the second-order post-adiabatic force using the adi-
abatic perturbation theory outlined in the previous chapter. In this chapter
we reproduce the results recently shown by Goldhaber [3]. Namely, in the
second order ε2 one gets in the Lagrangian of the classical system an addi-
tional kinetic energy term, i.e., a quadratic form in slow velocities [3]. A
very similar result on the order ε2 was obtained earlier by Weigert and Lit-
tlejohn for two coupled (fast and slow) quantum systems [100]. Moreover, we
show that at the order ε2 the classical Lagrangian corresponds to a classical
particle moving along the geodesics of a curved manifold. We calculate the
curvature for the simplest non-trivial case and work out its implications for
the stability of the effective classical motion at the order ε2. Here we also
point out at an unusual scenario related to the metric of the manifold chang-
ing its signature [i.e., changing from a Riemannian to a pseudo-Riemannian
manifold]. It appears that the slow classical motion within this order can be
reduced to a free motion (“geodesic motion”) on a Riemannian space with a
signature-indefinite metric tensor. This offers the possibility of interchang-
ing time-like and space-like coordinates. Recall in this context that within
non-relativistic classical mechanics the geodesic motion on a curved surface
proceeds according to a positively-defined metric tensor, while the geodesic
motion in the general theory of relativity has a metric tensor with signature
(1,−1,−1,−1) [99]. In both cases the signature is fixed.

We are also interested in knowing what happens in the next orders. In
particular, we want to understand how far we can continue the expansion over
ε, still keeping the classical system Lagrangian. Most importantly, we are
interested to know whether there are new physical effects essentially related
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to post-adiabatic corrections.These questions are answered in sections 5.6
and 5.7. It appears that at every order over ε one can derive Lagrange
equations for the dynamics of the classical system. However, there is an
important difference between the orders ε and ε2 and all successive orders. At
the order ε3 the classical dynamics is Lagrangian, but the Lagrangian starts
to depend on the higher-order time-derivatives of the classical coordinates. It
is important to note that the classical Lagrangians normally depend on the
coordinates and their first-order time-derivatives (velocities). In section 5.6
we show that at the order ε3 we get a Lagrangian that is linear over the second
order time-derivatives, i. e., classical accelerations. This fact is of conceptual
relevance. The classical physics is essentially based on the Newton’s second
law that equates acceleration to the force, which depends only on coordinates
and velocities. As a consequence, the trajectory of the classical motion is
fixed via initial coordinates and initial velocities. In its turn, the Newton’s
second law is generated by a Lagrangian, which depends on coordinates and
velocities. A Lagrangian depending on higher-order derivatives enlarges the
amount of the initial data needed to fix the classical trajectory and produces
equations of motion that go beyond the Newton’s law. Our result seems to
be the first example where a higher-derivative Lagrangian emerges for an
open classical system due to time-scale separation. Dependence on higher-
order derivatives in the Lagrangian implies a number of essential changes
in the kinematics of the classical system: the momentum of the classical
system depends on the acceleration, while the full angular momentum tensor
is a sum of the usual orbital part and a term that can be interpreted as
the spin of the classical system. In the simplest non-trivial case this spin is
proportional to the velocity square of the classical particle. We show that
this implies the existence of the zitterbewegung effect, where the momentum
of the classical particle (system) is governed by the projected time-derivative
of the spin. So far the zitterbewegung effect was known only in the physics
of relativistic Dirac electron, while we show the same effect appears in a
purely non-relativistic slowly evolved classical system due to its coupling to
a fast quantum system. It appears now that this effect is a part of the
physics generated by higher-order post-adiabatic corrections. We conjecture
that similar dependence on higher-order derivatives is expected at higher
orders εn with n ≥ 4, though we restrict ourselves with deriving the effective
classical Lagrangian up to the order ε4. In section 5.7 we deduce the classical
Lagrangian at the order ε4 and show that it also depends linearly on higher-
order derivatives of the classical coordinates.
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5.2 Quantum-classical dynamics

In this section we derive the equation of motion for a classical system cou-
pled to a quantum system. In doing so, we consider the mean-field classical
dynamics. In this approach the classical variables are treated as parameters
in the Hamiltonian of the quantum system. The dynamics of the quantum
system, is described by the Schrödinger equation while the dynamics of the
classical system is given by the Newton equation of motion supplemented by
the average force acting from the quantum part. As a result, the classical
particle experiences an averaged force exerted by the quantum system.
It is important to note that in general this force is not generated by an aver-
aged potential. This would only be the case in the adiabatic regime and the
first order adiabatic perturbation theory.

As a model we consider a K-degree of freedom classical system with
coordinates q = (q1, . . . , qK) and with Lagrangian

L0 =
M

2

K∑
α=1

(
dqα
dt

)2

− V (q), (5.1)

where M is the mass, and V (q) = V (q1, . . . , qK) is the potential energy of
the classical system.

Now this classical system (or particle) couples to a quantum system with
Hamiltonian operator Ĥ (q(t)), which parametrically depends on the clas-
sical coordinates. The quantum system evolves in time according to the
Schrödinger equation (for simplicity we put ~ = 1)

i∂t|Ψ〉 = Ĥ (q(t)) |Ψ〉, (5.2)

where |Ψ〉 is the wave-function, and where ∂t = ∂
∂t

.
We can calculate the force exerted by the quantum system on the classical

one as
Fµ = 〈Ψ|∂µĤ (q(t)) |Ψ〉, (5.3)

where we defined 1:

∂µ =
∂

∂qµ(t)
. (5.4)

For the simplicity of notation we absorb the minus sign in the force.

1 Note that ∂µ = ∂qµ(t) acts only on the coordinates, but not on the velocities, e.g.,
∂µq̇α = 0. In particular, ∂µ commutes with the total time-derivative d

ds .
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The classical part of the dynamics is written as [94,95,101]

M
d2qµ
dt2

+ ∂µV + 〈Ψ|∂µĤ (q(t)) |Ψ〉 = 0, µ = 1, . . . , K. (5.5)

Eq. (5.5) is the Newton equation of motion, where besides the classical force
−∂µV , the classical particle experiences an average force−〈Ψ(t)|∂µH (q(t)) |Ψ(t)〉
exerted by the quantum systems. In this sense the classical coordinates play
a role of a mean-field [101]. The main purpose of the present chapter is
to understand to which extent this force can be generated by a Lagrangian
which depends on the classical coordinates qα(t) and their time-derivatives.
It should be clear from (5.2) and (5.5) that the total average energy is con-
served in time:

d

dt

(
M

2

K∑
α=1

(
dqα
dt

)2

+ V (q) + 〈Ψ|Ĥ (q(t)) |Ψ〉
)

= 0. (5.6)

We note that the quantum-classical equations of motion (5.2, 5.5) can be
derived from a Lagrangian

L̃ =
1

2i
〈∂tΨ|Ψ〉 − 1

2i
〈Ψ|∂tΨ〉 − 〈Ψ|Ĥ (q(t)) |Ψ(t)〉 (5.7)

+
M

2

K∑
α=1

(
dqα
dt

)2

− V (q),

where as a set of independently varying parameters one should take |Ψ〉
and q(t) (or alternatively 〈Ψ| and q(t))2. It is seen that L̃ is simply a sum
of the corresponding quantum and classical Lagrangians, which points out
that combination of classical and quantum degrees of freedom does not vio-
late the Lagrangian formalism. However, In section 5.2.1 we briefly discuss
the possibility of derivation of the quantum-classical dynamics from a full
quantum-quantum dynamics.

5.2.1 Derivation

The quantum-classical dynamics can be derived from a full quantum-quantum
dynamics in the following fashion [94,101–105].

2As usual, when varying (5.7) we put aside the total time-derivatives, e.g., d
dt 〈δΨ|Ψ〉.
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We first consider both coupled systems are on equal footing. Therefore,
we assume we are given a two-degree of freedom quantum system with the
following Hamiltonian

Ĥtot =
p̂2

2M
+ V̂ (q) + Ĥ(q, x) +

π̂2

2M
,

where (q, p) and (x, π) are two degrees of freedom.
For simplicity we shall assume that the initial state is factorized for these
two degrees of freedom.

The Heisenberg equation generated by this Hamiltonian reads:

dq̂

dt
=

p̂

M
, (5.8)

dp̂

dt
= −∂qV̂ (q)− ∂qĤ(q, x), (5.9)

dx̂

dt
=

π̂

M
, (5.10)

dπ̂

dt
= −∂xĤ(q, x). (5.11)

We separate the motion of (q̂, p̂) degrees of freedom into two parts:

p̂(t) = p̂(t) + p̂f , q̂(t) = q̂(t) + q̂f , (5.12)

where p̂(t) and q̂(t) are the averages over the initial state, and where p̂f and
q̂f are the fluctuations. Then we make two assumptions:

• The (q̂, p̂) degrees of freedom are Gaussian which means they satisfy

p̂f = q̂f = 0. (5.13)

• The fluctuations of (q̂, p̂) degrees of freedom are small.

Keeping these assumptions in mind, we substitute (5.12) into (5.8, 5.9, 5.11)
and expand (5.8) and (5.11) over small q̂f :

dq̂

dt
+
dq̂f
dt

=
p̂

M
+
p̂f
M
, (5.14)

dp̂

dt
+
dp̂f
dt

= −∂qV̂ (q)− ∂qĤ(q, x) (5.15)

− ∂2
q V̂ (q)qf − ∂2

q Ĥqq(q, x)qf +O(q̂2
f ),

dπ

dt
= −∂xĤ(q, x)− ∂2

xqĤ(q, x) qf +O(q̂2
f ). (5.16)
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Averaging (5.14)-(5.16) over the initial states we obtain

dq̂

dt
=

p̂

M
, (5.17)

dp̂

dt
= −∂qV̂ (q)− ∂qĤ(q, x)− ∂2

q Ĥ(q, x)qf +O(q̂2
f ), (5.18)

dπ

dt
= −∂xĤ(q, x)− ∂2

xqĤ(q, x) qf +O(q̂2
f ). (5.19)

Based on our second assumption, if in (5.18, 5.19) the terms proportional to
O(qf ) are neglected we get into a quantum-classical equations, where (p̂, q̂)
is considered as the classical degree of freedom. Thus, from (5.18) we arrive
at the Newton equation of motion for the classical part of the system:

M
d2q

dt2
+ ∂qV + 〈Ψ|∂qĤ (q(t)) |Ψ〉 = 0.

We conclude this section by emphasizing that the main assumption involved
in the quantum-classical dynamics derivation is that the quantum fluctuation
of the classical coordinate(s) are small. The validity of the (mean-field)
quantum-classical dynamics is not related to the classical sub-system being
slow. The derivations of the quantum-classical dynamics need not neglect
fluctuations of all pertinent variables, i.e., it need not impose the full quantum
trajectories. It will be sufficient that the to-be classical sector of the dynamics
is approximated via suitable Gaussian density matrices [106]. Then, the
parameters of this matrices satisfy the equations of motion for some effective
classical systems [106].

5.3 Post-adiabatic force

In this section we concentrate on the adiabatic limit of the quantum-classical
system, where the classical system is slow and the quantum system is fast,
and derive an autonomous equations of motion for the classical part. To
this end, we shall solve the time-dependent Schrödinger equation for the
fast quantum system under the adiabatic assumption and determine via its
solution, the structure of the averaged force.

We employ the adiabatic perturbation theory described in the previous
chapter. For the sake of brevity, instead of |n; q(s)〉 we simply writhe |n〉 but
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we keep in mind that |n〉 parametrically depnds on the slow time s trough the
classical parameters q(s). This notation holds for higher order corrections as
well. We will also wrtie Ĥ(s), and En(s) instead of Ĥ (q(s)) and En (q(s)).
Assuming the quantum system initially starts its evolution from an eigenstate
of the Hamiltonina Ĥ(s), the slow component of the wave-function can be
expanded over the small dimensionless parameter ε. Let us recall

|ψn〉 = e
R s
0 du 〈ṅ|n〉|φn〉, (5.20)

|φn〉 = |n〉+ ε|n1〉+ ε2|n2〉+ ε3|n3〉+ . . . , (5.21)

The zero order term |φn〉 = |n〉 in the expansion (5.21) is the statement of
the adiabatic theorem. In (5.20), e

R s
0 du 〈ṅ|n〉 is the Berry phase factor; it was

separated out for ensuring the proper gauge-covariance [96]; see also below.
Note that 〈ṅ|n〉 is purely imaginary (due to 〈n|n〉 = 1). An alternative
representation of |φn〉 is

|φn〉 =
d∑

k=1

ckn|k〉, ckn(0) = δkn, (5.22)

ckn = δkn + εc
[1]
kn + ε2c

[2]
kn + ε3c

[3]
kn + . . . , (5.23)

where d is the number of the non-degenerate eigenstates of the Hamiltonian.
c
[m]
k 6=n and c

[m]
nn are given by

c
[m]
k 6=n =

i〈n|ṅ〉 c[m−1]
k 6=n − i〈k|ṅm−1〉

∆nk

, (5.24)

c[m]
nn = −

∑

k

′
∫ s

0

du c
[m]
kn 〈n|k̇〉, (5.25)

where
∆kn(s) = Ek(s)− En(s).

