
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Efficiently extract recurring tree fragments from large treebanks

Sangati, F.; Zuidema, W.; Bod, R.

Publication date
2010
Document Version
Final published version
Published in
Proceedings of the 7th international conference on Language Resources and Evaluation
(LREC'10)

Link to publication

Citation for published version (APA):
Sangati, F., Zuidema, W., & Bod, R. (2010). Efficiently extract recurring tree fragments from
large treebanks. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M.
Rosner, & D. Tapias (Eds.), Proceedings of the 7th international conference on Language
Resources and Evaluation (LREC'10) (pp. 219-226). European Language Resources
Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2010/summaries/613.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:08 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/efficiently-extract-recurring-tree-fragments-from-large-treebanks(6671c501-e491-442e-a342-acab9bedc75b).html
http://www.lrec-conf.org/proceedings/lrec2010/summaries/613.html

Efficiently extract recurring tree fragments from large treebanks

Federico Sangati, Willem Zuidema, Rens Bod

Institute for Logic, Language and Computation, University of Amsterdam
Science Park 904, 1098 XH Amsterdam, The Netherlands

{f.sangati, zuidema, rens.bod}@uva.nl

Abstract
In this paper we describe FragmentSeeker, a tool which is capable to identify all those tree constructions which are recurring multiple
times in a large Phrase Structure treebank. The tool is based on an efficient kernel-based dynamic algorithm, which compares every pair
of trees of a given treebank and computes the list of fragments which they both share. We describe two different notions of fragments we
will use, i.e. standard and partial fragments, and provide the implementation details on how to extract them from a syntactically annotated
corpus. We have tested our system on the Penn Wall Street Journal treebank for which we present quantitative and qualitative analysis
on the obtained recurring structures, as well as provide empirical time performance. Finally we propose possible ways our tool could
contribute to different research fields related to corpus analysis and processing, such as parsing, corpus statistics, annotation guidance,
and automatic detection of argument structure.

1. Introduction
In many current linguistic theories, language users produce
and understand sentences without necessarily decomposing
them to just ‘words’ and ‘rules’; rather, multi-word units
may function as the elementary building blocks (Goldberg,
1995; Kay and Fillmore, 1997; Tomasello, 2000). An im-
portant question for computational linguistics is whether it
can contribute to identifying such building blocks using sta-
tistical regularities in large corpora (Culicover and Nowak,
2003; Dennis, 2003; Zuidema, 2006).
A natural assumption in such work is to consider a con-
struction linguistically relevant if there is some empirical
evidence about its reusability in a representative corpus of
examples. This assumption is at the base of several algo-
rithms in the Data-Oriented-Parsing (DOP) tradition (Bod,
1992; Bod, 2001; Zuidema, 2007) and other approaches
based on Tree Substitution Grammars (TSG) (Cohn et al.,
2009; O’Donnell et al., 2009). These methods collect a
large number of linguistic constructions, viz. tree frag-
ments, from a syntactically annotated corpus, in order to
parse novel sentences. However, the set of all possible frag-
ments occurring in a big corpus is prohibitively large: it
grows exponentially in the size of the treebank trees. Many
of the existing approaches are therefore forced to work with
a restricted portion of this set, usually a random sample.
Moreover, as we will show in section 4.1., the majority of
these constructions occur only once in the training corpus,
and have little chance to be reused in novel sentences.
So then, how could we extract only those fragments which
are reused in the data? In this paper we describe a solu-
tion to this challenge. We present FragmentSeeker1, a tool
which serves to extract all recurring maximal fragments2,
together with their frequencies, from a Phrase Structure
(PS) treebank. The tool compares every pair of trees of
a given treebank, and computes the list of all maximal frag-
ments which are present in both.

1The tool is publicly available at http://staff.science.
uva.nl/~fsangati

2All the maximal fragments which occur at least twice in the
corpus. For a definition of maximal fragments, see section 2.

