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A PARAMETRISED VERSION OF MOSER’S MODIFYING
TERMS THEOREM

Abstract. A sharpened version of Moser’s ‘modifying terms’ KAM theorem

is derived, and it is shown how this theorem can be used to investigate the

persistence of invariant tori in general situations, including those where some
of the Floquet exponents of the invariant torus may vanish. The result is

‘structural’ and works for dissipative, Hamiltonian, reversible and symmetric
vector fields. These results are derived for the contexts of real analytic, Gevrey

regular, ultradifferentiable and finitely differentiable perturbed vector fields. In

the first two cases, the conjugacy constructed in the theorem is shown to be
Gevrey smooth in the sense of Whitney on the set of parameters satisfy a

“Diophantine” non-resonance condition.

Florian Wagener

CeNDEF, Dept. of Quantitative Economics, University of Amsterdam

Roetersstraat 11, 1018 WB Amsterdam, The Netherlands

1. Introduction.

1.1. Object. Moser’s modifying terms theorem [23] is in essence an averaging re-
sult. On the phase space M = Tm × Rn, it considers small deformations X̃ of an
integrable vector field

X = ω
∂

∂x
+Ay

∂

∂y
, x ∈ Tm, y ∈ Rn, (1)

where ω ∈ Rm and A ∈ gl(n,R) are constant and are assumed to satisfy so-called
Diophantine non-resonance conditions. The theorem says that if the deformation
is sufficiently small in some function norm, say

0 < ε = ‖X̃ −X‖ � 1

then there is a constant vector field

∆ = δ
∂

∂x
+ (µ+By)

∂

∂y
,

with δ ∈ Rm, µ ∈ Rm and B ∈ gl(n,R), such that the following holds. If X0 denotes
the modified vector field

X0 = X̃ −∆,
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2 FLORIAN WAGENER

then there is a conjugacy Φ, ε-close to the identity, for which

Φ∗X0 =
(
ω + O(|y|)

)∂
∂x

+
(
Ay + O(|y|2)

)∂
∂y
. (2)

In particular, the torus T = Tm × {0} is invariant under Φ∗X0, and consequently
the torus Φ−1(T ) is invariant under X0. The natural interpretation of the vector
field ∆ is that it represents that part of the perturbation which cannot be removed
by successive averaging.

The object of the present article is to derive a modifying terms theorem for
parametrised families of vector fields, incorporating results on smoothness [28] and
Gevrey-regularity [25, 26] of parameter dependence that have been added to KAM-
theory since Moser’s article appeared. An extension to general Carleman (or ultra-
differentiable) classes is given as well. A second motivation is to make the result
a convenient tool for quasi-periodic bifurcation theory. In particular, the condition
imposed by Moser that adA should be semi-simple is removed, so that all situa-
tions can be treated for which the unperturbed invariant tori have several Floquet
exponents equal to zero. Recall that if a vector field is of the form of the right hand
side of equation (2), then the eigenvalues of A are called the Floquet exponents of
the invariant torus T . As an application, we sketch the analysis of persistence of
tori in the quasi-periodic Bogdanov-Takens bifurcation.

The main result of the present article is to show the existence of a modifying terms
vector field ∆ with the above properties, for small parametrised deformations X̃
of integrable vector fields X. Here the vector fields X and X̃ can be restricted
to an admissible structure in the sense of [9], like Hamiltonian, volume preserving,
equivariant etc. The deformations are either real analytic, Gevrey-regular, ultrad-
ifferentiable or finitely (but sufficiently often) differentiable, and for each category
we find regularity properties of the conjugacy Φ and the vector field ∆. In this way,
the results contribute to a resolution of problem 10 of Sevryuk’s list [33].

1.2. Related work. Invariant tori with one or more vanishing Floquet exponents
occur in the integrable versions of many bifurcation scenarios. In the context of a
degenerate Hopf bifurcation Chenciner [13] has investigated the saddle-node bifur-
cation of invariant quasi-periodic circles. His results have been extended by Broer,
Huitema, Takens and Braaksma [9], and, in the context of Hamiltonian vector
fields, by Hanßmann [18]. The scope of these studies is restricted to the case of a
one-dimensional normal space, in the general context, or a two-dimensional normal
space, in the Hamiltonian context. More recently, higher order degeneracies have
been studied as well [6, 19, 37].

For one-dimensional normal spaces, the Rüssmann-Herman translated torus the-
orem is available, which is the discrete-time analogon of the modifying terms the-
orem. Recently, there modifying terms theorem has been applied in several set-
tings [15, 16].

Higher dimensional normal spaces have been treated extensively by other meth-
ods in the case of non-vanishing Floquet exponents; we refer the reader to [8, 9] and
the references there. The results reached in those investigations were restricted to
the case that all Floquet exponents are distinct; recently, this restriction has been
removed by the work of Hoo [20], which extended previous work of de Jong [17] and
Ciocci [14].

Pöschel [28] demonstrated that the conjugacies of KAM theory depend differen-
tiable in the sense of Whitney on the parameters, even in the case that the original
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deformation is only finitely often differentiable. This has been strengthened by
Popov [25, 26] to Gevrey-regularity in the sense of Whitney if the deformation X̃
itself is real analytic (cf. also [12]). Popov [27] extended these results to Hamiltoni-
ans that are Gevrey regular. Much subsequent work has been done, taking especially
into account the Rüssmann condition [38, 40, 41, 43, 42]. A simple derivation of
this kind of results has been given in [36]; the same method is used to obtain the
results on ultradifferentiable deformations in the present article.

1.3. Structure of the article. The next section, after introducing notation, states
the central ‘KAM-averaging’ theorem (theorem 2.3). In section 3 it is shown how
the results of [23] and [9] are corollaries of the theorem; moreover, a quasi-periodic
analogue of Arnol’d’s succinct ‘persistence of bifurcation’ result [1] is derived. The
proof of the central theorem occupies section 4.

2. Modifying terms. This section introduces notations used throughout the ar-
ticle, and states the modifying terms theorem.

2.1. Notations and definitions. Let 〈y1, y2〉 denote the standard Euclidean or
Hermitian inner product of two vectors in Rn or Cn, and let |y| denote the norm |y| =
maxi |yi|. Let Tm be the standard m–torus Rm/2πZm.

2.1.1. Vector fields and invariant tori. In the following, a family of objects is always
taken in the sense as a parametrised family, where the parameter takes values in
some subset of a finite dimensional vector space.

Let M be a manifold. We consider small deformations of families of vector
fields X on M that leave a family of embedded tori T invariant. Let TM , TT
and and TT M denote respectively the tangent bundle to M , the tangent bundle
to T and the restriction of TM to T . The quotient TT M /TT is a smooth
vector bundle over T , the normal bundle NT of T . By the tubular neighbourhood
theorem, NT is diffeomorphic to an open neighbourhood U of T . Assuming the
normal bundel to be trivial, the diffeomorphism transfers vector fields on U to vector
fields on NT ∼= Tm × Rn; note that then T ∼= Tm × {0}.

Accordingly, in the following families of vector fieldsX(p) on the phase space M =
Tm×Rn will be considered, where the parameter p takes values in a space P which
is an open and bounded neighbourhood of the origin of Rq. Note that M can still
be identified with the normal bundle NT of the torus T .

A regularly parametrised family of vector fields p 7→ X(p) is usually not distin-
guished from the equivalent vertical vector field X on M ×P. Recall that a vector
field is called vertical if the canonical projection of X to the tangent bundle TP of
the parameter space P vanishes everywhere. A vertical vector field on M ×P is
typically written as

X = f(x, y, p)
∂

∂x
+ g(x, y, p)

∂

∂y
, (3)

where x ∈ Tm, y ∈ Rn and p ∈P. The set of all differentiable vertical vector fields
on M ×P is denoted by X .

2.1.2. Normal linear vector fields. If X ∈ X is a vector field of the form (3), the
normal linear part NX of X is defined as

NX = f(x, 0, p)
∂

∂x
+
(
g(x, 0, p) +

∂g

∂y
(x, 0, p)y

)
∂

∂y
. (4)
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Note that the flow of NX maps fibers of the normal bundle NT affinely to fibers;
“normal affine vector field” would perhaps be a more appropriate name, but we
stick to the convention introduced in [9]. Generally, a vector field L will be called
normally linear if it is equal to its normal linear part.

If X ∈ X is such that the term g(x, 0, p) in (4) vanishes identically, then X
is tangent to the torus T , and T is invariant under the flow of X. Introduce
for ε > 0 the scaling diffeomorphism Dε(x, y, p) = (x, ε−1y, p). If X is tangent
to T , then limε↓0(Dε)∗X = NX, and consequently

(Dε)∗X = NX + O(ε).

Hence, without loss of generality, it can be assumed that the unperturbed vertical
vector field is normally linear.

2.1.3. Integrability. A vertical vector field X ∈ X is called integrable, if it is equi-
variant with respect to the action Θ of the group Tm on M ×P that is given
as

Θβ(x, y, p) = (x+ β, y, p)

for β ∈ Tm. Equivariance means that

(Θβ)∗X = X

for all β. Consequently, if X is integrable, it can be written in the form

X = f(y, p)
∂

∂x
+ g(y, p)

∂

∂y
. (5)

Define the Tm-average [f ] of a function f defined on M ×P as

[f ](y, p) =
∫

Tm
f(x, y, p) dx;

here dx denotes the Haar measure on Tm.
If X = f ∂∂x + g ∂∂y ∈ X is any vector field, the integrable part [X] of X is given

as

[X] = [f ](y, p)
∂

∂x
+ [g](y, p)

∂

∂y
.

Note that with this definition, a vector field X is integrable if and only if X = [X].
A vector field X which is such that [X] = 0 is said to be mean-0. Any vector field
can be decomposed in an integrable part and a mean-0 part:

X = [X] + (X − [X]).

2.1.4. Frequencies. An integrable vector field X of the form (5) can be written
uniquely as X = L+Q with L = NX and Q = X −NX. The normal linear part L
of X is then of the form

L = ω(p)
∂

∂x
+ (µ(p) +A(p)y)

∂

∂y
. (6)

Note that if µ(p0) = 0, then the vector field X(p0) is tangent to T , which is
consequently invariant.

The maps ω : P → Rm and Ω : P → Rm × gl(n,C), the latter given by

Ω = (ω,A),
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are called the internal frequency map and the (full) frequency map ofX, respectively.
For a given frequency map Ω, let

LΩ = ω(p)
∂

∂x
+A(p)y

∂

∂y
.

2.1.5. Structures. In order to describe families vector fields that admit certain sym-
metries, “admissible structures” are introduced, following [9, 23].

For every d > 0 and every vertical vector field X, define the Fourier trunca-
tion TdX of X as

TdX =
∑
|k|≤d

Xk(y, p) ei〈k,x〉, where Xk(y, p) =
∫

Tm
X(x, y, p) e−i〈k,x〉 dx.

An admissible structure is a pair (g, h), where g is the Lie algebra of a finite di-
mensional Lie group G ⊂ GL(n,R), and where h ⊂ X is an infinite dimensional Lie
algebra of vector fields on M , such that g and h satisfy the following properties.
For every X ∈ h, the normal linear vector field NX as well as the truncation TdX
is in h, for every d > 0. Moreover, the frequency map Ω = (ω,A) of an integrable
vector field in h takes values in Rm × g.

Let U be an open and bounded subset of M , and let Φ : U → M be an
embedding. If for any X ∈ h the vector field Φ∗X is the restriction of a vector
field Y ∈ h to Φ(U), then Φ is called a structure-preserving conjugacy associated
to h.

2.1.6. Versal unfoldings. A frequency map

Ω̄ = (ω̄, Ā) : Σ→ Rm × gl(n,C)

is a smooth versal unfolding of Ω0, if for every smooth deformation Ω = (ω,A)
of Ω0 (that is, for every smooth map p 7→ Ω(p) for which Ω(0) = Ω0) defined on an
open neighbourhood P of the origin of Rq, the following holds. There is a smaller
neighbourhood P̄ ⊂P of 0 and there are maps ψ : P̄ → Σ and C : P̄ → GL(n,R),
such that ψ(0) = 0, C(0) = I and

ω̄(ψ(p)) = ω(p) C(p)Ā(ψ(p))C(p)−1 = A(p). (7)

More generally, Ω̄ is a versal unfolding of Ω0 in the Lie algebra Rm × g of the Lie
group Tm×G, if Ω0 ∈ Rm× g, and if for every smooth deformation Ω of Ω0 taking
values in Rm × g, maps ψ : P → Σ and C : P → G can be found such that the
equations (7) hold.

The map Ω is called miniversal if the dimension of P is the smallest possible
for a versal unfolding (see [1], §30).

2.1.7. Diophanticity. For any k ∈ Zm, let |k| =
∑m
i=1 |ki|. Choose γ0, κ > 0. A

vector ω ∈ Rm is called (γ0, κ)–Diophantine, or Diophantine for short, if

|〈k, ω〉| ≥ γ0|k|−κ, (8)

for all k ∈ Zm\{0}. If κ > m − 1 and if γ0 > 0 is sufficiently small, the set of
(γ0, κ)–Diophantine vectors has positive Lebesgue measure in Rm.

For A ∈ g, let α = αA be the vector of imaginary parts of the eigenvalues of A.
If A depends continuously on a parameter p, the components of α are assumed to
be arranged such that they depend continuously on p.
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For γ0, γ, κ > 0, the frequency Ω = (ω,A) is said to be normally (γ0, γ, κ)-
Diophantine, or normally Diophantine for short, if ω is (γ0, κ)-Diophantine, and if
moreover α = αA satisfies

|〈k, ω〉+ 〈`, α〉| ≥ γ(|k|+ |`|)−κ,
for all (k, `) ∈ Zm × Zn such that k 6= 0 and 0 < |`| ≤ 2. This is indicated by
writing Ω ∈ NDc = NDc(γ0, γ, κ). Note that this definition does not depend on
the arrangement of the components of α.

Let γ0, γ, κ > 0 be fixed. A frequency map Ω is quasi–periodically non–degenerate,
if Ω unfolds Ω(0) versally and Ω(0) ∈ NDc(γ0, γ, κ). For Ω a given quasi–periodically
nondegenerate frequency map, let

P ′ = {p ∈P : Ω(p) ∈ NDc} .

2.1.8. Normal conjugacies. The vector field X is said to be normally conjugated to
a normal linear vector field L at a parameter value p, if there is a neighbourhood U
of T and a conjugacy Φ(p) : U →M such that

N
(

Φ(p)∗X(p)
)

= L(p).

Note that if L is tangent to T , and X is normally conjugated to L, then X is
tangent to the torus Φ−1(T ), and this torus is invariant under the flow of X.