The expression for the exerted force from the fast quantum system to the
slow classical system reads

Fµ = 〈ψn|∂µĤ(s)|ψn〉, µ = 1, . . . , K, (5.26)

whereK is the number of degrees of freedom of the classical system. Inserting
the expression for |ψn〉 from (5.20) into (5.26) we get

Fµ = ∂µ〈φn|Ĥ(s)|φn〉 − 2<〈∂µφn|Ĥ(s)|φn〉. (5.27)
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We add and subtract ∂µEn(s) from (5.27). Employing the time-dependent

Schrödinger equation for Ĥ(s)|φn〉 we get

Ĥ(s)|φn〉 = iε〈ṅ|n〉|φn〉+ iε|φ̇n〉+ En(s)|φn〉. (5.28)

Multiplying both sides of (5.28) from left by 〈∂µφn|, and taking into account
that 〈φn|∂µφn〉 is purely imaginary since 〈φn|φn〉 = 1, the general expression
for the force Fµ acting on the classical system reads

Fµ(s) = ∂µEn(s) + 2ε=〈∂µφn|φ̇n〉+ ∂µ[〈φn|Ĥ(s)|φn〉 − En(s)]. (5.29)

We note from (5.22) and (5.23) that the last term of (5.29) is of second
order in ε and higher:

〈φn|Ĥ(s)|φn〉 − En(s) =
∑′

k
∆kn|ckn|2 = O(ε2). (5.30)

The factor ∂µEn is the force generated by the adiabatic (Born-Oppenheimer)
potential En(s). Thus the last two terms in (5.29) represent the non-adiabatic
force. We denote

Fµ = F [0]
µ + εF [1]

µ + ε2F [2]
µ + ε3F [3]

µ + . . . , (5.31)

where F
[0]
µ (s) = ∂µEn(s).

In the following sections we derive expressions for higher-order post-
adiabatic forces and show that they can be generated by a Lagrangian.

5.4 First order post-adiabatic force

The first order post-adiabatic force can be calculated through the only first
order term in the general expression for the force, (5.29), given by

2ε=〈∂µφn|φ̇n〉,
where according to (5.21)

|φn〉 = |n〉+O(ε). (5.32)

Therefore the first order post-adiabatic force reads

F [1]
µ = 2=〈∂µn|ṅ〉. (5.33)
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5.4. First order post-adiabatic force

From now on, for the sake of simplicity, we drop the argument s.
The expression for the first order post-adiabatic force given by (5.33) can be
simplified more. Taking into account that

|ṅ〉 = q̇α|∂αn〉, (5.34)

and assuming implicit summation from 1 to K over the repeated Greek in-
dices. the first order post-adiabatic force, F

[1]
µ , reads

F [1]
µ = 2q̇α=〈∂µn|∂αn〉. (5.35)

We notice =〈∂µn|∂αn〉 = −=〈∂αn|∂µn〉, therefore the first order force is anti-
symmetric. Moreover, the presence of q̇α which represents the slow velocity
of the classical system, suggests that F [1] is effective Lorentz [or gyroscopic]
type force [2]. This force emerges from a vector potential whose elements are

Aα = =〈∂αn|n〉. (5.36)

Therefore, we see that the first order averaged force can be generated by the
following Lagrangian

L[1](q̇, q) = εAα(q)q̇α. (5.37)

Now the complete classical Lagrangian to the first order represented by L1

is obtained by adding L[1](q̇, q) and the Born-Oppenheimer potential En(q)
to the initial (bare) classical Lagrangian L0, given by (5.1):

L1 =
M

2

K∑
α=1

(
dqα
dt

)2

− V (q)− En(q) + εAα(q)q̇α. (5.38)

If we rescale the kinetic energy to the slow time, we will get

L1 = ε2
M

2

K∑
α=1

(q̇α)
2 + εAα(q)q̇α − V (q)− En(q). (5.39)

The generalized momenta then reads

pα =
∂L1

∂q̇α
= ε2Mq̇α + εAα(q). (5.40)
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The effective Hamiltonian governing the slow classical system up to the
first order, denoted by H1, can be calculated using the Legendre transforma-
tion of the Lagrangian (5.39):

H1 =
1

2Mε2

K∑
α=1

[pα − εAα(q)]
2 + En(q) + V (q), (5.41)

which has the similar structure of the Hamiltonian of a moving electric charge
in an electromagnetic field.

5.5 Second order post-adiabatic force

In this section we calculate the second-order post-adiabatic force and prove
that this force can be produced by a kinetic term in the second-order post-
adiabatic Lagrangian —and not a potential term— which has a coordinate-
dependent mass tensor.
Inserting (5.22) in the third term in the general expression of post-adiabatic
force given by (5.29) and considering the second order terms we obtain:

ε=〈∂µφn|φ̇n〉 = ε2
d

ds
=〈∂µn|n1〉+ ε2∂µ=〈n1|ṅ〉+O(ε3). (5.42)

The second term in (5.29) leads to

∂µ

[
〈φn|Ĥ(s)|φn〉 − En

]
= ε2

∑′
k
∆kn|c[1]

kn|2 +O(ε3). (5.43)

Therefore, the second order post-adiabatic force can be written as

F [2]
µ = ∂µ

∑′
k
∆kn|c[1]

kn|2 + 2={〈∂µn1|ṅ〉+ 〈∂µn|ṅ1〉} (5.44)

= ∂µ
∑′

k

〈k|ṅ〉〈ṅ|k〉
∆kn

+ 2=
{
d

ds
〈∂µn|n1〉+ ∂µ〈n1|ṅ〉

}
. (5.45)

Let us recall the expression for |n1〉 from the previous chapter:

|n1〉 = c[1]
nn|n〉+ |n⊥1 〉, (5.46)

|n⊥1 〉 =
∑′

k
c
[1]
kn|k〉, (5.47)

where

c
[1]
k 6=n =

〈k|ṅ〉
i∆nk

. (5.48)
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Inserting (5.46) into the second expression of (5.45) yields

d

ds
〈∂µn|n1〉 =

d

ds
=〈∂µn|n⊥1 〉 =

d

ds

∑′
k
=

{
c
[1]
kn〈∂µn|k〉

}
, (5.49)

∂µ〈n1|ṅ〉 = ∂µ〈n⊥1 |ṅ〉 = ∂µ
∑′

k
=

{
c
[1]∗
kn 〈k|ṅ〉

}
, (5.50)

where we have inserted the expression (5.47) for |n⊥1 〉.
We notice that the non-local (time-integral) contribution c

[1]
nn drops out from

(5.49), and (5.50) since c
[1]
nn and 〈n|∂µn〉 are both purely imaginary. This

means that the second order post-adiabatic mean-field force can be inter-
preted as a local force acting on the classical (slow) system.

Given the expression for c
[1]
kn by (5.48) and employing the fact that

|k̇〉 = q̇α|∂αk〉, (5.51)

the second order post-adiabatic force can be written as

F [2]
µ = −2q̈α<

{∑′
k

〈n|∂µk〉〈∂αk|n〉
∆nk

}
+ q̇αq̇β∂µ<

{∑′
k

〈n|∂αk〉〈∂βk|n〉
∆nk

}

− 2q̇α
d

ds
<

{∑′
k

〈n|∂µk〉〈∂αk|n〉
∆nk

}
. (5.52)

We recognize in (5.52) the acceleration contribution. Defining

Gµα(q)
def
= −2

∑′
k

1

∆nk(q)
<{〈n(q)|∂µk(q)〉〈∂αk(q)|n(q)〉} , (5.53)

where Gµα(q) plays the role of a coordinate dependent mass tensor, the sec-
ond order force reads

F [2]
µ = Gµαq̈α + q̇αq̇β

(
1

2
∂βGαµ +

1

2
∂αGβµ − 1

2
∂µGαβ

)
. (5.54)

We notice from (5.53) that Gαβ is a symmetric matrix: Gαβ = Gβα. It is also
a positive matrix, i.e., Gαβφαφβ ≥ 0, for any vector φα, provided that the the
quantum system starts its evolution from the ground state: ∆kn ≥ 0. But
Gαβ cannot be a positive matrix for all initial states of the quantum system,
since, e.g., when the quantum system is a two-level system with d = 2, one
has Gαβ[excited state] = −Gαβ[ground state]. This case will be explicitly
studied in the next section.
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It is clear that the force given by (5.54) is generated by the following
Lagrangian

L[2](q̇, q) =
1

2
Gαβ(q)q̇αq̇β. (5.55)

Therefore, the dynamics of the slowly evolving classical system under the
influence of a fast quantum system up to the second order is described by

L2 =
M

2

∑K

α=1

(
dqα
dt

)2

− V (q)− En(q) + εL[1](q̇, q) + ε2L[2](q̇, q), (5.56)

where L[1](q̇, q) is given by (5.37).

Note that when the time-scale separation is enforced by a large [bare]
mass M of the classical particle, the post-adiabatic Lagrangian L[1](q̇, q), and

L[2](q̇, q) are small as compared to the large kinetic energy M
∑K

α=1

(
dqα
dt

)2
;

to make this fact explicit, we rescale this kinetic energy to the slow time via
ε ∼ 1/

√
M :

L2 =
ε2

2
[Mδαβ +Gαβ(q)] q̇αq̇β + εAα(q)q̇α − V (q)− En(q). (5.57)

5.5.1 Metric tensor and curvature

The kinetic part ε2

2
[Mδαβ+Gαβ(q)]q̇αq̇β of the second-order Lagrangian (5.57)

corresponds to a free particle moving on a Riemannian manifold with metric
tensor [99]:

gαβ(q) ≡ ε2[Mδαβ +Gαβ(q)]. (5.58)

There is an important particular case, where the complete Lagrangian (5.57)
just reduces to this kinetic energy. This happens when

• the eigenvectors |n〉 can be chosen real, which then nullify the vector
potential Aα(q),

• the bare potential V (q) and the Born-Oppenheimer potential En(q)
compensate each other, V (q) + En(q) = 0, or V (q) is zero from the
outset, while En(q) turns to zero, since the eigenvalues of the quantum
Hamiltonian Ĥ[q] do not depend on the coordinates q (though the
eigen-vectors do).
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Thus we focus on the purely kinetic Lagrangian

1

2
gαβ(q)q̇

αq̇β. (5.59)

Once we are going to exercise on the Riemannian geometry, we recover
for the velocities the explicitly contravariant notations [99] dqα. The metric
tensor gαβ is then naturally covariant. The Lagrangian (5.57) yields the
following equations of motion

q̈α + Γαµν q̇
µq̇ν = 0. (5.60)

This is the geodesic equation Dq̇α

ds2
= 0, where the covariant differential of any

vector Cα is defined as

DCα = dCα + ΓανµC
νdqµ, (5.61)

and where the connections Γαµν are related to the metric tensor via [99]:

Γαµν =
1

2
gασ (∂µgσν + ∂νgσµ − ∂σgµν) . (5.62)

Here gασ is the inverse of the metric tensor: gασgσβ = δαβ , and where δαβ is
the Kronecker delta-symbol.
The first important question is whether the resulting Riemannian manifold
is curved or not. In the case of a flat manifold it is possible to bring gαβ to a
diagonal and coordinate independent form by going to some new coordinates
q′. The criterion of this is the Riemannian curvature tensor Rµ

ναβ [99]. The
explicit formula for the covariant curvature tensor is [99]

Rαβ γ δ =
1

2

[
∂2
βγgαδ + ∂2

αδgβγ − ∂2
βδgαγ − ∂2

αγgβδ
]

+ gµν [Γν βγΓµαδ − Γν βδΓµαγ] , (5.63)

where Γµβγ = gµαΓ
α
βγ. Eq. (5.63) implies the following symmetry relations:

Rαβ γ δ = −Rβ αγ δ = −Rαβ δ γ = Rγ δ αβ. (5.64)

The manifold is not curved, if and only if

Rµ
ναβ = 0. (5.65)
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For any vector Cα, the curvature tensor determines the non-commutativity
degree of the covariant derivatives [99]:

Cα
;β ; γ − Cα

;γ ;β = −CσRα
σβγ, Cα

;β ≡
DCα

∂qβ
. (5.66)

It is known that the curvature tensor determines the local behavior of geodesics
with respect to perturbing their initial conditions [99]. Let xα(s, φ) be a fam-
ily of geodesics, where s is the time, and φ is a scalar continuous parameter
which distinguishes the members of the family. Thus by the definition of the
geodesic:

Duα

ds
= 0, uα ≡ ∂xα

∂s
. (5.67)

Let us introduce a vector vα ≡ ∂xα

∂φ
, which determines the deviation of

two geodesics with slightly perturbed initial conditions. This vector satisfies
the following Jacobi-Levi-Civita equation [99] 3:

D2vα

ds2
= Rα

βγδu
βuγvδ. (5.68)

The vector vα can be separated into two components vα = vα[1] + vα[2]: one

orthogonal to uα (uαv
α
[1] = 0) and another one parallel to uα. One can check

with help of (5.64, 5.67) that the orthogonal component vα[1] satisfies the

same equation (5.68), while the parallel component vα[2] satisfies the geodesic

equation (5.67).
Below we calculate the curvature for the simplest example of two classical

coordinates q1 and q2. The fact of having only two coordinates simplifies
the formulas for the curvature. Eqs. (5.64) imply that there is only one
independent component of the [covariant] curvature tensor, which can be
chosen to be R1212. All other components are either zero or equal to ±R1212.
Now Rαβ γ δ is expressed as

Rαβ γ δ =
R

2
[gαγgβ δ − gα δgβ γ], (5.69)

R = gαγgβδRαβ γ δ =
2R1212

g11g22 − g2
12

, (5.70)

3To derive Eq. (5.68) note that the very definitions of uα and vα imply vβ ∂βuα =
uβ ∂βvα, which amounts to uα

;β vβ = vα
;β uβ . Now calculate directly D2vα

ds2 recalling (5.66)
and noting that uα

;βuβ = 0 due to (5.67).
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where R is the scalar curvature.
The latter thus determines the whole curvature tensor for the present two-
dimensional situation. Substituting (5.69) into (5.68) and recalling that one
can take uαv

α = 0 in this equation, we get

D2vα

ds2
= −R

2
vα (uβu

β). (5.71)

Note that uβu
β does not depend on s; see (5.67).

We now set to calculate the curvature tensor Rµ
ναβ for the simplest pos-

sible example, where there are only two classical coordinates q1, q2 and the
quantum system is a two-level system. For further simplicity we assume that
the quantum Hamiltonian is real. This means that the Hamiltonian is a
linear combination of the first and third Pauli matrices:

Ĥ[q] =

(
q2 q1

q1 −q2

)
. (5.72)

The eigenvalues and eigenvectors of Ĥ read respectively

E+ =
√

(q1)2 + (q2)2 ≡ ρ, (ρ > 0) (5.73)

E− = −
√

(q1)2 + (q2)2 ≡ −ρ, (5.74)

|+〉 =
1√
2ρ

[
q1√
ρ−q2√
ρ− q2

]
, (5.75)

|−〉 =
1√
2ρ

[
q1√
ρ+q2

−
√
ρ+ q2

]
. (5.76)

It is seen that the adiabatic energies E+ and E− cross at ρ = 0.
We shall study in separate the case when the quantum system starts at

t = 0 from its ground state |−〉, and from the excited state |+〉.

Ground state

The metric reads form (5.58) and (5.73–5.76):

g11 = ε2
[
M +

(q2)2

4ρ5

]
, g22 = ε2

[
M +

(q1)2

4ρ5

]
,

g12 = g21 = −ε2
(
q1q2

4ρ5

)
. (5.77)
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The determinant and trace of the metric read

det[g] = ε4M

(
M +

1

4ρ3

)
, tr[g] = ε2

(
M +

1

4ρ3

)
. (5.78)

It is seen from (5.77–5.78) that both the determinant and the trace of gαβ
are positive; thus the eigenvalues are positive as well. This situation refers
to a usual classical mechanical particle, which is enforced to move on a two-
dimensional surface. For the scalar curvature we get from (5.62, 5.63, 5.70)
and (5.77–5.78)

R = − 3(1 + 16Mρ3)

2ε2Mρ2 (1 + 4Mρ3)2 . (5.79)

Thus R is strictly negative. Returning to (5.71) we see that since the metric
is positively defined [see (5.77–5.78)] uαuα is always non-negative. Then the
negativity of R in (5.79) implies that the geodesics are unstable with respect
to small perturbation of initial conditions, because (5.71) corresponds to a
harmonic oscillator with an inverted (though space-dependent) frequency4.
We see that R is singular at ρ = 0, where the adiabatic energy levels cross.

Excited state

Now we assume that the two-level quantum system starts its evolution from
the excited state |+〉. This case leads to more interesting possibilities, since
now the metric reads:

g11 = ε2
[
M − (q2)2

4ρ5

]
g22 = ε2

[
M − (q1)2

4ρ5

]
,

g12 = g21 = ε2
q1q2

4ρ5
, (5.80)

Hence the determinate and trace of g read, respectively,

det[g] = ε4M

[
M − 1

4ρ3

]
, tr[g] = ε2

[
M − 1

4ρ3

]
. (5.81)

4Such a local instability leads to chaos, if the (q1, q2)-manifold is compact. This is
not the case for the considered situation, though it is presumably not very difficult to
compactify the manifold, keeping the conclusion on the local instability of geodesics.
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Since the metric (5.80) relates to (5.77) with transformation M → −M
and ε→ iε (i2 = −1), we get for the scalar curvature directly from (5.79)

R =
3(16Mρ3 − 1)

2ε2Mρ2 (1− 4Mρ3)2 . (5.82)

When the particle moves sufficiently far from the origin q1 = q2 = 0 (i.e.,
when 4Mρ3 > 1), the metric is positively defined and the curvature is posi-
tive. According to (5.71) this means that the geodesics are not sensitive to
perturbations in initial conditions. At 4Mρ3 = 1 the metric tensor changes
its signature, so that for 4Mρ3 < 1 it has one positive and one negative
eigenvalue. At 4Mρ3 = 1 the scalar curvature is singular. We expect that
the adiabatic assumption will become problematic in the vicinity of the sin-
gularity, but it seems that it is possible for the particle to “tunnel” between
subspaces of different signature.

Since the metric tensor is not positively defined for 4Mρ3 < 1, (5.71, 5.82)
show that for 1

4
< 4Mρ3 < 1 the geodesics with initial condition uαu

α < 0
can become unstable5.

For even smaller values of ρ with 16Mρ3 < 1 the curvature becomes
negative. Now the unstable geodesics have uαu

α > 0, while those with
uαu

α < 0 are (at least locally) stable.
It is thus seen that the initial ground versus the excited state of the quantum
system produces rather different dynamic behavior for the classical system.

5.6 Third order post-adiabatic force

We now turn to study the post-adiabatic force at the order ε3. The cal-
culations here are more involved, though their general pattern—employing
the adiabatic perturbation theory and then reconstructing the effective La-
grangian—remains the same.
In order to calculate the third-order post-adiabatic force given by (5.29), we
have to calculate two terms of (5.29) namely, 〈φn|H|φn〉−En =

∑
k
′∆kn|ckn|2

and ε=〈∂µφn|φ̇n〉 up to the third order in ε.

5In the General Theory of Relativity uαuα < 0 is prohibited by causality; for massive
particles uαuα > 0 and can be normalized to uαuα = 1, while for photons uα

u = 0 [99].
However, for the present classical theory with a well-defined global time s nothing prohibits
us to consider the class of geodesics with uαuα < 0.
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Employing (5.23) we see that |ckn|2 in the third order of ε reads

|ckn|2 = 2ε3<{c[2]
kn c

[1]∗
kn }. (5.83)

Inserting (5.83) into the last expression of the post-adiabatic force (5.29) for
the third-order correction we get

∂µ[〈φn|Ĥ(s)|φn〉−En] = ∂µ
∑

k

′
∆kn|ckn|2 = 2ε3∂µ

∑

k

′
∆kn<{c[2]

kn c
[1]∗
kn }. (5.84)

Now let us calculate the other part of the general expression of the third-
order post-adiabatic force given by ε=〈∂µφn|φ̇n〉 for the third-order correc-
tion:

2ε=〈∂µφn|φ̇n〉 = 2
d

ds
={〈∂µn|n2〉}+ 2∂µ={〈n2|ṅ〉}+ 2={〈∂µn1|ṅ1} . (5.85)

Then the expression for the third-order force reads

F
[3]
µ

2
= ∂µ

∑

k

′
∆kn<{c[2]

kn c
[1]∗
kn }+

d

ds
=〈∂µn|n2〉+ ∂µ=〈n2|ṅ〉+ =〈∂µn1|ṅ1〉.

(5.86)
Inserting

|n2〉 = c[2]
nn|n〉+

∑

k

′
c
[2]
kn|k〉, (5.87)

For the expression =〈n2|ṅ〉 we get

=〈n2|ṅ〉 = ={
c[2]∗
nn 〈n|ṅ〉

}
+

∑

k

′
∆nk<

{
c
[2]
knc

[1]∗
kn

}
, (5.88)

where we used

c
[1]∗
k 6=n = i

〈ṅ|k〉
∆nk

(5.89)

in obtaining (5.88).
Therefore the third term of (5.86) reads

∂µ=〈n2|ṅ〉 = ∂µ=
{
c[2]∗
nn 〈n|ṅ〉

}− ∂µ
∑

k

′
∆kn<

{
c
[2]
knc

[1]∗
kn

}
, (5.90)
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where we used ∆nk = −∆kn.
Then the third order post-adiabatic force reads

F
[3]
µ

2
=

d

ds
=〈∂µn|n2〉+ ∂µ={c[2]∗

nn 〈n|ṅ〉}+ =〈∂µn1|ṅ1〉. (5.91)

Now we work out =〈∂µn|n2〉. This can be done by inserting the expression
for |n2〉, given by 5.87, in the first term of the above expression for the third-
order force. Having (5.87) in mind the first term of (5.91) can be written
as

d

ds
=〈∂µn|n2〉 = ={

c[2]
nn〈∂µṅ|n〉

}
+ ={

c[2]
nn〈∂µn|ṅ〉

}

+=
{(

d

ds
c[2]
nn

)
〈∂µn|n〉

}
+

d

ds
=

{∑

k

′
c
[2]
kn〈∂µn|k〉

}
. (5.92)

Since 〈∂µn|n〉 is purely imaginary, we get

d

ds
=〈∂µn|n2〉 = ={

c[2]
nn〈∂µṅ|n〉

}
+ ={

c[2]
nn〈∂µn|ṅ〉

}

+=〈∂µn|n〉<
{
d

ds
c[2]
nn

}
+

d

ds
=

{∑

k

′
c
[2]
kn〈∂µn|k〉

}
. (5.93)

The second term of (5.87) reads

∂µ=
{
c[2]∗
nn 〈n|ṅ〉

}
= −∂µ=

{
c[2]
nn〈ṅ|n〉

}

= −={(
∂µc

[2]
nn

) 〈ṅ|n〉}−={
c[2]
nn〈∂µṅ|n〉

}−={
c[2]
nn〈ṅ|∂µn〉

}
. (5.94)

Adding (5.92) and (5.94) together yields

d

ds
=〈∂µn|n2〉+ ∂µ=

{
c[2]∗
nn 〈n|ṅ〉

}
= 2=〈∂µn|ṅ〉<

{
c[2]
nn

}

+=〈∂µn|n〉 d
ds
<{

c[2]
nn

}−=〈ṅ|n〉∂µ<
{
c[2]
nn

}
+

d

ds
=

{∑

k

′
c
[2]
kn〈∂µn|k〉

}
,

(5.95)

where we noticed 〈ṅ|n〉 is purely imaginary. Thus

={
(∂µc

[2]
nn)〈ṅ|n〉

}
= =〈ṅ|n〉∂µ<

{
c[2]
nn

}
. (5.96)
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We also used the fact that

={
c[2]
nn〈∂µn|ṅ〉

}−={
c[2]
nn〈ṅ|∂µn〉

}
= 2=〈∂µn|ṅ〉<

{
c[2]
nn

}
. (5.97)

Let us recall the normalization condition in the second order of ε:

<{
c[2]
nn

}
= −1

2
〈n1|n1〉. (5.98)

Thus, the third-order post-adiabatic force reads

F [3]

2
= −={〈∂µn|ṅ〉} 〈n1|n1〉 − 1

2
= [〈∂µn|n〉] d

ds
〈n1|n1〉 (5.99)

− 1

2
= [〈n|ṅ〉] ∂µ〈n1|n1〉+ =〈∂µn1|ṅ1〉

+
d

ds
=

{∑′
k
c
[2]
kn〈 ∂µn|k〉

}
.

