
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Fixed-point logics on trees

Gheerbrant, A.P.

Publication date
2010

Link to publication

Citation for published version (APA):
Gheerbrant, A. P. (2010). Fixed-point logics on trees. Institute for Logic, Language and
Computation.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/fixedpoint-logics-on-trees(a376202e-2bb6-41e9-bfe2-c54fb7d4c767).html

Chapter 4

Interpolation for Linear Temporal
Languages

4.1 Introduction

Craig’s interpolation theorem in classical model theory dates back from the late
fifties [44]. It states that if a first-order formula ϕ (semantically) entails another
first-order formula ψ, then there is an interpolant first-order formula θ, such that
every non-logical symbol in θ occurs both in ϕ and ψ, ϕ entails θ and θ entails
ψ. The key idea of the Craig interpolation theorem is to relate different logical
theories via their common non-logical vocabulary. In his original paper, Craig
presents his work as a generalization of Beth’s definability theorem, according
to which implicit (semantic) definability is equivalent to explicit (syntactic) de-
finability. Indeed, Beth’s definability theorem follows from Craig’s interpolation
theorem, but the latter is more general.

From the point of view of applications in computer science, interpolation is
often a desirable property of a logic. For instance, in fields such as automatic
reasoning and software development, interpolation is related to modularization [2,
103], a property which allows systems or specifications to be developed efficiently
by first building component subsystems (or modules). Interpolation for temporal
logics is also an increasingly important topic. Temporal logics in general are
widely used in systems and software verification, and interpolation has proven to
be useful for building efficient model-checkers [45]. This is particularly true of a
strong form of Craig interpolation known as uniform interpolation, which is quite
rare in modal logic, but that the modal µ-calculus satisfies (see [46]), whereas
most temporal logics lack even Craig interpolation (see [107]).

We study Craig interpolation for fragments and extensions of propositional lin-
ear temporal logic (LTL). We use the framework of [12] and work with a general
notion of abstract temporal language which allows us to consider a general notion
of extension of such languages. We consider different sets of temporal connectives
and, for each, identify the smallest extension of the fragment of LTL with these

81

82 Chapter 4. Interpolation for Linear Temporal Languages

LTL(F)

%%LLLLLLLLLL
+3 LTL(U)

&&NNNNNNNNNNN
+3 µTL(U)

$$IIIIIIIII

LTL(F<)

"*NNNNNNNNNN

NNNNNNNNNN
+3 LTL(F<,U) +3 LTL +3 µTL

LTL(X) // LTL(F<,X)

4<qqqqqqqqqqq

qqqqqqqqqqq

Figure 4.1: Hierarchy of temporal languages

temporal connectives that has Craig interpolation. Depending on the set of tem-
poral connectives, the resulting logic turns out to be either the fragment of LTL
with only the Next operator, or the extension of LTL with a fixed-point operator µ
(known as linear time µ-calculus), or the fixed-point extension of the fragment of
LTL with only the Until operator (which we will show to be the stutter-invariant
fragment of the linear time µ-calculus). The diagram in Figure 4.1 summarizes
our results. A simple arrow linking two languages means that the first one is an
extension of the second one and a double arrow means that, furthermore, every
extension of the first one having Craig interpolation is an extension of the second
one. Temporal languages with Craig interpolation (in fact, uniform interpolation)
are represented in a double frame. Thus we have for instance that µTL(U) is the
least expressive extension of LTL(F) with Craig interpolation.

Outline of the chapter: In Section 4.2, we introduce a general notion of abstract
temporal language. We then introduce LTL, some of its natural fragments and its
fixed-point extension known as linear time µ-calculus (µTL) as samples of abstract
temporal languages.

Section 4.3 contains some technical results that are used in subsequent sec-
tions. One of these relates projective definability in LTL to definability in the
fixed-point extension µTL. Another result relates in a similar way LTL(U) and
µTL(U). Along the way, we show that µTL(U) is the stutter invariant fragment
of µTL. Stutter-invariance is a property that is argued by some authors [101]
to be natural and desirable for a temporal logic. Roughly, a temporal logic is
stutter-invariant if it cannot detect the addition of identical copies of a state.

In Section 4.4, we give three positive interpolation results. Among the frag-
ments of LTL obtained by restricting the set of temporal operators, we show that
only one (the “Next-only” fragment) has Craig interpolation. In fact, this frag-
ment satisfies a stronger form of interpolation, called uniform interpolation. The
logics µTL and µTL(U) also have uniform interpolation.

Section 4.5 completes the picture by showing that µTL and µTL(U) are the
least extensions of LTL(F) and LTL(F<), respectively, with Craig interpolation.

4.2. Preliminaries 83

4.2 Preliminaries

4.2.1 Abstract Temporal Languages

We will be dealing with a variety of temporal languages. They are all interpreted
in structures consisting of a set of worlds (or, time points), a binary relation
intuitively representing temporal precedence, and a valuation of proposition let-
ters. In this section, we give an abstract model-theoretic definition of temporal
languages (on the general topic of abstract model theory, we refer to [12]).

Let us recall that a flow of time, or frame, is a structure T = (W,<), where
W is a non-empty set of worlds and < is a binary relation on W . We will focus
here on Tω, the class of linear orders of order type ω, i.e., frames (D,<) that
are isomorphic to (N, <), where N is the set of natural numbers with the natural
ordering. We will also freely use ≤ to denote the reflexive closure of <.

By a propositional signature we mean a finite non-empty set of propositional
letters σ = {pi | i ∈ I}. A pointed σ-structure is a structure M = (T , V, w)
where T = (W,R) is a frame, V : σ → ℘(W) a valuation and w ∈ W a world.
The class of all pointed σ-structures is denoted by Str[σ] and we call them σ-
structures for short. Furthermore, for any class of frames T, StrT[σ] will denote
the class of σ-structures of which the underlying frame belongs to T. Let σ ⊆ τ
be propositional signatures. Given a τ -structure M = (T , V, w), we define its
σ-reduct M � σ as the σ-structure (T , V � σ,w) where V � σ is the restriction
of the valuation to the propositional letters in σ. We call M a τ -expansion of
M � σ. We also write K � σ for {M � σ |M ∈ K}. Let (T , V, w) be a σ-structure
and A ⊆ W a subset of its domain. By V [A/p], we will refer to the valuation V
extended with V (p) = A (p being a fresh proposition letter). We will refer to the
corresponding σ ∪ {p}-expansion of (T , V, w) by (T , V [A/p], w).

