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Abstract Through Laplace transforms, we study the extremes of a continuous-
time Markov-additive process with one-sided jumps and a finite-state background
Markovian state-space, jointly with the epoch at which the extreme is ‘attained’. For
this, we investigate discrete-time Markov-additive processes and use an embedding
to relate these to the continuous-time setting. The resulting Laplace transforms are
given in terms of two matrices, which can be determined either through solving a
nonlinear matrix equation or through a spectral method. Our results on extremes
are first applied to determine the steady-state buffer-content distribution of several
single-station queueing systems. We show that our framework comprises many
models dealt with earlier, but, importantly, it also enables us to derive various new
results. At the same time, our setup offers interesting insights into the connections
between the approaches developed so far, including matrix-analytic techniques,
martingale methods, the rate-conservation approach, and the occupation-measure
method. We also study networks of fluid queues, and show how the results on single
queues can be used to find the Laplace transform of the steady-state buffer-content
vector; it has a matrix quasi-product form. Fluid-driven priority systems also have
this property.
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1 Introduction

A classical result, playing a pivotal role in applied probability, is what could be called
the ‘generalized Pollaczek-Khinchine formula’: with X the supremum of a spectrally

positive Lévy process X (i.e., a Lévy process with no negative jumps) and with F
X

the epoch at which this supremum is (first) ‘attained’, under the assumption of a
negative drift EX(1) < 0,

Ee−αF
X−β X = −EX(1)

β − �−X (α)

ψ−X(β) − α
, (1)

for α, β ≥ 0 with ψ−X(β) �= α; see for instance (Bertoin 1996, Thm. VII.4). In this
formula, ψ−X(β) := logEe−β X(1) is the Laplace exponent of −X, and �−X is its
inverse (which exists since ψ−X increases on [0,∞)). Exploiting an equality in law
between X and the the steady-state buffer content in an M/G/1 queue (the buffer-
content process can be thought of as being obtained from X by Skorokhod reflection
at 0), Eq. 1 also provides us with the Laplace-transform of the steady-state buffer
content in the system—note that by taking α = 0 and assuming that the Lévy process
is of compound-Poisson type, we retrieve the classical Pollaczek-Khinchine formula.
This explains why the above framework is one of the cornerstones of queueing
theory, but also of application domains where key performance measure can be
expressed in terms of extremes, such as risk theory and mathematical finance.

There are several directions in which one could extend Eq. 1. This paper addresses
two such extensions. (A) In the first place, our paper covers a generalization in
which X corresponds to a spectrally positive Markov-additive process; such a process
can be thought of as a Markov-modulated Lévy process (with additional jumps at
transitions of the background process). (B) In the second place, motivated by the
aforementioned relationship between fluid queues and extremes, we extend these
results to networks of fluid queues. Specifically, the contributions of this paper are
the following:

A. One of the motivations for the present paper is to find an analog of Eq. 1 for
spectrally positive Markov-additive processes with finitely many background
states. The quantity �−X(α) becomes a matrix in the Markov-additive setting,
and it is a key challenge to describe this matrix in the current general setting.
The present paper is the first to achieve this goal in full generality through
novel insights relying on a spectral method, which is complemented by a
corresponding formula for the infimum of X.
The derivation of our results relies on Wiener-Hopf theory for an embed-
ded process, in conjunction with a ladder height analysis as in Feller (1971,
Ch. XII). Perhaps for historic reasons, the Wiener-Hopf technique is sometimes
regarded as a complex-analysis tool from which probabilistic insight cannot
be obtained. However, inspired by the work of Kennedy (1994), we are able
to give appealing interpretations of all our results in terms of a last-passage
process. Our approach to Markov-additive processes is essentially different
from the occupation method developed in Asmussen (2000), the martingale
method of Asmussen and Kella (2000), and the rate-conservation method of
Miyazawa (2004).
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On the technical level, two steps are crucial. In the first place, we convert our
continuous-time process to a discrete-time Markov-additive process by using an
embedding. The maximum of the original, continuous-time process coincides
with the maximum of the embedded process. In the special case of continuous
Markov-additive processes, this idea has been applied by Asmussen (1995).
However, by using this embedding we lose information on the epoch at which
the extreme is ‘attained’, and we therefore also apply a second idea: we impose
a step-dependent killing mechanism through which we keep track of the ‘time’
that passes in the continuous-time process between embedding epochs. The
resulting procedure enables us to find the counterpart of Eq. 1. We remark
that the killing technique is an alternative to other approaches that have been
proposed for fluid-flow models (Ahn and Ramaswami 2005; Asmussen 1994;
Bean et al. 2005b).
Our results for discrete-time processes are of independent interest; they unify
and extend (parts of) Section 1.12 and Chapter 5 of Prabhu (1998). We ex-
emplify this by analyzing a ramification of a queueing system with Markov-
modulated ON/OFF input introduced by Cohen (1974); although this input does
not fall into the framework of Markov-additive processes, we can still analyze
its buffer-content distribution using our results on discrete-time processes. As
a further application, we show that our approach may also be useful when the
number of background states is infinite; a specific contribution of our work is a
procedure to determine the steady-state distribution of the M/M/∞-driven fluid
queue.

B. A second motivation for this paper was a procedure, developed by Dȩbicki et al.
(2007) for Lévy-driven tandem queueing systems, which expresses the Laplace
transform of the joint buffer-content distribution in terms of the corresponding
Laplace transform Eq. 1 for a single queue. Our main contribution here is that
we show how this translation can be performed in a Markov-additive setting,
by converting the counterpart of Eq. 1 to the Laplace transform of the buffer-
content vector in tandem networks with Markov-additive input. This part of
our work extends the results found by Dȩbicki et al. (2007) and Kella and Whitt
(1992b) on tandem networks with Lévy input and the results by Kella (2001) on
networks with deterministic background-dependent input rates.

Although we give matrix equations for all matrices that play an important role in
the theory, it is still an interesting and challenging issue to devise efficient algorithms
for numerically calculating these matrices. Therefore, our work could accelerate
the development of such new numerical methods. We find this indispensable for a
successful application of the theory.

This paper is organized as follows. First, in Section 2, we start with the analysis
of the extremes of a discrete-time Markov-additive process. The insights that we
obtain are then applied to continuous-time Markov-additive processes in Section 3.
Section 4 casts our results on extremes into the setting of single-station queues, and
some examples are given in Section 5. In Section 6 we show how these results on
single queues can be used to determine the Laplace transform of the steady-state
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buffer-content vector in tandem fluid networks, and we conclude the paper with some
extensions of our theory (Section 7).

2 A Discrete-time Process and its Extremes

This section introduces the discrete-time three-dimensional process (S, T, J) =
{(Sn, Tn, Jn) : n ≥ 0}. Although this process may look quite specific at first sight, we
show in Sections 4–7 that it is highly versatile: it can be used to study the steady-
state buffer content (in conjunction with the steady-state age of the busy period) for
a broad class of queueing systems, including networks and priority queues.

2.1 Definitions and Assumptions

The discrete-time process (S, T, J) takes values in R × R+ × I , where I is a finite
set with N+ + N− elements. We write I+ for the first N+ elements (which we call
‘+-points’, as made clear below), and I− for the last N− elements (which we call
‘−-points’). The component J is interpreted as a ‘random environment’. We suppose
that (S, T, J) is defined on some measurable space (�,F).

Of primary interest is the minimum S and the maximum S of the process S. After

setting FS := inf{n ≥ 0 : Sn = infk≥0 Sk} and F
S := inf{n ≥ 0 : Sn = supk≥0 Sk}, these

are defined as S := SFS and S := S
F

S respectively. The process T is interpreted as
the ‘real’ time that passes between the (discrete) time epochs; it cannot decrease.
Therefore, it is also of interest to study T := TFS , T := T

F
S , J := JFS and J := J

F
S .

The aim of this section is to fully characterize the joint distributions of the triplet
(S, T, J) if S drifts to +∞, and (S, T, J) if S drifts to −∞, under a measure specified
below.

Let P be a probability measure on (�,F) (with corresponding integration opera-
tor E) such that (S, T, J) is a (discrete-time) Markov process on R × R+ × I under
P with transition kernel given by

p((s, t, j), (s + dv, t + dw, k)) =
{

pJ
jkP
(
U jk ∈ dv, σ jk ∈ dw

)
if j ∈ I+, k ∈ I;

pJ
jkP
(−Dj ∈ dv, τ j ∈ dw

)
if j ∈ I−, k ∈ I,

where the σ jk, U jk, τ j, Dj are random variables on (�,F). The pJ
jk constitute the

Markov transition matrix P J of J under P, assumed to be irreducible. The unique
stationary distribution of J is written as π J . We also assume that the P-distributions
of the vectors {(σ jk, U jk) : j ∈ I+, k ∈ I} and {(τ j, Dj) : j ∈ I−} are concentrated on
[0,∞)2 and [0,∞) × (0,∞), respectively. The letters U and D stand for ‘up’ and
‘down’. The U jk and −Dj can be interpreted as ‘jump sizes’, whereas the σ jk and τ j

reflect ‘sojourn times’. Note that P(σ jk = 0), P(U jk = 0), and P(τ j = 0) are allowed
to be strictly positive.

For k ∈ I , we write Pk for the law of (S, T, J) given S0 = T0 = 0 and J0 = k. To
avoid trivialities, we suppose throughout that both N− and N+ are nonzero, and that
not all of the U jk are degenerate at zero. The following assumption is crucial in our
analysis.
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Assumption 2.1 For any j ∈ I−, there exists some λα
j > 0, μα

j ∈ (0, 1] such that

Ee−ατ j−β D j = μα
j

λα
j

λα
j + β

, α, β ≥ 0,

where μ0
j = 1.

Assumption 2.1 can be thought of as (a generalized version of) a memoryless
property for the distribution of the jump sizes and sojourn times in the −-points.
We suppose that this assumption holds throughout this section. Motivation for the
specific form of the above assumption can be found in Section 3.2.

In many of the proofs in this section, an important role is played by a family of
probability measures {Pα : α ≥ 0} on (�,F). We let the P

α-distribution of U jk be
defined in terms of P through P

α(U jk ∈ dv) = E[e−ασ jk; U jk ∈ dv]; this distribution
is thus potentially defective. Similarly, we set P

α(Dj ∈ dv) = E[e−ατ j; Dj ∈ dv]. Fur-
thermore, we let (S, J) be a discrete-time Markov process under P

α with transition
kernel

pα((s, j), (s + dv, k)) =
{

pJ
jkP

α(U jk ∈ dv) if j ∈ I+, k ∈ I;
pJ

jkP
α(−Dj ∈ dv) if j ∈ I−, k ∈ I.

The P
α-law for which S0 = 0 and J0 = k is denoted by P

α
k .

We note that {(Sn, Jn) : n ≥ 0} is a discrete-time Markov-additive process under
each of the measures Pk, P

α
k for k ∈ I and α ≥ 0. As a result, the powerful Wiener-

Hopf factorization for these processes is available. More details can be found in Arjas
and Speed (1973) and Asmussen (2003, Sec. XI.2.2f). As an aside, we mention that
(S, T) can be interpreted as a two-dimensional additive component under Pk; we do
not use this.

In order to use the Wiener-Hopf technique, we need some more notation
related to time-reversion. Let us therefore introduce the time-reversed transition
probabilities

p̂J
jk = πJ(k)

πJ( j)
pJ

kj,

constituting the transition matrix P̂
J
; here πJ(k) denotes the k-th element of π J .

Let P̂ be a probability measure on (�,F) (with expectation operator Ê) such that
(S, T, J) is a Markov process with transition kernel

p̂((s, t, j), (s + dv, t + dw, k)) =
{

p̂J
jkP
(
Ukj ∈ dv, σ kj ∈ dw

)
if j ∈ I, k ∈ I+;

p̂J
jkP
(−Dk ∈ dv, τ k ∈ dw

)
if j ∈ I, k ∈ I−.

It is instructive to compare this ‘time-reversed’ kernel with the kernel p defined
above. The P̂-law for which S0 = T0 = 0 and J0 = k is denoted by P̂k.

Finally, we also define the probability measures P̂
α by requiring that (S, J) is a

Markov process with transition kernel

p̂α((s, j), (s + dv, k)) =
{

p̂J
jkP

α(Ukj ∈ dv) if j ∈ I, k ∈ I+;
p̂J

jkP
α(−Dk ∈ dv) if j ∈ I, k ∈ I−,

and P̂
α
k is defined as the P̂

α-law of this process given S0 = 0 and J0 = k.
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2.2 Notation

We now introduce some convenient matrix notation. It is our aim to present a set of
notation rules that we follow throughout the paper, as opposed to defining all vectors
and matrices individually.

We start with our conventions for matrices. We define A++, A−+, A+−, A−− for
a given (I × I)-matrix A through its block form

A ≡
(

A++ A+−
A−+ A−−

)
,

so that, for instance, A++ is an (I+ × I+)-matrix. An example is the (I × I)-identity
matrix, denoted by I, which consists of the blocks I++, 0+−, 0−+, and I−− in self-
evident notation. The diagonal matrix with the vector v on its diagonal is written as
diag(v). For example, I = diag(1), where 1 stands for the I-vector with ones. The
vector with elements {λα

j : j ∈ I} is written as vec(λα), and diag(λα) is shorthand for
diag(vec(λα)). We also write diag (λα/(λα + iβ)) for the (I− × I−)-diagonal matrix
with element ( j, j) equal to λα

j /(λ
α
j + iβ). Moreover, we write

#A := diag (π J)
−1 A′ diag (π J) , (2)

where ‘′’ denotes matrix transpose. In conjunction with block notation, # has priority
over block notation: #A++ is the (+, +)-block of #A.

The second set of notation rules shows how vectors and matrices are built from
probabilities and expectations involving a background process with values in I . The
resulting matrices or vectors are distinguished by writing P and E instead of P

and E, respectively, and by omitting indices. For instance, we set

E
[
S1; J1

] := {E j
[
S1; J1 = k

] : j, k ∈ I
}
,

and the j-th element of the vector ES1 is E jS1. Similarly, the j-th element of the
vector P(S1 > 0) is P j(S1 > 0). A matrix involving P or E can be partitioned into
four blocks as described before, in which case a subscript ‘−’ or ‘+’ below P or
E indicates the row of the matrix block, and a ‘∈+’ or ‘∈−’ after the background
process indicates the column. For instance, the matrix E

[
S1; J1

]
consists of four

blocks, which we write as E+
[
S1; J1 ∈+], E+

[
S1; J1 ∈−], E−

[
S1; J1 ∈+], and

E−
[
S1; J1 ∈−]. The first row consists of two blocks and can be written as E+

[
S1; J1

]
.

Matrices such as Ê±
[
S1; J1

]
are defined analogously, but with E j replaced by Ê j.

Similar conventions apply to vectors, which should always be interpreted as column
vectors: the restriction of the vector ES1 to I+ (or I−) is written as E+S1 (or
E−S1). Note that we have the relation E+S1 = E+

[
S1; J1

]
1 = E+

[
S1; J1 ∈+] 1+ +

E+
[
S1; J1 ∈−] 1−, where 1+ and 1− stand for the I+-vector and I−-vector with ones,

respectively. The I-vector with zeroes is written as 0, and consists of 0+ and 0−.
We now give examples of the above conventions for some quantities that play an

important role in this paper. We set for α ≥ 0, β ∈ R

F jk(α, β) :=
{

pJ
jkEe−ασ jk+iβU jk

if j ∈ I+, k ∈ I;
pJ

jkEe−ατ j−iβ D j
if j ∈ I−, k ∈ I.

