

UvA-DARE (Digital Academic Repository)

Obscured AGB stars in the Magellanic clouds. I. IRAS Candidates

Loup, C.; Zijlstra, A.A.; Waters, L.B.F.M.; Groenewegen, M.A.T.

Publication date 1997

Published in Astrophysics Supplement Series

Link to publication

Citation for published version (APA):

Loup, C., Zijlstra, A. A., Waters, L. B. F. M., & Groenewegen, M. A. T. (1997). Obscured AGB stars in the Magellanic clouds. I. IRAS Candidates. *Astronomy and Astrophysics Supplement Series*, *125*, 419-437.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Astron. Astrophys. Suppl. Ser. 125, 419-437 (1997)

Obscured AGB stars in the Magellanic Clouds

I. IRAS candidates

C. Loup^{1,2}, A.A. Zijlstra³, L.B.F.M. Waters⁴, and M.A.T. Groenewegen⁵

¹ Institut d'Astrophysique de Paris, CNRS, 98 bis Bd. Arago, F-75014 Paris, France

² European Southern Observatory, Casilla 19001, Santiago 19, Chile

³ European Southern Observatory, Karl–Schwarzschild Strasse 2, D–85748 Garching bei München, Germany

⁴ Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, NL–1098 SJ Amsterdam, The Netherlands

 $^5\,$ Max–Planck–Institut für Astrophysik, Karl–Schwarzschild 1, D–85740 Garching, Germany

Received March 30, 1996; accepted January 22, 1997

Abstract. We have selected 198 IRAS sources in the Large Magellanic Cloud, and 11 in the Small Magellanic Cloud, which are the best candidates to be mass-loosing AGB stars (or possibly post-AGB stars). We used the catalogues of Schwering & Israel (1990) and Reid et al. (1990). They are based on the IRAS pointed observations and have lower detection limits than the Point Source Catalogue. We also made cross-identifications between IRAS sources and optical catalogues.

Our resulting catalogue is divided in 7 tables. Table 1 lists optically known red supergiants and AGB stars for which we found an IRAS counterpart (7 and 52 stars in the SMC and LMC, respectively). Table 2 lists "obscured" (or "cocoon") AGB stars or late-type supergiants which have been identified as such in previous works through their IRAS counterpart and JHKLM photometry (2 SMC and 34 LMC sources; no optical counterparts). Table 3 lists known planetary nebulae with an IRAS counterpart (4 SMC and 19 LMC PNe). Table 4 lists unidentified IRAS sources that we believe to be good AGB or post-AGB or PNe candidates (11 SMC and 198 LMC sources). Table 5 lists unidentified IRAS sources which could be any type of object (23 SMC and 121 LMC sources). Table 6 lists IRAS sources associated with foreground stars (29 SMC and 135 LMC stars). Table 7 lists ruled out IRAS sources associated with HII regions, hot stars, etc ...

We show that the sample of IRAS AGB stars in the Magellanic Clouds is very incomplete. Only AGB stars more luminous than typically $10^4 L_{\odot}$ and with a mass-loss rate larger than typically $5 \, 10^{-6} \, M_{\odot}/\text{yr}$ could be detected by the IRAS satellite. As a consequence, one expects to find very few carbon stars in the IRAS sample. We also expect that most AGB stars with intermediate mass-loss

rates have not been discovered yet, neither in optical surveys, nor in the IRAS survey. $^{\rm 1}$

Key words: circumstellar matter — stars: latetype — stars: mass-loss — stars: AGB and post-AGB supergiants

1. Introduction

During the past 10 years, the observations of the IRAS satellite (Neugebauer et al. 1984) have led to the discovery of a few thousand mass-loosing stars on the Asymptotic Giant Branch (AGB). Some of them are heavily "obscured", in the sense that they lose mass at such a rate ($\sim 10^{-5} M_{\odot}/\text{yr}$ or more) that their circumstellar envelope becomes optically thick to the stellar radiation. IRAS observations, as well as observations of the millimeter lines of CO and of the OH maser emission, have considerably improved our knowledge on their mass-loss rates. However, further studies are severely hampered by the lack of knowledge of the distances, and hence of the luminosities.

The Magellanic Clouds have reasonably well known distances, and they are far enough to consider that all the stars belonging to the same galaxy are at the same distance, with a small uncertainty. In the optical and NIR range, a huge amount of work has been performed in the Small and Large Magellanic Clouds (SMC and LMC) to search for M supergiants and AGB stars. In the LMC, the most complete works, spatially speaking, have been performed by Westerlund and co-workers (Westerlund 1960, 1961; Westerlund et al. 1978; Westerlund et al. 1981),

Send offprint requests to: loup at iap.fr

 $^{^1~}$ Tables 1 to 8 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Sanduleak & Philip (1977), and Rebeirot et al. (1983), leading to the discovery of several hundred M stars and a few hundred C stars. These surveys were, however, limited in sensitivity and could only detect the brightest stars (I < 13.5). A deeper survey (I < 17), but spatially limited, has been performed by Blanco and co-workers (Blanco et al. 1980; Blanco & McCarthy 1983; Frogel & Blanco 1990). The SMC has been less studied. The work of Blanco et al. (1980) was the first objective prism survey of this galaxy. This, and the subsequent work of Blanco & McCarthy (1983) turned up a few hundred carbon and M-type stars. Reid & Mould (1990) selected AGB star candidates from V and I-band photometry in a $0.8^{\circ 2}$ area. Recent works concentrated mainly on carbon stars (Westerlund et al. 1986; Rebeirot et al. 1993) and lead to the discovery of about 2000 of them.

Complementary to previous surveys, people started to search for long-period variables (LPVs) through IJHK(L) photometry (see e.g. Feast et al. 1980; Glass & Lloyds Evans 1981; Glass & Feast 1982; Wood et al. 1983; Wood et al. 1985; Glass & Reid 1985; Reid et al. 1988; Hughes 1989; Feast et al. 1989; Hughes & Wood 1990). There are now about 1000 LPVs known in the LMC. The most important result of these works is certainly the relations between the luminosity and the period.

As previous studies were based on optical or nearinfrared observations, the resulting samples of stars do not contain optically very thick sources which would be hardly detectable at such wavelengths. In the following we will distinguish between optically identified stars, i.e. stars with optically thin dust shells (typically J-K > 2.5) easily detectable in the optical range, and "obscured" stars, i.e. stars with optically thick dust shells (typically J-K > 2.5) and without optical counterpart. Note that such a separation between optical and obscured stars is partly arbitrary as the transition between optically thin and thick dust shells is of course continuous. The separation is more historical as, complementary to optical surveys, people started to search for AGB stars with high mass-loss rates selecting candidates in the IRAS survey, and confirming (or not) the nature of the selected IRAS sources through JHKLM photometry.

In 1986, Elias et al. selected IRAS sources from the Point Source Catalogue (PSC) with a 12 μ m flux density, S_{12} , larger than 2 Jy, and among them discovered two supergiants similar to Galactic OH/IR stars, PSC 04553 – 6825 and PSC 05346 – 6949. The same year, Wood et al. selected IRAS–PSC sources with $S_{25} \gtrsim 0.7$ Jy and a S_{25}/S_{12} ratio similar to those of Galactic OH/IR stars. They detected the maser emission of OH in PSC 04553 – 6825. This star has an optical counterpart with spectral type M7.5 (Elias et al. 1986). Its optical counterpart was in fact previously known, one can find it as number 64 in Table II of Westerlund et al. (1981). Wood et al. (1992) extended the previous study and detected OH emission in 5 IRAS–PSC sources. They also determined the period of 9 objects in the LMC. In total, they present a list of 3 SMC and 16 LMC sources that they believe to be late-type stars with thick dust shells. However, in Sect. 4.2. we show that, among these 19 sources, only 9 are actually good candidates being obscured AGB stars or late-type supergiants, the others beeing associated with optically known M supergiants, or with blue supergiants, or even with an HII region or a galaxy. The work by Whitelock et al. (1989) in the SMC is also based on the Point Source Catalogue. They monitored in the JHK(L)bands 5 sources with S_{25}/S_{12} ratios corresponding to a colour temperature of a few 100 K. Among these 5 sources, 2 are long-period variables without optical counterparts, 1 is associated with an M star, 1 is a peculiar carbon star, and 1 is associated with a blue supergiant.

In addition to the survey observations, IRAS also made pointed observations, with orthogonal scan directions, notably in the direction of the Magellanic Clouds. The corresponding detection limits are fainter than those of the PSC. The IRAS pointed observations cover the major part of the SMC and the LMC, except the outer regions. These data have been reduced and published in a catalogue by Schwering & Israel (1990). Part of these data in the LMC has also been reduced by Reid et al. (1990) with the aim of searching for obscured AGB stars. They also made photographic I plates and give possible optical counterparts of some IRAS sources. With additional JHK observations, Reid (1981) discovered 10 "cocoon" stars, i.e. AGB stars with optically thick dust shells, associated with IRAS sources. He also showed that, for these "cocoon" stars, the optical counterpart proposed by Reid et al. was in fact not associated with the IRAS source as he found a much redder object close to the IRAS position. More recently, based on the source selections presented here, Zijlstra et al. (1996), in the second paper of this series (hereafter called Paper II), identified 16 additional AGB stars with optically thick dust shells and estimated their mass-loss rates.

In this paper, we will first adress the question: "What are the properties of AGB stars detected by IRAS in the LMC?" (Sect. 2). In Sect. 3, we present our selection of IRAS sources, from the catalogues of Schwering & Israel (1990) and Reid et al. (1990) in order to find AGB stars candidates. We systematically searched for optical identifications of all the selected IRAS sources. In Sect. 4 we present final tables, optical stars with an IRAS counterpart in Table 1, obscured AGB stars or supergiants without optical counterpart in Table 2, planetary nebulae in Table 3, unidentified IRAS sources that we think to be good obscured AGB (or post–AGB) stars candidates in Table 4, and foreground stars in Table 6. In Sect. 5 we discuss on the reliability of IRAS observations at flux levels close to the detection limits and compare both catalogues.

2. What are the properties of AGB stars detected by IRAS in the LMC?

Previous works by Elias et al. (1986), Wood et al. (1986, 1992), Reid et al. (1990), and Reid (1991) have shown that some red supergiants and AGB stars have been detected by IRAS in the LMC, at least at $12 \ \mu$ m. As the distance of the LMC is about 50 kpc, one may however be surprised that IRAS could detect AGB stars so far away. A comparison with stars of our Galaxy could allow us to answer this question and to define the physical properties of such stars. Reid et al. give part of the answer based on the most optically thick OH/IR stars known in the Galaxy, and on the "prototype" of optically thick carbon stars, IRC+10216. They conclude that AGB stars with similar physical properties should "be detected with ease" in the IRAS survey.

Lets consider as an example one of the most extreme carbon star AFGL 3068 (Price & Walker 1976), and the well known O-rich star WX Psc. AFGL 3068 is particularly optically thick as [K - L] = 7 (le Bertre 1992). WX Psc has a known optical counterpart but is not optically thin as the 10 μ m silicate feature is slightly self-absorbed. Assuming an intrinsic luminosity of $10^4 L_{\odot}$, their distances would be 0.95 and 0.54 kpc respectively (see e.g. Loup et al. 1993). At 50 kpc, such stars would have 12 μ m IRAS flux densities of 0.25 and 0.13 Jy, and 25 μ m IRAS flux densities of 0.28 and 0.11 Jy, respectively. The sensitivity limit of the IRAS–PSC is 0.25 Jy at 12 and 25 μ m, and 0.15 and 0.22 Jy in the catalogue of Schwering & Israel (1990). Therefore a source like AFGL 3068 could be detected in the LMC, but not easily, and WX Psc would not be detected (or by chance as Schwering & Israel report a few 12 and 25 μm detections at a level of 0.07 Jy). The intrinsic luminosity of these 2 stars could be larger than $10^4 L_{\odot}$, but also smaller, and in addition their luminosity varies by more than a factor 2.

In an attempt to get a more complete overview, we have used the sample of Galactic sources whose CO emission in the rotational transitions J = 1 - 0 or/and J = 2 - 1has been detected (Loup et al. 1993). Though this sample is strongly observationally biased, it contains all the chemical types (O-rich, C-rich, and S stars), and covers the whole range of mass loss rates $(10^{-7} \text{ to } 10^{-4} M_{\odot} \text{ yr}^{-1})$. This sample contains about 400 AGB stars and a few M supergiants. Their bolometric luminosities have been calculated from optical, JHKL(M), and IRAS photometry, when enough data were available; ortherwise they were estimated using the bolometric correction to IRAS data of van der Veen & Rugers (1989). Distances have been estimated assuming an intrinsic luminosity of $10^4 L_{\odot}$ for the AGB stars, and $10^5 L_{\odot}$ for the supergiants, corresponding to bolometric luminosities of -5.25 and -7.75, respectively.

Figure 1 shows their IRAS color $C_{21} = \log (12S_{25}/25S_{12})$ as a function of their 12 μ m IRAS flux

density scaled to 50 kpc. The dashed lines indicate the IRAS–PSC and Schwering & Israel sensitivity limits, 0.25 and 0.15 Jy. Note that the faintest sources at 12 μ m in Schwering & Israel have $S_{12} = 0.07$ Jy. The two correlations appearing in Fig. 1 for O-rich and C-rich stars only reflect the bolometric correction of van der Veen & Rugers (1989) and are not real. It appears clearly that, whatever the value of C_{21} , very few AGB stars could be detected in the PSC if they are not more luminous than $10^4 L_{\odot}$. The situation is a little better with the IRAS pointed observations, but we still expect that most AGB stars with $L \leq 10^4 L_{\odot}$ have not been detected by IRAS. The faintest "obscured" AGB star discovered until now actually has a bolometric luminosity of -5.1 (8700 L_{\odot}), and a 12 μ m flux density of 0.13 Jy (Reid 1991; Reid et al. 1990). The IRAS color C_{21} can be considered as a rough estimator of the total dust opacity in the circumstellar shell, and hence as a rough estimator of the mass-loss rate (see e.g. Rowan-Robinson et al. 1986; Bedijn 1987; Chan & Kwok 1990). As expected, one sees in Fig. 1 that only optically thick AGB stars could be detected by IRAS as the value of S_{12} decreases drastically when C_{21} decreases. Comparing Fig. 1 with Fig. 9b in Loup et al. (1993), we conclude that most AGB stars detected by IRAS in the LMC should have a mass-loss rate larger than $5 \, 10^{-6} \, M_{\odot} \, \mathrm{yr}^{-1}$. Sources with intermediate mass-loss rates are probably still almost totally undiscovered in the MCs as they would already be too faint for optical surveys, but not optically thick enough to have been seen by IRAS. This is very well illustrated for carbon stars in the Fig. C1 of Groenewegen & de Jong (1993) where they show the theoretical relation between S_{12} and the I magnitude for various bolometric luminosities and mass–loss rates.

The sample of sources detected in CO (Loup et al. 1993) contains only a few supergiants, which does not allow a statistical overview. We consider the example of α Ori, VY CMa, and VX Sgr. If their luminosity is $10^5 L_{\odot}$, their mass-loss rates estimated from CO observations are $\sim 10^{-6}$, 410^{-6} , and $510^{-6} M_{\odot} \text{ yr}^{-1}$, respectively. Their 12 μ m IRAS flux densities scaled to 50 kpc are 0.07, 1.7, and 0.18 Jy. So even LMC red supergiants should have a relatively optically thick dust envelope to be detected by IRAS.

From the previous considerations we expect the IRAS sample of LMC AGB stars to be very incomplete, strongly biased towards luminous (more than $10^4 L_{\odot}$) and optically thick sources (without optical counterpart; mass–loss rate larger than $5 \ 10^{-6} M_{\odot} \ yr^{-1}$). Most AGB stars with a bolometric luminosity fainter than about -5.2, even if very optically thick, have probably not been detected by IRAS. In particular, we therefore expect to find far fewer C–rich stars than O–rich stars in the IRAS sample, though carbon stars are more numerous than late M stars in the MCs (Blanco et al. 1980). Groenewegen & de Jong (1993) reach the same conclusion through a theoretical approach.