Definition 4.2.1 (Abstract temporal language). An abstract temporal language
(temporal language for short) is a pair L = (L, |=L), where L : σ 7→ L[σ] is a
map from propositional signatures to sets of objects that we call formulas and
|=L is a relation between formulas and pointed structures satisfying the following
conditions, for all propositional signatures σ, τ :

1. Expansion property. If σ ⊆ τ then L[σ] ⊆ L[τ]. Furthermore, for all
ϕ ∈ L[σ] and M ∈ Str[τ], M |=L ϕ iff M � σ |=L ϕ. If M ∈ Str[σ] and
M |=L ϕ, then ϕ ∈ L[σ].

2. Closure under uniform substitution. For all ψ ∈ L[σ], p /∈ σ and
ϕ ∈ L[σ ∪ {p}], there is a formula of L[σ], which we will denote by ϕ[p/ψ],
such that for every (T , V, w) ∈ Str[σ] the following holds:

(T , V, w) |=L ϕ[p/ψ] iff (T , V ′, w) |=L ϕ

where V ′ = V [{w | (T , V, w) |=L ψ}/p].

84 Chapter 4. Interpolation for Linear Temporal Languages

3. Negation property. For each ϕ ∈ L[σ] there is a formula of L[σ], which
we will denote by ¬ϕ, s.t. for all M ∈ Str[σ], M |=L ¬ϕ iff M 6|=L ϕ.

For any class of frames T, |=L,T will denote the restriction of |=L to pointed
structures based on T. For ϕ ∈ L[σ], we will use Modσ(ϕ) as shorthand for
{M ∈ Str[σ] | M |=L,T ϕ} and ModσT(ϕ) when restricting to a frame class T.
Whenever this is clear from the context, we will be omitting superscript and
subscripts in ModσT(ϕ) and |=L,T. We say that a class of pointed structures
K ⊆ StrT[σ] is definable in an abstract temporal language L (relative to the
frame class T) if there is a L-formula ϕ such that for every (T , V, w) ∈ StrT[σ],
(T , V, w) |= ϕ iff (T , V, w) ∈ K.

Definition 4.2.2 (Extension of a temporal language). Let L1 = (L1, |=L1), L2 =
(L2, |=L2) be temporal languages. L2 extends L1 (notation: L1 ⊆ L2) if for all σ,
for all ϕ ∈ L1[σ], there exists ϕ∗ ∈ L2[σ] such that Modσ(ϕ) = Modσ(ϕ∗). Also,
whenever L1 ⊆ L2, we say that L1 is a fragment of L2. Whenever restricting
attention to a frame class T we write L1 ⊆T L2.

The following notion is related to existential second-order quantification over
propositional letters. Allowing such a form of quantification in a given tempo-
ral language indeed amounts to considering its projective classes. It is a clas-
sical notion in abstract modal theory and it will be useful in the context of
∆-interpolation (see Definition 4.5.2).

Definition 4.2.3 (Projective class). Let σ be a propositional signature, T a frame
class and let K ⊆ StrT[σ]. Then K is a projective class of a temporal language
L relative to T if there is a ϕ ∈ L[τ] with τ ⊇ σ a propositional signature, such
that K = Mod(ϕ) � σ.

Lemma 4.2.4. Let T be a frame class. If L1 ⊆T L2, then every projective class
of L1 relative to T is also a projective class of L2 relative to T.

Proof. Let K be a projective class of L1 relative to a frame class T. So there is
ϕ ∈ L1[τ] with τ ⊆ σ a propositional signature, such that K = ModτL,T(ϕ) � σ.
As L1 ⊆ L2, there is also ϕ∗ ∈ L2[τ] such that ModτL1

(ϕ) = ModτL2
(ϕ∗). It follows

that K = ModτL2
(ϕ∗) � σ.

Definition 4.2.5 (Entailment). Let L be a temporal language, σ a propositional
signature, T a frame class and ϕ, ψ ∈ L[σ]. We say that ϕ entails ψ in L over T
and write ϕ |=L,T ψ if for any (T , V, w) ∈ StrT[σ], whenever (T , V, w) |=L,T ϕ,
then also (T , V, w) |=L,T ψ.

4.2.2 Propositional Linear Temporal Logic

Recall that Tω denotes the linear orders of order type ω. We now recall the
syntax and semantics of LTL, following the terminology of [59].

4.2. Preliminaries 85

Definition 4.2.6 (LTL). Let σ be a propositional signature. The set of formulas
LTL[σ] is defined inductively, as follows:

ϕ, ψ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ϕ ∨ ψ | Xϕ | Fϕ | F<ϕ | ϕUψ

where At ∈ σ. We use G and G< as shorthand for respectively ¬F¬ and ¬F<¬.
The relation |=LTL between LTL-formulas and structures (T , V, w) is defined as
follows (we only list the clauses of the temporal operators, the others are as in
the case of classical propositional logic):

• (T , V, w) |=LTL Xϕ iff there exists w′ such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL Fϕ iff there exists w′ such that w ≤ w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL F
<ϕ iff there exists w′ such that w < w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL ϕUψ iff there exists w′ such that w ≤ w′, (T , V, w′) |= ψ and
for all w′′ such that w ≤ w′′ < w′, (T , V, w′′) |= ϕ

While the above definition in principle applies to arbitrary pointed structures,
the intended semantics will be, of course, in terms of structures based on frames
in Tω, and in what follows we will always restrict attention to such frames.

We define fragments LTL(O) of LTL by allowing in their syntax only a subset
O ⊆ {X,F<,F,U} of temporal operators. Note that LTL(U,X) has the same
expressive power as LTL, because Fϕ can be defined as >Uϕ and F<ϕ as X(>Uϕ).
The same holds of LTL(F<,X) and LTL(F<,X,F), as Fϕ can be defined as ϕ∨F<ϕ.
Nevertheless, it is known (see [93]), that ϕUψ can be defined neither in LTL(F)
nor in LTL(F<,X). Also Xϕ and F<ϕ can be defined neither in LTL(U) nor in
LTL(F) (we will see why later on in this chapter, once we introduce the notion of
stutter-invariance).

4.2.3 Linear Time µ-Calculus

A way of increasing the expressive power of temporal languages is to add a fixed-
point operator. On arbitrary structures, adding to LTL the least fixed-point
operator µ gives the µ-calculus (see for instance [46]). Here, the class of intended
structures for µ-calculus is restricted to those based on Tw and the resulting
restricted temporal language is called µTL (see for instance [92]). We also recall
here its syntax and semantics.

