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Abstract Natural sensory stimuli elicit complex brain

responses that manifest in fMRI as widely distributed and

overlapping clusters of hemodynamic responses. We pro-

pose a statistical signal processing method for finding

synchronous hemodynamic activity that directly or tran-

siently reflects information about the experimental condi-

tion. When applied to fMRI data, the method searches for

voxels with activation patterns exhibiting high coherence

and simultaneously high variance across brain scans. The

crux of the method is functional principal component

analysis (fPCA) of activation patterns stored in a two-

dimensional data matrix, with rows and columns repre-

senting voxels and scans, respectively. Without external

information, fPCA is performed directly on this data

matrix. Otherwise, the data matrix is first transformed to

highlight a specific source of variation, enabling fully or

partially supervised fPCA with a single parameter deter-

mining the degree of supervision. We evaluated our

method on a public benchmark of fMRI scans of subjects

viewing natural movies. Our method turns out to be very

suitable for flexibly uncovering distributed and overlapping

hemodynamic patterns that distinguish well between

experimental conditions or cognitive states.

Keywords Natural perception � Brain activity � fMRI �
Functional data analysis � Semi-supervised models

1 Introduction

Methods for functional magnetic resonance image (fMRI)

analysis can be broadly divided into model-based analysis

and data-driven analysis. The difference between the two is

not absolute but rather indicates the point of departure.

Model-driven methods, such as the common general linear

model [5, 12, 14, 27, 37], assume an explicit temporal

hemodynamic model based upon the experimental condi-

tion. These methods have proven to be useful for spatial

localization of covariate-related brain responses. The

a priori model, however, is limited in dealing with hemo-

dynamic variations across subjects, brain regions, and even

cortical layers [1, 16]. As an alternative, data-driven

methods group brain responses by temporal similarity [2, 7,

30, 24] or distinguish brain response from various noise

sources by data decomposition [4, 11, 27]. These methods

are powerful in revealing multivariate patterns of brain

activity independent of experimental conditions. The

interpretation of such patterns, however, is often prob-

lematic due to the presence of many confounding sources

of brain activity. Hence, the effectiveness of either data-

driven and model-based methods partially resolves the

fMRI data analysis problem.

A new class of methods [17, 22, 23] combines the

simplicity of model-based methods with the flexibility of

data-driven methods. These methods take advantage of

similarities in hemodynamic patterns among subjects. Each

subject’s hemodynamic time course is voxel-wise corre-

lated with every other subject’s hemodynamic time cour-

ses. Intersubject correlation matrices are then constructed

for all voxels to measure hemodynamic consistency given a

specific task. In a post-processing step, voxels with similar

temporal patterns are clustered for further examination.

Intersubject similarity-based methods work well for the
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identification of brain activity for such tasks as the auditory

odd ball task [22]. They also work well for uncovering new

brain areas responding to complex visual stimuli [17]. The

versatility of these methods, however, is limited by the

exclusion of valuable information from external sources. It

is therefore natural, as we are pursuing here, to incorporate

information about experimental conditions in the data

analysis without compromising the flexibility of similarity

based methods.

We propose a method that leniently uses information

about the experimental condition to discover synchrony in

hemodynamics. The method searches for voxels whose

activation pattern exhibits high coherence and simulta-

neously high variance across brain scans. The crux of the

method is functional principal component analysis of

activation patterns stored in a two-dimensional data matrix

with rows and columns representing voxels and scans,

respectively. There are three modes of operation. Without

external information, principal component analysis is per-

formed on the original data matrix. Otherwise, the data

matrix is first transformed to highlight specific sources of

variation using stimulus data, group labels or any other

coded information. The transformed data matrix is subse-

quently subjected to fully or partially supervised principal

component analysis, with a single parameter determining

the degree of supervision. Principal component analysis is

performed on the rows of the data matrix in an incremental

way. At each step, rows with low principal component

scores are removed from the data matrix, resulting in

nested voxel clusters with synchronous activity patterns.

Optimal voxel clusters are subsequently determined from

Gap statistics.

The underlying principle of our method comes from the

popular gene shaving method (see [18]), which has been

widely used in bioinformatics to find biologically relevant

patterns of variations across genes, samples, and outcome

measurements. Our motivation for extending the gene

shaving method to fMRI data analysis is the inability of

conventional fMRI data analysis to unravel the complex

brain activity that natural sensory stimuli elicit [20]. Such

complex brain activities often manifest in fMRI as spatially

widely distributed and overlapping clusters of hemody-

namic responses [19]. This type of nested clusters is the

target of the method we propose here. Specifically, our

fMRI data analysis method aims to detect distributed and

overlapping voxel clusters with synchronous hemo-

dynamyic responses, when onsets and identities of their

underlying processes are either fully known or unknown.

The difference between gene shaving and our method is

that the first operates on discrete measurements (gene

expression) while our method operates on signal data from

EEG, fMRI or any other modality. The external source of

variation may be signal data too. Here, we specifically

focus on hemodynamics in fMRI data, calling our method

voxel sieving as it incrementally separates out voxels with

asynchronous activation patterns. We evaluate voxel siev-

ing on simulated fMRI data and on an international fMRI

test benchmark involving natural movie stimuli. We

explore the correspondence between voxel cluster detec-

tions and known functional specialization. In addition, we

compare our method’s ability to decode cognitive states

with that of other state-of-the-art multivariate fMRI data

analysis methods.

2 Materials

Stimulus and brain response data have been obtained from

a publicly available benchmark for testing and comparing

brain activity interpretation methods (see [32] for more

detail and references). The benchmark has been extensively

used in an international brain reading competition, pro-

viding the possibility to objectively compare our method’s

performance with that of others.

2.1 Data

The brain response data involve fMRI data associated with

passive viewing of Home Improvement sitcom movies for

approximately 20 min. This TV video provided long shots

and a repeating use of a small number of actors in a small

number of sets that allows common elements to reoccur.