This defines not only the matrix-transform of the transition kernel F(α, β) :=
{F jk(α, β) : j, k ∈ I}, but also its four block matrices. Note that Assumption 2.1
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specifies the structure of F−+(α, β) = E−
[
e−αT1+iβS1; J1 ∈+] and F−−(α, β) =

E−
[
e−αT1+iβS1; J1 ∈−]. The time-reversed counterpart is written as F̂(α, β), i.e.,

F̂(α, β) := #F(α, β). Note that in particular P̂
J = #P J . The identity #̂F(α, β) =

F(α, β) is frequently used in the sequel. Given j ∈ I+, we write F jk(α, i∞) for
limβ→∞ F jk(α, iβ) = pJ

jkE[e−ασ jk; U jk = 0], thereby also defining F+−(α, i∞) and
F++(α, i∞).

2.3 The Ladder Heights of S

The goal of this subsection is to characterize the Pk-distribution of (S, T, J) at the
first strict ascending ladder epoch of S and at its first strict descending ladder epoch.
We do not impose conditions on the drift of S yet.

The first strict ascending ladder epoch and the first weak descending ladder epoch
of S are defined as

τ+ = inf{n ≥ 1 : Sn > 0}, τ− = inf{n ≥ 1 : Sn ≤ 0}.
Its first strict descending ladder epoch, for which the weak inequality is replaced by
a strict inequality, is denoted by τ̃−.

The Distribution of (Sτ+ , Tτ+ , Jτ+) In order to facilitate the investigation of the
ascending ladder structure of (S, T, J), we first prove a useful lemma related to τ−.
For notational convenience, we define the matrix P̂

α = {P̂α
jk : j, k ∈ I} as

P̂
α := Ê

[
e−αTτ− ; Jτ−

]
.

This matrix admits a block form as described in Section 2.2. A general remark is
that, when integrating a defective random variable, we only carry out the integration
over the set where the random variable is both finite and well-defined: in the above
definition of P̂

α
, it is tacitly assumed that τ− < ∞.

Lemma 2.1 Suppose that Assumption 2.1 holds. For α ≥ 0, β ∈ R, we have

#̂E
[
e−αTτ− +iβSτ− ; Jτ−

] =
(

F++(α, i∞) F+−(α, i∞)

diag
(

λα

λα+iβ

)
#
̂Pα−+ diag

(
λα

λα+iβ

)
#
̂Pα−−

)

Proof After recalling that τ− is a weak ladder epoch, it is immediate that for α ≥ 0,
j ∈ I , k ∈ I+,

Ê j
[
e−αTτ− +iβSτ− ; Jτ− = k

] = p̂J
jkE

[
e−ασ kj; Ukj = 0

]
= F̂ jk(α, i∞).

Hence, it remains to calculate

Ê
[
e−αTτ− +iβSτ− ; Jτ− ∈−] = Ê

α [
eiβSτ− ; Jτ− ∈−] .

To find an expression for this quantity, we directly apply the idea of Lemma VIII.5.1
of Asmussen (2003), as follows. Evidently, for j ∈ I , k ∈ I−, we have

P̂
α
j

(
Sτ− < −x, Jτ− = k

) =
∞∑

n=1

P̂
α
j

(
Sτ− < −x, τ− = n, Jτ− = k

)
.
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Conditioning on Sn−1 and using Assumption 2.1, we see that the summands equal

Ê
α
j

[
μα

ke−λα
k (x+Sn−1); τ− > n − 1, Jτ− = k

] = e−λα
k x

Ê
α
j

[
μα

ke−λα
k Sn−1; τ− > n − 1, Jτ− = k

]
,

since the value of the n-th increment should (in absolute terms) be larger than x +
Sn−1. Importantly, this is exponential in x, so that we obtain

Ê
α
j

[
eiβSτ− ; Jτ− = k

] = λα
k

λα
k + iβ

∞∑
n=1

Ê
α
j

[
μα

ke−λα
k Sn−1; τ− > n − 1, Jτ− = k

]
.

The latter sum is calculated by inserting β = 0 into this identity. 
�

The above lemma requires knowledge of (submatrices of) #̂P
α
. The following

proposition gives a fixed-point equation for these matrices, so that they can be found
numerically. Write Fα

++(dx) for the measure-valued (I+ × I+)-matrix with element
( j, k) equal to pJ

jkP
α(U jk ∈ dx) for j, k ∈ I+, and define Fα

+−(dx) similarly.

Proposition 2.1 For α ≥ 0, we have

#
̂Pα

−− = diag (μα) P J
−− +

∫
(0,∞)

e
#̂Q

α

−−x #
̂Pα

−+(I++ − F++(α, i∞))−1 Fα
+−(dx),

#
̂Pα

−+ = diag (μα) P J
−+ +

∫
(0,∞)

e
#̂Q

α

−−x #
̂Pα

−+(I++ − F++(α, i∞))−1 Fα
++(dx),

where integration should be understood as componentwise integration, and #Q̂
α

−− is
specified by

#Q̂
α

−− = −
[

I−− − #̂P
α

−+ (I++ − F++(α, i∞))−1 F+−(α, i∞) − #̂P
α

−−
]

diag (λα) .

Proof Write τ−(x) := inf{n > 0 : Sn ≤ −x} for x ≥ 0. For j ∈ I and k ∈ I−, we have
by the Markov property

P̂α
jk ≡ P̂

α
j (Jτ− = k) = p̂J

jkμ
α
k +
∑
�∈I+

p̂J
j�

∫
(0,∞)

P
α(U�j ∈ dx)P̂α

� (Jτ−(x) = k).

Note that the integration interval for U�j is (0,∞), because if U�j were 0, then Jτ−
would be in I+. The claims follow after showing that

P̂
α
� (Jτ−(x) = k) =

∑
m∈I+

F̂�m(α, i∞)Pα
m(Jτ−(x) = k) +

∑
j∈I−

P̂
α
� (Jτ− = j)

[
e Q̂

α

−−x
]

jk
,

where

Q̂
α

−− = −diag (λα)
[

I−− − F̂−+(α, i∞)
(
I++ − F̂++(α, i∞)

)−1
P̂

α

+− − P̂
α

−−
]
.

To this end, note that τ−(x) is nondecreasing in x. The first-passage process {Jτ−(x) :
x ≥ 0} given Jτ− = j is a (defective) Markov process under P̂

α
� with values in I−,

cf. Assumption 2.1. It suffices to prove that Q̂
α

−− is its intensity matrix. For ease we
first concentrate on the case for which the distributions of the U j� do not have an



Methodol Comput Appl Probab (2011) 13:221–267 229

atom at zero. After an exponentially distributed time with parameter λα
j , the first-

passage process then jumps to a −-point k ∈ I− with probability P̂α
jk (where j = k is

allowed). For the general case where U j� may have an atom at zero, we have to take
into account the paths in which S stays at the same level for a while before entering
k ∈ I−. This procedure leads to the given intensity matrix. 
�

Our next result is a nonlinear system for the matrix Kα−−, where

Kα
−− := diag(λα) #Q̂

α

−− diag(λα)−1. (3)

Since Q̂
α

−− is the intensity matrix of the first-passage (Markov) process of the time-
reversed process as detailed in the proof of Proposition 2.1, Kα−− is the intensity
matrix for the last-passage process of the original process. To state the nonlinear
system, we define for β ∈ R,

F+�−(α, β) := (I++ − F++(α, β))−1 F+−(α, β),

and Fα+�−(dx) is the measure for which β �→ F+�−(α, β) is the characteristic func-
tion. These notions relate to the increment in the ‘vertical direction’, when starting
in a +-point, until the epoch that a −-point is reached. For simplicity we only prove
uniqueness if S drifts to +∞ or −∞. We write

H+ =
{ {β ∈ C : (β) > 0} if limn→∞ Sn = +∞;

{β ∈ C : (β) ≥ 0} if limn→∞ Sn = −∞.
(4)

Corollary 2.1 For α ≥ 0, the matrix Kα−− solves the nonlinear system

Kα
−−+ diag(λα)

(
I−−− diag(μα)P J

−−
)− ∫

[0,∞)

eKα−−x diag(μαλα)P J
−+ Fα

+�−(dx)=0−−.

The solution is unique within the class of matrices with eigenvalues in H+.

Proof The idea of the proof is to slightly modify the process without changing the
(time-reversed) first-passage process (and thus Kα−−). Indeed, interpret subsequent
+-points as a single +-point; one then obtains a different discrete-time process,
with F+−(α, β) replaced by F+�−(α, β). Importantly, for this ‘new’ J we have that
P J++ = 0++, so that #̂P

α

−+ = diag(μα)P J
−+ by Proposition 2.1. The formula for #Q̂

α

−−
in this proposition then immediately leads to the desired matrix equation for Kα−−.
The proof of uniqueness is deferred to the appendix, see Corollary 8.1. 
�

It is interesting to observe that, according to Corollary 2.1 and its proof, we may
‘lump’ subsequent +-points and assume without loss of generality that P J

++ = 0++ in
order to calculate Kα−−. This lumping can also be used to compute #̂P

α

+− and #̂P
α

−−
with Proposition 2.1, but only for α = 0.

There are several ways to extract algorithms for determining #̂P
α

+−, #̂P
α

−−, and
Kα−− from Proposition 2.1 and Corollary 2.1. For instance, Corollary 2.1 can be
interpreted as a fixed-point equation Kα

−− = ϕ(Kα
−−) for some matrix-function ϕ.

This suggests to fix an initial matrix Kα,0
−−, and then use the recursion Kα,n+1

−− =
ϕ(Kα,n

−−) to characterize a sequence of matrices that converges to Kα
−−. We refer

to Asmussen (2000, Sec. VI.2), Miyazawa (2004, Sec. 3), or Takada (2001, Sec. 4)
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for further details on this technique. One difficulty that needs to be overcome is
the calculation of matrix exponentials, see Moler and Van Loan (2003) for a survey
of available methods. It is not our aim to devise fast algorithms for computing the
matrix Kα

−−, and we shall therefore not address these algorithmic properties here.
An alternative method for determining Kα

−− (and thus #̂P
α

+− and #̂P
α

−−) is discussed
in the Appendix.

The next proposition characterizes the Pk-distribution of (Sτ+ , Tτ+ , Jτ+). The main
ingredient is the celebrated Wiener-Hopf factorization.

Proposition 2.2 For α ≥ 0, β ∈ R with (α, β) �= 0, we have

E
[
e−αTτ+ +iβSτ+ ; Jτ+

] = I − (I − #̂E
[
e−αTτ− +iβSτ− ; Jτ−

])−1
(I − F(α, β)),

where nonsingularity is implicit.

Proof Write Ĝ(α, β) := Ê[e−αTτ− +iβSτ− ; Jτ−]. The statement is the Wiener-Hopf fac-
torization (e.g., Asmussen 2003, Thm. XI.2.12) for the Markov-additive process
S under the measure P

α , provided I − #̂G is nonsingular. This requirement is
equivalent to nonsingularity of I − Ĝ.

To see that this matrix is nonsingular, we exploit the fact that Ĝjk is the transform
of a nonlattice distribution for j ∈ I, k ∈ I−. Therefore, we have |Ĝjk(α, β)| < P̂ 0

jk

for (α, β) �= (0, 0), see, e.g., Theorem 6.4.7 of Chung (2001). As a result, I − Ĝ is a
strictly diagonally dominant matrix:∑

k∈I

∣∣Ĝjk(α, β)
∣∣ < ∑

k∈I+

p̂J
jkP(Ukj = 0) +

∑
k∈I−

P̂ 0
jk ≤ 1,

where the last inequality follows from the fact that Sτ− has a (possibly defective)
distribution, see Lemma 2.1. 
�

The Distribution of (Sτ̃− , Tτ̃− , Jτ̃−) We now turn to our second aim of this subsec-
tion, the characterization of the distribution of (Sτ̃− , Tτ̃− , Jτ̃−). This turns out to be
simpler than the analysis of (Sτ+ , Tτ+ , Jτ+); particularly, Wiener-Hopf techniques are
not required here. We omit all proofs, since similar arguments apply as before.

In the context of strict decreasing ladder heights, a prominent role is played by the
matrix

Pα
+− := E+[e−αTτ̃− ; S1 > 0, Jτ̃−−1 ∈−].

The indices in this expression should be compared to those in the definition of P̂
α
.

We also set

Pα
+�− := (I++ − F++(α, i∞))−1 [Pα

+− diag(μα)−1 + F+−(α, i∞)
]
.

The analog of Lemma 2.1 follows immediately from these definitions: for α ≥ 0,
β ∈ R, we have

E
[
e−αTτ̃− +iβSτ̃− ; Jτ̃−

] =
⎛
⎝ Pα+�− diag

(
μαλα

λα+iβ

)
P J

−+ Pα
+�− diag

(
μαλα

λα+iβ

)
P J

−−
diag
(

μαλα

λα+iβ

)
P J

−+ diag
(

μαλα

λα+iβ

)
P J

−−

⎞
⎠ .
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We continue with a result in the spirit of Proposition 2.1, which can be proved along
the same lines.

Proposition 2.3 For α ≥ 0, we have

Pα
+− =

∫
(0,∞)

Fα
++(dx)Pα

+�−eQα−−x diag(μα) +
∫

(0,∞)

Fα
+−(dx)eQα−−x diag(μα),

where Qα
−− is specified by

Qα
−− = −diag (λα)

[
I−− − diag(μα)P J

−− − diag(μα)P J
−+ Pα

+�−
]
.

We next turn to the analog of Corollary 2.1, which can be proven along the same
lines. When inspecting the differences between the two corollaries, we first note that
they are remarkably similar. Whereas the Kα−−-matrices are always the first matrices
in each of the terms, the Qα−−-matrices always appear last. In the Appendix, we show
that this has a specific reason. The claimed uniqueness follows from Corollary 8.1.

Corollary 2.2 For α ≥ 0, the matrix Qα−− solves the nonlinear system

Qα
−−+ diag(λα)

[
I−−− diag(μα)P J

−−−
∫

[0,∞)

diag(μα)P J
−+ Fα

+�−(dx)eQα
−−x
]

= 0−−.

The solution is unique within the class of matrices with eigenvalues in H+.

2.4 The Distribution of (S, T, J)

In this section, we study S (jointly with T, J), assuming that S drifts to −∞. In fact,
throughout this subsection, we suppose that π ′

J ES1 < 0. We remark that, with the
only exception of Lemma 2.3, all the results also hold under the weaker assumption
that S drifts to −∞. Our main tools are the ladder-height results obtained in the
previous subsection.

The following theorem expresses the transform of (S, T, J) in terms of the matrix
characterized in Lemma 2.1 and the (still unknown) vector P(S = 0). Observe
that the matrices #

̂Pα−− and #
̂Pα−+ required in Lemma 2.1 can be found with

Proposition 2.1.

Theorem 2.1 For α ≥ 0, β ∈ R with (α, β) �= (0, 0), we have

E
[
e−αT+iβS; J

]
= (I − F(α, β))−1 (I − #̂E

[
e−αTτ− +iβSτ− ; Jτ−

])
diag
(

P(S = 0)
)

.