Fig. 1. Location of galactic AGB stars and M supergiants detected in the CO (1-0) or CO (2-1) lines (Loup et al. 1993) in a $[C_{21}, S_{12}]$ diagram as if they were located in the LMC. Distances were calculated from bolometric fluxes and assuming a luminosity of $10^4 L_{\odot}$ for AGB stars, $10^5 L_{\odot}$ for M supergiants. S_{12} was then scaled to 50 kpc. Symbols are defined in the figure. The two correlations seen for M and C stars come from the bolometric correction of van der Veen & Rugers and are not real (see also Sect. 2). The two dashed lines correspond to the detection limit of the PSC (0.25 Jy at 12 μ m) and of Schwering & Israel (0.15 Jy). Also plotted in Fig. 1 are the foreground stars listed in Table 6. One can see that, for most of them, their location in the diagram would be sufficient to determine that they do not belong to the LMC

3. Selection criteria

The location of AGB stars, post-AGB stars, planetary nebulae, HII regions, and galaxies, in the IRAS two-colour diagram (12-25-60) has been described by many authors (see e.g. van der Veen & Habing 1988). In this paper we use the work by Pottasch et al. (1988, their Fig. 1) which gives an overview. We are not only interested in AGB stars and M supergiants, we also would like to include possible post-AGB objects and planetary nebulae. Therefore the problem is mainly to eliminate HII regions and galaxies. According to Fig. 1 in Pottasch et al., most HII regions have $(S_{12}/S_{25}) < 0.4 \ (C_{21} > +0.08)$ and $(S_{25}/S_{60}) < 0.3$ ($C_{32} = \log(25S_{60}/60S_{25}) > +0.14$), and most galaxies have $(S_{12}/S_{25}) < 1$ $(C_{21} > -0.32)$ and $(S_{25}/S_{60}) < 0.3$. The knowledge of the 12, 25, and 60 μ m IRAS flux densities would allow us to select AGB stars, post-AGB stars and planetary nebulae with great confidence.

The sensitivity limits given by Schwering & Israel (1990) are 0.15, 0.22, and 0.41 Jy at 12, 25, and 60 μ m respectively. From the discussion in section 2, or from the work by Reid (1991), we expect that most AGB stars detected by IRAS in the LMC will not be detected at 60 μ m, and often will be detected only in one band, at 12 or 25 μ m. The selection of sources is then not so straightforward, and we have to use limits on the IRAS flux ratios. In practice, we have to consider two possibilities at 12 μ m: detected or not detected, and three possibilities at 25, 60, and 100 μ m: detected, not detected, or contaminated by

the surroundings. Non detections provide us upper limits on the IRAS flux densities. Contaminated fluxes do not give us any information.

As a first selection, we have removed all the sources that Schwering & Israel find extended (23 sources in the LMC, 49 sources in the SMC). Next we have removed all the sources with $S_{100} > 2S_{60}$ (945 sources in the LMC, 58 sources in the SMC); note that this eliminates all the sources detected at 100 μ m but not detected at 60 μ m. This criterion removes many HII regions and galaxies which are "cold" objects, preferentially detected at long wavelengths. It could, however, also remove some planetary nebulae.

From these two first selections, we obtained a sample of 923 sources in the LMC, and 142 sources in the SMC. We also added 24 LMC sources, with $S_{100} < 2S_{60}$ or not detected at 60 and 100 μ m, listed in Reid et al. (1990) which have not been found by Schwering & Israel (conversely some sources mentioned in Schwering & Israel have not been found by Reid et al.). Then we applied the following selection criteria:

$$(S_{12}/S_{25}) > 1$$
, whatever (S_{25}/S_{60})

or
$$(S_{12}/S_{25}) < 1$$
 and $(S_{25}/S_{60}) > 0.3$.

There are several cases where we do not have any information on one of the flux ratios, or where the limit derived on one of the flux ratios is not significant, so we cannot conclude anything. We have divided the initial sample into three groups. Group 1 contains 256 LMC and 37 SMC sources following the selection criteria, and expected to be red supergiants, AGB stars, post–AGB stars, or PNe candidates. Group 3 contains 415 LMC and 62 SMC sources which do not follow the selection criteria, expected to be HII regions or galaxies. Group 2 contains 276 LMC and 43 SMC sources for which the available IRAS data are not conclusive, they can be a priori anything.

4. Description of tables

The previous selection based only on IRAS data is a first step to get a global list of candidates. However we expect to find in this list many foreground stars as well as some star clusters, and some IRAS candidates could be associated with optically known red supergiants. We also have to remove from this first list IRAS sources which have been identified in previous works as obscured AGB stars or late-type supergiants, through JHKLM photometry. We therefore tried to find counterparts to the IRAS sources of groups 1 and 2. For that purpose we have extensively used the Simbad database, as well as a compilation of most works on AGB stars and M supergiants in the Magellanic Clouds (see references), as some of them have not been entered in the Simbad database (in particular the surveys by Blanco et al. 1980; Westerlund et al. 1978, 1981). Cross-identifications are mainly based on the positions of the objects, but also on the consistency between the optical magnitudes and the IRAS fluxes and colours. For IRAS sources already listed in the PSC, we have searched around 30" from the IRAS-PSC position; for new IRAS sources not discovered in the PSC we have searched around 60'' as the position given by Schwering & Israel is not more accurate. The IRAS-PSC uncertainty is in principle smaller than 30''. However, as the IRAS flux densities of our sources are often close to the sensitivity limit, the position might be less accurate than usual. In addition, we notice that positions given by Schwering & Israel and Reid et al. sometimes disagree by more than 60''. On the other hand, the *JHKL* counterpart of obscured AGB stars is generally close (within 20'') to the IRAS-PSC position (see Reid 1991; Zijlstra et al. 1996, Paper II).

Finally, we have divided the IRAS sources into 7 tables which will be described below:

4.1. Tables 1, 2, and 3: identified objects

Optically known red supergiants and AGB stars are listed in Table 1, obscured AGB stars and late-type supergiants without optical counterparts in Table 2, and planetary nebulae in Table 3. Column 1 lists the LI number as given in Schwering & Israel, and Col. 2 the TRM number as given in Reid et al. A " \star " in front of the LI number means that the IRAS source was also found in the PSC. Columns 3 and 4 list the coordinates as found in Schwering & Israel or in Reid et al. (when the TRM source has not been found by Schwering & Israel); note that Schwering & Israel provide coordinates more accurate than 60'' only when the source is also in the PSC, and then they just give the IRAS-PSC coordinates. Columns 5, 6, 7, and 8 list the IRAS flux densities at 12, 25, 60, and 100 μ m, respectively, as found in Schwering & Israel (or in Reid et al.); "C" means contaminated, and ":" means that the value is uncertain. Column 9 and 10 list the IRAS colours, $C_{21} = \log(12S_{25}/25S_{12})$ and $C_{32} = \log(25S_{60}/60S_{25})$. Column 11 gives the group (1, 2 or 3) of the IRAS source as defined in Sect. 3. When we give two possibilities for the group, the second value corresponds to the group found by using the Reid et al.'s values if the group is different from the one derived from the Schwering & Israel values (see also Table 8). The last column gives the identification: source name, some observational information (between bracket), and a code for references (between square brackets). The list of references is given at the end of the tables, as well as, for Table 1, an overview of the various optical identifications. Table 1 lists 52 LMC and 7 SMC optical stars. Table 2 contains 34 LMC and 2 SMC sources. Among the 34 LMC obscured AGB stars (or late-type supergiants), 16 have been identified recently by Zijlstra et al. (1996, Paper II) on the basis of the present work (for selection) and infrared observations in the JHKL' bands and at 10 μ m.

The reader will notice that Table 1 contains 2 sources known to be optically thick, in particular the famous PSC 04553 - 6825 (LI–LMC 181) discovered by Elias et al. (1986) and Wood et al. (1986). This source has an optical counterpart (WOH G064 in Westerlund et al. 1981, spectral type M7.5 in Elias et al. 1986) and is therefore listed in Table 1. PSC 00350-7436 (LI–SMC 5) has an optically thick dust shell as well. As Whitelock et al. (1989) could determine its spectral type, a peculiar carbon star, we list it in Table 1. Other sources in Table 1 do not have optically very thick dust envelopes.

4.2. Comments on the Wood et al.'s (1992) list

Wood et al. monitored in JHKL 3 sources in the SMC and 16 in the LMC. The results are presented in their Tables 3 and 5. Among the 16 LMC sources, we found that PSC 04553 – 6825 (LI–LMC 181), possibly PSC 05247 – 6941 (LI–LMC 976), PSC 05261 – 6614 (LI–LMC 1033), and PSC 05389 – 6922 (LI–LMC 1470), have a known optical counterpart of spectral type M: WOH G064, WOH SG264, WOH SG281, and WOH SG455, respectively (Westerlund et al. 1981, see Table 1 caption). They are listed here in Table 1. PSC 04571–6954 (LI–LMC 225) can be identified with the well know S Dor variable HD 268835 of spectral type B8Ia and is listed in Table 7. PSC 05244 – 6832 (LI– LMC 961) and PSC 05325 – 6743 (LI–LMC 1274) have extremely red IRAS colours and fall in our group 3. They can be identified with the HII regions LHA 120–N 138D and LHA 120–N 57A, respectively (Henize 1956), and are listed in Table 7. The 3 SMC sources all have very red IRAS colours and fall in group 3 too. There is a probable M supergiant close to PSC 00477 – 7343 (LI–SMC 57), so we list this source in Table 1. However we think that the association between the IRAS source and the optical star is doubtful. PSC 00521 – 7054 is identified with a galaxy and is listed in Table 7. Finally, for PSC 01039 – 7305 (LI–SMC 173) we could not find any identification. However, in addition to its unusual IRAS colours, it also has unusual JHKL colours for an AGB star, so we again list it in Table 7.

Wood et al. also list 14 sources in their Table 4 that they could detect in JHK. Among them, PSC 05027 – 7124 (LI–LMC 346), PSC 05198 – 6941 (LI–LMC 816), and PSC 05280 – 6910 (LI–LMC 1100), belong to groups 1 or 2. They are however in Table 7 as associated with the blue supergiant HD 269006, two hot stars, and NGC 1984, respectively. The other objects all belong to group 3 and have very red IRAS colors. We list all of them in Table 7, either because they are associated with hot stars, or with HII regions, or because the NIR colors are much too blue compared to the IRAS colors. We do not exclude that the NIR colors actually correspond to an AGB star, however the association with the IRAS source is unlikely.

4.3. Tables 4 and 5: unidentified IRAS sources

Unidentified IRAS sources from group 1 are listed in Table 4 (AGB stars, post–AGB stars, and PNe candidates), and those from group 2 in Table 5 (IRAS data insufficient to conclude on their nature). Columns 1 to 10 are the same as in Tables 1, 2, 3. For some sources we found one or several objects close to the IRAS position, but we think that the association with the IRAS source is unlikely. In particular, we found some IRAS sources close to optical C stars or LPVs, but the IRAS flux densities are much too bright compared to what one expects from the optical and JHKL properties of the stars. Such cases are listed at the end of the Tables. Table 4 contains 198 LMC and 11 SMC sources, so about 6 times more new obscured AGB stars candidates than what is already known as listed in Table 2.

4.4. Table 6: foreground stars

It contains all the sources from groups 1 and 2 found or believed to be foreground stars. The columns are the same as in Tables 1, 2, and 3. Identifications of foreground stars are based on the V (or I) magnitude of the star, and/or its spectral type, and/or its heliocentric velocity. Most of them have M, K, F, G giant or dwarf types. For three sources in the LMC, we did not find any optical star at the location of the IRAS source. However, their location in Fig. 1 shows that they are very likely foreground stars. Table 6 contains 135 and 29 stars in the fields of the LMC and the SMC, respectively.

4.5. Table 7: ruled out objects

It contains all the sources, from groups 1 and 2, that we have ruled out after the selection described in Sect. 3. They are mostly associated with star clusters, or/and hot stars, Wolf–Rayet stars, or blue luminous variables; there are also a few HII regions and galaxies. Table 7 contains 76 LMC and 15 SMC sources, including the group 3 sources from Wood et al. (1992, see Sect. 4.2).

5. Discussion

Despite the selection criteria we use, there are 6 stars of group 3 in Table 1, and 3 in Table 2. All these sources have S_{100} larger than S_{60} , or a very large S_{60}/S_{25} ratio, which is normally characteristic of HII regions and galaxies. A look at the IRAS maps show that these sources are located in regions with a high background at 100 and 60 μ m, and that S_{100} and/or S_{60} are contaminated. Three sources, LI-LMC 932, 1107, and 528, are also found by Reid et al. (1990). They do not give any 100 μ m flux, and find no or a fainter 60 μ m flux. Using the fluxes determined by Reid et al., these sources would belong to group 1 or 2 (see Table 8). We expect that probably a few good AGB candidates have been ruled out of our list for similar reasons, rejected because of a high 100 or/and 60 μ m flux due to contamination. There is however no systematic way to pick up such sources, the only way would be a careful examination of IRAS maps for all of them. The case of planetary nebulae is more marginal. In Table 3, 9 sources belong to group 3. However, they are normally very cold objects and their IRAS flux ratios are close to the limits of our selection criteria.

Conversely there are several rejected sources in Table 7 belonging to group 1. Most of them are, however, associated with star clusters, or hot stars, which is not contradictory with belonging to group 1. There are a few very interesting sources, blue luminous variables and Wolf–Rayet stars which deserve more studies. The few sources of group 1 associated with HII regions all have very cold IRAS colors, close to the limits of our selection criteria.

In Fig. 2, we have plotted the location of optically known stars (Table 1, Fig. 2a), obscured AGB stars (Table 2, Fig. 2b), and planetary nebulae (Table 3, Fig. 2c), in the same kind of diagram as the one presented in Fig. 1 for galactic sources and foreground stars (Table 6). One would expect that optical stars have C_{21} smaller than -0.3 ($S_{12} \sim S_{25}$), however in Fig. 2a 28% of the sources have $C_{21} > -0.3$. Most stars in Table 1 are M supergiants. In our Galaxy, it is known that some M supergiants have a "cold" circumstellar envelope though not optically thick. To model their energy

Fig. 2. Location of sources found in Table 1 (Fig. 2a), Table 2 (Fig. 2b), and Table 3 (Fig. 2c) in the $[C_{21}, S_{12}]$ diagram. Full dots correspond to the IRAS fluxes determined by Schwering & Israel, open triangles correspond to IRAS fluxes determined by Reid et al. One can see that the disagreement between both determinations is often much larger than the "standard" adopted calibration uncertainty of 15% on IRAS fluxes (corresponding to ± 0.13 on C_{21}). On average, taking into account the large uncertainty on IRAS fluxes (see Sect. 5), obscured AGB stars are colder than sources with optical counterparts, as expected

distribution, Rowan–Robinson & Harris (1983) had to use a dust temperature at the inner radius of the dust shell of only typically 500 K, far below the dust condensation temperature. This would reflect either a peculiar mass– loss history, or the fact that the dust condensates much further from the star than in M giants. It might be that the same phenomenon occurs in some M supergiants of the LMC.

