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We use the bond fluctuation model �BFM� to study the pore-blockade times of a translocating
polymer of length N in two dimensions, in the absence of external forces on the polymer �i.e.,
unbiased translocation� and hydrodynamic interactions �i.e., the polymer is a Rouse polymer�,
through a narrow pore. Earlier studies using the BFM concluded that the pore-blockade time scales
with polymer length as �d�N�, with �=1+2�, whereas some recent studies using different polymer
models produce results consistent with �=2+�, originally predicted by us. Here � is the Flory
exponent of the polymer; �=0.75 in 2D. In this paper we show that for the BFM if the simulations
are extended to longer polymers, the purported scaling �d�N1+2� ceases to hold. We characterize the
finite-size effects, and study the mobility of individual monomers in the BFM. In particular, we find
that in the BFM, in the vicinity of the pore the individual monomeric mobilities are heavily
suppressed in the direction perpendicular to the membrane. After a modification of the BFM which
counters this suppression �but possibly introduces other artifacts in the dynamics�, the apparent
exponent � increases significantly. Our conclusion is that BFM simulations do not rule out our
theoretical prediction for unbiased translocation, namely, �=2+�. © 2010 American Institute of
Physics. �doi:10.1063/1.3281641�

I. INTRODUCTION

For polymer translocation through narrow pores in mem-
branes, the scaling behavior of pore-blockade times with the
length of linear polymers has been a topic of intense research
in recent times. Such interest in polymer translocation has
been fueled by its obvious biological context, i.e., molecular
transport through cell membranes, which is an essential
mechanism in living organisms. Often, the molecules are too
long, and the pores in the membranes too narrow, to allow
the molecules to pass through as a single collapsed unit. In
such circumstances, the molecules have to deform them-
selves in order to squeeze—i.e., translocate—through the
pores. Parallely, the urge to understand the dynamics of
translocation also stems from the fact that new developments
in design and fabrication of nanometer-sized pores and etch-
ing methods, in recent times, have put translocation at the
forefront of single-molecule experiments, with the hope that
translocation may lead to cheaper and faster technology for
the analysis of biomolecules.

Although significant progress has been made in the last
few years in the field of both theory and simulations of poly-
mer translocation, consensus among different research
groups on the scaling behavior of the characteristic time �d

that the polymer spends in the pore, with the length N of a
linear polymer, characterized by an exponent �
���log��d�� /��log�N��, has generally remained elusive. Of
the three main translocation situations studied theoretically

or by computer simulations, namely, �i� unbiased transloca-
tion, wherein the polymer translocates purely due to thermal
fluctuations, �ii� field-driven translocation, wherein translo-
cation is driven by a potential difference across the pore, and
�iii� pulled translocation, wherein translocation is facilitated
by a pulling force at the head of the polymer; unbiased trans-
location is by far the most fiercely debated topic.

From a statistical physics perspective, the translocation
problem can be seen as a kind of a tunneling process over an
entropic barrier. This entropic barrier arises because the
number of states available to the polymer is significantly
decreased by the presence of the membrane. For a polymer
of length N, the number of states in the bulk scales as
Zb�N��A�NN�−1 in which � is a universal exponent—�
=49 /32 and ��1.16 in two and three dimensions
respectively—while A and � are not universal. The corre-
sponding number of states for the same polymer, but whose
end is tethered to the membrane, is approximated by Zw�N�
�A1�NN�1−1 in which the parameter � is not affected by the
introduction of the membrane, �1 is a different universal
exponent—�1=61 /64 and �1�0.68 in two and three dimen-
sions, respectively—while A1 is again not universal. Con-
sider the translocating polymer, for which there are n mono-
mers on one side and �N−n� monomers on the other. Since
this situation can be seen as two strands of polymers with
one end �of each strand� tethered on the membrane, the num-
ber of states for this polymer is given by Zw�n�Zw�N−n�,
which attains a minimum when n=N /2. The effective en-
tropic barrier faced by a translocating polymer is thusa�Electronic mail: d.panja@uva.nl.
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�S = log� Zb�N�
Zw�N/2�2	 = c log�N� + k , �1�

with c=�−2�1+1 and k=log�A�−2 log�A1�+2��1

−1�log�2�.
In 2001, Chuang et al.1 established that the then existing

mean-field type descriptions based on the Fokker–Planck
equation for first passage over this entropic barrier2–4 are
unsuitable for describing unbiased translocation. In the ab-
sence of explicit hydrodynamics, i.e., for a Rouse polymer,
Chuang et al.1 argued that the pore-blockade time �or the
dwell time� �d cannot be less than the Rouse time, which
scales as �R�N1+2�. Based on simulations in two dimensions
�2D� using the bond fluctuation model �BFM�, with N=128
or less, they further concluded that the ratio of the dwell and
Rouse times is approximately constant, suggesting that �
=1+2� as well. As it later turned out, the paper by Chuang et
al. initiated a flurry of theoretical and simulation works on
unbiased translocation.