Let π2 : M → Rn be the projection π2(x, y) = y. A conjugacy Φ : M → M is
said to be of mean τ if∫

Φ−1(T )

π2 · Φ∗ dx =
∫

Tm
(π2 ◦ Φ−1)(x, 0) dx = τ.

2.2. Differentiability classes. The modifying terms theorem stated below will
be proved for several differentiability classes.

2.2.1. Notation. Let V ⊂ Rm be an open set, and let W a normed vector space. For
a multi-index β ∈ Nm, the β-derivative Dβf with respect to x ∈ Rm of a |β|-times
differentiable function f is defined as

Dβf =
∂|β|f

∂xβ1
1 · · · ∂x

βm
m

.

2.2.2. Finitely differentiable functions. For V and W as above, let f : V → W be
a continuous function that satisfies for some 0 < s < 1 the inequality

|f(x)− f(y)| ≤ C|x− y|s, for all x, y ∈ V .

Then f is Hölder continuous with exponent s. The smallest C such that the equality
holds is the Hölder norm ‖f‖s of f . The space of Hölder continuous functions f :
V → W with Hölder exponent s is denoted by Cs = Cs(V ,W ). We write Cs(V )
for Cs(V ,R).

Let [s] denotes the largest integer smaller than or equal to s ∈ R. For s > 0 and
s 6= N, an s–times differentiable function is an [s] times continuously differentiable
function f : V → W , whose [s]–order partial derivatives Dβf (where |β| = [s]) are
Hölder continuous with exponent s− [s] on V . With the (recursive) definition of a
norm

‖f‖Cs = max
|β|≤[s]

‖Dβf‖Cs−[s] ,

the space of s–times differentiable functions is a Banach space, which will also be
denoted by Cs.
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2.2.3. Ultradifferentiable functions. Let a sequence

M = {Mj}∞j=0

be given, with Mj > 1 for every j. A smooth function f : V → W is said to be in the
Carleman class CM of ultradifferentiable functions, if there are constants C, h > 0,
such that

sup
V
|Dβf | ≤ Ch−|β|M|β| for every β ∈ Nm. (9)

Let ‖f‖CMh be the smallest constant C for which these estimates are satisfied: this
defines the CMh -norm of f , and with this norm CMh is a Banach space. Note that
if h1 < h2, then CMh2

⊂ CMh1
.

If Mk = k!, then CM is the class Cω of real analytic functions, and CMh is the
space Cωh of real analytic functions that can be extended to complex analytic func-
tions on a complex strip of width h in the imaginary direction. Since this class will
be used extensively in the following, the norm ‖.‖CMh is written as |.|h in this case.

If Mk = (k!)µ, with µ > 1, then CM is the Gevrey class Gµ. The associated
Gevrey spaces are denoted by Gµh . Unlike the real analytic class, for every µ > 1
there are functions in Gµh with compact support.

2.2.4. Whitney smoothness. The definitions of the function spaces just introduced
can be extended to cover functies f : F → W that are defined on closed sets F ⊂ V ,
by replacing partial derivatives Dβf with components fβ of a Whitney jet (cf. [34]).
Let a collection of functions {fβ}β : F → W be given such that f0 = f and such
that the following consistency condition is satisfied for all β:

fβ(x+ y) =
∑

|β̃|≤s−|β|

fβ+β̃(x)
yβ̃

β̃!
+ o(|y|s−|β|), x, y ∈ F .

At every interior point x of F obviously fβ(x) = Dβf(x). Finite differentiability
and the smoothness classes CM are now defined for functions on closed sets in the
obvious way.

Whitney differentiable functions of a given smoothness class can be extended
from F to all of V ; however, the results in this direction are increasingly weaker
with increasing differentiability. For finite differentiability, there is a continuous
linear extension operator [34]; for smooth functions, extension can still be shown to
be a continuous operation [24]. Finally, Gevrey regular functions can be extended
to Gevrey functions of the same class, but in general not continuously [5].

2.2.5. Smoothness classes. The regularity of conjugacies and invariant tori in the
results below depends on the regularity of the data; to shorten the statement of
the theorem, the following formalism is introduced: the original vector field and its
perturbations (the “data”) will be in a smoothness class B, while mappings that
are constructed in the proof in the theorem will be in a less regular class B′, which
depends on the original class B. For each of the four B-classes Cω, Gµ, CM and Cs,
we describe the corresponding B′-class.

Let U be an open and bounded neighbourhood of T = Tm × {0}. Functions
in the B′-classes are always more regular in the phase variables (x, y) than in the
parameters p; we express this by positing that if f ∈ B′, then for fixed values of p

f(., ., p) ∈ B′1(U ,W )
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and for fixed values of (x, y)

f(x, y, .) ∈ B′2(P ′,W );

by specifying B′1 and B′2, we specify B′. Note that since parameters are restricted
to the closed set P ′, the smoothness of the parameter dependence is always meant
in the sense of Whitney.

Let ` > 0 be a positive integer, which denotes the maximal degeneracy of a
normal eigenvalue of the unperturbed vector field X.

1. Analytic data. If B = Cω2h, then for any ζ > 0,

B′1 = Cωh , B′2 = G1+`(κ+1)+ζ .

2. Gevrey regular data. If B = Gµh with µ > 1, then for any ζ > 0

B′1 = Gν1h1
, B′2 = Gν2h2

,

where h1, h2 > 0 are some constants, and where

ν1 = 1 + µ+ ζ, ν2 = 1 + `µ(κ+ 1) + ζ.

3. Ultradifferentiable data. If B = CMh (M ×P), the description of B′ is a little
intricate.

If f ∈ CMh , then for every multi-index α with |α| = s we have

sup |Dαf | ≤ Ch−sMs.

Fix η > 0, and for every s ∈ N let λs = (s + 1) logC0 + ηs log s + logMs,
where C0 = max{c1/h,C} with c1 the constant given in lemma 4.1 below.

Let λ∗ : [0,∞) → R be the largest convex function such that λ∗(s) ≤ λs
for s ∈ N. Denote by Lλ∗ the Legendre transform of λ∗, which is given by

Lλ∗(p) = max
x∈[0,∞)

{
px− λ∗(x)

}
;

see subsection 4.3.2 below.
We construct a function gM as follows. For a fixed constant 1 < β < 2,

chosen in the course of the proof, let g0 = Lλ∗(0) and let

gj = min
{
βgj−1,Lλ∗

(
log r−1

j

)}
.

Finally, let gM be the largest convex function such that

gM (log r−1
j ) ≤ gj

for all j. Here rj = r0a
j
1 with 0 < a1 < 1 and r0 > 0, which are also chosen

in the course of the proof.
Then B′1 and B′2 are respectively the Carleman classes CM̃(1)

and CM(2)
,

with

M̃ (1)
s = s! eLgM (s+C̃), M̃ (2)

s = s! eLgM (`(κ+1+ζ)s+C̃),

where ζ > 0 is arbitrary, and where C̃ is a given constant.
4. Finitely differentiable data. Here B = Cs, with s > (2n2 + 3n)(κ + 1) + 3.

Then for any fixed ζ > 0

B′1 = Cs−(n2+n)κ−2−ζ , B′2 = C(s−(n2+n)κ−2−ζ)/(`κ+`).

Note that always B′ ⊂ Cn+1.
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Remark 1. The conjugacies can be extended as maps, using the theorems men-
tioned above, to larger parameter sets; however, in general they will cease to be
conjugacies on these larger sets.

Remark 2. The size of the open neighbourhood of the unperturbed vector field X
for which the perturbation theorem below holds, will in general depend on the
constant ζ.

2.2.6. Vector fields. Since all tangent bundles which will appear in this article are
trivial, a vector field X is identified with its component map F = (F1, F2) : M ×
P → Rm × Rn by setting X = F1

∂
∂x + F2

∂
∂y . The classes of vertical vector

fields whose components are of class B or B′ are denoted by X = X (M × P)
or X ′ = X ′(U ×P ′), respectively. In particular, by Xω, X µ XM and X s are
respectively indicated the class of vector fields that are analytic, Gevrey regular,
Carleman regular and finitely differentiable. The norms ‖X‖B of vector field X
in X are defined analogously to the function norms above.

2.3. Parametrised modifying terms theorem. In order to formulate the main
theorem, let the parameter space P ⊂ Rm × g × Rq̃ be an open connected set.
Write p ∈P as p = (Ω̄, p̄) = (ω̄, Ā, p̄), and let (g, h) define an admissible structure
of vector fields.

Main Theorem. Fix Ω0 = (ω0, A0) ∈ NDc, and let a frequency map Ω be given
as Ω(p) = Ω0 + Ω̄. Let X ∈ h ∩ X be an integrable vector field with normal linear
part LΩ. Then there exists an ε0 > 0 such that for any perturbation P ∈ h ∩ X
with ‖P‖B < γ0ε0, the following holds.

There is an integrable vector field Λ ∈ h∩X ′, ‖Λ‖B′ < C‖P‖B, such that if Ω ∈
NDc, then X +P −Λ is normally conjugated to LΩ by a vertical mean–0 structure-
preserving conjugacy Φ in B′. We have that Φ is normally linear in y and that ‖Φ−
id‖B′ < C‖P‖B for some C > 0.

The proof of this theorem is given in section 4.

3. Persistence of tori.

3.1. Perturbations of non-linear integrable families. We are interested in the
following situation. Let p 7→ Ω(p) = (ω(p), A(p)) be a frequency map, defined on a
neighbourhood P of 0 ∈ Rq. Denote by A0 : Rn → Rn the linear map given by the
matrix A(0); introduce A1(p) = A(p)−A(0), such that

A(p) = A0 +A1(p),

and such that A1(p) = O(|p|).
Let N and R denote the kernel and the range of A0, respectively. Choose

complementary subspaces N c and Rc to N and R; that is,

N + N c = R + Rc = Rn, N ∩N c = R ∩Rc = {0}.
Given these choices, there is a unique decomposition of a vector z ∈ Rn as a
sum z = z1 + z2 with z1 ∈ R and z2 ∈ Rc. Define projections πR and πcR by
setting πRz = z1 and πcRz = z2; projections πN and πcN are defined analogously.

Let X ∈ h ∩ X be an integrable vector field of the form

X =
(
ω(p) + q1(y, p)

)∂
∂x

+
(
A(p)y + q2(y, p)

)∂
∂y
,
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where q1 = O(|y|) and q2 = O(|y|2). Note that we do not make any assumptions
on the matrix A(p) in terms of multiplicity or vanishing of eigenvalues, and that
therefore the “standard” KAM theorem, as for instance in [9], is not applicable.

If for τ ∈ Rn the torus Tτ = Tm × {y = τ} is invariant under X, we have
necessarily that

A(p)τ + q2(τ, p) = 0. (10)
Introducing µ = πcN τ and ν = πN τ , and projecting equation (10) on both R
and Rc, we obtain

A0µ+ πRA1(p)(µ+ ν) + πRq2(µ+ ν, p) = 0 (11)

and
πcR (A1(p)(µ+ ν) + q2(µ+ ν, p)) = 0. (12)

Since A0 : N c → R is invertible and since A1(p) = O(|p|), if p takes values in a
neighbourhood of 0, then equation (11) can be solved for µ = µ(ν, p) as a function
of ν and p. Let

τ = τ(ν, p) = µ(ν, p) + ν.

Substitution in equation (12) yields a function f : N ×P → Rc such that if

0 = f(ν, p) = πcR

(
A1(p)τ + q2(τ, p)

)
,

then the vector field X has an invariant torus at y = τ(ν, p).
In the statement of the following theorem a map F : V ×P → W , where V ⊂ Rn

and where W is any finite dimensional vector space, is said to be B′-smooth if
F (., p) ∈ B′1 for fixed p and if F (τ, .) ∈ B′2 for fixed τ .

Theorem 3.1. (Quasi-periodic Lyapunov-Schmidt reduction)
There exists an ε0 > 0, independent of γ0, such that for any P ∈ h∩X with ‖P‖B <
γ0ε0 the following holds.

There is a smaller neighbourhood P̄ of 0, a conjugacy Φp : Tm×Rn → Tm×Rn,
a frequency map Ω̂ : P̄ → Rm × g, and maps µ : N × P̄ → N c, τ : N × P̄ →
Rn, f : N × P̄ → Rc, both B′–smooth, as well as maps ρ1 : Rn × P̄ → Rm,
ρ2 : Rn × P̄ → Rn, ρ3 : Rn × P̄ → g, at least Cn+1-smooth, with the following
properties.

The map µ = µ(ν, p), with ν ∈ N and p ∈ P̄ solves the equation

0 = πR

[
A(p)(µ+ ν) + q2(µ+ ν, p) + ρ2(µ+ ν, p)

]
. (13)

The map τ = τ(ν, p) is of the form

τ(ν, p) = µ(ν, p) + ν. (14)

The map f is of the form

f(ν, p) = πcR

[
A(p)τ + q2(τ, p) + ρ2(τ, p)

]
. (15)

The frequency map Ω̂ reads as

Ω̂(ν, p) =
(
ω(p) + q1(τ, p) + ρ1(τ, p), A(p) +

∂q2

∂y
(τ, p) + ρ3(τ, p)

)
.

Moreover
‖Φ− id‖B′ → 0 and ‖ρi‖Cn+1 → 0

as ‖P‖B → 0.
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Finally, if τ = τ(ν, p) and
f(ν, p) = 0,

then Φ is a mean-τ conjugacy that normally conjugates X + P to LΩ̂ at all param-
eters for which Ω̂(p) is normally Diophantine.

Proof. The proof runs along the same lines as the example of the introduction.
Write Q = X − NX = q1

∂
∂x + q2

∂
∂y and set

X̃ = X + P = LΩ +Q+ P.

Let Ψτ : M ×P →M ×P be a localising transformation, given by

Ψ−1
τ (x, y, p) = (x, τ + y, p) .

Introduce the localised vector field

Y = Ψτ∗X̃.

Its normal linear part takes the form

NY =
(
ω(p) + q1(τ, p)

)∂
∂x

+
(
A(p)τ + q2(τ, p) +

(
A(p) +

∂q2

∂y
(τ, p)

)
y

)
∂

∂y

+ NΨτ∗P.

Let Ω̂ = (ω̂, Â) ⊂ Rm × g, and introduce

Λ0 =
(
ω(p) + q1(τ, p)− ω̂

)∂
∂x

+
(
A(p)τ + q2(τ, p) +

(
A(p) +

∂q2

∂y
(τ, p)− Â

)
y

)
∂

∂y

Then
N(Y − Λ0) = LΩ̂ + NΨτ∗P.