Also, the materials (character types, settings, events,

objects) are typical of what the subjects would be expected

to have experience with [32]. The 20-min movies contained

five interruptions where no video was present but only a

white fixation cross on a black background. Three subjects

watched the same three movies while undergoing functional

brain imaging. Neuroimage data were collected on a Sie-

mens Allegra 3T scanner. The structural neuroimage data

were acquired with 1 mm spatial resolution. The functional

scans produced volumes with approximately V = 36,000

brain voxels, each approximately 3.28 mm 9 3.28 mm 9

3.5 mm, with one volume produced every 1.75 s. These

scans were preprocessed (motion correction, slice time

correction, linear trend removal) and spatially normalized

(non-linear registration) to the Montreal Neurological

Institute brain atlas [26].

After fMRI scanning, the three subjects watched the

three movies again to rate 30 movie features at time

intervals corresponding to the fMRI scan rate. The exten-

sive behavioral time vector ratings included the coding of

categories such as faces, motion, and emotional states at

multiple levels of hierarchy (i.e. faces versus individual

actors). All three subjects generated ratings for each fea-

ture in each movie by moving a slider that controls a line
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on a screen showing the current value of the slider. Each

rating was done on a 4-point scale. For the feature faces,

for example, 0 indicates no faces, 1 faces somewhere in the

picture, 2 faces at between 25 and 50% of the image, and 3

faces seen at more than 50% of the image. Each vector-

valued rating pattern was subsequently convolved with a

double-gamma hemodynamic response function to define

the stimulus signal. A complete description of features and

generation of feature vectors can be found in [32].

We use data associated with movies 1 and 2, as data

associated with movie 3 has not been made public for

objective on-site evaluation purpose. As we are interested

in finding continuous hemodynamics caused by the content

of the movies, we exclude parts of the data corresponding

to video presentations of a white fixation cross on a black

background. Taking into account the hemodynamic lag, we

divide each fMRI scan and each subject rating into six parts

corresponding with the movie on parts. The six fMRI parts

differ somewhat in number of volumes: part 1 consists of

91 volumes and the other parts of 90, 115, 108, 116, and

112 volumes, respectively. For a single movie, this results

in 18 fMRI scans (3 subjects 9 6 movie parts) and 18 real-

valued and subject-dependent movie ratings.

We denote these four-dimensional fMRI scans by

Is(x, t), where s = 1,…,S indicates the sample scan, x [ <3

is 3D discrete spatial position, and t is time point. The real-

valued ratings for sample s are denoted by the vector gs,

containing S real values corresponding to the strength of a

movie feature at the time scan Is(x, t) was acquired.

2.2 Data representation

An important first step of our approach is representation of

voxel activation data as signal data rather than as a collection

of discrete measurements. Such a representation enhances

the discovery of underlying temporal coherences in the

fMRI data [35]. It comes at the expense of slightly more

complex functional statistical analysis [31], but we expect it

to pay off by achieving better results. Figure 1a–d provides

an illustration of our data representation approach. Invari-

ably, in this paper bold face upper case indicates a matrix of

functions, e.g. F(t), or scalars, e.g. F bold face lower case

indicates a vector of functions, e.g. f(t), or scalars, e.g. f, and

regular lower case indicates a function or a scalar.

We define the functional representation of a single voxel

time course f = [f1,…,fT] by

f �ðtÞ ¼
XM

m¼1

BmðtÞxm ð1Þ

where Bm(t) is the mth basis function and xm the weight of

that basis. In our case B-splines are used to represent the

non-periodic voxel activation data in a continuous manner.

The functional representation of all v = 1,…,V voxel time-

courses of I(x, t) forms a vector f*(t) of functions

f�ðtÞ ¼ ½f �1 ðtÞ; . . .; f �V ðtÞ�
T : ð2Þ

Robust brain responses in fMRI generally cover multiple

voxels. We therefore consider spatial clusters of voxel time

courses. To avoid bias toward clusters of a given size, we

hierarchically cluster voxels. Clustering is performed on

the 3D brain atlas to which all fMRI scans are aligned. A

computationally efficient hierarchical K-means clustering

[25] is performed on the 3D grid of this atlas to assign each

grid point to one of K initial cluster centers distributed

equidistantly in 3D space. Cluster centers are chosen to

minimize the weighted within-cluster sum of squared

Euclidean distances. Clustering is repeated several times

with increasing number of cluster centers, corresponding to

increasing levels of hierarchy. At each hierarchical level

l 2 L voxels are grouped in one of K = 2l clusters. Clus-

ters at the highest level l = 0 are created by clustering with

K = 1, at level l = 1 by clustering with K = 2, at the next

level we take K = 4 and so on. The number of clusters at

the lowest level is equal to the number of voxels V the atlas

contains. Assuming this number is a power of two, this

results in a total of 2V - 1 clusters. By imposing a range

on the levels, for example, considering higher levels of

hierarchy only (L ¼ f0; . . .; Lg with L \ log2(V)), the

number of all clusters to be a analyzed can be limited and

sensitivity to noise limited. Clusters at all levels are

indexed by c = 1,…,C with C ¼
P

l2L 2l:

We transform the four-dimensional fMRI data I(x, t),

by the vector of average voxel time courses f(t) =

[f1(t), ... , fC(t)], with

fcðtÞ ¼
1

jVcj
X

v2Vc

f �v ðtÞ ð3Þ

where Vc denotes the set of voxels in cluster c and jVcj
denotes the number of elements in that set. We refer to

fc(t) as a supervoxel. Supervoxels have a regularizing

effect. They reduce the multiple comparison problem and

alleviate the need for spatial clustering of activated voxels

as required in most voxel-wise methods.

Given a collection of S fMRI scans we define a

C 9 S data matrix

FðtÞ ¼ ½f1ðtÞ; . . .; fSðtÞ� ð4Þ

where the rows of F(t) correspond to supervoxels, the

columns to fMRI scans Is(x, t), and the element fcs(t) is the

cth supervoxel of scan s. For example, when only super-

voxels at hierarchical levels L ¼ f9; 10; 11; 12g are con-

sidered for the S = 18 fMRI scans from the free movie

viewing study, this will result in a 7,680 9 18 data matrix

F(t). Each row of F(t) is centered to have zero mean.
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3 Methods

The main computational parts of the voxel sieving method

are shown in Fig. 1e. Each of these components will be

described in more detail in the following subsections.

3.1 Unsupervised voxel sieving

Unsupervised voxel sieving operates directly on F(t) (see

Fig. 1c). It aims at identifying voxels with synchronous

activity patterns independent of experimental conditions.