For a number of years following the work by Chuang et
al.,1 several simulation studies reported the exponent for the
pore-blockade time for unbiased translocation both in 2D
and three dimensions �3D� to be consistent with 1+2�
�which in 2D equals 2.5, and �2.18 in 3D� for a Rouse
polymer.5–7 Some of these studies characterized the anoma-
lous dynamics of unbiased translocation as well: having de-
noted the monomer number at the pore by s�t� at time t, the
mean-square displacement of the monomers 
�s2�t�� through
the pore in time t was found to scale �t� with �=2 / �1
+2��, satisfying the obvious requirement 
�s2��d��=N2.
Over the last couple of years however, several other studies
on unbiased translocation have been performed for a Rouse
polymer, whose scaling results for � and � differ from 1
+2� and 2 / �1+2��, respectively. In 2007 and 2008, using a
theoretical approach based on polymer’s memory effects,
aided by simulations with a highly efficient lattice polymer
model �developed by ourselves�, we showed that for a Rouse
polymer 
�s2�t��� t�1+��/�1+2�� �i.e., �= �1+�� / �1+2��� up to
the Rouse time �R, and thereafter 
�s2�t��� t �i.e., �=1� as
no memory in the polymer survive beyond the Rouse time;
consequently, the exponent for the pore-blockade time is
given by �=2+�, i.e., �2.588 in 3D8,9 and 2.75 in 2D.10 In
the presence of hydrodynamics, i.e., for a Zimm polymer,

�s2�t�� was predicted to behave �t�1+��/�3�� up to the Zimm
time �Z�N3�, and thereafter 
�s2�t��� t; leading to the ex-
pectation that �d should scale as N1+2�.8,9 �We showed that
the fact that �=1+2� for a Zimm polymer has nothing to do
with Rouse dynamics. It is in fact a pure coincidence that
this exponent is the same as the Rouse exponent, as ex-
plained in Refs. 8 and 9� We showed that these memory
effects stem from the polymer’s local strain relaxation in the
neighborhood of the pore.8–11

Recent numerical results, using completely different
polymer models from ours, obtained by Dubbeldam et al.12

and by Gauthier and Slater,13 agree very well with �=2+�
for a Rouse polymer. For a Zimm polymer, Gauthier and
Slater,13 and further works by Guillouzic and Slater,14 and by
Gauthier and Slater15 reported �=1+2�; these are consistent
with our scaling prediction,8,9 but we note that Ref. 13 re-

ports this result using an approach which differs from ours.
Thus, while the two contenders for � have emerged to be �a�
1+2� for a Rouse polymer, originally proposed by Chuang
et al.,1 and �b� 2+� for a Rouse and 1+2� for a Zimm
polymer, originally predicted by us,8–10 the publication of
two recent papers5,16 that reassert their authors’ earlier result
�=1+2� for unbiased translocation for a Rouse polymer in-
dicates that the debate is not yet settled.

Before proceeding further, for the benefit of the readers,
in Table I we summarize all the results on the exponent for
the pore-blockade time for unbiased translocation known to
us to date. Given that our theoretical arguments for �=2+�
for unbiased translocation of Rouse polymers are seemingly
at odds with a number of simulations, reporting exponents
much closer to �=1+2�, we decided to redo the latter simu-
lations. It is impossible for us to analyze in detail each and
every model that has been used to produce �=1+2� for a
Rouse polymer; nevertheless, having seen that the BFM has
been frequently used to obtain this result, we prompt our-
selves to revisit unbiased translocation in 2D for a Rouse
polymer, using exactly the same details of the BFM used by
Chuang et al.1

First, we extend the range of polymer lengths studied,
from N�256 1,5,16 up to N=1000. While the reported behav-
ior for N�256 1,5,16 is that the function f�N���d /N1+2� is
constant within numerical accuracy, our simulations with
longer polymers reveal f�N� to be a monotonically decreas-
ing quantity with increasing N, with a rate of decrease for
f�N� increasing with N. The conclusion is that the reported
constant behavior of f�N� corresponds to an effective expo-
nent of ��1+2�, which does not hold for long polymers.

Second, for the BFM, having established the above for
�d, we set out to quantify the finite-size effects in various
basic equilibrium quantities that play a role in the dynamics
of translocation. These are �i� the equilibrium end-to-end dis-
tance, �ii� the �equilibrium� entropic spring constant, and �iii�
the longest correlation time for a tethered polymer at equi-
librium as a function of their length. We find, for the BFM,
that the finite-size effects for �i� are negligible �data not
shown in this paper�, but the finite-size effects for �ii� and
�iii� are severe. Once these finite-size effects are taken into
account, the polymer’s memory effects for the BFM are con-
sistent with those we found in Refs. 8 and 9, which originally
reported �=2+�.