However, here we work with fluxes close to the detection limit and we should first invoke the uncertainty of these fluxes. Both Schwering & Israel and Reid et al. give a typical calibration uncertainty of 15%, leading to an uncertainty of ± 0.13 on C_{21} , though Reid et al. note that this uncertainty can be much larger for some sources. In Table 8, for sources in common to Schwering & Israel and Reid et al., we present a comparison of the various determinations of IRAS fluxes. Clearly, the disagreement between Schwering & Israel and Reid et al. is often much larger than 15%. In fact, as noted by Reid et al., there is a systematic disagreement for S_{12} and S_{25} . Reid et al. underestimate S_{12} and S_{25} by typically 25% compared to Schwering & Israel, and by 10% compared to the PSC. Reid et al. say that 10% is acceptable as it is inside the admitted 15% uncertainty. This is correct when one considers one source, but in a statistical sample they should not find any systematic deviations. Clearly, IRAS fluxes have not been determined with the same method by Schwering & Israel and by Reid et al. As a consequence, there is also a systematic deviation in the value of C_{21} which is generally underestimated by Reid et al. compared to Schwering & Israel. The typical uncertainty on C_{21} that we derive from Table 8 is ± 0.25 , and hence only a few sources in Table 1 really have a cold C_{21} colour (Fig. 2a). For them, one could also doubt that the IRAS source is actually associated with the optically identified star.

With such uncertainties in IRAS fluxes, the list of obscured AGB star candidates given in Table 4 probably misses a few objects whose 60 and/or 100 μ m fluxes are contaminated. Conversely, a few sources in Table 4 might be associated with HII regions. However, we think that this list is the most complete one can make in a systematic way, and is quite reliable as it can be seen in Table 1 and 2 for identified objects. This list contains 6 times more sources than known obscured AGB stars listed in Table 2. Therefore further studies should be performed to clearly identify them. We expect that many of them will be identified through the IJK' observations of the DEep Near Infrared Survey of the southern sky (DENIS).

Acknowledgements. We are very grateful to P. Whitelock and B.E. Westerlund for their helpful comments. This research has made use of the Simbad database, operated at CDS, Strasbourg, France.

References

- Blanco V.M., McCarthy M.F., Blanco B.M., 1980, ApJ 242, 938 (BMB)
- Blanco V.M., McCarthy M.F., 1983, AJ 88, 1442
- Blanco V.M., McCarthy M.F., 1990, AJ 100, 674 (BM)
- Catchpole R.M., Feast M.W., 1981, MNRAS 197, 385
- Elias J.H., Frogel J.A., Humphreys R.M., 1980, ApJ 242, L13
- Elias J.H., Frogel J.A., Humphreys R.M., 1985, ApJS 57, 91
- Elias J.H., Frogel J.A., Schwering P.B.W., 1986, ApJ 302, 675
- Feast M.W., Catchpole R.M., Carter B.S., Roberts G., 1980, MNRAS 193, 377

- Frogel J.A., Blanco V.M., 1990, ApJ 365, 168 (BMB)
- Frogel J.A., Richer H.B., 1983, ApJ 275, 84
- Fouqué P., Le Bertre T., Epchtein N., Guglielmo F., Kerschbaum F., 1992, A&AS 93, 151
- Glass I.S., 1979, MNRAS 186, 317
- Glass I.S., Reid N., 1985, MNRAS 214, 405
- de Grijp M.H.K, Miley G.K., Lub J., 1987, A&AS 70, 95
- Groenewegen M.A.T., de Jong T., 1993, A&A 267, 410
- Henize K.G., 1956, ApJS 2, 315 (LHA)
- Hughes S.M.G., 1989, AJ 97, 1634 (SHV) $\,$
- Hughes S.M.G., Wood P.R., 1990, AJ 99, 784 (SHV)
- Humphreys R.M., 1979, ApJS 39, 389
- Israel F.P, Koorneef J., 1991, A&A 248, 404
- Jura M., Kleinmann S.G, 1990, ApJS 73, 769
- Le Bertre T., 1992, A&AS 94, 377
- Loup C., Forveille T., Omont A., Paul J.F., 1993, A&AS 99, 291
- Lundgren K., 1988, A&A 200, 85
- Meatheringham S.J., Dopita M.A., 1991a, ApJS 75, 407
- Meatheringham S.J., Dopita M.A., 1991b, ApJS 76, 1085
- Morgan D.H., Good A.R., 1992, A&AS 92, 571 (MG)
- Neugebauer G., et al., 1984, ApJ 278, L1
- Pottasch S.R., Bignell C., Olling R., Zijlstra A.A., 1988, A&A 205, 248
- Price S.D., Walker R.G., 1976, AFGL For Color Infrared Sky Survey, Environmental Research Papers, No. 576 (AFGL)
- Rebeirot E., Azzopardi M., Westerlund B.E., 1993, A&AS 97, 603 (RAW)
- Rebeirot E., Martin N., Mianes P., Prévot L., Robin A., Rousseau J., Peyrin Y., 1983, A&AS 51, 277 (RMMP)
- Reid N., 1991, ApJ 382, 143
- Reid N., Glass I.S., Catchpole R.M., 1988, MNRAS 232, 53 (GRV)

- Reid N., Hughes S.M.G, Glass I.S., 1995, MNRAS 275, 331 (RHV)
- Reid N., Tinney C., Mould J., 1990, ApJ 348, 98 (TRM)
- Roche P.F., Aitken D.K., Smith C.H., 1993, MNRAS 262, 301 Sanduleak N., 1989, AJ 98, 825
- Sanduleak N., MacConnell D.J., Philip A.G., 1978, PASP 90, 621 (SMP)
- Sanduleak N., Philip A.G., 1977, Pub. Warner and Swasey Obs. 2, No. 5 (SP)
- Schwering P.B.W., 1989, A&AS 79, 105 (LI-LMC, LI-SMC)
- Schwering P.B.W., Israel F.P., 1990, "Atlas and catalogue of infrared sources in the Magellanic Clouds". Kluwer Academic Publishers (LI-LMC, LI-SMC)
- Stencel R.E., Pesce J.E., Bauer, W.H., 1989, AJ 97, 1120
- Vassiliadis E., Dopita M.A., Morgan D.H., Bell F.J., 1992a, ApJS 83, 87
- Vassiliadis E., Meatheringham S.J., Dopita M.A., 1992b, ApJ 394, 489
- Westerlund B.E., 1961, Uppsala Ann. Band 5 No. 1
- Westerlund B.E., Olander N., Hedin B., 1981, A&AS 43, 267 (WOH)
- Westerlund B.E., Olander N., Richer A.B., Crabtree D.R., 1978, A&AS 31, 61 (WORC)
- Whitelock P.A., Feast M.W., Menzies J.W., Catchpole R.M., 1989, MNRAS 238, 769
- Wood P.R., Bessell M.S., Fox M.W., 1983, ApJ 272, 99
- Wood P.R., Bessell M.S., Whiteoack J.B., 1986, ApJ 306, L81
- Wood P.R., Whiteoack J.B., Hughes S.M.G., Bessell M.S., Gardner F.F., Hyland A.R., 1992, ApJ 397, 552
- Zijlstra A.A., Loup C., Waters L.B.F.M., Whitelock P.A., van Loon J.T., Guglielmo F., 1996, MNRAS 279, 32 (Paper II)
- Zijlstra A.A., van Hoof P.A.M., Chapman J.M., Loup C., 1994, A&A 290, 228

 Table 1. Optically known M and C stars

LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S_{25}	S_{60}	S ₁₀₀	C ₂₁	C ₃₂	group	identification
*5		00 35 04.2	-74 36 17	0.30	0.22	-	-	-0.5	< -0.1	1	JHKL, $Ce(+?)$, nvar, $V=14.6$ [3,7]
*44		00 46 15.6	-73 39 56	0.11:	0.11:	4.1	с	-0.3	+1.2	1	SkKM 25 (K/M?, V=13.5)
*57		00 47 42.8	-73 43 04	0.19	1.11	14.0	27.0	+0.5	+0.7	3	SkKM 47 ??? (K/M?) [5]
59		00 47 57	-73 19	0.19:	0.11:	2.5	С	-0.6	+1.0	1	SkKM 50 (K/M?, V=13.5)
139		00 59 06	-73 07	0.19	0.11:	0.4	С	-0.6	+0.2	1	HV 11417 (M5e)
140		00 59 10	-71 55	0.19	-	С	С	< -0.3	-	2	HV 11423 (M0Iab, B=12.5)
*185		01 07 27.8	-71 40 06	0.41	0.44	•	-	-0.3	< -0.4	1	HV 12956 (M5e) [3]
143		04 53 58	-69 0 3	0.11	0.17:	-	-	-0.1	< + 0.0	1	WOH SG061 (M0, I=13.9, P=857) [i,w]
*153		04 54 24.6	-68 49 02	0.30	0.17:	-	-	-0.6	< +0.0	1	SP 30-6 (M8, V=13.4, P=728) $[i,L,w]$
*181		04 55 18.4	-68 25 15	7.07	11.21	4.1	10.4:	-0.1	-0.8	3	WOH G064 (M7.5, $1=12.4$, $P=930$, OH) [1,1,2,5,6]
*183		04 55 20.5	-69 33 53	0.67	0.67	2.1:	С	-0.3	+0.1	1	WOH SGUIT (M2, $R=12.2$) [1,7] IW 2055 (M4, $N=12.2$, $R=820$) [d r i i] J. 7]
*253		04 58 08.7	-70 13 27	0.59	0.44	•	-	-0.4	< -0.4	1	HV 2255 (M4, V = 15.2, F = 650) [d, g, i, j, i, b, i]
*383	048	05 04 15.9	-01 20 21	0.50	0.30	•	-	-0.3	< -0.0	1	HV 11077 (M1+, V-13.8) [i L]
*420		05 08 12	-08 43 04	0.20	0.17:	37	12	-0.5	< + 0.0	1	WOBC 90 (C? $I=12.8$) [D]
402 *517		05 08 12	-00 29	0.15	0.11	0.1	4.2	-0.4	-01	1	$HV_{12185}(M_1, V=12.7)$ [i.L]
*612	043	05 12 49 6	-67 23 08	0.10.	0.22.		-	-0.2	< -0.3	1	HV 2360 (M2/4Ia, V=13.8, P=409) [d.e.i.l.L.o.g.r.v]
*663	036	05 14 53 4	-67 30 36	0.26	0.44	0.8:	Ċ	-0.1	-0.1	1	HV 916 (M3Ia, $V=12.6$, $P=743$) [d.e,i,l,L.g,v]
*728	000	05 17 03.4	-69 27 09	0.48	0.33:	8.3:	č	-0.5	+1.0	1	WOH G255 (M, I=12.1) [i]
833		05 20 42	-66 36	0.22	-	-	-	< -0.3	-	1	WOH G278 (M3S, V=15.6) [i,r]
869		05 21 50	-69 33	0.15:	0.11:	-	-	-0.5	< + 0.2	1	HV 12017 (M1, $V=12.6$) [i,L]
*932	108	05 23 35.7	-65 44 35	0.41	0.22	0.8:	8.3:	-0.6	+0.2	3,1	HV 12793 (M3/4, I=11.2) [i,v,4,7]
*976		05 24 45.0	-69 41 3 0	1.04	2.77	С	С	+0.1	-	2	WOH SG264 (M2, V=13.3) [i,L,5]
*1033	129	$05\ 26\ 08.4$	-66 14 34	0.56	0.78:	8.3:	С	-0.2	-	3,1	WOH SG281 (M3, $V=11$) [i,r,v]
*1038		$05\ 26\ 11.5$	-66 09 27	0.37:	0.56:	С	С	-0.1	-	2	WOH SG282 (M2, V=14.2) [i,L]
*1059		$05 \ 26 \ 42.8$	-69 13 17	0.33	0.22:	•	-	-0.5	< -0.1	1	HV 2532 (M4, V=13.4, P=650) [i,l,L,o]
	052	$05 \ 27 \ 33.5$	$-67\ 17\ 28$	0.15	-	-	-	< -0.2	-	2	HV 5845 (M1Ia, $V=12.7$) [d,i,L,v]
	073	05 27 36.5	-66 56 04	0.18	0.15	-	-	-0.4	< +0.1	1	HV 963 (M2/3I, V=12.6) $[i,l,L,q,v,7]$
*1103		$05\ 28\ 07.4$	-69 15 45	0.30	0.22	-	-	-0.5	< -0.1	1	SP 47-14 (M1, $V=12.9$) [i,L,7]
1107	065	05 28 15	-67 02	0.19	0.11:	0.4:	2.1:	-0.6	-	3,2	HV 5854 (M3/4.51, V=12.7, P=524) $[g_{1,1,L,n,0,q,v}]$
1121		05 28 40	-70 14	0.19:	0.11	4.1	6.2:	-0.6	+1.2	1	WOH G351 (M, $I=12.4$) [I]
*1125		05 28 40.6	-68 09 32	0.19	0.22		Ċ	-0.3	< -0.1	1	HV = 5870 (M5 V - 14.3 P - 627) [d g i i] L o]
1145		05 29 20	-69 09	0.10	0.22:	U	U	-0.2	0 1	2	$HV 2586 (M1/3 5L V = 13.1 P = 487) [\sigma i] L o v]$
*1163	009	05 29 50 4	60 11 25	0.19	0.22	0.8-	-	-0.5	< -0.1	1	SP 46-39 (M1/a $V=10.6$) [a d e i L o]
*1170	049	05 29 50.4	-67 20 44	0.19	0.22.	0.0.	-	-0.3	< -0.1	1	SP 45-34 (M1Ia + \mathbb{R}^2 , V=12.1) [a.d.e.i.L.v.7]
*1172	010	05 30 01 4	-68 59 32	0.10	0.11	-	-	-0.7	< +0.2	1	SP 46-44 (M1Ia, $V=11.7$) [a.d.e.i.L.o.r.7]
*1190	046	05 30 25.8	-67 22 23	0.48	0.22	-		-0.7	< -0.1	1	HV 2595 (M1Ia, $V=12.4$) [a,d,e,i,L,o,7]
*1212		05 31 06.4	-69 18 02	0.22	0.11:	с	с	-0.6		1	HV 2604 (M1, V=13.0, P=664) $[g,i,l,L,o]$
*1223		05 31 23.5	-69 20 51	0.37	0.22	2.1	6.2	-0.5	+0.6	3	HV 12998 (M1, I=10.5) [i,L,7]
*1234	089	05 31 35.4	-66 31 52	0.33	0.22:	-	-	-0.5	< -0.1	1	HV 990 (M2I, V=12.6) [i,L,v,7]
*1238	101	05 31 41.5	-66 04 53	0.41	0.44	-	-	-0.3	< -0.4	1	WOH SG374 (M6, V=14.8) [i,L,v,4,7]
1241	087	05 31 51	-66 43	0.11:	0.17:	-	-	-0.1	< + 0.0	1	SP 52-1 (M3/4I, V=12.9) [i,L,v,7]
*1281	005	$05 \ 32 \ 45.1$	-67 57 08	0.41	0.56	-	-	-0.2	< -0.5	1	HV 996 (M4/5I, V=13.7, P=760) $[d,i,l,L,q,v]$
*1294	078	05 33 08.3	-66 50 05	0.26	0.11:	-	-	-0.7	< +0.2	1	HV 12437 (M0.5/2, V=14.0, P=403) $[i,l,L,q,v]$
*1304	063	05 33 29.8	-67 06 17	0.37	0.22	-	-	-0.5	< -0.1	1	HV 5933 (M4I, V=11.9) $[d,i,L,o,v,7]$
1306	••••	05 33 30	-69 09	0.19:	-	-	-	< -0.3	-	2	RMMP 600 (M?, $V=13.9$) [L]
1 3 60	062	$05 \ 35 \ 20$	-67 05	0.19	0.11:	-	-	-0.6	< +0.2	1	HV 2700 (M1/2Iab, V=13.3) $[d,i,L,q,v,7]$
1364		$05 \ 35 \ 25$	-67 46	0.11	0.22	-	-	+0.0	< -0.1	1	HV 1001 (M4/5.5, V=14.7, P=590) [d,e,i,l,Lq]
*1366	068	05 35 30.0	-66 57 53	0.33	0.22	-	•	-0.5	< -0.1	1	WOH SG425 (M31, $V = 11.8$) [1, $V, 7$]
*1399	067	05 36 27.8	-66 57 25	0.33	0.33	-	-	-0.3	< -0.3	1	HV 1004 (M3/5.5I, V=13.1, P=555) $[e,1,1,L,q,V]$
1458	•••	05 38 30	-69 18	0.37:	C	C	C	-	-	2	$\frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{11}{10} 11$
*1470		05 38 57.4	-69 22 08	2.11	2.22	C	С	-0.3	_	2	WUT 3G433 (WU.3, V = 13.3) [1,3]
*1543		05 41 10.4	-69 23 41	0.26	-	-		< -0.4	-	1	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
*1553		05 41 22.9	-09 19 28	0.37	0.22:		C C	-0.5	-	1	HV = 5000 (M1 V = 13.4) [0,1,1]
*1209	 195	05 42 19 0	-09 UU 13 67 99 56	0.15:	0.33	ر مە.	C C	+0.0	- • • •	2 2	(V-13.8) [v 7]
*1700	132	00 40 10.0	-01 20 00	0.10	0.22:	0.8:	U	-0.1	TU.2	ວ 1	(-10.0) [7,1] WOH G639 (M I-11.5) [i]
*1000 .1198		00 06 55 7	-002144	0.33	0.11:	•	-	-0.8	< TU.2	1	WOH SG532 (M, $I=12.0$) [I] WOH SG532 (M4 $I=12.1$) [i]
1823	•••	00 00 35.7	-12 38 20	0.20:	-	-	-	<-0.4	-	T	() () () () () () () () () () () () () (

Notes to Tables 1 and 2: WOH G352 is also very close to LI-LMC 1125. LI-SMC 61 (PSC00483-7347) was not selected because it is mentioned as slightly extended in Schwering & Israel; note that Whitelock et al. (1989) mention that this object could also be a pre-main-sequence star. LI-LMC 1341 is near a nebulosity.

