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Abstract. We introduce a general method for designing tailored lattices of
magnetic microtraps for ultracold atoms on the basis of patterned permanently
magnetized films. A fast numerical algorithm is used to automatically generate
patterns that provide optimal atom confinement while respecting desired lattice
symmetries and trap parameters. The algorithm can produce finite and infinite
lattices of any plane symmetry; we focus specifically on square and triangular
lattices, which are of interest for future experiments. Typical trap parameters, as
well as the impact of realistic imperfections such as finite lithographic resolution
and magnetic inhomogeneity, are discussed. The designer lattices presented open
new avenues for quantum simulation and quantum information processing with
ultracold atoms on atom chips.
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1. Introduction

Ultracold atoms in periodic potentials are ideal systems for exploring a diverse range of new
physics, from the behavior of individual trapped atoms to rich many-body phenomena. At
the core of most of the recent experiments are optical lattices, produced by the interference
of intersecting laser beams [1]–[3], which have provided, for example, unprecedented access
to Josephson effects [4], squeezed states [5], low-dimensional quantum gases [6] and novel
quantum phases [7]. Particularly exciting applications arise in the context of quantum
simulation [8] and quantum information processing [9, 10], where atoms or molecules trapped
in periodic arrays hold great promise for the storage and manipulation of quantum information.
Lattices of magnetically trapped atoms or ensembles of atoms, interacting via a switchable
Rydberg excitation, are promising systems for the generation of cluster states and other
many-particle entangled states. They could thus provide a suitable platform for implementing
measurement-based quantum information processing schemes and for exploring fault-tolerant
schemes [11]–[14].

For practical devices, an attractive alternative to optical lattices is arrays of magnetic
microtraps produced by current-carrying wires or patterned magnetic films on atom
chips [15]–[21]. In principle, these magnetic lattices provide robust potentials for manipulating
atoms, combined with a high degree of simplicity and excellent design flexibility. For example,
inter-atomic distances are not restricted to certain fractions of optical wavelengths, allowing
for a trade-off between inter-site coupling strength and single-site resolution. However,
despite these advantages, only one-dimensional and a few two-dimensional lattices have
been successfully implemented or proposed to date. The problem of finding the necessary
magnetization pattern, or wire shape, that generates a desired set of atom traps currently relies
on experience and trial and error; what has been lacking is a general procedure for designing
lattices with arbitrary arrangements of traps with the desired properties.

New Journal of Physics 12 (2010) 103029 (http://www.njp.org/)

http://www.njp.org/


3

In this paper, we present a general method for creating tailored lattices of magnetic
microtraps by controlling the geometric patterns of perpendicularly magnetized planar films.
We employ a linear programming algorithm to find optimal single-layer magnetization patterns
that produce desired lattice symmetries with specified trap parameters. This algorithm is similar
to that previously used for the optimization of surface-electrode ion-trap lattices based on
radio-frequency (rf) electric fields [22]. It can be used to create a wide variety of designer-lattice
geometries with arbitrary trap arrangements, opening new avenues for simulating condensed
matter systems and for quantum information processing with ultracold atoms on atom chips. The
planar patterns generated by the algorithm are simple to fabricate and can be straightforwardly
implemented in existing experiments. Current-carrying wires tracing the edges of the optimized
patterns represent an alternative experimental implementation of our results [23].

In the first part of the paper we give an overview of the defining properties of magnetic
films (section 2.1) and Ioffe–Pritchard (IP) traps (section 2.2), followed by a description of
the linear programming algorithm (section 2.3). We then turn to the results of the algorithm
(section 3). To highlight the flexibility of the method we focus on two desirable lattices we
can generate: one square lattice and one triangular lattice, of interest for future experiments.
These lattices offer tight confinement and a high degree of symmetry. In section 4, we consider
typical trap parameters produced by these lattices and account for realistic imperfections such as
finite lithographic resolution and inhomogeneity that could arise during fabrication. Section 4.4
discusses how these microtrap lattices can be loaded.

2. Theoretical frame

2.1. Permanent magnetic microstructures

For our present purposes of designing magnetic potentials we consider single-layer patterned
magnetic thin films with perpendicular magnetization [19, 21]. There is an analogy between
such patterned magnetic films and an effective boundary current that would produce an
equivalent magnetic field [23]. We describe magnetic fields as gradients EB(Er)= −E∇9(Er) of
the scalar magnetic potential 9(Er) [23]. In particular, the scalar magnetic potential generated
above a thin (typical thickness δ � z) permanently out-of-plane magnetized layer of material in
the xy-plane P is

9(x, y, z)=
1

2
µ0δMz

∫
P

m(x ′, y′)G(x − x ′, y − y′, z) dx ′ dy′, (1)

where µ0 is the permeability of free space and Mz is the remanent out-of-plane magnetization.
Typical magnetic films achieve permanent out-of-plane magnetizations of the order of Mz ∼

106 A m−1, and typical film thicknesses are of the order of δ ∼ 100 nm [19] (giving a
magnetization current, or edge current in a wire implementation, of δMz ≈ 0.1 A); typical
coercivities are about 500–1000 G, such that any external fields applied to create the microtraps
do not cause remagnetization. The dimensionless function m(x, y) represents the spatial
dependence of the magnetization current (i.e. the product of remanent magnetization and film
thickness); we assume it to vary between 0 and 1 without loss of generality. The Green’s
function is

G(x, y, z)=
z

2π(x2 + y2 + z2)3/2
(2)
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and serves to propagate the planar Dirichlet boundary condition 9(x, y, 0)=
1
2µ0δMzm(x, y)

through space while satisfying Laplace’s equation ∇
29(Er)= 0.