Third, and quite remarkably, these finite-size effects still
do not explain the peculiar behavior of f�N� for the BFM. We
therefore also study a dynamic quantity, namely, the mobility
of individual monomers in the BFM, as a function of mono-
mer number and direction. Especially for the monomers in
the vicinity of the pore, this dynamic quantity shows highly
anomalous behavior. We find that when this behavior is cor-
rected toward how one expects the monomers to behave in
the neighborhood of the pore, the exponent for the pore-
blockade time increases toward 2+�. We therefore conclude
that the BFM is a fine model for polymer dynamics in gen-
eral, but does not handle situations very well where the poly-
mer is constrained to pass through a narrow pore. Our analy-
sis also implies that for those polymer models that assert �
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=1+2�, one needs to thoroughly investigate their finite-size
effects and dynamical peculiarities, if such an assertion is to
prove meaningful.

The organization of this paper as follows. In Sec. II we
briefly discuss the BFM, and the details of the used BFM
variant in this paper. In Sec. III we study finite-size effects in
the BFM for several equilibrium properties. In Sec. IV we
study with the BFM the quantity f�N�=�d /N1+2�, and find
that it is a monotonically decreasing quantity with increasing
N, such that the rate of decrease for f�N� increases with
increasing N; this result implies that the reported exponent
�=1+2� for Rouse polymers is an effective exponent, which
does not hold in the limit N→	, contrary to the conclusions
of Refs. 1, 5, 16, and 17. In Sec. IV we also show that we do
not find �=2 / �1+2�� �=0.8 in 2D�, while we do find a dif-
fusive regime for the anomalous dynamics of translocation,
contrary to the claims of Ref. 5. In Sec. IV A we demonstrate
that once the finite-size effects in various basic quantities for
the BFM are taken into account, the polymer’s memory ef-
fects for the BFM do not rule out those we found in Refs. 8
and 9, which originally reported �=2+�. In Sec. VI we trace
the peculiarities of the BFM to the anomalous behavior of
the mobility of individual monomers in the neighborhood of
the pore. We conclude the paper in Sec. VII.

All throughout this paper, following the convention of
the existing literature, we denote the monomer number lo-
cated in the pore at time t by s�t�.

II. THE BOND FLUCTUATION MODEL „BFM…

The two-dimensional BFM, introduced by Carmesin and
Kremer in 1988,18 is a very frequently used model for the
simulation of polymer dynamics. In the original form of the
model, each monomer occupies four �2
2� lattice sites of a
square lattice; thus two monomers are always separated by at
least a distance of two lattice spacings. Monomers adjacent
in the polymer are connected by bonds with lengths between
2 and �13. The original model is illustrated for a polymer
through a membrane of thickness two lattice sites in Fig. 1,
with monomer 4 residing within the pore that is three lattice
sites wide.

As mentioned already, in this paper we use exactly the
same model as that of Ref. 1, which is a variation on the
original BFM due to Carmesin and Kremer. Its details are as
follows. Hydrodynamic interactions are not considered in
this model. The N monomers of the polymer reside on a
square lattice. Excluded volume interactions are imple-
mented by forbidding two monomers to be closer than two
lattice units, while the sequential connectivity of the mono-
mers are maintained by requiring the separation between the

TABLE I. Summary of all the results on the exponent for the pore-blockade time for unbiased translocation
known to us at the time of writing this paper. Abbreviations used: MD �molecular dynamics�, FENE �Finite
Extension Nonlinear Elastic�.

Authors � �2D, Rouse� � �2D, Zimm� � �3D, Rouse� � �3D, Zimm�

Chuang et al.a 1+2�=2.5 �BFM� ¯ ¯ ¯

Luo et al.b 2.50�0.01 �BFM� ¯ ¯ ¯

Huopaniemi et al.c 2.48�0.07
�FENE MD�

¯ ¯ ¯

Wei et al.d 2.51�0.03
�bead-spring MD�

¯ 2.2
�bead-spring MD�

¯

Chatelain et al.e 2.5 �BFM� ¯ ¯ ¯

Luo et al.f 2.44�0.03
�GROMACS�

¯

¯

2.22�0.06
�GROMACS�

¯

¯

Panja et al.g,h
¯ ¯ 2+��2.588 1+2��2.18

Panja et al.i 2+�=2.75 1+2�=2.5 ¯ ¯

Dubbeldam et al.j ¯ ¯ 2.52�0.04
�FENE�

¯

Gauthier et al.k ¯ ¯ 2+� 1+2�

Guillouzic et al.l ¯ ¯ ¯ 2.27 �MD�

Gauthier et al.m ¯ ¯ ¯ 11 /5=2.2 �MD�

aReference 1.
bReference 5.
cReference 6.
dReference 7.
eReference 16.
fReference 17.
gReference 8.