Definition 4.2.7 (µTL). Let σ be a propositional signature and V = {x1, x2, . . .}
a disjoint countably infinite stock of propositional variables. We define µTL[σ] as
the set of all formulas without free variables that are generated by the following
inductive definition:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | Fϕ | F<ϕ | ϕUψ | µxi.ξ

86 Chapter 4. Interpolation for Linear Temporal Languages

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within
the scope of an even number of negations). We will use ϕ → ψ as shorthand in
the usual way and νxi.ϕ(xi) as shorthand for ¬µxi.¬ϕ(¬xi). The relation |=µTL is
defined between µTL-formulas and pointed structures (T , V, w) where T ∈ Tω. In
order to define it inductively, we use an auxiliary assignment to interpret formulas
with free variables. The assignment g maps each free variable of ϕ to a set of
worlds. We let g[x 7→ A] be the assignment which differ from g only by assigning
A to x and we only recall:

• (T , V, w) |=µTL xi [g] iff w ∈ g(xi)

• (T , V, w) |=µTL µx.ϕ [g] iff ∀A ⊆ W , if {v | (T , V, v) |=µTL ϕ [g[x 7→ A]]} ⊆
A, then w ∈ A

It is easy to see that, for formulas without free variables, the assignment
is irrelevant, and therefore |=µTL defines a binary relation between (the set of
sentences of) µTL and pointed structures. In this way, µTL is an abstract modal
language in the sense of Definition 4.2.1.

As before, we define a fragment µTL(O) for each O ⊆ {X,F<,F,U}. µTL(X)
already as the full expressive power of TL, since ϕUψ can be defined by µy.(ψ ∨
(ϕ ∧ Xy)), F<ϕ by µy.(Xϕ ∨ Xy) and Fϕ by µy.(ϕ ∨ Xy). Another fragment of
particular interest will be µTL(U). In µTL(U), we can still define Fϕ in the usual
way by >Uϕ, but we will see that Xϕ and F<ϕ are not definable.

4.3 Projective Definability versus Definability

with Fixed-Points

In this section, we discuss two results that relate projective definability in lan-
guages without fixed-point operators to explicit definability in the corresponding
language with fixed-point operators. Along the way, we also show that µTL(U)
is the stutter-invariant fragment of µTL. These results will be put to use in
Section 4.4 and 4.5.

We first state a general result relating projective definability in LTL and de-
finability in µTL. It will be convenient to consider also definability in MSO and
definability by a Büchi automaton (for background on Büchi-automata and on
MSO, we refer to Chapter 2). In order to be fully precise, we first provide the
following definition:

Definition 4.3.1. Let σ = {p1, . . . , pn} be a propositional signature. We define
Σ = ℘(σ) as the corresponding alphabet over ω-words and σFO = {<,P1, . . . , Pn}
as the corresponding FO signature over Tω. Now let T = (D,<) ∈ Tfin with
D = {w0, w1, . . .} and wi < wi+1 for all i ≥ 0. Given a σ-structure (T , V, wj), we
define the corresponding ω-word (T , V)wj in signature Σ and the corresponding
relational structure (T , V)

wj
FO in signature σFO in the following way:

4.3. Projective Definability versus Definability with Fixed-Points 87

• let wVi = {p ∈ σ | wi ∈ V (p)}, we define (T , V)wj as the word wVj w
V
j+1 . . .

(i.e., wVj is the first letter of the word and for every i ≥ j, wVi+1 is the letter
immediately following wVi)

• (T , V)
wj
FO is the relational structure (Dwj , <wj , P

wj
1 , . . . , P

wj
n) in signature

σFO with

– a domain Dwj = {wi ∈ D | i ≥ j}
– a binary relation <wj=<� {wi ∈ D | i ≥ j} (i.e., <wj is the restriction

of the relation < to the points in D that are greater or equal in < to
wj)

– for every l ≥ 1, a unary relation P
wj
l = {wi | wi ∈ V (pl) and i ≥ j}

Now we can state the general result we are interested in.

Theorem 4.3.2. Let σ be a propositional signature. For any K ⊆ StrTω [σ], the
following are equivalent:

1. there is an MSO sentence ϕ in signature σFO such that

K = {(T , V, w) | (T , V)wFO |=MSO ϕ}

2. there is a Büchi automata A over the alphabet ℘(σ) such that

K = {(T , V, w) | (T , V)w is accepted by A}

3. K is a projective class of LTL(F<,X) relative to Tω

4. there is a µTL sentence ϕ such that

K = {(T , V, w) | (T , V, w) |=µTL ϕ}

Proof.

1⇒ 2 This is a known result (see [127]).

2⇒ 3 Let A = (Q,Σ = ℘(P1, . . . , Pm),∆, q0, Acc) be a Büchi automaton. As-
sume Q = {q0, . . . , qk} and let r1, . . . , rk be pairwise distinct propositional
letters not in σ. We will construct a LTL(F<,X)-formula which holds in a
σ ∪ {r0, . . . , rk}-structure (T , V, w) (with T ∈ Tω) if and only if (T , V �
σ)w is accepted by A. Given an ω-word (T , V � σ)w ∈ L(A) of the
form α(0)α(1) . . ., the sentence will state the existence of a successful run
ρ(0), ρ(1), . . . of A, i.e., with ρ(0) = q0 (ρ(i), α(i), ρ(i + 1)) ∈ ∆ for i ≥ 0,
and Inf(ρ) ∩ F = ∅. We introduced new propositional letters because we
can code such a state sequence by a tuple of propositional letters (r0, . . . , rk)

88 Chapter 4. Interpolation for Linear Temporal Languages

of pairwise disjoint subsets of {0, 1, . . .} such that ri contains those positions
of α(0)α(1) . . . where state qi is assumed. The automaton should be able
to reach a final state infinitely often. For every α ∈ ℘(P1, . . . , Pm) let α∗ be∧
pi∈α pi ∧

∧
pi /∈α ¬pi. Thus, A accepts the nonempty word (T , V � σ)≥w iff

(T , V, w) |= (r0 ∧
∧
i>0

¬ri)

(r0 contains the first position in w, i.e., r0 is true at the first node of w)

∧(
∧
i 6=j

¬F<(ri ∧ rj))

(all other ri positions are pairwise different, i.e., if ri contains a position in
w, then if i 6= j, rj does not contain this position)

∧(G<
∨

(qi,α,qj)∈∆

(ri ∧ α∗ ∧ Xrj))

(the next position is consistent with ∆)

∧
∨
qj∈F

G<F<rj

(some state in F occurs infinitely often)

3⇒ 1 Let K be projectively definable relative to Tω by a LTL(F<,X)-formula ϕ
in an extension σ′ of σ. Construct the standard translation of ϕ (this is a
FO formula in signature σ′, see Chapter 2) and call it ϕ∗. Now consider
p1, . . . , pn ∈ σ′\σ and replace uniformly in ϕ∗ the corresponding FO pred-
icates P1, . . . , Pn ∈ σ′FO\σFO by set variables X1, . . . , Xn. We obtain the
formula ϕ∗[X1/P1, . . . , Xn/Pn] that we can now prefix with existential set
quantifiers over X1, . . . , Xn. The obtained formula

∃X1 . . . ∃Xnϕ
∗[X1/P1, . . . , Xn/Pn]

is in signature σFO and has the desired property.