We restrict our analysis to single-layer magnetization patterns with binary ‘step-like’
magnetization (or thickness) variations, as they are relevant for current experiments due to the
ease of patterning [19]. We note that the form of equation (1) is proportional to that which
propagates an electric potential from an electrode plane into space [24]. Further, the shape
constraints on a magnetization pattern are mathematically equivalent to those on rf electrodes
for ion trapping, as will be shown in section 2.2. This leads us to conclude that the optimization
algorithm of [22], recently used to generate electrode patterns for ion trapping, is also ideally
suited for designing new geometries of magnetic lattices for ultracold neutral atoms. In this
sense the main goal of the remainder of this paper is to find specific magnetization patterns
m(x, y) that produce magnetic lattices of optimal strength (i.e. the stiffest and deepest magnetic
traps for fixed magnetization current δMz), given a set of constraints on trap arrangement and
geometry.

Despite the mathematical analogies, there are several practical differences between the
designs of rf ion traps and magnetic microtraps. These differences concern the spatial derivatives
of the electric or magnetic scalar potentials necessary for producing stable trapping potentials.
In what follows we detail the conditions necessary for generating magnetic trapping geometries
of interest to current experiments.

2.2. Ioffe–Pritchard (IP) traps

Magnetostatic traps confine ultracold atoms of a specific hyperfine state |F,m F〉 through a
spatially varying Zeeman shift pseudo-potential [25]

V (Er)= m F gFµB‖ EB(Er)‖, (3)

where gF is the level’s Landé factor and µB is the Bohr magneton. Unlike for rf ion traps [22],
here the trapping minimum of V (Er) must be non-zero in order to prevent Majorana spin
flips [25]. IP-type traps are the simplest traps that guarantee this property.

Let us assume that we wish to trap atoms at several points Er (`) in space, with `= 1, 2, 3, . . .
indexing the various potential minima. Since the properties of each atom trap depend mostly on
the local shape of the magnetic field, we require precise ways of specifying this shape in order
to generate a desired lattice of atom traps. We base our analysis on a series expansion of the
scalar magnetic potential around the trap points,

9(Er)=9
(`)

0 +
3∑

i=1

u(`)i (ri − r (`)i )+
1

2

3∑
i, j=1

v
(`)

i, j (ri − r (`)i )(r j − r (`)j )

+
1

6

3∑
i, j,k=1

w
(`)

i, j,k(ri − r (`)i )(r j − r (`)j )(rk − r (`)k )+ · · · , (4)

where (r1, r2, r3)= (x, y, z) are the Cartesian coordinates. The vectors Eu(`) have components
u(`)i , while v(`) and w(`) are tensors with components v(`)i, j andw(`)

i, j,k , respectively. In this notation,

Eu(`) = − EB(Er (`)) specifies the local magnetic field at the desired trap position (apart from external
bias fields), whereas v(`) is the local gradient tensor and w(`) specifies the local magnetic field
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curvatures. As described in [25], the coefficients of equation (4) must be fully symmetric under
permutation of indices and satisfy

v
(`)

1,1 + v(`)2,2 + v(`)3,3 = 0, (5a)

w
(`)

i,1,1 +w(`)

i,2,2 +w(`)

i,3,3 = 0, ∀i ∈ {1, 2, 3}, (5b)

since ∇
29 = −E∇ · EB = 0. We use these vectors and tensors Eu(`), v(`) and w(`) as input

parameters for our optimization algorithm (section 2.3) in order to specify the shape and
orientation of the magnetic field at the trap locations. In what follows we detail how these
derivatives of 9 are constrained to specific forms for representing a particular desired lattice of
IP traps.

The defining characteristics of IP traps are that each gradient tensor v(`) has a zero
eigenvalue associated with its ‘Ioffe axis’, and that the total local magnetic field (‘Ioffe field’
EBI) is parallel to this axis: v(`) · EBI = 0. We therefore fix the field gradient tensors v(`) at the trap

locations (for concrete examples we use equation (13)).
Although it is possible to produce self-biased magnetic microtraps that require no external

fields [26], in practice a homogeneous external bias field EB0 is usually applied to produce the
Ioffe field EBI simultaneously at all trap sites. This dramatically simplifies loading the microtraps
(see section 4.4) and ensures that the magnetic potential remains finite away from the film
surface (allowing for deeper confinement). To ensure that all traps have equal depths for a given
bias field EB0, we typically constrain the first-derivative vectors Eu(`) to be equal, and align the
Ioffe axes at all trap positions Er (`). However, there are no a priori constraints on the actual values
of these vectors and tensors.

If desired, additional constraints can be placed on the remaining two eigen-directions or
the eigenvalues of the v(`), on the local fields Eu(`), or on the curvature tensors w(`) in order to
tailor the shapes, orientations and aspect ratios of the resulting trapping potentials. In particular,
the curvature matrix of an IP trap, which defines the characteristic oscillation frequencies (trap
stiffness), is given by

∂2
‖ EB(Er)− EB(Er (`))+ EBI‖

∂ri∂r j

∣∣∣∣∣
`

=

[
v(`) · v(`) + w(`)

· EBI

‖ EBI‖

]
i, j

. (6)

It is important that all eigenvalues of these curvature matrices be positive for a certain
homogeneous bias field EB0 = − EB(Er (`))+ EBI, in order to simultaneously trap atoms at all the
positions Er (`). Unlike for rf ion traps [22], the three principal curvatures of IP traps are quite
independent; prolate, spherical, oblate and triaxial traps can be designed by judiciously choosing
the conditions on the v(`) and w(`), as well as operating at specific Ioffe field strengths.