hReference 9.
iReference 10.
jReference 12.
kReference 13.
lReference 14.
mReference 15.
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adjacent monomers of the polymer to be less than or equal to
�10 lattice units. This choice of the minimal and the maxi-
mal distances ensures that the polymer never intersects itself.
The dynamics of the model is implemented by Monte Carlo
�MC� moves. An elementary move consists of an attempt to
move a randomly selected monomer by one lattice spacing in
an arbitrarily chosen direction. If the new configuration is
permitted, the move is accepted; otherwise, the move is re-
jected. The unit of time in this model is defined by N at-
tempted MC moves for the entire polymer. We choose a box
size of 10N
10N; and the membrane, with a thickness of
two lattice units, divides the box into two equal chambers of
size 10N
5N, with the pore of width three lattice units ex-
actly at the center of the box. The tight size of the pore
ensures that the monomer s residing within the pore is
uniquely defined at any time. For each realization, we first
tether the polymer halfway at the pore, with N /2 monomers
on each side of the membrane, and equilibrate it for times
typically �100N1+2�. We then remove the tether at time t
=0 and wait till the polymer disengages from the pore. The
averages are obtained over an ensemble of such realizations:
we use 16 384 realizations for N1000 and 2048 realiza-
tions for N=1000. We define the mean time �u that the poly-
mer takes to disengage from the pore to either side of the
membrane as the characteristic unthreading time for the
polymer. For unbiased translocation, the scaling of the un-
threading time with polymer length is the same as that of �d.9

III. EQUILIBRIUM PROPERTIES FOR THE BFM

Two main ingredients for the derivation of �=2+� for a
Rouse polymer, as predicted by us,8–10 are the following
well-known properties of Rouse polymers. For a polymer of
length N with one end tethered on a membrane, �i� the in-
verse entropic spring constant should scale as N2�,19 and �ii�

the equilibrium correlation function for the tether-to-end vec-
tor must scale as N1+2�. We now check for both properties.

A. Entropic spring constant of the polymer

With the polymer threaded halfway at the pore, i.e., ef-
fectively for a polymer of length N /2 with one end tethered
on the membrane, we denote the distance of the free ends of
the polymer from the pore by Re, and then the inverse of the
spring constant of the polymer is �R2= 
Re

2�− 
Re�2,19 where
the angular brackets denote the average over the equilibrium
ensemble—equilibrium is achieved by applying a million
pivot moves to each realization upon tethering one end of the
polymer on the membrane. For long polymers the inverse
entropic spring constant R2 should scale as N2�. Since this
quantity is an equilibrium property, we combined the usual
single-monomer moves of the BFM with pivot moves, in
which rotations of the polymer tails by �90° around a ran-
domly selected monomer are attempted and accepted if the
resulting configuration is valid. With pivot moves, care has
to be taken that not only overlapping monomers cause rejec-
tion; also attempted moves to other configurations, which are
not accessible via a sequence of the usual single-monomer
moves, should be rejected. Because of the fast decorrelation
of the combined algorithm, accurate measurements could be
obtained. The finite-size effects in the scaling of R2 are
shown in Table II.

B. Equilibrium correlation function
for the tether-to-end vector for the BFM

Similarly, for a polymer of length N /2 with one end
tethered on the membrane, we denote the vector distance of
the free end of the polymer with respect to the tethered end at
time t by e�t�, and define the correlation function for the
tether-to-end vector as

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

0

1

32

4

5

6

7

8

FIG. 1. The original BFM in 2D, due to Carmesin and Kremer �Ref. 18�,
illustrated for a polymer translocating through a membrane thickness of two
lattice sites thickness, with monomer 4 residing within the pore that is three
lattice sites wide. Monomers reside on a square lattice. Adjacent monomers
are connected by a bond, which can only take lengths of 2, �5, 2�2, 3, �10,
or �13. The excluded area around each monomer consists of 2
2 lattice
sites. The particular choice for the values allowed to the bond length, in
combination with the size of the excluded area, suffices to avoid the crossing
of bonds. In simulations of translocation, the membrane is represented as a
line with a thickness of two sites, with a pore of three lattice sites wide. The
dynamics of the polymer consists of single-monomer hops to nearest-
neighbor lattice sites, restricted by the constraints on bond length and ex-
cluded volume.

TABLE II. Scaling of the inverse entropic spring constant R2 of the poly-
mer, data averaged over 107 realizations, which are separated by one pivot
move and N BFM moves; this corresponds roughly to a million statistically
independent measurements. The systematic trend as shown in fifth column
demonstrates the strong finite-size effects in the BFM.

N 
Re� 
Re
2� R2 R2 / �N /2�2�

20 13.60 197.8 12.90 0.408
30 18.39 363.7 25.40 0.437
40 22.81 560.9 40.74 0.455
50 26.92 783.2 58.66 0.469
60 30.83 1029.5 78.83 0.480
80 38.20 1583.7 124.5 0.492

100 45.13 2213.5 176.9 0.500
150 61.01 4056.3 334.5 0.515
200 75.67 6247.0 520.3 0.520
300 102.4 11 455 969.4 0.528
500 149.9 24 584 2108 0.533
700 193.0 40 751 3513 0.537

1000 252.2 69 616 6018 0.538
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c�t� =

e�t� · e�0�� − 
e�t�� · 
e�0��

�
e2�t� − 
e�t��2�
e2�0� − 
e�0��2�
. �2�

The angular brackets in Eq. �2� denote averaging in equilib-
rium. Here equilibrium means that with one end tethered on
the membrane the polymer is thermalized for times
�100N1+2�. The quantity c�t� is plotted in Fig. 2 for several
values of N�256, in linear as well as in semilog plots. The
lack of collapse in Fig. 2, together with the data of Table I,
demonstrates that the finite-size effects in this model are
severe.