Reference codes []: a, Westerlund, 1961. D, Westerlund et al., 1978. d, Humphreys, 1979. e, Glass, 1979. g, Feast et al., 1980. i, Westerlund et al., 1981. j, Catchpole & Feast, 1981. l, Wood et al., 1983. L, Rebeirot et al., 1983. n, Glass & Reid, 1985. o, Elias et al., 1985. q, Reid et al., 1988. r, Lundgren, 1988. v, Reid et al., 1990. 1, Elias et al., 1986. 2, Wood et al., 1986. 3, Whitelock et al., 1989. 4, Reid, 1991. 5, Wood et al., 1992. 6, Roche et al., 1993. 7, Zijlstra et al., 1995.

Source name codes : SkKM, Sanduleak, 1989. SP, Sanduleak & Philip, 1977. WORC, Westerlund, Olander, Richer, & Crabtree, 1978. WOH (SG for supergiants candidates in Table I, G for giants candidates in Table II), Westerlund, Olander, & Hedin, 1981. RMMP, Rebeirot, Martin, Mianes, Prevot, et al., 1983. GRV, Reid, Glass, and Catchpole, 1988. SHV, Hughes, 1989; Hughes & Wood. 1990.

Additional names (Tab.1): LI-LMC 0143 : SHV0453582-690242; LI-LMC 0153 : WOH SG066 = RMMP 045 = SHV0454257-684856; LI-LMC 0253 : WOH SG097 = RMMP 087; LI-LMC 0383 : WOH SG140 = SP 29-33 = RMMP 151; LI-LMC 0425 : WOH SG157 = RMMP 183; LI-LMC 0517 : SP 35-1 = WOH SG179 = RMMP 215; LI-LMC 0612 : SP 37-24 = WOH SG193 = RMMP 239; LI-LMC 0663 : SP 37-35 = WOH SG204 = RMMP 256; LI-LMC 0869 : SP 47-6 = WOH SG241 = RMMP 308; LI-LMC 0932 : WOH SG257; LI-LMC 0976 : RMMP 339; LI-LMC 1038 : RMMP 358; LI-LMC 1059 : SP 46-16 = WOH SG287 = RMMP 364; TRM 052 : SP 45-16 = WOH SG299 = RMMP 383; TRM 073 : SP 45-18 = WOH SG301 = RMMP 384; LI-LMC 1103 : WOH SG306 = RMMP 390; LI-LMC 1107 : HV 5854 = SP 45-23 = WOH SG313 = RMMP 401; LI-LMC 1125 : SP 46-32 = WOH SG319 = RMMP 408; LI-LMC 1145 : SP 47-17 = WOH SG331 = RMMP 432; LI-LMC 1155 : WOH SG337 = RMMP 444; LI-LMC 1163 : SP 46-39 = WOH SG338 = RMMP 448; LI-LMC 1170 : WOH SG343 = RMMP 468 = R 108; LI-LMC 1172 : WOH SG341 = RMMP 462; LI-LMC 1190 : SP 45-38 = WOH SG349 = RMMP 482; LI-LMC 1212 : SP 47-20 = WOH SG358 = RMMP 505; LI-LMC 1223 : SP 47-22 = WOH SG369 = RMMP 519; LI-LMC 1234 : SP 51-6 = WOH SG371 = RMMP 531; LI-LMC 1238 : RMMP 539; LI-LMC 1241 : WOH SG375 = RMMP 545; LI-LMC 1281 : SP 46-59 = WOH SG388 = RMMP 575; LI-LMC 1294 : WOH SG395 = RMMP 589 = GRV0533-6650; LI-LMC 1304 : SP 52-18 = WOH SG401 = RMMP 606; LI-LMC 1360 : SP 52-29 = WOH SG422 = RMMP 656; LI-LMC 1364 : WOH SG421 = RMMP 655; LI-LMC 1366 : SP 52-32 ??; LI-LMC 1399 : SP 52-35 = WOH SG432 = RMMP 683; LI-LMC 1553 : SP 54-34 = WOH SG467 = RMMP 753; LI-LMC 1559 : SP 54-40 = WOH SG473 = RMMP 761;

 Table 2. Infrared AGB stars or SGs

LI	TRM	RA (1950)	DEC(1950)	S_{12}	S ₂₅	S ₆₀	S_{100}	C ₂₁	C ₃₂	group	identification
*61		00 48 22.1	-73 47 48	0.78	0.53	0.9:	с	-0.5	-0.1	3	JHKL [3]
*119		00 55 24.8	-73 51 29	0.44	0.22	С	С	-0.6	_	1	JHKL, P=800 [3]
*1005		04 98 41 0	60 27 15	0.99	0.17			0.4	< +0.0	1	IHKI. [7]
*1044		04 20 41.9	-09 37 13	0.22	0.17	•	-	-0.4	< ±0.0	1	IHKI [7]
*/	•••	04 31 21.3	-08 31 10	0.15	0.17	-	-	-0.4	< -0.6	1	IHKL [7]
*57		04 40 40.1	-69 58 17	0.37	0.33		_	-0.4	< -0.3	1	JHKL [7]
*60	•••	04 49 50 3	-68 42 53	1 18	1 11	-	-	-0.3	< -0.8	1	JHKL [7]
*77		04 50 55 7	-69 22 32	0.74	1.00	С	С	-0.2	_	2	JHKL, P=1290[5]
*92		04 51 41.3	-69 02 49	0.63	0.78	1.2:	č	-0.2	-0.2	1	JHKL, P=1090 [5]
*121		04 53 00 4	-69 16 43	2.07	5.11	24.8	39.5	+0.1	+0.3	3	JHKL, P=1260: [5]
*141		04 53 54.2	-68 21 11	0.19	0.22		-	-0.3	< -0.1	1	JHKL [7]
*159		04 54 32.0	-70 00 44	0.44	0.89	0.8:	4.2:	-0.0	-0.1	3	JHKL, P=1270, OH [5]
*198		04 55 42.1	-67 53 25	0.26	0.22	-	-	-0.4	< -0.1	1	JHKL [7]
*297		05 00 18.6	-67 12 21	0.44	0.44	0.8:	2.1:	-0.3	< -0.1	1	JHKL [7]
*310		05 00 57.2	-66 16 58	0.26	0.22	-	-	-0.4	< -0.1	1	JHKL [7]
*528	023	05 09 59.6	-67 40 19	0.19	0.44	0.8	4.2	+0.0	-0.1	3,1	JHKL [7]
*570	004	05 11 17.3	-67 55 49	0.41	0.33	1.2	2.1:	-0.4	+0.2	1	IJHKL [4,7]
*571	024	05 11 18.4	-67 39 57	0.33	0.17	-	-	-0.6	<+0.0	1	JHKL [4,7]
578	072	05 11 30	-66 56	0.19	0.11:	С	С	-0.6	-	1,2	IJHK [4,7]
*1880		05 12 50.1	-64 55 03	0.15	0.22	-	-	-0.2	< -0.1	1	JHKL [7]
*793	020	05 19 03.5	-67 48 23	0.30	0.22	-	-	-0.5	< -0.1	1	JHKL [4,7]
	088	05 20 19.5	-66 38 53	0.16	-	-	-	< -0.2	-	2	IJHKL [4,7]
*861	011	05 21 37.4	-67 53 55	3.22	13.43	26.1	20.8:	+0.3	-0.1	1	JHKL [5]
	045	05 28 21.3	-67 23 13	0.13	-	-	-	< - 0.1	-	2	IJHK [4]
*1137		$05 \ 29 \ 08.1$	-67 00 03	0.07:	0.22	1.2	4.2:	+0.2	+0.4	3	JHKL [7]
*1153		$05 \ 29 \ 27.1$	-71 04 44	0.74	0.78	С	С	-0.3	-	2	JHKL, P=1040 [5]
*1157	•••	05 29 31.6	-71 21 41	0.19	0.17	-	-	-0.4	< +0.0	1	JHKL [7]
*1164	•••	$05 \ 29 \ 52.2$	-69 57 27	0.85	1.33	1.2:	С	-0.1	-0.4	1	JHKL, P=1280, OH [5]
*1177	079	05 30 05.6	-66 51 15	0.26:	0.22	-	-	-0.4	< -0.1	1	JHKL [4,7]
*1286	060	05 32 54.7	-67 08 54	0.85	1.83	0.4:	-	+0.0	-1.0	1	JHKL, P=1260, OH [4,5,7]
*1341		05 34 41.0	-69 49 13	7.40	21.09	20.7	20.8:	+0.1	-0.4	1	KLM [1,2,6]
*1345	•••	05 34 48.4	-70 24 48	0.48	0.28	-	-	-0.6	<-0.2	1	HK [7]
*1382	077	05 36 00.8	-66 48 26	0.22	0.22	0.8:	-	-0.3	+0.2	1	JHK [4,7]
*1506		05 40 13.2	-69 56 46	0.63	0.89	С	С	-0.2	-	2	JHKL, P=1390, OH [5]
*1756		05 50 36.1	-70 53 58	0.63	0.44	-	-	-0.5	< -0.4	1	JHKL [7]
*1790		05 55 50.7	-70 00 24	0.74	0.67	-	-	-0.4	< -0.6	1	JHKL [7]

 Table 3. Planetary Nebulae

LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S ₂₅	S ₆₀	S ₁₀₀	C ₂₁	C ₃₂	group	identification
*229		00 21 53.8	-73 54 00	-	0.22			> -0.2	< -0.1	1	SMP 2-1
*12		00 39 33.7	-74 03 45	-	0.22:	0.4:	С	> -0.2	-0.1	1	SMP 2-6
*50		00 46 47.2	-73 14 30	0.19	1.00	4.5	4.2	+0.4	+0.3	3	SMP 2-11
91		00 51 24	-73 01	-	0.44	С	С	> +0.1	-	2	SMP 2-19
*2		04 38 49.4	-70 42 47	0.11:	0.33	0.2:	1.0:	+0.2	-0.6	3	SMP 1-01
*72		04 50 30 0	-69 38 45	0.15:	0.56	2.1:	C	+0.2	+0.2	3	SMP 1-08
*89		04 51 35.4	-67 10 14	0.33	0.56	С	С	-0.1	· -	2	SMP 1-11
303		05 00 30	-70.32	0.22	-		-	< -0.3	_	1	SMP 1-13
*438		05 06 39.0	-69 03 12	0.07:	0.11:	1.7	4.2	-0.1	+0.8	3	SMP 1-24
*481		05 08 11.9	-68 55 33	-	0.44	2.1:	С	> +0.1	+0.3	3	SMP 1-28
*483		05 08 15.5	-68 44 21	0.07:	0.11	2.1:	Č	-0.1	+0.9	3	SMP 1-29
513	012	05 09 25 7	-67 51 03	0.15:	0.44	-	-	+0.1	< -0.4	1	SMP 1-31
557		05 10 52.9	-68 39 34	0.33	0.22	3.3:	С	-0.5	+0.8	1	SMP 1-36
*823		05 20 16.4	-66 55 49	0.37	2.55	27.3	39.5	+0.5	+0.6	3	MG 36
836		05 20 45	-69 58	0.07:	0.33	-	-	+0.4	< -0.3	1	SMP 1-48
	143	05 21 35.7	-67 02 48	0.08	-		-	< +0.1	_	2	SMP 1-53
924		05 23 20	-71 23	0.11	0.22:	1.7	4.2	-0.0	+0.5	3	SMP 1-55
*982		05 24 50.6	-70 07 41	0.15	0.22	-	-	-0.2	< -0.1	1	SMP 1-58
*1014		05 25 42.1	-71 35 45	0.19:	0.44	С	С	+0.0	_	2	SMP 1-62
*1149	054	05 29 20.7	-67 15 44	0.41	0.33	-	-	-0.4	< -0.3	1	SMP 1-69
1280	058	05 32 40	-67 10	0.52	0.44	-	-	-0.4	< -0.4	1	MG 58
*1513	148	05 40 28.1	-66 19 03	-	0.44		-	> +0.1	< -0.4	1	SMP 1-85
1707		05 47 25	-69 28	0. 3 0	0.30	8.3	29.1	-0.3	+1.1	3	SMP 1-92

Notes to Table 3: "SMP" comes from Sanduleak, McConnell, and Philip (1978), and "MG" from Morgan & Good (1992). We have systematically searched for IRAS counterparts of PNe listed in Meatheringham and Dopita (1991a, 1991b), Vassiliadis et al. (1992a, 1992b), and Morgan and Good (1992). Zijlstra et al. (1994) find in addition IRAS counterparts to the PNe SMP 1-06, SMP 1-61, SMP 1-98, MG 45 and MA 18; these sources are not listed in Table 3 because they are located in the outer parts of the LMC and are outside the area studied by Schwering & Israel.