The tool is based on an efficient kernel-based algorithm,
which is conceptually similar to previously proposed meth-
ods using this technique (Collins and Duffy, 2001; Mos-
chitti, 2006). The main difference, however, is that, while
in previous work kernels are mainly used to numerically
quantify the similarity between two trees, in the current
project we are interested in identifying the actual construc-
tions they share, i.e. the maximal fragments.
In section 2. we will describe two different notions of frag-
ments which we will use, section 3. will give the details
about the implementation, and section 4. will present a case
study on the Penn Wall Street Journal (WSJ) treebank (Mar-
cus et al., 1993). Finally section 5. will explain how this
methodology could contribute to different research fields
related to corpus analysis and processing.

2. Fragments and Partial Fragments
There are two types of constructions that we will focus on.
The first one, which we will refer to as fragment, is in line
with previous work on DOP and TSG. Given a PS tree of a
sentence, a fragment extracted from it is a connected subset
of nodes, in which every node has either the same daughters
as in the original tree, or none.
The second type, which we will call partial fragment, is
less restrictive, in the sense that it can include any con-
nected subset of nodes of the original tree. This means
that for every selected node of a tree structure, any num-
ber of its original daughters can be discarded. This types
of fragments are particularly interesting if we want to find
regularities in flat constructions that present a big number
of daughters, e.g. distinguishing the arguments from the
adjuncts in a verbal phrase (see also section 5.2.).
Figure 1 shows an example of parsetree, while figure 2 re-
ports one of its fragments (left) and one of its partial frag-
ments (right).
An other notion that we will use in this paper is the one
of shared maximal (partial) fragment. A (partial) fragment
τ shared between to trees is maximal if there is no other
shared (partial) fragment starting with the same node as in
τ and including all its nodes.

219

S

NP-SBJ

NNS

"Analysts"

VP

VBP

"say"

SBAR

S

NP-SBJ

NNP

"USAir"

VP

VBZ

"has"

NP

JJ

"great"

NN

"promise"

.

"."

Figure 1: Example of a parsetree taken from the WSJ.

VP

VBP

"say"

SBAR

S

NP-SBJ VP

VP

VBP

"say"

SBAR

S

VP

Figure 2: Example of a fragments (left) belonging to the
tree structure of figure 1, and one of its partial fragments
(right). In the fragment, all nodes preserve the same num-
ber of daughters as in the original tree, besides the terminal
nodes NP-SBJ and VP. In the partial fragment the daughter
NP-SBJ of S has been discarded.

3. Implementation Details
In order to extract the fragments and partial fragments
which occur at least twice in a given treebank, we com-
pare every pair of trees in the corpus and extract from it
all shared maximal (partial) fragments. We employ a ker-
nel method technique previously used in Natural Language
Processing (Collins and Duffy, 2001; Moschitti, 2006) to
compare the similarity between a pair of trees. While in
previous work, the result of the algorithm corresponds to
the number of (partial) fragments shared between the two
structure, in our implementation we want to keep track of
the actual (partial) fragments which are shared.
Algorithm 1 reports the pseudocode of the procedure to ex-
tract all maximal fragments and partial fragments from a
treebank. For every pair of trees (ti,tj) in the corpus, and
every pair of nodes (Ni,Nj) between the two structures, al-
gorithm 2 and algorithm 3 are called.

3.1. Maximal Fragments
Algorithm 2 is used to identify the single maximal fragment
in common between two PS structures starting at nodes
(Ni,Nj). The result is empty in case Ni and N j differ in
their labels, it contains only Ni if the labels are equal but

Algorithm: ExtractFragments(T)
Input: a corpus T of PS trees
Output: a set of fragments and partial fragments
begin
FragList: a set of fragments;
PartFragList: a set of partial fragments;
foreach tree ti ∈ T do

foreach tree tj ∈ T where Ti 6= T j do
foreach node Ni ∈ ti do

foreach node Nj ∈ tj do
FragList.addAll(
ExtractMaxFragmenta(Ni,Nj));

PartFragList.addAll(
ExtractMaxPartialFragments(Ni,Nj));

return {FragList,PartFragList};
end

Algorithm 1: Pseudocode of the algorithm used for ex-
tracting the list of recurring maximal fragments, and maxi-
mal partial fragments from a corpus of PS trees.