IV. ASYMPTOTIC SCALING OF �d AND ANOMALOUS
DYNAMICS OF UNBIASED TRANSLOCATION
IN THE BFM

A. In the BFM the scaling �dÈN1+2� does not hold
asymptotically

Having shown that the finite-size effects of the BFM are
significant at least up to lengths of a few hundred monomers,
below in Table III we present the results of the mean un-
threading time �u over a wide range of values of N. From
Table III we find that for the BFM the quantity f�N�
=�d /N1+2� is a monotonically decreasing quantity with in-

creasing N, such that the rate of decrease for f�N� increases
with increasing N. Having noted that for the BFM, the con-
clusion that �=1+2� has been based on simulation data for
N�256,1,5,16,17 the finite-size effects in this model as dem-
onstrated in Sec. III and the data of Table III imply that there
is no convincing numerical evidence that the exponent �
approaches the value 1+2� in the thermodynamic limit �N
→	�, contrary to the conclusions of Refs. 1, 5, 16, and 17.
Rather, it is an effective exponent, approximately valid over a
finite range of polymer lengths. It is worthwhile to mention
here that in contrast to the behavior of � obtained from the
BFM, our result �=2+� for a Rouse polymer has been
checked for N up to 500,8,9 and up to 1000 �Ref. 20� in our
lattice polymer model, and we have shown that in our model
the finite-size effects become undetectable beyond N=150.9

B. Anomalous dynamics of unbiased translocation
in the BFM

Next we focus on the anomalous dynamics of unbiased
translocation in the BFM. The standard way to study the
anomalous dynamics is to plot 
�s2�t�� as a function of t, as
discussed in Sec. I; however, it comes with the following
disadvantage. With the initial condition s�t=0�=N /2, �s is
undefined once the polymer disengages from the pore, and as
a result, 
�s2�t�� saturates in time fairly quickly.16 To avoid
such saturation effects, we study the anomalous dynamics of
translocation in a somewhat nonstandard form. We calculate
the mean first passage time 
t�s� of arrival at a monomeric
distance �s�s�t�−N /2. Thus, in each simulation, starting
with s=N /2 at t=0, we keep track of the first arrival times
t�s for all values of �s=1. . .N /2. In this manner, at no point
in time the data suffer from saturation problems. The idea
behind obtaining t�s as a function of �s is actually motivated
by the observation that �u is the mean first passage time for
�s=N /2.

To verify whether the purported scaling 
�s2�t��� t�

with �=2 / �1+2�� 1,5,16 holds, we plot �s2 / 
t�s�0.8 in Fig. 3
as a function of 
t�s� �left panel: log-linear, right panel: log-
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FIG. 2. Plot of the correlation function c�t� for different values of N: linear scale �left panel� and semilog scale �right panel�, with �=0.75 in 2D. The lack of
collapse demonstrates the presence of strong finite-size effects in the dynamical properties of polymers in BFM. The N=256 data correspond well to
c�N=256��t��exp�−t / �5.8
106��. Data averaged over 16 384 independent realizations.

TABLE III. Mean unthreading time over 2048 runs for each value of N.

N �u ��N�=�u /N1+2�

16 �3.53�0.06�
104 34.5�0.6
24 �1.01�0.02�
105 35.6�0.6
32 �2.04�0.04�
105 35.1�0.6
46 �4.96�0.09�
105 34.6�0.6
64 �1.10�0.02�
106 33.7�0.6
90 �2.56�0.04�
106 33.3�0.6
128 �6.1�0.1�
106 33.2�0.6
180 �1.44�0.02�
107 33.1�0.6
256 �3.38�0.06�
107 32.2�0.6
500 �1.73�0.03�
108 31.0�0.6

1000 �8.79�0.01�
108 27.9�0.4
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log�. The data should then be constant so long as the polymer
remains threaded within the pore, since 1+2�=0.8 in 2D.
However, as Fig. 3 demonstrates, we do not find any evi-
dence for �=2 / �1+2��=0.8; the lowest value of � we find is
0.84 �dashed line in the right panel of Fig. 3�, which slowly
crosses over to diffusive behavior at long times �contradict-
ing the report of Ref. 5, where, based on 
�s2�t�� data till t
�103, it has been concluded that there is no diffusive regime
for the dynamics of unbiased translocation�. In this context,
note that close to �s=N /2, the effective exponent � ex-
ceeds 1, as it should be, since close to the end, an entropic
driving force takes over, giving rise to a non-negligible ve-
locity of translocation. The diffusive behavior is illustrated in
the right panel of Fig. 3 for N=256; the existence of the
diffusive regime is expected to show beyond the autocorre-
lation time, which for a polymer of length N=256 equals
�c�5.8
106 �see Fig. 2�, but well below the unthreading
time �u

�N=256��3.8
107. Also note here that ��0.8 is con-
sistent with the observation that f�N�=�u /N1+2� is a mono-
tonically decreasing function of N, as shown in Table III.