All constraints on the derivatives of 9 are only specified relative to each other, not by their
absolute values. The optimization algorithm of section 2.3 aims at discovering the magnetization
pattern that satisfies the constraints outlined in this section while maximizing the absolute values
of the derivatives of 9. The fact that equation (6) depends on the Ioffe field strength makes it
difficult to introduce a dimensionless quantity describing the absolute strength of an optimized
IP trap. However, it appears that jointly maximizing the v(`) and w(`) using our algorithm
generally leads to deeper traps with higher trap frequencies, for fixed other physical constraints
like the magnetization current δMz.
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2.3. Optimization algorithm

The algorithm for finding the optimal magnetization pattern which implements a desired IP trap
array follows from [22]. We present it here in a more extended form.

The first step in optimizing the magnetization pattern m(x, y) consists in subdividing the
atom chip surface into N small domains. The shapes of these domains are irrelevant for our
purposes, and their number only serves to increase the resolution of the final magnetization
pattern. It is not necessary that these domains cover the entire atom chip, that they lie in a
single plane or that they form a simply connected subset of the plane. For finite sets of traps the
optimization may be performed on a finite-size pattern in order to fully account for boundary
effects. For large periodic lattices of traps, it would be useful to divide a single unit cell of the
wallpaper group with the desired lattice symmetry into domains and then assume that the same
pattern is repeated indefinitely over the atom chip surface.

We assume that within a domain α covering an area Pα of the atom chip surface, the scaled
magnetization m(x, y)= mα is constant. The total scalar magnetic potential, equation (1), can
then be decomposed into a sum over domains,

9(Er)=
1

2
µ0δMz

∑
α

mαψα(Er), (7)

where the functions

ψα(x, y, z)=

∫
Pα

G(x − x ′, y − y′, z) dx ′ dy′ (8)

are the scalar magnetic potentials induced by the domains indexed by α, assuming unit
magnetization (since the term 1

2µ0δMzmα has been factored out). The present algorithm
can also be applied to different problems such as non-planar geometries, electrode patterns
or hybrid atom–ion traps by replacing equation (1) with more general expressions or by
evaluating equation (8) numerically using finite-element or boundary-element methods [27].
The derivatives of the scalar magnetic potential are similarly parameterized:

∂9(Er)

∂ri
=

1

2
µ0δMz

∑
α

mα

∂ψα(Er)

∂ri
, (9)

etc. With these definitions the linear conditions of section 2.2 can all be expressed in terms
of the scaled domain magnetizations mα without knowing their values a priori. We define
Em as the vector with components mα, which represents the optimal magnetization pattern
to be found, restricted to mα = 0 or mα = 1 for non-magnetic or fully magnetized domains,
respectively. Using this notation, each linear condition of section 2.2 can be formulated in the
form Eak · Em = Cbk , where C is a common prefactor in all conditions and k indexes the different
constraints. As in [22], the conditions of section 2.2 are never imposed as absolute numbers
but only relative to each other, while their absolute magnitudes (through the prefactor C) are
jointly maximized by the algorithm in order to achieve maximal strength of the Zeeman pseudo-
potential for a given magnetization current δMz. All these conditions can be jointly expressed
as a matrix equation

A · Em = CEb, (10)

with |C | to be maximized.
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In periodic arrays of microtraps the magnetization pattern is most naturally expressed in
terms of its Fourier amplitudes m̂(kx , ky)= F[m(x, y)]. Instead of using the Green’s function
of equation (2), the propagation of the scalar magnetic potential away from the atom chip then
follows from the exponential damping of each Fourier component,

9(x, y, z)=
1

2
µ0δMzRe

∑
kx ,ky

m̂(kx , ky)e
i(kx x+ky y)−z

√
k2

x +k2
y

 , (11)

where Re[. . .] refers to the real part. Since the Fourier transform is a linear operation, these
Fourier amplitudes m̂(kx , ky) can be expressed as linear functions of the domain magnetizations
mα. Any linear constraints on the Fourier amplitudes can therefore also be brought into the
form Eak · Em = bk and thus included in equation (10). However, we will not be using such direct
Fourier constraints in our examples (section 3).

The physical constraints describing the design for an atom trap lattice are thus formulated
in the matrix equation of equation (10). If the number of domains N is large, then this linear
system of equations is highly underdetermined. Which of the solutions should we choose? The
inhomogeneous solution Em0 = A+

· Eb, calculated from the pseudo-inverse A+, incorporates the
main structure of the magnetization pattern we will generate. However, Em0 does not satisfy
the binary constraints that mα ∈ {0, 1}: its components are not normalized in any useful way,
and they take on a continuum of values. To remedy this we decompose the target solution into
Em = C Em0 + Em ′ with A · Em ′

= 0. Any vector of this form satisfies equation (10), but it serves
to illustrate that the solution Em should consist of the maximum possible contribution in the
inhomogeneous direction Em0 (since we wish to maximize |C |) plus just the right amounts of
homogeneous solutions (in Em ′) in order to satisfy the binary constraints. Now we define Ã =

A ·
(
1 − Em0 Em0

T/‖ Em0‖
2
)
= A − Eb Em0

T/‖ Em0‖
2, for which Ã · Em = A · Em ′

= 0 because Em ′
· Em0 =

([A+]T
· Em ′) · Eb = 0. The optimization problem can then be expressed as a homogeneous binary

integer linear program ( Ã, Em0, {0, 1}), which schematically reads as follows.