Algorithm: ExtractMaxFragmenta(Ni,Nj)
Input: two PS nodes (Ni,Nj)
Output: a set of nodes representing the maximal fragment

rooted in Ni and Nj
begin

if Ni 6= Nj then return {};
NodeSet←{Ni};
if Ni.daughters = Nj.daughters then

for d ∈ (1,2, . . . ,Ni.daughters.size) do
Di← Ni[d];
Dj← Nj[d];
NodeSetD← ExtractMaxFragmenta(Di,Dj);
NodeSet.union(NodeSetD);

return NodeSet;
end

Algorithm 2: Pseudocode of the algorithm used for ex-
tracting the maximal fragments rooted in two nodes of two
different PS trees.

their sequences of daughters differ, and it is constituted by
multiple nodes if both root labels and daughter sequences
coincide. In this last case the result is computed recursively
by calling the same function on the pairs of daughters of the
two initial nodes occupying the same position.
The time complexity of algorithm 1, when we only extract
fragments (and not partial fragments), is O(n2 ·m2) where
n is the size of the treebank and m the number of nodes in
the biggest tree of the corpus. In terms of space the number
of maximal fragments which are extracted for every pair of
trees is in the worst case m2. In our implementation we
make use of bitset structures to efficiently represent frag-
ments and perform set operations on them.

220

Algorithm: ExtractMaxPartialFragments(Ni,Nj)
Input: two PS nodes (Ni,Nj)
Output: a set of partial fragments rooted in Ni and Nj
begin

if Ni 6= Nj then return {};
MappingsSet← MaxSetMappings(Ni,Nj,0,0,true);
if MappingsSet = {} then return {{Ni}};
PartFragSet: a set of partial fragments;
foreach Mapping ∈ MappingsSet do
MaxPartialFragmentPairs: an array of sets of

partial fragments (array size = # pairs in Mapping);
i← 0;
foreach Pair ∈ Mapping do
N1← Pair.first;
N2← Pair.second;
MaxPartialFragmentPairs[i]←
ExtractMaxPartialFragments(N1,N2);

i++;
foreach way of choosing one set for every element

in the array MaxPartialFragmentPairs do
NodeSet← union between the chosen sets ;
NodeSet.union(Ni);
PartFragSet.add(NodeSet);

return PartFragSet;
end

Algorithm 3: Pseudocode of the algorithm used for ex-
tracting the maximal partial fragments rooted in two nodes
of two different PS trees.

3.2. Maximal Partial Fragments
Algorithm 3 is used to extract the maximal partial frag-
ments shared between two PS structures starting at nodes
(Ni,Nj). The main difference with respect to the previous
case is that while there is at most one maximal shared frag-
ment starting at a specific pair of nodes of two structures,
there might be multiple possible maximal partial fragments
in common. In fact, the two nodes might share multiple
subsequences of daughters (mappings), but even if they
have in common a single subsequence, every pair of cor-
responding daughters might have in turn multiple subse-
quences of daughters in common. In this last case every
way of choosing a possible tree continuation leads to a dif-
ferent shared maximal partial fragment3.
At the beginning of algorithm 3 we compute the Maxi-
mal Set of Mappings (MSM) between the two sequences
of daughters of the two nodes. This step is performed
by algorithm 4, which is a dynamic algorithm similar to
the one computing the Longest Common Subsequence be-
tween two strings (Atallah and Fox, 1998) and the one
which finds All Common Subsequences (Wang and Lin,

3This might cause a combinatorial explosion of partial frag-
ments. In our experiments on the WSJ treebank, we found only
very few cases where the number of combinations was hard to
handle computationally. To solve this issue we have set an upper
bound on the number of combinations (1000 by default).

Algorithm: MaxSetMappings(Ni,Nj,x,y,firstCall)
Input: two PS nodes (Ni,Nj), 2 indexes (x,y) indicating

the cell position in the chart table, and a boolean
variable (firstCall) specifying whether this is
the first time the method is being called ;

Output: a set of maximal mapping between the daughters
of Ni and Nj

begin
Mappings: a set of mappings (list of pairs of daughters);
startX← firstCall ? x : x+1 ;
startY← firstCall ? y : y+1 ;
endX← Ni.daughters.size−1;
endY← Nj.daughters.size−1;
startXExists← startX < Ni.daughters.size;
startYExists← startY < Nj.daughters.size;
while startXExists∨startYExists do

if startXExists then
foreach cellY ∈ {endY, . . . ,startY+1} do

if Ni[startX] = Nj[cellY] then
endY← cellY;
subMappings← MaxSetMappings(Ni,Nj,
startX,cellY,false);

if ¬firstCall then add pair (Ni[startX],
Nj[cellY]) in every mapping of subMappings ;