V. POLYMER’S MEMORY EFFECTS: THE
THEORY
OF TRANSLOCATION AND THE BFM

In Refs. 8 and 9 we presented the theory of translocation,
based on the polymer’s memory effects. We now demon-
strate that once these finite-size effects are taken into ac-
count, the polymer’s memory effects for the BFM are con-
sistent with that theory.

The theory we presented in Refs. 8 and 9 is as follows.
Translocation takes place via the exchange of monomers
through the pore. This exchange responds to ��t�, the differ-
ence in chain tension perpendicular to the membrane; simul-
taneously, ��t� adjusts to v�t�= ṡ�t�, the transport velocity of
monomers across the pore, as well. In the presence of

memory effects, ��t� and v�t� are related to each other by
��t�=�0

t dt���t− t��v�t�� via the memory kernel ��t�. This re-
lation can be inverted to obtain v�t�=�0

t dt�a�t− t����t��. The
uniqueness of the relation between ��t� and v�t� implies that
in the Laplace transform language, ��k�=a−1�k�, where k is
the Laplace variable representing inverse time. Additionally,
via the fluctuation-dissipation theorem, ��t− t�� and a�t− t��
are expressed as

��t − t�� = 
��t���t���v=0; a�t − t�� = 
v�t�v�t����=0.

�3�

In Refs. 8 and 9 we showed that the polymer’s memory
kernel is given by ��t�� t−�1+��/�1+2�� exp�−t /�R�, in which �R

is the Rouse time; this result, together with Eq. �3� yields
�d�N2+�. The derivation for the exponent �1+�� / �1+2�� of
the power law relies on three scaling relations for an equili-
brated polymer of length n with one end tethered to a mem-
brane: �i� the real-space distance between the free and the
tethered end scales as n�, �ii� its entropic spring constant
scales as n−2�, and �iii� its longest correlation time scales as
n1+2�. For the BFM, �i� holds for n not so large, but since the
scalings �ii� and �iii� suffer from severe finite-size effects �as
reported in Secs. III A and III B�, we expect the t−�1+��/�1+2��

behavior of the power law in ��t� to only manifest itself at
long times. Note that “long times” here refers to times long
compared to unity, but short in comparison to the longest
relaxation time of the polymer; this implies that ��t�
� t−�1+��/�1+2�� can only be observed when the polymer is
long. Indeed, we demonstrate this below in Fig. 4, by mea-
suring ��t− t��= 
��t���t���v=0 for the BFM for a polymer
with length N=1000, where we used the perpendicular-to-
the-membrane distance Z4 of the center-of-mass of the first
four monomers �counting from the pore� as a proxy for the
chain tension.21 More precisely, we tether the middle mono-
mer of the polymer in the pore �this corresponds to v=0�,
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FIG. 3. Plots of �s2 / 
t�s�0.8 as a function of 
t�s� with �s=5,10,15, . . . ,N /2: semilog �left panel� and log-log �right panel�. The numbers in the parentheses
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to diffusive regime �for �s close to N /2, because of entropic reasons, ��1�; at a contrast to this, �=0.86 has been reported in Ref. 16 all throughout;
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and obtain good statistics for 
��t���t��� over a total simu-
lation time of 4
1010 attempted moves per monomer. As
can be seen in Fig. 4�a�, ��t�= 
��t���0��v=0 does not show a
memory exponent 0.8. Moreover, given that we expect a be-
havior ��t�� t−�1+��/�1+2��= t−0.7 8,9 for the BFM in 2D, Fig.
4�b� shows that ��t� can be fitted with a combination of
power-laws �t−0.7 and �t−1.05 �see figure caption for details�.
The fact that the data can be fitted with this combination of
power laws does not constitute compelling evidence for
��t�� t−0.7; other exponents within a range of �0.1 can be
fitted as well, with suitably chosen power-law corrections.
The main point is, however, that our theoretically expected
behavior ��t�� t−0.7 cannot be ruled out from these numeri-
cal data.