Applying theorem 2.3 to Y − Λ0 yields that for ‖P‖B = ε sufficiently small, there
is a B′–smooth integrable vector field

Λ1 = δ(p, τ, Ω̂)
∂

∂x
+ (µ(p, τ, Ω̂) +B(p, τ, Ω̂)y)

∂

∂y
,

such that ‖Λ1‖B′ ≤ Cε, and a B′-smooth conjugacy

Φ−1(x, y; p, τ, Ω̂) =
(
x+ ϕ1(x, y, p, τ, Ω̂), y + ϕ2(x, y, p, τ, Ω̂)

)
,

such that
NΦ∗(Y − Λ0 − Λ1) = LΩ̂. (16)

The modifying terms vector field Λ1 can be extended, non-uniquely, to a vector
field defined for all Ω̂ that is at least Cn+1, see [34], and which will also be denoted
by Λ1.

Putting Λ = Λ0 + Λ1, we want to determine a map Ω̂ : P̄ × Rn → Rm × g such
that if Ω̂ = Ω̂(p, τ), then Λ = 0. Requiring that Λ = 0 is equivalent to the equations

ω̂ = ω(p) + q1(τ, p) + δ̂(p, Ω̂), (17)

0 = A(p)τ + q2(τ, p) + µ̂(p, Ω̂), (18)

Â = A(p) +
∂q2

∂y
(τ, p) + B̂(p, Ω̂). (19)
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Since the modifying terms are (Cn+1, Cε)-small, if ε > 0 is sufficiently small, equa-
tions (17) and (19) can be solved for ω̂ and Â, yielding

ω̂(τ, p) = ω(p) + q1(τ, p) + ρ1(τ, p),

Â(τ, p) = A(p) +
∂q2

∂y
(τ, p) + ρ3(τ, p).

For µ ∈ N c and ν ∈ N , set τ = µ + ν. By applying πR to both sides of equa-
tion (18), and recalling that A(p) = A0 +A1(p) with A1(p) = O(|p|), we obtain

0 = A0µ+ πR (A1(p)(µ+ ν) + q2(µ+ ν, p) + ρ2(µ+ ν, p)) . (20)

Note that A0 : N c → R is invertible. By the implicit function theorem, we can
solve equation (14) for µ = µ(ν, p). Substituting this function into equation (18)
and consequently applying πcR to both sides yields, with τ = µ(ν, p) + ν:

0 = f(ν, p) def= πcR

[
A(p)τ + r(τ, p) + ρ2(τ, p)

]
.

3.2. Corollaries. Note that in the situation of theorem 3.1, the linear map A0

is invertible, then dim Rc = 0, and the equation f = 0 disappears. Moreover,
if Ω is a versal unfolding of Ω(0), then so is Ω̂, and the set of parameters p such
that Ω̂(p) ∈ NDc has positive Lebesgue measure.

3.3. Reduction of parameters. The previous results can also be applied to sit-
uations with few parameters. The reduction is based on the following result of
Pyartli.

Theorem 3.2. (Pyartli [29]). Let U be an open neighbourhood of a point q ∈
Rm, and let a smooth map α : Rm → Rn (n > m) be given, parametrising a m–
dimensional submanifold S in Rn. Assume that there is a curve ξ : (−ε, ε) → Rm
with ξ(0) = q, such that v1, · · · , vn−m+1 span a (n − m + 1)–dimensional linear
subspace of Tα(q)Rn transversal to Tα(q)S at α(q), where vj is given as

vj =
djα ◦ ξ

dtj
(0).

If κ > n2 − n+ 1, and if γ > 0 is sufficiently small, then the set

Uc =
{
x ∈ U : |〈k, α(x)〉+ k0| ≥ γ|k|−κ for all k ∈ Zm\{0}, k0 ∈ Z

}
.

has positive Lebesgue measure in U .

The significance of this theorem is expressed by the following, less precise, re-
formulation: if κ > 0 is sufficiently large, then for a generic frequency map Ω, the
inverse image Ω−1( NDc) has positive Lebesgue measure.

Suppose Ω is a frequency map such that Ω(0) ∈ NDc. It is always possible to find
a versal unfolding Ω̂ of Ω(0), defined on another parameter space Σ, such that Ω is
a subfamily of Ω̂; that is, such that there is a map σ : P → Σ with the property
that

Ω(p) = Ω̂(σ(p)).
Hence, a given vector field X(p) = LΩ(p) +Q(p) – only the parameter dependence
is made explicit – can be replaced by X̂(p, σ) = LΩ̂(σ) +Q(p) with (p, σ) ∈P ×Σ.
By theorem 2.3, for every small perturbation P (p) there is an integrable vector
field δ̂(p, σ) such that X̂ + P + δ̂ has an invariant quasi–periodic torus of mean 0
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whenever Ω̂(σ) ∈ NDc, since Ω̂ is quasi–periodically nondegenerate. Then, by using
that

X(p) = X̂(p, σ(p)),
the conclusion is obtained that for a generic set of vector fields X, there is an
integrable vector field δ(p) = δ̂(p, σ(p)), such that the set of parameters p for
which X(p) + P (p) + δ(p) has an invariant quasi–periodic torus of mean 0, has
positive Lebesgue measure in P.

3.4. The quasi-periodic Bogdanov-Takens bifurcation. As an application
of theorem 3.1, we treat the persistence of invariant tori in the quasi-periodic
Bogdanov-Takens bifurcation [35, 3, 4, 10, 30, 11].

3.4.1. Integrable normal form. Recall that a Bogdanov-Takens singularity occurs if
a singular point, say x = 0, of a planar vector field Z0, has a multiple eigenvalue 0
with geometric multiplicity 1; that is, the linearisation has a nilpotent part. We
assume that Z0 is a member of a family of vector fields Zσ, parametrised by a two-
dimensional parameter σ. If some nondegeneracy conditions are met, by a suitable
change of phase space and parameter space coordinates, the vector field can be
brougth into the form

Zσ =
(
−
(

0
σ1

)
+
(

0 1
0 σ2

)
y +

(
0

y2
1 + by1y2

)
+ r(y, σ)

)
∂

∂y
,

where b = ±1 and r = O(|y|3). Note that Zσ is an unfolding of the nilpotent
singularity y = 0. We shall limit our attention to the case b = 1.

Consider now the integrable unfolding Xσ of the normally nilpotent invariant
torus T0 = {(x, y) ∈ Tm × R2} of the vector field X0, where

Xσ = ω(y, σ)
∂

∂x
+
(
−
(

0
σ1

)
+
(

0 1
0 σ2

)
y +

(
0

y2
1 + y1y2

)
+ r(y, σ)

)
∂

∂y
,

Introduce the standard basis vectors e1 = (1, 0) and e2 = (0, 1). In terms of
subsection 3.1, we have

A(σ) =
(

0 1
0 σ2

)
, kerA(0) = N = Re1 ranA(0) = R = Re1.

We choose
N c = Rc = Re2.

Let π1 and π2 be the projections on Re1 and Re2 respectively. Then πN = πR = π1

and πcN = πcR = π2.

3.4.2. Non-integrable perturbation. Consider a non-integrable perturbation Xσ+Pσ
of Xσ, where the perturbation term Pσ is such that ‖Pσ‖B < ε.

We shall assume that the smoothness class B contains Cs, where s > 0 is such
that B′ contains at least C4. For sufficiently small ε > 0, theorem 3.1 ensures
the existence of a B′-smooth map Φ and functions µ, τ , f , ρ1, ρ2, ρ3, such that
‖ρi‖C3 ≤ Cε, and such that the following hold.

Writing µ = (0, τ2), ν = (τ1, 0) and τ = µ+ ν, the function τ2 = τ2(τ1, p) solves
equation (13), which takes the form

0 = π1

[
−
(

0
σ1

)
+
(

0 1
0 σ2

)(
τ1
τ2

)
+
(

0
τ2
1 + τ1τ2

)
+ r + ρ2

]
= τ2 + π1 [r(τ, σ) + ρ2(τ, σ)] .
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We find that

τ2 = 0 + τ3
1 η1(τ1, σ) + ϕ1(τ1, σ),

where η1 ∈ Cs−3 and ‖ϕ1‖C3 ≤ Cε. Substitution into equation (15) yields the
function f , which is of the form

f(τ1, σ) = π2

[
−
(

0
σ1

)
+
(

0 1
0 σ2

)
τ +

(
0

y2
1 + y1y2

)
+ r + ρ2

]
= −σ1 + τ2

1 + π2(r + ρ2).

We find

f(τ1, σ) = τ2
1 − σ1 + τ3

1 η2 + ϕ2,

where η2 ∈ Cs−3 and ‖ϕ2‖C3 ≤ Cε. The frequency map takes the form

Ω̂(τ1, σ) =
(
ω̂(τ1, σ), Â(τ1, σ)

)
=
(
ω(τ1, 0, σ),

(
0 1

2τ1 σ2 + τ1

))
+ τ2

1 η3 + ϕ3,

with η3 ∈ Cs−4 and ‖ϕ3‖C3 ≤ Cε. We solve σ1 from the equation f = 0 to obtain

σ1 = Σ(τ1, σ2) = τ2
1 + τ3

1 η4(τ1, σ2) + ϕ4(τ1, σ2), (21)

with η4 ∈ Cs−3 and ‖ϕ4‖C3 ≤ Cε.
Theorem 3.1 then allows us to conclude that if σ1 = Σ(τ1, σ2) and if Ω̂ is normally

Diophantine, then Xσ + Pσ has an invariant m-dimensional torus that is of the
form Tσ = {(x, y) : y = (τ1, τ2) + ϕ(x, y, σ)}, where ‖ϕ‖B′ ≤ Cε, with normal
dynamics LΩ̂.

3.4.3. Quasi-periodic saddle-node bifurcations of Xσ+Pσ. Let σ∗1 be a critical value
of the map

(τ1, σ2) 7→ Σ(τ1, σ2),

corresponding to a critical point (τ∗1 , σ
∗
2). Write σ∗ = (σ∗1 , σ

∗
2). If Ω̂(τ∗1 , σ

∗) is
normally Diophantine, then σ∗ is a quasi-periodic saddle-node bifurcation point. It
follows from (21) that the critical points of Σ satisfy

τ1 = 0 + ϕ5(σ2),

where ‖ϕ5‖C1 ≤ Cε.

3.4.4. Quasi-periodic Hopf bifurcations. At parameters for which the normal fre-
quencies of an invariant m-torus are located on the imaginary axis, quasi-periodic
Hopf bifurcations can occur. The full normal form analysis is not given here, but it
runs along entirely standard lines. From the normal part Â of the frequency map,
we obtain the conditions

T (τ1, σ) = trÂ = τ1 + σ2 + τ2
1 η6 + ϕ6 = 0 (22)

and

D(τ1, σ) = det Â = −2τ1 + τ2
1 η7 + ϕ7 > 0.

Note that necessarily at all quasi-periodic saddle-node bifurcation points σ∗, with
corresponding τ∗1 = ϕ5(σ∗2), we have

D(τ∗1 , σ
∗) = 0.
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Solving equation (22) for τ1, we obtain

τ1 = −σ2 + ϕ8(σ);

substitution in (21) yields the locus of the quasi-periodic Hopf bifurcation points as
those parameter values σ such Ω̂(−σ2 + ϕ8, σ) in normally Diophantine, for which

σ1 = Σ(−σ2 + ϕ8(σ), σ2),

as long as D(−σ2 + ϕ8, σ) > 0. This yields

σ1 = σ2
2 + σ3

2η9 + ϕ9.

These bifurcation curves are illustrated in figure 1.

SN Hopf

BT

Σ1

Σ
2

Figure 1. Bifurcation diagram of the quasi-periodic Bogdanov-
Takens bifurcation

4. Proof of the main result. In this section the proof of theorem 2.3 is given.

4.1. Preliminaries. The vector field X mentioned in the statement of theorem 2.3
is defined on the phase space Tm × Rn, it is integrable, and it has normal linear
part LΩ, where Ω = (ω,A). Hence, it is of the form

X = (ω + q1(y, p))
∂

∂x
+ (Ay + q2(y, p))

∂

∂y
,

with q1 = O(|y|) and q2 = O(|y|2). The perturbation term P will be written as

P = p1(x, y, p)
∂

∂x
+ p2(x, y, p)

∂

∂y
;

it satisfies ‖P‖B ≤ γ0ε0. In the following the vector field X + P shall be denoted
by X̃. After scaling the time by t = γ0t

′, it may be assumed that the Diophantine
condition NDc is of the form NDc(1, γ/γ0, κ), and that ‖P‖B = ε < ε0.

Note that the frequency map Ω(p) = Ω0 + Ω̄ is a linear function of p.
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4.1.1. Multiple normal eigenvalues. For the following remarks, cf. [20, 7]. In order
to motivate the definition of the parameter domains below, we need some estimates
on the parameter dependence of eigenvalues in the case that the matrix A0 has
multiple eigenvalues.

Let f be the characteristic polynomial of A(p) = A0 + Ā; that is,

f(z, p) = det(A(p)− zI).

If λ ∈ C is an `-fold zero of f(z, 0), then by the Weierstraß preparation theorem
(see for instance [21], p. 155), there are unique analytic functions q(z, p), ai(p),
defined in a neighbourhood of (z, p) = (λ, 0), such that q(λ, 0) 6= 0, ai(0) = 0
for i = 0, · · · , n− 1, and

(z − λ)` = qf +
`−1∑
i=0

ai(p)(z − λ)i.

The function g(z, p) = 1/q(z, p) is defined in a, possibly smaller, neighbourhood
of (λ, 0), and

f(z, p) = g(z, p)

(
(z − λ)` −

`−1∑
i=0

ai(p)(z − λ)i
)
.

There are ` continuous functions zk(p), k = 1, · · · , `, defined for p in an open
bounded neighbourhood U of 0, such that zk(0) = λ and such that

∏̀
i=1

(z − zk(p)) = (z − λ)` −
`−1∑
i=0

ai(p)(z − λ)i.

For z ∈ CN , introduce the norm

|z| = max
0≤i≤N

|zi|. (23)

The functions zk satisfy

|zk(p)| < C|p|1/` (24)

for some C > 0. To see this, assume (as we may) that U is the common domain
of definition for the functions ai(p) and zk(p). Since the ai(p) are analytic and
satisfy ai(0) = 0, there is a constant C ′ > 0 such that |ai(p)| < C ′|p| on U .
For |p| < 1/(`C ′) and |z| ≥ 1, it follows that

|fλ(z, p)| > |z|` −
`−1∑
i=0

|ai(p)||z|i > 0;

consequently |zk(p)| < 1 if |p| < 1/(`C ′), and then fλ(zk(p), p) = 0 implies that

|zk(p)|` ≤
`−1∑
i=0

|ai(p)| < `C ′|p|.