Table 4. Unidentified sources from group 1

LI	TRM	RA(1950)	DEC(1950)	S_{12}	S ₂₅	S_{60}	C21	C32	LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S ₂₅	S ₆₀	C21	C32
223		00 16 21	-73 28	0.22		-	< -0.3	_	256		04 58 10	-69 09	0.15	0.11	0.8:	-0.4	+0.5
224		00 16 21	-74 03		0.33	-	> +0.0	< -0.3	263		04 58 30	-68 57	0.26	0.22	3.3	-0.4	+0.8
*233		00 26 03 0	-73 15 18	0.22	2.20	6.6	+0.7	+0.1	*273		04 58 48.1	-68 11 39	0.30	0.33	-	-0.3	< -0.3
235		00 26 37	.73 56	-	0.22	-	> -0.2	< -0.1	*293		05 00 02.0	-69 21 45	0.15	0.11	С	-0.5	-
*25		00 42 59 9	-73 13 58	-	0.67	17	> 0.3	+0.0	*312		05 01 01.7	-67 39 20	0.22	0.17:	-	-0.4	< +0.0
34	•••	00 44 36	-74 08	0.33	-	-	< -0.5		335		05 02 12	-71 26	0.11:	0.22:	-	+0.0	< -0.1
37		00 44 51	-73 44	0.22	0.22	21	-0.3	± 0.6	*347		05 02 45.2	-69 09 00	0.33	0.33	2.9:	-0.3	+0.6
40		00 45 36	-72 57	0.30	0.22	2.1	< -0.5	-	*372		05 03 52.5	-68 57 15	0.37	0.33	С	-0.4	· -
48	•••	00 46 34	-73.01	0.19	0.11	С	-0.6	-	*382		05 04 13.7	-68 29 45	0.15:	0.11:	1.7	-0.4	+0.8
*53		00 47 26 1	-73 50 07	0.11	0.11	04.	-0.3	+0.2	*384		05 04 16.6	-68 27 55	0.15:	0.33	0.8:	+0.0	+0.0
180	•••	01 05 45	-74 04	0.26	-	-	< -0.4	-	*416	134	05 05 27.0	-67 39 19	-	0.33	-	> +0.0	< -0.3
		01 00 10	-1101				\		*436		05 06 20.6	-69 08 08	0.11:	0.33	-	+0.2	< -0.3
1		04 29 26	70.53	0.48		_	< _0.7		444		05 06 40	-69 41	0.22	0.17:	-	-0.4	< +0.0
1	•••	04 38 36	71 28	0.40	-	-	< -0.3	_	*463	009	05 07 20.0	-67 52 43	0.22	0.44	0.8:	+0.0	-0.1
*21		04 41 30	68 20 /3	0.22		-	-0.5	< -01		133	05 07 51.3	-65 42 27	0.17	0.22	-	-0.2	< -0.1
*61	•••	04 40 52 2	71 21 22	0.50	0.11	0.2	-0.5	-0.1	*478		05 08 03.9	-68 59 56	0.41	0.33	5.0	-0.4	+0.8
*62		04 49 52.2	60 25 00	0.10.	0.11.	21.	-0.0 	-0.1	*484		05 08 19.6	-70 55 43	0.11:	0.11:	0.8	-0.3	+0.5
*66		04 49 33.0	+09 20 09 60 45 32	0.11.	0.10	0.8	-0.4	+0.2	493		05 08 40	-68 57	0.11:	0.11:	С	-0.3	-
-00		04 51 30	68 47	0.20	0.22.	0.8.	-0.4	< ±0.2	499		05 08 50	-70 35	0.15	0.11	1.2	-0.4	+0.7
00		04 51 50	67.04	0.22	0.11.	ċ	_0.4	< ; 0.2	507		05 09 10	-68 32	0.26	0.22	1.7:	-0.4	+0.5
90		04 51 50	-70 30	0.26	0.00		-0.4	_	*508		05 09 10. 3	-69 04 33	0.26	0.22	С	-0.4	-
*00		04 51 51 1	-68 52 23	0.20	0.22	_	-0.5	< -0.1	512		05 09 25	-70 10	0.19	0.17:	-	-0.4	< +0.0
100		04 51 51.1	-67 15	0.26	0.11	ċ	-0.7	_ 0.1	530		05 10 00	-69 28	0.22	0.22	-	-0.3	< -0.1
100		04 52 20	67 27	0.20	0.11.	č	_0.3	< -0.1	*535		05 10 08.8	-69 05 58	0.11	0.11:	2.1:	-0.3	+0.9
116	•••	04 52 20	-67.02	0.22	0.22.	29	-0.3	+0.7	541		05 10 25	-69 16	0.26	0.22	0.8:	-0.4	+0.2
120	•••	04 52 40	68.00	0.22	0.22	0.8	-0.5	+0.2	*567	100	05 11 05.5	-66 16 35	0.19	0.33	-	-0.1	< -0.3
*129		04 53 20	-08 09	0.00	0.22	0.0.	-0.0	-0.3	*568		05 11 10	-68 45	0.22	0.22	5.0	-0.3	+1.0
150	•••	04 54 20	-00 10 51 66 40	0.19	0.00	1 2	_0.1	-0.0	569		05 11 15	-69 41	0.26	0.17:	-	-0.5	< +0.0
*175		04 55 10 1	60 28 /1	0.22	0.22	1 2	-0.5	+0.1	*575		05 11 20.1	-69 39 07	0.30	0.22	1.7:	-0.4	+0.5
*176		04 55 13 1	66 05 58	0.55	0.22.	0.8	-0.0 	±0.1	576		05 11 24	-71 13	0.22	-	-	< -0.3	-
170		04 55 15.1	-00 00 00 66 94	0.10.	0.00	83	-0.3	+0.0 +1.2	*584		05 11 48.4	-70 18 37	0.22	0.22	1.7:	-0.3	+0.5
107		04 55 10	-68 37	0.22	0.22	C	_0.0	11.2	595		05 12 10	-67 53	0.15	0.11:	-	-0.5	< +0.2
*202		04 55 57 3	60 31 22	0.33	0.11	0.8	0.3	-0.1	*603		05 12 32.4	-70 35 52	0.41	0.44	0.8:	-0.3	-0.1
203		04 56 20	-09 31 22 66 20	0.37	0.11	4 1	-0.5	-0.1	*615		05 12 52.7	-69 19 27	0.22	-	-	< -0.3	-
200		04 56 20	-69.38	0.51	0.00	-1.1 C	-0.4	+0.1	622		05 13 10	-70 36	0.22	0.22	0.8	-0.3	+0.2
201		04 56 25	-69 11	0.15	0.11	0.8	-0.1	± 0.5	*623		05 13 12.0	-69 41 08	0.26:	0.22:	С	-0.4	-
*018	•••	04 56 43 5	68 57 19	0.10	0.11	C.U.	_0.6	10.0	633		05 13 30	-69 44	0.22	0.22	1.2	-0.3	+0.4
210	•••	04 56 50	-66 50	0.19	0.11	Š	-0.6	$< \pm 0.2$	634		05 13 35	-69 39	0.48	0.44	2.1:	-0.4	+0.3
220		04 57 30	-69 13	0.30	0 11	Ċ	-0.8		644		05 14 00	-69 09	0.15	0.22:	-	-0.2	< -0.1
201		510100	-00 10	0.00	0.11.			-									<u> </u>

Table 4. continued

LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S25	S_{60}	C ₂₁	C ₃₂	LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S_{25}	S ₆₀	C ₂₁	C ₃₂
	156	05 14 16.5	-66 21 56	•	0.31	-	> +0.0	< -0.3	1197		05 30 40	-66 45	0.11:	0.22	-	+0.0	<-0.1
*671		$05\ 15\ 03.5$	-69 42 36	0.30	0.44	-	-0.2	< -0.4	*1198		05 30 40. 3	-70 32 52	0.30	0.33	-	-0.3	< -0.3
686		05 15 36	-71 04	0.26	-	-	< -0.4	-	*1202		05 30 59.5	-68 08 53	0.15:	0.11:	С	-0.5	-
*687		05 15 37.6	-68 52 24	0.11	0.11:	-	-0.3	< +0.2	1217		$05 \ 31 \ 15$	-69 46	0.19	0.22:	-	-0.3	< -0.1
694		05 15 50	-68 27	0.11	0.11	-	-0.3	< +0.2	1227		05 31 3 0	-67 59	0.15	0.11:	4.1	-0.4	+1.2
695		05 15 50	-69 27	0.26	0.22:	С	-0.4	_	*1243		05 31 52.3	-72 47 56	0.44:	-	-	< -0.6	-
696		05 15 50	-70 31	0.19	0.11:	•	-0.6	< +0.2	1245		05 31 55	-68 06	0.22	0.11:	2.5:	-0.6	+1.0
699		05 16 00	-68.06	0.26	0.11:	-	-0.7	< +0.2	*1250		05 32 01.6	-70 20 18	0.11	0.56	0.8:	+0.4	-0.2
700		05 16 00	-68 11	0.11	0.11	-	-0.3	< +0.2	*1278		05 32 38.5	-70 04 19	-	0.33	-	> +0.0	< -0.3
713		05 16 30	-69 50	0.19	0.11:	С	-0.6	_	1283		$05 \ 32 \ 51$	-71 13	0.26	-	С	< -0.4	-
721		05 16 50	-68 03	0.22	0.22	1.7:	-0.3	+0.5	*1284		05 32 52.5	-68 27 08	0.67	0.56:	С	-0.4	-
722		05 16 50	-69 57	0.26	-	_	< -0.4	· _	1313		05 33 40	-70 33	0.26	0.11:	-	-0.7	<+0.2
*726		05 17 01.1	-71 37 11		0.44	-	> +0.1	< -0.4	1316		05 33 45	-69 44	0.19	0.22	-	-0.3	< -0.1
730		05 17 10	-68 22	0.19:	0.22:	-	-0.3	< -0.1	1339		05 34 40	-70 01	0.15:	0.11:	-	-0.5	< +0.2
*742		05 17 38 5	-69 22 43	0.37	0.22:	С	-0.5	_		031	05 35 08.0	-67 32 22	0.21	0.24	-	-0.3	<-0.1
	083	05 17 41.0	-66 44 58	0.21	0.20	-	-0.3	< -0.1	1378		05 35 50	-70 01	0.30	0.11:	-	-0.8	< +0.2
751		05 17 50	-68 52	0.15	0.11	С	-0.5	-	1384		05 36 05	-69 04	0.22	0.22	4.1:	-0.3	+0.9
752		05 17 50	-70 01	0.19	0.11	0.8	-0.6	+0.5	1386	145	$05 \ 36 \ 10$	-66 37	0.26	0.22	5.0	-0.4	+1.0
767		05 18 15	-69 48	0.15	0.11	0.8:	-0.4	+0.5	*1424		05 37 04.5	-70 19 23	0.22	0.44	1.2	+0.0	+0.1
770		05 18 20	-69 33	0.26	0.33	-	-0.2	< -0.3	*1435		05 37 30.8	-70 02 21	0.33	0.33	4.1:	-0.3	+0.7
799		05 19 20	-70 22	0.15	0.11:	1.2	-0.4	+0.7	1454		05 38 24	-71 16	0.19	0.17	1.7	-0.4	+0.6
802		05 19 30	-67 05	0.19	0.11:	0.8	-0.6	+0.5	*1888		05 39 03.8	-64 49 13	0.37	-	-	< -0.5	-
805		05 19 30	-69 53	0.30	0.22	C	-0.5	-	*1502		05 40 06.4	-70 20 06	-	0.22	-	> -0.2	< -0.1
812	006	05 19 40	-67 57	0.15	0.11	Č	-0.5	_	1505		05 40 10	-71 10	0.22	0.22	С	-0.3	-
*825		05 20 20	-69 13	0.33	0.33	4.1:	-0.3	+0.7	*1889		$05 \ 40 \ 26.4$	-64 58 47	0.22	-	-	< -0.3	-
835		05 20 45	-68 51	0.37	0.22	C	-0.5	-	1515		05 40 30	-68 39	0.15	0.11:	С	-0.5	-
849		05 21 20	-70 07	0.19	0.11:	Č	-0.6	_	1526		05 40 45	-70 34	0.15	0.44	1.2:	+0.1	+0.1
*855	014	05 21 29.1	-67 49 45	0.41	2.66	6.2	+0.5	+0.0	*1537		05 41 01.3	-65 20 56	0.15:	0.11:	-	-0.5	< +0.2
868		05 21 50	-68 41	0.22	0.22	1.7	-0.3	+0.5	*1540		05 41 05.1	-69 54 16	0.37	-	-	< -0.5	-
886		05 22 20	-70 13	0.11:	0.11:	0.8:	-0.3	+0.5	*1570		$05 \ 42 \ 01.5$	-69 43 33	0.37	0.33:	\mathbf{C}	-0.4	-
890		05 22 30	-70 09	0.11:	0.11:	С	-0.3	_	1604		05 43 20	-70 32	0.11	0.11:	-	-0.3	< + 0.2
904		05 22 55	-67 21	0.19	0.11:	-	-0.6	< +0.2	*1630		05 44 11.7	-68 53 12	0.15:	0.11:	2.1:	-0.4	+0.9
914	059	05 23 10	-67 10	0.37	0.33	С	-0.4	-	1641		05 44 30	-70 23	0.11	0.11	0.8	-0.3	+0.5
*918		05 23 13.8	-71 11 25	-	0.22	0.4	> -0.2	-0.1	*1646		05 44 40.6	-69 45 25	0.37	0.33:	-	-0.4	<-0.3
935		05 23 40	-69 58	0.30	0.22	0.8:	-0.4	+0.2	1652		05 44 50	-68 40	0.11	0.11:	1.7:	-0.3	+0.8
*937		05 23 42.8	-70 00 45	0.19:	0.44	0.8:	+0.0	-0.1	*1654		$05 \ 44 \ 58.1$	-68 49 15	0.22	0.22	\mathbf{C}	-0.3	-
*938	001	05 23 43.8	-67 55 15	0.15:	1.66	4.1:	+0.7	+0.0	*1657		05 45 03.0	-70 39 12	0.22:	0.22:	2.1	-0.3	+0.6
939		05 23 45	-68 50	0.15:	0.11:	2.5:	-0.4	+1.0	*1666		$05 \ 45 \ 21.6$	-65 22 05	0.15:	0.56:	-	+0.3	< -0.5
942		05 23 50	-69 51	0.33	0.22:	0.8:	-0.5	+0.2	1692		$05 \ 46 \ 30$	-69 40	0.48	0.22:	8.3	-0.7	+1.2
*948		05 24 00.8	-68 09 48	0.11:	1.33	4.1	+0.8	+0.1	1700		05 47 00	-69 26	0.19	0.11:	\mathbf{C}	-0.6	-
*957	016	$05\ 24\ 16.1$	-67 48 18	0.19	0.22	-	-0.3	< -0.1	*1890		$05\ 47\ 12.7$	-64 35 24	0.26	-	-	< -0.4	_
980		05 24 50	-68 52	0.30:	-	-	<-0.5	-	1702		$05\ 47\ 14$	-71 16	0.22	0.11:	-	-0.6	< +0.2
*986		$05 \ 24 \ 56.6$	-69 56 28	0.48	0.33	4.1:	-0.5	+0.7	1703		05 47 20	-70 15	0.11	0.06:	-	-0.6	< +0.5
*987		$05\ 25\ 00$	-69 18	0.44	0.22:	С	-0.6	-	1705		$05\ 47\ 24$	-71 05	0.15	0.11:	С	-0.5	_
995		$05\ 25\ 12$	-71 37	0.19	0.11	С	-0.6	-	*1712		$05 \ 47 \ 31.5$	-70 04 14	0.22	0.22:	2.1	-0.3	+0.6
997		05 25 18	-71 53	0.19	0.11:	-	-0.6	< +0.2	1738		05 48 50	-68 10	0.22	0.11:		-0.6	< +0.2
1007		05 25 30	-71 51	0.19	0.17	-	-0.4	< +0.0	*1745		05 49 34.3	-70 34 09	0.15	0.89	1.2	+0.5	-0.3
1012		$05\ 25\ 40$	-68 23	0.26	0.22	2.1:	-0.4	+0.6	*1757	•	05 50 45.8	-67 51 08	0.15	0.22:	•	-0.2	< -0.1
	158	$05\ 25\ 51.6$	-66 13 13	-	0.20	-	> -0.2	< -0.1	*1766		$05 \ 52 \ 15.3$	-65 45 23	0.11:	0.11:	-	-0.3	< +0.2
1024		$05\ 26\ 00$	-69 22	0.37	0.33	5.0	-0.4	+0.8	*1768		05 52 15.9	-71 20 10	0.19	0.22	. :	-0.3	< -0.1
1028		$05\ 26\ 00$	-71 06	0.26	0.11:	-	-0.7	< +0.2	1771	•••	05 53 10	-67 17	0.22	0.11:	0.8:	-0.6	+0.5
*1029		$05\ 26\ 02.2$	-67 17 23	0.15:	0.11:	С	-0.5	-	1772		$05 \ 53 \ 15$	-68 24	0.22:	0.22	1.7	-0.3	+0.5
*1031		$05\ 26\ 05.1$	-70 10 23	-	0.17	-	> -0.3	< +0.0	1773		05 53 40	-70 34	0.19	0.11:	-	-0.6	< +0.2
1055	040	05 26 40	-67 26	0.19	0.11:	С	-0.6		1774		05 53 42	-66 39	-	0.22	-	> -0.2	< -0.1
1061	••••	05 26 45	$-66\ 12$	0.26	0.22	2.9:	-0.4	+0.7	1775		05 5 3 42	-71 37	0.44:			< -0.6	_
*1082	095	$05 \ 27 \ 18.1$	-66 24 52	0.30	0.44	-	-0.2	< -0.4	*1777	•••	05 53 44.5	-70 15 52	0.11:	0.56	0.4:	+0.4	-0.5
*1092		$05\ 27\ 48.2$	-69 42 05	0.37	0.44	-	-0.2	< -0.4	*1780		05 54 01.8	-65 33 37	0.30	0.22	-	-0.5	< -0.1
*1101		05 28 03.8	-70 39 10	0.15:	0.11	1.7:	-0.4	+0.8	*1784		05 54 43.2	-65 15 27	0.15:	0.33:	-	+0.0	< -0.3
1119		05 28 40	-70 00	0.26	0.11:	-	-0.7	< + 0.2	*1785		$05\ 55\ 06.2$	-65 28 39		0.22	-	> -0.2	< -0.1
1123		05 28 40	-70 57	0.11	0.11:	0.8:	-0.3	+0.5	*1795		05 56 49.6	-67 53 54	0.33	0.44	-	0.2	< -0.4
1142		$05 \ 29 \ 15$	-70 07	0.26	0.11:	-	-0.7	< +0.2	*1803	••••	05 58 52.1	-69 44 31	0.19	0.56	-	+0.2	< -0.5
1146		05 29 20	-69 45	0.26	-	-	< -0.4	-	*1807	•••	06 01 08.9	-66 36 34	0.11:	0.22:	-	+0.0	< -0.1
	103	$05 \ 29 \ 52.2$	-65 52 23	0.14	0.23	-	-0.1	< -0.1	*1813		06 02 35.3	-67 12 43	0.44:	0.44:	-	-0.3	< -0.4
*1179		$05 \ 30 \ 12.2$	-70 56 53	0.22:	0.22:	2.1	-0.3	+0.6	*1817		$06 \ 02 \ 51.1$	$-67\ 22\ 15$	0.67:	0.33:	-	-0.6	< -0.3
*1186	075	$05 \ 30 \ 20.1$	-66 55 04	0.22	0.22	-	-0.3	< -0.1	*1818		06 03 07.4	-72 27 10	0.52:	0.56:	-	-0.3	< -0.5
1196		05 30 35	-69 42	-	0.22	-	> -0.2	< -0.1	*1821		$06 \ 04 \ 32.6$	-67 22 54	0.44:	0.33:	-	-0.4	<-0.3