Mappings.addAll(subMappings)

if startYExists then
foreach cellX ∈ {endX, . . . ,startX+1} do

if Ni[cellX] = Nj[startY] then
endX← cellX;
subMappings← MaxSetMappings(Ni,Nj,
cellX,startY,false);

if ¬firstCall then add pair (Ni[cellX],
Nj[startY]) in every mapping of

subMappings ;
Mappings.addAll(subMappings)

if startXExists∧startYExists∧
Ni[startX] = Nj[startY] then
subMappings← MaxSetMappings(Ni,Nj,
startX,startY,false);

if ¬firstCall then add pair (Ni[startX],
Nj[startY]) in every mapping of subMappings ;

Mappings.addAll(subMappings);
BREAK (while);

if startX+1≤ endX then startX++;
else startXExists← false ;
if startY+1≤ endY then startY++;
else startYExists← false ;

return Mappings;
end

Algorithm 4: Pseudocode of the algorithm used for finding
the maximal mappings between the daughters of two PS
nodes.

221

8 3

3 2 1 1

1 1 1 1

A
0

B
1

B
2

A
3

B
4

B
5

A
0

B
1

B
2

Figure 3: Example of the chart table of algorithm 4, when
comparing two nodes P and Q whose set of daughters is
{A,B,B,A,B,B} and {A,B,B} respectively. The number in
every cell ci, j corresponds to the total number of maximal
mappings starting with the pair {P[i],Q[j]}. The total num-
ber of maximal mappings in this example is 11: 8 starting
with the pair {A[0],A[0]} and 3 with the pair {A[3],A[0]}
(see footnote 6). The arrows indicate the sub-mappings
contributing to each mapping.

2007). In order to illustrate algorithm 4, figure 3 shows
the chart table storing the intermediate results when com-
paring two nodes P and Q whose sequences of daughters
are {A0,B1,B2,A3,B4,B5} and {A0,B1,B2} respectively4.
A mapping between the two sequences of daughters is a
list of pairs of indexes (p0,q0),(p1,q1), . . . ,(pm,qm) such
that P[p0],P[p1], . . . ,P[pm] is a subsequence of daughters
of P obtained by removing zero or more elements (analo-
gously for Q)5. A set of mappings is said to be maximal
if no mapping in the set is contained in an other mapping.
In this example there are in total 11 maximal mappings in
MSM(P,Q)6.
The time complexity of algorithm 4 is O(d4) where d is
the maximum number of daughters in the two nodes be-
ing analyzed, but the space complexity is exponential in the
worse case7. In our experiments, we encounter only very
few cases when the computation of the MSM becomes in-
tractable8.

4The subscript figures are used as placeholders to help distin-
guishing nodes with the same labels but differing in positions.

5This means that the relative positions of the daughters of P
and Q is always preserved, and the pairs in a mapping never cross.

6 MSM(P,Q) = {{(3,0),(4,2)},{(3,0),(5,1)},
{(3,0),(4,1),(5,2)},{(0,0),(1,2)},{(0,0),(5,1)},
{(0,0),(4,1),(5,2)},{(0,0),(2,1),(5,2)},{(0,0),(2,1),(4,2)},
{(0,0),(1,1),(5,2)},{(0,0),(1,1),(4,2)},{(0,0),(1,1),(2,2)}}.

7For instance if the two sequences of daughters are
{A0,A1, . . . ,An} and {A0,A1, . . . ,Am}, with n ≥ m, the number
of mappings is n!/((n−m)! ·m!)

8These are cases where for instance, a coordinated structure
with a big number of conjuncts is paired with a similar but not
identical structure. In order to prevent this problem from hap-
pening, we generate an approximate solution when the number of
MSM, is greater than a specified limit (1000 in the default set-
tings). The approximate solution which is used when the number

3.3. Exact Frequencies
In order to compute the frequencies with which the ex-
tracted (partial) fragments occur in the treebank, our al-
gorithm keeps track of the frequency of each encountered
shared (partial) fragment. The final count is a very close
approximation9 of the correct one, which nevertheless can
be exactly computed by iterating over the tree structures
in the corpus, and counting the total number of times each
(partial) fragment is present.