In turn, this implies inequality (24). We conclude that the eigenvalues of A(p) are
Hölder continuous as a function of p. The Hölder exponent is equal to 1/`, where `
is the largest multiplicity of an eigenvalue of A0. Moreover, for all p such that the
eigenvalues of A(p) are all different, they depend analytically on p.
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4.1.2. Parameter domains. Define the distance d between two points x, y ∈ CN
as d(x, y) = |x − y|, where the norm |.| has been introduced in equation (23).
If U ⊂ CN , the distance of a point x to U is given as d(x,U ) = infy∈U d(x, y).
Define the open complex strip U + r of width r around a set U by

U + r =
{
z ∈ CN : d(z,U ) < r

}
.

Let {dj} be a given sequence of positive real numbers, monotonically increasing
towards infinity. Let the set ndjc ⊂ Rm × Rn of normally Diophantine frequencies
be the set of vectors (ω, α), where α is of the form

α = (α1,−α1, · · · , αk,−αk, 0, · · · , 0),

such that the conditions

|〈k, ω〉| ≥ γ0|k|−κ, |〈k, ω〉+ 〈`, αA〉| ≥ γ (|k|+ |`|)−κ ,

are satisfied for all (k, `) ∈ Zm × Zn for which 0 < |k| ≤ dj , |`| ≤ 2.
For given Ω = (ω,A) ∈ Tm × g, let αA be the vector of imaginary parts of

eigenvalues of A. Introduce the set NDj
c ⊂ Tm × g of normally Diophantine Ω =

(ω,A) by requiring that their frequency vectors (ω, αA) are normally Diophantine.
Furthermore, if {ρj} is a positive sequence that decreases monotonically to 0,

let NDj
c(ρj) ⊂ Tm × g be the set of Ω = (ω,A) such that their frequency vec-

tor (ω, αA) satisfies |ω − ω̄|+ |αA − ᾱ| < ρj , where (ω̄, ᾱ) ∈ ndjc.
Note that

NDj+1
c ⊂ NDj

c, NDj+1
c (ρj+1) ⊂ NDj

c(ρj),
and that

∞⋂
j=1

NDj
c =

∞⋂
j=1

NDj
c(ρj) = NDc.

Finally, introduce

P(ρj) =
{
p ∈P |Ω(p) ∈ NDj

c(ρj)
}
,

and note that P(ρj+1) ⊂P(ρj) and ∩∞j=1P(ρj) = P ′.
Take p ∈ P ′ and p̃ ∈ P\P(ρj). Recall from subsubsection 4.1.1 that the

normal eigenvalues αA(p) are Hölder continuous with Hölder exponent `, where `
is the highest algebraic multiplicity of an eigenvalue of A0. Then

ρj ≤ |ω(p̃)− ω(p)|+ |αA(p̃)− αA(p)| < C|p̃− p|1/`,

and |p̃− p| > ρ`j/C
`. As a consequence, we have that

P ′ +
1
C`
ρ`j ⊂P(ρj). (25)

4.1.3. Phase domains. Let U be an open subset of M . An embedding Φ : U ×P
is called vertical over the parameters, if it acts as the identity on the space of
parameters, that is, if it can be written in the form Φ(x, y, p) = (Φp(x, y), p). In
the course of the proof, a sequence {Φj} of vertical embeddings will be constructed
inductively, together with infinite sequences of complex domains {Dj} and {D̃j}.
The definitions of the domains are slightly different according to whether X̃ is in
the real analytic class or not.

Let {rj}, {ρj}, {r̃j}, {ρ̃j} be geometrically decreasing sequences, which will be
chosen later on, but which are from the outset assumed to satisfy r1 ≤ r̃1 and ρ1 ≤
ρ̃1.
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Let V be an open bounded real neighbourhood of T = Tm × {0}. If X̃ is real
analytic, then there is some constant h > 0 such that X̃ can be extended to an
analytic vector field on V + 2h, which is an open neighbourhood of T in TmC ×Cn
(where TmC = Cm/2πZm). Let in this case U be the complex neighbourhood V +h

of V ; otherwise, if no analytic extension of X̃ to a complex neighbourhood of V
exists, let U be equal to V .

The domains Dj and D̃j are defined in terms of U as follows

Dj = D(rj , ρj) = (U + rj)×P(ρj), (26)

D̃j = D̃(r̃j , ρ̃j) = ((Φj)p(U ) + r̃j)×P(ρ̃j). (27)

In the following, also “intermediate” domains Dj+1 ⊂ Dj+ϑ ⊂ Dj are needed.
For 0 < ϑ < 1, define first the convex combinations rj+ϑ = ϑrj+1 + (1 − ϑ)rj
and ρj+ϑ = ϑρj+1 + (1− ϑ)ρj , and then

Dj+ϑ = D(rj+ϑ, ρj+ϑ).

For analytic functions on some complex open set O, the norm

|f |O = sup
O
|f(x, y, p)|

is introduced; if O = (U + σ1)×P(σ2) this is abbreviated to |f |σ; if O = Dj+ϑ, it
is further abbreviated to |f |j+ϑ.

4.2. Structure of the proof. One of the main technical problems of the proof is
to deal with the smoothness of the vector field X̃ in the non–analytic cases. We
shall work with analytic approximations: in the first part of the proof a sequence of
analytic vector fields {X̃j} is constructed, where X̃j is defined on D̃j , which tends
to X̃ in an appropriate sense.

In the second part of the proof, coordinate transformations Φj , “modifying
terms” vector fields Λj and auxiliary vector fields Xj , ∆j and ∆̃j are constructed
inductively by the following “staircase construction”.

To set up the induction, choose

Φ1 : D1 ↪→ D̃1

as the identity (Φ1)p(x, y) = (x, y), Λ0 = 0, and X1 as the restriction of X̃1 to D1.
Note that due to the assumptions r1 ≤ r̃1 and ρ1 ≤ ρ̃1, we have that D1 ⊂ D̃1, so
that Φ1 is well-defined.

At the beginning of the induction step, assume that an embedding

Φj : Dj ↪→ D̃1,

a domain D̃j of the form (27), and an integrable vector field Λj defined on D̃j and
another vector field Xj defined on Dj are already determined.

During the induction step, an embedding

Ψj : Dj+1 ↪→ Dj

and vector fields ∆j on Dj+ 1
2
, and ∆̃j and Λj+1 on Φj(Dj+ 1

2
), are constructed simul-

taneously, such that the following two properties hold. First, the vector fields Λj+1

and
∆̃j = Λj − Λj+1 = Φj∗∆j

are integrable. Second, the vector field X̌j defined on Dj+1 that satisfies

Ψj∗X̌j = Xj + ∆j
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has the property that its normal linear part NX̌j is much closer to LΩ than NXj ,
in a sense that will be made precise below. Note that, unlike the vector field ∆̃j ,
the vector field ∆j need not and in general will not be integrable.

The coordinate transformation Φj+1 is then obtained by setting

Φj+1 = Φj ◦Ψj .

With the knowledge of Φj+1, the domain D̃j+1 is determined by (27), and the vector
field Xj+1 is determined by setting

(Φj+1)∗Xj+1 = X̃j+1 − Λj+1.

Finally, we show that the limits

X̃j − Λj → X̃ − Λ, Xj → X, Φj → Φ

exist as j →∞, that NX = LΩ, and that

Φ∗X = X̃ − Λ.

Remark 3. Necessary for these constructions is that for all j:

Φj(Dj) ⊂ D̃j , D̃j+1 ⊂ Φj
(
Dj+ 1

2

)
. (28)

The first inclusion ensures that the vector field Xj is defined on Dj , and the second
ensures that Λj+1 is defined on all of D̃j+1.

4.3. Approximation. In order to construct analytic approximations X̃j of X̃ on
the complex domains D̃j , a modified version of Zehnder’s approximation technique
(see [39]) is used, which gives explicit information on the growth of constants that
depend on the degree of differentiability.

4.3.1. Finite differentiability. We need the following sharpened version of Zehnder’s
approximation lemma. A function f : Rn → R is called periodic with periods Ti,
i = 1, ..., n, if f(x+ Ti) = f(x) for all x and all i.

Lemma 4.1. Let f : Rn → R be r–times continuously differentiable, and let {ρj}∞j=0

be a monotonically decreasing sequence of positive real numbers. For every η ∈
(0, 1), and for every j > 0, there exists an entire holomorphic function fj : Cn → C,
taking real values on real vectors, such that

‖fj − f‖Cs → 0 as j →∞, for all 0 ≤ s < r,

and

|fj − fj−1|ρj ≤ cs+1
1 (s!)ηρsj−1‖f‖Cs , for every 1 ≤ s ≤ r;

here c1 = 2 e2
(

26

η

)2n

.
If f is periodic in its argument, then every fj can be chosen to be periodic with

the same periods.

The proof of lemma 4.1 follows [39] closely; the main difference is that C∞ bump
functions are replaced by Gevrey regular bump functions.

The construction of these bump functions is the content of the next lemma.
Then in lemma 4.1 the approximating functions are constructed by convolving f
with the inverse Fourier transform ϕ of Gevrey bump functions ϕ̂. Estimates on
the derivatives of the smoothed functions are obtained in terms of the derivatives
of ϕ̂. Finally, the smoothing is applied repeatedly in different directions.
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Lemma 4.2. Let 0 < η < 1. There exists an even, infinitely differentiable func-
tion ψ : R → R , vanishing on the complement of the open interval (−2, 2), taking
the value 1 on the closed interval [−1, 1], whose derivatives can be bounded as

|ψ(s)(x)| ≤
(

4
η

)s
(s!)1+η, (29)

for all x ∈ R, and all s ≥ 0.

Proof. The function ψ is constructed by repeatedly convolving multiples of indicator
functions (see e.g. [22]).

Introduce ak = c (k + 1)−1−η and choose c such that
∑∞
k=0 ak = 1. Since∫ ∞

0

1
(x+ 1)1+η

dx ≤
∞∑
k=0

1
(k + 1)1+η

≤ 1 +
∫ ∞

1

1
x1+η

dx,

it follows that η
1+η ≤ c ≤ η.

Introduce for a > 0 the function Ha : R→ R by

Ha(x) =
{
a−1 for x ∈ (0, a),
0 otherwise.

The convolution u ∗ v of two integrable functions u, v : R→ R is given by

u ∗ v =
∫

R
u(x− y)v(y) dy;

we have that
∫

R u∗v dx =
∫

R udx ·
∫

R v dx. Using the sequence ak, define a sequence
of functions

uk = Ha0 ∗Ha1 ∗ · · · ∗Hak ,

and note that
∫

R uk dx = 1 since
∫

R Ha dx = 1. It follows from theorem 1.3.5 of [22]
and the fact that

∑
ak = 1 that the sequence {uk} converges uniformly to a smooth

function u : R→ R with support in [0, 1], which is such that
∫

R udx = 1 and

|u(s)(x)| ≤ (s+ 1)1+η

c

(
2
c

)s
(s!)1+η,

for all s ∈ N. Note that u ∈ G1+η.
The function v(t) = u(−x− 1)− u(x− 1) has support [−2,−1]∪ [1, 2], it is odd,

and
∫

R v dx = 0. Hence, its primitive

ψ(x) =
∫ x

−∞
v(t) dt

is even, vanishes for all x in the complement of [−2, 2], and satisfies ψ(x) = 1
for |x| ≤ 1. Moreover, for s ≥ 1,∣∣∣ψ(s)(x)

∣∣∣ ≤ 1
2

(
2
c

)s
(s!)1+η,

and ψ ∈ G1+η. Using c ≥ η
1+η ≥ η/2 for 0 < η < 1 yields the lemma.

We can now prove lemma 4.1. The proof consists of three parts: first we define
holomorphic approximations fj of f ; then we show that these converge to f as j →
∞, and finally we demonstrate the bound on the difference |fj − fj−1|.
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Proof. Let ϕ̂ be equal to the function ψ given by lemma 4.2, and let ϕ be its inverse
Fourier transform, given as

ϕ(x) =
1

2π

∫ ∞
−∞

eiξxϕ̂(ξ) dξ.

The function ϕ̂ is a Schwartz function, that is, |x|kϕ̂(s)(x) is bounded for every k, s >
0; as the Fourier transformation interchanges differentiation and multiplication with
a mononomial, the transformed function ϕ is a Schwartz function as well, and
hence ϕ and all its derivatives are integrable. Moreover, since ϕ̂ is even, the function
ϕ maps R onto itself, it satisfies

∫
R ϕdx = ϕ̂(0) = 1, and as ϕ̂ has compact support,

the function ϕ can be continued analytically to an entire function ϕ on C.
For t > 0, introduce ϕt(x) = tϕ(tx); note that for every t > 0 the function ϕt

has the same properties as those stated for ϕ in the previous paragraph. For every
bounded continuous real–valued function f on R, the analytic smoothing Stf of f
is defined by

Stf(z) =
∫

R
ϕt(z − y)f(y) dy. (30)

The analytic smoothing of f is an entire holomorphic function on C, taking real
values on real arguments. It is easy to verify that if f is periodic, then so is Stf , and
for functions f with bounded derivatives, smoothing commutes with differentiation:
for s ∈ N with s < r we have Stf (s) = (Stf)(s). The holomorphic approximations fj
are defined as

fj = Sρ−1
j
f,

where {ρj} is the given monotonic sequence.
Let s ∈ [0, r), and introduce g = f [s], where [s] is the largest integer smaller than

or equal to s. We wish to show convergence of Stg to g as t→∞ in the Cα-norm,
where 0 < α = s − [s] < r − [s] = β. For this, note that g ∈ Cβ(R). Fix δ > 0
arbitrarily.

For h > δ, we have that∣∣(g − Stg)(x+ h)−
(
g − Stg

)
(x)
∣∣

hα

= h−α
∣∣∣∣∫ ϕt(−y)

(
g(x+ h)− g(y + x+ h)

)
dy −

∫
ϕt(−y)

(
g(x)− g(y + x)

)
dy
∣∣∣∣

≤ h−α
∫
|y|≤δ

ϕt(y)
(∣∣∣g(x+ h+ y)− g(x+ h)

∣∣∣+
∣∣∣g(x+ y)− g(x)

∣∣∣) dy

+ h−α
∫
|y|>δ

ϕt(y)
(∣∣g(x+ h)

∣∣+
∣∣g(x+ y + h)

∣∣+
∣∣g(x)

∣∣+
∣∣g(x+ y)

∣∣)dy

≤ 2‖g‖Cβ
δβ

hα
+ 4‖g‖Cβh−α

∫
|y|>δ

ϕt(y) dy

≤ 6‖f‖Crδr−s.

For the first inequality, we used the fact that ϕt is even. The last inequality follows
by choosing t so large that the integral on the one but last line is made smaller
than δβ .
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For 0 < h ≤ δ, the following straightforward estimates hold:∣∣(g − Stg)(x+ h)−
(
g − Stg

)
(x)
∣∣

hα

≤
∣∣∣∣g(x+ h)− g(x)

hα

∣∣∣∣+
∫
ϕt(−y)

∣∣∣∣g(y + x+ h)− g(y + x)
hα

∣∣∣∣ dy

≤ 2‖g‖Cβhβ−α ≤ 2‖f‖Crδr−s.