In order to simplify (5.99) we first work out the terms containing |n1〉. Let

us recall the expression for |n1〉 and c
[2]
k 6=n from the previous chapter:

|n1〉 = c[1]
nn|n〉+ |n⊥1 〉, (5.100)

c
[2]
k 6=n = c[1]

nnc
[1]
k 6=n + c̃

[2]
k 6=n, (5.101)

where |n⊥1 〉 and c̃
[2]
k 6=n are given by

|n⊥1 〉 =
∑

k

′
c
[1]
kn|k〉, c

[1]
kn = −i〈k|ṅ〉

∆nk

, (5.102)

and

c̃
[2]
k 6=n = (5.103)

i

∆nk

[
c
[1]
kn

(
〈n|ṅ〉 − 〈k|k̇〉

)
− d

ds

(
c
[1]
k 6=n

)
+

∑′
l(6=k)

c
[1]
ln 〈k̇|l〉

]
.

We also notice that

〈n1|n1〉 = |c[1]
nn|2 + 〈n⊥1 |n⊥1 〉, (5.104)

|ṅ1〉 =

(
d

ds
c[1]
nn

)
|n〉+ c[1]

nn|ṅ〉+
d

ds
|n⊥1 〉, (5.105)

〈∂µn1| =
(
∂µc

[1]∗
nn

) 〈n|+ c[1]∗
nn 〈∂µn|+ 〈∂µn⊥1 |. (5.106)
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Inserting (5.101), and (5.104)-(5.106) into (5.99) we notice that all the non-

local terms consisting c
[1]
nn are canceled out and we are left with

F
[3]
µ

2
= −〈n⊥1 |n⊥1 〉=〈∂µn|ṅ〉 −

1

2

d

ds

(〈n⊥1 |n⊥1 〉
)=〈∂µn|n〉

− 1

2
∂µ

(〈n⊥1 |n⊥1 〉
)=〈n|ṅ〉

+ =〈∂µn⊥1 |
d

ds
n⊥1 〉+

d

ds
=

[∑

k

′
c̃
[2]
kn〈∂µn|k〉

]
, (5.107)

where c̃
[2]
kn is given by (5.104).

The first three terms of (5.107) can be written in terms of the derivatives
of each of the expressions. Therefore the third-order post-adiabatic force
reads:

F [3]

2
= −1

2

d

ds

[〈n⊥1 |n⊥1 〉=〈∂µn|n〉
]− 1

2
∂µ

[〈n⊥1 |n⊥1 〉=〈n|ṅ〉
]

+
d

ds

[
<

(∑

k

′ 〈∂µn|k〉〈k|ṅ〉
∆2
nk

)
=〈n|ṅ〉

]
+ =〈∂µn⊥1 |ṅ⊥1 〉

+
d

ds
=

{∑

k

′
(
− i

∆nk

d

ds

[
c
[1]
kn

]
+

i

∆nk

∑

l

′
c
[1]
ln 〈k̇|l〉

)
〈 ∂µn|k〉

}
,

(5.108)

where we have used i
∆nk

c
[1]
k 6=n = 1

∆2
nk
〈k|ṅ〉 in simplifying the last term of

(5.107) such that the term −〈k|k̇〉c[1]
k 6=n in the expression (5.104) is absorbed

in the summation over the index l and the condition l 6= k is removed.

Defining

|n⊥1 〉 = −iq̇α|Nα〉 |Nα〉 def=
∑

k

′ 〈k|∂µn〉
∆nk

|k〉, (5.109)

and inserting this expression for |n1〉 into the first three terms of the expres-
sion (5.108), after some algebra it is straight forward to see that those terms
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can be generated by a Lagrangian

−1

2

d

ds

[〈n⊥1 |n⊥1 〉=〈∂µn|n〉
]− 1

2
∂µ

[〈n⊥1 |n⊥1 〉=〈n|ṅ〉
]

+
d

ds

[
<

(∑

k

′ 〈∂µn|k〉〈k|ṅ〉
∆2
nk

)
=〈n|ṅ〉

]
=

(
d

ds

∂

∂q̇µ
− ∂

∂qµ

)
1

3
hαβγ q̇αq̇β q̇γ, (5.110)

where

hαβγ =
1

2
=〈n|∂γn〉<〈Nα|Nβ〉 (5.111)

+
1

2
=〈n|∂αn〉<〈Nγ|Nβ〉+

1

2
=〈n|∂βn〉 〈Nα|Nγ〉.

hαβγ is symmetric with respect to any permutation of indices α, β and γ, so
that

1

3
hαβγ q̇αq̇β q̇γ =

1

2
=〈n|∂γn〉<〈Nα|Nβ〉 q̇αq̇β q̇γ. (5.112)

Working out the term =〈∂µn⊥1 |ṅ⊥1 〉 in the expression (5.108) for the third
order post-adiabatic force yields

=〈∂µn⊥1 |ṅ⊥1 〉 = =〈∂µNβ|Nα〉q̈αq̇β + =〈∂µNβ|∂γNα〉 q̇αq̇β q̇γ. (5.113)

It is straight forward to show that the last term of (5.108) can be written
as

d

ds
=

{∑

k

′
(
− i

∆nk

d

ds

[
c
[1]
kn

]
+

i

∆nk

∑

l

′
c
[1]
ln 〈k̇|l〉

)
〈 ∂µn|k〉

}

=
d

ds
={−i〈Nµ|ṅ⊥1 〉

}
= − d

ds
[=〈Nµ|Nα〉 q̈α + =〈Nµ|∂βNα〉 q̇αq̇β]

=
d3qα
ds3

=〈Nα|Nµ〉+ q̈αq̇β={∂β〈Nα|Nµ〉+ 〈∂βNα|Nµ〉+ 〈∂αNβ|Nµ〉}
+q̇αq̇β q̇γ={∂γ〈∂βNα|Nµ〉} . (5.114)
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combining (5.113) and (5.114) together we get

d

ds
=

{∑

k

′
(
− i

∆nk

d

ds

[
c
[1]
kn

]
+

i

∆nk

∑

l

′
c
[1]
ln 〈k̇|l〉

)
〈 ∂µn|k〉

}

+=〈∂µn⊥1 |ṅ⊥1 〉 =
d3qα
ds3

=〈Nα|Nµ〉
+q̈αq̇β={∂β〈Nα|Nµ〉+ 〈∂βNα|Nµ〉+ 〈∂αNβ|Nµ〉+ 〈∂µNβ|Nα〉}
+q̇αq̇β q̇γ={∂γ〈∂βNα|Nµ〉+ 〈∂µNβ|∂γNα〉} . (5.115)

working out these two terms of the third-order post-adiabatic force, after
some algebra, we see that it can be produced by the following Lagrangian

d

ds
=

{∑

k

′
(
− i

∆nk

d

ds

[
c
[1]
kn

]
+

i

∆nk

∑

l

′
c
[1]
ln 〈k̇|l〉

)
〈 ∂µn|k〉

}

+=〈∂µn⊥1 |ṅ⊥1 〉 =[
− d2

ds2

∂

∂q̈µ
+

d

ds

∂

∂q̇µ
− ∂

∂qµ

](
−zαβ q̈αq̇β +

1

3
λαβγ q̇αq̇β q̇γ

)
, (5.116)

where we define the antisymmetric tensor zαβ as

zαβ
def
=

1

2
=〈Nβ|Nα〉, (5.117)

and the symmetric tensor λαβγ as

λαβγ
def
=

1

4
=

{
〈∂βNγ|Nα〉+ 〈∂βNα|Nγ〉+ 〈∂αNγ|Nβ〉

+ 〈∂αNβ|Nγ〉+ 〈∂γNα|Nβ〉+ 〈∂γNβ|Nα〉
}

=
6

4
=〈∂αNβ|Nγ〉. (5.118)

In obtaining the above result we employed:

=〈∂βNµ|Nα〉 =
1

2
=〈∂βNµ|Nα〉+

1

2
=〈∂βNµ|Nα〉

=
1

2
=〈∂βNµ|Nα〉 − 1

2
=〈Nα|∂βNµ〉

=
1

2
=〈∂βNµ|Nα〉+

1

2
=〈∂βNα|Nµ〉+

1

2
∂β=〈Nµ|Nα〉. (5.119)
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Combining the above results for the last two terms of the third-order post-
adiabatic force (5.116) with those we got for the firs three terms given by
(5.110) yields

F
[3]
µ

2
=

[
− d2

ds2

∂

∂q̈µ
+

d

ds

∂

∂q̇µ
− ∂

∂qµ

](
−zαβ q̈αq̇β +

1

3
[hαβγ + λαβγ] q̇αq̇β q̇γ

)
.

(5.120)

Thus the third-order post-adiabatic force is purely Lagrangian though con-
taining higher-order derivatives.6 We can write the third order Lagrangian
as

L[3][q, q̇, q̈] = ε3 [fαβγ(q)q̇αq̇β q̇γ − zαβ(q)q̈αq̇β] , (5.121)

where fαβγ(q) is defined as

fαβγ(q) =
1

2
={〈n|∂γn〉〈Nβ|Nα〉+ 〈∂γNβ|Nα〉}. (5.122)

It is seen that besides the expected third-order polynomial in the velocities
fαβγ q̇αq̇β q̇γ, the third-order Lagrangian L[3] contains a linear dependence on
the accelerations q̈α. The corresponding coupling matrix zαβ(q) is antisym-
metric zαβ(q) = −zβα(q) as it should be, since any term φαβ q̈αq̇β with a
symmetric φαβ = φα, can be reduced (up to a total differential in time) to a
third-order polynomial in the velocities.

The total Lagrangian describing the classical system including the higher-
order terms up to ε3, L3[q, q̇, q̈], will include the previous order post-adiabatic
Lagrangians and the bare classical Lagrangian,

L3[q, q̇, q̈] = −V (q)− En(q) + εAα(q)q̇α +
ε2

2
[Mδαβ +Gαβ(q)]q̇αq̇β

+ε3 [fαβγ q̇αq̇β q̇γ − zαβ q̈αq̇β] , (5.123)

6Let we are given a classical system with action
∫ S

0
dsL[ q̇(s), q(s) ], where L is the

Lagrangian, q is the vector of (generalized) coordinates, and q̇ = dq
ds . The Euler-

Lagrange variational equations of motion d
ds

∂L
∂q̇µ

− ∂L
∂qµ

= 0, are obtained when vary-
ing the action over the the coordinate-path q(s) assuming that the end-points are
fixed: δq(0) = δq(S) = 0. This well-known set-up has a straightforward generaliza-
tion for a Lagrangian L[ q̈(s), q̇(s), q(s) ] that depend on the acceleration [or more gen-
erally on higher-order derivatives of coordinates]. The corresponding Euler-Lagrange
equations of motion read: d

ds
∂L
∂q̇µ

− ∂L
∂qµ

− d2

ds2

[
∂L
∂q̈µ

]
= 0, where now we assume that

δq(0) = δq(S) = δq̇(0) = δq̇(S) = 0.
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while the equations of motion it generates is [see Footnote 6]

[
d

ds

∂

∂q̇µ
− d2

ds2

∂

∂q̈µ
− ∂

∂qµ

]
L3[q, q̇, q̈] = 0. (5.124)

These equations of motion contain third-order time-derivatives q
(3)
α of coor-

dinates, i.e., they can be written as

2ε3zαβq
(3)
β = ϕα(q, q̇, q̈). (5.125)

Thus when the determinant of the matrix zαβ(q) is non-zero—and this is
generically the case for even number of classical coordinates— the third-
derivatives can be expressed through (q, q̇, q̈). This means that the dynamics
described by (5.124) needs three independent sets of initial conditions at the
initial (slow) time si = εti:

( q(si), q̇(si), q̈(si) ). (5.126)

For an odd number K of classical coordinates, the determinant of zαβ van-
ishes, since zαβ is anti-symmetric. Generically, the matrix zαβ(q) will only
have one eigenvalue equal to zero. Let us denote the related eigenvector by
y

[0]
α , where

y[0]
α zαβ = 0, (5.127)

and let y
[γ]
α with γ = 1, . . . , K − 1 be the eigenvector of zαβ with non-zero

eigenvalues λ[γ]. Eq. (5.125) produces

2ε3λ[γ] y
[γ]
β q

(3)
β = y[γ]

α ϕα(q, q̇, q̈), for γ = 1, . . . , K − 1, (5.128)

0 = y[0]
α ϕα(q, q̇, q̈). (5.129)

Now the initial conditions ( q(si), q̇(si), q̈(si) ) at the initial time si cannot
be anymore taken independently from each other, because (5.129) imposes a
constraint on them. Provided that ( q(si), q̇(si), q̈(si) ) satisfy this constraint,

(5.128) gives K − 1 equations for components of q
(3)
α . Another equation for

components of q
(3)
α can be obtained by differentiating (5.129) over time t and

taking t→ ti.
The construction described by (5.128), and (5.129) is conceptually not

very different from its simplest analog: Consider two classical degrees of
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freedom with coordinates x and q. Let the corresponding Lagrangian be
q̇2

2
− V (q, x). Note that this Lagrangian does not contain the kinetic energy

for the x-particle, i.e., the kinetic energy matrix is degenerate. The Lagrange
equations of motion read: q̈ = −V ′

q (q, x) and V ′
x(q, x) = 0. The second

equation is a constraint on admissible values of q and x at any time. In
particular, it confines their initial values. Now the initial conditions amount
to q(si), q̇(si) and x(si) provided that the constraint is satisfied. One is
not free in choosing the initial velocity ẋ(si). The latter is determined from
differentiating the constraint over time s and taking s→ si.

Before closing this discussion on the initial conditions let us note the fol-
lowing aspect. The quantum-classical equations (5.2, 5.5 ) have the following
well-defined initial conditions at the initial moment t = 0 of the fast time t:
|Ψ(0)〉, q(0) and q̇(0). On the other hand, as we saw above, the autonomous
classical dynamics starts to depend on higher-derivatives of the coordinate(s).
The reason of this difference is that the initial conditions of the autonomous
classical dynamics are to be imposed at an initial value si = εti of the slow
time, where ti should be still sizable larger than t = 0. The difference be-
tween the original initial conditions of the slow variables and their effective
initial conditions after eliminating the fast variables is known as the initial
slip problem. It is well recognized in theories dealing with elimination of fast
variables [107–109]. There also exist more or less regular procedures of relat-
ing the original initial conditions to effective ones [107–109]. In this work, we
are interested in autonomous classical dynamics for sufficiently large (fast)
times, where the precise relation with the original initial conditions is not
directly relevant.

5.6.1 Kinematics

The dependence of L3[q, q̇, q̈] on accelerations implies conceptual changes in
the kinematics of the classical system, as we now proceed to show.

First we note that the momentum of the classical system is defined via
the response of L3 to an infinitesimal coordinate shift qµ → qµ + δqµ, where
δqµ does not depend on time [99]:

δL3 =
∂L3

∂qµ
δqµ = δqµ

d

ds

[
∂L3

∂q̇µ
− d

ds

∂L3

∂q̈µ

]
, (5.130)
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5.6. Third order post-adiabatic force

where we used (5.124). Thus the momentum is defined as

pµ =
∂L3

∂q̇µ
− d

ds

∂L3

∂q̈µ
, (5.131)

implying that the equations of motion can be written as ṗµ = ∂L3

∂qµ
.

If L3 would not depend on qµ (which is generically not the case), the
corresponding momentum pµ would be conserved in time. We note that pµ
consists of the usual part ∂L3

∂q̇µ
and the anomalous part − d

ds
∂L3

∂q̈µ
that comes

solely from the dependence of the Lagrangian on the acceleration. Using
(5.123) we get for the momentum

pµ = εAµ + ε2[Mq̇µ +Gµαq̇α] + 3ε3f
(sym)
µαβ q̇αq̇β

+ 2ε3zµαq̈α + ε3 [∂γzµβ] q̇γ q̇β,

(5.132)

where f
(sym)
αβγ , defined as

f
(sym)
αβγ

def
=

1

6

∑
Π

fΠ[αβγ], (5.133)

is the completely symmetrized expression (5.122); the sum is taken over
all six permutations Π of three elements. It is seen that the expression
for the momentum does depend linearly on the acceleration. One half of
the acceleration-dependence comes from usual part ∂L3

∂q̇µ
, while another half

comes through the anomalous part − d
ds
∂L3

∂q̈µ
, resulting altogether in 2ε3zµαq̈α

in (5.132).
The energy corresponding to the Lagrangian L3[q, q̇, q̈] is obtained via

looking at the total time-derivative of L3[q, q̇, q̈]:

d

ds
L3[q, q̇, q̈] =

∂L3

∂qµ
q̇µ +

∂L3

∂q̇µ
q̈µ +

∂L3

∂q̈µ

d3qµ
ds3

, (5.134)

where we noted that L3[q, q̇, q̈] does not have any explicit time-dependence.
Employing equations of motion ṗµ = ∂L3

∂qµ
, (5.134) results into energy conser-

vation:
dE

ds
= 0, E ≡ pµq̇µ +

∂L3

∂q̈µ
q̈µ − L3. (5.135)
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Thus the energy of the classical particle reads:

E =
ε2

2
[Mδαβ +Gαβ]q̇αq̇β + 2ε3fαβγ q̇αq̇β q̇γ + 2ε3zµαq̈αq̇µ + V (q) + En(q).

(5.136)

Note that the vector-potential Aα(q) expectedly drops out from the ex-
pression of energy [99]. However, the acceleration-dependent part of the
Lagrangian does contribute directly into the energy. In fact, the whole third-
order Lagrangian (5.121) is multiplied by a factor 2 and enters into the energy
expression.

Let us now turn to the generalized angular momentum tensor, which is
defined via the response of L3 to an infinitesimal rotation (i.e., a distance
conserving linear transformation) [99]: qµ → qµ+ωµσδqσ, where ωµσ = −ωσµ:

δL3 = ωαβ

[
∂L3

∂qα
qβ +

∂L3

∂q̇α
q̇β +

∂L3

∂q̈α
q̈β,

]
= ωαβ

d

ds

[
pαqβ +

∂L3

∂q̈α
q̇β

]
,

(5.137)

where we again used (5.124). The full angular momentum tensor is now
defined as [recalling ωµσ = −ωσµ] :

Mαβ = pαqβ − pβqα +
∂L3

∂q̈α
q̇β − ∂L3

∂q̈β
q̇α (5.138)

= Lαβ + Sαβ, (5.139)

so that when L3 is rotationally invariant, Mαβ is conserved in time. One
part of this tensor is the usual orbital momentum Lαβ = pαqβ − pβqα. The
remainder—non-orbital momentum, or spin— arises due to the dependence
of the Lagrangian on the accelerations, and it is a second-order polynomial
over the velocities:

Sαβ =
∂L3

∂q̈α
q̇β − ∂L3

∂q̈β
q̇α (5.140)

= ε3[ zβγ q̇γ q̇α − zαγ q̇γ q̇β ]. (5.141)

In the simplest two-coordinate situation S12 = −S21 = ε3z21(q̇
2
1 + q̇2

2), which
means that the spin tensor is proportional to the velocity square.
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5.6. Third order post-adiabatic force

Zitterbewegung effect

From the expression of the momentum given by (5.132) and the expression for
the spin given by (5.140,5.141) and using the fact that zαβ is antisymmetric,
we can write

pµ =
∂L3

∂q̇µ
+

d

ds

[
Sαµq̇α
q̇2

]
, q̇2 ≡ q̇β q̇β, (5.142)

which means that the anomalous part pµ − ∂L3

∂q̇µ
of the momentum is driven

by the time-derivative of the velocity-projected spin-tensor.

An expression similar to (5.142)—relating the momentum to the pro-
jected time-derivative of the spin—appears in the (relativistic) Dirac elec-
tron theory [110]. There the fact that the total angular momentum is a sum
of the orbital part and the spin part, as well as the fact that the velocity
and the momentum are different objects and are not simply proportional to
each other via the mass, are the consequence of the relativistic invariance
for the electron. The very effect of the spin time-derivative contributing into
the momentum was named zitterbewegung, since for the free Dirac electron
this contribution brings in an additional oscillatory motion [110]. In a more
recent literature, the zitterbewegung effect is also derived via Lagrangians
containing the higher-order derivatives of coordinates [111,112].

There are, however, several aspects that distinguish (5.142) from the zit-
terbewegung effects already known in literature.

• First, we do not have a relativistic invariant theory; for us relation
(5.142) emerges due to the fact that the classical system is open.

• Second, we do not have to have the conservation of momentum and
of angular momentum for deriving (5.142). Both these quantities are
generically non-conserved in our situation (ultimately since the system
is open), but relation (5.142) still holds generally due to the specific,
anti-symmetric form (5.121) of the acceleration-dependent part of the
Lagrangian.

We close this part by emphasizing its main findings: due to interaction
with the fast quantum system the classical system gets a spin [non-orbital
angular momentum], which is related to its momentum via zitterbewegung
effect.
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5.6.2 Hamiltonian description

In this section we study the Hamiltonian description. Within the order ε2

the Hamiltonian description is straightforward. However, the third-order
dynamics has a non-trivial Hamiltonian structure, as seen below.

Let us first explicitly separate out the higher-derivative term of the La-
grangian given by (5.123). Thus we have

L3[q, q̇, q̈] = L3[q, q̇]− ε3zαβ q̈αq̇β. (5.143)

In general, we can introduce three sets of variables

q = (q1, . . . , qK), v = (v1, . . . , vK), π = (π1, . . . , πK), (5.144)

and instead of (5.143) introduce the following extended Lagrangian:

L[q, v, π] = L3(q, v)− ε3zαβ v̇αvβ + πα(q̇α − vα). (5.145)

It should be clear that if we treat q, v and π as coordinates, then the La-
grange equations generated by L[q, v, π] are equivalent to those generated by
L3[q, q̇, q̈]. At this point π is considered as a part of the overall set of coor-
dinates. It may be equivalently viewed as Lagrange multipliers. If L[q, v, π]
were not dependent on v̇—that is, L3[q, q̇, q̈] would not depend on q̈—we
would write the velocities v = v(q, π) as functions of the coordinates and
momenta, and end up with the usual Hamiltonian description with q and π
being the canonical coordinates and momenta, respectively. Though L[q, v, π]
does depend on v̇, it can be still related to a Hamiltonian in the following
way [113].

Once the triplet q, v, π is considered as coordinates, we introduce a sepa-
rate notation for it

Q = (Q1, . . . , Q3K) = (qα, vα, πα). (5.146)

Now the Lagrangian (5.145) reads

L[Q] = L3[Q] + Aa[Q]Q̇a, a = 1, . . . 3K, (5.147)

where
A[Q] = (πα, ε

3zβα, 0). (5.148)

Below we shall show that the expression L3[Q] plays the role of the Hamil-
tonian.

128



5.6. Third order post-adiabatic force

Eq. (5.147) generates the following Lagrange equations of motion:

Ωab(Q) Q̇b =
∂L3

∂Qa

, (5.149)

Ωab(Q)
def
=

∂Aa
∂Qb

− ∂Ab
∂Qa

. (5.150)

In block-matrix notations Ω reads

Ω =




0 Y I
−Y T Z 0
−I 0 0


 , (5.151)

where each element in the above matrix is a K × K matrix, with K being
the number of classical degrees of freedom:

Yαβ = ε3vγ∂αzγβ, Zαβ = −2ε3zαβ, Iαβ = δαβ, (5.152)

and where I is the K ×K unit matrix. Provided Z is invertible, the inverse
of Ω reads [block-matrix notations]

Ω−1 =




0 0 −I
0 Z−1 −Z−1Y T

I −Y Z−1 Y Z−1Y T


 . (5.153)

For an even K the matrix Z is generically invertible; as we discussed
before. In this case Ωab is invertible and antisymmetric. Moreover, from its
definition given by (5.150) we see that

∂

∂Qc

Ωab +
∂

∂Qb

Ωca +
∂

∂Qa

Ωbc = 0. (5.154)

Therefore it ensures that the Poisson brackets defined via Ωab does not change
in time [114]. In fact, Ωab defines a symplectic structure [114].
Then L3[Q] plays the role of the Hamiltonian.