Proof By the Markov property, we have for α ≥ 0 with (α, β) �= (0, 0), β ∈ R,

E
[
e−αT+iβS; J

]
= (I − E

[
e−αTτ+ +iβSτ+ ; Jτ+

])−1
diag (P(τ+ = ∞))

= (I − F(α, β))−1 (I − #̂E
[
e−αTτ− +iβSτ− ; Jτ−

])
diag
(

P(S = 0)
)

,

where the second equality follows from Proposition 2.2. The nonsingularity of I −
F(α, β) follows from (strict) diagonal dominance, cf. the proof of Proposition 2.2. 
�
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There is a direct, insightful interpretation of Theorem 2.1 in terms of a last-passage
process, which is used on several occasions in this paper, inspired by Kennedy’s
interpretation (Kennedy 1994) of the Wiener-Hopf factorization. First note that the
theorem states that E[e−αT+iβS; J] equals

∞∑
n=0

Fn(α, β)diag(P(S = 0)) −
∞∑

k=0

Fk(α, β) #̂E
[
e−αTτ− +iβSτ− ; Jτ−

]
diag(P(S = 0)).

(5)
Clearly, the n-th summand in the first term can be interpreted as the transform of
(Sn, Tn, Jn) on the event {supm≥n Sm = Sn}. If the maximum is attained at Tn, this
is precisely E[e−αT+iβS; J]. However, if this is not the case, we have to subtract the
contribution due to the fact that there is an � < n for which S� ≥ Sn. In that case,
write Sn = Sk + (Sn − Sk), where k = sup{� < n : S� ≥ Sn}, so that n is now a so-
called last-passage epoch for the process with (k, Sk) as the origin. Looking backward
in time, starting from (n, Sn), k is a first weak descending ladder epoch. The argument
is completed by exploiting the Markov property. Partitioning with respect to the last-
passage epoch is sometimes called the Beneš-method (Beneš 1963).

It is insightful to give the complete argument for α = 0 in formulas. The terms that
need to be subtracted (because the maximum occurred earlier) are

∞∑
n=0

E
[
eiβSn; ∀m ≥ n : Sm ≤ Sn, ∃m < n : Sm ≥ Sn, Jn

]

=
∞∑

k=0

∞∑
n=k+1

E
[

eiβSk+iβ(Sn−Sk); sup
m≥n

Sm = Sn, Sk ≥ Sn, sup
k<�<n

S� < Sn, Jn

]
,

where the equality is justified by the fact that the events are disjoint as a result of the
partitioning with respect to the last-passage epoch. Now note that the double sum is
indeed the second sum in Eq. 5 for α = 0.

Theorem 2.1 implies that, to compute E[e−αT+iβS], only the determination of the
vector P(S = 0) is left. Before giving results on P(S = 0), however, we first discuss
some consequences of Theorem 2.1. Let us define for α, β ≥ 0,

D−−(α, β) := β I−− − diag(λα)
[
I−− − diag(μα)P J

−−

− diag(μα)P J
−+ (I++ − F++(α, iβ))−1 F+−(α, iβ)

]
.

It is instructive to derive the following result with the above interpretation of
Theorem 2.1: consider the discrete-time process only at −-points.

Corollary 2.3 For α, β ≥ 0 with D−−(α, β) nonsingular, we have

E−
[
e−αT−βS; J ∈−

]

= D−−(α, β)−1

[
β I−− − diag (λα)

(
I−− − diag (μα) P J

−+

× (I++ − F++(α, iβ))−1 F+−(α, i∞) − #̂P
α

−−

)]
diag
(

P−(S = 0)
)

.
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Proof The claim (with characteristic functions instead of Laplace transforms) fol-
lows from (I − F(α, β))−1

−+ = (I − F(α, β))−1
−− F−+(α, β)(I++ − F(α, β))−1 and some

elementary linear algebra. Since all characteristic functions involved are well-defined
when β is replaced by iβ, we obtain the claim. 
�

If P J
++ = 0++, using the second matrix equation of Proposition 2.1, the claim in

this corollary can be reformulated in the following interesting form:

E−
[
e−αT−βS; J ∈−

]
= D−−(α, β)−1 [β I−− + Kα

−−
]

diag
(

P−(S = 0)
)

. (6)

Our next aim is to find P(S = 0). The following lemma gives two matrix equations
that must be satisfied by P(S = 0).

Lemma 2.2 P(S = 0) satisfies the system

P+(S = 0) = F++(0, i∞)P+(S = 0) + F+−(0, i∞)P−(S = 0),

P−(S = 0) = #̂P
0
−+ P+(S = 0) + #̂P

0
−− P−(S = 0).

Proof The claim follows upon right-multiplication of the statement in Theorem 2.1
by 1 and choosing α = β = 0. 
�

The two equations in the lemma can be described as follows. The first equation
considers P+(S = 0) by conditioning on the first step (S1, J1) and using the Markov
property; J1 can both be a +-point or a −-point, but S1 cannot strictly increase. The
interpretation of the second equation is slightly more complicated, and follows from
arguments reminiscent of the interpretation of Theorem 2.1. Again, the idea is to
partition with respect to the last-passage epoch � := inf{n : Sn = supm≥n Sm}, which is
either a +-point or a −-point. On the event {S = 0}, starting from (�, S�) and looking
backward in time, zero is a first descending ladder epoch. On the other hand, looking
forward in time from (�, S�), the process cannot have a strict ascending ladder epoch.
Note that � fails to be a stopping time.

We briefly pause our analysis of P(S = 0) to record the following Pollaczek-
Khinchine type formula for S.

Corollary 2.4 For β > 0 with D−−(0, β) nonsingular, we have

E−e−βS = β D−−(0, β)−1 P−(S = 0).

Proof The corollary is a consequence of Corollary 2.3 and Lemma 2.2. 
�

We now investigate to what extend the system of equations in Lemma 2.2 deter-
mines P(S = 0). First, since I++ − F++(0, i∞) is always nonsingular by assumption,
the first formula shows that it suffices to find P−(S = 0) instead of the larger vector
P(S = 0). Unfortunately, the whole system of equations in Lemma 2.2 is always
singular. More precisely, using Eq. 3 and Proposition 2.1, we readily obtain that

K0
−− P−(S = 0) = 0−. (7)
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The following proposition shows that this determines P−(S = 0) (and therefore
P(S = 0)) up to a constant.

Proposition 2.4 The matrix K0−− has the following properties:

1. zero is a simple eigenvalue of K0−−, and the other N− − 1 eigenvalues have strictly
negative real parts, and

2. if N− > 1, then diag(λ0)−1π J(−) and P−(S = 0) are left and right eigenvectors of
K0−− respectively, corresponding to the eigenvalue zero.

Proof For the first property, it suffices to consider the matrix Q̂
0
−−, which is similar

to K0−−. The matrix Q̂
0
−− inherits its irreducibility from P J , and since it is an intensity

matrix of a (nondefective) Markov process, the assertion follows from standard
Perron-Frobenius theory.

The ‘right eigenvector’ part of the second claim follows from Eq. 7, and the ‘left
eigenvector’ part translates to Q̂

0
−−1− = 0−. 
�

Proposition 2.4 shows that one more equation is needed to fully specify
P−(S = 0), and this equation is given in the following lemma. Let π− be the unique
I−-probability vector satisfying

π ′
− diag(λ0)

(
P J

−− + P J
−+
(
I++ − P J

++
)−1

P J
+−
)

= π ′
− diag(λ0); (8)

in fact, π− is proportional to diag(λ0)−1π J(−).

Lemma 2.3 We have

π ′
− P−(S = 0) = 1 − π ′

− diag(λ0)P J
−+
(
I++ − P J

++
)−1

E+S1.

This equation is independent of the N− − 1 independent linear equations stemming
from Eq. 7.

Proof The idea is to premultiply the expression for P−(S = 0) in Corollary 2.4
by π ′−, to divide both sides by β, and then let β → 0. By definition of π−, this
immediately yields that π ′− P−(S > 0) equals

lim
β→0

1

β
π ′

− diag
(
λ0
)

P J
−+
[ (

I++ − P J
++
)−1

P J
+−

−(I++ − F++(0, iβ))−1 F+−(0, iβ)
]

E−e−βS.

It is not hard to see that this equals π ′− diag
(
λ0
)

P J
−+ E+Sγ− , where γ− := inf{n ≥ 1 :

Jn ∈ I−}. To compute E+Sγ− , we condition on the first step to see that the first claim
follows:

E+Sγ− = E+S1 + P J
++ E+Sγ− .
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The independence of the other N− − 1 equations is a consequence of the fact that

π ′
− diag(λ0)P J

−+
(
I++ − P J

++
)−1

E+S1 < 1,

due to the stability constraint π ′
J ES1 < 0. 
�

2.5 The Distribution of (S, T, J)

In this subsection, we suppose that π ′
J ES1 > 0, so that S drifts to +∞. We are

interested in the minimum of S and related quantities.
To interpret the result, it is important to note that the matrix β I−− − Qα−− is

always nonsingular for β ≥ 0, since Qα−− is a defective intensity matrix.

Theorem 2.2 For α, β ≥ 0, we have J ∈ I+ and

E
[
e−αT+βS; J ∈+] =

[(
I++
0−+

)
+
(

Pα+�−
I−−

)
(β I−− − Qα

−−)−1 diag (μαλα) P J
−+

]

× diag
(

1+ − P0
+�−1−

)
.

In particular, for j ∈ I and k ∈ I+, we have the matrix-exponential form

P j(S < x; J = k) =
(

1 − e′
k P0

+�−1−
)

e′
j

(
P0+�−
I−−

)
e− Q0−−x diag(λ0)P J

−+ek,

where x ≤ 0.

Proof The Markov property shows that for α, β ≥ 0,

E+
[
e−αT+βS; J ∈+] = Pα

+�− E−
[
e−αT+βS; J ∈+]+ diag(P+(S = 0))

and

E−
[
e−αT+βS; J ∈+] = diag

(
μαλα

λα + β

)
P J

−+ E+
[
e−αT+βS; J ∈+]

+ diag
(

μαλα

λα + β

)
P J

−− E−
[
e−αT+βS; J ∈+] .

Substitution of the first equation in the second yields, with the expression for Qα−− in
Proposition 2.3,

E−
[
e−αT+βS; J ∈+] = (β I−− − Qα

−−
)−1 diag (μαλα) P J

−+ diag(P+(S = 0)).

The proof is finished after observing that P+(S = 0) = 1+ − P0+�−1−. Note that this
vector is nonzero as a result of the drift condition. 
�

3 Markov-additive Processes and their Extremes

In this section, we study the extremes of a continuous-time Markov-additive process
X with nonnegative jumps and finitely many background states. Loosely speaking,
such a process is characterized by a number of Lévy processes (with nonnega-
tive jumps) Z 1, . . . , Z N and a continuous-time Markov process with state space
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{1, . . . , N}; X behaves as Z j when the Markov process is in state j. Our goal is to find
the Laplace transform of the maximum and minimum of X, jointly with the epoch at
which they are attained and the state of the Markov process at that moment.

We first give a precise definition of the process under study (Section 3.1). Section
3.2 introduces an embedded process that falls in the framework of Section 2, so
that the maximum of the embedded process equals the maximum X of the original
process. This embedding facilitates the computation of the desired transform, see
Section 3.3. For the minimum, a similar procedure can be followed; the analysis of X
may be found in Section 3.4.

3.1 Definitions and Assumptions

A continuous-time Markov-additive process {(X(t), I(t)) : t ≥ 0} is defined on some
probability space (�′,F ′,P) and has càdlàg paths with values in (R, {1, . . . , N}). We
only define Markov-additive processes with nonnegative jumps and a finite number
of background states, but we refer to the classical papers (Arjas and Speed 1973;
Çinlar 1972; Ney and Nummelin 1987) for the construction and properties of general
Markov-additive processes.

Under P, {I(t) : t ≥ 0} is a (finite-state) continuous-time Markovian background
process, which stays in state j for an exponentially(q j) distributed amount of time,
and then jumps according to some transition matrix PI . We allow I to jump to
the same state. We assume that I is irreducible, so that there is a unique sta-
tionary distribution π I (i.e., π ′

I diag(q)PI = π ′
I diag(q)). While I(t) = j, the process

X(t) behaves under P as a spectrally positive (i.e., without negative jumps) Lévy
process Z j, with Laplace exponent

ψ−Z j(β) := logE exp(−βZ j(1))

= 1

2
σ 2

j β
2 − c jβ −

∫
(0,∞)

(
1 − e−βy − βy1(0,1)(y)

)
 j(dy),

where the Lévy measure  j is such that
∫
(0,∞)

(1 ∧ y2) j(dy) < ∞, and also c j ∈ R

and β, σ j ≥ 0. In particular, X(0) = 0. The reason for writing ψ−Z j instead of ψZ j is
that we try to follow the notation of Bertoin (1996, Ch. VII) as closely as possible.
Let ψ−Z (β) be the vector with elements ψ−Z j(β), j = 1, . . . , N.

We need some further notation related to ψ−Z j , where j is such that the sample
paths of Z j are not monotone. Then we have ψ−Z j(β) → ∞ as β → ∞. Moreover,
by Hölder’s inequality, ψ−Z j is strictly convex. Let �−Z j(0) be the largest solution
of the equation ψ−Z j(β) = 0, and define �−Z j (the ‘inverse’ of ψ−Z j) as the unique
increasing function �−Z j : [0, ∞) → [�−Z j(0),∞) such that ψ−Z j(�−Z j(β)) = β for
β > 0.

When the background process I jumps from j to k, the process X jumps according
to some distribution Hjk on [0,∞). The matrix of the Laplace transforms correspond-
ing to these ‘environmental jumps’ is written as H, i.e., element ( j, k) of the matrix
H(β) equals

∫
[0,∞)

e−βx Hjk(dx).
In the spirit of Section 2.2, we use the matrix notation

E
[
e−β X(t); I(t)

] := {E j
[
e−β X(t); I(t) = k

] : j, k = 1, . . . , N
}
,
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and similarly for other quantities than X(t). We draw attention on the difference
between E, the matrix version of the ‘continuous-time’ mean E corresponding to P,
and E, the matrix version of the ‘discrete-time’ mean E corresponding to P.

Using this matrix notation, the definition of (X, I) entails that E
[
e−β X(t); I(t)

]
is

given by etψ−X (β), where

ψ−X(β) = diag(ψ−Z (β)) − diag(q)
(
I − PI ◦ H(β)

)
, (9)

with ◦ denoting componentwise (Hadamard) matrix multiplication. Note that for
instance Asmussen (2003) uses a slightly different (yet equivalent) representation,
but ours is more convenient in the context of this paper. The representation in Eq. 9
can be proven along the lines of the proof of Proposition XI.2.2 in Asmussen (2003),
by setting up a differential equation for E j[e−β X(t); I(t) = k].

Each of the states j = 1, . . . , N can be classified as follows. If σ j = 0 and c j ≥ 0,
we call j a subordinator state. Special cases are zero-drift states (σ j = c j = 0 and
 j ≡ 0), compound Poisson states (σ j = c j = 0,  j(R+) ∈ (0,∞)), and strict subor-
dinator states1 (all other subordinator states). If σ j = 0, c j < 0, and  j(R+) ∈ (0,∞),
we call j a negative-drift compound Poisson state. We say that j is a negative-drift state
if σ j = 0, c j < 0, and  j ≡ 0. The other states are called Brownian states; these are
characterized by either σ j > 0 or c j < 0,  j(R+) = ∞. Therefore, if j is a Brownian
state, it is not necessary that Z j contains a Brownian component, but the terminology
is convenient.