4. A case study on the Penn WSJ
In this section we describe some statistics derived from test-
ing FragmentSeeker on the Penn WSJ corpus (Marcus et
al., 1993). We have restricted the treebank to the 39,832
structures of sections 02-21 (which are typically used as
training sections for parsing results), and removed all null
productions and traces from the original structures.

4.1. Fragments statistics
Figure 4 reports some statistics on the set of all maximal
fragments which are extracted from the treebank. The total
number of extracted fragments types is 527,217 (6,179,059
tokens), and their distribution with respect to their depths,
reported on the graph of the same figure, shows that frag-
ments of depth 3 and 4 are the most abundant recurring
fragments in the corpus.
Figure 5 shows the distribution of the total number of frag-
ments tokens which are present in the same treebank, with
respect to their depths and maximum arities. The maximum
arity of a fragment corresponds to the maximum number of
daughters of the most prolific node. This variable seems to
be a primary factor to affect the number of subtrees present
in a tree structure.
The total number of fragments without any restriction in
depth and arity, is estimated to be 8.7 ·1046. It follows that
the portion of fragment tokens which are recurring in the
treebank (shown in the red-colored area in the same graph),
is an infinitesimal fraction of all possible fragments10. This
means that a random uniform sample over the total set of
fragments will be likely to miss most if not all recurring
fragments.

4.2. Computation time
In terms of empirical computation time, using a 2.53 GHz
processor machine, FragmentSeeker takes about 0.21
msec to extract fragments from a pair of input tree struc-
tures of the treebank (around 46 hours in total), and about
1.13 msec when extracting partial fragments (around 250
hours in total).

of MSM exceeds the limit, consists on applying a simple heuristic
to extract two mappings, by immediately matching all possible el-
ements and skipping itms only from the first or the second list of
daughters in turn. Using the same example, the two mappings in
the approximate solution coincide, since no elements need to be
skipped: MSMappox(P,Q) = {{(0,0),(1,1),(2,2)}}.

9The approximation originates from the fact that we keep track
of maximal fragments: if two big structure are identical we extract
only one structure for every pair of corresponding nodes.

10This fraction is 7.1 ·10−41. In the graph, the red area doesn’t
look an infinitesimal fraction simply because the scale on the y-
axes is logarithmical.

222

Depth Types Tokens
1 27,893 1,570,869
2 86,512 1,549,523
3 138,709 1,428,777
4 128,927 923,315
5 83,218 455,448
6 40,524 179,548
7 14,849 52,424
8 4,677 14,133
9 1,343 3,692
10 398 951
11 96 213
12 39 95
13 14 28
14 6 16
15 4 8
16 3 8
17 2 5
18 2 4
20 1 2

Total 527,217 6,179,059

0	

250,000	

500,000	

750,000	

1,000,000	

1,250,000	

1,500,000	

1,750,000	

2,000,000	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

1	 2	 3	 4	 5	 6	 7	 8	 9	

N
um

be
r	
of
	 T
ok
en

s	

N
um

be
r	
of
	 T
yp
es
	

Depth	

	 	 Types	

	 	 Tokens	

Figure 4: Distribution of the types and tokens frequencies of the recurring maximal fragment with respect to their depths.
Fragments are extracted from sections 02-21 of the Penn WSJ Treebank.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	

LO
G
10
	 F
RE

Q
U
EN

CY
	 (T
O
KE

N
S)
	

DEPTH	

1	

2	 (binary	 branching)	

3	

4	

5	
6	

7	

8	

9-‐
11
	

13
-‐1
5	

16-‐5
0	

51	

R1	 R2	

12	

R3	

Figure 5: Distribution of the total number of fragments tokens which are present in the trees of sections 02-21 of the Penn
WSJ Treebank, with respect to their depths (horizontal axes). Every line corresponds to the total number of fragments at
different depth values, when limiting the maximum arity of the fragments to a certain constant (the number reported close
to the line). The maximum arity of a fragment is defined to be the maximum number of daughters in the most prolific
node of the fragment. The red-colored area at the bottom of the graph represents the portion of fragment tokens which are
recurring in the corpus. R1 is the sub-portion including fragments with only unary branching, and similarly R2 and R3
represent sub-portions with fragments with maximum arity 2 and 3.