As δ > 0 was arbitrary, ‖f − Stf‖Cs → 0 as t → ∞. This shows the first clause of
lemma 4.1.

To show the second clause, introduce functions χs and ψs by

χs(y) =
1

(s− 1)!

∫
R
|ϕ(x− iy)||x|s dx, (31)

with the convention (−1)! = 0! = 1, and ψs(ρ) = 2 sup|y|<ρ χs(y).
Let ρ > 0, and let f ∈ Cr(R). The following two estimates are taken from [39].

It is shown there that

‖Stf − f‖C0 ≤ t−sχs(0)‖f‖Cs , (32)

|Sρ−1f − Stf |ρ ≤ t−sψs(1)‖f‖Cs , (33)

for all 0 < t ≤ ρ−1.
We need an explicit bound of χs(y) for all |y| < 1. Using (31) and the fact that ϕ̂

is the Fourier transform of ϕ yields:

χs(y) =
1

(s− 1)!

∫
R

∣∣∣∣ 1
2π

∫
R
xsϕ̂(ξ) eiξ(x−iy) dξ

∣∣∣∣ dx

≤ e2y

(s− 1)!

∫
R

∣∣∣∣∫
R
xsϕ̂(ξ) eiξx dξ

∣∣∣∣ dx.

The inequality follows since the support of ϕ̂ is contained in [−2, 2]. By splitting the
domain of integration over x, noting that the integrand is even in x, and repeated
partial integration over ξ, the following estimate is obtained:

χs(y) ≤ 2e2y

(s− 1)!

∫ 1

0

∣∣∣∣∫
R
ϕ̂(s)(ξ) e−iξx dξ

∣∣∣∣ dx

+
2e2y

(s− 1)!

∫ ∞
1

x−2

∣∣∣∣∫
R
ϕ̂(s+2)(ξ) e−iξx dξ

∣∣∣∣ dx.

Restricted to the support of ϕ̂, the integrands are estimated using (29) and 0 ≤ η ≤
1, which yields

ψs(1) = 2 sup
|y|<1

χs(y) ≤ 256 e2
(

1 +
s

2

)4
(

4
η

)s+2

(s!)η. (34)

Let ρj be as in the statement of the lemma, and set fj = Sρ−1
j
f . Combining the

estimate (34) with (33) yields

|fj − fj−1|ρj ≤
4096 e2

η2

(
4 e2

η

)s
ρsj−1(s!)η‖f‖Cs .

It follows immediately from (30) and the definition of χs(y) that

sup
R
|Stf (s)(x)| ≤ χ0(0) sup

R
|f (s)(x)|.
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Consequently
‖Stf‖Cs ≤ χ0(0)‖f‖Cs . (35)

Consider now a Cr function f : Rn → R. To ease notation, let Sij denote the
smoothing operator Sρ−1

j
in the direction of xi. Introduce fj = S1

j · · ·Snj f , and
estimate

|fj − fj−1|ρj ≤ |S1
jS

2
j · · ·Snj f − S1

j−1S
2
j · · ·Snj f |ρj

+ · · ·+ |S1
j−1 · · ·Sn−1

j−1 S
n
j f − S1

j−1 · · ·Sn−1
j−1 S

n
j−1f |ρj

≤ ρsj−1ψs(1)‖S2
j · · ·Snj f‖Cs + · · ·+ ρsj−1ψs(1)‖S1

j−1 · · ·Sn−1
j−1 f‖Cs

≤ n(χ0(0))n−1ψs(1)ρsj−1‖f‖Cs

≤ n(χ0(0))n−1ψs(1)ρsj−1‖f‖Cs .

The second inequality follows from (33) and the fact that the smoothing operators in
the different directions commute, and the final inequality follows from equation (35).
As χ0(0) ≤ 211/η2, we obtain that

|fj − fj−1|ρj ≤ 2 e2n

(
211

η2

)n(4 e2

η

)2

(s!)ηρsj−1.

This implies the lemma in the general case.

4.3.2. Legendre transformation. Using the approximation result obtained in 4.3.1,
we derive a variant that yields holomorphic approximations to functions in a Car-
leman class CM . As a preparation, some concepts from the theory of convexity are
recalled.

Let f : [0,∞) → R be an increasing convex function. Define the Legendre
transform Lf of f as follows: for every p > 0, the value g(p) = Lf(p) is the
smallest q such that

f(x) ≥ px− q for all x > 0.

and f(x̄) = px̄− g(p) for some x̄ > 0. If equality holds and f is differentiable at x̄,
then p = f ′∗(x̄).

The function g is also convex. Moreover, if limx→∞ f(x)/x = ∞, then the
gradient f ′(x) = p of f tends to infinity as x→∞, g(p) is defined for all p > 0, and

lim
p→∞

g(p)/p =∞

as well.
As an example we calculate the Legendre transformation of f(x) = a ebx − cx,

which will be needed later. Since f is differentiable,

p = f ′(x) = ab ebx − c.

Solving for x yields that x = (1/b) log((p+ c)/(ab)). We find g by substitution:

g(p) = xp− f(x) =
p+ c

b

(
log

p+ c

ab
− 1
)
. (36)

In general, if f is convex, left- and right-hand limits of the derivative f ′ exist
at every point x > 0. The interval ∂f(x0) = [limx↑x0 f

′(x), limx↓x0 f
′(x)] is called

the subgradient of f . If the graph of f has a corner, that is, if x0 is such that the
subgradient ∂f(x0) has nonempty interior, then for p ∈ ∂f(x0):

g(p) = x0p− f(x0)
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and g′(p) = x0.
Let {fn}∞n=0 be an increasing sequence of real numbers. The largest convex

minorant f∗ of {fn} is the function f∗ : [0,∞)→ R such that

f∗(x) = inf
a,b∈N

{
b− x
b− a

fa +
x− a
b− a

fb, if a < x < b

}
;

put differently, f∗ is that function for which the epigraph {(x, y) ∈ R2 |x ≥ 0, y ≥
f∗(x)} equals the convex hull of set formed of the points (i, fi) and the positive
vertical axis.

4.3.3. Ultradifferentiability. Lemma 4.1 will now be applied to elements of the Car-
leman classes CM . Let M = {Ms} be the increasing sequence of positive real num-
bers Ms defining the class. The space of CMh -smooth vertical vector fields on M×P
will be denoted by XMh .

From the definition of the Carleman classes (9), it follows that if f ∈ CMh , then

‖f‖s ≤ Ch−sMs for every s ∈ N.

We obtain from lemma 4.1 that there exists a sequence of entire holomorphic func-
tions fj , converging to f in every Cs-norm, and such that

|fj − fj−1|ρj ≤ Cs+1
0 (s!)ηρsj−1Ms

for all s, where C0 = max{c1/h,C}. Let 0 < η < 1 be a given constant, and let c1
be as in lemma 4.1. Let λ : [0,∞)→ R be any strictly increasing convex function,
such that for s ∈ N

λ(s) ≥ λs = logC0 + s logC0 + η log s! + logMs. (37)

Note that we could take for λ the largest convex minorant λ∗ of the sequence {λs},
since for every other function λ satisfying the conditions we have λ(s) ≥ λ∗(s). It
is however convenient, when dealing with the Gevrey class, to be able to work with
differentiable functions λ.

Recall that the domains Dj are defined in terms of the decreasing sequence {rj}
in (26).

Lemma 4.3. The sequence {bj}∞j=1, given by

bj = exp(−Lλ(log r−1
j−1)),

satisfies for all s > 0
lim
j→∞

bj/r
s
j = 0,

and for any vector field X̃ ∈ XMh , there is a sequence of approximating holomorphic
vector fields X̃j such that

|X̃j − X̃j−1|D̃j ≤ bj‖X̃‖Xµh .

Proof. Lemma 4.1 gives for X̃ ∈ XMh a sequence of entire holomorphic vector
fields {X̃j} which converge uniformly to X̃ in X s for every s ∈ N. Moreover,
there is the estimate

|X̃j − X̃j−1|D̃j ≤ C
s+1
0 (s!)ηrsj−1Ms‖X̃‖XMh ≤ r

s
j−1 eλ(s)‖X̃‖XMh ,

which holds for every s ∈ N. The left hand side of the inequality does not depend
on s.
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Let sj be the smallest value of s such that the right hand side of the inequality
is minimal, that is, such that for all s ≥ 0:

r
sj
j−1 eλ(sj) ≤ rsj−1 eλ(s).

Set

bj = rsj−1 eλ(sj) ≤ rsj−1 eλ(s).

Taking logarithms of this inequality yields that

λ(s) ≥ log bj + s log r−1
j ;

moreover, equality holds if s = sj . This is exactly the formulation of the Legendre
transform, and we find that

log bj = −Lλ(log r−1
j−1).

Since lims→∞ λ(s)/s =∞, we have that limp→∞ Lλ(p)/p =∞. Making use of the
fact that {rj} is a decreasing geometric sequence, we find for fixed s ∈ N that

bj
rsj

= exp

(
log r−1

j

(
s−

log r−1
j−1

log r−1
j

Lλ(log r−1
j−1)

log r−1
j−1

))
→ 0 as j →∞.

For the Gevrey class Gµh , the constants Ms equal (s!)µ with µ > 1, and f can be
taken equal to

λ(s) = (µ+ η)s log s+ (s+ 1) log c1,
for some η > 0. We find

log bj = −Lλ(log r−1
j−1) = −Cr−

1
µ+η

j−1 − log c1,

where C = (µ+ η) e−1−log c1/(µ+η). Consequently

|X̃j − X̃j−1|D̃j ≤ c1 exp
(
−Cr−

1
µ+η

j−1

)
‖X̃‖Xµh . (38)

4.3.4. Application. Recall from subsection 4.1, that the vector field X̃ can be writ-
ten in the form

X̃ = Z + P = LΩ + Q̃+ P,

where LΩ = ω(p)∂∂x +A(p)y ∂∂y , and where Q̃ = q1(y, p)∂∂x + q2(y, p)∂∂y is integrable
and such that NQ̃ = 0. The map LΩ is real analytic; the (vertical) vector fields Q̃
and P are in the smoothness class X (M ×P).

In the case that X̃ is itself real analytic, take X̃j = X̃ for all j.
For the other cases, lemmas 4.1 and 4.3 yield a sequence {bj}, which is determined

only by the smoothness class, and holomorphic vector fields Q̃j and Pj of Q̃ and P
respectively, defined on D̃j , that satisfy

|Q̃j − Q̃j−1|D̃j ≤ bj‖Q̃‖Cs , and |Pj − Pj−1|D̃j ≤ bj‖P‖Cs . (39)

Here bj = csr
s
j in the case that B = Cs, and bj is given by lemma 4.3 if B = CMs .

Note that in general the normal linear part NQ̃j of Q̃j will not vanish identically.
In both cases, define

X̃j = LΩ + Q̃j + Pj ,

and note that the vector fields X̃j are holomorphic and tend to X̃ as j →∞. This
concludes the first stage of the proof.
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4.4. The induction step. This subsection treats the second stage of the proof,
the inductive construction of the embedding Φj+1 and the vector fields Xj+1, ∆j

and ∆̃j . At the beginning of the construction, an embedding Φj : Dj → D̃j and a
vector field Xj on Dj are given.

As sketched in subsection 4.2, the aim of the induction step is to construct an
embedding Φj+1 and an integrable vector field ∆̃j , such that the normal linear part
of the vector field Xj+1 that satisfies

(Φj+1)∗Xj+1 = X̃j+1 − Λj + ∆̃j

is “much” closer to L = LΩ = ω ∂∂x +Ay ∂∂y than NXj . If Xj is written as

Xj = L+Rj +Qj , (40)

where Qj is such that NXj = L + Rj and NQj = 0, the ‘distance’ between NXj

and L can be expressed by the size of Rj . We shall demonstrate that |Rj |j → 0
as j → ∞; moreover, the speed of this convergence is linked to the smoothness of
the limiting embedding Φ∞ = limj→∞ Φj .

4.4.1. Induction assumptions. We begin by stating the induction hypothesis pre-
cisely. It is assumed that embeddings Ψ1, ..., Ψj−1, Φ1, ..., Φj and vector fields X1,
..., Xj , Λ1, ..., Λj are already constructed as indicated in subsection 4.2. All em-
beddings and all vector fields are complex extensions of real analytic ones, taking
real values when restricted to real vectors.

To formulate the assumptions, introduce maps ϕi and ψi by setting Φi = idDi+ϕi
and Φ−1

i = idΦ(Di) +ψi, and define maps (ϕi)p and (ψi)p taking values in Tm×Rn
by setting ϕi(x, y, p) = ((ϕi)p(x, y), 0) etc.

Hypothesis. There is a constant c ∈ (0, 1), not depending on j, such that

|Ψi − idDi+1 |i+1 < c ri+1, for 1 ≤ i ≤ j − 1, (41)

and such that

|ϕi|i, |Dϕi|i, |Dψi|Φi(Di) < c− r2
i

ri − ri+1
, (42)

for all 1 ≤ i ≤ j. Moreover, there is a constant C > 0, also not depending on j,
such that for Rj and Qj as in (40),

|Rj |j <
1
C

r
(n2+n)κ+3
j

dn
2+n
j

and |Qj |j ≤ (2− 2−j+1)|Q1|1. (43)

Finally, the vector fields ∆̃i are integrable for all 1 ≤ i ≤ j − 1.

Note that the hypothesis holds for the case j = 1, with X1 = X̃1 and Φ1 = idD1 .

4.4.2. ‘+’ and ‘·’–notation. In order not to overburden the notation, so–called ‘+’–
notation will be used. All indices ‘j’ are dropped, and indices ‘j + 1’ are replaced
by ‘+’. In this notation, the vector field Xj +∆j defined on Dj is written as X+∆,
defined on D.

In the estimates below, also the so–called ‘·’–notation will be used. When-
ever s< · t is written, it is taken to signify s < Mt, where the constant M does not
depend on j.
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4.4.3. Inclusion of domains. According to the sketch of the proof given in 4.2, see
in particular Remark 3, we should have that D̃+ ⊂ Φ(D 1

2
) and Φ(D) ⊂ D̃ . We shall

require a little bit more.
Recall that V is a bounded real neighbourhood of T = Tm × {0}, and that U

equals the complex neighbourhood V +h in the real analytic case, and V otherwise.

Lemma 4.4. Assume that the inequalities

r + 2cr < r̃, r̃+ < (1− c)( 1
2r + 1

2r+) (44)

are satisfied, together with the induction assumptions. Then the inclusions

Φp(U + r) ⊂ Φp(U ) + r̃ − cr and Φp+(U ) + r̃+ ⊂ Φp(U + r 1
2
)

hold true. Also, if

ρ+ 2cρ < ρ̃, ρ̃+ + 2cρ̃+ < ρ and ρ < r, ρ̃ < r̃, (45)

then

P(ρ̃+) ⊂P(ρ) ⊂P(ρ̃− cρ).