3.1.1 Principal component analysis

The first task in voxel sieving is to find a subset of rows of

F(t) with both high column variance and high coherence

between supervoxels (see Fig. 1d). A good way to

accomplish this is to perform functional principal compo-

nent analysis [31, 35] of F(t) and to use principal compo-

nent scores to identify rows of F(t) that have high

correlated variation. The central concept for the univariate

functional data set f(t) = [f1(t), ..., fC(t)] is taking the linear

combination

Fig. 1 Schematic illustration of data representation and analysis.

a Supervoxels are obtained through hierarchical spatial clustering of

3D anatomical atlas with quadratic scaling: 2l. From left to right:
l = 9, 10, 11, 12. An fMRI sample Is(x, t) is represented in terms of

its supervoxel’s average hemodynamic responses fcs(t). c All super-

voxels of all fMRI samples together form the data matrix F(t). d This

data matrix is subjected to voxel sieving to detect superclusters.

e Voxel sieving is performed on F(t) in an iterative way. Note that at

the start fMRI data sets are required but external covariates are

optional. In the absence of external covariates, fMRI data are

projected onto themselves. Dashed line denotes a single step (at the

start) while continuous lines indicate an iterative process
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fcq ¼
Z

t

fcðtÞaqðtÞdt ð5Þ

where fcq is the principal component score value of voxel

time course fc(t) in dimension q. Principal components

aq(t), q = 1,…,Q are sought for one after the other by

optimizing

aqðtÞ ¼ max
a�qðtÞ

1

C

XC

c¼1

f 2
cq ð6Þ

where aq(t) is subject to the following orthonormal

constraints:
Z

t

aqðtÞ2dt ¼ 1

Z

t

arðtÞaqðtÞdt ¼ 0; r� q: ð7Þ

The mapping of fc(t) onto the subspace spanned by the

Q first principal component functions results in the vector

of principal component scores fc = [fc1,…,fcQ]. This

mapping is very similar to local linear discriminant anal-

ysis of fMRI data (e.g. in [9, 28]). In this work, we only

consider the main mode of variation, i.e. we set Q = 1.

As F(t) is multivariate we need to perform multivariate

functional principal component analysis (see [31]). The

principal component in this case is defined by an S-vector

of weight function a ¼ ½a1
qðtÞ; . . .; aS

qðtÞ� with aS
qðtÞ denot-

ing the variation for sample s. The inner product on the

space of vector functions is defined as the sum of the inner

products of the S components. Hence, Eq. 5 becomes

fcq ¼
XS

s¼1

Z

t

fcsðtÞas
qðtÞdt: ð8Þ

In our case this amounts to concatenating the functional

elements in each row of F(t) to form a composite function.

Subsequently, we perform univariate functional principal

component analysis. This results in the principal compo-

nent score vector f = [f1,…,fC], which is subjected to

sieving.

3.1.2 Principal component sieving

Principal component sieving starts with the full data matrix

F(t). The sieving procedure aims to remove d percent of the

supervoxels, i.e. rows, of F(t) with lowest absolute prin-

cipal component scores, in order to arrive at a reduced data

matrix F1(t). The sieving parameter d allows to control for

the graininess of sieving. When it has a low value, small

clusters of voxels with strong synchronous activity can be

detected (at the cost of computation). In contrast, larger

voxel clusters with less heomdynamic synchrony emerge

when the value of d is high.

We denote the set of supervoxels that survives the first

sieving sequence by supercluster V1 (note the difference

between set of voxels denoted by V and set of supervoxels

denoted by V). Then, functional principal component

sieving is repeated on the reduced data matrix F1(t) to yield

a new smaller supercluster. This process is repeated until

the data matrix cannot be sieved anymore. Hence, voxel

sieving results in superclusters V1 � V2; . . .;� VJ , with

I being the total number of sieving sequences. We denote

the working matrix associated with the supercluster at

sieving sequence j by Fj(t), j = 1,…,J.

3.1.3 Cluster size determination

To distinguish real patterns from random small superclus-

ters, we use the percentage of variance explained, R-sta-

tistic, as quality measure to select a supercluster from

V1; . . .;V j. The R-statistic for a given supercluster V j is

computed as the ratio between the variance VB(t) and total

variance VT(t) defined as

VBðtÞ ¼
1

S

XS

s¼1

ð�f j
s ðtÞ � �f jðtÞÞ2 ð9Þ

VTðtÞ ¼
1

jV jj � S

X

c2V j

XS

s¼1

ðf j
csðtÞ � �f jðtÞÞ2 ð10Þ

where �f jðtÞ is the mean over all jV jj � S elements of

Fj(t) and �f j
s ðtÞ is the sth column mean of Fj(t). A large value

of R ¼
R
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VBðtÞ=VTðtÞ

p
) implies a tight cluster of coherent

supervoxels.

We use Gap statistics [33] to select a reasonable cluster

size based on randomization. Let Fj(t) be the data matrix

corresponding with sieving sequence j and Rj its R mea-

sure. To determine whether Rj is larger than expected by

chance if the rows and columns of the data were inde-

pendent, we permute the elements within each row of Fj(t).

We perform P such permutations to obtain equally many

R-measures. The Gap function is then defined by the

difference between the real R-measure and the average

R-measure of the randomized data

GðkÞ ¼ Rj � �R�j : ð11Þ

The supercluster V j that produces the largest Gap is taken

as the optimal cluster. The search for the next cluster is

then performed on an orthogonalized version of the origi-

nal matrix F(t).