(i) We seek a vector Em within the space satisfying the linear constraints Ã · Em = 0. This gives a
set of homogeneous conditions on Em that do not involve the constant C and that express the
fact that the solution Em must satisfy the design constraints for the atom trap configuration,
equation (10).

(ii) All components of the vector Em must satisfy mα ∈ {0, 1}. This condition expresses the
desire for a binary magnetization pattern, consisting only of non-magnetic domains (mα =

0) and fully magnetized domains (mα = 1).

(iii) We wish to maximize |C | = | Em · Em0|/‖ Em0‖
2, the ‘strength’ of the solution in the

inhomogeneous direction satisfying the design constraints. Larger values of |C | yield
stronger atom confinement for a given magnetization current δMz.

Such integer linear programs are known to be NP-hard to optimize [28] if an exact solution
even exists. Fortunately, and perhaps surprisingly, we can relax condition (ii) to 06 mα 6
1 ∀α = 1 . . . N without loss of accuracy but drastically decreasing the computational complexity
to O(N ), making large numbers of domains (high resolution) feasible. After relaxing condition
(ii) we are dealing with a linear program ( Ã, Em0, 0 . . . 1), for which very efficient algorithms
are available [29]. The solution to the linear program is known to be globally optimal [29],
and the obtained solutions consist of relatively large uniform patches of magnetization railed
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at either m(x, y)= 0 or m(x, y)= 1. Further, it is known that the number of domains α that
are not railed is equal to the number of independent constraints in equation (10) [22]. Since the
number of domains can be made arbitrarily large, we are thus guaranteed to find solutions in
which the ratio of unrailed to railed domains can be made vanishingly small. In practical cases
the few unrailed domains usually come to lie at the edges between large railed patches and can
be safely rounded to 0 or 1.

2.3.1. Limitations of the algorithm. The optimization algorithm of the preceding section is a
powerful new tool for designing magnetic lattice potentials with arbitrary geometries and trap
characteristics. There are, however, some limitations that deserve mention.

Although any magnetization pattern generated by the above algorithm is guaranteed
to produce the desired lattice of magnetic microtraps, it disregards the shape of the
Zeeman pseudo-potential between microtraps. While this point is not critical in ion trapping
applications [22], it may be of great interest for atom trapping to have efficient tunneling paths
between microtraps. To this end, it may be necessary to add further linear constraints on the
scalar magnetic potential.

Generally, for trap stability the resultant Zeeman pseudo-potentials should not contain any
points of zero magnetic field in the vicinity of the traps, since they will lead to trap losses due
to tunneling from the IP traps and subsequent Majorana spin flips [25]. It is therefore more
important than in ion trap setups that after a magnetization pattern m(x, y) is optimized, we
check the corresponding Zeeman pseudo-potential

V (Er)= m F gFµB‖ EB(Er)− EB(Er (`))+ EBI‖ (12)

for spurious null points. Such points can appear at unexpected locations, which depend on
the external bias field EB0 = − EB(Er (`))+ EBI and can often be eliminated through additional
constraints on 9. To enforce complete elimination at the design stage of the algorithm would
require non-local field constraints, which are difficult to implement directly in the optimization
algorithm. Fortunately, for geometries involving only a few constraints (like the examples in
section 3), the optimized magnetic potentials rarely contain any field zeros, as spurious minima
would reduce the achievable Zeeman pseudo-potential strength at the nominal trap positions. In
more complex cases such as magnetic superlattices with multiple traps per unit cell, or lattices
of traps involving higher curvature constraints (for example, from equation (6)), it may become
favorable for magnetic field zeros to occur at points of special symmetry or even anywhere
in the trap lattice. In these situations extra care should be taken in choosing appropriate
additional constraints for the algorithm to eliminate or shift the spurious zeros from the trapping
regions.

It may be of interest to directly constrain the symmetry of the Zeeman pseudo-potential. As
an example, the triangular lattice we present in section 3.1.2 has a high degree of symmetry with
equal barriers between sites chosen to allow for symmetric tunneling. However, direct symmetry
constraints on the potential are quadratic in the coefficients mα and thus cannot be incorporated
into the linear form of the algorithm. This could be partly overcome through the use of nonlinear
optimization algorithms, which allow both linear and nonlinear constraints on the magnetic field
and pseudo-potential, respectively. We have applied a nonlinear optimization algorithm to some
problems; however, we find it considerably slower and limited in the achievable resolution when
compared with the linear programming algorithm.
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2.3.2. Implementation. The linear optimization algorithm has been implemented indepen-
dently in the Mathematica and Matlab programming environments for the general case of
two-dimensional Bravais lattices, where each unit cell consists of N = n1 × n2 identical
parallelogram-shaped domains. Further, a Mathematica implementation allows optimizing non-
periodic (finite) patterns with arbitrary polygonal domain shapes. All implementations use
primal-dual interior-point algorithms for solving the linear programs [30] and yield consis-
tent results for the obtained optimal magnetization patterns. The typical number of domains
(or Fourier modes) used in the periodic optimization is N ∼ 200 × 200, which yields smooth
magnetization patterns and is a sufficiently high resolution to ensure that the corresponding
magnetic potentials are precisely defined.