VI. ANOMALOUS MONOMERIC MOBILITY
FOR THE BFM IN AND NEAR THE PORE

So far we have discussed the finite-size effects in several
basic equilibrium quantities for the BFM, and that the poly-
mer’s memory effects in the BFM do not rule out our theory
of translocation that originally yielded �d�N2+� by relating
the polymer’s anomalous dynamics to its memory kernel; yet
the asymptotic scaling behavior of �d with N for the BFM is
unknown at present. �It is the severity of the finite-size ef-
fects that makes scaling conclusions in relation to unbiased
translocation for N�256 particularly meaningless.� The an-
swer to this conundrum lies in the dynamical peculiarity of
the BFM, in particular how the BFM behaves dynamically
�i.e., when v�t�= ṡ�t�=0� to the introduction of an obstacle,
which, in the case at hand is the membrane with a narrow
pore. To this end, we sample many polymer states �drawn
from the equilibrium distribution�, in which the polymer is
tethered halfway through the pore with a width of two lattice
spacings. For each of these states, for each monomer, we
determine the individual monomeric mobilities. Since the
orientation of the membrane breaks rotational symmetry, we
separately keep track of the moves parallel and perpendicular

to the membrane. The mobility of a monomer, parallel or
perpendicular to the membrane, is defined by the acceptance
probability of the corresponding MC move.

The individual monomeric mobilities for the BFM are
shown in Fig. 5, for N=100 �with the 50th monomer tethered
in the pore�. On the one hand, the monomer located in the
pore shows no mobility in the direction parallel to the mem-
brane; this is to be expected, since sideways mobility of this
monomer is forbidden due to the steric hindrance of the
membrane. However, immediately outside the pore, the mo-
bility of the monomers parallel to the membrane is strongly
enhanced before it settles to a value �0.44 further away
from the pore. On the other hand, the perpendicular-to-the-
membrane mobilities of the threaded monomer and a few
�two or three� of its nearest monomers are strongly hindered.
Such anomalous behavior of the near-the-pore mobilities
arises in the BFM since the presence of the membrane results
in the stretching of the polymer around the pore, introducing
an enhanced likelihood of maximally stretched bonds, which
reduce the perpendicular-to-the-membrane mobilities of the
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threaded monomer and a few of its nearest monomers. The
tendency of frozen mobility perpendicular to the membrane
is peculiar for the specific types of moves allowed in the
BFM �we have also checked that this continues to hold for
longer polymers in the BFM, data not shown here�. For in-
stance, we verified that if a collective move of two neighbor-
ing monomers in the same direction is added to the dynam-
ics, this tendency of frozen mobility is removed to a large
extent. Note that in other models, as well as in experiment,
reduced mobility �“friction”� in the pore can have various
natural causes; although this can postpone the onset of scal-
ing, it is not expected to change scaling exponents in the
thermodynamic �long-chain� limit. It is noteworthy to men-
tion here that in our lattice polymer model, in the neighbor-
hood of the pore, the monomeric mobilities parallel to the
membrane are reduced, while the perpendicular-to-the-
membrane mobilities are marginally enhanced �not shown
here�.

From a theoretical point of view, in the limit of long
polymers, either enhanced or reduced dynamics in the near
vicinity of the pore—especially if there are only two or three
monomers around the pore that suffer from anomalous mo-
bility problems �as in Fig. 5�—should not change scaling
exponents. However, such a statement is clearly not true for
the BFM, as we demonstrate below that by enhancing the
monomeric mobilities within a radius of five lattice sites
around the pore �roughly twice the average bond length�, one
can significantly change the apparent exponent �, toward our
predicted theoretical value �1+�� / �1+2��=0.7. It is indeed
remarkable that enhancing the mobilities of typically two or
three monomers around the pore changes the apparent expo-
nent � significantly for the BFM, even for fairly long poly-
mers.

A. A modified BFM with enhanced monomeric
mobilities around the pore

To investigate how much the anomalous mobility of the
monomers around the pore in the BFM influences the dy-
namics of translocation, we perform simulations of the BFM

in which all moves within a radius of five lattice sites around
the pore are boosted by a �more or less arbitrary� factor of 4.
More precisely, all moves for all monomers located within a
distance of five lattice sites from the pore, either before or
after the move, are attempted four times more often than the
other moves. Note that this does not violate detailed balance;
for every move that is oversampled, the reverse move is also
oversampled. The choice for these values in this modified
BFM is both motivated by the data of Fig. 5, i.e., �i� in the
original BFM model, typically only two or three monomers
around the monomer that resides in the pore at any time
suffer from reduced mobility and �ii� the factor of 4 is cer-
tainly enough to overcome even the reduced mobility of the
monomer in the pore in the perpendicular-to-the-membrane
direction, which for N=100 is approximately a factor of 2.5
smaller than that of the monomer far away from the pore,
and increases only slightly with polymer length. The unit of
time in this modified model is still defined by one attempted
MC moves per monomer far away from the membrane.

Figure 6 shows the anomalous dynamics of
translocation—analogous to Fig. 3—in this modified BFM;
as can be seen therein, the apparent exponent � has signifi-
cantly decreased �from 0.84 in Fig. 3 to 0.765 in Fig. 6�,
toward the theoretical prediction �1+�� / �1+2��=0.7. The
corresponding apparent exponent ��2.6 up to N=380 �data
not shown�, larger than 1+2�=2.5, but smaller than 2+�
=2.75.