4⇔ 1 This is a known result (see [111] and [5]).

Below, we will show a similar theorem linking projective definability in LTL(U)
(which was shown in [116, 61] to be the stutter-invariant fragment of LTL) to
definability in µTL(U), which we show here to be the stutter-invariant fragment of
linear time µ-calculus. Before stating this second result, we first define stuttering.

4.3. Projective Definability versus Definability with Fixed-Points 89

Intuitively, a stuttering of a linearly ordered structure M is a structure obtained
from M by replacing each world by a non-empty finite sequence of worlds, all
satisfying the same proposition letters.

Definition 4.3.3 (Stuttering). Let σ be a propositional signature and M =
((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω [σ]. We say that M′ is a stut-
tering of M if and only if there is a surjective function s : W ′ → W such that

1. s(w′) = w

2. for every wi, wj ∈ W ′, wi < wj implies s(wi) ≤ s(wj)

3. for every wi ∈ W ′ and p ∈ σ,wi ∈ V ′(p) iff s(wi) ∈ V (p)

Some notation will be useful later on. For any w ∈ W , we let s−1(w) = {w′ ∈
W ′ | s(w′) = w}. We also extend s and s−1 to subsets of W ′ in the following
way: for any A′ ⊆ W ′, A ∈ W , we let s(A′) = {s(v′) | v′ ∈ A′} and s−1(A) =⋃
v∈A s

−1(v).

Lemma 4.3.4. Let M = ((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω [σ]
and M′ be a stuttering of M, then the following hold:

1. ∀v′ ∈ W ′,∀A′ ⊆ W ′ such that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′:

((W ′, <), V ′[A′/p], v′) is a stuttering of ((W,<), V [s(A′)/p], s(v′))

2. ∀v ∈ W,∀A ⊆ W,∀v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) is a stuttering of ((W,<), V [A/p], v)

Definition 4.3.5 (Stutter-Invariant Class of Pointed Structures). Let σ be a
propositional signature and K ⊆ StrTω [σ]. Then K is a stutter-invariant class
relative to Tω iff for every M ⊆ StrTω [σ] and for every stuttering M′ of M,
M ∈ K⇔M′ ∈ K.

Definition 4.3.6 (Stutter-free Pointed Structure). We say that a pointed struc-
ture M is stutter-free whenever for all M′ such that M is a stuttering of M′, M′

is isomorphic to M.

Only stutter-invariant classes of structures in StrTω [σ] are definable in LTL(U)
and µTL(U). This is known for LTL(U) (see [61, 116]), but it also holds for µTL(U).

Proposition 4.3.7. Let σ be a propositional signature. For every µTL(U)-sentence
ϕ in signature σ, Mod(ϕ) is stutter-invariant.

90 Chapter 4. Interpolation for Linear Temporal Languages

Proof. By induction on the sentence complexity. For the sake of the induction,
we can use expanded σ-structures as in classical model theory. Hence we consider
two base cases, one for propositional letters and one for propositional variables.
The propositional letter case is clear. We handle the propositional variable case
xi similarly, except that we use σ-models expanded with the value of xi (i.e.,
models considered together with a partial auxiliary valuation, so that xi can be
seen as a sentence). The induction hypothesis says that for any propositional
signature σ and µTL(U)-sentence ϕ of complexity n in signature σ, Mod(ϕ) is a
stutter-invariant invariant class. Now consider the case were ϕ is of complexity
n + 1. We handle the Boolean connectives and the U operator as in the LTL(U)
case. For the U case, suppose ϕ :≈ ψUξ. We want to show that for every
M = ((<,W), V, w) ⊆ StrT[σ] and for every stuttering M′ = ((<,W ′), V ′, w′) of
M:

M ∈ModσµLTL(U),T(ψUξ)⇔M′ ∈ModσµLTL(U),T(ψUξ)

⇒ Suppose ((W,<), V, w) |= ψUξ, i.e., there exists wi such that w = wi or w <
wi, ((W,<), V, wi) |= ξ and for all wj such that w < wj < wi, (T , V, wj) |=
ψ. Let wi be the first point such that (T , V, wi) |= ξ, then all points wj
before it are such that (T , V, wj) |= ψ. It follows from the definition of
stuttering that the minimal point s ∈ s−1(wj) is the first point such that
(T , V, s) |= ξ and all points s′ ∈ s−1(wj) (with wj before wi) are such that
(T , V, s′) |= ψ, i.e., ((W ′, <), V ′, w′) |= ψUξ.

⇐ The reasoning is similar.

Now for the fixed-point case, suppose ϕ :≈ µx.ψ(x). We want to show that for
every M ⊆ StrT[σ] and for every stuttering M′ of M:

M = ((<,W), V, w) ∈Mod(µx.ψ(x))⇔M′ = ((<,W ′), V ′, w′) ∈Mod(µx.ψ(x))

For the left to right direction, suppose ((W,<), V, w) |= µx.ψ(x), i.e., ∀A ⊆ W ,
if {v | ((W,<), V [A/p], v) |= ψ(p)} ⊆ A, then w ∈ A. Consider A′ ⊆ W ′

such that {v | ((W ′, <), V ′[A′/p], v) |= ψ(p)} ⊆ A′. We want to show that
w′ ∈ A′. Let us first show that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′. For every
v′ ∈ A′, we have that ((W ′, <), V ′[A′/p], v′) |= ψ(p). Now by induction hypothesis
for any v ∈ s−1(s(v′)), ((W ′, <), V ′[A′/p], v) |= ψ(p) and by hypothesis on A′,
v ∈ A′. It follows from this property of A′ that M′ being a stuttering of M,
by Lemma 4.3.4 for any v′ ∈ W ′, ((<,W ′), V ′[A′/p], v′) is also a stuttering of
((<,W), V [s(A′)/p], s(v′)) and by induction hypothesis:

((W ′, <), V ′[A′/p], v′) |= ψ(p) iff ((<,W), V [s(A′)/p], s(v′)) |= ψ(p)

Hence {v | ((W,<), V [s(A′)/p], v) |= ψ(p)} ⊆ s(A′). But M |= µx.ψ(x). It
follows that w ∈ S(A′), so s(w) ∈ A′, i.e., w′ ∈ A′.