Proof. The second clause is immediate. The first clause is a direct consequence
of the induction hypothesis; this can be seen as follows. For the first inclusion,
take z = z0 + z1 ∈ U + r such that z0 ∈ U and |z1| < r. Then by the mean value
theorem, there is ϑ ∈ (0, 1) such that for zϑ = z0 + ϑz1:

Φp(z) = Φp(z0) +DΦp(zϑ)z1 = Φp(z0) + z1 +Dϕp(zϑ)z1. (46)

Since

|z1 + ϕp(zϑ)z1| < r + cr,

the condition r + 2cr < r̃ implies that Φp(z) ∈ Φp(U ) + r̃ − cr.
To see the second inclusion, take z = z0 + z1 ∈ U + r such that z0 ∈ U , z is on

the boundary of U +r 1
2

and that the norm |z1| of z1 is minimal, and therefore equal
to |z1| = r 1

2
. With the same notation as before, again (46) holds. We conclude that

the distance from Φp(z) to Φp(U ) is bounded from below by

|z1| −max |Dϕp||z1| > (1− c)|z1| = (1− c)( 1
2r + 1

2r+).

Consequently any point in the set Φp(U ) + r̃+ is necessarily in the interior of the
set Φp(U + r 1

2
).

We shall assume that {rj}, {r̃j}, {ρj} and {ρ̃j} are decreasing geometric se-
quences; in particular, we set

r̃+

r̃
=
r+

r
= a1,

ρ̃+

ρ̃
=
ρ+

ρ
= a2, (47)

for some 0 < a1, a2 < 1, and write r̃j = r̃0a
j
1, rj = r0a

j
1, etc. In terms of these

constants, the inequalities (44) are equivalent to

1 + 2c <
r̃0

r0
< (1− c)

(
1

2a1
+ 1
)
. (48)

Necessarily the constant c should be so small that
1 + 2c
1− c

<
1

2a1
+ 1;

note that for any given a1, such a c > 0 exists, since the left hand side of this
inequality tends to 1 as c ↓ 0.
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4.4.4. Form of the correction term. The vector field ∆̃ on D̃ is taken to be of the
form

∆̃ = δ
∂

∂x
+ (b+By)

∂

∂y
;

the ‘modifying terms’ δ(p) ∈ Cm, b(p) ∈ Cn and B(p) ∈ gC taking real values on
real vectors. Note that since Λ is integrable, the vector field Λ+ = Λ + ∆̃ will be
integrable as well.

The vector field ∆ on D is the image of ∆̃ under the inverse of the already known
map Φ; it can be written in the form

∆ = Φ−1
∗

(
δ
∂

∂x
+ (b+By)

∂

∂y

)
= δ

∂

∂x
+ (b+By)

∂

∂y
+ Θ,

where |Θ| ≤ |Dψ|Φ(D)(|δ|+ |b|+ |B|).

4.4.5. Form of the conjugacy. The new conjugacy Φ+ will be of the form Φ+ = Φ◦Ψ;
given Ψ, introduce

X̌ = Ψ−1
∗ (X + ∆).

The conjugacy Ψ is taken as the time-1 map e−Y of a real analytic average–0 vector
field −Y ∈ h, defined on D and written as

Y = u
∂

∂x
+ v

∂

∂y
= u(x, p)

∂

∂x
+ (v0(x, p) + v1(x, p)y)

∂

∂y
.

Requiring Y to be of average–0 (over Tm) is equivalent to require the coefficient
functions to satisfy [u]Tm = 0 and [v]Tm = 0, where [f ]Tm =

∫
Tm f(x) dx.

Recall that the Lie bracket of two vector fields Z1 = a1
∂
∂x + b1

∂
∂y , Z2 = a2

∂
∂x +

b2
∂
∂y is given as

[Z1, Z2] =
(
a1
∂a2

∂x
+ b1

∂a2

∂y
− a2

∂a1

∂x
− b2

∂a1

∂y

)
∂

∂x

+
(
a1
∂b2
∂x

+ b1
∂b2
∂y
− a2

∂b1
∂x
− b2

∂b1
∂y

)
∂

∂y
.

We have Ψ−1 = exp(Y ) and

X̌ = Ψ−1
∗ (X + ∆)

= exp(Y )∗(L+R+Q+ ∆)

= L+R+Q+ ∆ + [L, Y ] + [R+ ∆, Y ] + [Q,Y ] + S (49)

where

S =
∫ 1

0

(1− s)[[X + ∆, Y ], Y ]exp(sY ) ds.

The coefficient functions u, v0 and v1 of Y will be chosen as trigonometric polyno-
mials in x.

For any vertical vector field Z on D , introduce the Fourier trunctation TdZ to
order d. That is, if Z =

∑
k∈Zm Zk(y, p) ei〈k,x〉, let

TdZ =
∑
|k|≤d

Zk(y, p) ei〈k,x〉.
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The vector fields ∆ and Y are determined by the requirement that they annihilate
the contribution of the term TdR in Ž; that is, they are taken to solve the homological
equation

[L, Y ] + TdN[Q,Y ] + Td(R+ ∆) = 0. (50)

Note that this is an equation in h. Under the assumption that (50) holds, using (49)
and writing X̌ = L+ Ř+ Q̌ with NX̌ = L+ Ř, it follows that

Ř = [R+ ∆, Y ] + (R+ ∆ + N[Q,Y ]− Td(R+ ∆ + N[Q,Y ])) + NS,

Q̌ = Q+ [Q,Y ]−N [Q,Y ] + S −NS.

In the next subsections, equation (50) is solved and estimates for Ř and Q̌ are given.

4.4.6. Determining the conjugacy. The techniques of solving the homological equa-
tion (50) are mostly well–known and only brief indications are given. However, the
determination of the modifying terms δ, b and B requires some care.

Set TdR = f ∂∂x + (g0 + g1y)∂∂y , Q = q1
∂
∂x + q2

∂
∂y and

Td∆ = δ
∂

∂x
+ (b+By)

∂

∂y
+ TdΘ

= δ
∂

∂x
+ (b+By)

∂

∂y
+ δ̃

∂

∂x
+ (b̃+ B̃y)

∂

∂y
,

Here f(x, p), g0(x, p) and g1(x, p) are trigonometric polynomials in x, taking real
values on real vectors; the functions δ̃, b̃ and B̃ are also trigonometric polynomials
in x; moreover, they depend analytically on p as well as on (δ, b, B), and they satisfy
estimates of the form

|δ̃| ≤ |Dψ|Φ(D)|δ|, |b̃| ≤ |Dψ|Φ(D)|b|, |B̃| ≤ |Dψ|Φ(D)|B|; (51)

the analytic functions q1 and q2 satisfy q1 = O(|y|) and q2 = O(|y|2).
Equation (50) can be split into three components:

ω
∂u

∂x
+ δ + δ̃ + Td

(
v0
∂q1

∂y

)
= −f, (52)

ω
∂v0

∂x
−Av0 + b+ b̃ = −g0, (53)

ω
∂v1

∂x
− adAv1 +B + B̃ + Td

(
q1
∂v0

∂x
+ v0

∂q2

∂y

)
= −g1. (54)

Here adAv1 = [A, v1] = Av1 − v1A. In the following, we set

q̃1 = Td(v0
∂q1

∂y
) and q̃2 = Td(q1

∂v0

∂x
+ v0

∂q2

∂y
).

Equations (52)–(54) are solved in three steps. First v0 and b will be determined
from equation (53), as functions of (x, p, δ, B) and (p, δ, B) respectively. Then δ
and B will be determined from equations (52) and (54), and finally u and v1 are
obtained from the same equations.

Equation (53) is equivalent to the following relations between the Fourier coeffi-
cients of v0 and g0:

b+ [b̃]Tm = −g00,

i〈k, ω〉v0k −Av0k = −g0k − b̃k, for 0 < |k| ≤ d;
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recall that v00 = 0 since Y is average–0. The first equation is solved by using
the implicit function theorem together with the estimates (42) and (51), which
yields b = b̂(p, δ, B). Note that the estimate (59) below will imply that the second
equation can be solved on D , and that it yields an analytic solutions v̂0k:

v̂0k(p, δ, B) = − (i〈k, ω〉I −A)−1
(
g0k(p) + b̃k(p, δ, b̂, B)

)
, (55)

for 0 < |k| ≤ d, and v0k = 0 otherwise.
Averaging equations (52) and (54) leads to

δ + [δ̃]Tm + [q̃1]Tm = −f0

B + [B̃]Tm + [q̃2]Tm = −g10

where everywhere b̂(p, δ, B) is substituted for b. Applying the implicit function
theorem again yields solutions δ = δ(p) and B = B(p). Substituting these in b̂
and v̂0k yields b(p) and v0k(p).

Finally equations (52) and (54) are solved for the case 0 < |k| ≤ d; this yields

uk = − δ̃k + q̃1k + fk
i〈k, ω〉

, (56)

v1k = − (i〈k, ω〉I − adA)−1
(
B̃k + q̃2k + g1k

)
. (57)

As before, estimate (59) and (60) imply that these solutions are bounded analytic
functions.

Note that the vector field Y = u∂∂x + (v0 + v1y)∂∂y is a linear combination of
vector fields in h, and therefore Y ∈ h.

4.4.7. Estimates. The truncation level d is chosen as follows

d =
1
2

(
γ

2γ0ρ

) 1
κ+1

. (58)

We take ρ0 sufficiently small as to ensure that d1 ≥ 2. Let (ω, αA) be the frequency
vector of (ω,A). Since p ∈ P(ρ), the frequency vector can be written in the form
(ω, αA) = (ω0, α0)+(ω1, α1) with (ω0, α0) normally Diophantine and |ω1|+|α1| < ρ.
Hence, for 0 < |k| ≤ d and |`| ≤ 2 ≤ d,

|i〈k, ω〉+ i〈`, α〉|

≥ γ

γ0
(|k|+ |`|)−κ − 2dρ

≥ (|k|+ |`|)−κ
(
γ

γ0
− ρ(2d)κ+1

)
≥ γ

2
(|k|+ |`|)−κ. (59)

Likewise, we obtain for 0 < |k| ≤ d that

|i〈k, ω〉| ≥ 1
2
|k|−κ. (60)

From estimates (59) and (60) it follows that on the open set P(ρ) the normal
Diophantine conditions hold for those resonances whose order k satisfies |k| ≤ d.
As mentioned, this implies that all formal solutions given above are in fact well–
defined analytic functions.
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Recall that Cramer’s rule allows us to express the inverse of a matrix A as

A−1 = (detA)−1A∗,

where A∗ is the adjoint of A, that is, the matrix whose (i, j)’th element is the minor
of the matrix obtained from A by removing the i’th row and the j’th column. We
have to invert the linear maps i〈k, ω〉I − A and i〈k, ω〉I − adA. If λi, i = 1, · · · , n
are the eigenvalues of A, then the eigenvalues of these maps are

i〈k, ω〉I − λi and i〈k, ω〉I − (λi1 − λi2) respectively,

for i, i1, i2 ∈ {1, · · · , n}. The matrix elements of the adjoint to these maps contain
terms with at most n factors 〈k, ω〉 in the first case, and n2 such factors in the
second case.

Using Cramer’s rule, and Rüssmann’s technique to obtain optimal estimates
(cf. [31, 32]), for b and v0 the following inequalities are obtained:

|b|< · |R|, |v0| 1
4
< · dn |R|

(r − r 1
4
)nκ

< · dn |R|
rnκ

;

Using these, a second application of Cramer’s rule and Rüssmann’s estimates yields
for u, v1, δ and B:

|δ| 1
2
< · dn |R|(1 + |Q|)

(r − r 1
2
)(r − r 1

4
)nκ

< · dn |R|
rnκ+1

,

|u| 3
4
< · dn|R|(1 + |Q|)

(r − r 1
2
)(r − r 1

4
)nκ(r 1

2
− r 3

4
)κ

< · dn |R|
r(n+1)κ+1

,

|B| 1
2
< · dn |R|(1 + |Q|)

r(r 1
4
− r 1

2
)(r − r 1

4
)nκ

< · dn |R|
rnκ+2

,

|v1| 3
4
< · dn

2+n |R|(1 + |Q|)
r(r 1

4
− r 1

2
)(r − r 1

4
)nκ(r 1

2
− r 3

4
)n2κ

< · dn
2+n |R|

r(n2+n)κ+2
.

The factor (r−r 1
2
) in the denominator of the estimates of δ and u is due to estimating

the derivative of q1 with respect to y, and the factor r in the denominators of
estimates of B and v1 is due to the fact that g1 is the derivative of TdR with respect
to y, evaluated at y = 0. In the same estimates the factors (r 1

4
− r 1

2
) stem from

derivatives of v0 and q2, respectively. Finally note that the relation rϑ − rϑ′ < · r
has been used repeatedly, for ϑ− ϑ′ ≥ 1

4 .
The estimates can be combined in

|Y | 3
4
< · dn

2+n |R|
r(n2+n)κ+1

, |∆| 1
2
< · dn |R|

rnκ+1
. (61)

4.4.8. Mapping of domains. The following result is needed in the estimates below.

Lemma 4.5. There is a C0 > 0 such that if the constant C in (43) satisfies C > C0,
then

|Ψ− id| 7
8
, |Ψ−1 − id| 7

8
≤ 1− c

2
(r 7

8
− r+)r. (62)

In particular, Ψ(D+) ⊂ D 7
8

and Ψ(D 7
8
) ⊂ D 3

4
.
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Proof. The first inequality of (61) reads as |Y | 3
4
≤ C1d

n2+n|R|/r(n2+n)κ+1, where C1

does not depend on j. Set C0 = 4C1(1− c)/(1− a1). Since r = (r − r+)/(1− a1),
using induction assumption (43) yields

|Y | 3
4
≤ C1d

n2+n |R|
r(n2+n)κ+1

≤ C1

C
r2 <

C0

C

1
8

(r − r+)r <
1− c

2
(r 7

8
− r+)r.

For small values of t

| exp(−tY )− id| 7
8

=
∣∣∣∣∫ t

0

Y ◦ exp(−sY ) ds
∣∣∣∣
7
8

≤ t|Y | 3
4
.

Take z ∈ D 7
8
. The largest value of t such that exp(−tY )(z) is still contained in D 3

4

is at least equal to 1, since |Y | 3
4
< r 7

8
− r+ = r 3

4
− r 7

8
. This implies

|Ψ− id| 7
8
, |Ψ−1 − id| 7

8
= |exp(±Y )− id| 7

8
≤ (r 7

8
− r+)r, (63)

which in turn implies (62). The inclusions follow from this and the fact that 0 <
r < 1.