Notes to Table 4 :

- LI-SMC 233 : Galaxy or PN (3 reference for each ...) ???

- LI-SMC 48 : near LHA 115-S 9 (B1, V=14.0), and RAW 479 (C:, V=16.3)

- LI-LMC 197 : near the G4Ia supergiant HD 268759 but only very rough coordinates are available

- LI-LMC 203 : near SK -69 39a (A3Iab, B=12.5) and HV 12501 (M1.5, V=11.9)

- LI-LMC 493 : near BMB-BW49=BM 16-24 (C, I=14.0)

- LI-LMC 530 : near SHV0510004-692755 (M6, I=14.7, P=169)

– LI-LMC 568 : could be associated with IRAS-PSC 05112-6843

- LI-LMC 595 : near BM 18-8 and 18-9 (C) - LI-LMC 644 : near HV 2378

- LI-LMC 696 : near BM 20-13 (C)

- LI-LMC 730 : near BM 21-13(C)

- LI-LMC 825 : could be associated with IRAS-PSC 05205-6913

- LI-LMC 987 : near HD 269507 (K, B=11.5) but only very rough coordinates are available. Could be associated with IRAS-PSC 05249-6916.

- LI-LMC 1028 : near BM 23-21 (C)

- LI-LMC 1055 : near SK -67 109 (V=13.1)

- LI-LMC 1082 : near SK -66 97 (B=12.5) and SK -66 98 (B=11.9)

- LI-LMC 1378 : near BM 33-31 (C)

- LI-LMC 1657 : near BM 37-32 (C)

- LI-LMC 1775 : near WORC 220 (C)

- LI-LMC 1785 : AGN candidate in De Grijp et al. (1987)

- LI-LMC 1795 : a bright R counterpart is found by Zijlstra et al. (1995)

- LI-LMC 1807 = IRAS-PSC 06011-6636A

Table 5. Unidentified sources from group 2

LI	TRM	RA (1950)	DEC(1950)	S ₁₂	S ₂₅	S ₆₀	C ₂₁	C32	LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S ₂₅	S ₆₀	C ₂₁	C32
*221		00 15 35.0	-73 56 10	0.19	-	-	< -0.3	_	*756		05 17 59.3	-69 18 37	0.41	С	С	-	_
*226		00 18 05.8	-73 37 30	-	-	0.6		> +0.1	791		05 19 00	-71 30	0.11:	-		< +0.0	-
*227	•••	00 18 49.3	-74 52 38	0.19:	-	0.6:	< -0.3	> +0.1	*794		05 19 10	-69 37		0.44	c	> +0.1	-
*234		00 26 28.0	-74 37 47	0 10	-	0.6	- 03	> +0.1	*810		05 19 36.4	-69 23 21	0.52	0.30	č	-0.3 	_
*19		00 28 03	-74 29	0.19	-	Ċ	$< \pm 0.0$	_	858		05 20 40	-71 17	0.15	0.00		< -0.2	_
*20		00 41 10.0	-73 36 35	0.11:	-	č	< +0.0	_	862		05 21 40	-66 45	0.15:	0.33	С	+0.0	_
*31		00 43 47.1	-73 34 33	0.11	0.22	С	+0.0	-	863		$05 \ 21 \ 40$	-70 16	0.15	0.22	С	-0.2	-
72		00 49 18	-73 27	0.19	0.22	C	-0.3	-	865		05 21 45	-70 14	0.15	0.22:	c	-0.2	-
78		00 50 09	-72 57	0.11:	0.22	C	+0.0	-	889 *017		05 22 30	-00 33	0.19	0.22:	č	-0.3	_
90 97		005204 005206	-72 59	0.19:	0.22	č	< -0.3	_	975	•••	05 23 12.4	-69 03	0.15:	0.22:	č	-0.2	_
100		00 52 21	-73 38	0.11:	0.44	č	+0.3	_	981		05 24 50	-72 01	0.19	•	-	<-0.3	-
106		00 53 46	-72 58	0.19	-	С	< -0.3	_	*993	•••	$05\ 25\ 10.5$	-69 53 01	0.15	-	C	< -0.2	-
112		00 54 32	-73 23	-	0.22	c	> -0.2	-	*998		05 25 18.4		0.15	C 1 79.	C		_
110	•••	00 55 03	-12 30	0.11.	0.22	č	> -0.2		*1002		05 25 25.1	-66 15	0.93	0.89	č	-0.3	_
120		00 55 57	-73 10	0.11	0.22	č	-0.3	_	1010		05 26 40	-69 24	0.22	0.33	č	-0.1	-
127		00 56 40	-72 27	0.19:	1.44:	С	+0.6	_		096	$05 \ 26 \ 52.2$	-66 23 29	0.12	0.08	-	-0.5	< +0.3
133		00 57 42	-72 31	0.19:	0.44:	C	+0.0	_	*1094		05 27 50	-71 27	0.33	0.78	C	+0.1	-
143		00 59 25	-72 04	0.10	0.22	С	> -0.2	-	1116	114	05 28 35	-67 30	0.15	0.22	c	-0.2	_
*213		01 21 37 9	-74 50 50	0.15.	-	• 0 4·	< -0.5	> -0.1	1139	•••	05 29 20	-70 16	0.10	0.11	-	< +0.1	_
									*1150		05 29 21.4	-69 11 57	0.15:	0.22:	С	-0.2	-
*1830		04 31 42.0	-71 09 48	-	-	0.4	_	> -0.1	*1159		05 29 42.9	-65 17 14	0.19:		-	< -0.3	-
*1832		04 32 29.5	-71 12 43	-	-	0.6	-	> +0.1	*1242	•••	05 31 51.7	-68 24 36 71 04	0.22:	0.33:	C	-0.1	-
*1836		04 33 34.0	-71 37 06	-	-	0.4	-	> -0.1	1240	•••	05 31 55	-71 04	0.37	0.44	č	+0.0	_
*1852		04 30 51.3	-64 54 55	-	-	0.4	_	> -0.1 > +0.1	*1292	021	05 33 00.9	-67 43 18	1.18	4.22	č	+0.2	_
*1855		04 42 18.3	-65 06 03	-	-	0.6	-	> +0.1	1297		05 33 15	-70 11	0.15	-	-	< -0.2	
117		04 52 45	-69 19	0.26	0.33	С	-0.2	-	*1315	039	05 33 45	-67 27	0.19	0.33	C	-0.1	-
120		04 53 00	-68 12	0.19	0.22	c	-0.3	-	1322	•••	05 33 55	-69.01	0.19	0.22	č	+0.0	_
*167		$04\ 53\ 10$ $04\ 54\ 50.2$	-69 31 14	0.19	0.22	č	-0.3	_	1350		05 35 00	-68 24	0.19	0.22	č	-0.3	-
170		04 55 00	-70 24	0.19	•		< -0.3	-	*1353		05 35 06.9	-69 43 48	0.19	0.22	С	-0.3	-
173		04 55 05	-69 19	0.30	0.33	C	-0.3	-	*1886		05 35 36.8	-65 08 39 69 54 40	-	-	0.6	>_05	> +0.1
*177		04 55 13.6	-66 36 14	0.11:	0.78	С	+0.5	_	1375		05 35 39.7	-70 13	0.15	0.11. 0.22	č	-0.2	-
187		04 55 20	-68 28	0.13	0.67	c	-0.1	_	1390		05 36 10	-70 03	0.15	0.33	Č	+0.0	-
*205		04 56 17.0	-66 41 40	0.19	0.56	Ċ	+0.2	-	*1408		05 36 43.6	-66 26 09	0.22	0.56	C	+0.1	-
*210		04 56 24.3	-66 29 48	1.48:	10.55:	C	+0.5	-	*1887		05 37 11.4	-65 05 49	050	0.79	0.4		> -0.1
*219		04 56 48.1	-66 35 34 66 22 52		1.11:	C	> +0.6	-	1434		05 37 50	-68.38	0.36	0.78	č	-0.2	_
*262		04 58 29.5	-68 28 37	0.11:	0.50 C	č		_	*1451		05 38 17.7	-69 36 07	-	0.33	Ċ	> +0.0	_
*266		04 58 39.1	-66 14 17	0.37	0.89	č	+0.1	-	1461		05 38 40	-69 33	0.44	1.11:	С	+0.1	-
*271	•••	04 58 46.2	-66 11 37	0.30	0.33	C	-0.3	-	*1472		05 38 57.8	-68 54 59	0.19:	0.22:	C	-0.3	-
*281	•••	04 59 02.4	-69 21 48	0.15	0.33	C	+0.0	-	*1485	•••	05 39 00	-70 20	0.15	0.22 C	č	-0.2	_
262	137	04 09 03.3	-67 18 40	0.10:	0.11	č	< -0.2 > -0.5	_	*1486		05 39 27.2	-70 15 14	0.26	0.33	č	-0.2	-
368		05 03 40	-68 35	0.19	0.33	č	-0.1	-	*1494		05 39 50	-69 08	2.96	11.10:	С	+0.3	-
*375	117	05 03 57.1	-67 24 37	0.37	1.22	С	+0.2	_	1516		05 40 30	-69 08	0.93	2.77:	C	+0.2	-
*1875		05 04 10.9	-64 33 24	-		0.6		> +0.1	1535		05 40 35.2	-69 55 47	0.37	0.56	č	+0.2 +0.0	_
389	•••	05 04 10.8	-69 12	0.01	0.33	č	+0.4 +0.0	_	1549		05 41 15	-69 47	0.74	1.11	č	-0.1	-
391		05 04 40	-68 08	0.19	0.22	Ċ	-0.3	-	*1552	••••	05 41 22.2	-69 38 37	0.37:	0.56:	C	-0.1	-
	007	05 05 09.9	-67 51 37	0.15	-	-	< -0.2	-	1564		05 41 45	-69 33	0.15	0.33	С	+0.0	-
*408		05 05 10.1	-67 58 44	0.15:		ċ	< -0.2	-	1569	•••	05 42 00	-70 39	0.19	1 00	ċ	< -0.3 +0.0	_
435		05 08 00	-71 04	0.22	0.55		< +0.0	-	1603		05 43 20	-69 17	0.22:	С	č	_	-
529		05 10 00	-68 46	0.19	0.33	С	-0.1	-	1617		05 43 45	-71 13	0.15	0.06:	-	-0.7	< + 0.5
*531		05 10 00.0	-68 50 04	0.33	0.67:	С	+0.0	-	1635		05 44 18	-66 22	0.22	0.33:	c	-0.1	-
*551		05 10 44.2	-69 30 07	0.30:	0.67	c	+0.0	-	1642		05 44 35	-68 49	0.19	0.33	č	-0.1 +0.0	_
566 566	140	05 11 00.5	-07 11 20	0.07:	0.28	č	+0.3	_	1681		05 46 00	-69 32	0.19	0.22:	č	-0.3	-
*611		05 12 45.8	-69 11 23	•	0.33	č	> +0.0	_	*1740		05 48 57.6	-70 02 29	0.30	2.44	Ċ	+0.6	-
*1881		05 12 58.2	-65 03 28	-	-	0.4	_	> -0.1	*1743		$05 \ 49 \ 06.2$	-70 06 24	0.78	2.22:	С	+0.1	-
654		05 14 15	-69 17	0.15	0.22	ç	-0.2	-	*1758		05 50 53.8	-71 46 43 71 07	0.11:	-	-	< +0.0	_
656 *670		05 14 20 05 15 25 9	-67 34	0.26	0.33	C	-0.2	_	1/00 *1770		05 51 54 05 52 38 8	-65 20 34	0.15	-	-	< -0.2	_
711		05 16 30	-69 20	0.15:	0.33:	č	+0.0	_	*1798		05 56 51.6	-65 28 39	0.15:	-	-	< -0.2	-
718		05 16 40	-68 18	0.11	0.22	Ĉ	+0.0	-	*1810		$06\ 02\ 17.1$	-67 43 03	•	0.11:	-	> -0.5	< + 0.2
*725	•••	05 17 00.0	-69 30 40	0.19:	-		< -0.3	-	*1822		06 04 47.0	-67 36 59	0.15:	-	-	< -0.2	
		05 17 30	-09 42	0.15	0.22	U	-0.2										

Notes to Table 5 :