3. Optimized lattices

In this section, we present the results for two-dimensional periodic lattices with a single
microtrap per unit cell. As discussed in section 2.2, the simplest IP atom traps are constructed
by constraining the magnetic field gradient to be of the form

v ∝ Rφ,θ,ψ ·

1 0 0
0 −1 0
0 0 0

 · RT
φ,θ,ψ (13)

at the desired trap locations, where Rφ,θ,ψ is a rotation matrix with three Euler angles specifying
the orientation of the IP trap axis, Eν = {sin θ sinψ, sin θ cosψ, cos θ}, and the orientation φ
of the two perpendicular axes around this direction. The local field vector Eu can be left
unconstrained since we are free to apply any external homogeneous bias field EB0 in order to
null the local magnetic field at the traps. We have run the optimization procedure for a large
set of Euler angles and computed the corresponding optimal lattice geometries. In practice we
find that IP traps with in-plane Ioffe axis orientation (θ = π/2) provide good confinement,
in contrast to out-of-plane traps (θ = 0), which typically result in weak or no confinement
perpendicular to the surface (in the absence of curvature constraints, equation (6)). We stress,
however, that the algorithm described in section 2.3 is general, and constraints on all derivatives
of the scalar potential (ui , vi, j , wi, j,k and higher) can be applied to obtain any desired trap
shape or orientation. In the following, we give one general and two specific examples of in-
plane (θ = π/2) IP magnetic lattices, chosen for their attractive properties for future planned
experiments with ultracold atoms.

3.1. Two-wave lattices

An interesting class of IP trap arrays with in-plane Ioffe axis can be described by the three-
dimensional scalar magnetic potential

9ζ,ψ(Er)= 9̂

[
cosα sin

(
2πx

d
−

2πy

d tan ζ

)
+ sinα sin

(
2πy

d sin ζ

)]
e−2π z/d sin ζ , (14)

with α = tan−1 cos(ψ+ζ )
cosψ . It forms an oblique lattice of IP traps above the points Er = n1{d, 0} +

n2{d cos ζ, d sin ζ } with (n1, n2) ∈ Z2, where d is the lattice period. Their Ioffe axis is
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{sinψ, cosψ, 0}, in accord with equation (13) for θ = π/2 and φ = π/4. The trapping height h
is selected through the bias field, which must cancel the field

EB(0, 0, h)=
9̂

d
e−2πh/d sin ζ

×
2π cosα

cosψ
{− cosψ, sinψ, 0} (15)

perpendicular to the Ioffe direction. What is special about these trap arrays is that there is a
particular Ioffe field strength

BI =
9̂

d
e−2πh/d sin ζ

×
π cosα sin(2ψ + ζ )

cos2ψ cos(ψ + ζ )
(16)

such that the Zeeman pseudo-potential (12) is invariant under exchange of the lattice axes (wall-
paper group cmm), irrespective of ψ . In particular, this gives rise to equal tunneling barriers in
the two lattice directions. It is interesting to note that this cmm symmetry is present neither
in the magnetization pattern m(x, y)∝9(x, y, 0) nor in the bias or Ioffe fields. Therefore,
using the optimization algorithm of section 2.3 to find binary magnetization patterns that
optimally produce scalar potentials like equation (14), we can obtain experimentally relevant
and nontrivial systems that are otherwise difficult to discover using manual methods. In what
follows we perform such calculations to construct approximately cmm-symmetric square and
triangular lattices of IP traps.

3.1.1. Square lattice. Square lattices are commonly produced using optical potentials but are
a considerable challenge to implement with magnetic lattices, as the high degree of symmetry
typically results in points of zero magnetic field strength which lead to Majorana spin flips [25].
However, from equation (14) with ζ = π/2 such square lattices of IP traps are readily generated
with our algorithm. All values of ψ except integer multiples of π/4 are allowed; angles ψ close
to π/4 + nπ/2, n ∈ Z, give maximal trapping depth.

A possible implementation of such a square lattice of IP traps is found by constraining the
second derivative tensor of the scalar magnetic potential at the trapping sites to its value dictated
by equation (14),

v
1
2µ0δMz/d2

= C ×

 0 0 cosψ
0 0 − sinψ

cosψ − sinψ 0

 . (17)

The first and third derivatives Eu and w are left unconstrained. In figure 1, we show 2 × 2
unit cells of the optimal magnetization pattern that generates this gradient tensor for ψ = π/3
and nominal trapping height h = d/2, i.e. half the inter-trap distance. The obtained pattern is
typical in that it consists of large connected regions of uniform magnetization with equal areas
of magnetized and non-magnetic regions. Furthermore, the pattern resembles the ‘staircase’-
like structure recently experimentally demonstrated to create a two-dimensional lattice of IP
traps [19, 21]. This shows that the optimization algorithm can produce magnetization patterns
that resemble manually optimized lattice configurations.