4.4.9. The remainder. Estimates are needed for |Ř|+ and |Q̌|+. Recall that

Ř = [R+ ∆, Y ] + (R+ ∆ +N [Q,Y ]− Td(R+ ∆ +N [Q,Y ])) +NS,

with S =
∫ 1

0
(1− s)[[X + ∆, Y ], Y ] ◦ exp(sY ) ds, and

Q̌ = Q+ [Q,Y ]−N [Q,Y ] + S −NS.

First, using (61), hypothesis (43) on Q, Cauchy’s estimate of derivatives of analytic
functions, and Taylor’s formula:

|[R+ ∆, Y ]|+< ·
|R+ ∆| 1

2
|Y | 3

4

r 3
4
− r+

< · dn
2+2n

r(n2+2n)κ+3
|R|2, (64)

|[Q,Y ]−N [Q,Y ]|+< ·
|Q||Y | 3

4

r 3
4
− r+

< · dn
2+n

r(n2+n)κ+2
|R|. (65)

The terms S and NS are estimated in the same way, using (43) and additionally
lemma 4.5:

|S|+< ·
∫ 1

0

(1− s)
∣∣∣[[X + ∆, Y ], Y ]

∣∣∣
7
8

ds

< · (r 3
4
− r 7

8
)−2

(
1 +

dn

rnκ+1
|R|
)

d2n2+2n

r(2n2+2n)κ+2
|R|2< · d2n2+3n

r(2n2+3n)κ+3
|R|2,

(66)

|NS|+< ·
d2n2+3n

r(2n2+3n)κ+3
|R|2. (67)
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Estimating the decay of Fourier coefficients of analytic functions f : D → C with
the Paley–Wiener estimate |fk| ≤ |f | e−r|k|, we obtain:∣∣∣R+ ∆ +N [Q,Y ]− Td(R+ ∆ +N [Q,Y ])

∣∣∣
+

=

∣∣∣∣∣∣
∑
|k|>d

(Rk + ∆k +N [Q,Y ]k) ei〈k,x〉

∣∣∣∣∣∣
+

≤
∑
|k|>d

(
|R|+ |∆| 1

2
+
|Q||Y | 3

4

r 3
4
− r 7

8

)
e
−(r 7

8
−r+)|k|

< · dn
2+n

r(n2+n)κ+2
|R|
∫ ∞
d

e
−(r 7

8
−r+)ξ

ξm−1 dξ

< · dn
2+n

r(n2+n)κ+2
|R| e

−d(r 7
8
−r+)

r 7
8
− r+

∫ ∞
0

e−t
(
d+

t

r 7
8
− r+

)m−1

dt

< · |R|d
n2+n+m−1 e

−d(r 7
8
−r+)

r(n2+n)κ+3

(
1 +

(
d(r 7

8
− r+)

)−(m−1)
)

; (68)

in the last estimate the inequality (a+ b)n< · an + bn has been used.
At this point we make an assumption on the growth rates of the geometric

sequences {rj} and {ρj}. We require that:

0 < a2 < aκ+1
1 < 1. (69)

This is equivalent to requiring d(r 7
8
− r+) ∼ d r → ∞ as j → ∞. Under this

assumption, combining inequalities (64)-(68) yields:

|Ř|+< ·
d2n2+3n

r(2n2+3n)κ+3
|R|
(
|R|+ r(n2+2n)κdm−1−n2−2n e−rd(1−a1)/8

)
, (70)

|Q̌−Q|+< ·
d2n2+3n

r(2n2+3n)κ+3
|R|. (71)

4.4.10. Determining the new vector field. The next step is to determine the vector
field X+ = L+R+ +Q+, and to give estimates for R+ and Q+. We set Φ+ = Φ◦Ψ,
and define:

X+ =
(
Φ−1

+

)
∗ (X̃+ + ∆̃).

Since X̌ =
(
Φ−1

+

)
∗ (X̃ + ∆̃), the difference X+ − X̌ equals

(
Φ−1

+

)
∗ (X̃+ − X̃).

Recall that X̃+ − X̃ and X+ − X̌ are defined on D̃+ = (Φp+(U ) + r̃+)×P(ρ̃+)
and D+ = (U +r+)×P(ρ+) respectively, and that Φp+(U +r+) ⊂ Φp+(U )+ r̃+−
cr+, by virtue of lemma 4.4. The new ‘remainder’ R+ equals by definition

R+ = NX+ − L = (NX+ − NX̌) + (NX̌ − L) = N(Φ−1
+ )∗(X̃+ − X̃) + Ř,

and using (70) we have

|R+|+< ·
r̃+

r+
|X̃+ − X̃|D̃+

+ |Ř|+

< · |X̃+ − X̃|D̃+

+
d2n2+3n

r(2n2+3n)κ+3
|R|
(
|R|+ r(n2+2n)κdm−1−n2−2n e−rd(1−a1)/8

)
, (72)
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Likewise, using (71), we find that

|Q+|+< · |Q|+ |X̃+ − X̃|D̃+
+

d2n2+3n

r(2n2+3n)κ+3
|R|. (73)

4.4.11. The induction hypothesis. The induction hypothesis of subsection 4.4.1 has
to be verified for j + 1. Note that the geometrically decreasing sequences rj etc.
have not yet been fully specified; only a number of conditions — (47), (48), (69) —
have been given which they have to satisfy. We give here for every statement in the
induction hypothesis sufficient conditions.

Condition (41) is vacuous if j = 1. We have to show that it holds for i = j, if the
induction hypothesis is satisfied for i < j; that is, we have to show that |Ψ− id|+ <
cr+. It follows from (48) and (63) that

|Ψ− id|+ < (r 7
8
− r+)r =

r

8

(
1
a1
− 1
)
r+.

Therefore (41) is certainly satisfied if

r0

8

(
1
a1
− 1
)
< c; (74)

for given c, this condition can always be satisfied if r0 is chosen sufficiently small.
Condition (42) is for j = 1 trivially satisfied, since Φ1 = id and ϕ1 and ψ1 vanish

identically. For i = j + 1 the condition can be written as

|ϕ+|+, |Dϕ+|+, |Dψ+|+ < c− r+

1− a1
.

Details are given only for the estimate of Dψ+, the others being easier. Note first
that

ψ+ = Φ−1
+ − id = Ψ−1 ◦ Φ−1 − id = (Ψ−1 − id) ◦ Φ−1 + (Φ−1 − id).

By placing the condition (1 + c)r+ < r 15
16

on c, or equivalently, by demanding that

c <
1
16

(
1
a1
− 1
)
, (75)

we ensure that Φ−1 maps the domain D+ inside D15/16; now we can estimate the
derivative of Ψ−1 − id on this domain.

|Dψ+|+ ≤ |D(Ψ−1 − id)| 15
16
|DΦ−1|+ + |D(Φ−1 − id)|+

≤
|Ψ−1 − id| 7

8

r 7
8
− r 15

16

(
1 + c− r

1− a1

)
+ |Dψ|+

≤ (1− c)r
(

1 + c− r

1− a1

)
+ c− r

1− a1

< (1− c2)r + c− r+

1− a1
+
r+ − r
1− a1

< (1− c2)r + c− r+

1− a1
− r

< c− r+

1− a1
.

The first part of condition (43) is satisfied for j = 1 if the size ε of the initial
perturbation is sufficiently small; the second part can be satisfied by choosing r0
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sufficiently small. To show that these conditions hold for j + 1, if they hold for j,
is the subject of the next subsection.

Excepting this last verification, we have the following conditions on the se-
quences {rj}, {r̃j}, {ρj}, {ρ̃j}, {dj} (conditions (47), (48), (69) and (75), together
with the condition that ρ0 > 0 is small enough to imply d1 > 2:

r̃+

r̃
=
r+

r
= a1,

ρ̃+

ρ̃
=
ρ+

ρ
= a2,

1 + 2c <
r̃0

r0
< (1− c)

(
1

2a1
+ 1
)
,

0 < a2 < aκ+1
1 < 1,

0 < c <
1
16

(
1
a1
− 1
)
.

If r0 and a1 are given, then a2, c and r̃0 can always be found such that these
inequalities all hold. Note therefore that we are always free to choose r0 and a1,
provided r0 > 0 and 0 < a1 < 1.

4.5. Smallness of the remainder term. The sequences rj = r0a
j
1 and ρj = ρ0a

j
2

have now to be determined in such a way that |Rj+1|j+1 � |Rj |j ; in the next
subsection, this will be shown to ensure that the embeddings Φj = Ψ1 ◦ · · · ◦Ψj−1

converge to an embedding Φ∞ that has the properties stated in theorem 2.3. Note
that from this point onwards, the ‘+’- and ‘·’-notations are dropped.

Inequality (72) reads then as

|Rj+1|j+1 < C |X̃j+1 − X̃|D̃j+1

+ C
d2n2+3n
j

r
(2n2+3n)κ+3
j

|Rj |j
(
|Rj |j + r

(n2+2n)κ
j dm−1−n2−2n

j e−rjdj(1−a1)/8
)
.

(76)

where the constant C does not depend on j. Recall that the truncation level is
defined in (58), which reads as

dj =
1
2

(
γ

2γ0ρ0

) 1
κ+1

(
a

1
κ+1
2

)j
. (77)

We introduce ε = ‖P‖B. There are several cases, depending on the smoothness
class of the original perturbed vector field X̃ = X + P . If X̃ is real analytic,
then X̃j = X̃ for all j, and the first term in (76) vanishes. If X̃ fails to be real
analytic, there is an approximating holomorphic sequence X̃j satisfying

|X̃j+1 − X̃j |D̃j+1
≤ εbj+1,

where the bj are given by lemmas 4.1 or 4.3. In particular, if X̃ is Gevrey regular,
approximations can be found for which the quantity log 1/bj increases exponentially
in j. If X̃ is not Gevrey, but still in some Carleman class, then log 1/bj increases
slower than exponentially, but faster than any linear function in j. Finally, in the
finitely differentiable class, the sequence log 1/bj increases linearly with j.

For each of these four cases, a sequence {δj} will be determined that decreases
monotonically towards 0, such that, under appropriate conditions,

|Rj |j ≤ δj for all j ∈ N. (78)
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First, we make some definitions that will hold for several of the cases considered
below. If a1 ∈ (0, 1) is fixed, we choose a2 ∈ (0, aκ+1

1 ) such that

1 < β
def=

a1

a
1
κ+1
2

< 2.

With this choice, and setting

c0 =
1
8
r0d0(1− a1) =

1
16

(1− a1)
(
γ

2γ0

) 1
κ+1 r0

ρ
1/(κ+1)
0

, (79)

we have that

e−rjdj(1−a1)/8 = exp
(
−c0aj1a

−j/(κ+1)
2

)
= exp

(
−c0βj

)
.

4.5.1. Case one: real analyticity.

Lemma 4.6. Let X̃ ∈ Xωh be real analytic. If ε0 > 0, r0 > 0 and ρ0 > 0 are
sufficiently small, and if δj = ε e−β

j

for 0 < ε < ε0, then (78) holds for all j.

Proof. Recall that 0 < ε < ε0. We proceed by induction. It is given that |R0|0 ≤ ε.
With the induction assumption |Rj |j ≤ ε e−β

j

, inequality (76) reads as

|Rj+1|j+1

ε e−βj+1 < C
d2n2+3n
j

r
(2n2+3n)κ+3
j

ε e(−2+β)βj + C
dn

2+n+m−1
j

r
(n2+n)κ+3
j

eβ
j
(
−1−c0+β

)
, (80)

where c0 = r0d0(1−a1)/8. For given sequences dj and rj , the first term in this sum
can be made smaller than 1/2 by choosing ε0 > 0 sufficiently small.

The second term is of the form ef(j), where f(x) = logC0 + x logα − Aβx,
with A = c0 + 1 − β and α only depending on a1, a2, κ, m and n, but not on r0

and ρ0. Computing f ′, we see that this concave function, restricted to x ≥ 0, takes
its maximum at

x∗ =
1

log β
log
(

1
A

logα
log β

)
,

if logα/ log β ≥ A, otherwise at x∗ = 0.
If we take ρ0 sufficiently small, and, by (79), consequently c0 and A sufficiently

large, the second case occurs; the value of the maximum is then f(0) = logC0 −A.
It follows that

dn
2+n+m−1
j

r
(n2+n)κ+3
j

eβ
j
(
−1−c0+β

)
≤ dn

2+n+m−1
0

r
(n2+n)κ+3
0

e−c0−1+β .

Note that by fixing r0 and taking ρ0 sufficiently small, again by invoking (79) the
right hand side can be made smaller than 1/2. It follows that we can make the right
hand side of (80) smaller than 1, uniformly in j, by taking ε0 > 0 and ρ0 sufficiently
small.

4.5.2. Case two: Gevrey regularity. If X̃ is in the Gevrey class X µh , we can find
an holomorphic approximating sequence X̃j such that equation (38) holds, that is,
such that for some η > 0

|X̃j+1 − X̃j |D̃j+1
< Cε exp

(
−C ′r−

1
µ+2η

j

)
.

We take a1 ∈ (0, 1) and a2 ∈ (0, aκ+1
1 ) such that β = a

−1/(µ+2η)
1 = a1/a

1/(κ+1)
2 < 2.
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Lemma 4.7. Let X̃ be in the Gevrey class X µh , take η > 0 and δj = ε e−β
j

with 0 <
ε < ε0. If ε > 0, r0 > 0 and ρ0 > 0 are sufficiently small, then (78) holds.

Proof. The proof resembles that of the previous lemma. Using (38), inequality (76)
reads as

|Rj+1|j+1

ε e−βj+1 < C e−β
j
(
C′r
− 1
µ+2η

0 −β
)

+ C
d2n2+3n
j

r
(2n2+3n)κ+3
j

ε e(−2+β)βj + C
dn

2+n+m−1
j

r
(n2+n)κ+3
j

eβ
j
(
−1−c0+β

)
,

where c0 = r0d0(1−a1)/8. The first term can be made smaller than 1/3 by taking r0

sufficiently small. It follows exactly as in the proof of lemma 4.6 that if ε > 0, r0 > 0
and ρ0 > 0 are sufficiently small, the other two terms are both smaller than 1/3,
making the right hand side is smaller than 1, uniformly in j.

4.5.3. Case three: ultradifferentiability. If X̃ is in the Carleman class XM , that is,
if it is infinitely differentiable but not Gevrey regular, let {λs} be the sequence given
in (37), and let λ∗ : [0,∞)→ R be its largest convex minorant.

We construct a function gM as follows. Let g0 = Lλ∗(0) and let

gj = min
{
βgj−1,Lλ∗

(
log r−1

j

)}
. (81)

Finally, let gM be the convex function whose epigraph equals the convex hull of
the points (log r−1

j , gj) and the half-line {(0, g0 + t) | t ≥ 0}. Then gM is a convex
minorant of Lλ∗, which moreover satisfies

gM (log r−1
j+1) ≤ β̄gM (log r−1

j ).