3.1.4 Data orthogonalization

To find a new supercluster uncorrelated with the supercl-

usters thus far, we perform orthogonalization of F(t) with

respect to the column average �fðtÞ of the supercluster found

in the previous step. This is equivalent to regressing each

row of F(t) on �fðtÞ and replacing the rows with the

regression residuals. As we are dealing with functional
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data, we use a point-wise multivariate functional linear

model to orthogonalize F(t). This reduces to solving

fcðtÞ ¼ �fðtÞbðtÞ þ �ðtÞ ð12Þ

where fc(t), c = 1,…,C is a row vector of F(t), b(t) is the

regression function and �ðtÞ ¼ ½�1ðtÞ; . . .:; �SðtÞ�T is the

vector of residual functions. Under the assumption that

the residual functions �ðtÞ are independent and normally

distributed with zero mean, the regression function is

estimated by least squares minimization such that

b̂ðtÞ ¼ min
b�ðtÞ

Z

t

ðfcðtÞ � �fðtÞb�ðtÞÞ2dt: ð13Þ

A roughness penalty is added to regularize the estimate of

b(t). We regularize the second derivative of b(t). The

estimated regression function provides the best estimate of

fc(t) in least squares sense:

f̂cðtÞ ¼ �fðtÞb̂ðtÞ: ð14Þ

The iterative voxel sieving process is then performed on

the new data matrix F*(t) with rows

f�cðtÞ ¼ fcðtÞ � f̂cðtÞ: ð15Þ

That is, the data matrix for the next sieving operation is

F*(t). The search for the next supercluster starts with

centering of the rows of F*(t). Then all steps described in

sect. 3.1 are repeated again on the new centered data

matrix. This iterative procedure continues until a prede-

fined number of superclusters has been identified. As the

number of meaningful superclusters cannot be known

a priori, the search for new superclusters may be stopped

based on the quality of estimating voxel time course by a

linear combination of supercluster averages: when adding

new superclusters does not lead to increasing percent var-

iance explained, this can be taken as a stop condition.

Note that because orthogonalization is done with respect

to the average time course of a supercluster, supervoxels in

different clusters can be highly correlated with one another.

Moreover, one supervoxel can belong to multiple sup-

erclusters, i.e. supervoxels removed in a previous sieving

step may be part of the supercluster of the next step.

3.2 Supervised voxel sieving

The method discussed so far has not used external infor-

mation about the columns of F(t) to ‘supervise’ the sieving

of rows. External information such as cognitive states,

subject information or stimulus patterns may be crucial in

uncovering hidden hemodynamic synchrony. Here, we

generalize voxel sieving to incorporate different types of

external covariates such as continuously valued stimulus

data or discrete class labels for the purpose of steering the

discovery of hidden hemodynamic synchrony.

We consider the task of identifying synchronous brain

activity directly related to a continuously valued stimulus

patterns, for example, the expert movie ratings in the free

movie viewing study. In a manner analogous to standard

regression analysis, voxel sieving allows to search for

supervoxels that best regress on expert movie ratings. To

this end, we first define the stimulus function gs(t) by fitting

a B-spline to the vector-valued movie rating gs. For the task

at hand, we subsequently map the supervoxels onto a

subspace spanned by the movie rating data using the

S 9 S projection matrix

P1ðtÞ ¼ gðtÞgþðtÞ ð16Þ

where g?(t) is the generalized Moore-Penrose pseudo

inverse of g(t) = [g1(t), ..., gS(t)]T. Then, given data matrix

F(t) and projection matrix P1 we map the supervoxels:

F��ðtÞ ¼ FðtÞP1ðtÞ: ð17Þ

Supervised data analysis now reduces to performing the

computations described in sect. 3.1 on F**(t) rather than on

F(t). Note that when the task at hand is to predict the

stimulus from brain activity data (e.g. for brain reading

tasks), we can reverse the roles of the predictor and the

predictant, treating voxel activity data as the predictor and

the stimulus as the response.

When alternatively the external information has discrete

values or is coded with a labelL for each column of F(t), then

an S� jLj matrix of scalars can be defined that maps the

columns of F(t) onto jLj columns containing the class averages

for each row. In the example of the three subjects watching six

movie parts, we may, for example, want to identify synchro-

nous brain activity across subjects using projection matrix

P2 ¼

1
6

0 0
1
6

0 0

. .
.

0 0 1
6

0 0 1
6

0
BBBBBB@

1
CCCCCCA
: ð18Þ

Projection of F(t) by P2 results in an alternative C 9 3

working matrix with the three columns now corresponding

to the three subjects. The data analysis steps described in

Sect. 3.1 are subsequently executed to identify across-

subject hemodynamic synchronization.

Hence, incorporation of different types of external

covariates in the voxel sieving procedure is achieved by

performing a suitable data projection operation prior to the

data analysis procedure of Sect. 3.1.

3.3 Partially supervised voxel sieving

Partially supervised sieving aims at striking a balance

between supervised and unsupervised analysis so as to
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encourage coherence within clusters, while allowing to

exploit auxiliary information. This is particularly useful

when dealing with overly aggressive supervision criteria.

Given data matrix F(t) and projection matrix P, partially

supervised data analysis is facilitated through

F��ðtÞ ¼ FðtÞP� ð19Þ

where P* is a weighted combination of the projection

matrix P and identity matrix I:

P� ¼ kIþ ð1� kÞP: ð20Þ

Parameter k [ [0,…,1] is a weight that allows to determine

the extent of supervision. For k = 1, the data are projected

onto themselves and hence lead to unsupervised sieving.

For k = 0, the data are projected by P only and thus

analysis reduces to supervised sieving. Values between 0

and 1 enable partial supervision. Note that P and I become

matrices of functions when the external covariate itself is

functional.

4 Experiments and results

We use voxel sieving to uncover distributed and overlap-

ping patterns of fMRI activity predicative of sources

underlying these patterns. Our experiments aim at explor-

ing how well this can be achieved. All experiments are

performed on a functional data representation of the fMRI

data. An important motivation for using B-splines, rather

than temporal smoothing with an HRF kernel, is minimi-

zation of bias. To what extent a predefined kernel smoother

gives an acceptable level of bias can only be determined

empirically. We choose to determine the smoother in a

more objective manner by calculating smooth splines for

our time courses with roughness of derivatives as a penalty

[31]. We subsequently determine the minimum number of

basis functions producing very similar smoothing results,

to get an efficient yet accurate data representation. Note

that this generally imposes some restriction on variation in

fMRI scan length, repetition times, etc. The fMRI scans in

our experiments are reasonably uniform in terms of number

of volumes and hence can all be approximated with the

same number of basis functions.

4.1 Simulated fMRI data

As an initial test we apply our method to artificial fMRI data.

Following [6, 8], we simulate fMRI data using three types of

sources: task-related, transiently task related, and function

related. The task-related source corresponds with an acti-

vation paradigm. It is periodic and slowly changing. The

transiently related source closely matches the task-related

source but has an activation that is more pronounced at parts

of each task cycle. The function-related source is charac-

terized by random fluctuations. The three sources are super-

Gaussian in nature; they are localized. We disregard source

variations across large image areas such as motion-related

sources, assuming these have been accounted for in the

preprocessing step.