The trapping height h′ is chosen by varying the bias field strength and direction. For h′
6= h

the curvature tensor may differ from equation (17); however, det v(0, 0, h′)= 0 for any desired
trap height, and therefore we are guaranteed to be able to produce IP traps everywhere on a
vertical loading trajectory. Details of a method for loading such trap arrays are described in
section 4.4.
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Figure 1. Optimized magnetization pattern for a square lattice of IP traps (above
blue points) constrained by equation (17). Trapping height is h = d/2, and the
Ioffe direction is given by the arrow (ψ = π/3). The optimization yields C =

1.06 in equation (17). Blue (white) areas are fully magnetized (unmagnetized)
with m = 1 (m = 0).

Figure 2 shows the associated Zeeman pseudo-potential in the trapping plane, brought close
to cmm symmetric by using an Ioffe field strength that creates equal potential barriers in the two
lattice directions (similar to equation (16)). Note that the cmm symmetry is not exact because the
higher-order Fourier modes used to construct the binary magnetization pattern (figure 1) perturb
the simple expression of equation (14); neither the magnetization pattern nor the Ioffe direction
is cmm symmetric, and therefore there is no a priori reason why perfect cmm symmetry should
be achievable in the Zeeman pseudo-potential. However, for sufficient nominal trapping heights
h/d this asymmetry may be negligible in practical applications (it is less than 3% of the potential
range in figure 2). Further, by a slight tuning of the Ioffe field strength we can force the effective
tunneling rates for trapped atoms in the two lattice directions to be exactly matched. This lattice
is highly tunable: by varying the external bias field and the Ioffe field strength the barriers in
the x and y lattice directions can be tuned independently, allowing time-dependent control over
anisotropic tunneling rates.

3.1.2. Triangular lattice. Ultracold atoms in triangular lattices are of great experimental
interest as they exhibit a wide variety of novel quantum phases [31]–[33]. However, the
considerable challenge involved in optically producing triangular lattices has so far limited
experiments to a single recent realization [34]. The optimization algorithm is equally easily
applied to produce triangular magnetic lattices, found from equation (14) with ζ = π/3. For
triangular lattices, it would be desirable to have a Zeeman pseudo-potential that is not just
cmm-symmetric, as given by equation (16), but fully p6m-symmetric in order to have three
equivalent tunneling directions and a truly isotropic lattice. Unfortunately, as mentioned in
section 2.3.1, such symmetry requirements involve nonlinear constraints beyond the linear
programming method. However, we find that sufficiently symmetric lattices can be obtained
by applying additional linear constraints at the barrier positions.
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Figure 2. Zeeman pseudo-potential (equation (12)) in the trapping plane (z =

h = d/2) produced by the magnetization pattern of figure 1 at a Ioffe field
strength that creates equal potential barriers (dashed separatrix) between the
potential wells (blue points) in the two lattice directions (16). Darker colors
signify deeper potentials.

In figure 3, we present a magnetization pattern that produces a useful triangular lattice of
microtraps with equal barrier heights in three directions, and nominal trapping height h = d/2.
The required constraints include the gradient tensor at the trap sites given by equation (17)
with ψ = 5π/12, as well as an additional field constraint at one of the barrier positions at
{x, y, z} = {d/2, 0, d/2}. The required field constraint is

u y
1
2µ0δMz/d

= C × (−0.0977), (18)

obtained automatically by nesting the linear programming algorithm within a nonlinear search
algorithm aiming to null the pseudo-potential barrier height difference (figure 4). This two-
level approach is possible due to the speed of the linear programming algorithm. Although the
resulting pseudo-potential is not fully p6m-symmetric, the effective tunneling rates between
traps could be matched experimentally by varying the Ioffe field strength BI and the trap height
to independently tune the potential barriers in all three directions.

As for the square lattice of the preceding section, the trapping height h′ is chosen by varying
the bias field strength and direction, and a vertical loading trajectory of IP traps can be produced
(see section 4.4).

4. Experimental considerations

4.1. Trapping parameters

The lattice geometries of section 3 provide high trap depths and strong confinement for
magnetically trapped atoms. In the following, we calculate the resulting trap parameters,
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Figure 3. Optimized magnetization pattern for a triangular lattice of IP
traps (above blue points) constrained by equation (17) with ψ = 5π/12 and
additional field constraints at the potential barrier given in the text. The nominal
trapping height is h = d/2, and the Ioffe direction is indicated by the arrow.
The optimization yields C = 0.729. Blue (white) areas are fully magnetized
(unmagnetized) with m = 1 (m = 0).
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− 1.0
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Figure 4. Zeeman pseudo-potential (equation (12)) in the trapping plane
(z = h = d/2) produced by the magnetization pattern of figure 3 at an Ioffe field
strength which creates equal potential barriers (dashed separatrix) between the
potential wells (blue points) in the three lattice directions (16). Darker colors
signify deeper potentials.
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assuming realistic parameters for a FePt thin film [19] with Mz = 670 kA m−1 and δ = 0.3µm
(magnetization current δMz = 0.2 A) trapping 87Rb atoms in the F = 2,m F = 2 hyperfine state
of the 52S1/2 electronic ground state (g1 = −0.50 1 82 6 71(5) and g2 = 0.49 9 83 6 43(5) in this
level [35]). A small but optically resolvable lattice period of d = 5µm is chosen so that nearest-
neighbor interactions such as the Rydberg blockade effect would be observable [36, 37].