There is no one-to-one correspondence between ψ−X and tuples (ψ−Z , q, PI, H).
For instance, consider the situation that Z j corresponds to the sum of a Brownian
motion and a compound Poisson process. Then one could equivalently do as if there
are environmental jumps at the jump epochs of the Poisson process; by also adapting
the transition matrix, one obtains an alternative description of the same stochastic
process.

Consequently, since I is allowed to make self-transitions, without loss of generality
we can assume that there are neither compound Poisson states nor negative-drift
compound Poisson states. Indeed, these states can be replaced by zero-drift or
negative-drift states, provided the Hjj and q j are changed appropriately. Throughout,
we suppose that there is at least one negative-drift state or Brownian state after this
simplification (if X drifts to −∞, then this is a consequence of the spectral positivity).

The above observations allow a partitioning of the states 1, . . . , N of the back-
ground process into

(i) the strict subordinator states, labeled ‘s’;
(ii) the zero-drift states, labeled ‘z’;

(iii) the negative-drift states, labeled ‘n’; and
(iv) the Brownian states, labeled ‘B’.

In the following, we always assume that the state space {1, . . . , N} of I is partitioned
in the order s–z–n–B. This allows us to use block matrix notation as in Section 2.2.
Sometimes, it is unnecessary to distinguish between s- and z-states, and it is therefore
convenient to refer to s- and z-states as s-states. If we use this s-notation in block

1It is customary in the literature to use the term strict subordinator for a subordinator with an infinite
lifetime; here, it stands for a strictly increasing subordinator.
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matrices, we suppose that the order is s–z. Similarly, we refer to n- and B-states as
∼-states, again preserving the order.

We also need another probability measure on (�′,F ′), denoted by P̂. Under P̂,
(X, I) is a Markov-additive process with Laplace exponent

ψ̂−X(β) := diag(π I)
−1ψ ′

−X(β)diag(π I). (10)

That is, working with (X, I) under P̂ amounts to working with the time-reversed
Markov-additive process under the measure P, and vice versa.

We define

X(t) := sup{X(s) : 0 ≤ s ≤ t},
F

X
(t) := inf{s < t : X(s) = X(t) or X(s−) = X(t)},

X(t) := inf{X(s) : 0 ≤ s ≤ t},
F X(t) := inf{s < t : X(s) = X(t) or X(s−) = X(t)}.

We also set I(t) := I(F
X
(t)) and I(t) = lims↑F X (t) I(s). It is our aim to study these

quantities as t → ∞, in which case we omit the time index. We study the joint P-

distributions of (X, F
X
, I) (in Section 3.3) and (X, F X , I) (in Section 3.4). We rely

extensively on two fundamental properties of Lévy processes, which we recall in the
next subsection.

3.2 Intermezzo on Lévy Processes

In this intermezzo, we consider a Lévy process Z (i.e., there is no background
process) with killing at an exponentially distributed epoch. We let eq denote the
killing epoch with mean 1/q, and suppose that it is independent of Z . We also sup-
pose that the process does not have negative jumps, that its paths are not monotone,
and that it is not a compound Poisson process. Note that, in the terminology of
the previous subsection, Lévy processes arising from ‘Brownian states’ satisfy this
property. Moreover, the inverse �−Z of the Laplace exponent is then well-defined.

We start with two observations that actually hold in greater generality, see for

instance (Bertoin 1996, Ch. VI). The quantities Z , F
Z
, Z , and F Z are defined

similarly as for X. First, we have the interesting identities: for α, β ≥ 0,

Ee−αF Z (eq)+βZ (eq) = Ee−αF Z (eq)Ee−βZ (eq+α),

Ee−α
(

eq−F
Z

(eq)
)
−β(Z (eq)−Z (eq)) = Ee−α

(
eq−F

Z
(eq)
)
Ee−β(Z (eq+α)−Z (eq+α)),

which can be deduced from Eq. VI.1 in conjunction with Lemma II.2 and Proposi-
tion VI.4 of Bertoin (1996).

Moreover, due to Theorem VI.5(i) of Bertoin (1996), there are two ways of
decomposing (eq, Z (eq)) into two independent vectors:

1. • a vector (σ, U) := (F
Z
(eq), Z (eq)) related to the process till time F

Z
(eq),

and
• an independent second vector (τ,−D) := (eq − F

Z
(eq), Z (eq) − Z (eq)) re-

lated to the process between F
Z
(eq) and eq.



Methodol Comput Appl Probab (2011) 13:221–267 239

2. • a vector (F Z (eq), Z (eq)) related to the process till time F Z (eq) (this vector
has the same distribution as (τ,−D)), and

• an independent second vector (eq − F Z (eq), Z (eq) − Z (eq)) related to the
process between time F Z (eq) and eq (this vector has the same distribution as
(σ, U)).

For applications of this splitting at the maximum (or minimum), we refer to Dȩbicki
et al. (2007), Dieker (2006) and references therein. In the special case of no jumps,
Asmussen (1995) exploits this property in the context of Markov-additive processes.

Due to the assumptions that Z is spectrally positive and that its paths are not
monotone, Z (eq+α) − Z (eq+α) has an exponential distribution; see Theorem VII.4
of Bertoin (1996). In that case, the joint transforms of the ‘upward’ part (σ, U) and
‘downward’ part (τ,−D) are known: for α, β ≥ 0, (α, β) �= (0, 0), we have

Ee−ατ−β D = �−Z (q)

�−Z (q + α) + β
,

and if furthermore β �= �−Z (q + α),

Ee−ασ−βU = q (�−Z (q + α) − β)

�−Z (q) (q + α − ψ−Z (β))
. (11)

Here, ψ−Z is the Laplace exponent of −Z as defined in the previous subsection.
The crucial observation is that (τ, D) satisfies Assumption 2.1 with λα = �−Z (q + α)

and μα = �−Z (q)/�−Z (q + α). This property facilitates the application of the results
of Section 2 in the context of continuous-time Markov-additive processes, as we
demonstrate in the next subsection.

3.3 The Distribution of (X, F
X
, I)

We have collected all the necessary prerequisites to present an embedding that allows

us to characterize the distribution of (X, F
X
, I). It is our aim to apply the analysis

of Section 2 to the embedded process, and to reformulate the results in terms of the
characteristics of the process X as defined in Section 3.1.

Throughout this subsection, we suppose that π ′
IEX(1) < 0, but, as in Section 2,

the majority of our results only requires the weaker assumption that X drifts to −∞
almost surely. This holds in particular for our main result, Theorem 3.1.

To find the distribution of (X, F
X
, I), we do not monitor the full process (X, I),

but we record time and position at ‘special’ epochs only. For s-states and n-states,
these epochs are chosen as follows.

• The start of a sojourn time in an s-state or an n-state gives rise to s-points and n-
points respectively. Note that, by right-continuity of the sample paths, the value
of X at these epochs includes the displacement due to a possible environmental
jump.

• We also record the value of X right before the end of the sojourn times in s-states
and n-states. The environmental jump at that epoch is now excluded.

For B-states, we record the value of X at three epochs.

• The first is the start of a sojourn time in these states. The resulting points are
called B-points.
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• The second is the epoch for which the maximum within the sojourn time is
attained. These points are called A-points.

• Finally, as for the other states, we record the value right before the end of the
sojourn time.

Note that we have thus constructed a discrete-time stochastic process from X that
still contains all information on the maximum of X. We call this process the embed-
ded process. Importantly, as a result of the independence discussed in Section 3.2, the
embedded process fits into the framework of Section 2 when the space-component of
the embedded points is recorded in S and the time-component in T. The embedding
is illustrated in Fig. 1; in the realization of X, a negative-drift compound Poisson
state has been replaced by a negative-drift state with environmental jumps and self-
transitions. Note that some of the embedding points remain unlabeled, since we do
not need to refer to these points. As an aside, we remark that the above embedding
differs from an embedding recently introduced by Asmussen et al. (2004) for special
Markov-additive processes.

Motivated by this embedding, we refer to n-points and A-points as −-points (as
from these points the process moves down), in accordance with the terminology of
Section 2.2. The order is n − A. Observe that we always incorporate environmental-
jump points into the embedded process, even if there are no jumps with probability
one. The value of the process is then simply left unchanged.

Application of this labeling shows that we have

λα :=
(

vec
(

qn+α

−cn

)
vec(�−Z (qB + α))

)
, μα :=

⎛
⎝ vec

(
qn

qn+α

)
vec
(

�−Z (qB)

�−Z (qB+α)

)
⎞
⎠ . (12)

The notation in Eq. 12 should be interpreted as follows. First, qn is the block vector
of q corresponding to n-points; similarly cn is the block vector of the drift vector c
corresponding to n. Then (qn + α)/(−cn) is the vector with element j equal to (qn, j +
α)/(−cn, j). The vector qB is defined analogously to qn. With k = 1, . . . , N being the
index of the j-th B-state, the j-th element of �−Z (qB + α) is �−Z k(qB, j + α). The
notation used in the definition of μα should be read in a similar fashion.

state: BB nn

X

z

B

B

A
A

n

n

S

z

Fig. 1 The left-hand diagram represents the process X with its embedding points, along with the
state labels. The discrete-time embedded process S is given in the right-hand diagram, along with the
point labels
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It is our aim to find a characterization of (X, F
X
, I) which can be regarded as

the analog of Corollary 2.3. In principle, its Laplace transform can be deduced from
the above embedding and the results of Section 2. However, this leads to results in
terms of the embedded process as opposed to the continuous-time process X. It is
our primary goal to obtain results in terms of X, and for this we need some further
definitions related to displacements of the process X. For α, β ≥ 0, we set

Fs�M(α, β) := (α Iss − ψ−Xss(β)
)−1 diag(qs)PI

sM ◦ HsM(β),

where ψ−Xss is the (s, s)-block in the matrix ψ−X and ‘M’ can be replaced by any
of the blocks s, z, n, or B. The matrices Fs�M(α, β) and Fz�M(α, β) are defined
similarly, with s replaced by s and z respectively. It is convenient to abbreviate n-
states and B-states as ∼-states, and to impose the order n − B in block matrices.
Therefore, in particular, Fs�∼ characterizes the displacement in time and space when
we start in an s-state and stay in s-states until the background process jumps to a
∼-state. The change in the position due to the latter environmental jump is included,
but the environmental jump into the first s-state is not. This jump appears in the
following definitions: we set for α, β ≥ 0,

F↑s�M(α, β) := PI
∼s ◦ H∼s(β)Fs�M(α, β) + PI

∼M ◦ H∼M(β),

where again s, z, n, or B can be substituted for ‘M’. The first term should be
interpreted as zero if there are no s-states. The measure-valued matrices Fα

↑s�M(dx)

are defined similarly as in Section 2.3. Importantly, we have now defined F↑s�∼(α, β),
which corresponds to the displacement in time and space between the end of a
sojourn time in a ∼-state and the beginning of a sojourn time in the next ∼-state,
including both environmental jumps.

In analogy with the discrete case, the (Markovian) last-passage process of X plays
a key role in our analysis. This process takes values in ∼-states. It follows from the
analysis in Section 2 that one can associate a matrix Kα

−− to the embedded process.
Let us define

Kα
∼∼ := diag

(
q∼

μαλα

)
Kα

−− diag
(

q∼
μαλα

)−1

. (13)

The matrix Kα
∼∼ plays a pivotal role in the remainder. It is therefore desirable to have

a representation for Kα
∼∼ in terms of the characteristics of X, much like Corollary 2.1.

This is presented in the next proposition, whose proof relies on the spectral analysis
of the Appendix.

Proposition 3.1 For α ≥ 0, the matrix Kα
∼∼ solves the nonlinear system

α I−− = (Kα
∼∼
)2 diag

(
σ 2∼
2

)
+ Kα

∼∼ diag(c∼)

−
∫

(0,∞)

(
I−− − eKα

∼∼ y + Kα
∼∼y1(0,1)(y)

)
diag(∼(dy))

− diag(q∼) +
∫

[0,∞)

eKα
∼∼ y diag(q∼)Fα

↑s�∼(dy).

The solution is unique within the class of matrices with eigenvalues in the closed right
complex halfplane.
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Proof Construct a ‘censored embedded’ process by monitoring the above discrete-
time embedded process only on −-points and the points immediately thereafter
(from which there is a nonnegative jump). In the notation of Section 2, we then have
N+ = N−, F++(α, β) = 0++, and F−−(α, β) = 0−−, while

F+−(α, β) = F↑s�∼(α,−iβ)diag
(
E∼e−αF

Z
(eq)+iβZ (eq)

)
,

F−+(α, β) = diag
(

μαλα

λα + iβ

)
.

Using the fact that β I−− − diag(λα) equals

diag
(

μαλα

q∼

)
× [diag(ψ−Z ∼∼(β)) − diag(q∼) − α I−−

]
diag
(
E∼e−αF

Z
(eq)−βZ (eq)

)
,

(14)
we readily find that D−− from Section 2.4 is given by

D−−(α, β)= diag
(

μαλα

q∼

)[
diag(ψ−Z ∼∼(β))− diag(q∼)

(
I−− − F↑s�∼(α, β)

)
−α I−−

]

× diag
(
E∼e−αF

Z
(eq)−βZ (eq)

)
.

The factorization identity displayed in Eq. 26 can therefore be rewritten as

diag(ψ−Z ∼∼(β)) − diag(q∼)
(

I−− − F↑s�∼(α, β)
)

− α I−−

= [β I−− + Kα
∼∼
]

M′
−−(α, β), (15)

for some matrix M′−−(α, β) which is nonsingular if (β) ≥ 0. This factorization
identity is the basis of the ‘spectral’ approach advanced in the Appendix. Using
Eq. 15, the reasoning in the Appendix can be repeated verbatim to characterize
Kα

∼∼ as the solution to the stated nonlinear system. In fact, the claim follows from
Corollary 8.1 and its proof. 
�

If one recalls the representation of the Laplace exponent of X in Eq. 9, the
above nonlinear system can be regarded as a matrix version of the equation
α = ψ−Z (�−Z (α)). A spectral analysis reveals the connection with this fixed-point
equation, as detailed in the Appendix. In fact, the appendix outlines how a spectral
analysis can also be used to find Kα

∼∼ numerically, thereby complementing the
discussion in Section 4 of Asmussen and Kella (2000).

Compared to Section 2, it is somewhat more involved to work with last-passage
matrices in the general Markov-additive setting, due to the presence of subordinator
states and Brownian states. Therefore, to formulate our next result, we set

Kα
−z :=

∫
(0,∞)

eKα
∼∼x diag(q∼)Fα

↑s�z(dx)

and

Kα
−− := Kα

∼∼ − (Kα−zFz�n(α,∞)diag(−cn)
−1 0−B

)
.