Now for any two functions C(Q) and D(Q) the Poisson bracket is defined
as

{C(Q), D(Q)}PB = Ω−1
ab

∂C

∂Qa

∂D

∂Qb

. (5.155)

The equations of motion (5.149) can now be written as

Q̇a = {Qa, L3[Q] }PB. (5.156)
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In this case the Poisson brackets are non-linear. It is seen from (5.151, 5.155)
that zαβ and its derivatives define a non-trivial symplectic structure for the
system.

The matrix Z is not invertible for an oddK. The Hamiltonian description
in this case is still possible, but it requires more care in explicitly accounting
for constraints.

5.7 The Fourth order Lagrangian

In this section we discuss a specific example on the fourth-order Lagrangian.
Since the calculations now become very complicated, we shall restrict our-
selves to the situation where the classical system has just one single co-
ordinate q. For further simplicity we assume the quantum system has real
adiabatic eigenstates. In fact, the main purpose of this section is to illustrate
that the fourth-order Lagrangian again depends linearly on the highest-order
time-derivatives of the classical coordinate.

Following the same lines of calculation for the third order non-adiabatic
force presented in section 5.6, and assuming a single coordinate classical
system and real eigenstates for the quantum system, the non-adiabatic force
acting on the classical system in the fourth order is described by the following
Lagrangian

ε4F [4] = (5.157)(
d3

ds3

∂

∂q(3)
− d2

ds2

∂

∂q̈
+

d

ds

∂

∂q̇
− ∂

∂q

)
L[4][q, q̇, q̈, q(3)],

where

L[4][q, q̇, q̈, q(3)] = ε4
[
aq̇4 + bq̈q̇2 + wq̇q(3)

]
, (5.158)

where q(3) stands for the third order time derivative of q, and where L[4]

represents the fourth-order Lagrangian. We notice the same pattern in the
higher-order Lagrangian, i.e., that the dependence on the higher-order time
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derivatives q̈ and q(3) is linear. The coefficients a, b, and w are given as

a(q) =
∑′

k

|〈∂qN |k〉|2
∆nk

− 〈N |N〉〈∂qn|N〉, (5.159)

b(q) = −
∑′

k

|〈k|∂qn〉|2
∆2
nk

∂q[∆
−1
nk ], (5.160)

w(q) = −
∑′

k

|〈k|∂qn〉|2
∆3
nk

, (5.161)

where |N〉 is given by (5.109): |N〉 =
∑′

k
〈k|∂qn〉
∆nk

|k〉.
Then the total Lagrangian describing the one dimensional classical system

reads

L4[q, q̇, q̈, q
(3)] = −V (q)− En(q) +

ε2

2
(M +G)q̇2

+ ε4
(
aq̇4 + bq̈q̇2 + wq̇q(3)

)
, (5.162)

where the first and the third order terms vanish due to the assumption of
real eigenstates of the quantum system, and where a, b, and w are given by
(5.159)-(5.161) and G is defined as

G ≡ −2
∑′

k

〈n| d
dq
|k〉2

∆nk

. (5.163)

The kinematics of this Lagrangian can be developed along the same lines
as in the previous section and represent the similar pattern.

5.8 Summary

We have studied the post-adiabatic equations of motion for a slow classical
system which is coupled to a fast quantum system. The slow versus fast
motion is controlled by a small ratio ε of the characteristic times. The general
problem we addressed is to find an effective Lagrangian that describes the
dynamics of the classical system. The post-adiabatic reaction force is proved
to be Lagrangian up to the fifth order of ε. We conjecture that at every
order of ε the effective dynamics of the classical system can be derived from
a Lagrangian.

In the order ε0 the effective Lagrangian differs from the bare one by the
Born-Oppenheimer potential energy. In the first order correction the effective
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Lagrangian corresponds to a magnetic field, which is related to the geometric
phase [2].

In the order ε2 the effective Lagrangian gets an additional kinetic energy
term, which is a second-order polynomial over the classical velocities [3,100].
We showed that in the second order of ε, the motion generated by the effec-
tive classical Lagrangian can be mapped on to geodesic curves on a suitable
Riemannian manifold. Operating with the simplest possible example—two
classical coordinates interacting with a two-level quantum system—we show
that the Riemannian manifold is essentially curved solely due to the kinetic
energy generated by the fast quantum system. The scalar curvature is fre-
quently negative indicating that the classical trajectories [geodesic curves]
are unstable with respect to small variations of the initial conditions. The
metric tensor generated by the fast quantum system can change its signa-
ture as a function of the two coordinates. Physically this means a transition
from an Euclidean to pseudo-Euclidean manifold, emergence of a time-like
coordinate.

Within the order ε3 the effective Lagrangian linearly depends on the ac-
celerations of the classical system.

We argued that this result is important, because it provides a physically
well-motivated scenario for the emergence of higher-derivative Lagrangians
for open classical systems. This result should be contrasted to the usual open-
system approaches, which can also produce forces depending on higher-order
derivatives (e.g., the Abraham-Lorentz force in electrodynamics), but those
forces are dissipative (non-Lagrangian).

The presence of higher-derivative terms can be tested by essential influ-
ences they bring on the kinematics of the system. First, they modify initial
conditions; in our case this means that the trajectory of the classical system
on the slow (coarse-grained) time starts to depend on acceleration. Second,
the conserved energy of the slow classical motion does depend on the acceler-
ation. And third, the presence of higher-derivative terms naturally separates
the total angular momentum into the sum of orbital momentum and spin.
We show that this spin satisfies an exact analogue of the zitterbewegung
relation.
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APPENDIXA
Numerical illustration of initial state determination within

the Jaynes-Cummings model

In this appendix we give two concrete examples on the inversion of the matrix
M in (2.86).

• Let us assume that the average number of photons inside the cavity
is n̄ = 2, the coupling constant is g = 50 KHz, and the detuning
parameter ∆ = 10 KHz. Looking at Fig. 2.1(a) one sees that the
determinant is maximal at (approximately) τ = 20µs. (Recall that
the typical interaction time of a thermal atomic beam with the single
mode of the field is of the order of 100µs [30,33].) The elements of the
matrix M and the vector B are worked in section 2.5. Inserting all
these numbers into (2.80) - (2.85) one obtains

M−1|(∆=10KHz) =




15.183 5.59578 0.0456968
1.14077 −1.3668 −1.38923

1 1 0


 , (A.1)

B|(∆=10KHz) =



−0.0557631

2.05576
0.0411884


 . (A.2)
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Numerical illustration of initial state determination within the
Jaynes-Cummings model

• For the second example we take a larger detuning: n̄ = 2, g = 50 KHz
and ∆ = 100 KHz. The optima interaction time t = 300µs is read off
from Fig. 2.1(b) (the interaction time t ≈ 18µs gives somewhat smaller
determinant; see Fig. 2.1(b)). The numerical calculation of M−1 and
B produces:

M−1|(∆=100KHz) =




3.18085 1.23251 −1.15186
5.92052 −4.20194 −4.52702

1 1 0


 , (A.3)

B|(∆=100KHz) =



−0.0707962

2.0708
−0.119635


 . (A.4)
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APPENDIXB

Numerical illustration of maximum likelihood method

Below we give a numerical example, where the constraint (2.93) may or
may not be satisfied automatically. We take n̄ = 2, g = 50 KHz, ∆ =
100 KHz, and we have chosen the measurement time t = 300µs such that
the corresponding determinant D is maximized; see Fig. 2.1(b). Then we
construct the matrix C and the vector B in (2.93) [see (A.3, A.4)]. Neglecting
the probabilities of having more than three photons inside the cavity, we
assume that we are given the following six frequencies ν±1(m) (m = 1, 2, 3).
These frequencies are normalized according to

∑3
m=1

∑
a=±1 νa(m) = 1. For

simplicity we additionally assume that these frequencies are related to each
other as

ν1(1) = ν−1(1), ν1(2) = ν−1(2), ν1(3) = ν−1(3). (B.1)

For different values of ν1(1), ν1(2) and ν1(3) the numerical maximization of
(2.91) over pa(m) under the constraint (2.93) produced a result different from
(2.96) (

∑3
m=1

∑
a=±1 pa(m) = 1). An example follows: for

ν1(1) = 0.05, ν1(2) = 0.25, ν1(3) = 0.2 (B.2)

145



Numerical illustration of maximum likelihood method

ν1(1) = 0.05 ν1(1) = 0.15 ν1(1) = 0.25 ν1(1) = 0.30

ν1(2) = 0.05 δ = 0.00989504 δ = 0.0000494347 δ = 1.1102 ×10−16 δ = 0.00108428
ν1(2) = 0.15 δ = 0.00318619 δ = 0 δ = 0.00140516 δ = 0.0115233
ν1(2) = 0.25 δ = 0.0000717018 δ = 0 δ = 0.0336704 −
ν1(2) = 0.30 δ = 1.1102 ×10−16 δ = 0.0000961022 − −

Table B.1: The distance δ[ν||p] (given by (B.5)) between the set of frequencies
ν±1(m) and the set of corresponding probabilities p±1(m) obtained from maximiz-
ing Eq. (2.91) under the constraint Eq.(2.93). As in the main text, we assumed
that the frequencies satisfy Eq. (B.1). Thus the third frequency (not shown in the
table) is obtained from νa(3) = 1

2 − νa(1) − νa(2). The numerical values for the
involved parameters are: n̄ = 2 (the initial average number of photons), g = 50
kHz (coupling constant), ∆ = 100 kHz (detuning) and t = 300µs (the interaction
time). The matrix M and the vector B in this case are given by Eqs. (A.3), and
(A.4). Three places in the table are empty, because the corresponding frequencies
are unphysical (their sum is larger than one due to the assumption Eq. (B.1)

the probabilities are:

p1(1) = 0.05148118, p−1(1) = 0.05087771,

p1(2) = 0.24811809, p−1(2) = 0.254403426,

p1(3) = 0.19158279, p−1(3) = 0.20353679. (B.3)

Employing these probabilities in (2.95) and in (2.86) we get for the initial
spin density matrix:

ρ̂S =
1

2
[1− (0.187183) σ̂x − (0.942992) σ̂y + (0.275121) σ̂z] . (B.4)

In this context we need to quantify the difference between the input fre-
quencies νa(m) and the probabilities pa(m) which result from maximizing
(2.91) under the constraint (2.93). In particular, this difference will quantify
the relevance of the constraint (2.93) in maximizing (2.91). A good measure
of distance between two probability sets is provided by [52]

δ[ν||p] = 1−
∑
a=±1

3∑
m=1

√
νa(m)pa(m). (B.5)

This quantity is equal to its minimal value zero if (and only if) νa(m) = pa(m)
(i.e., when the constraint (2.93) holds automatically), and it is equal to its
maximal value 1 for νa(m)pa(m) = 0.