4.3. Projective Definability versus Definability with Fixed-Points 91

Now for the right to left direction, suppose ((W ′, <), V ′, w′) |= µx.ψ(x), i.e.,
∀A′ ⊆ W ′, if {v | (W ′, <), V ′[A′/p], v |= ψ(p)} ⊆ A′, then w′ ∈ A′. Consider
A ⊆ W such that {v | (W,<), V [A/p], v |= ψ(p)} ⊆ A. We want to show
that w ∈ A. M′ being a stuttering of M, by Lemma 4.3.4, for any v ∈ W ,
v′ ∈ s−1(v), ((<,W ′), V ′[s−1(A)/p], v′) is also a stuttering of ((<,W), V [A/p], v)
and by induction hypothesis, for any v ∈ W, v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) |= ψ(p) iff ((W,<), V [A/p], v) |= ψ(p)

Hence {v | ((W ′, <), V ′[s−1(A)/p], v) |= ψ(p)} ⊆ s−1(A). But M′ |= µx.ψ(x). It
follows that w′ ∈ s−1(A), so s−1(w′) ⊆ A, i.e., w ∈ A.

Corollary 4.3.8. Let K ⊆ StrTω [σ] be stutter-invariant and let ϕ ∈ µTL(U)[σ]
be a sentence such that for each stutter-free M ∈ StrTω [σ], M |= ϕ if and only if
M ∈ K. Then ϕ defines K.

We now show that (over Tω) µTL(U) is the stutter-invariant fragment of µTL.
The proof is a variant of [116], where Peled and Wilke show that stutter-invariant
LTL properties are expressible without X. We give it in detail, as the construction
procedure below will be useful again later on in the chapter.

Lemma 4.3.9. Let σ be a modal vocabulary. For every µTL sentence ϕ in vo-
cabulary σ, there exists a µTL(U) sentence ϕ∗ in vocabulary σ that agrees with ϕ
on all stutter-free σ-structures over Tω:

M |= ϕ↔ ϕ∗ for all stutter free pointed structures M ∈ StrTω [σ]

Proof. Assume σ = {p0, . . . , pn−1}. The proof goes by induction on the structure
of ϕ. For convenience, we use expanded structures. The base case is clear: p∗ = p
for any propositional variable or letter p. Now as regards the induction step, we
can set (¬ψ)∗ = ¬ψ∗, (ψ ∧ ξ)∗ = ψ∗ ∧ τ ∗, (ψUξ)∗ = ψ∗Uξ∗, (µx.ψ)∗ = µx.ψ∗. If
ϕ is of the form Xψ, we let B be the set of all possible valuations σ → {⊥,>},
and for each g ∈ B, we let βg be the formula α0 ∧ . . . ∧ αn−1 where αj = pj if
g(pj) = > and αj = ¬pj if g(pj) = ⊥. Now observe that if g, g′ ∈ B are such that
g 6= g′, then

M, w |= βg ∧ Xβg′ ↔ βgUβg′ for M ∈ StrT[σ] stutter-free

We have M, w |= Xψ if and only if every point in it satisfies the same set of
proposition letters and M, w |= ψ, or the valuation function does not send the
same set of proposition letters to w and to its immediate successor w′ and M, w′ |=
ϕ. Thus we can set:

(Xψ)∗ =
∨
g∈G

((Gβg ∧ ψ∗) ∨
∨
g 6=g′

(βg ∧ βgU(βg′ ∧ ψ∗)))

92 Chapter 4. Interpolation for Linear Temporal Languages

Theorem 4.3.10. Let ϕ ∈ µTL[σ] be a sentence such that Modσ(ϕ) is stutter-
invariant. Then there exists ϕ∗ ∈ µTL(U)[σ] such that Modσ(ϕ) = Modσ(ϕ∗).

Proof. Follows from Lemma 4.3.9 and Corollary 4.3.8.

Following [61], we now introduce a variant of the notion of projective class,
that we call harmonious projective class, which preserves stutter-invariance. Be-
fore we define it, we first introduce the notion of a harmonious expansion. For
any propositional signature σ and worlds w,w′, we write w ≡σ w′ if w and w′

satisfy the same propositions in σ.

Definition 4.3.11 (Harmonious expansion). Let σ ⊆ τ be propositional signa-
tures and M ∈ StrTω [τ]. We say that M is a harmonious expansion of M � σ
whenever ∀w,w′ ∈ W such that w′ is a direct successor of w, w ≡σ w′ implies
w ≡τ w′.

Definition 4.3.12 (Harmonious projective class). Let σ be a propositional sig-
nature and K ⊆ StrTω [σ]. Then K is a harmonious projective class of a temporal
language L relative to Tω whenever there is ϕ ∈ L[τ] with τ ⊇ σ such that for
all M ∈ StrTω [σ]: M ∈ K iff there is a harmonious τ -expansion M+ of M such
that M+ |= ϕ.

We will be using the following proposition in order to show Theorem 4.3.14.
It refers to the notion of ω-regular language (cf. [127], an ω-regular language
is a language of ω-words which is definable in MSO or, equivalently, which is
recognizable by a Büchi automata). The proof of the proposition in [61] uses a
notion of stutter-invariant ω-automata.

Proposition 4.3.13 ([61]). On Tω, harmonious projective classes of LTL(U)
define exactly the stutter-invariant ω-regular languages.

Now we are able to show the following theorem:

Theorem 4.3.14. Let σ be a propositional signature. For any K ⊆ StrT[σ], the
following are equivalent:

1. K is a harmonious projective class of LTL(U) relative to Tω

2. K is definable by a µTL(U)-sentence ϕ relative to Tω

Proof. Follows from Theorem 4.3.2 and Proposition 4.3.13, because by [61, 116],
LTL(U) is the stutter-invariant fragment of LTL and by Theorem 5.2.9, µTL(U)
is the stutter-invariant fragment of µTL.

4.4. Temporal Languages with Craig Interpolation 93

4.4 Temporal Languages with Craig Interpola-

tion

In this section, we show that three of the temporal languages previously discussed
have Craig interpolation.

Definition 4.4.1 (Craig interpolation property). Let L be a temporal language
and T a frame class. Then L has the Craig interpolation property over T when-
ever the following holds. Let ϕ ∈ L[σ], ψ ∈ L[σ′]. Whenever ϕ |=L,T ψ, then
there exists θ ∈ L[σ ∩ σ′] such that ϕ |=L,T θ and θ |=L,T ψ.

They even satisfy a stronger form of interpolation called uniform interpolation.
Intuitively if a temporal language has uniform interpolation, it means that the
interpolant can be constructed so that it depends only on the signature of the
antecedent and its intersection with the signature of the consequent.

Definition 4.4.2 (Uniform Interpolation). Let L be a temporal language and
T a frame class. L has the uniform interpolation property over T if, for all
signatures σ ⊆ τ and for each formula ϕ ∈ L[τ] there is a formula θ ∈ L[σ] such
that ϕ |=L θ and for each formula ψ ∈ L[τ ′] with τ ∩ τ ′ ⊆ σ, if ϕ |=L ψ then
θ |=L ψ.