Methodol Comput Appl Probab (2011) 13:221–267 243

In these definitions, we use the subindices ‘−z’ and ‘−−’ to indicate matrix dimen-
sions, and not to refer to an embedding. We also define the α-independent matrices

Kzz :=−diag(qz)
[
Izz − PI

zz ◦ Hzz(∞)
]
, Kzn := diag(qz)PI

zn ◦ Hzn(∞)diag(−cn)
−1,

and KzA := 0zB. We remark that these matrices cannot be interpreted as intensity
matrices related to the last-passage process.

The following theorem is the main result of this subsection. It is the matrix version
of Eq. 1, and should be compared with Eq. 6. The presence of the matrix ψ−X(β) −
α I is anticipated in view of the Wiener-Hopf factorization for general continuous-
time Markov-additive processes by Kaspi (1982, Thm. 3.28), but our assumption of
nonnegative jumps allows us to obtain a more explicit result.

Theorem 3.1 For α, β ≥ 0 with (ψ−X(β) − α I) nonsingular, we have

E
[
e−αF

X−β X; I
]

= (ψ−X(β) − α I)−1

⎛
⎝ 0ss 0sz 0s−

0zs Kzz − α Izz Kz−
0−s Kα−z β I−− + Kα−−

⎞
⎠ diag

⎛
⎝ 0s

vz

v−

⎞
⎠ ,

where the vectors vz and v− are characterized in Lemma 3.1 below.

Proof Define

C(α, β) := diag
(
Ee−αeq+iβZ (eq)

)
PI ◦ H(−iβ),

so that

(I − C(α, β))−1 = [α I − ψ−X(−iβ)
]−1 diag(q + α − ψ−Z (−iβ)). (16)

First suppose that I is a Brownian state. We need to show that

EM
[
e−αF

X+iβ X; I ∈ B
]

= (ψ−X(−iβ) − α I)−1
M∼
[−iβ I−B + Kα

∼B

]
diag (vB) , (17)

where vB = vec(qB/�−Z (qB)) ◦ P A(S = 0) is given in terms of the embedded
process, and ‘M’ can be any of the background states. Since there is always a strictly
positive jump between a B-point and an A-point, we can use Eq. 6 by considering
the embedded process only on −-points. This shows that the left-hand side of Eq. 17
equals

(I − C(α, β))−1
M∼ diag

(
E∼e−αF

Z
(eq)+iβZ (eq)

)
× diag(λα + iβ)−1[−iβ I−B + Kα

−A]diag(P A(S = 0)).

We stress that Kα
−A refers to the embedded process. Some algebra in conjunction

with Eqs. 11, 13, and 16 shows that Eq. 17 holds.
Next suppose that I is a negative-drift state. We follow the reasoning used

earlier, when deriving Theorem 2.1 with Kennedy’s Wiener-Hopf interpretation. The
maximum S∗ of the embedded process should be in an n-point, after some number of
steps, say k∗. After k∗, the process should never exceed S∗. We next subtract a term
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to compensate paths for which k∗ is a strict last-passage epoch, so we use Kα−n instead
of Kα

∼n. In analogy with the case I ∈ B, this leads to the term[
α I − ψ−X(β)

]−1
M∼
[
β I−n + Kα

∼n

]
diag (vn) ,

where vn = vec(−cn) ◦ Pn(S = 0). Finally, we also need to subtract the contribution
of paths for which there is a z-point without environmental jump right before k∗. It
is readily seen that this contribution is

[
α I − ψ−X(β)

]−1
Mz Kzn diag(vn).

A similar term also plays a role when I is a zero-drift state, which we study next.
Set vz = Pz(S = 0). The ‘base’ term is

− [α I − ψ−X(β)
]−1
Mz [α Izz + diag(qz)]diag(vz),

and the term to be subtracted to correct for z points right before k∗ now becomes[
ψ−X(β) − α I

]−1
Mz diag(qz)PI

zz ◦ Hzz(∞)diag(vz). Using the definition of Kα−z, we
readily find that the term corresponding to k∗ being a strict last-passage epoch is[
α I − ψ−X(β)

]−1
M∼ Kα−z diag(vz). 
�

We now show that the vectors vz and v− can be found (up to a constant) as in
Section 2.4. Indeed, the following lemma casts Lemma 2.2 and Proposition 2.4 into
the general Markov-additive setting.

Lemma 3.1 The vectors vz and v− have the following properties:

1. vz = −K−1
zz Kz−v−, and

2. if there is more than one ∼-state, then v− is a right eigenvector of K0
∼∼ with

corresponding eigenvalue zero.

Proof Since vz = Pz(S = 0) and vn = vec(−cn) ◦ Pn(S = 0), application of
Lemma 2.2 to the discrete-time embedded process yields

vz = PI
zz ◦ Hzz(∞)vz + PI

zn ◦ Hzn(∞)diag(−1/cn)vn,

which is readily rewritten as vz = −K−1
zz Kznvn, and this is the first assertion.

For the second claim, we obtain Kα
−− P−(S = 0) = 0− by applying Proposition 2.4

to the embedded process. Then we use Eq. 13 and v− = diag(q∼/λ0)P−(S = 0). 
�

Next we formulate a result in the same spirit as Corollary 2.4, which immediately
follows from Theorem 3.1 and Lemma 3.1. It is the Markov-additive version of Eq. 1
for α = 0. A closely related formula has been obtained by Asmussen and Kella (2000,
Eq. 4.1), who phrase their result in terms of the reflected process and a local-time
vector. The precise relationship between the two formulas is further investigated in
Section 4.2.

Corollary 3.1 For β > 0 with ψ−X(β) nonsingular, we have

Ee−β X = βψ−X(β)−1

(
0s

v−

)
.

The vector v− is determined by Lemma 3.1 and the next normalization lemma,
which is an analog of Lemma 2.3. Note that this lemma corrects Eq. 4.2 in Asmussen
and Kella (2000).
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Lemma 3.2 We have

−π ′
IEX(1) = π I(∼)′v−.

Proof Since π I satisfies π ′
I diag(q)PI = π ′

I diag(q), Corollary 3.1 shows that for
β > 0,

1

β
π ′

I

[
diag(ψ−Z (β)) − diag(q)

(
PI − PI ◦ H(β)

)]
Ee−β X = π I(∼)′v−.

Now let β → 0 to obtain that −π ′
I

[
EZ (1) + diag(q)PI ◦ ∫ xH(dx)

] = π I(∼)′v−.

Using Corollary XI.2.9(b) and (the second equality in) Corollary XI.2.5 of Asmussen
(2003), it is not hard to see that the left-hand side equals −π ′

IEX(1). 
�

3.4 The Distribution of (X, F X , I)

In this subsection, we study the minimum of X if it drifts to +∞. More specifically,
we establish the analogs of Proposition 3.1 and Theorem 3.1. We suppose throughout
this subsection that π ′

IEX(1) > 0.
As before, we do not monitor the full process (X, I), but we only record for s-

states and n-states the time and position at the start (leading to s-points and n-points,
respectively) and immediately before the end of the sojourn time, and for B-states
in addition the minimum within the sojourn times (leading to A-points). Note that
the embedding is different from the one used in the previous subsection. In fact, in
view of the conventions in Section 2.2, the −-points are labeled differently: n-points
and B-points are now −-points. Since the underlying process X is the same as in the
previous subsection, we continue to refer to n-states and B-states (i.e., for the process
X) as ∼-states, and we still use the same F-quantities since these do not depend on
the embedding.

For fixed α ≥ 0, a matrix Qα∼∼, related to the first-passage process for the
embedded process, plays a similar role as Kα

∼∼ in the previous subsection. The
characterization of Qα∼∼ given in the next proposition is the analog of Proposition 3.1.

Proposition 3.2 For α ≥ 0, the matrix Qα∼∼ solves the nonlinear system

α I−− = diag
(

σ 2∼
2

) (
Qα

∼∼
)2 + diag(c∼)Qα

∼∼

−
∫

(0,∞)

diag(∼(dy))
(
I−− − eQα∼∼ y + Qα

∼∼y1(0,1)(y)
)

− diag(q∼)

[
I−− −

∫
[0,∞)

Fα
↑s�∼(dy)eQα∼∼ y

]
.

The solution is unique within the class of matrices with eigenvalues in the open right
complex halfplane.

Proof The proof is similar to the proof of Proposition 3.1. Again we introduce a
censored embedded process by only monitoring the embedded process on −-points
and the points immediately thereafter. Note that this results in a different censored
embedded process than in the previous subsection, since the underlying embedded
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processes differ. In the notation of Section 2, the censored embedded process has
N+ = N−, F++(α, β) = 0++, and F−−(α, β) = 0−−, while for α, β ≥ 0,

F+−(α, β) = diag
(
E∼e−αF

Z
(eq)+iβZ (eq)

)
×
[
PI

∼s ◦ H∼s(−iβ)Fs�∼(α,−iβ) + PI
∼∼ ◦ H∼∼(−iβ)

]
,

F−+(α, β) = diag
(

μαλα

λα + iβ

)
.

For fixed α ≥ 0, the first-passage process for the embedded process is a (defective)
Markov process, and we write Qα∼∼ for its intensity matrix.

In conjunction with Eq. 14, given the current embedding, D−− from Section 2.4
can be written as

D−−(α, β) = diag(u−)
[

diag(ψ−Z ∼∼(β)) − diag(q∼)
(

I−− − F↑s�∼(α, β)
)

− α I−−
]
,

for some (known) vector u−. Factorization identity Eq. 27 can thus be rewritten as

diag(ψ−Z ∼∼(β))− diag(q∼)
(

I−−−F↑s�∼(α, β)
)

− α I−− = N ′
−−(α, β)

[
β I−−+Qα

∼∼
]
,

for some matrix N ′−−(α, β) which is nonsingular if (β) ≥ 0. This factorization is the
Markov-additive analog of Eq. 27, which is the starting point for the spectral analysis
for Qα−− in the Appendix. The arguments leading to Corollary 8.1 and its proof can
be repeated here. 
�

The preceding proposition generalizes the results in Section 5.3 of Miyazawa
and Takada (2002) and Proposition 2(i) of Pistorius (2006). In comparison with
Proposition 3.1, we note that the place of the matrices Qα∼∼ and exp

(
Qα∼∼x

)
is

different: instead of premultiplied, they are now postmultiplied. This is in line with
the correspondence between Corollaries 2.1 and 2.2.

We need some further notation to give the Laplace transform of (X, F X , I). We
define the measure Fα

ss�∼(dx) through its Laplace transform

Fss�∼(α, β) := diag
(
Ese−αeq+iβZ (eq)

) [
PI

ss ◦ Hss(−iβ)Fs�∼(α, β) + PI
s∼ ◦ Hs∼(−iβ)

]
,

and set

P̃α
s∼ =

∫
(0,∞)

Fα
ss�∼(dx)eQα∼∼x. (18)

Our next result is the main result of this subsection.
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Theorem 3.2 For α, β ≥ 0, we have

E
[
e−αF X+β X; I

]
= diag

⎛
⎝ 1s − P̃0

s∼1−
1z − Fz�∼(0,∞)1− − Fz�s(0,∞)P̃0

s∼1−
0−

⎞
⎠

+
⎛
⎝ P̃α

s∼
Fz�s(α,∞)P̃α

s∼ + Fz�∼(α,∞)

I−−

⎞
⎠(β I−− − Qα

∼∼
)−1

× diag(μαλα)
(

0−s −diag(diag(λ0)−1Q0∼∼1−)
)
.

Proof Consider the censored embedding introduced in the proof of Proposition 3.2.
It is readily seen that

E∼
[
e−αF X+β X; I ∈∼

]
= E−

[
e−αT+βS; J ∈+] ,

and the latter is readily found with Theorem 2.2. The other claims follow along the
lines of the proof of Theorem 2.2. 
�

We conclude this section with a relationship between Qα∼∼ and K̂α

∼∼, which can
be regarded as the analog of Eq. 3. The matrix K̂α

∼∼ is defined as Kα
∼∼, but with

the dynamics of the Markov-additive process specified by the time-reversed Laplace
exponent ψ̂−X instead of ψ−X . The next lemma formalizes the intuition that the last-
passage matrices under the measure P̂ are closely related to the first-passage matrices
under the measure P.

Lemma 3.3 For α ≥ 0, we have

Qα
∼∼ = diag (π I(∼))−1

[
K̂α

∼∼
]′

diag(π I(∼)). (19)

Proof First we note that, since their proofs rely on the appendix, to apply
Propositions 3.1 and 3.2 we do not need that X drifts to −∞ or +∞, respec-
tively. The matrix K̂α

∼∼ satisfies the system given in Proposition 3.1, but with
Fα

↑s�∼(dx) replaced by its time-reversed counterpart F̂α
↑s�∼(dx). Using F̂↑s�∼(α, β) =

diag (π I(∼))−1 F′
↑s�∼(α, β)diag (π I(∼)) , the matrix on the right-hand side of Eq. 19 is

seen to satisfy the same matrix equation as Qα∼∼ given in Proposition 3.2. Uniqueness
of its solution proves the claim. 
�

4 The Fluid Queue: Theory

In this section, we use the theory developed in the previous sections to analyze a
single fluid queue. We stress that our treatment of the single fluid queue is of crucial
importance for understanding the network results of Section 6. In a fluid queue,
work (fluid) arrives at a storage facility, where it is gradually drained; if the input
temporarily exceeds the output capacity, then work can be stored in a buffer.

More precisely, the system dynamics of the fluid queue are as follows. Let
{(A(t), I(t)) : t ≥ 0} be a continuous-time stochastic process, defined on some
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measurable space, such that for any t ≥ 0, A(t) is the amount of work offered to
the system in the interval [0, t] and I(t) is the state of some background process at
time t. The buffer can be interpreted as a fluid reservoir, to which input is offered
according to the input process A. The buffer is drained at a constant rate r, i.e., a
tap at the bottom of the fluid reservoir releases fluid at rate r as long as the buffer is
nonempty. After the fluid is processed, it immediately leaves the system. Throughout,
we suppose that the buffer capacity is unlimited.

We write W(t) for the amount of fluid in the buffer at time t, and call this the buffer
content. The buffer-content process is also known as a (stochastic) storage process.
A busy period starts when the buffer becomes nonempty (i.e., the buffer content
becomes positive). The age of the busy period at time t, written as B(t), indicates how
long ago a busy period started; in a formula, this means that

B(t) := t − sup{s ≤ t : W(s) = 0}.

It is our aim to study the distribution of (W(t), B(t), I(t)) in steady-state, i.e., as t →
∞, for a number of different input processes. We abbreviate W(∞), B(∞), and I(∞)

as W, B, and I respectively; their existence follows from assumptions that we impose
later on.

4.1 Markov-modulated ON/OFF Input

Suppose that the input process corresponds to a single source that is driven by
a background process I that switches between N states. The transitions of the
background process are governed by an irreducible Markov chain J, defined through
the transition probability matrix P J := {pJ

jk : j, k = 1, . . . , N}; the sojourn times in
the each of the N states are specified below. Suppose that J and all other random
objects in this subsection are defined on the probability space (�,F , P).

If the background process is in state j for j = 1, . . . , N − 1, it feeds work into
the reservoir at a constant rate R j < r. Since the fluid level decreases during these
periods, we call the corresponding states OFF-states. The lengths of the sojourn times
in these states are all mutually independent. Moreover, the sojourn time in OFF-state
j is exponentially distributed with parameter q j.