- LI-SMC 19 : near RAW 179 (C, V=16.8) LI-SMC 72 : near RAW 651 (C, V=17.3), RAW 658 (C, V=17.6), and the cepheid HV 1522 (V=14.6)
- LI-SMC 78 : in a cluster ? Near RAW 706 (C, V=17.0)
- LI-SMC 96 : 96 and 97 are probably the same IRAS source. Near RAW 822 (C, V=17.6), AzV 148 (B0, V=14.3), and the Cepheid HV 1598 (V=15.9)
- LI-SMC 100 : near RAW 832 (C, V=17.3) LI-SMC 106 : near RAW 941 (C, V=17), the Cepheid HV 1649 (V=15.5), and the foreground red variable Z Tuc (B=13)
- LI-SMC 112: near the foreground star HV 5627 (F7V, V=9.5)
 LI-SMC 133: near the known or suspected KM supergiants SkKM 187, SkKM 190, HV 11402, and PMMR 100 (M0.5, V=12.8)
- LI-SMC 143 : near RAW 1258 (C, V=16.9) and RAW 1254 (C, V=17.1)
- TRM 137 : near HD 268931 (G, B=12.2) and HD 268933 (F, B=12.2) but only very rough coordinates are available
- LI-LMC 1839 : AGN candidate in De Grijp et al. (1987)
- LI-LMC 478 : According to Israel & Koorneef (1991), there is a M giant or supergiant near the IRAS position. However the association is doubtful
- LI-LMC 435 : near the cepheid HV 893 LI-LMC 531 : near the M supergiant HV 5625 (V=12.6) and the B5Iab supergiant HD 269101 (V=12.0)
- LI-LMC 541 : near BMB-BW097 (M6, I=14.0)
- LI-LMC 718 : near BM 21-10=SP 38-16 (C)
- LI-LMC 794 = IRAS-PSC 05191-6936. Near the C star SHV0518595-693653
- LI-LMC 832 : near the M6 star SHV0520342-693911
- LI-LMC 1010 : near the IRAS extended structure X0525-662
- LI-LMC 1094 : near the IRAS extended structure X0527-714
- LI-LMC 1292 : near a nebulosity
- LI-LMC 1315 : could be associated with IRAS-PSC 05338-6725
- LI-LMC 1336 : near HD 269762 (B9Ia, V=11.4), HV 2677 (M3/5, V=13.6), and the PN SMP 1-78
- LI-LMC 1390 : near BM 33-37 and BM 33-43 (C)
- LI-LMC 1434 : could be associated with IRAS-PSC 05375-6949
- LI-LMC 1494 : could be associated with IRAS-PSC 05399-6906
- LI-LMC 1535 : near BM 36-7 (C)

 Table 6. Foreground stars

LI	TRM	RA(1950)	DEC(1950)	S ₁₂	S ₂₅	S ₆₀	S ₁₀₀	C ₂₁	C ₃₂	group	identification
		00.14.58	-74 14	0.10	0.22			-0.3	< -0 1	1	HD 1373 (K0III, V=8.1)
220 *995		00 14 36	-74 18 54	0.19.	0.33	-	-	-0.5	< -0.3	1	VV Tuc (M4, V=11)
*3	•••	00 33 47 8	-74 09 09	0.85	0.22	-	Ċ	-0.9	< -0.1	1	HD 3407 (M2III, V=8.7)
*4		00 34 04.0	-73 08 03	0.44	-	-	-	<-0.6		1	HD 3439? (K2/3, V=9.0)
7		00 36 24	-74 14	0.11:	-	-	-	< +0.0	_	2	HD 3689 (F6V, V=7.4)
8		00 36 44	-73 25	0.11:	-	-	С	< +0.0	_	2	HD 3719 (A1m, V=6.9)
13		00 40 00	-73 58	0.19	-	-	С	<-0.3	-	2	HD 4090 (K1/K2III, V=9.2)
*22		$00 \ 41 \ 45.2$	-74 00 29	0.44	-	С	С	<-0.6	-	1	HD 4252 (K3/K4III, V=8.8)
33		00 44 32	-72 52	0.41	-	-	•	<-0.6	-	1	HD $4590 (K3/K4III, V=8.9)$
56		00 47 37	-73 45	0.44	•	С	С	<-0.6	-	1	HD 4893 (K2III, V=8.4)
60		00 48 03	-72 25	0.19:	-	-	•	< -0.3	-	2	HD 4921 (K1111, $V=9.0$)
*69		00 49 00.3	-71 25 36	0.11:	-	-	•	< +0.0	-	2	HD 5028 (F5V, $V=6.9$)
89		00 51 23	-73 23	0.19	-	С	C	< -0.3	-	2	HD 5302 (K0, $V = 10$) CF The (C2V + 2, $V = 7.6$)
*90		00 51 24	-74 56	0.37	•	-	-	< -0.5	_	1	Cr Inc (G3V +:, V = 7.0) PMMR 66 (M4 V = 12.2)
*101 *104	•••	00 52 25.2	- (1 33 20	0.48	•	-	•	< -0.7	_	1	HD 5499 (K1IV $V = 6.7$)
*104		00 53 21.4	-14 34 33	1 15	0.56	c	Ċ	-0.6	_	1	CM Tuc or PMMB 82 (M4, $V=12.5$)
*141		00 59 13 2	-72 58 17	0.67	0.17	-		-0.9	< +0.0	1	HD $6172 (K2/K3III, V=7.7)$
*145		00 59 51 8	-71 49 03	0.33	-	-		< -0.5	-	1	HD 6222 (K1III, V=7.7)
*164		01 02 27.8	-73 43 47	0.19	-	-	-	< -0.3	_	2	HD 6509 (K2/K3III, V=8.7)
*167		01 03 30.1	-72 00 08	0.44	0.17:	С	С	-0.7	-	1	HD 6623 (KOIII, V=7.4)
*171		01 03 48.5	-71 12 03	0.37:		-	-	<-0.5	-	1	HD 6662 (G8III, V=8.2)
*186		01 07 33.8	-72 54 39	2.59	0.78	0.4	С	-0.8	-0.7	1	HD 7100 (M3/M4III)
*191		01 09 27.6	-71 52 26	1.00	0.17:	-	•	-1.1	< +0.0	1	PMMR 191 (M4, V=11.5)
196		01 10 44	-74 11	0.19:	-	-	-	< -0.3	-	2	HD 7442 (F8/G0V, $V=7.2$)
*198		$01 \ 12 \ 10.9$	-71 08 07	0.30	-	-	-	< -0.5	-	1	CPD-71 51 (M0,V=9.4)
208		01 16 06	-73 59	0.26	0.11:	С	С	-0.7	_	1	PMMR 197 (M0, $V=10.0$)
*244		01 29 07.7	-73 25 38	0.22	0.22	-		-0.3	< -0.1	1	HD 9489 (KIIII, $V = 8.2$)
*247		01 33 06.0	-73 21 00	0.19	-	-	<u> </u>	< -0.3		2	PMINR 207 (M4, V=11.0)
*1824		04 27 23.0	-71 00 38	1.70	0.67	-	•	-0.7	< -0.6	1	WOH G007 (M, I=6.1)
1828		04 30 10	-67 59	0.19	-	-	-	< -0.3	-	2	HD 29137 (G5V, V=7.7)
*1829		04 31 35.2	-72 29 31	0.30	-	-	-	< -0.5	-	1	HD 29360 (K0III, $V=8.6$)
*1831		04 32 16.6	-65 06 26	0.33	0.11:	-	-	-0.8	< +0.2	1	HD 29327 (K3III, V=8.4)
1833		04 32 30	-65 21	0.15	-	•	-	< -0.2	_	2	HD 29339 (G8, V=8.3)
*1835		04 33 03.7	-67 25 09	0.44	0.11:	•	-	-0.9	< +0.2	1	HD 29440 (K3III, $V=8.7$)
*1840		04 35 35.1	-70 08 03	0.81	0.22	•	-	-0.9	< -0.1	1	WOH SGUID (M3, $1=0.8$) PT Man (Miss. $V=12.2$)
*1842		04 37 08.5	-70 24 38	0.37	0.17	•	-	-0.7	< +0.0	2	HD 20043 (KAUL V $=$ 8.9)
1847		04 38 15	-03 12	0.15	0.22	-	•	0	0.1	2	HD 30083 (K5III $V=8.0$)
1851		04 39 03.3	-65 46	0.18	0.22			-0.3	< =0.1 _	2	HD 30073 (K1III, $V=8.1$)
*1854		04 41 31 1	-66 59 46	0.17	0.11	-	-	-0.8	< +0.2	1	HD 30325 (K2/3III, V=8.1)
*7		04 41 41 6	-68 42 08	0.19	-		-	< -0.3	-	2	HD 30363 (K1III, V=7.8)
10		04 43 00	-71 35	0.11:	-	-		< +0.0	-	2	HD 30568 (F6V, V=8.2)
14		04 43 33	-71 01	0.15:	-	-		< -0.2	-	2	HR 1541 (B8II/III)
*17		04 44 33.6	-72 13 35	0.33	0.11:	-	-	-0.8	< +0.2	1	HD 30766 (K3III, V=8.6)
*18		04 45 03.0	-70 48 24	0.26	0.11:	-	•	-0.7	< +0.2	1	HV 12463 (M, V=14.0)
19		$04 \ 45 \ 06$	-68 29	0.19	-	-	-	< -0.3	-	2	HD 270713 (V=9.2)
20		04 45 11	-68 07	0.19	-	-	•	< -0. 3	-	2	HD $30759 (F6/7V, V=8.1)$
1864		04 45 50	-66 10	0.19	-	-	-	< -0.3	-	2	HD $30805 (F3V, V=7.4)$
25		04 46 46	-68 38	0.22	•	-	-	< -0.3	-	1	HD 30969 (F7V, V=7.2)
30		04 47 10	-71 12	0.19	-	•	-	< -0.3	-	2	HD 31080 (G817, $V = 8.1$) HD 21155 (E211/III, $V = 0.0$)
37		04 48 08	-68 51	0.15:	-	•	•	< -0.2	-	2	HD 31133 (F3H/HL, $V=9.0$)
1866	•••	04 48 30	-64 28	0.15:	-	-	-	< -0.2	-	2	HD 31140 (KOIII, $V = 0.0$)
*50		04 49 17.1	-70 20 35	0.26	0.11:	-	-	-0.7	< +0.2	1	MV Dor (M4/5III V = 9.9)
*31 *79		04 49 20.3	-00 55 U2 69 54 49	2.44	1.55	0.8	-	-0.8	-0.7	1	HD 31518 (M3III, $V=7.7$)
*97		04 51 04.0	-09 0 1 19	4.33 0.41	0.17	0.0.	-	-0.7	< ±0.0	1	HD 31532 (GOV $V=6.8$)
*03		04 51 20.0	-68 10 38	0.44	0.17		-	-0.7	< +0.0	1	HD 31576 (K4II/III, V=8.4)
*130		04 53 25.2	-66 45 22	4.33	1.55	-	-	-0.8	< -1.0	1	HR 1598 (M0.5III, $V=6.4$)
*149		04 53 55 1	-72 29 20	0.30			-	< -0.5		1	HR 1606 (F6V, $V=6.3$)
147		04 54 15	-67 22	0.74	0.33		-	-0.7	< -0.3	1	HD 31907 (M1III)
1870		04 55 50	-64 40	0.15	-	-	-	< -0.2	-	2	HD 32108 (G8IV, V=9.1)
*233		04 57 23.8	-71 00 02	0.44	-	-	-	<-0.6	_	1	HD 32415 (G8/K0III, V=7.2)
*1871		04 57 33.0	-64 40 21	0.22		-	-	<-0.3	_	1	HD 32339 (K3III, V=9.1)
294		05 00 03	-68 39	0.15:	-	-	-	< -0.2	-	2	HD 32762 (A5III, V=8.0)
*1872		$05 \ 00 \ 14.2$	-64 27 47	0.89	0.17	-	-	-1.0	< +0.0	1	HD 32714 (K1/2III, V=7.3)
*321		$05 \ 01 \ 39.1$	-68 05 54	2.92	0.78	-	-	-0.9	< -0.7	1	HD 32972 (M3III, V=8.2)
*324		$05 \ 01 \ 41.4$	-68 10 03	4.40	2.66	-	-	-0.5	< -1.2	1	RX Dor (M7, mira, B=11.4)
327		05 01 55	-69 34	0.19	0.11:	-	-	-0.6	< +0.2	1	HD $33031 (A7V, V=8.1)$