• Square lattice. (figure 1) A bias field of B0 = {−45.6, 21.7, 0} G creates traps at h =

2.5µm above the film layer, with an Ioffe field of BI = −29.7 G. The barrier heights are
equal in both the x- and y-directions, 37.9 G above the trap minimum. For 87Rb in the |2, 2〉

state this corresponds to a barrier height of 2.55 mK. The trap depth away from the surface
is 20.8 G (1.40 mK). Each trap is approximately cylindrically symmetric with the long axis
in the {1, 1, 0} direction. The trap frequencies are ωz = 2π × 124 kHz, ω⊥ = 2π × 121 kHz
and ω‖ = 2π × 37.6 kHz.

• Triangular lattice. (figure 3) A bias field of B0 = {2.9, 26.1, 0} G creates traps at h =

2.5µm, with BI = 9.8 G. The barrier heights are equal in all three lattice directions,
34.6 G (2.32 mK) above the trap minimum. The trap depth away from the surface is
16.5 G (1.11 mK). The trap frequencies are ωz = 2π × 150 kHz, ωy = 2π × 146 kHz and
ωx = 2π × 36.9 kHz.

These lattices provide sufficiently tight confinement to localize the atoms to smaller
than the optical wavelength. The Lamb–Dicke parameter is η j =

√
ωrecoil/ω j , where ωrecoil =

2π × 3.771 kHz for the 87Rb D2 line. For the transverse dimensions η < 0.18 and the atoms
would enter the Lamb–Dicke regime (η2

〈n〉 � 1) for mean vibrational quanta 〈n〉6 30. The
magnetic fields and Zeeman pseudo-potential strengths for the given examples scale with δMz/d
and the trap frequencies scale with

√
δMz/d3.

4.2. Microfabrication

The proposed magnetic lattices can be easily produced using conventional microfabrica-
tion techniques. Successful methods used in the past have included magneto-optical record-
ing [38]–[40], hard-disk write head [20], grooved substrates and uniform film coating [41, 42],
laser ablation [43] and optical or e-beam lithography followed by reactive ion etching [19, 44].
We favor lithography and ion etching since they provide greater freedom in the films used, ar-
bitrary magnetization patterns are possible and they can be readily extended to sub-micrometer
resolution. Lithographic resolutions. 50 nm are possible with e-beam lithography, but long ex-
posure times may be required to produce reasonably large lattices. Optical lithography is com-
paratively simple and can produce vast lattices; however, the achievable resolution is typically
limited by diffraction within the photo-resist layer to 1µm.

The optimized magnetic patterns are highly compatible with lithographic patterning,
as they involve large connected magnetized regions with smooth boundaries. The effect of
finite resolution is qualitatively equivalent to truncating the Fourier series expansion of the
magnetic scalar potential. Because the contributions of higher Fourier modes (corresponding to
small features) on the magnetic pseudo-potential decay rapidly with distance from the surface
(equation (11)), the shape of the potential at the trap position is relatively insensitive to the fine
details of the magnetization pattern. For a more quantitative analysis, a perturbative study of the
dependence of the pseudo-potential on the magnetization in a given domain is readily performed
with the parameterizations of equations (7), (9), etc used in the optimization algorithm.
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We have compared the trapping potentials produced by the optimized lattices at full
numerical resolution with calculations with truncated Fourier series. Taking the triangular
lattice as an example, we find that the lowest 13 Fourier modes (‖Ek‖6 2 ×

2π
d ) are sufficient to

adequately reproduce the desired potential (figure 4). This corresponds to an effective resolution
of π/‖Ek‖ = 0.25d . For the d = 5µm period lattice this would require a resolution of better than
∼ 1.2µm, which can be achieved by optical lithography. With the reduced set of Fourier modes
we find that the pseudo-potential in the trapping plane maintains its symmetry and deviates
from the full resolution calculation (section 3.1.2) by at most 1.5%. The trap depth increases by
0.4%, while the barrier heights decrease by 0.2–0.4%; the trap frequencies increase by 0.4, 0.1
and 1.1% in the z-, y- and x-directions.

4.3. Effect of inhomogeneity

The quality of the magnetic lattices may also be affected by film roughness or magnetization
inhomogeneity [17, 45]. These lead to an additional randomly oriented magnetic field above
the surface, which causes small site-to-site variations in the potential experienced by the atoms.
A simple model that takes into account random (white noise) fluctuations of the magnetization
at a position above the edge of a magnetic film layer [45] is used to estimate the potential energy
variations between lattice sites. A typical rms surface roughness of about 5 nm and grain size of
50 nm would cause unwanted variations of less than 20 mG corresponding to energy variations
of less than 30 kHz. A more significant contribution may be due to imperfect magnetization
and canting of magnetic domains. For a typical remanent-to-saturation magnetization ratio of
0.95 (squareness of the hysteresis loop) and a characteristic domain size of 50 nm, we anticipate
additional variations of 60 mG (85 kHz). The estimated combined effect of surface roughness
and magnetic inhomogeneity is comparable to or less than the vibrational level spacing and
is therefore not expected to be a serious obstacle for experiments. The anticipated site-to-site
variations could be reduced further with high-quality Fe/Pt or Co/Pt multilayer thin films, which
can be atomically flat with small magnetic domains and higher squareness ratios [46].

4.4. Loading trajectory

Atoms can be transferred to the proposed lattices simply using an auxiliary macroscopic
Z-shaped wire beneath the chip surface [19]. An electric current through the Z-wire combined
with an external bias field produces a single IP magnetic trap [47], hundreds of micrometers
above the film surface where the influence of the magnetic lattice is negligible.