223

VBP

"say"

VP

VBP

"say"

SBAR

VP

VBP

"say"

SBAR

S

VP

VBP

"say"

SBAR

S

NP-SBJ VP

S

NP-SBJ VP

VBP

"say"

SBAR

.

"."

525 342 293 249 173

VP

VBP

"say"

S

NP-SBJ VP

VBP

"say"

SBAR

S

.

"."

S

NP-SBJ VP

VBP

"say"

SBAR

S

NP-SBJ VP

.

"."

S

S-TPC ,

","

NP-SBJ VP

VBP

"say"

.

"."

VP

VBP

"say"

SBAR

S

NP-SBJ

PRP

VP

157 140 120 74 73

S

NP-SBJ VP

VBP

"say"

VP

VBP

"say"

SBAR

S

NP-SBJ VP

MD VP

PRN

,

","

S

NP-SBJ VP

VBP

"say"

,

","

VP

VBP

"say"

SBAR

S

NP-SBJ

PRP

"they"

VP

VP

VBP

"say"

SBAR

IN

"that"

S

55 47 47 46 45

S

NP-SBJ

NNS

VP

VBP

"say"

SBAR

.

"."

S

S-TPC

NP-SBJ VP

,

","

NP-SBJ VP

VBP

"say"

.

"."

S

NP-SBJ

NNS

VP

VBP

"say"

SBAR

S

.

"."

S

CC NP-SBJ VP

VBP

"say"

SBAR

.

"."

S

NP-SBJ

NNS

VP

VBP

"say"

SBAR

S

NP-SBJ VP

.

"."

44 37 37 34 33

VP

VBP

"say"

S

VP

VBP

"say"

S

NP-SBJ VP

VBP

"say"

S

VP

VBP

"say"

.

"."

S

NP-SBJ VP

VBP

"say"

.

"."

525 498 491 374 373

VP

VBP

"say"

SBAR

S

VP

S

NP-SBJ

NNS

VP

VBP

"say"

VP

VBP

"say"

SBAR

S

NP-SBJ VP

S

NP-SBJ VP

VBP

"say"

SBAR

S

NP-SBJ VP

S

NP-SBJ VP

VBP

"say"

SBAR

S

VP

.

"."

347 344 331 321 287
S

NP-SBJ VP

VBP

"say"

SBAR

S

NP-SBJ VP

.

"."

S

NP-SBJ

NNS

VP

VBP

"say"

.

"."

S

NP-SBJ

NNS

VP

VBP

"say"

SBAR

S

NP-SBJ VP

S

NP-SBJ

NNS

VP

VBP

"say"

SBAR

S

VP

.

"."

S

NP-SBJ

NNS

VP

VBP

"say"

SBAR

S

NP-SBJ VP

.

"."

285 271 224 199 197

VP

VBP

"say"

SBAR

S

NP-SBJ VP

VP

S

NP-SBJ VP

VBP

"say"

SBAR

S

NP-SBJ VP

VP

S

,

","

VP

VBP

"say"

S

NP-SBJ VP

VBP

"say"

SBAR

S

NP-SBJ VP

VP

.

"." S

,

","

VP

VBP

"say"

.

"."

173 165 147 147 142

Figure 6: The most frequent fragments (top) and partial fragments (bottom) containing the verb say, when it is a present
tense verb (VBP). Below each (partial) fragment we report the exact frequency with which it occurs in the WSJ.

224

S

NP-SBJ

DT

"The"

NN

"company"

VP

VBD

"gave"

NP

DT

"the"

NN

"department"

``

"``"

NP

NP

NNS

"volumes"

PP

IN

"of"

NP

NNS

"documents"

''

"''"

S-PRP

VP

TO

"to"

VP

VB

"substantiate"

NP

PRP$

"its"

NNS

"statements"

.

"."