Theorem 4.4.3. µTL has uniform interpolation over Tω.

Proof. MSO has uniform interpolation (for monadic predicates) on any class of
structures (so in particular on Tω) because it has set quantifiers (see [45]). By
[111, 5], µTL is expressively complete for MSO. Hence µTL uniform interpolants
can always be obtained via translation into MSO and back.

Theorem 4.4.4. µTL(U) has uniform interpolation over Tω.

Proof. Let σ ⊆ τ be modal signatures and let ϕ ∈ µTL(U)[τ]. By Theorem 4.4.3,
there exists θ ∈ µTL[σ] such that ϕ |= θ and for each formula ψ ∈ µTL[τ ′] with
τ ∩τ ′ ⊆ σ, if ϕ |= ψ, then θ |= ψ. Now let θ∗ ∈ µTL(U) be the formula that agrees
with θ on all stutter-free structures based on Tω (by Lemma 4.3.9, such a formula
exists). We want to show that ϕ |= θ∗ and that for each formula ψ ∈ µTL(U)[τ ′]
with τ ∩ τ ′ ⊆ σ, if ϕ |= ψ, then θ∗ |= ψ. Let SMod(ϕ) denote the set of stutter
free structures in Mod(ϕ). As Mod(ϕ) ⊆ Mod(θ), SMod(ϕ) ⊆ SMod(θ). Now
by construction of θ∗ also SMod(ϕ) ⊆ SMod(θ∗). Mod(ϕ) and Mod(θ∗) are both
stutter-invariant classes. It follows from Corollary 4.3.8 that the closure under
stuttering of SMod(ϕ) is included in the closure under stuttering of SMod(θ∗),
i.e., Mod(ϕ) ⊆Mod(θ∗), i.e., ϕ |= θ∗. The argument for θ∗ |= ψ is similar.

Theorem 4.4.5. LTL(X) has uniform interpolation over Tω.

94 Chapter 4. Interpolation for Linear Temporal Languages

Proof. We will show something much stronger, namely that every projective class
of LTL(X) is definable by a LTL(X)-formula.
Let ϕ ∈ LTL(X)[σ ∪ τ] with τ = {p1, . . . , pl}. We will show how to construct a
formula ψ ∈ LTL(X)[σ] that defines the class of σ-reducts of models of ϕ.
We first show that for every σ ∪ τ -pointed structure M, w, there exists ϕS ∈
LTL(X)[σ] such that M, w |= ϕ if and only if M � σ |= ϕS and for every σ-
pointed structure N, v, N, v |= ϕS implies that there exists a σ ∪ τ -expansion
N+ of N such that N+, v |= ϕ. Let md(ϕ) = n be the modal depth of ϕ, i.e.,
the maximal nesting depth of X-operators in ϕ. Intuitively, ϕ can only talk
about the first n worlds in the pointed structure (starting from the designated
world w). For each pi, we can represent the valuation of pi in M at these n
first worlds by a set Si ⊆ {0, . . . , n}, where k ∈ Si represents that pi is true
at the k-th world starting from w. We denote by S = (S1, . . . , Sl) the ordered
sequence of all the Si. Now we define ϕS as follows: we replace each occurrence
of pi in ϕ that is in the scope of k ≤ n X-operators by > if k ∈ Si and ⊥
otherwise. We can now show by induction on md(ϕ) that for every σ ∪ τ -pointed
structure M, w, M, w |= ϕ iff M � σ,w |= ϕS and for every σ-pointed structure
N, v, N, v |= ϕS implies that there exists a σ ∪ τ -expansion N+ of N such that
N+, v |= ϕ. Whenever md(ϕ) = 0, then we are just in the propositional case
and the property immediately follows. Now assume the property holds for all
formulas ψ with md(ψ) = n and consider ϕ with md(ϕ) = n+ 1. ϕ is equivalent
to a Boolean combination of formulas which are either of modal depth ≤ n (and to
which the inductive hypothesis applies directly), or which are of the form Xξ with
md(ξ) = n. Let w′ be the first successor of w. For every such ξ, by induction
hypothesis M, w′ |= ξ iff M � σ,w′ |= ξS

′
and for every σ-pointed structure

N, v, N, v |= ξS
′

implies that there exists a σ ∪ τ -expansion N+ of N such that
N+, v |= ξ, where S ′ encodes the valuation of the proposition letters in τ at each
of the n first states starting from w′. By the semantics of the X-operator, it follows
that M, w |= Xξ iff M � σ,w |= X(ξS

′
). Also, assuming there is a state v′ in N

which is the immediate predecessor of v, N, v′ |= XξS
′

implies that there exists
a σ ∪ τ -expansion N+ of N such that N+, v′ |= Xξ. Now it is enough to remark
that X(ξS

′
) and (Xξ)S denote one and the same formula. Hence M, w |= Xξ iff

M � σ,w |= XξS and N, v′ |= XξS
′

iff N, v′ |= XξS. So the property also follows
for ϕ.
Finally, the number of proposition variables in τ being finite, we can quantify over
the finite number of all such possible valuations S and we let ψ =

∨
S ϕ

S. Assume
ψ holds in a pointed σ-structure M, w. Then for some S there is ϕS such that
M, w |= ϕS, i.e., M+, w |= ϕ where M+ is a σ∪ τ -expansion of M, w in which the
valuation of the pi’s is as described by S. Now assume M, w has a σ∪τ -expansion
satisfying ϕ. Then the valuation of the pi’s in the first n worlds after w can be
represented by some S and M, w |= ϕS, which yields M, w |= ψ. This means that
ψ holds in a pointed σ-structure M, w iff M, w has a σ ∪ τ -expansion satisfying
ϕ , i.e., ψ defines the class of σ-reducts of models of ϕ.

4.5. Interpolation Closure Results for Temporal Languages 95

4.5 Interpolation Closure Results for Temporal

Languages

In this section, we look at the fragments of LTL that do not have Craig interpo-
lation, and we address the question how much expressive power must be added
in order to regain interpolation. We will phrase our main results in terms of
the notion of interpolation closure, which we define by taking inspiration from
abstract model theory (see [12]):

Definition 4.5.1 (Interpolation Closure). Let T be a frame class. L2 is the in-
terpolation closure of L1 over T if L1 ⊆T L2, L2 has interpolation over T, and for
every abstract temporal language L3, if L1 ⊆ L3 and L3 has Craig interpolation
on T, then L2 ⊆T L3.