If the source is in state N, the so-called ON-state, the source generates work
according to a generic stochastic process {AON(t) : t ≥ 0}. In order to ensure that the
buffer content does not decrease (strictly) while the source emits fluid, we suppose
that AON(t) ≥ rt for any t ≥ 0 almost surely. The ON-period is terminated after
some period distributed as the generic random variable T(k) > 0 (‘killing time’),
independent of AON. After this ON-period, I always makes a transition to an OFF-
state (i.e., J has no self-transitions in state N). We suppose that ET(k) < ∞. In
principle, the probability distribution governing the transitions to OFF-states may
depend on (the whole trajectory of) AON and T(k), but we suppose for simplicity that
this is not the case. The ON-periods are mutually independent, and also independent
of the OFF-periods.

To characterize the distribution of (W, B, I), we use an embedding and the theory
from Section 2. Let T(k)∗ be distributed as the elapsed time that the source is ON, if
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we observe the system in steady state in an ON-state. That is, it has the integrated-tail
distribution

P(T(k)∗ > y) = 1

ET(k)

∫ ∞

y
P(T(k) > x)dx,

where y ≥ 0. We also need the expected sojourn time between ON-states, EVOFF.
Standard formulas for moments of phase-type distributions show that

EVOFF = P J
N−
(
I−− − P J

−−
)−1

vec
(

1

q−

)
,

where the beginnings of the OFF-sojourn times and ON-sojourn times are labeled
as −-points and +-points respectively, as in Section 2. The quantity EVOFF plays an
important role for the probability pk that the source is in state k when the system is
in steady state. We find that

pk = EVOFF

EVOFF + ET(k)

πJ(k)

π J(−)′ vec(qk/q−)
, k = 1, . . . , N − 1;

pN = ET(k)

(EVOFF + ET(k))
. (20)

The stability condition of this model is

EAON(T(k))

EVOFF + ET(k)
+ R′

− p− < r.

We write P̂
J = { p̂J

jk : j, k = 1, . . . , N} for the time-reversed transition matrix of

the Markov process J, and we define P̂ such that (S, T, J) has the transition kernel

p̂((s, t, j), (s + dv, t + dw, k))

=
{

p̂J
jkP (U ∈ dv, σ ∈ dw) j = N and k = 1, . . . , N;

p̂J
jkP
(−Dj ∈ dv, τ j ∈ dw

)
j = 1, . . . , N − 1 and k = 1, . . . , N,

with

Ee−ασ−βU = E

[
e−αT(k)−β[AON(k)−rT(k)]

]
, Ee−ατ j−β D j = q j

q j + α + β(r − R j)
.

We next express the distribution of (W, B, I) in terms of the distribution of (S, T).

Proposition 4.1 For k = 1, . . . , N − 1, ω, β ≥ 0, we have

E
[
e−ωW−β B; I = k

] = pkÊke−ωS−βT ,

and

E
[
e−ωW−β B; I = N

] = pNE

[
e−(β−ωr)T(k)∗−ωAON(T(k)∗)

]
P̂

J
N− Ê−e−ωS−βT .

Proof The proof relies elements from regenerative-processes theory, cf. the con-
struction used in Theorem 4 in Kella and Whitt (1992a). We here specialize to just
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W; the proof of the stated result, which also covers the age of the busy period B as
well as the state of the background process I, works analogously.

• The classical Reich formula states that, denoting W (t) := −Â(−t) − rt,

W d= sup
t≥0

W (t),

with Â(−t) being the work generated in the interval [−t, 0], where the system
started in steady state at time −∞. This entails that the maximum value attained
by the process W (t) = −Â(−t) − rt needs to be analyzed; realize that increasing
t corresponds to looking backward in time.

• To analyze supt≥0 W (t), the state of the background process at time zero is sam-
pled from p (as determined in Eq. 20). Two possibilities arise: the background
process is in the ON-state N, or in one of the OFF-states 1, . . . , N − 1:

E[e−ωW] = pNEN

[
exp

(
−ω sup

t≥0
W (t)

)]
+

N−1∑
k=1

pkEk

[
exp

(
−ω sup

t≥0
W (t)

)]
.

– The initial state is N. Using the argumentation of Kella and Whitt (1992a),
it is seen that the background process stays in this state for a period that has
the integrated-tail distribution of T(k); the increment of W (t) is distributed
as AON(T(k)∗) − rT(k)∗ (which is nonnegative, as N is ON-state). The next
state, say j (which is necessarily an OFF-state), is sampled using the time-
reversed transition probabilities P̂

J
N−. It is readily seen that the supremum

of W (t) over t ≥ 0 equals AON(T(k)∗) − rT(k)∗ increased by

sup
t>T(k)∗

−Â(−t) − rt + Â(−T(k)∗) + rT(k)∗, (21)

where the ‘initial’ state (that is, the state at time −T(k)∗) of the background
process is j. Then realize that Eq. 21 is distributed as supt≥0 W (t), but now
started in j rather than N.

– The initial state is k = 1, . . . , N − 1. It stays in this initial state for a period
that has the integrated-tail distribution of τ k, which is again exponential with
parameter qk; as a consequence we could do as if the background process had
just jumped to k at time zero. The supremum of W (t) over t ≥ 0 can thus
immediately be expressed in terms of the time-reversed embedded process.

The stated follows by combining the above findings. 
�

Expressions for the Êke−ωS−βT in Proposition 4.1 for k = 1, . . . , N − 1 can be
found with the theory of Section 2. Hence, in order to use the above theorem, it
remains to find an expression for the transform of (T(k)∗, AON(k∗)); from Scheinhardt
and Zwart (2002) we have

E

[
e−αT(k)∗−β AON(T(k)∗)

]
= 1

Ek
E

[∫ T(k)

0
e−αt−β AON(t)dt

]
. (22)
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When specialized to the distribution of W and using Eq. 22, Proposition 4.1
reduces to

Ee−ωW =
(

p′
− + pN

ET(k)
E

[∫ T(k)

0
e−ω[AON(t)−rt]dt

]
P̂

J
N−

)
Ê−e−ωS.

In Boxma et al. (2001), a similar expression has been interpreted as a decomposition
of W in terms of a clearing process and an independent dam process.

4.2 Markov-additive Input

In this subsection, we suppose that there is an irreducible Markov process I such
that (A, I) is a Markov-additive process on some probability space (�′,F ′,P).
We define X(t) := A(t) − rt, the free process. Clearly, (X, I) is a Markov-additive
process as well. Even though Proposition 4.2 below holds in much greater generality,
we suppose throughout that X does not have negative jumps. Consequently, this
subsection relies extensively on Theorem 3.1. We do not analyze the spectrally
negative case, but it could be analyzed with Theorem 3.2; further details can be found
in Miyazawa and Takada (2002).

In Fig. 2, we have plotted a possible realization of the process W. Note that in this
diagram there are Brownian states, subordinator states, and negative-drift states.

We now establish the precise relationship between the buffer-content process
and extremes of the free process, which follows from the reasoning in Section
II.3 and Section VI.7 of Asmussen (2000); see also Section 4 of Miyazawa and
Takada (2002). Again, (B(0), W(0), I(0) does not have influence on the behavior
of (B(t), W(t), I(t)) as t → ∞, a property that is intuitively clear. The result follows
by the same arguments as those used for Markov-modulated ON/OFF input, but no
‘residual’ (or ‘clearing-model’) quantities are needed since the sojourn times of I
are exponential. We write P̂k for the law of the Markov-additive process (X, I) with
I(0) = k and Laplace exponent ψ̂−X defined in Eq. 10.

Proposition 4.2 Suppose that π ′
IEX(1) < 0. Then (W, B) is a finite random vector,

and for any ω, β ≥ 0, k = 1, . . . , N, we have

E
[
e−ωW−β B; I = k

] = πI(k)Êke−βF
X−ωX .

Fig. 2 A realization of W
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We now work out the preceding proposition for the distribution of (W, I), since
the resulting formula is particularly appealing. Corollary 3.1 shows that for ω ≥ 0,
provided ψ̂−X(ω) is nonsingular,

diag(π I)Êe−ωX = ωdiag(π I)ψ̂
−1
−X(ω)

(
0s

v̂−

)
= ω
[
ψ ′

−X(ω)
]−1
(

0s

u−

)
,

where we set u− := π I(∼) ◦ v̂− (recall that ∼-states stand for n-states and B-states).
The vector v̂− is defined in the same way as the vector v−-vector, but with P replaced
by P̂. With Proposition 4.2, this leads immediately to the identity

E
[
e−ωW; I

] = ω
(

0′
s u′−
)
ψ−X(ω)−1 (23)

for ω ≥ 0 with ψ−X(ω) nonsingular. This formula is Eq. 4.1 of Asmussen and Kella
(2000), who interpret u− in terms of local times. The following observation, however,
is new. By combining Lemma 3.3 with Lemma 3.1, it readily follows that u− must be a
left eigenvector of Q0∼∼ (corresponding to the simple eigenvalue zero); this uniquely
determines u− up to a constant. This constant can be found by writing down the
formula for Ee−ωW from Eq. 23, using 1 = PI1, and letting ω → 0 in the resulting
expression.

Motivated by Proposition 4.2, we next characterize the P̂-distribution of

(X, F
X
, I) (the last component is not required here, but it is needed in Section 6).

To avoid the introduction of yet more matrices, we suppose that there are no zero-
drift states. The following result then follows immediately from Theorem 3.1 and
Lemma 3.3.

Corollary 4.1 Suppose that π ′
IEX(1) < 0 and that there are no zero-drift states. We

then have for α, β ≥ 0,

(
ψ ′

−X(β) − α I
)

diag(π I)Ê
[
e−αF

X−β X; I
]

=
(

0ss 0s−
0−s

(
β I−− + [Qα∼∼

]′) diag(u−)

)
.

In conclusion, if X is spectrally positive, the matrix Qα∼∼ plays a similar role for
the steady-state buffer-content process as the matrix Kα

∼∼ for the maximum of the
free process.

5 The Single Queue: Examples

Many known models can be incorporated into the framework of the preceding
section. To emphasize the versatility of our framework, we now give some examples.
Importantly, the matrices that appear in these examples also play fundamental roles
in a network setting; see Section 6.

The BMAP/GI/1 Queue The BMAP/GI/1 queue is a generalization of the classical
M/GI/1 queue. Here BMAP is shorthand for batch Markovian arrival process. Special
cases include the MMPP/GI/1 queue, where MMPP stands for Markov modulated
Poisson process, and the PH/GI/1 queue, where PH stands for phase-type renewal
process. For further special cases, we refer to Latouche and Ramaswami (1999,
Sec. 3.5). The BMAP/GI/1 queue has been studied in detail by Lucantoni (1991),
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and it is our present aim to relate his results to ours. This is particularly relevant since
our notation does not always agree with the standard notation in the matrix-analytic
literature as used in Lucantoni (1991). We stress that none of the results presented
here are new.

The virtual waiting time in a BMAP/GI/1 queue is defined as the buffer content
in a fluid queue with special Markov-additive input; we describe this below. More
precisely, as observed by Tzenova et al. (20005a), the BMAP/GI/1 queue can be
viewed as a fluid-flow model with jumps (fluid-flow models are discussed below).

In a BMAP/GI/1 queue, the arrival process is governed by a Markovian back-
ground process I that can take N < ∞ values. The sojourn time of I in state j
has an exponential distribution with parameter q j. At the end of a sojourn time in
state j, with probability p(n)

jk , n ≥ 0 customers arrive (that all bring in a generic
amount of work U > 0) and a transition of I to state k occurs. These transition prob-
abilities satisfy

∑∞
n=0

∑N
k=1 p(n)

jk = 1 for j = 1, . . . , N. We write H for the distribution
of U , and the stationary distribution of I is denoted by π I as usual.

Let us now define the free process X such that (X, I) becomes a Markov-additive
process, so that the setting of Section 4.2 can be used. Since the amount of work in
the system decreases at unit rate, it readily follows that the Laplace exponent of X is
given by

ψ−X(β) = β I − diag(q)

(
I −

∞∑
n=0

P(n)
[
Ee−βU ]n) , (24)

where P(n) is the matrix with elements p(n)

jk . We suppose that the system is stable, i.e.,
π ′

IEX(1) < 0. It is an immediate consequence of Proposition 4.2 and the remarks
thereafter that

Ee−ωW = ωu′
−ψ−1

−X(ω)1,

for ω ≥ 0 with ψ−X(ω) nonsingular. This formula, in the present context due to
Ramaswami, is Eq. 45 in Lucantoni (1991). In the matrix-analytic literature, it is
customary to use the notation y0 for u−. Note that we have shown in Section 4.2
that u′−Q0∼∼ = 0′−.

This motivates the investigation of the matrix Qα∼∼ for α ≥ 0. Upon setting

Gα :=
∫

[0,∞)

eQα∼∼x H(dx), (25)

we have by Proposition 3.2,

Qα
∼∼ + α I = −diag(q)

(
I −

∞∑
n=0

P(n)
[
Gα
]n)

.

Substitution of this expression in Eq. 25 leads to a fixed-point system for Gα :

Gα =
∫

[0,∞)

e−αxe− diag(q)(I−∑∞
n=0 P(n)[Gα]n

)x H(dx),

which is the matrix version of Takacs’ fixed-point equation if P(1) is the only nonzero
matrix in the sequence {P(n) : n ≥ 0}. Based on this formula, Lucantoni (1991) gives
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an algorithm that serves as an efficient alternative for Neuts’ approach to M/GI/1-
type queueing systems (Neuts 1989). Importantly, it is not necessary to compute
Q0∼∼ in order to find u−: the definition of G0 in Eq. 25 shows that u− is necessarily
proportional to the unique probability vector g satisfying g′G0 = g′. The normalizing
constant is found as in Section 4.2.

Fluid-flow Models A fluid-flow model is a fluid queue with a special type of Markov-
additive input: the free process X is neither allowed to have jumps nor Brownian
states. They constitute undoubtedly the most well-studied fluid queues; we do not
attempt to give a full bibliography, but refer to Asmussen (1995), Kulkarni (1997),
Rogers (1994) for more details.

Recently, there has been some interest in deriving the Laplace transform of the
busy period in fluid-flow models (Ahn and Ramaswami 2005; Bean et al. 2005b); see
also (Asmussen 1994) for an earlier contribution. It is our present aim to show how
our general theory reproduces some of the most important busy-period results. Thus,
the results below are well-known. We remark that we allow states with zero drifts.

Even though fluid models are special Markov-additive processes, we shall work
within the framework of Section 2 to derive formulas that are familiar from the fluid-
flow literature. To facilitate the use of our discrete-time results, we use an embedding
that records the time and position at the beginning of a sojourn time of the underlying
background process I. In self-evident notation, we partition the state space into +-
points, 0-points, and −-points. The intensity matrix of I is written as QI ; this also
defines QI++, for instance.

Let �α+− be the matrix with the transforms of the busy-period lengths. That is, if
c j > 0 and ck < 0, then the element ( j, k) of this matrix is the Laplace transform of
the length of the first positive excursion of X on the event that it ends this excursion
in state k. In other words, it corresponds to the amount of time that X spends above
zero on the event that it starts in state j and it first hits zero in state k.