VP

VBD

"gave"

VP

VBD

"gave"

NP

VP

VBD

"gave"

NP NP

VP

VBD

"gave"

NP NP S-PRP

83 75 37 2

Figure 7: Above: an example of a PS of the WSJ. Below: the most frequent partial fragments present in the PS above,
containing the lexical item gave.

5. Possible Applications
Annotated corpora are valuable resources for people work-
ing with natural languages both from theoretical and prac-
tical view points. It is nevertheless not obvious how to ap-
proach them when it comes to gather meaningful statistics
on the occurrences of specific constructions.
The types of fragments which are extracted from
FragmentSeeker can easily extract meaningful quantita-
tive and qualitative information from a treebank, which can
be used for corpus analysis and processing.

5.1. Corpus analysis
In figure 6 we have reported the most frequent fragments
and partial fragments of the WSJ containing the verb “say”
(when it is a present tense verb). This kind of statistics,
can give an insight on the specific template constructions
of this particular verb, and can be useful to determine its
valency, i.e. the types of arguments it usually accepts. For
example, the second fragment at the top of the figure (oc-
curring 342 times) illustrates a specific template construc-
tion of the verb, which requires a relative or subordinate
clause (SBAR) as first and only argument to its right; this
specific construction appears 65% of the times. Moreover
the third partial fragment in the second box of the same
figure (occurring 491 times) shows that in almost all cases
(94%) there is a a subject-noun-phrase (NP-SBJ) preceding
the verb.

5.2. Argument/adjunct distinction
The list of partial fragments could also be at the base of
an automatic process to infer the argument/adjunct distinc-
tion in a corpus of PS trees. This line of research is related
to other work on subcategorization (Briscoe and Carroll,

1997) and on the extraction of fragments for more elab-
orate parsing formalisms such as Tree Adjoining Gram-
mars (Chiang, 2000).
In figure 7 we show an example of a WSJ tree structure
which uses the verb gave. The frequencies of the partial
fragments listed at the bottom of the same figure, give evi-
dence that both NP daughters of the VP are part of the argu-
ment structure of the verb. In fact gave is used as a ditransi-
tive verb half of the times it appears in the treebank. On the
other hand, the last daughter (S-PRP) should be marked as
an adjunct, since it is present within the scope of this verb
only in an other structure of the treebank (beside the one
under consideration).

5.3. Corpus annotation
FragmentSeeker could be used as a possible extension of
currently available syntactic annotation tools, in projects
which aim at expanding partially annotated corpora, as well
as those which target a manual revision of automatically
annotated treebanks. The availability of the most frequent
constructions of a certain lexical item could be beneficial in
the annotation and correction process, both in terms of time
and consistency.

5.4. Parsing
The set of fragments extracted from a PS treebank together
with their frequencies can be easily turned into a probabilis-
tic Tree Substitution Grammar (TSG) for parsing novel sen-
tences (Sangati, 2009). In this framework we can use all the
fragments occurring at least twice in the treebank as well
as select only those which appear at least a greater number
of times. Preliminary results indicate that this direction is
promising since it achieves very competitive results even

225

when the grammar is much smaller than in previous work.
The main weakness of TSG is the lack of flexibility of ab-
stracting from the observed local productions (context free
grammar rules) in order to be able to generate a subset of
daughters from an internal node, or merge several produc-
tions into one. We are looking into the possibility of ex-
tending the TSG framework to derived a new parsing sys-
tem based on partial fragments. This would allow to build a
more robust and flexible generative grammar without speci-
fying any strong constraint on the types of fragments being
used in its derivations as it is the case for Tree Adjoining
Grammars (Joshi et al., 1975).

6. Conclusions
We have presented FragmentSeeker a kernel-based tool to
efficiently extract the most relevant construction from large
treebanks. The assumption behind this work is that a par-
ticular syntactic construction is relevant if it occurs at least
twice in a representative corpus of tree structures. The sys-
tem is able to select all and only those constructions which
recur in a treebank, by iteratively compare every possible
pair of structures in the corpus.
The tool is compatible with any phrase structure treebank,
and has been tested on the WSJ, where it was successfully
used to build a probabilistic grammar for parsing. Further-
more it can be used in different tasks related to corpus anal-
ysis and processing, such as guidance tool for syntactic an-
notators and automatic detection of argument structure.