Additionally, for this modified BFM, we confirm that the
memory kernel ��t− t��= 
��t���t���v=0 exhibits t−�1+��/�1+2��

behavior as well. This is shown in Fig. 7 for a polymer with
length N=1000, where we also compare the data of Fig. 4.
As can be seen in Fig. 7, the onset of the t−�1+��/�1+2��= t−0.7

takes place at t�1000 for both models.
Note that the modification we made for mobilities of the

monomers in the modified BFM is by no means what we can
claim to be an exact compensation for the around-the-pore
anomalous monomeric mobilities in the BFM, as seen in Fig.
5. Rather, the introduction of this modified model should be
seen as an attempt to understand whether such anomalous
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mobilities can account for the deviations from the expected
values of �, namely, 2+�=2.75, albeit the polymer’s
memory effects in the BFM confirm our theory of transloca-
tion that originally yielded �d�N2+� by relating the poly-
mer’s anomalous dynamics to its memory kernel. The re-
markable fact that for the BFM, enhancing the mobilities of
typically two monomers around the pore changes the appar-
ent exponent �, even for fairly long polymers, combined
with the fact that the memory kernel equals ��t− t��
= 
��t���t���v=0��t− t��−�1+��/�1+2�� at long times leads us to
conclude that the anomalous mobilities of the monomers
around the pore—peculiarities of the BFM—are indeed re-
sponsible for the deviations from our expected value of �,
i.e., 2+�. We thus conclude that the BFM is not a convenient
model for cases where the polymer is constrained to pass
through a narrow pore.

VII. CONCLUSION AND OUTLOOK

In conclusion, in this paper we study unbiased polymer
translocation in two dimensions, with the BFM, in the ab-
sence of external forces on the polymer �i.e., unbiased trans-
location� and hydrodynamical interactions �i.e., the polymer
is a Rouse polymer�. While it has long been established that
the pore-blockade time �d, the characteristic time the poly-
mer spends in the pore, asymptotically scales with the poly-
mer length as N� for some �, earlier studies of unbiased
polymer translocation, using the BFM, concluded that �=1
+2�, whereas a variety of other models produce results con-
sistent with �=N2+�, originally predicted by us. Here � is the
Flory exponent of the polymer; �=0.75 in 2D. We find that
for the BFM the quantity f�N�=�d /N1+2� is a monotonically
decreasing quantity with increasing N, such that the rate of
decrease for f�N� increases with increasing N. Having noted
that with the BFM, the conclusion that �=1+2� has been
based on simulation data for N�256, we further show in this
paper that �i� the BFM suffers from strong finite-size effects
for N�256, and that �ii� f�N� decreases steeply for N
�256, the conclusion that �=1+2�—in the usual sense of
critical phenomena for polymers in the limit N→	—is
meaningless. We trace the peculiarities of the BFM to the
anomalously low mobility of two or three monomers in the

near vicinity of the pore, in the direction perpendicular to the
membrane. We find that if the mobility of these monomers is
enhanced, the exponent for the pore-blockade time increases
toward 2+�. We conclude that, although the BFM is a fine
model for polymer dynamics in general, it is not in situations
where the polymer is constrained to pass through a narrow
pore. Our analysis also implies that for those polymer mod-
els that assert �=1+2�, one needs to thoroughly investigate
their finite-size effects and dynamical peculiarities, if such an
assertion is to be proved meaningful.

A related issue regarding the use of the BFM for trans-
locating polymers does still remain, and that is the case of
field-driven translocation in two dimensions. For this situa-
tion, translocation is driven by a potential difference across
the pore. �All results quoted below are for Rouse polymers.�
First of all, using the same memory effects as in unbiased
translocation, in Ref. 23 we argued that in 3D, the pore-
blockade time exponent is �1+2�� / �1+���1.37, and cor-
roborated this result with extensive simulations; this result
has now been verified with completely different polymer
models.24,25 Further, in Ref. 10, we argued that for field-
driven translocation in 2D, because of energy conservation,
the pore-blockade time exponent has a lower bound 2�
=1.5: for any field strength, a polymer length exists above
which the Rouse friction prevents the transport of monomers
from keeping up with the speed of translocation dictated by
the memory effects. The exponent �1+2�� / �1+�� is there-
fore not observed for field-driven translocation in 2D. We
also showed, numerically, using our lattice polymer model
that in 2D the pore-blockade time exponent indeed turns out
to be the same as its lower bound 2�,10 which is in agreement
with those obtained by the use of the BFM by two separate
research groups,26,27 who used N up to 600 and 256, respec-
tively. However, a third group, which also used the BFM,
claimed the pore-blockade time exponent for field-driven
translocation in 2D to be consistent with 2� for N up to 300,
and 1+� for N�300,6,28 which is clearly at odds with the
results of Refs. 10, 26, and 27. If indeed the BFM finds the
pore-blockade time exponent to be 1+�, then the anomalous
mobilities of the monomers around the pore, together with
the finite-size effects, may explain why the exponent 2�
=1.5 is not observed in the BFM for field-driven transloca-
tion in two dimensions.
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