We convolve sources with variations of hemodynamic

response functions observed across subjects [16] to mimic

across-subject variation. In this way, we construct three

different fMRI sets representing three scan samples

(S = 3). Each of the three fMRI data sets consists of

64 x 64 voxels and 100 time points. Approximately 22% of

these 4,096 voxels has a task-related source. These voxels

are clustered at three spatially distributed locations.

Another 15% has a transiently task-related source, dis-

tributed over two equally large clusters. The fraction of

voxels with a mixture of the aforementioned sources is 7%.

Finally, a random sources is assigned to 5 percent of the

voxels. We add Gaussian noise to the constructed data sets

at signal-to-noise ratios (SNR): 2, 1.5, 1, 0.5, 0.25. The

SNR measure we use is the standard deviation over all

sources divided by the standard deviation over all noise

sources. Figure 2 summarizes the sources.

We fit a 20-coefficient B-spline to the discrete voxel

time courses to obtain functional data. The voxel time

courses are hierarchically clustered in space. The highest

level used in hierarchical clustering was l = 5. It produces

25 = 32 voxel clusters with on average 128 voxels. We

excluded higher levels because we expect these will not be

informative. At the lowest level the 212 = 4,096 individual

voxels themselves are considered. The supervision weight

k is set to 0 (fully supervised) or 1 (fully unsupervised).

Data randomization to separate real from random clusters

is done on the basis of P = 3 permutations.

In evaluating our method we make a distinction between

relevant and irrelevant voxels. Relevant voxels have a task-

related source, potentially mixed with an other source. All

other voxels are irrelevant. The aim is to detect the relevant

voxels precisely and completely by sieving. Detection

results are confined to the first two superclusters. We use

Precision and Recall to measure performance. Precision

indicates the fraction of relevant voxels in the two detected

superclusters, while Recall is the number of relevant voxels

in the two detected superclusters divided by the number of

relevant voxels in the entire fMRI volume. The harmonic

mean combines these two measures into a single one [34]:

Fscore ¼
2� Precision� Recall

Precisionþ Recall
ð21Þ

Table 1 shows the Fscore for supervised (k = 1) and

unsupervised analysis (k = 0) of simulated fMRI data for

various signal-to-noise ratios and values of sieving

parameter d. We first discuss two noteworthy observations
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for both unsupervised and unsupervised sieving. First,

lower values of d, yielding fine-grained voxel clusters, lead

to better detection performance. This is to be expected as

the relevant voxels are clustered in relatively small parts of

the 3D space. In real fMRI scans, where sources may be

spread over the entire space, larger values of d may per-

form better (as we will discuss next). Second, the decay of

detection performance with decrease of SNR is lower for

larger values of the sieving parameter. This can be

explained by the fact that course sieving results in larger

voxel clusters that tend to average out noise more

vigorously.

In comparison to unsupervised sieving, supervised

sieving performs better at high SNR when sieving is done

in a fine-grained fashion (low d values). A close inspection

of detected superclusters reveals the following recurring

pattern. In supervised analysis, the first supercluster is large

relative to the second and is almost entirely composed of

task-related voxels. The second supercluster is small and

includes voxels with a mix of task-related and transiently

task-related time courses. As a result Precision is very

high. Conversely, in unsupervised analysis, the first cluster

and the second supercluster are relatively large and com-

parable in size. Almost all voxels in the first cluster are

task-related. The second supercluster also contains a con-

siderable amount of irrelevant clusters. This leads to lower

Precision and higher Recall, compared with supervised

analysis. On average, detection performance reduces for

unsupervised analysis. When the signal-to-noise ratio

decreases and becomes more realistic, however, unsuper-

vised sieving outperforms supervised sieving, particularly

for course sieving (higher values of d). Overall, these

results indicate that voxel sieving is capable of identifying

localized synchrony in hemodynamics at multiple levels of

granularity, using covariate information in a flexible

manner as a pilot.

4.2 Real fMRI data

Our experiments with real data involve fMRI data acquired

during a free movie viewing study involving Home

Improvement sitcoms. With these experiments we aim to

explore the spatial nature of detected voxel clusters under a

variety of source-specific conditions. Second, we test the

ability of these voxel clusters to predict natural sensory

stimuli, i.e. to do brain reading. Hence, we test whether we

localize brain regions containing information about the

external sources, rather than testing for brain regions that

activate with the external sources.

Simulated fMRI Source location 1 Source location 2

20 40 60

10

20

30

40

50

60

Source location 3

0 50 100

Sources

Time

Simulated fMRI with noise

Fig. 2 Simulated fMRI data are

a linear mixture of three

independent sources at multiple

spatially distributed locations.

The task-related source

(location 1) is shown in green
(lower source signal), the

transiently task-related source

(location 2) in red (middle

source signal), and the random

source (location 3) in blue
(upper source signal). Note that

in the simulated fMRI slice, the

gray level is highest where the

mixing of the first two sources

occurs (color figure online)

Table 1 Fscore of detection for: unsupervised j supervised sieving

d SNR = 2.0 SNR = 1.5 SNR = 1.0 SNR = 0.5 SNR = 0.25

0.1 0.78 j 0.81 0.79 j 0.72 0.59 j 0.67 0.44 j 0.40 0.27 j 0.25

0.3 0.65 j 0.68 0.52 j 0.55 0.48 j 0.47 0.35 j 0.29 0.28 j 0.19

0.5 0.50 j 0.51 0.41 j 0.44 0.36 j 0.35 0.27 j 0.17 0.23 j 0.11

0.7 0.33 j 0.32 0.23 j 0.20 0.19 j 0.16 0.17 j 0.09 0.11 j 0.05

0.9 0.20 j 0.18 0.18 j 0.12 0.13 j 0.10 0.09 j 0.08 0.09 j 0.06
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Functional data for the real fMRI data sets have been

obtained by fitting a 30-coefficient B-spline to the discrete

data points, both for voxel activation and stimulation data.

The highest level used in hierarchical clustering was l = 9

(see Fig. 1a). It produces 29 = 512 voxel clusters with an

average size of 70 voxels, while the lowest level of l = 12

produces 212 = 4,096 voxel clusters with an average size

of 9 voxels. In sect. 4.2.2 we discuss how we selected

values of l = 9,…,12 to limit the search space to C = 29 ?