Acknowledgments
We gratefully acknowledge funding by the Netherlands
Organization for Scientific Research (NWO): FS and RB
are funded through a Vici-grant “Integrating Cognition”
(277.70.006) to RB, and WZ through a Veni-grant “Dis-
covering Grammar” (639.021.612) of NWO. We also thank
3 anonymous reviewers for useful comments.

7. References
Mikhail J. Atallah and Susan Fox, editors. 1998. Algo-

rithms and Theory of Computation Handbook. CRC
Press, Inc., Boca Raton, FL, USA. Produced By-
Lassandro, Suzanne.

Rens Bod. 1992. A Computational Model Of Language
Performance: Data Oriented Parsing. In COLING, pages
855–859.

Rens Bod. 2001. What is the minimal set of fragments that
achieves maximal parse accuracy? In ACL, pages 66–73.

Ted Briscoe and John Carroll. 1997. Automatic extraction
of subcategorization from corpora. In Proceedings of the
Fifth Conference on Applied Natural Language Process-
ing, pages 356–363, Washington, DC, USA, March. As-
sociation for Computational Linguistics.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In ACL
’00: Proceedings of the 38th Annual Meeting on Asso-
ciation for Computational Linguistics, pages 456–463,
Morristown, NJ, USA. Association for Computational
Linguistics.

Trevor Cohn, Sharon Goldwater, and Phil Blunsom.
2009. Inducing Compact but Accurate Tree-Substitution

Grammars. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational
Linguistics, pages 548–556, Boulder, Colorado, June.
Association for Computational Linguistics.

Michael Collins and Nigel Duffy. 2001. Convolution Ker-
nels for Natural Language. In Thomas G. Dietterich,
Suzanna Becker, and Zoubin Ghahramani, editors, NIPS,
pages 625–632. MIT Press.

Peter W. Culicover and Andrzej Nowak. 2003. Dynamical
Grammar. Oxford University Press.

Simon Dennis. 2003. A comparison of statistical models
for the extraction of lexical information from text cor-
pora. In Proceedings 25th Annual Meeting of the Cog-
nitive Science Society (CogSci 2003), Boston, USA, 31
July 2 August.

A.E. Goldberg. 1995. Constructions: A Construction
Grammar Approach to Argument Structure. University
Of Chicago Press.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. J. Comput. Syst. Sci.,
10(1):136–163.

Paul Kay and Charles J. Fillmore. 1997. Grammatical con-
structions and linguistic generalizations: the what’s x do-
ing y? construction. Language, 75:1–33.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a Large Annotated Cor-
pus of English: The Penn Treebank. Computational Lin-
guistics, 19(2):313–330.

Alessandro Moschitti. 2006. Efficient Convolution Ker-
nels for Dependency and Constituent Syntactic Trees.
In ECML, pages 318–329, Berlin, Germany, September.
Machine Learning: ECML 2006, 17th European Confer-
ence on Machine Learning, Proceedings.

Timothy J. O’Donnell, Noah D. Goodman, and Joshua B.
Tenenbaum. 2009. Fragment Grammars: Exploring
Computation and Reuse in Language. Technical Report
MIT-CSAIL-TR-2009-013, MIT.

Federico Sangati. 2009. A simple dop model for con-
stituency parsing of italian sentences. In Proceedings of
EVALITA 2009.

Michael Tomasello. 2000. The item-based nature of chil-
dren’s early syntactic development. Trends in cognitive
sciences, 4:156–163.

Hui Wang and Zhiwei Lin. 2007. A novel algorithm for
counting all common subsequences. Granular Comput-
ing, IEEE International Conference on, 0:502.

Willem Zuidema. 2006. What are the productive units of
natural language grammar?: a DOP approach to the au-
tomatic identification of constructions. In CoNLL-X ’06:
Proceedings of the Tenth Conference on Computational
Natural Language Learning, pages 29–36, Morristown,
NJ, USA. Association for Computational Linguistics.

Willem Zuidema. 2007. Parsimonious Data-Oriented Pars-
ing. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), pages 551–560, Prague, Czech Republic, June.
Association for Computational Linguistics.

226