4.5.1 The Interpolation Closure of LTL(F<)

A useful tool (see [12]) for proving interpolation closure results is the following
lemma:

Definition 4.5.2 (∆-interpolation property). Let L be a temporal language and
T a frame class. Then L has the ∆-interpolation property over T whenever the
following holds: let σ be a propositional signature and K ⊆ StrT[σ], if both K
and K̄ are projective classes of L relative to T, there is a L-formula ϕ such that
K = ModσT(ϕ).

Lemma 4.5.3. Let L be a temporal language with Craig interpolation on Tω.
Then L has ∆-interpolation over Tω.

Lemma 4.5.4 (∆-interpolation follows from Craig interpolation). Let L be a
temporal language with Craig interpolation on some frame class T. Then L has
∆-interpolation over T.

Proof. Let K ⊆ StrT[σ] such that both K and StrT[σ]\K are projective classes
of L relative to T. We want to show that there is a ξ ∈ L[σ] such that K =
ModL,T(ξ).

Since K and StrT[σ]\K are projective classes, there are formulas ϕ ∈ L[σ ∪
τ] such that K = ModL,T(ϕ) � σ and ψ ∈ L[σ ∪ τ ′] such that StrF[σ]\K =
ModL,T(ψ) � σ. It follows that ϕ |=L,T ¬ψ. Without loss of generality, we can
assume that τ and τ ′ are disjoint. Indeed, suppose τ∩τ ′ = p (we consider only the
case where τ ∩ τ ′ contains one single propositional letter, as the other cases only
generalize this simpler one). Now, let q be a fresh propositional letter. By closure
under uniform substitution of L, for every T ∈ T and (T , V, w) ∈ StrT[σ∪ τ] the
following holds:

(T , V, w) |= ϕ[q/p] iff (T , V ′, w) |= ϕ

96 Chapter 4. Interpolation for Linear Temporal Languages

where V ′ extends V with V (q) = V (p). Hence K = ModL,T(ϕ) � σ and so
K = ModL,T(ϕ[q/p]) � σ and the intersection of the signatures of ϕ[q/p] and ψ
does not contain any propositional letter not in σ.

Since L has interpolation, there must be a θ ∈ L[σ] such that ϕ |=L,T θ and
θ |=L,T ¬ψ. As a last step, we will show that ModL,T(θ) = K.

Suppose M ∈ K. Then M = N � σ for some N ∈ModL,T(ϕ). Since ϕ |=L,T θ,
it follows that N |= θ. By the expansion property, M |= θ. Conversely, suppose
M /∈ K. Then M = N � σ for some N ∈ModL,T(ψ). Since θ |=L,T ¬ψ, it follows
that N 6|= θ. By the expansion property, M 6|= θ.

The proof of Lemma 4.5.3 given below is similar to the one given in [39] (we
only need to remark that the substitution property assumed here of abstract
temporal languages is stronger than the renaming property assumed in [39] of
abstract modal languages).

Now we will show that LTL(F<,X) is contained in the interpolation closure of
LTL(F<) over Tω. As an intermediate step, we show that in every extension of
LTL(F<) having Craig interpolation, the property Xp is “definable”. By this, we
mean the following:

Lemma 4.5.5. Let L be an extension of LTL(F<) with Craig-interpolation over
Tω. Then there is ξ ∈ L[{p}] such that Mod(ξ) = Mod(Xp).

Proof. Let q, r be new distinct propositional letters. Consider the two following
projective classes of LTL(F<): Mod(F<(p∧q)∧¬F<F<q) � {p} and Mod((F<(¬p∧
r)∧¬F<F<r)∨G<⊥) � {p}. As LTL(F<) ⊆ L, these two classes are also projective
classes of L (by Lemma 4.2.4). They also complement each other, as a {p}-
structure belongs to the first class exactly when the first node of this structure
has a successor node where p holds and it belongs to the second class in all other
cases. By ∆-interpolation for L on T, it follows that the first class is definable
in L by means of some formula ξ in signature {p}, i.e., there is ξ ∈ L[{p}] such
that Mod(Xp) = Mod(ξ).

Theorem 4.5.6. Every extension of LTL(F<) with Craig interpolation over Tω

is an extension of LTL(F<,X) over Tω.

Proof. Let L be an extension of LTL(F<) with Craig interpolation over Tω and σ
a propositional signature. We show by induction on the complexity of ϕ (number
of Boolean and temporal operators in ϕ) that for all ϕ ∈ LTL(F<,X)[σ], there
exists ϕ′ ∈ L[σ] such that Mod(ϕ) = Mod(ϕ′). The base case is clear. The
induction hypothesis says that for all σ, for all ϕ ∈ LTL(F<,X)[σ] of complexity
at most n, there exists ϕ′ ∈ L[σ] such that Mod(ϕ) = Mod(ϕ′). Now let ϕ be of
complexity n+1. If ϕ := Xψ, by induction hypothesis there exists ψ′ ∈ L[σ] such
that Mod(ψ) = Mod(ψ′). Pick any p /∈ σ. By Lemma 4.5.5 and the expansion
property we know:

4.5. Interpolation Closure Results for Temporal Languages 97

1. There is ξ ∈ L[σ ∪ {p}] such that Mod(Xp) = Mod(ξ).

We will define ϕ′ as ξ[p/ψ′] ∈ L[σ] (by closure under uniform substitution of L,
such a formula exists). We need to show that Mod(Xψ) = Mod(ξ[p/ψ′]). From
1 we can derive as a particular case:

2. For any (T , V, w) ∈ StrT[σ ∪ {p}] where V (p) = {wi | (F, V, wi) |= ψ′},
(T , V, w) |= ξ iff there exists w′ ∈ D such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= p.

Now by closure under uniform substitution of L, 2 is equivalent to the following:

3. For any (T , V, w) ∈ StrT[σ], (F, V, w) |= ξ[p/ψ′] iff there exists w′ ∈ D such
that w < w′, there is no w′′ such that w < w′′ < w′ and (F, V, w′) |= p[p/ψ′].

Finally, ψ′ and p[p/ψ′] holding exactly in the same models, we can replace p[p/ψ′]
by ψ′ in the second member of the equivalence in 3. It follows that Mod(Xψ) =
Mod(ξ[p/ψ′]). We can use similar arguments for the operator F< and for Boolean
connectives.

By putting Lemma 4.5.3 to use, we now improve Theorem 4.5.6 and identify
the interpolation closure of LTL(F<).

Theorem 4.5.7. µTL is the interpolation closure of LTL(F<,X) over Tω.

Proof. Let σ be a propositional signature. Now let K ⊆ StrTω [σ] be definable by
a µTL-sentence ϕ in signature σ. As µTL is closed under negation, there is a µTL-
sentence ¬ϕ in signature σ, which defines the complement of K over StrTω [σ]. It
follows by Theorem 4.3.2 that both K and its complement are projective classes
of LTL(F<,X). Now consider a temporal language L ⊇ LTL(F<,X) with Craig
interpolation over Tω. By Lemma 4.2.4, K and its complement are also projective
classes of L and by Lemma 4.5.3, it follows that K is definable in L.