210 ? 211 ? 212 = 7,680 supervoxels and speed up the

search. Hence, the C 9 S data matrix F(t) consists of

C = 7,680 supervoxels for S = 18 scan samples. The

sieving parameter d as described above was set to 0.2. This

setup requires 24 computation hours on a standard desktop

computer. The parameter k for controlling supervision was

varied between [0, 1] depending on the experiment. Data

randomization to separate real from random clusters was

done on the basis of P = 5 permutations.

We first describe application of voxel sieving for iden-

tification of brain areas reacting in synchrony across brain

scans in an unsupervised manner. Then we elaborate on

supervised voxel sieving for finding across-subject hemo-

dynamic synchrony. An interparticipant correlation map is

created to compare our findings with that of an intersubject

similarity-based method ([22]).

4.2.1 Interscan synchronization

Unsupervised analysis of the fMRI data implies k = 1. In

this case, the projection matrix P = I. Voxel sieving thus

performs a data-driven search for voxel activity patterns

with high across-scan variance and high across-voxel

coherence. The resulting voxels highlight parts of the brain

that act in synchrony during natural movie viewing.

The first row of Fig. 3 shows the first two superclusters

overlaid over the anatomical image of subject 1. Voxels

from the first supercluster are depicted in red and voxels

from the second are given in blue. Voxel color value

indicates the degree of match between the voxels activity

pattern and the first principal component of the superclu-

ster. The brighter the color the stronger the match between

a voxel’s activity pattern and the first component of its

FAG=37%

PAG=5%

T1D=58%

Distribution of voxels over known brain areas 

F2G=10%

F2D=8%

F3TG=8%

V1D=6%

O2D=8%

T2D=5%

CER4
5
D=6%

Distribution of voxels over known brain areas 

Fig. 3 Across scan synchronization. First row first two superclusters

(red and blue) in two different colors overlaid over the anatomical

image of subject 1. The first supercluster consists of 19 voxels and the

second has 299 voxels. Second row functional distribution of

identified voxels in the first (left pie) and second (right pie)

supercluster according to the MNI brain atlas ([26], see Fig. 10 for

the labels). The percentage is only shown for 5 or higher (color figure

online)
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supercluster. Note that for other subjects the same voxel

locations are highlighted in color, but with different

intensities because of the voxel’s unique activation pattern.

From the Gap statistics at each sieving sequence, it

follows that for the first supercluster, the largest Gap occurs

when only two supervoxels remain, consisting of 19 vox-

els. The second supercluster has 27 supervoxels with a total

of 299 voxels. All supervoxels are at levels l = 11 or

l = 12. Note that these levels are automatically selected

from the available levels by our method. We examined the

spatial distribution of individual voxels over known func-

tional areas. The pie chart in Fig. 3 shows that the voxels in

the first supercluster are mostly localized in functional

areas for motor and action, while voxels in the second

cluster are distributed over a wide range of functional

areas. We speculate that during passive movie viewing,

hemodynamic synchrony is strongly present at brain areas

for motor and action.

4.2.2 Intersubject synchronization

Fully supervised fMRI analysis allows to identify brain

areas with the strongest across-subject synchronization

during the viewing of the sitcoms. This reduces to setting

k = 0 and consequently activating P2 in Eq. 19. Projection

of the data matrix F(t) by P2 and incrementally sieving

away supervoxels identifies the voxels highlighted in the

first row of Fig. 4. The first supercluster in red contains

three supervoxels. Almost half of the 25 individual voxels

is located at the temporal lobe where audio processing

takes places. The second cluster in blue contains 54 su-

pervoxels (578 voxels). Again all supervoxels are at levels

l = 11 or l = 12. Across-subject synchronization is iden-

tified at multiple areas across the entire brain. Notice that

very specific brain areas are visible with a very strong

synchrony rather than a widespread cortical activation

pattern as reported in a similar natural movie viewing study

([17]). These specific results are typical of voxel sieving

and provide additional insight into correlates of natural

movie viewing.

We further compared voxel sieving to interparticipant

correlation analysis [22] in terms of the spatial distribution

and size of detected voxel clusters. Note that, instead of

computing correlation maps on the basis of voxel activity

patterns, we used supervoxels to determine such maps. This

way we are less sensitive to the multiple comparison

Fig. 4 Intersubject synchronization. First row first two superclusters (red and blue) in two different colors overlaid over the anatomical image of

subject 1. Second row functional distribution of identified voxels according to MNI brain atlas ([26], see Fig. 10 for the labels) (color figure online)
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problem. We computed correlation maps for each of the six

movie parts, then averaged these to obtain a single average

correlation map. The average interparticipant correlation

map was thresholded to identify voxels with highest cor-

relation. The threshold was selected such that approxi-

mately 500 voxels remained to ease comparison with the

above voxel sieving result. These voxels where then sep-

arated into two groups with k-means clustering by temporal

similarity. The first cluster contains 11 supervoxels con-

sisting of 239 voxels, while the second has 19 supervoxels

comprised of 385 voxels as shown in Fig. 5. The number

and spatial distribution of identified voxels differs clearly

from voxel sieving results. The voxel-by-voxel correlation

analysis apparently favors larger brain areas of synchro-

nous brain activity, whereas the multivariate clusterwise

approach of voxel sieving detects specific brain areas with

strong correlations and large variation.

4.3 Localization and prediction

We now consider the task of localization of covariate-

related brain responses. We analyze the fMRI data under

full and partial supervision. Then we concentrate on pre-

dicting external covariates on the basis of fMRI data.

4.3.1 Localization

The projection matrix P1(t) in Eq. 17 forms the basis for

localization of covariate-related brain responses. In a full

supervision mode, i.e. k = 0, sieving is performed on the

matrix F(t)P1(t). This is the equivalent to standard

regression analysis. The aim is to find rows of F(t) with

column means that best regress on the external covariates.

However, rather than performing regression voxel-wise or

volume-wise, it is here performed on clusters of voxels.

This has the benefit of allowing to find multiple specific

voxel clusters that are independently related to the stimu-

lus. Furthermore, supervoxels eliminate the need for spatial

regularization.