In Table B.1 we calculated the distance δ[ν||p] between the frequencies
and the corresponding probabilities. It is seen that in some cases this distance
is just equal to zero, while for other cases it is rather small.
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APPENDIXC
Properties of the back reaction factors Gr(t) and Fr(t)

In this appendix we work out the back reaction factor Fr(t) which appears
in the expression of the collective bath coordinate as Let us first

X̂(1)(t) =
∑

k

gk

[
â†k(0)ei(

kr
2

cos θk+ωkt) + âk(0)e−i(
kr
2

cos θk+ωkt)
]

− σ̂(1)
z

∑

k

g2
k

ωk
(1− cosωkt) (C.1)

− σ̂(2)
z

∑

k

g2
k

ωk
[cos(kr cos θk)− cos (ωkt+ kr cos θk)] . (C.2)

where we define

Gr(t)
def
=

∑

k

g2
k

ωk
[cos(kr cos θk)− cos (ωkt+ kr cos θk)] , (C.3)

G(t)
def
=

∑

k

g2
k

ωk
[1− cos (ωkt)] . (C.4)
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Properties of the back reaction factors Gr(t) and Fr(t)

In the same analogy, working out X̂
(2)
r (t) yields

X̂(2)
r (t) =

∑

k

gk

[
ei(−

kr
2

cos θk+ωkt)â†k(0) + e−i(−
kr
2

cos θk+ωkt)âk(0)
]

− σ̂(1)
∑

k

g2
k

ωk
[cos (kr cos θk)− cos (ωkt− kr cos θk)]

−σ̂(2)
z

∑

k

g2
k

ωk
(1− cosωkt) . (C.5)

Averaging Gr(t) over θk and denoting the result by Ḡr(t) amounts to

Ḡr(t) =
1

2

∑

k

g2
k

ωk

∫ π

0

sin θkdθk {cos [kr cos θk]− cos [kr cos θk + ωkt]} .
(C.6)

This integral can be straight forwardly performed and as a result we have

Ḡr(t) =
1

2

∑

k

g2
k

ωk

1

kr

[
sin kr − 1

2
sin(kr + ωkt)− 1

2
sin(kr − ωkt)

]
. (C.7)

We notice that Ḡr(t) is symmetric in r, i.e. Ḡ−r(t) = Ḡr(t).
Inserting the inverse dispersion relation

k =
ωk
c
, (C.8)

where c is the velocity of the oscillation modes, into (C.7) we have

Ḡ(t) =
∑

k

g2
k

2ω2
k t̃

{
2 sinωk t̃− sin

[
ωk(t+ t̃)

]
+ sin

[
ωk(t− t̃)

]}
, (C.9)

where t̃ is defined as
t̃
def
=

r

c
. (C.10)

Inserting the spectral density in Ḡr(t) yields

Ḡ(t) =

∫ ∞

0

dω
J(ω)

2ω2t̃

{
2 sinωt̃− sin

[
ω(t+ t̃)

]
+ sin

[
ω(t− t̃)

]}
. (C.11)

In the ohmic regime where we are interested in J(ω) reads

J(ω) = γωe−ω/Γ. (C.12)
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Thus Ḡr(t) reads

Ḡ(t) = γ

∫ ∞

0

dω
e−ω/Γ

2t̃ω

{
2 sin(ωt̃)− sin

[
ω(t+ t̃)

]
+ sin

[
ω(t− t̃)

]}
.(C.13)

We know that ∫ ∞

0

e−px sin(qx)
dx

x
= arctan(q/p), p > 0. (C.14)

Thus implying (C.14) into (C.15) we get

Ḡr(t) = (C.15)
γ

2t̃

{
2 arctan(Γt̃)− arctan

[
Γ(t+ t̃)

]
+ arctan

[
Γ(t− t̃)

]}
.

Integrating Ḡr(t) given by (C.15) over time yields the back reaction factor
Fr(t) in the ohmic regime as

F̄r(t) =

∫ t

0

ds Ḡr(s). (C.16)

The time integral of arctan[Γ(t± t̃)] can be taken using integrating by parts
as

∫ t

0

ds arctan[Γ(t± t̃)] = t arctan[Γ(t± t̃)]− I, (C.17)

where I is defined as

I
def
=

∫ t

0

ds
sΓ

1 +
[
Γ(s± t̃)

]2 . (C.18)

This integral can be easy taken by changing the variable s± t̃ to u. Thus

I =
1

2Γ
ln

(
1 +

[
Γ(t± t̃

]2

1 + (Γt̃)2

)
∓ t̃ arctan

[
Γ(t± t̃)

]
+ t̃ arctan(Γt̃). (C.19)

Substituting I in (C.17), for F̄r(t) we have

F̄r(t) =
γ

2t̃

{
1

2Γ
ln

(
1 +

[
Γ(t+ t̃)

]2

1 +
[
Γ(t− t̃)

]2

)
+ 2t arctan

(
Γt̃

)

− (t+ t̃) arctan
[
Γ(t+ t̃)

]
+ (t− t̃) arctan

[
Γ(t− t̃)

] }
. (C.20)
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Properties of the back reaction factors Gr(t) and Fr(t)

G(t) in the ohmic regime reads [66]

G(t) = γ

∫ ∞

0

dωe−ω/Γ [1− cos(ωt)]

= γΓ

(
1− 1

1 + Γ2t2

)
(C.21)

which then yields
F (t) = γ [Γt− arctan (Γt)] . (C.22)

Therefore χ(τ, t) which is defined as

χ(τ, t) = F (t) + F (τ)− F (t+ τ), (C.23)

reads

χ(τ, t) = γ [arctan (Γ(t+ τ))− arctan (Γt)− arctan (Γτ)] . (C.24)

In the limit Γt À 1 where the initial stat preparation is irrelevant, χ(τ, t)
reads

χ(τ, t) = −γ arctan (Γτ) . (C.25)

We also need to calculate χ̄r(τ, t)− F̄r(τ). This can be done by using the
fact that

χ̄r(τ, t)− F̄r(τ) = F̄r(t)− F̄r(t+ τ). (C.26)

Now implying (C.20) we get

χ̄r(τ, t)− F̄r(τ) =
γ

2t̃

{
− 2τ arctan

(
Γt̃

)

− τ
[
arctan

(
Γ(t+ τ + t̃)

)− arctan
(
Γ(t+ τ − t̃)

)]

− t
[
arctan

(
Γ(t+ t̃)

)− arctan
(
Γ(t− t̃)

)

− arctan
(
Γ(t+ τ + t̃)

)
+ arctan

(
Γ(t+ τ − t̃)

) ]

− t̃
[
arctan

(
Γ(t+ t̃)

)
+ arctan

(
Γ(t− t̃)

)

− arctan
(
Γ(t+ τ + t̃)

)− arctan
(
Γ(t+ τ − t̃)

) ]

+
1

2Γ
ln

(
1 +

[
Γ(t+ t̃)

]2

1 +
[
Γ(t− t̃)

]2

)

− 1

2Γ
ln

(
1 +

[
Γ(t+ τ + t̃)

]2

1 +
[
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. (C.27)
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We set ΓtÀ 1 to ensure that the final results are independent of the details
of the state preparation. Thus in this limit χ̄r(τ, t)− F̄r(τ) reads

χ̄r(τ, t)− F̄r(τ) = −γτc
r

arctan

(
Γr

c

)
. (C.28)

We notice that in the limit when r approaches to zero, (C.28) reads

lim
r→0

(
χ̄r(τ, t)− F̄r(τ)

)
= −γτΓ. (C.29)
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APPENDIXD

Properties of the quantum noise operator

In this appendix we calculate the correlator and the anitcorrelator of η̂r(t)
which is given by

η̂r(t) =
∑

k

gk

[
e

i
2
kr cos θk eiωktâ†k(0) + e−

i
2
kr cos θk e−iωktâk(0)

]
. (D.1)

Calculation of η̂r(t)η̂r(t
′) yields

η̂r(t)η̂r(t
′) =

∑

k,l

gkgl
[
e

ir
2

(k cos θk+l cos θl) ei(ωkt+ωlt
′) â†kâ

†
l

+ e
ir
2

(k cos θk−l cos θl) ei(ωkt−ωlt
′) â†kâl

+ e−
ir
2

(k cos θk−l cos θl) e−i(ωkt−ωlt
′) âkâ

†
l

+ e−
ir
2

(k cos θk+l cos θl) e−i(ωkt+ωlt
′) âkâl

]
, (D.2)
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Properties of the quantum noise operator

while η̂r(t
′)η̂r(t) reads

η̂r(t
′)η̂r(t) =

∑

k,l

gkgl
[
e

ir
2

(k cos θk+l cos θl) ei(ωkt+ωlt
′) â†l â

†
k

+ e−
ir
2

(k cos θk−l cos θl) e−i(ωkt−ωlt
′) â†l âk

+ e
ir
2

(k cos θk−l cos θl) ei(ωkt−ωlt
′) âlâ

†
k

+ e−
ir
2

(k cos θk+l cos θl) e−i(ωkt+ωlt
′) âlâk

]
. (D.3)

The commutation of η̂r(t) and η̂r(t
′) then can be derived by subtracting (D.3)

from (D.2)

[η̂r(t), η̂r(t
′)] = −2 i sign(t− t′)

∑

k

|gk|2 sin [ωk(t− t′)] , (D.4)

where sign(t− t′) is +1 when t > t′ and is −1 when t < t′. In deriving (D.4)
we implied the commutation rule between the bath creation and annihilation
operators

[
â†k, â

†
l

]
= 0 = [âk, âl] ,

[
âk, â

†
l

]
= δkl. (D.5)

We notice that the commutator of η̂r(t) and η̂r(t
′) is a complex number

independent of r.
Adding (D.2) and (D.3) together we get the anticommutator of the quan-

tum noise operator as the following

{η̂r(t), η̂r(t′)} =
∑

k,l

gkgl

[
e

ir
2

(k cos θk+l cos θl) ei(ωkt+ωlt
′)

{
â†k, â

†
l

}

+ e−
ir
2

(k cos θk−l cos θl) e−i(ωkt−ωlt
′)

{
âk, â

†
l

}

+ e
ir
2

(k cos θk−l cos θl) ei(ωkt−ωlt
′)

{
â†k, âl

}

+ e−
ir
2

(k cos θk+l cos θl) e−i(ωkt+ωlt
′) {âk, âl}

]
. (D.6)

Averaging (D.6) over the initial thermal state of the bath yields

〈{η̂r(t), η̂r(t′)}〉 = 2
∑

k

|gk|2
〈{

âk, â
†
k

}〉
cos [ωk(t− t′)] . (D.7)
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Since the bath initially in a Gibbs state

〈{
âk, â

†
k

}〉
= coth

(
β~ωk

2

)
. (D.8)

Thus we have

〈{η̂r(t), η̂r(t′)}〉 = 2
∑

k

|gk|2 coth

(
β~ωk

2

)
cos [ωk(t− t′)] . (D.9)

The time evolution of the quantum noise operator reads

Etη̂r(s) =
∑

k

gk

[
e

i
2
kr cos θk eiωksâ†k(t) + e−

i
2
kr cos θk e−iωksâk(t)

]
. (D.10)

Let us recall the expression for âk(t)

âk(t) = e−iωktâk(0) +
gk
2ωk

σ̂(1)
z e(i/2)kr cos θk

(
e−iωkt − 1

)

+
gk
2ωk

σ̂(2)
z e−(i/2)kr cos θk

(
e−iωkt − 1

)
. (D.11)

Inserting âk(t) and its complex conjugate, â†k(t), in (D.10) we get

Etη̂r(s) =∑

k

gk

[
e

i
2
kr cos θk eiωk(t+s)â†k(0) + e−

i
2
kr cos θk e−iωk(t+s)âk(0)

]

+σ̂(1)
z

∑

k

g2
k

ωk
{cos [ωk (t+ s)]− cos (ωkt)} (D.12)

+σ̂(2)
z

∑

k

g2
k

ωk
{cos [kr cos θk + ωk (t+ s)]− cos (kr cos θk + ωkt)} ,

which can be written as

Etη̂r(s) = η̂r(t+ s) +

σ̂(1)
z [G(t)−G(t+ s)] + σ̂(2)

z [Gr(t)−Gr(t+ s)] . (D.13)

In the same analogy for Etη̂−r(s) we get

Etη̂−r(s) = η̂−r(t+ s) +

σ̂(1)
z [G−r(t)−G−r(t+ s)] + σ̂(2)

z [G(t)−G(t+ s)] . (D.14)
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Summary

One of the main tasks in quantum information theory is to determine the
initial state of a qubit, i.e. a two-level system that can be described by
the Pauli matrices. Quantum state tomography provides a useful method
for this aim. Quantum state tomography is the process of reconstructing
the quantum state (density matrix) of an ensemble of quantum systems by
performing measurements on it. In order to be able to uniquely identify
the state, the measurements must be tomographically complete. That is,
the measured operators must form an operator basis in the Hilbert space of
the system, providing all the information about the state. However since in
general different operators do not commute with each other, one needs to
perform successive measurements of non-commuting observables to recover
the initial state of the system. In chapter 2 we show that one can completely
reconstruct the initial state of a qubit by means of simultaneous measurement
of commuting observables. The price to be paid is to introduce another
system called assistant of which the state is known. The assistant need
not necessarily be another qubit. It may for example also be a single near
resonance cavity mode. By letting the system and the assistant interact
with each other, and after a some time laps performing measurements on
one observable of each system it is possible to make a linear map between
the measurement results and the initial state of the qubit. The suggested
observables are the easiest ones to measure.