Let us use the notation vec(c+) and vec(c−) for the vector of strictly positive
and strictly negative drifts respectively. We also set μα± := diag(q±/(q± + α)), λα± :=
diag((q± + α)/c±), and

Tα
±± := ±diag

(
1

c±

) [
QI

±± − α I±± − QI
±0(Q

I
00 − α I00)

−1QI
0±
]
,

Tα
±∓ := ±diag

(
1

c±

) [
QI

±∓ − QI
±0(Q

I
00 − α I00)

−1QI
0∓
]
.

Note that, in the notation of Section 2, we are interested in �α+− = Pα
+− diag(1/μα).

As in the proof of Corollary 2.1, we consider a sequence of +- and 0-points as
a single +-point, so that F+−(α, β) = (β I++ − Tα++)−1Tα+−. Then Proposition 2.3
immediately yields that

�α
+− =

∫
(0,∞)

eTα++xTα
+−eQα∼∼xdx,

where Qα∼∼ = Tα−− + Tα−+�α+−. Since the eigenvalues of Tα++ have a strictly negative
real part and those of Qα∼∼ have a nonpositive real part, the integral in the above



Methodol Comput Appl Probab (2011) 13:221–267 255

representation for �α+− converges. This implies the identity (see Bean et al. 2005a,
for references)

Tα
++�α

+− + �α
+−Qα

∼∼ = −Tα
+−.

After some rearranging and substitution of Qα∼∼, we obtain the matrix equation

Tα
+− + �α

+−Tα
−+�α

+− + Tα
++�α

+− + �α
+−Tα

−− = 0+−,

which is Theorem 1 of Bean et al. (2005b) and, for α = 0, Theorem 2 of Rogers
(1994). Note that no drift condition was imposed to derive this equation.

Importantly, the theory of Section 4.2 shows that the matrix Qα∼∼ is a key quantity
for fluid-flow models. For instance, under a stability assumption, a left eigenvector
of Q0∼∼ (corresponding to the simple eigenvalue zero) appears in the representation
of W as a phase-type distribution. The matrix Qα∼∼ plays a prominent role in many
system characteristics of fluid queues, see also Section 7.

M/M/∞-driven Fluid Queues Although it was assumed that the state space of the
background process be finite, we now give an example with a countably infinite state
space (that, to the best of our knowledge, was not solved so far) that still fits into our
framework. The model is a fluid-flow model, but we show that we can translate it in
terms of the queue with Markov-modulated ON/OFF input of Section 4.1.

Consider the following queueing model. A buffer is emptied at a constant service
rate r, and jobs arrive according to a Poisson process (with rate λ). They stay active
for an exponentially distributed period of time (without loss of generality, we set its
mean equal to 1); while active they feed work into the buffer at unit rate. Notice that
the number of (active) jobs in the system follows an M/M/∞-model, therefore it has
a Poisson distribution with mean λ; denote pk := e−λλk/k!. This leads to the stability
condition λ < r.

The buffer level increases when the number of active jobs exceeds r, whereas the
buffer is drained (or remains empty) when the number of jobs is below r. Let X(t)
denote the free process at time t as before, and let N(t) the number of active flows at
time t. For ease we assume that r �∈ N; r− := �r� and r+ := �r�. Define for � ≥ �r�

σ� := inf{t ≥ 0 : N(t) = r− | N(0) = �}, U� := X(σ�).

An explicit formula for ξ�(α, β) := E[e−ασ�−βU� ] is provided by Preater (1997).
Due to exponentiality and reversibility properties, we have that the steady-state

buffer content W is distributed as supt≥0 X(t). To study this supremum, it suffices to
consider an embedding. One embedding could be the position of the free process
at epochs jobs arrive and leave, but this has drawback that the dimension of the
background process is (countably) infinite. Evidently, we could alternatively opt for
the ‘sparser’ embedding that lumps together the states r+, r+ + 1, . . . into state r+;
the supremum of the embedded process coincides with the supremum of the full free
process. Then the sojourn time in state k = 0, . . . , r− is exponential with parameter
λ + k, whereas the Laplace transform of the time spend in r+, jointly with the net
amount of work generated, is ξr+(α, β). With q j := λ + j, it is easy to verify that
corresponding discrete-time Markov chain on {0, . . . , r+} has the following transition
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probabilities: pJ
j, j+1 = λ/q j, if j = 0, . . . , r−; pJ

j, j−1 = j/q j, if j = 1, . . . , r−; pJ
r+,r− = 1;

pJ
jk = 0, otherwise. Define P such that (S, T, J) has the transition kernel

p((s, t, j), (s + dv, t + dw, k))

=
{

pJ
jkP (U ∈ dv, σ ∈ dw) if j = r+ and k = 0, . . . , r+;

pJ
jkP
(−Dj ∈ dv, τ j ∈ dw

)
if j = 0, . . . , r− and k = 0, . . . , r+,

with

Ee−ασ−βU = Ee−ασr+ −βUr+ = ξr+(α, β), Ee−ατ j−β D j = q j

q j + α + β(r − j)
.

A procedure analogous to that for Markov-modulated ON/OFF input now yields
for k = 0, . . . , r− and ω, β ≥ 0,

E
[
e−ωW−β B; I = k

] = pkEke−ωS−βT ,

and

E
[
e−ωW−β B; I = r+

] =
⎡
⎣ ∞∑

k=r+

pkξk(α, β)

⎤
⎦Er− e−ωS−βT .

6 Tandem Networks with Markov-additive Input

One of the simplest networks is a tandem network, in which n fluid reservoirs are
lined up in series. In this section, we extend the analysis of single stations to these
tandem fluid networks. The results we obtain are new. Our analysis shows that we
can immediately use the results on the joint distribution of the buffer content and
the age of the busy period for the single queue, as found in Section 4. The reasoning
below also shows that tandems with Markov-modulated ON/OFF input (Scheinhardt
and Zwart 2002) can be analyzed analogously to tandems with Markov-additive input
(Kella 2001); we here only present the analysis for Markov-additive input.

Even though our framework offers an appealing approach to such networks, we
do not strive for the greatest possible generality. Instead, we only give the main ideas
without proofs, since the results can be proven along the lines of Dȩbicki et al. (2007).
Several extensions are discussed in the next section.

In our model queue j is drained at rate r j as long as there is content in buffer j.
After fluid is released from queue j, it immediately flows to queue j + 1, unless j = n;
then it leaves the system. We suppose that the input to the first queue is governed
by the same Markov-additive process (A, I) as in Section 4.2, i.e., its input process
A is spectrally positive. Furthermore, we suppose for simplicity that I has no zero-
drift states and that there is no external input to queues 2, . . . , n. To avoid ‘invisible’
stations, we impose the condition r1 > . . . > rn.

We define W j(t) as the content in buffer j at time t, and let W(t) be the vector of
buffer contents. The evolution of the process W is completely determined by A and
the initial buffer-content vector W(0). Formally, this can be made precise by using
Skorokhod reflection mappings; see for instance Dȩbicki et al. (2007). It is our aim
to study the steady-state vector of buffer contents in this network, which we denote
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by W := W (∞). The inclusion of the ages of the busy periods raises no additional
difficulties, but we focus here on the simplest possible situation.

We define for j = 1, . . . , n, X j(t) := A(t) − r jt and X(t) = (X1(t), . . . , Xn(t))′.
Note that (X, I) is a multidimensional Markov-additive process on R

n × {1, . . . , N}
under P. We also set

X j := sup
t≥0

X j(t), F
X
j := inf{t ≥ 0 : X j(t) = X j(∞) or X j(t−) = X j(∞)},

and I j := I(F
X
j ). Throughout, we suppose that π ′

IEXn(1) < 0, so that each compo-
nent of X drifts to −∞.

Our analysis consists of three steps. First, the queueing problem is formulated
in terms of free processes. The splitting technique of Section 3.2 can be used,
in a different form, to characterize the extremes of these free processes. This is
reminiscent of the analysis of Lévy-driven fluid networks in Dȩbicki et al. (2007).
The final step converts the results back to the queueing setting.

We start by giving the analog of Proposition 4.2, thereby establishing the connec-
tion between fluid networks and extremes of X. It can be proven along the lines of
Proposition 5.2 in Dȩbicki et al. (2007). Note that the distribution of W = W (∞) is
independent of W(0) and I(0).

Proposition 6.1 The vector W is finite, and for any ω ∈ R
n+, we have

E
[
e−〈ω,W 〉; I = k

] = π I(k)Êk

[
e−∑n−1

i=1 (ωi−ωi+1)Xi−ωn Xn; In

]
1.

We use splitting to calculate the transform in this expression. In Dȩbicki et al.
(2007), splitting is distinguished from splitting from the left, but this is irrelevant
for the arguments and the results. Modulo this remark, the following lemma can be
proven along the lines of Lemma 2.1 of Dȩbicki et al. (2007).

Lemma 6.1 For any j, {(X(t), I(t)) : 0 ≤ t ≤ F
X
j } and {(X(F

X
j + t) − X(F

X
j ),

I(F
X
j + t)) : t ≥ 0} are P̂-conditionally independent given I(F

X
j ).

With this proposition at our disposal, the joint distribution of F
X := (F

X
1 , . . . , F

X
n )

and X := (X1, . . . , Xn) can be derived in only a few lines. The key element in

this analysis is the observation F
X
1 ≤ . . . ≤ F

X
n . In the following theorem, we give

the resulting Laplace transform; in the terminology of Dȩbicki et al. (2007), this
transform has a quasi-product form. The proof requires only minor modifications in
comparison with the proof of Theorem 3.1 of Dȩbicki et al. (2007), and is therefore
omitted. We emphasize that the product is taken from 1 to n − 1; the order is
important, since the matrices do not commute.
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Corollary 6.1 We have for β ∈ R
n+,

Ê
[
e−〈β,X〉; In ∈ ∼

]
= Ê
[
e−[
∑n

k=2(r1−rk)βk]F
X
1 −[
∑n

k=1 βk]X1; I1 ∈ ∼
]

×
n−1∏
j=1

⎧⎨
⎩
(

Ê∼
[

e−
[∑n

k= j+1(r j−rk)βk

]
F

X
j −
[∑n

k= j+1 βk

]
X j; I j ∈ ∼

])−1

× Ê∼
[

e−
[∑n

k= j+2(r j+1−rk)βk

]
F

X
j+1−
[∑n

k= j+1 βk

]
X j+1; I j+1 ∈ ∼

]⎫⎬
⎭ ,

whenever the appropriate matrices are nonsingular.

Corollary 6.1 expresses the transform of the P̂-distribution of (X, In) in terms
of the marginals (X j, I j) for j = 1, . . . , n. Importantly, the transforms of these
marginals can be found with Corollary 4.1. As a final step, we therefore cast the
results back into the queueing setting. For notational convenience, we define

η j(ω) :=
n∑

�= j+1

(r�−1 − r�)ω�,

so that we obtain the main result of this section, which is a generalization of Eq. 23.
The simplicity of the expression for the Laplace transform is remarkable, especially
in view of the transform-free solution of Kroese and Scheinhardt (2001) for the two-
station fluid-flow tandem with a two-dimensional background state space. The matrix
Q( j)

∼∼(α) appearing in the following theorem is defined as the Qα∼∼-matrix arising
from the process X j.

Theorem 6.1 For ω ∈ R
n+, we have

E
[
e−〈ω,W 〉; I

]

=
(

0′
s ωn
[
un−
]′ n−1∏

j=1

{[
ω j+1 I−− + Q( j)

∼∼(η j(ω))
]−1 [

ω j I−− + Q( j)
∼∼(η j(ω))

]})

× (ψ−X1(ω1) − η1(ω)I
)−1

,

whenever the appropriate matrices are nonsingular.

Importantly, this theorem shows that the joint buffer-content distribution for a
fluid network can immediately be established from known results about the single
(fluid) queue discussed in Section 5. For instance, Lucantoni’s algorithm for the
BMAP/GI/1 immediately yields Q( j)

∼∼(·), and similarly for algorithms that efficiently
solve the matrix-quadratic equation in fluid-flow models.

Specializing Theorem 6.1 to the marginal distribution of Wn for n > 1, we obtain
the interesting formula

E
[
e−ωWn; I ∈ ∼] =

[
un−
]′

rn − rn−1

[
ωI−− + Q(n−1)

∼∼ ((rn−1 − rn)ω)
]−1 Q(n−1)

∼∼ ((rn−1 − rn)ω),
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which should be compared with Theorem 3.2 of Dȩbicki et al. (2007) or Corol-
lary 6.2(i) of Dȩbicki et al. (2007).

7 Extensions

In the course of writing this paper, we have bypassed several interesting questions. It
is the aim of this section to sketch how some additional features can be incorporated
into our framework. These features are mainly inspired by models that have been
recently studied in the literature.

Markov-additive Processes under Exponential Killing The approach taken in this

paper can also be used to characterize the distributions of (X(t), F
X
(t), I(t)) and

(X(t), F
X
(t), I(t)) for any t ≥ 0. By taking Laplace transforms with respect to time,

this amounts to investigating (X(eλ), F
X
(eλ), I(eλ)) and (X(eλ), F

X
(eλ), I(eλ)) for

some λ > 0. The resulting identities can be viewed as the analog of Eq. 11 if X is
spectrally positive.

The vector (X(eλ), I(eλ)) plays a role in a number of problems in applied
probability. First, it completely specifies the solution to the one-sided exit problem
(Kyprianou and Palmowski 2008). We remark that, if there are no subordinator
states, the nonnegative matrix −(Kλ

∼∼)−1 plays a prominent role in this solution; it
can be interpreted as a local-time matrix. Moreover, the distribution of (X(eλ), I(eλ))

also immediately specifies the transient behavior of a queue with Markov-additive
input, see Ahn and Ramaswami (2005) for a special case.

Ramifications of the Tandem Network in Section 6; Priority Systems In Section 6,
there are no external inputs to the stations 2, . . . , n of a tandem fluid network. As
long as these external inputs are increasing subordinators, i.e., if they do not depend
on the state of the background process I, our reasoning immediately carries over to
this more general setting.

Kella (2001) does allow for a dependence of this external input (or the drain
rates) on the background state, and we now outline how our framework should be
modified to be able to derive expressions under this assumption. In terms of the one-

dimensional Markov-additive process X of Section 3, it is not sufficient to study F
X

(jointly with (X, I)), but knowledge is required about the amount of time spent in

each of the states till time F
X

.
The last-passage (or Wiener-Hopf) approach that we have used in this paper can

still be applied, but the matrices Kα
∼∼ now depend on a vector vec(α) instead of a

single value. An expression such as ψ−X(β) − α I in Theorem 3.1 then changes to
ψ−X(β) − diag(α). However, the reasoning essentially requires no further new ideas.
As for tandem networks, the only remaining assumption is that the components of

F
X

are ordered (note that a similar assumption is needed in Kella 2001).
Recently, there has been an interest in fluid-driven priority systems (Takada and

Miyazawa 2002; Tzenova et al. 20005b). These systems are closely related tandem
queues with external inputs and equal drain rates. Although equal drain rates are
not covered in Section 6, the techniques still apply. Indeed, if the external inputs are
nondecreasing processes (with the first station as the only possible exception, see for
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instance Dȩbicki et al. 2007), the components of F
X

are ordered. In particular, our
theory can be used to analyze priority fluid systems with Markov-additive input.