Figure 6 shows the first two clusters of voxels that best

explain the face stimulus. For the first cluster the difference

between the real explained variance and the randomized

explained variance occurs at the last sieving sequence,

corresponding to 2 supervoxels. The second supercluster

Fig. 5 Average interparticipant correlation map superimposed on the

fMRI of subject 1. First row two detected clusters with similar

temporal similarity. Color values in this case correspond with the

average Pearson correlation coefficient. Second row functional

distribution of identified voxels according to MNI brain atlas ([26],

see Fig. 10 for the labels). The percentage is only shown for 5 or

higher (color figure online)
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contains 12 supervoxels. The majority of the individual

voxels of both superclusters is located in the left fusiform

area, which is known to be involved in face processing

[15]. The other identified functional areas associated with

the face stimulus are temporal inferior lobe, left cerebel-

lum, and left lingual. Almost all of these functional areas

are involved in language processing; It is conceivable that

these areas activate when perceiving human faces. Note

that there is a lot of (spatial) overlap between the two

superclusters. The first supercluster in fact is a subset of the

second, possibly indicating functional specialization.

The first row of Fig. 7 shows results of partially super-

vised sieving with supervision weight k = 0.5. In this case,

the supervision criteria is less rigid, providing more room

for identifying transient brain activity related to the face

stimulus. The first supercluster contains 34 supervoxels.

The second supercluster has 27 supervoxels, mostly at

higher levels of hierarchy (l [ [10, 11]). The individual

voxels are found at a broader range of spatial and func-

tional areas. Most voxels are found in the following areas:

fusiform, temporal inferior lobe, left cerebellum, and left

lingual. This gives reason to believe that next to voxels that

are directly related to the stimulus many more are tran-

siently related.

4.3.2 Prediction

Evaluation of detected brain responses to naturalistic

stimuli, as in our case, is difficult because of lack of

appropriate reference material. One way of dealing with

this challenge is to invert the task from correlating external

covariates with fMRI data to predicting these covariates

from the fMRI data. This makes evaluation of detected

brain responses more objective [21]. Here, we use partially

supervised voxel sieving to uncover voxels that are pre-

dictive of the face stimulus in our movie data. We con-

centrate on the face stimulus because of the large body of

reference material [15].

For various values of k we identify two clusters that we

subsequently use as predictors in a functional linear model

(see [31] for more detail), with the stimulus as dependent

variable and the cluster averages as independent variables,

i.e. predictors. In the training phase the best model is

selected: a model with one or two predictors. The trained
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FUSIG=65%

T3G=25%

Distribution of voxels over known brain areas 

LINGG=8%

O3G=1%

FUSIG=50%

T2AG=4%

T3G=16%
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5
G=22%

Distribution of voxels over known brain areas 

Fig. 6 Localization with k = 0. First row first two superclusters (red and blue) in two different colors overlayed over the anatomical image of

subject 1. Second row functional distribution of identified voxels according to MNI brain atlas (color figure online)
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model is then applied in the testing phase on independent

data to predict a feature. We use movie 1 data for training

and movie 2 data for prediction, and vice versa. Pearson

correlation coefficient between manual feature rating

functions and the automatically predicted feature functions

was used as an evaluation measure.

Prediction results are summarized in the first row of Fig.

8. Shown is the average of 2 9 18 cross correlation values

from cross validation for all 13 movie features with

supervision weight k set to 0, 0.25, 0.5, 0.75 and 1. The

gross pattern of the graphs shows that prediction perfor-

mance reaches a maximum around k = 0.75. This indi-

cates that brain activity patterns that are transiently related

to the stimulus are relevant for prediction. The highest

cross correlation value of 0.62 is for feature faces for

k = 0.75. The second row of Fig. 8 shows the voxels that

have been used for prediction of this feature, with the first

supercluster containing 5 supervoxels and the second

supercluster 12. As expected, most voxels are localized in

brain areas related directly or indirectly to face processing.

The first row of Fig. 8 also shows the distribution of

cluster resolutions that were used for prediction. Most of

the identified voxel clusters are at the lowest hierarchical

level, i.e. have cluster size of approximately nine voxels.

Some features such as environmental sounds, however,

also benefit from supervoxels at higher levels of hierarchy,

suggesting that some features are processed more globally

than other ones. We note that we restricted our supervoxels

to only four hierarchical levels, as these levels performed

best in a prediction experiment where we started with su-

pervoxels at the lowest level (l = 12, C = 4,690) and

stepwise included higher levels. Prediction performances

for all features and for supervision weight k set to

0, 0.25, 0.5, 0.75, 1, increased steadily up to level l = 9.

Beyond this level performance first remained stable and

then reduced. Hence, at least for the prediction task, a

multiresolution approach pays off.

We compared voxel sieving performance with that of

the three winning entries of the 2006 EBC Brain Reading

competition. These entries used recurrent neural networks,

ridge regression, and a dynamic Gaussian Markov Random

Field modeling on the same test data benchmark, yielding

across feature average cross correlations of 0.49, 0.49, and

0.47, respectively. For the voxel sieving method, the fea-

ture average cross correlation value is 0.44. This is good

considering that the predictions are based on a reduced data

set, while the reported results of the winning entries are

based on the full data set. The fact that we have used a
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LINGG=30%

FUSIG=24%
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Distribution of voxels over known brain areas 
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Fig. 7 Localization with k = 0.5. First row first two superclusters (red and blue) in two different colors overlaid over the anatomical image of

subject 1. Second row functional distribution of identified voxels according to MNI brain atlas (color figure online)
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smaller training set is likely to have had a negative impact

on the prediction results. Note, that in the 2006 competition

our entry, an initial version of the voxel sieving method,

ranked first in the actor category [32]. We were able to

accurately predict which actor the subjects were seeing

purely based on fMRI scans [10].

4.3.3 Consistency

In order to check for consistency of the voxel detections

across subjects, we repeated the localization (k = 0) and

prediction experiments (k = {0, 0.25, 0.5, 0.75, 1}) three

times, each time using only fMRI data of a single subject
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Fig. 8 fMRI-based stimuli prediction. First row average cross

correlation values for all 13 movie features and 5 supervision

weights. Right distribution of resolutions of supervoxels used for

prediction. Note that one or a combination of predictors is used

depending on the best prediction outcome. Second row first two

superclusters (red and blue) overlayed over the anatomical image of

subject 1. Third row functional distribution of identified voxels

according to MNI brain atlas (color figure online)
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instead of all three. We measured the overlap in super-

voxels across subjects in terms of the number of super-

voxels that were in the superclusters of all three subjects

relative to the total number of supervoxels. We examined

consistency separately for the superclusters. Figure 9a

shows the results of consistency analysis.