Usually it is very difficult to isolate a quantum system from its surround-
ing environment. Therefore studying the influence of the surrounding envi-
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ronment on the state of an open quantum system, i.e. a quantum system that
is interacting with its environment, is crucial in quantum processes. Depend-
ing on the type of environment, there are different conditions under which one
can study the influence of the environment on a quantum system. A group of
methods categorized by the name of system-bath interaction are based on the
assumption that the reaction of the system on its surrounding environment is
weak. One of the main consequences of this approach is the Langevin equa-
tion, which supplements the Newton equation of motion for the small system
by two additional forces: random conservative force and non-conservative
(i.e., non-Lagrangian), velocity-dependent friction force. Chapter 3 is de-
voted to specific application of this model with which one can study the
dynamics of the polarization of an open qubit. Two non-interacting qubits
are considered to be surrounded by a common environment. Inducing sharp
and strong pulses on one of them makes the polarization transfer from the
other one mediated by the common environment.

There is another set-up that allows studying the dynamics of an open
system. Here the essential condition is that the time scale of the evolution
of the quantum system is much faster than that of its classical environment.
This is one the most used set-ups for coupling quantum and classics vari-
ables. In chapter 4 we consider the Hamiltonian governing the evolution
of the quantum system as a function of slowly varying parameters of its
surrounding environment. By employing the adiabatic perturbation theory,
which is described in this chapter, we derive the state of the quantum system
beyond the adiabatic regime where the transition to other energy levels is
not forbidden.
In chapter 5 we turn our focus on the dynamics of the slow classical en-
vironment which experiences an average force exerted by the fast quantum
system. We show that the back reaction force in contrast to the system-bath
type of interaction is a conservative force that can be generated by a La-
grangian. The Lagrangian describing the situation depends on the classical
slow parameters, and their higher order time derivatives. Several interesting
aspects of the Lagranigan are discussed in chapter 5.
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Samenvatting

Een van de belangrijkste opgaven in quantuminformatietheorie is de begin-
toestand van een qubit, een twee-niveau systeem dat kan worden beschreven
door Pauli matrices, te bepalen. Quantum state tomography is een bruikbare
methode om dit doel te bereiken. Met dit proces kan de quantumtoestand (de
dichtheidsmatrix) van een ensemble van quantumsystemen gereconstrueerd
worden door verschillende herhaalde metingen te doen. Echter, commuteren
verschillende operatoren niet met elkaar dan moet men in principe meerdere
opeenvolgende metingen van niet-commuterende observabelen doen om de
begintoestand van het systeem te bepalen. In hoofdstuk 2 laten we zien hoe
de begintoestand van een qubit volledig gereconstrueerd kan worden door het
gelijktijdig meten van een aantal commuterende observabelen. Dit vereist de
hulp van een ander systeem, de zogenaamde assistent, die in een bekende
toestand is. De assistent kan bijvoorbeeld een andere qubit zijn of een bijna-
resonante mode van het fotonveld. Na een wisselwerking tussen het systeem
en de assistent gedurende een bepaalde tijd kunnen we zowel een observabele
van het systeem als van de assistent meten waardoor het mogelijk wordt om
de begintoestand van de qubit te bepalen. Dit is mogelijk doordat er een line-
aire afbeelding bestaat tussen de meetresultaten en de begintoestand van een
qubit. In tegenstelling tot quantumstatetomografie hoeven we geen metin-
gen te doen aan niet-commuterende observabelen, dit maakt onze methode
effectiever.

Een quantumsysteem dat wisselwerkt met de omgeving wordt een open
quantumsysteem genoemd. Om zo’n systeem te bestuderen is het van cru-
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ciaal belang om de invloed van de omgeving op de toestand van dit open
quantumsysteem te achterhalen. Er zijn twee manieren om een open quan-
tumsysteem te bestuderen. Een groep van methoden gecategoriseerd door
de zogeheten systeem-bad wisselwerking is gebaseerd op de veronderstelling
dat de reactie van het systeem op de omgeving zwak is. Hieruit volg dat de
dynamica van het systeem beschreven wordt door de Langevin vergelijking.
Deze vergelijking is analoog aan de Newton vergelijking voor de beweging
van een klein systeem maar deze beschrijft twee extra krachten: een wille-
keurige conservatieve kracht en een niet-conservatieve (niet-Lagrangiaanse),
snelheidsafhankelijke wrijvingskracht. In hoofdstuk 3 bestuderen we de spe-
cifieke toepassing van dit model, waarmee we de dynamica van de polarisatie
van een open quantumsysteem kunnen bepalen. We beschouwen twee niet-
interagerende spin-1

2
systemen die dezelfde omgeving hebben. Wanneer we

één van hen blootstellen aan scherpe en sterke pulsen zien we dat de polarisa-
tie van de andere wordt overgedragen op de eerste via de gemeenschappelijke
omgeving.

Er is een tweede groep van methoden die het mogelijk maakt om de dy-
namica van een open systeem te bestuderen. In dit geval is de essentiële
voorwaarde dat de tijdschaal van de evolutie van het quantumsysteem veel
kleiner is dan die van de klassieke omgeving. Dit is één van de meest gebruik-
te manieren om quantum en klassieke variabelen te koppelen. In hoofdstuk
4 beschouwen we de Hamiltoniaan die de ontwikkeling van het quantum-
systeem beschrijft als functie van de langzaam variërende parameters van
de omgeving. Door toepassing van de adiabatische perturbatietheorie, die
wordt beschreven in dit hoofdstuk, leiden we de toestand van het quantum-
systeem af buiten het adiabatische regime, waarin de overgang naar andere
energieniveaus niet verboden is.
In hoofdstuk 5 concentreren we ons op de dynamica van de langzame klas-
sieke omgeving. Deze wordt veroorzakt door een gemiddelde kracht die het
snelle quantumsysteem uitoefent op de omgeving. We laten zien dat, in te-
genstelling tot het geval van systeem-bad interacties, de terugkoppeling leidt
tot een conservatieve kracht die gegenereerd kan worden door een Lagrangi-
aan. De Lagrangiaan is een functie van de klassieke langzame parameters,
en hun hogere orde tijds afgeleiden. Verschillende interessante aspecten van
de Lagrangiaan worden besproken in hoofdstuk 5.
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Maryam, Sareh, Joãao, Shanna, Benoit, Jorn, Marianne, Peter, Guillaume,
Kyriakos, Milosz, Balázs, Thomas, Michiel, Ingmar, Sheer, Keiichi, Richard,
Wieteke, Gianni, Mounir, Jose, Jana, Duc, Jan-Joris: Thanks for conversa-
tions over coffee, social events, dinner parties, conferences, Wij meetings, or
any of the many other things for which I owe you my gratitude. Gerardo,
Clair, Shanna, Jelena, Milena, Balt, Joost, and Johannes I enjoyed sharing
my office with you.
And then there is the joy of having a physicist husband and spending some
time with his kind friends in Amolf. Patrick, Rammy, Timmo, Jochen,
Bergin, Paolo, Bernard, Merel, Behnaz thanks for lunch and dinner parties,
chats in Veldhoven meetings, defense ceremonies, and lately, the lunches I

161



Dankwoord

had with you in the science park.
The Iranian community in the Netherlands provided me so many joyful days
and nights. Shuan, Sara, Vahid, Andisheh, Saeed, Arash, Samira, Mahdi,
Kamran, Danial, Kamelia, Arash, Maryam, Nima, Sami, Nikoo, Ghazale I
enjoyed so many Iranian meals, concerts, exhibitions, BBQs, Aashs , and
many other occasions.
Many people were involved in easing my administration work. I would like to
specifically thank Yocklang, Marianne, Stef, Bianca, Lotty, Paula, Jonneke
and Sandra.
Shanna and Telli thanks for being my paranymphs. Dear Shanna thanks for
correcting my mistakes in Dutch, translating the invitation letter I wrote for
the Dutch embassy, and the summary of my thesis in Dutch.
I would like to thank my parents and my brother Aidin. Maman, and Baba
you nurtured and raised me in such a challenging environment. You have
always been supportive and inspiring by teaching me to see the half full of
the glass and encouraging me to keep up whenever I was disappointed.
Telli and Enrico thanks for your kind support. You did a great job by taking
care of Soline when both Sanli and I were busy with workshops and confer-
ences. I am also thankful to you for designing the cover page of my thesis.
Soline my dear sweet heart you are the source of my happiness and joy. I am
grateful for the fuller and firmer understanding of, and commitment to, life
you have given me.
And my dearest Sanli I am thankful for your patience, for your extolling me,
persuading me and helping me through my own weaknesses and hard times.
I am thankful to you my companion through life, including whatever hard-
ships, shortcomings, misunderstandings and difficulties which have arisen, or
may yet arise. Of such adversity is born strength and a greater appreciation
for the good times and joy we are also blessed to live through.

BA}{AR

162



Index

Adiabatic approximation
precision, 94

Adiabatic regime, 84, 89, 98
adiabatic decoupling, 85
adiabatic theorem, 84
Born-Oppenheimer approxima-

tion, 85
Born-Oppenheimer potential, 98,

99, 106, 107, 110
Assistant, 22

Coherent state, 38
disordered state, 30
two-level system, 24

pure state, 31
Atom-field coupling constant, 34
Atom-filed interaction Hamiltonian,

32
dipole approximation, 33
rotating wave approximation, 35

Back reaction, 53, 57, 58, 60, 73, 76
Bath’s collective coordinate, 55

Berry phase, 89
Bosonic annihilation operator, 33, 51
Bosonic creation operator, 33, 51

Characteristic time, 84

Electron spin resonance(ESR), 51

Final polarization, 73, 74, 76, 77
Force, 101, 105, 106

post-adiabatic, 106–109, 116–
119, 122, 130

Gaussian distribution, 44
Gaussian operator, 64
Geometric phase, 85

Berry phase, 98, 105
Gibbs state, 43, 61

Heisenberg equation, 56

Interpretations of state, 19
information, 19
Schrödinger, 19

163



Index

statistical, 19

Jaynes-Cummings model (JCM), 32
Detuning parameter, 35
JC Hamiltonian, 35
Rabi frequency, 40
Unitary time evolution operator,

36
Jaynes-Cummings model(JCM), 23

Lagrange equations, 100, 122, 124,
129

Lagrangian, 98–102, 107, 108, 110,
111

higher-order derivatives, 98, 100,
120–122, 127, 128, 130, 131

Liouville-von Neumann equation, 86

Maximum likelihood, 46, 145
Mean-field classical dynamics, 101,

102, 104

No-cloning theorem, 78
No-cooling principle, 67

Observable, 20
expectation value, 21

Observables, 86
Open quantum system, 84
Open quantum systems, 50

Hamiltonian, 50
reduced dynamics, 50

Pauli matrices, 21, 51
Poisson bracket, 98, 129, 130
Polarization transfer, 52
Post-adiabatic correction, 90, 92, 93

curvature, 99, 111–115, 132
effective magnetic field, 98, 108

metric tensor, 99, 110, 111, 115,
132

Riemannian manifold, 99, 110,
111, 132

Post-adiabatic corrections, 88
effective magnetic field, 99

Pulsed dynamics, 68
pulse coefficients, 70
pulse parameters, 70

quantum Langevin equation, 59
Quantum noise operator, 58
Quantum state, 20

density matrix, 20, 86
pure, 86

Quantum state tomography, 18, 21

Relaxation time, 54
T1, 54
T2, 54

Slow time, 105, 107, 110, 124
slow time, 88
Spectral function, 52
Spin cooling, 52
Spin tensor, 98, 100, 126, 127
Spin transfer, 76
Spin-boson model, 51, 52

bosonic bath, 51
Hamiltonian, 51

decoherence, 56, 65, 72, 76
interaction Hamiltonian, 52
inverse dispersion relation, 65
ohmic regime, 65

Stern-Gerlach, 22

the Jaynes-Cummings model (JCM)
Unitary time evolution operator,

37

164



Index

Thermal bath, 43
Time evolution, 56, 59–61, 68, 71
Time scale separation, 84
Time-dependent Hamiltonian, 84, 85,

87
projector, 87, 89

Time-dependent Schrödinger equa-
tion, 86, 101, 104

Time-ordering operator, 60
Time-scale separation, 84, 87, 88
Two-level system, 21, 50

density matrix, 22, 38
Hamiltonian, 51

polarization vector, 21
state

mixed, 24
pure, 24

Unitary time-evolution operator, 20,
24

Polar decomposition, 25

Wick’s theorem, 63

Zeeman Hamiltonian, 53
Zitterbewegung effect, 98, 100, 127

165