Since gM is a minorant of Lλ∗, it follows from lemma 4.3 that there is an ap-
proximating sequence X̃j such that

|X̃j+1 − X̃j |D̃j+1
< ε e−gM (log r−1

j ).

The sequence {σj} given by σj = gM (log r−1
j−1) has by construction of gM the

property that σj+1 < βσj for all j. Note that it follows from lemma 4.3 that σj
increases faster than any linear function of j.

Lemma 4.8. Let X̃ ∈ XMh , η > 0 and set δj = C2ε e−σj , where 0 < ε < ε0.
If C2 > 0 is chosen sufficiently large, and ε0 > 0, r0 > 0 and ρ0 > 0 are small,
then (78) holds.

Proof. As before; inequality (76) reads as

|Rj+1|j+1

C2ε e−σj+1
< C
|X̃j+1 − X̃j |D̃j+1

C2ε e−σj+1
+ CC2

d2n2+3n
j

r
(2n2+3n)κ+3
j

ε e
(
σj+1−2σj

)

+ C
dn

2+n+m−1
j

r
(n2+n)κ+3
j

e
(
σj+1−σj−c0βj

)
.

If we choose C2 = 3C, the first term is at most equal to 1/3. By the choice of
the σj , we have σj+1 − 2σj < (β̄ − 2)σj < 0; as a consequence, the second term on
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the right hand side can be made smaller that 1/3, uniformly in j, if ε0 > 0 is taken
sufficiently small. Moreover, since σj ≤ σ0β

j , we have that

σj+1 − σj − c0βj ≤ c0βj
(

(β − 1)σ0

c0
− 1
)
≤ −c0

2
βj , (82)

where the last inequality follows from taking ρ0 sufficiently small, hence c0 suffi-
ciently large. The third term can now be made smaller than 1/3 by choosing ρ0

sufficiently small, thereby making c0 as large as is required.

4.5.4. Case four: finite differentiability. In the case that X̃ ∈ X s, we obtain from
lemma 4.1 that

|X̃j+1 − X̃j |D̃j+1
< Csr

s
jε.

If s > N
def= (2n2 + 3n)(κ+ 1) + 3, then as1 < aN1 . For s > N , we take a2 < aκ+1

1 so
close to aκ+1

1 such that the interval

I =
(
as1, a

(2n2+3n)κ+3
1 a

2n2+3n
κ+1

2

)
⊂
(
as1, a

N
1

)
is not empty, and we choose a3 ∈ I.

Lemma 4.9. Let X̃ ∈ X s, take η > 0 and δj = εaj3, with 0 < ε < ε0. If ε0 > 0,
r0 > 0 and ρ0 > 0 are sufficiently small, then (78) holds.

Proof. As before; equation (76) can in this final case be written as

|Rj+1|j+1

εaj+1
3

< C

rs0 (as1a3

)j+1

+ ε
d2n2+3n

0

a3r
(2n2+3n)κ+3
0

(
a3

a
(2n2+3n)κ+3
1 a

(2n2+3n)/(κ+1)
2

)j

+
dn

2+n+m−1
0

a3r
(n2+n)κ+3
0

(
a

(n2+n)κ+3
1 a

n2+n+m−1
κ+1

2 a3

)−j
e−c0β

j

)
.

The first two terms on the right hand side are decreasing geometrical series, which
can each be made smaller than 1/3, uniformly in j, by choosing ε0 > 0 and r0 > 0
sufficiently small. The third term can be made smaller than 1/3 by choosing ρ0 > 0
sufficiently small, thereby making c0 as large as is required.

4.6. Convergence. Let D∞ =
⋂∞
j=1 Dj .

Lemma 4.10. For X̃ in one of the four smoothness classes Xω, X µ, XM and X s,
where s > (2n2+3n)(κ+1)+3, let the hypotheses regarding the smallness of ε0, r0, ρ0

and 1/C2 of the corresponding lemma 4.6-4.9 be fulfilled. Then there is a conju-
gacy Φ∞ : D∞ →M ×P, such that

Φj → Φ∞ as j →∞,

together with at least its derivatives up to order smaller than (n2+n)κ+2 with respect
to the phase variables, uniformly on D∞; we have that ‖Φ∞ − id‖B′ ≤ C‖P‖B.
Moreover,

Λj → Λ∞ as j →∞,

‖Λ∞‖B′ ≤ C‖P‖B and NΦ−1
∞∗(X̃ + Λ∞) = L. Additionally, we have the following.

Let ζ > 0 be a fixed constant.
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1. If X̃ ∈ Xωh is real analytic, then Φ∞ is real analytic in the phase variables
and Φ∞ and Λ∞ are Gevrey Gνh-regular in the parameters, where

ν = 1 + `(κ+ 1) + ζ.

2. If X̃ ∈ X µh is Gevrey regular, then Φ∞ is Gν1-regular in the phase variables
and Φ∞ and Λ∞ are Gν2-regular in the parameters, where

ν1 = 1 + µ+ ζ, ν2 = 1 + `µ(κ+ 1) + ζ.

3. If X̃ ∈ XMh , let Dα = Dα1
(x,y)D

α2
p . Then there are constants C1, C2 > 0 such

that

sup
D∞

|DαΦ∞| ≤ C1+|α|
1 α! eLgM (|α1|+`(κ+1+ζ)|α2|+C2).

An analogous estimate holds for Λ∞.
4. If X̃ ∈ X s, then the conjugacy Φ∞ is Cs−(n2+n)κ−2−ζ in the phase direction

and C(s−(n2+n)κ−2−ζ)/(`(κ+1)) in the parameter direction; the modifying terms
vector field Λ∞ is C(s−n(κ+1)−2−ζ)/(`(κ+1)) in the parameters.

In particular, the conjugacy is at least C(n2+2n)(κ+1)+n2+n+1 in the phase
direction and Cn+1 in the parameter direction; the modifying terms vector field
is at least C2(n+1) in the parameters.

Proof. In this proof, we use a series of constants C1, C2, · · · that are unrelated to
any constants of the same name used earlier. On the domains Dj+1, the following
estimates obtain:

|Φj+1 − Φj |j+1 =
∣∣Φj ◦Ψj − Φj ◦ idDj+1

∣∣
j+1

≤ |DΦj |j+ 3
4

∣∣ eYj − idDj+1

∣∣
j+1

≤ C1
|Φj |j

rj+1 − rj
dn

2+n
j

r
(n2+n)κ+1
j

δj ≤ C2

dn
2+n
j

r
(n2+n)κ+2
j

δj |Φj |j . (83)

In the second inequality, we have used (61). From this, it follows that

|Φj+1|j+1 ≤ |Φj+1 − Φj |j+1 + |Φj |j ≤

(
1 + C2

dn
2+n
j

r
(n2+n)κ+2
j

δj

)
|Φj |j ,

and consequently that

|Φj |j ≤
j−1∏
i=1

(
1 + C2

dn
2+n
i

r
(n2+n)κ+2
i

δi

)
|Φ1|1.

Since Φ1 = id, and as a consequence of lemmas 4.6-4.9, for every smoothness class
the product on the right hand side can be bounded by some constant C3, uniformly
in j. Inequality (83) then implies that

|Φj+1 − Φj |j+1 ≤ C4

dn
2+n
j

r
(n2+n)κ+2
j

δj . (84)

From this and the form of δj given in the respective lemma 4.6-4.9 it follows that
the infinite sum on the right hand side of

Φ∞ − id = Φ1 − id +
∞∑
j=1

(Φj+1 − Φj) =
∞∑
j=1

(Φj+1 − Φj)
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converges absolutely and uniformly on the intersection D∞ =
⋂∞
j=1 Dj , and the

limit Φ∞ is therefore at least continuous there.
Let α = (α1, α2) = (αx1 , α

y
1 , α2) ∈ Nm ×Nn ×Nq be a multi-index, and let Dα =

D
αx1
x D

αy1
y Dα2

p . The derivative DαΦ∞ will exist on D∞, in the sense of Whitney, if
the series

Dα(Φ∞ − id) =
∞∑
j=1

(DαΦj+1 −DαΦj) (85)

converges uniformly on D∞. To see this, take

|DαΦj −DαΦj−1|j+1 ≤ C
`|α2|
5 α!

|Φj − Φj−1|j
(rj − rj+1)|α1|(ρ`j − ρ`j+1)|α2|

≤ C |α|6 α!
δj

r
|α1|+(n2+n)κ+2
j ρ

|α2|`
j

.

In the first inequality, we used (25). Set

A = (|α1|+ (n2 + n)κ+ 2) log a−1
1 + `|α2| log a−1

2 ,

then A > 0 and

|DαΦj −DαΦj−1|j+1 ≤ C
|α|
7 α! elog δj+Aj for all j. (86)

4.6.1. Finite differentiability. In the finitely differentiable case, δj = εaj3, and the
right hand side of this inequality is a decreasing geometric series if and only if log a−1

3 >

A. Choosing a3 = as−ζ1 , and a2 = aκ+1+ζ
1 , for some ζ > 0, this condition reads as

|α1|+ (n2 + n)κ+ 2 + `|α2|(κ+ 1 + ζ) ≤ s− ζ.

As ζ > 0 was arbitrary, this is implied by

|α1|+ `(κ+ 1)|α2| < s− (n2 + n)κ− 2.

This inequality describes exactly the anisotropic differentiability (in the sense of [28])
of the conjugacy in the presence of a multiple normal eigenvalue of multiplicity `.
We find that for all α satisfying this inequality that

|Dα(Φ∞ − id)|∞ ≤ Cαε.

4.6.2. A lemma. We need the following result a couple of times.

Lemma 4.11. Let g : [0,∞)→ R be an increasing convex function, and let f = Lg
be its Legendre transformation. Then

∞∑
j=1

e−g(j) ≤ ef(1)

e− 1
.

Proof. By definition of the Legendre transformation,

g(p) = max
x
{px− f(x)};

in particular, taking x = 1 and p = j,

g(j) ≥ j − f(1).

The result follows from this.
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4.6.3. Real analyticity and Gevrey regularity. In the real analytic and the Gevrey
cases (see lemmas 4.6 and 4.7), we have that a2 = (a1/β)κ+1. Put g(p) = βp −
Ap + log ε−1 and note that g(j) = −(log δj + Aj) for all j ∈ N. Remark that g is
a convex function, and using (36) it follows that its Legendre transform f = Lg is
equal to

f(x) =
x+A

log β

(
log

x+A

log β
− 1
)

+ log ε. (87)

Using lemma 4.11, it follows that
∞∑
j=1

|DαΦj −DαΦj−1|j+1 ≤ C
|α|
7 α!

∞∑
j=1

e−g(j) < C
|α|
8 α! ef(1). (88)

With equation (87), this yields that

|Dα(Φ∞ − id)|∞ < εC
|α|
9 (|α1|+ |α2|)

|α1|
„

1+
log a−1

1
log β

«
+|α2|

„
1+

` log a−1
2

log β

«
. (89)

In the analytic case, the domain D∞ contains an open complex strip around the
real phase space, so the inference that Φ∞ is real analytic in the phase directions
follows directly from the boundedness of |Φ∞|∞. For the regularity of the parameter
dependence, take ζ > 0 sufficiently close to 0 and set a1 = e−ζ . Then

1 +
` log a−1

2

log β
= 1 +

` log a−1
2

−ζ + 1
κ+1 log a−1

2

< 1 + `(κ+ 1) + η,

and we see Φ∞ is Gν-regular in the parameter direction if ν > 1 + `(κ + 1). Note
that this generalises the result of Popov [25, 26] to the case of multiple normal
eigenvalues.

In the Gevrey case, we have that log β = log a−1
1 /(µ + η). From (89) we infer

that Φ∞, as well as all its derivatives in the parameter direction, is Gν1 regular in
the phase variables, and Φ∞ together with its derivatives in the phase variables
is Gν2-regular in the parameters, with

ν1 > 1 + µ, and ν2 > 1 + µ`(κ+ 1).

4.6.4. Ultradifferentiability. The final case occurs if X̃ is ultradifferentiable, but not
Gevrey regular. Equation (86) reads then as

|DαΦt −DαΦj−1|j+1 ≤ εC2C
|α|
7 α! e−σj+Aj for all j. (90)

Recall that

σj = gM (− log rj−1) = gM

(
(j − 1) log a−1

1 + log r−1
0

)
for all j. Introducing

g(p) = gM (p log a−1
1 + log r−1

0 )−A(p+ 1),

the estimate of equation (90) can be written as

|DαΦt −DαΦj−1|j+1 ≤ εC2C
|α|
7 α! e−g(j−1) for all j.

Analogously to 4.6.3, the convergence of the sum can be expressed in terms of the
Legendre transformation Lg of g.

Note that if g is an increasing convex function, the Legendre transformation of

h(p) = g(ap+ b)− cp− d
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is equal to

Lh(x) = Lg
(
x+ c

a

)
− bx+ c

a
+ d.

Using this relation with a = log a−1
1 , b = log r−1

0 , c = A and d = A and recalling
that the Legendre transform is involutive (i.e. L2g = g), we see that

Lg(x) = LgM
(
x+A

log a−1
1

)
− log r−1

0

log a−1
1

(x+A) +A.

If ζ > 0 is fixed and if we take a2 = aκ+1+ζ
1 , then

Lg(1) = LgM
(
|α1|+ `(κ+ 1 + ζ)|α2|+ C10

)
.

Finally, we obtain

|Dα(Φ∞ − id)|∞ < εC2C
|α|
7 α! eLgM (|α1|+`(κ+1+ζ)|α2|+C10). (91)

4.6.5. Convergence of the modifying terms. The estimates for Λ∞ follow entirely
analogously from the fact that D̃j+1 ⊂ Φj(Dj+ 1

2
), which implies that ∆̃j = Φj∗∆j

is well-defined, and that

|∆̃j |D̃j+1
≤ |Φj∗∆j |j+ 1

2
≤ C12|DΦj |j+ 1

2
|∆j |j+ 1

2
≤ C13|Φj |j

dnj

rnκ+2
j

δj ,

which ensures the absolute and uniform convergence of

Λ∞ =
∞∑
j=1

∆̃j .

Since moreover

|Dα2
p ∆̃j |D̃j+1

≤ C14|Φj |j
dnj

rnκ+2
j ρ

|α2|`
j

δj ,

it follows analogously to the proof of the convergence of DαΦj that

Dα2
p Λ∞ =

∞∑
j=1

Dα2
p ∆̃j .

converges absolutely and uniformly on D̃∞ =
⋂∞
j=1 D̃j .

This concludes the proof of theorem 2.3.
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