When we only consider supervoxels in the first super-

cluster, almost 22 percent of the supervoxels from subjects

1, 2, and 3 overlap in the localization task. For the second

supercluster the overlap is significantly higher: 28%. We

attribute this difference in consistency between the first and

second superclusters to number and spatial size of super-

voxels, which tend to be larger for the second supercluster.

In the prediction task, we computed consistency separately

for supervision weights 0, 0.25, 0.5, 0.75, 1 and subse-

quently averaged these. For larger values of the supervision

weight, the supervoxels detected are generally few, spatially

confined and variable across subjects, adversely affecting

consistency of voxel detections across subjects. The amount

of overlap drops for both superclusters to 21 and 18%,

respectively. This, however, does not necessarily imply that

a source-specific search for hemodynamic synchrony yields

more consistency than unbiased probing. It might be that

consistency emerges with across subject analysis as reflec-

ted in the prediction results based on fMRI data of indi-

vidual subjects (Fig. 9b). Considering the large amount of

supervoxels (C = 7,680), the obtained results indicate a

reasonable consistency of voxel detections across subject.

5 Discussion

We have introduced a statistical signal analysis method for

identification of distributed and overlapping synchronous

hemodynamic patterns that are directly or transiently

linked to their underlying sources. The method is appli-

cable for brain activity from any modality and covariates of

any form. We focused on fMRI data from a free natural

movie viewing study, as these data generally contain

complex distributed and overlapping synchronous hemo-

dynamic patterns. Our experiments showed that voxel

sieving is very effective in uncovering both anticipated

(visual and auditory regions) and unexpected cortical areas

involved in face processing (such as motor and action

regions). The viability of voxel sieving to find established

or discoverable relations also holds for the other movie

stimuli in our data set. There is generally a meaningful

relation between cognitive concepts from the movie stimuli

and synchronously active brain areas as identified by voxel

sieving. The performance of voxel sieving in fMRI-based

prediction of the movie stimuli strongly supports the sig-

nificance of exposed brain areas.

Voxel sieving can be conceived of as a superset of many

existing fMRI data analysis methods. When a single cluster

is searched for in a fully unsupervised mode (k = 1)

without sieving (d = 1), our method reduces to functional

principal component analysis [35]. Independent component

analysis [4, 11] is approximated when multiple indepen-

dent clusters are searched using k = 1 and d = 1. In a fully

supervised mode (k = 0) using projection matrix P1(t),

fMRI data are analyzed in a manner analogous to standard

regression analysis ([13]). Other projections matrices can

be used, for example, for discriminating activity between

subjects, groups or conditions (similar to [ 3, 29, 36]). By

varying the values of sieving parameter d and levels of

hierarchy l, the method enables voxel-wise, cluster-wise,

and volume-wise data analysis. In addition, as voxel siev-

ing relies heavily on data averaging and dimension

reduction on a data sets from multiple subjects or multiple

conditions, it is reasonably robust against multiple testing
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problems. Hence, voxel sieving is generic in that it can be

used for an ensemble of data analysis approaches and tasks.

More importantly, voxel sieving has the capability to

uncover patterns in brain activity data that are hard to

capture with existing fMRI data analysis techniques. Our

method generally identifies multiple specific cortical clus-

ters across the brain. We attribute the specificity of the

results to the ability of our method to find voxel activity

patterns with both high coherence and high variance, while

other similar methods [17, 22, 23] focus on coherence only.

Another distinguishing feature of voxel sieving is that

identified voxel clusters are independent of each other.

Rather than seeking for voxel clusters with similar tem-

poral properties, the method inclines to search for distinct

cluster characteristics. As a consequence, once a specific

synchrony is captured in one cluster, the same structure

will no longer be captured in subsequent clusters. Over-

lapping voxel clusters, however, are allowed if such voxels

induce clusters that uncover distinct brain processes. These

aspects of our method are important and cannot be captured

by fitting predefined models to voxels or by globally

grouping voxels into classes, clusters or components.

In the study, we have experienced, as others have done

before, that estimating the number of clusters and finding the

optimal cluster size is a difficult task as there is no clear

definition of a ‘cluster’. Simulation studies have demon-

strated that the Gap estimate is good for identifying well-

separated clusters ([18]). However, when data are not

clearly separated into groups, suboptimal clusters can be

identified. In this case, a more flexible procedure is needed

Fig. 10 The functional areas according to Montreal Neurological Institute. In three columns the abbreviations and descriptions of 42 functional

areas are listed
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for the determination of the best cluster. One alternative is to

select a cluster with a larger size than the optimal cluster and

a Gap statistic within a small percentage of the maximal Gap

statistic. We have not investigated whether our brain activity

data suffer from suboptimal voxel clusters and how alter-

native procedures effect the performance of voxel sieving.

6 Conclusion

Our statistical signal analysis method identifies hemody-

namic synchrony that distinguishes well between experi-

mental conditions or cognitive states. Two important

properties of these method are that it allows to conve-

niently specify (1) external sources of variation associated

with brain activity and (2) the degree of supervision during

the data analysis process. In the absence of prior or external

information about brain scans, the method operates in a

data-driven manner. When meta-information about brain

activity is present, the method uses this for fully or partially

supervised data analysis. This flexibility of our method

together with its ability to identify multiple, potentially

overlapping, brain areas independently of each other and in

a multivariate way, makes it appropriate for finding very

specific brain responses, even to complex stimuli. We have

shown this in the context of a free movie viewing fMRI

study, where flexible probing of functional characteristics

exposed spatially localized synchronous brain activity at

anticipated and less expected brain regions. The signifi-

cance of these findings is supported by the excellent per-

formance of our method on an international test benchmark

for fMRI-based movie stimuli prediction. Hence, we con-

clude that the unique ability of our method to capture

distributed and overlapping hemodynamic responses in a

flexible and effective way, suitably complements existing

statistical signal processing methods in neuroscience.
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