Phase-type Jumps in the Opposite Direction All Markov-additive processes in this
paper have one-sided jumps. Given the tractability of Lévy processes with general
jumps in one direction and phase-type jumps in the other direction (Dieker 2006),
it seems plausible that results can be obtained within the Markov-additive setting
under the same assumptions. Indeed, an embedded process can be introduced and
the theory of Section 2 can be applied.
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Appendix: The Spectral Method for the Matrices Kα−− and Qα−−

Corollaries 2.1 and 2.2 give two non-linear matrix equations that must be satisfied by
Kα−− and Qα−−. This appendix describes and analyzes an alternative method to find
these two matrices. To our knowledge, the resulting approach is novel.

Exactly the same approach can be taken in the context of the Markov-additive
matrices Kα

∼∼ and Qα∼∼, but we here focus on the discrete-time framework of
Section 2. Throughout, we fix some α ≥ 0 and we suppose that S drifts to +∞
or −∞.

As observed in the body of this paper, subsequent +-points may be ‘lumped’ in
order to calculate the matrices Kα−− and Qα−−. Therefore, if we replace F+−(α, β)

by F+�−(α, β), we may assume without loss of generality that P J
++ = 0++. The

reasoning that led to Eq. 6 shows that D−−(0, β) then factorizes into two matrices:

D−−(α, β) = (β I−− + Kα
−−
) (

I−− − E−
[
e−αTτ+ −βSτ+ ; Jτ+ ∈−]) . (26)

This equation can be regarded as a factorization identity, and is the starting point of
the spectral method. When inspecting the two matrices enclosed by round brackets
on the right-hand side, we note that the first matrix has singularities in the right
complex halfplane and the second matrix in the left complex halfplane. For similar
factorizations in a discrete-state framework, we refer to Zhao et al. (2003).

A similar factorization can be given for Qα−−: the first-passage matrix Qα
−− of the

original process can be expressed in terms of the last-passage matrix K̂
α

−− of the
time-reversed process through

K̂
α

−− = diag(λα) #Qα
−− diag(λα)−1,

cf. Eq. 3. An analysis along the lines of Section 2 yields the factorization identity

diag(λα) #D−−(α, β)diag(λα)−1 = (β I−− + K̂
α

−−)N(α, β),
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where N(α, β) is an N− × N−-matrix with singularities in the left complex halfplane.
This yields a second factorization identity:

D−−(α, β) = diag(λα) #N(α, β)diag(λα)−1(β I−− + Qα
−−). (27)

The spectral method uses Eq. 26 or Eq. 27 to construct Kα−− and Qα−− from their
eigenvalues and eigenvectors. We explain the key ideas by discussing the following
proposition, which is a special case of Theorem 8.1 below. It immediately follows
from Eqs. 26 and 27, see also Section 5 of Asmussen (1995) for related results. Recall
the notation H+ from Eq. 4.

Proposition 8.1 For any ν ∈ H+, the following are equivalent:

(i) −ν is an eigenvalue of Qα
−−,

(ii) −ν is an eigenvalue of Kα−−, and
(iii) zero is an eigenvalue of D−−(α, ν).

Moreover, the geometric multiplicities of these eigenvalues coincide.

Proposition 8.1 indicates why the recursions in Corollaries 2.1 and 2.2 are neces-
sarily matrix versions of the equation D−−(α, β) = 0−−. Indeed, suppose that (−ν, 	)

is a left eigenpair for Kα−−, so that 	′ Kα−− = −ν	′. Since then 	′eKα−−x = e−νx	′, it
follows from the recursion for Kα−− in Corollary 2.1 that 	′ D−−(α, ν) = 0′−. The same
reasoning goes through for the recursion in Corollary 2.2, but one then has to work
with the right eigenpair.

If Kα−− or Qα−− is diagonalizable, Proposition 8.1 shows that its eigenvalues and
eigenvectors (and hence the matrix itself) can be determined by studying singularities
of β �→ D−−(α, β), i.e., the values of β for which this matrix is singular. Several
relatively explicit results can then be derived, see Kella (2001). However, if Kα−−
is not diagonalizable, Proposition 8.1 shows that it is impossible to find enough
pairs (−ν j, 	 j) with the above properties. To resolve this, one might guess that the
generalized left eigenvectors of D−−(α, ν j) can be used to construct Kα−−. It is the
contribution of this appendix to show that this approach does not work, and to show
how this can be resolved. In particular, we provide answers to the questions raised
in Section 4 of Asmussen and Kella (2000) in the continuous-time Markov-additive
context.

Proposition 8.1 has implications for the locations of the singularities of D−−(α, β)

in H+. First, since Kα−− and Qα−− are real matrices, these singularities must come
in conjugate pairs. Moreover, as a result of Proposition 2.4, if zero is a singularity it
is simple and the real parts of the other singularities are strictly positive. In fact, all
nonzero singularities must be in the open disc with radius and center max j λ

α
j . For

α = 0 and limn Sn = −∞, this claim has recently been proven with different methods
by Tzenova et al. (20005a). In Tzenova et al. (20005a), it is also shown that β �→
det D−−(0, β) has exactly N− zeroes in H+ (counting multiplicities).

If S drifts to −∞, Proposition 8.1 can sometimes be used to find the vector
P−(S = 0) studied in Section 2.4. Indeed, in view of Lemma 2.3, P−(S = 0) can
be found if one has N− − 1 linear independent vectors 	1, . . . , 	N−−1 orthogonal
to P−(S = 0). To determine the vectors 	 j, one determines a root ν j ∈ H+ of the
equation det D−−(0, β) = 0, and identifies the 	 j with a left eigenvector of D−−(0, ν j)
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corresponding to the eigenvalue zero. By Corollary 2.4 we then have 	′
j P−(S = 0) =

0. Proposition 8.1 shows that enough independent vectors can be found only if K0−−
(or Q0−−) is diagonalizable.

As an aside, we mention that Gail et al. (1996) present a method (in the context of
a discrete-state model) for determining the vector P−(S = 0) if S drifts to −∞, and
that they also call this a ‘spectral method’. Cast into the present setting, they show
that adj D−−(0, β)P−(S = 0) must vanish to the order at least r at β = ν if ν �= 0 is
a singularity of D−−(0, ν) with algebraic multiplicity r. Here adj D−−(0, β) denotes
the adjoint matrix of D−−(0, β), i.e., the transpose of the matrix formed by taking
the cofactor of each element of D−−(0, β).

It is the aim of the remainder of the appendix to find a suitable form of the
spectral method with which Kα−− and Qα−− can always be constructed, not only in
the diagonalizable case. If S drifts to −∞ and α = 0, the procedure also gives exactly
N− − 1 vectors orthogonal to P−(S = 0).

It is most insightful to present the procedure in an algorithmic form:

• Locate the singularities of D−−(α, β) in H+ (if limn Sn = −∞ and α = 0, then
β = 0 is such a singularity).

• For every nonzero singularity ν, find as many independent vectors 	 with
	′ D−−(α, ν) = 0′− as possible (if limn Sn = −∞ and α = 0, then π− is such a
vector for ν = 0, see Eq. 8).

• This results in s pairs (−ν j, 	 j), for some s ≤ N−, j = 1, . . . , s (the ν j need not be
distinct). If s = N−, then stop; Kα−− is diagonalizable.

• Suppose that Kα−− is not diagonalizable. If limn Sn = +∞ or α > 0, execute the
following subroutine for each j = 1, . . . , s. If limn Sn = −∞ and α = 0, set ds = 1
and 	(1)

s = π−, and execute the following subroutine for each j = 1, . . . , s − 1:

– Set p := 1 and write 	
(1)

j := 	 j.

– If possible, find a vector 	, independent of 	
(1)

j , . . . , 	
(p)

j , such that

	′ D−−(α, ν j) = 	
(p)′
j −

p∑
q=1

∫
[0,∞)

xq

q! e−ν jx	
(p−q+1)′
j diag(μαλα)P J

−+ Fα
+�−(dx).

– If the previous step was successful, set 	
(p+1)

j := 	, p = p + 1, and repeat the
previous step. If it was unsuccessful, set d j := p and stop the subroutine.

The following theorem shows that this algorithm yields Kα−− for α ≥ 0, in addition
to P−(S = 0) if S drifts to −∞. The matrix Qα−− can be found in a similar fashion,
using Eq. 27 as a starting point. For notational convenience, we only write down the
nonzero elements of the matrices. Note that the J j-matrices are Jordan blocks.

Theorem 8.1 For α ≥ 0, the matrix Kα−− is constructed as follows:

Kα
−− =

⎛
⎜⎝

L1
...

Ls

⎞
⎟⎠

−1⎛
⎜⎝

J1

. . .

Js

⎞
⎟⎠
⎛
⎜⎝

L1
...

Ls

⎞
⎟⎠ , (28)
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where the (d j × d j)-matrices J j and (d j × N−)-matrices L j are defined as

J j :=

⎛
⎜⎜⎜⎝

−ν j

1 −ν j

. . .
. . .

1 −ν j

⎞
⎟⎟⎟⎠ , L j =

⎛
⎜⎜⎝

	
(1)′
j
...

	
(d j)

′
j

⎞
⎟⎟⎠ .

Moreover, if limn Sn = −∞ and α = 0, then the rows of L1, . . . , Ls−1 constitute exactly
N− − 1 independent vectors orthogonal to P−(S = 0).

Proof If suffices to prove the first claim, since the second claim immediately follows
from Eq. 7. For convenience, we denote the second matrix between round brackets
in Eq. 26 by M(α, β).

To prove the theorem, write Kα−− in the Jordan form L−1
−− J−−L−−, cf. Eq. 28.

If limn Sn = −∞ and α = 0, we know that zero is a simple eigenvalue and that its
corresponding left eigenvector is π−, cf. Proposition 2.4. Factorization identity Eq. 26
shows that

adj (β I−− + J−−) L−− D−−(α, β) = det (β I−− + J−−) L−− M(α, β). (29)

Now observe that β I−− + J−− is a block-diagonal matrix, and that for (square) block
matrices A and B of arbitrary size,

adj
(

A 0
0 B

)
=
(

det B adj A 0
0 det A adj B

)
.

This shows that Eq. 29 is equivalent to the s systems

adj (β Id jd j + J j)L j D−−(α, β) = (β − ν j)
d j L jM(α, β). (30)

If α = 0, the equation for j = s plays no role and is redundant. In the rest of the proof,
we consider this system for fixed j and suppress the subscripts j.

It remains to show that our algorithm constructs the matrix L (≡ L j). First observe
that Eq. 30 is equivalent to the d equations

n∑
p=1

(−1)p−1

(β − ν)n−p
	(p)′ D−−(α, β) = (β − ν)	(n)′ M(α, β), (31)

for n = 1, . . . , d and β ≥ 0. For notational convenience, we set

D(q)
−−(α, ν) :=

∫
[0,∞)

xq

q! e−νx diag(μαλα)P J
−+ Fα

+�−(dx).

We now prove:

Claim A Let 1 ≤ k ≤ d. If Eq. 31 holds for n = 1, . . . , k and β ≥ 0, then
	(1)′ D−−(α, β) = 0′− and

	(n)′ D−−(α, ν) = 	(n−1)′ −
n−1∑
q=1

	(q)′ D(n−q)
−− (α, ν) (32)

for n = 2, . . . , k.
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To see that Claim A is true for k = 2, set n = 1 in Eq. 31 and let β → ν to obtain
	(1)′ D−−(α, ν) = 0−. Using Eq. 31 for n = 2, we see that

	(2)′ D−−(α, β) − 1

β − ν
	(1)′ [D−−(α, β) − D−−(α, ν)

] = (β − ν)	(2)′ M(α, β).

Upon letting β → ν, we see (with dominated convergence and (ν) > 0) that
	(2)′ D−−(α, ν) = 	(1)′ − 	(1)′ D(1)

−−(α, ν).
Suppose that Claim A holds for some k; by induction it suffices to show that it also

holds for k + 1. For this, first multiply the k − 1 equations in Eq. 32 by (−1)n−1(β −
ν)n−k−1, and substitute them in Eq. 31 for n = k + 1 such that terms D−−(α, β) −
D−−(α, ν) appear everywhere; also use 	(1)′ D−−(α, ν) = 0′−. After some algebra, one
then obtains

(β−ν)	(k+1)′ M(α, β)= (−1)k	(k+1)′ D−−(α, β)

+ (−1)k−1

β−ν
	(k)′ [D−−(α, β)− D−−(α, ν)

]

+
k−1∑
n=1

(−1)n−1

(β−ν)k−n+1
	(n)′
[

D−−(α, β)− D−−(α, ν) − (β−ν)I−−

−
k−n∑
q=1

(−(β−ν))q D(q)
−−(α, ν)

]
.

Upon letting β → ν, this leads to Eq. 32 for n = k + 1.

To finish the proof of the theorem, we also show that:

Claim B Let 	(1), . . . , 	(m) satisfy Eq. 31. If there exists some vector 	, independent
of 	(1), . . . , 	(m), with the property that

	′ D−−(α, ν) = 	(m)′ −
m∑

q=1

	(q)′ D(m−q+1)
−− (α, ν), (33)

then d ≥ m + 1 and Eq. 31 holds for n = m + 1 and 	(m+1) = 	.
To show that Claim B holds, we suppose that d = m and work towards a

contradiction. The assumption d = m implies that, for any vector v independent of
	(1), . . . , 	(m), v′ Kα−− �= −νv′ + 	(m)′ . By definition of M(α, β), this implies that for any
β ≥ 0,

v′ D−−(α, β) + (ν − β)v′ M(α, β) �= 	(m)′ M(α, β).

Using a similar argument as in the proof of Claim A, it can be seen that 	(m)′ M(α, ν)

equals the right-hand side of Eq. 33; this relies on the assumption that the 	(·) satisfy
Eq. 31. A contradiction arises upon setting v = 	 and letting β → ν in the last display.


�

Two elements of the preceding proof deserve special attention. First, we empha-
size the appealing form of the factorization Eq. 26; we encounter similar forms in the
body of the paper. Another interesting point is the connection between the system
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Eq. 32 and the nonlinear matrix equation of Corollary 2.1. We use this connection to
prove the following.

Corollary 8.1 The matrix equations in Corollaries 2.1 and 2.2 have a unique solution
within the class of matrices with eigenvalues in H+.

Proof It suffices to prove the claim for Corollary 2.1, as the other follows similarly.
Rewrite the system Eq. 32 and the equation 	

(1)′
j D−−(α, ν j) = 0′− as

0d j− = −J jL j − L j diag(λα) + L j diag(μαλα)P J
−−

+
d j−1∑
k=0

e−ν jx xk

k!
(
ν j Id jd j + J j

)k L j diag(μαλα)P J
−+ Fα

+−(dx), (34)

for j = 1, . . . , s.
In the proof Theorem 8.1, we showed that there is some s such that Eq. 34 holds for

a unique d j and unique matrices J j and L j. The matrices J j have eigenvalues in H+
and the matrices L j have independent rows (uniqueness holds up to multiplication
by a constant). We now argue that a solution to Eq. 34 immediately gives a solution
to the equation in Corollary 2.1. To see this, stack the s matrix equations of Eq. 34
into a single system, premultiply by L−1

−−, note that

d j−1∑
k=0

e−ν jx xk

k!
(
ν j Id jd j + J j

)k = eJ jx,

and use Eq. 28. The argument can also be reversed: given a solution to the equation
in Corollary 2.1 with all its eigenvalues in H+, the ‘building blocks’ for the Jordan
form must solve Eq. 34. 
�
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