We have computed a loading trajectory that smoothly transfers atoms from the Z-wire trap
to the magnetic lattice potential generated by the pattern of figure 3 and a lattice spacing of
d = 5µm. We assume a Z-wire positioned 0.4 mm beneath the magnetic film, with a central
segment of L = 1 mm oriented such that its Ioffe axis matches that of the microtrap lattice at
the nominal trap height h = 2.5µm. In this symmetric situation det v(0, 0, z)= 0 ∀z > 0 for
the total scalar magnetic potential (lattice + Z-wire), and thus for any desired trapping height h′

we can still find a homogeneous in-plane bias field EB0 that creates IP traps [25]. By smoothly
ramping down the Z-wire current or increasing the bias field strength, the trap minimum moves
toward the surface and the Z-wire trap eventually merges with the lattice microtraps.

For each trapping height between h′
= 100µm and h′

= h = 2.5µm, the bias field ( EB0)
and Z-wire current (Iz) are optimized to maintain a trap depth equal to or greater than the final
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Figure 5. Calculated trajectory for loading atoms to the triangular lattice.
(a) Z-wire current Iz (solid line) and applied bias field EB0 (dashed, dotted and
dash-dotted lines for the x , y, and z components, respectively) as functions of
trapping height h′. Magnetic field strength ‖ EB‖ as a function of distance from the
film surface: (b) prior to transfer (h′

= 100µm), (c) during transfer (h′
= 10µm)

and (d) after transfer to the magnetic lattice is complete (h′
= h = 2.5µm). Note

the logarithmic z-scale.

depth in the lattice of >16.5 G to prevent loss of atoms during loading (figure 5(a)). The Ioffe
field strength is chosen to start at BI = 2 G and increases during the trajectory to its final value
of BI = 9.8 G to create a symmetric triangular lattice (figure 4). Initially the atoms are confined
in the large potential well of the Z-wire trap at h′

= 100µm; however, the superimposed field of
the lattice produces shallow secondary potential wells at z ≈ 3µm (figure 5(b)). The magnetic
field strength as a function of height z during the loading trajectory is calculated at the position
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of the global minimum in the xy-plane. As the fields are varied to move the Z-wire trap closer
to the surface the minima approach, and at a distance of about h′

≈ 10µm, atoms can spill over
to the secondary traps (figure 5(c)). At this stage a thermal atom cloud would begin to fragment.
Evaporative cooling in the combined Z-wire+lattice trap may be very efficient as the local phase-
space density could be high in the small potential wells [48]–[50]. Finally, the Z-wire current
is ramped off completely and the atoms are confined by the lattice potential alone (figure 5(d)).
The precise number of traps that can be loaded in this way is difficult to estimate since it
depends on the temperature of the clouds during loading and the rate of transfer. In practice,
it seems possible to load a 1.5 × 0.5 mm2 region of the lattice [21], corresponding to ∼3 × 104

populated microtraps. Throughout the transfer we ensure that no field zeros are produced in the
vicinity of the atoms, such that Majorana spin flip loss can be neglected. Additionally, the field
strength at the film surface is ‖ EB‖> 120 G in the z = 1µm plane, corresponding to a repulsive
atom–surface barrier much greater than the attractive Casimir–Polder potential, thus preventing
atom loss to the surface.

5. Conclusions

We have introduced a linear programming algorithm tailored to the problem of designing
two-dimensional magnetic lattices of IP traps for ultracold atoms. Previously, the design of
such lattices required substantial experience and trial and error. The algorithm automatically
generates single-layer binary magnetization patterns that produce desired lattice symmetries
with specified trap parameters. It allows the design of non-trivial geometries, which would be
extremely difficult to obtain using manual methods.

The strengths of the algorithm were exemplified in a desirable square magnetic lattice
and in the new case of a triangular magnetic lattice potential. The generated magnetic patterns
consist of smooth connected regions of uniform magnetization, which are easily fabricated using
existing methods. With realistic magnetic-film parameters these lattices will produce vast arrays
of microscopic IP traps with tight confinement and high trap depths. The resulting potentials are
of great interest for studies of quantum gases in lattice potentials [6, 7, 34], condensed-matter
analogue systems [8], [31]–[33] or quantum information processing with neutral atoms [9]–[14].

Similarities between the algorithms for designing magnetic IP traps and electric rf ion
traps could be exploited to produce hybrid traps, as a natural route to confine individually
controlled rf-trapped ions within magnetically trapped ultracold quantum gases [51, 52]. By
appropriate changes of the external bias field, the neutral atoms could then be moved to make
them overlap the ions, or separated from the ions in a well-controlled manner. Further, once
the ions are cooled to their motional ground state the rf traps can be switched off, transferring
the ions to the magnetic microtraps (provided that their magnetic moments are appropriate)
in order to eliminate rf micromotion [53, 54]. In practice one possible approach would be to
add extra constraints in equation (10) to produce patterns that simultaneously provide magnetic
traps for neutral atoms and, by applying rf voltages directly to the proposed magnetic structures
(provided their rf impedance is suitable), rf traps for ions at the same sites or at sites of our
choice. Alternatively, one can pattern an appropriately shaped conductive rf layer on top of the
magnetic structures, thus decoupling the patterns for atom and ion traps.
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