4.5.2 The Interpolation Closure of LTL(F)

For the case of the stutter-invariant languages LTL(F) and LTL(U), we need to
refine the notion of ∆-interpolation, by considering harmonious projective classes.

Definition 4.5.8 (Harmonious ∆-interpolation property). Let L be a temporal
language. Then L has the harmonious ∆-interpolation property over Tω whenever
the following holds. Let K be a class of L-structures based on Tω. If both K and
K̄ are harmonious projective classes of L relative to Tω, there is a L-formula ϕ
such that K = ModTω(ϕ).

Lemma 4.5.9. If L1 ⊆ L2, then every harmonious projective class of L1 is also
a harmonious projective class of L2.

98 Chapter 4. Interpolation for Linear Temporal Languages

Definition 4.5.10 (Harmonious temporal language). A temporal language L
is harmonious for Tω if the following holds. For every σ ⊆ τ propositional
signatures, there is a formula ϕ ∈ L[τ] such that for every M ∈ StrTω [τ], M |= ϕ
if and only if M is an harmonious expansion of M � σ.

Proposition 4.5.11. LTL(U) and its extensions are harmonious for Tω.

Proof. Fix σ ⊆ τ with |σ| = n, |τ\σ| = m. We can represent any valuation over
σ by a finite conjunction of atoms and negations of atoms. Let {σi | i ∈ 2n} be
the set of all such conjunctions. Also, for each σi, we define the corresponding set
{τ ij | j ∈ 2m} as the set of conjunctions representing all possible ways of extending
to τ the valuation represented by σi. Now for every M ∈ StrT[τ],

M |=
∧
i,j∈2n

(σiUσj →
∨

k,l∈2m

τ ikUτ
j
l)

if and and only if M is an harmonious expansion of M � σ, i.e., LTL(U) is har-
monious. It is immediate from definition 4.2.2 that every extension of a temporal
language which is harmonious for Tω is also harmonious for Tω.

Lemma 4.5.12. Let L be a temporal language which has Craig interpolation and
is harmonious for Tω. Then L has harmonious ∆-interpolation over Tω.

Proof. L being harmonious, we can use the formula ϕ in Definition 4.5.10 and
appeal for the proof of Lemma 4.5.12 to the same classical argument as for Lemma
4.5.3. Let K ⊆ Str[σ] such that both K and StrT[σ]\K are harmonious projective
classes of L relative to T. Then there is ϕ ∈ FmlL[τ] with τ ⊇ σ such that for
all M ∈ StrT[τ], M � σ ∈ K iff M |= ϕ and M is an harmonious expansion of
M � σ. Also there is ψ ∈ FmlL[τ ′] with τ ′ ⊇ σ such that for all M ∈ StrT[τ ′],
M � σ ∈ K iff M |= ψ and M is an harmonious expansion of M � σ. As L is
harmonious for T, it follows that there is ξ such that ϕ ∧ ξ |=L,T ¬(ψ ∧ ξ). The
remaining of the proof is as in Theorem 4.5.3.

Theorem 4.5.13. Every extension of LTL(F) with Craig interpolation over Tω

is an extension of LTL(U) over Tω.

Proof. The reasoning is similar as in the case of Lemma 4.5.6 and Theorem 4.5.6,
but we consider Mod(pUq) = Mod(G(Fr → r)∧F(q∧r)∧G((r∧¬q)→ p)) � {p, q}
and Mod(¬pUq) = Mod(Fq → (F(¬p ∧ r) ∧ G(Fr → ¬q))) � {p, q}.

Theorem 4.5.14. µTL(U) is the interpolation closure of LTL(U) over Tω.

Proof. Let σ be a modal signature. Now let K ⊆ StrTω [σ] be definable by a
µTL(U)-sentence ϕ in signature σ. As µTL(U) is closed under negation, there is a
µTL(U)-sentence ¬ϕ in signature σ, which defines the complement K̄ ⊆ StrTω [σ]
of K over StrTω [σ]. By Theorem 4.3.14, both K and K̄ are harmonious projective

4.6. Finite Linear Orders 99

classes of LTL(U). Now consider a temporal language L ⊇ LTL(U) with Craig
interpolation over T. By Lemma 4.5.9, K and K̄ are also harmonious projective
classes of L. By Proposition 4.5.11, L is harmonious and by Lemma 4.5.12, it
follows that K is definable in L, i.e., L ⊇ µTL(U).

4.6 Finite Linear Orders

We restricted our attention to the frame class Tω, but our results easily extend
to finite linear orders. Let Tfin be the class of frames (D,<) where D is a finite
set and < is a strict linear order on D. All the definitions and results that we
gave relative to Tω also apply to Tfin. An analogous of Theorem 4.3.2 for Tfin can
be obtained by considering automata on finite words. The proof of Proposition
4.3.13 can similarly be adapted by considering stutter-invariant automata on finite
words. In the proof of Lemma 4.3.9, we can define (Xψ)∗ as

∨
g 6=g′(βgU(βg′ ∧ψ∗))

(i.e., we keep only the second disjoint, as no finite stutter free linear order exhibits
two successor points satisfying the same set of proposition letters). The remaining
of our arguments do not need any further adjustment.

4.7 Conclusion

In this chapter, we studied the temporal fragments of linear time µ-calculus sat-
isfying Craig interpolation, showing essentially that there are only three distinct
such fragments: µTL itself, µTL(U), and LTL(X). These results reconfirm the ro-
bustness of (linear time) µ-calculus as compared to less expressive temporal logics.
They also allow to identify µTL(U) as a particularly well-behaved linear-time logic
which does not seem to have been studied before. In particular, complete axiom-
atizations were already known for µTL and LTL(X) (see Chapter 2), but this was
not the case for µTL(U). In the next Chapter, we will study this logic further by
providing such a complete axiomatization.

We are currently working on extending our interpolation results to other flows
of time such as finite trees, infinite trees, and infinite linear orders other than
the natural numbers (as in [34]). There are some important differences in these
settings. For example, it is known (see [3]) that the branching time temporal
logic with only Since and Until has Craig interpolation, while linear time fails to
have this property. Also there is still no definitive consensus on the appropriate
notion of stuttering for infinite branching time (see [81]). Finally, let us note that
whether Propositional Dynamic Logic PDL (see [26]), which can be defined as a
semantic fragment of the µ-calculus, satisfies some form of interpolation is still
an open problem. It would be worth trying to obtain at least partial results for
PDL on finite trees by using our methods.