\mathbf{Tabl}	le 6	. cc	ntin	ued

LI	TRM	RA(1950)	DEC(1950)	S_{12}	S_{25}	S_{60}	S_{100}	C_{21}	C_{32}	group	identification
					-						·····
*332		$05 \ 02 \ 00.5$	-69 03 22	0.41	0.33	1.2:	С	-0.4	+0.2	1	HD 33030 (K5III, V=9.0)
*1873		$05 \ 02 \ 57.0$	-64 36 11	0.59	0.11	-	-	-1.0	< +0.2	1	HD 33076 (M0III, $V=8.7$)
*352		05 03 06.3	-71 54 35	0.15	-	-	-	< -0.2	-	2	HD 33263 (K1IV, V=8.3)
*359		05 0 3 21 .0	-71 22 58	2.29	0.67	-	-	-0.9	< -0.6	1	HR 1677 (G8III, V=5.3)
*1874		05 03 41.9	-65 04 45	4.81	1.44	0.2:	-	-0.8	-1.2	1	HD 33213 (M4III, V=8.1)
376		05 04 00	-71 29	0.15	-	-	-	< -0.2	_	2	WOH SG136 (M0)
1876		05 04 30	-64 37	0.19		-	-	< -0.3	_	2	HD 33293 (K0III, V=7.7)
*406		05 05 09 0	-68 58 11	0.15	0.11:		-	-0.5	< +0.2	1	HD 33477 (K1III, V=8.0)
424		05 05 48	-72 29	0.26			-	< -0.4	_	1	HD 33652 (K0III, $V=8.2$)
*437	•••	05 06 26 7	-65 26 26	0.30	0.11		-	-0.8	$< \pm 0.2$	1	HD 33616 (K2III/IV, $V=7.8$)
*470		05 07 44 2	71 10 53	0.50	0.22		_	_0.7	< 0 1	1	SAO 256161 (K2III)
500	•••	05 09 53	67 14	0.00	0.11	-		-0.6	< ±0.2	1	HD 33986 (F5V $V=91$)
500		05 08 55	-07 14	0.22	0.11.	-	-	-0.0	< + 0.2	2	HD 34144 (A411/IV V=94)
506		05 05 45	-09 10	0.10.	-	-	-	< 10.0		ว้	HD 34170 (F6V V-84)
\$520		05 09 50	-09 41	0.11.	-	-	-	< T0.0	< 0.1	1	HD $34127 (K5111 V - 7.9)$
- 552	091	05 10 00.2	-00 29 03	0.10	0.22	-	•	-0.9	< −0.1	1 2	HD $24276 (K0HI, V=8.7)$
554		05 10 50	-69 23	0.11:	-	-	-	< +0.0	-	2	HD 34207 (C8/K0HL V-7.0)
*565		05 11 01.4	-72 08 13	0.11	-	-	-	< +0.0		2	HD 34397 (G8/K0III, $V = 7.9$)
*585		05 11 49.7	-69 36 16	0.96	0.33	1.2	-	-0.8	+0.2	1	HD 34437 (K5111, $V = 7.0$)
1879		05 11 50	-65 14	0.19	-	•	-	< -0.3	_	2	HD $34349 (F5V, V=7.0)$
*639		05 13 47.3	-67 14 30	6.47	1.72	-	-	-0.9	< -1.0	1	HR 1744 (K2.5III, $V = 4.8$)
*664	•••	05 14 55.4	-72 05 57	0.22:	0.17:	•	-	-0.4	< +0.0	1	WOH SG203 (M0+)
670		$05\ 15\ 00$	-71 33	0.15:	-	•	-	< -0.2	-	2	HD 34916 (K0III, V=8.6)
*678	110	$05\ 15\ 24.2$	-65 35 48	4.07	2.00	1.2:	-	-0.6	-0.6	1	HD 271114 (F0, B=11.7)
714	•••	05 16 33	-70 31	0.11:	-	-	-	< +0.0	-	2	HD $35095 (A4/5IV/V, V=8.6)$
*732		$05\ 17\ 11.8$	-70 48 42	0.26	0.17	0.4:	-	-0.5	+0.0	1	HV 928 (M3, V=13.2)
*750		05 17 49.1	-68 38 40	0.26	0.06:	-	-	-1.0	< +0.5	1	HD 35230 (G8III, V=7.6)
761		05 18 05	-65 35	0.19	-	-	-	< -0.3	-	2	HD 271151 (M0, V=9.4)
*763		$05\ 18\ 12.4$	-72 44 56	0.26:		-	-	< - 0.4	-	1	HD 35390 (K4III, V=8.3)
775	028	05 18 30	-67 36	0.22	0.11:	-	-	-0.6	< +0.2	1	(V=9.8)
*800	008	05 19 23.6	-67 54 39	0.30	0.11:	-	-	-0.8	< +0.2	1	HD 269344 (K5III, V=9.8)
814	090	05 19 47	-66 30	0.26	-	-	-	< -0.4	-	1,2	HD 35461 (K1III, V=8.5)
*838		05 20 50	-71 01	0.19		-	-	< -0.3	_	2	HD 35705 (K0III, V=8.3)
*1883		05 20 50 6	-64 59 30	0.33	0.22	-	-	-0.5	< -0.1	1	WOH G281 (M. $V=12.5$)
841		05 21 00	-68.02	0.15	0.33	С	С	+0.0		2	HD 35665 (K0III/IV, V=8.5)
*871		05 21 55 1	-72 08 27	0.30	0.17	Č.		-0.6	< +0.0	1	HD 35906 (K4III, V=8.5)
803	•••	05 22 40	-67 24	0.00	0.11	-	-	-0.6	$< \pm 0.2$	1	HD 35905 (K0III, $V=9.2$)
054	•••	05 24 10	69.33	0.15	0.11.	-	-	- ±0.0	< + 0.2 _	2	HD $269474 (V=94)$
*071	•••	05 24 10	70 03 40	1 22	0.33	-	-	_0.0	< _0.3	ĩ	HD $36241 (M3/4 V - 9.6)$
911	111	05 24 40.2	-70 03 49	0.12	0.55	-	-	- 0.5	< =0.0	• •	HD 36207 (K1HL V-9.0)
	012	05 25 05.8	-07 50 29	0.12	0.00	-	-	C =0.1	< ±0.3	2	HD 36347 (G2V)
1075	015	05 20 45.0	-07 30 37	0.13	0.09	-	-	-0.0	< T0.0	- -	HD $36637 (G6/811/111 V - 9.7)$
1075		05 27 05	-12 31	0.19:	-	-	•	< -0.3	-	2	$ID 26508 (V_{\pm}/C, V_{\pm}, 0)$
*1077	•••	05 27 06.6	-70 06 10	0.30	•	•	-	< -0.5		1	HD 36598 (Kp/C, $V=8.1$)
1081		05 27 16	-68 40	0.44	0.22	1.2:	-	-0.6	+0.4	1	HD 36584 (FOIV / V, V = 0.0)
1095		05 27 53	-68 07	0.11	-	-	-	< +0.0	_	2	HD 36650 (KUIII, $V = 8.8$)
*1117		05 28 35.2	-65 29 12	0.59:	0.17:	-	-	-0.9	< +0.0	1	UD 26805 (KOUL $V = 0.1$)
*1135	085	05 29 06.4	-66 43 31	0.30	0.17:	-	-	-0.6	< +0.0	1	HD 36803 (K2III, $V = 8.1$)
1174		05 30 05	-70 18	0.19	-	-	-	< -0.3	-	2	HD $37084 (K2/3)$
*1188		05 30 24.5	-70 00 23	0.30	-	-	-	< -0.5	-	1	HD 37122 (K2/3111)
*1884		05 30 53.4	-65 09 25	0.30	-	-	-	< -0.5	-	1	HD 37093 (K5III)
*1266	104	05 32 25.5	-65 51 34	4.25	1.55	-	-	-0.8	<-1.0	1	HD 37298 (M6III, V=10.1)
*1319		05 33 51.9	-71 59 42	0.70	0.22	-	-	-0.8	< -0.1	1	HV 12830 (M, V= 12.4)
*1346	•••	05 34 52.3	-68 14 12	0.41	0.22	-	•	-0.6	< -0.1	1	HD 37668 (K2III, V=8.0)
*1380		05 35 55.3	-71 10 01	1.04	0.22	-	-	-1.0	< -0.1	1	HD 37899 (K3III, $V=7.7$)
*1385		05 36 06.1	-71 42 21	0.33	-	-	-	< -0.5	-	1	HD 37936 (G8III, V=8.2)
*1395	098	05 3 6 19.5	-66 19 09	1.59	0.44	•	-	-0.9	< -0.4	1	SAO 249320 (M4III, V=8.7)
1418	•••	05 36 55	-66 35	0.30	0.22	-	-	-0.5	< -0.1	1	HD 37935 (B9.5e, V=6.3)
*1427		05 37 08.7	-70 45 15	0.26	-	-	-	< -0.4	-	1	HD $269838(G, B=11.3)$
1476		05 3 9 04	-71 41	0.11:	-	-	-	< +0.0	-	2	HD 38330 (G5III/IV, V=10.2)
1517		05 40 30	-71 07	0.59	0.11	-	-	-1.0	< +0.2	1	
1530		$05 \ 40 \ 52$	-72 30	0.19:	•	-	-	< -0.3	-	2	HD 3860? (K2III, V=8.6)
*1556		05 41 31.4	-72 04 26	0.89	0.22	-	-	-0.9	<-0.1	1	
*1558		$05 \ 41 \ 33.1$	-68 47 38	0.89	0.44	-	•	-0.6	< -0.4	1	HD 38617 (K3III, V=7.4)
1565		05 41 49	-67 26	0.19	-	-	•	< -0.3	-	2	HD 38616 (A2Ib/IIp, V=7.1)
*1566		05 41 50.2	-68 54 08	0.19:	С	С	С	-	-	2	HD 38654 (M0/1, V=10.0)
*1567		05 41 58.8	-70 03 20	2.96	0.78	-	С	-0.9	< -0.7	1	HD 38706 (M4III, V=9.9)
1575		05 42 20	-68 44	0.19	0.11:		-	-0.6	< +0.2	1	HD 38727 (G5III, V=8.5)
1587	055	05 42 46	-67 10	0.15	-	-	-	< -0.2	-	2	HD 38746 (F7V, V=7.5)
*1616		05 43 43.5	-68 29 27	0.70	0.17	1.2:	2.1:	-0.9	+0.5	1	HD 38922 (M, V=10.4)
*1623	019	05 43 54.4	-67 43 10	8.18	4.55	0.8:	С	-0.6	-1.1	1	HD 38941 (M5/6III, V=9.3)
				1 00	0.99	0.4.			_03	1	HB 2015 ($\Delta 7V$ V=4.3)

Table 6. continued

LI	TRM	RA(1950)	DEC(1950)	S_{12}	S_{25}	S ₆₀	S ₁₀₀	C ₂₁	C ₃₂	group	identification
1686		05 46 15	-67 44	0.15:	-		-	< -0.2	-	2	HD 39282 (A1/5III+F0, V=)
*1710		05 4 7 31 .0	-67 46 29	2.77	0.89	-	-	-0.8	< -0.7	1	WOH SG500 (M4, I=2.9)
1725		05 48 14	-71 00	0.15	0.11:	-	-	-0.5	< +0.2	1	HD 39675 (F5V, V=8.9)
1728		05 48 19	-66 3 9	0.22	0.11:	-	-	-0.6	< +0.2	1	HD 39580 (K0III, V=7.9)
*1891		05 48 24.7	-65 10 54	0.44	-	-	-	<-0.6	-	1	HD 39567 (K2III, V=7.5)
*1731		05 48 26.6	-69 45 53	1.11	0.33:	•	-	-0.8	<-0.3	1	HD 39674 (M3III, V=9.0)
*1736		05 48 49.0	-72 43 04	0.78:	-	-	-	< -0.9	-	1	HR 2062 (K0III, V=6.5)
*1748		05 49 55.5	-66 54 53	0.26	-	-	•	< -0.4	-	1	HR 2064 (B6V, $V=5.1$)
*1752		$05 \ 50 \ 24.1$	-69 41 48	0.26:	0.11:	-	-	-0.7	< +0.2	1	HD 39980 (K3III, V=8.6)
*1782		05 54 17.4	-69 14 55	0.11:	-	0.4:	•	< +0.0	> -0.1	2	HD 40597 (K2/3III, V=8.9)
*1788		05 55 38.0	-67 34 31	0.19	-	-	-	< -0.3	-	2	HD 40749 (K1III, V=8.1)
*1789		05 55 50.4	-68 03 15	0.44	0.11:	-	-	-0.9	<+0.2	1	HD 40810 (K2III, V=7.5)
*1793		05 56 10.7	-67 32 51	0.26	-	-	-	< -0.4	-	1	HD 40845 (K2/3III, V=8.4)
*1797		05 56 51.3	-66 18 42	0.11:	-	-	-	< +0.0	-	2	HD 40924 (K2III, V=8.3)
*1800		$05 \ 57 \ 12.5$	-70 07 01	0.19	-	-	•	< -0.3	-	2	WOH SG523 (M)
*1802		05 58 30.9	-69 01 29	0.26:	-	-	-	< -0.4	-	1	WOH SG524 (M2, I=7.4)
*1804		05 58 59.7	-69 51 29	0.81	0.17:	-	-	-1.0	<+0.0	1	HD 41356 (K4III, V=8.1)
1805		05 59 0 3	-71 20	0.19:	-	-	-	< -0.3	-	2	HD 41412 (K2III, V=8.3)
*1809		$06 \ 02 \ 14.3$	-70 06 41	0.74	0.22	•	-	-0.8	<-0.1	1	HD 41925 (K3III/IV, V=8.0)
*1811		$06\ 02\ 25.4$	-70 35 29	2.77:	1.66:	-	-	-0.5	<-1.0	1	RU Men (Me, B=12.3)
*1812		$06 \ 02 \ 25.5$	-66 45 54	0.15:	-		-	< -0.2	-	2	OM 88 (B3, B=10.5)
*1814		$06\ 02\ 38.2$	-72 08 44	1.37:	0.33:	-	-	-0.9	< -0.3	1	HD 42082 (M0III, V=7.8)
*1815		06 02 40.4	-70 40 22	1.55	0.56	-	-	-0.8	< -0.5	1	HD 42030 (M2III, V=8.5)
1816		$06 \ 02 \ 51$	-71 03	0.15:	-	-	-	< -0.2	-	2	HD 42080 (Fm, V=9.2)
*1820		06 04 1 3 .0	-69 42 22	0.89:	0.56:	-	•	-0.5	< -0.5	1	NSV 2830 (M3III, V=9.0)

Notes to Table 6: LI-SMC 90 could be identified with IRAS 00515-7455; LI-LMC 147 could be identified with IRAS 04544-6722; LI-LMC 838 could be identified with IRAS 05209-7101; LI-LMC 1812 = IRAS 06024-6645A.

 Table 7. Ruled out sources

LI	TRM	RA(1950)	DEC(1950)	S_{12}	S_{25}	S_{60}	S_{100}	C ₂₁	C32	group	identification
*2		00 33 43.2	-73 37 49	0.07:	0.44	0.8	1.0	+0.5	-0.1	1	AGN candidate
32		00 43 51	-73 39	0.33	0.22	С	С	-0.5	-	1	LHA 115-N 13(AB), HII region
*36		00 44 47.0	-73 22 29	0.52	1.78	21.0	42.0	+0.2	+0.7	3	LHA 115-N 12A, HII region [5]
*54		00 47 26.9	-73 30 45	0.19:	С	С	С	-	-	2	SNR 0047-73.5
74		00 49 30	-73 00	0.19	0.22:	С	С	-0.3	-	2	Lindsay 41, cluster
*		$00 \ 52 \ 06.0$	-70 54 21	0.25:	0.84	1.11	-	+0.2:	-	3	galaxy [5]
155		01 01 19	-72 18	0.26	0.78	С	С	+0.2	-	2	OB assoc.
*156		01 01 31.0	-72 22 16	0.37	0.67	С	С	-0.1	-	2	OB assoc.
*158		$01 \ 01 \ 32.8$	-71 06 59	0.67	-	-	•	<-0.8	-	1	NGC 362, cluster
172		$01 \ 03 \ 50$	-72 12	-	0.28	0.8	С	> +0.0	+0.1	1	AzV 358a (B0)
*173		$01 \ 03 \ 56.9$	-73 05 59	0.19	1.00	3.7	6.3	+0.4	+0.2	3	[5]
182		01 06 41	-73 10	0.19	-	С	С	< -0.3	-	2	NGC 419, cluster
*200		$01 \ 12 \ 41.2$	-73 32 42	0.70	4.00	С	С	+0.4	-	2	NGC 456, cluster
*201		$01 \ 13 \ 19.1$	-73 33 42	0.30	2.00	С	С	+0.5	-	2	NGC 460, cluster
*205		01 14 18.1	-73 26 04	-	0.44	С	С	> +0.1	-	2	HW 72, cluster
*1838		04 35 14.5	-66 43 59	-	-	0.4	-	_	> -0.1	2	ESO 84-23, galaxy
63		$04 \ 49 \ 55$	-69 17	0.48	1.44	С	С	+0.2	-	2	LHA 120-N 77E, HII region
*67		04 50 29.8	-69 34 47	0.56	0.89	14.9	47.8	-0.1	+0.8	3	[5]
*138		04 53 46.0	-69 22 36	0.22	1.11	С	С	+0.4	-	2	LHA 120-N 82 (WC9)
*162		04 54 40.6	-69 15 39	1.41	12.76	41.4:	С	+0.6	+0.1	1	NGC 1748, HII region
182		04 55 20	-69 25	0.30	0.22	С	С	-0.5	_	1	LHA 120-N 89
222		04 57 00	-66 39	0.26	С	С	С	-	-	2	HD 268732 (B1Ia, V=11.6)
*225		04 57 08.5	-69 54 58	0.81	1.22	0.4:	-	-0.1	-0.9	1	HD 268835 (B8Ia, LBV)
*226		04 57 09.2	-66 27 45	1.00:	4.99:	С	С	+0.4	-	2	LHA 120-N 11A, HII region
*235		04 57 25.9	-68 29 36	2.81	12.9	118.0	228.4	+0.3	+0.6	3	HD 268804 (B2Iab, V=11.2) [5]
*276		04 58 56.7	-65 47 38	0.07:	0.44		-	+0.5	< -0.4	1	LH 15, cluster
283		04 59 15	-66 17	0.11	0.11	1.7	С	-0.3	+0.8	1	SK-66 47 (09, V=13.1)
3 09		05 00 50	-66 00	0.07:	0.22	-	-	+0.2	< -0.1	1	HD 270948(O); X ray
*346		05 02 44.2	-71 24 15	0.81	8.88	5.0	2.1	+0.7	-0.6	1	HD 269006 (LBV)
355		05 03 15	-65 53	0.22	0.11	-		-0.6	< +0.2	1	SK-65 26 (O)
379		05 04 07	-66 31	0.19			-	< -0.3	-	$\frac{-}{2}$	NGC 1818. cluster
0.0	113	05 04 54 3	-67 36 06	0.13	0.13	_	_	-0.3	< +0.1	1	LH 22, cluster
411	110	05 05 15	-68.06	0.19	0.11	С	С	-0.6	· , ···	1	CPD-68 312 (B1, V=11.7)
*423		05 05 46.4	-67 56 44	-	0.17:	0.4:	-	> -0.3	+0.0	1	SNR0505-67.9

Table 7. continued

	LI	TRM	RA (1950)	DEC(1950)	S ₁₂	S ₂₅	S ₆₀	S ₁₀₀	C ₂₁	C32	group	identification
	*510		05 09 16.1	-68 48 15	0.52	1.00	14.5	45.8	0.0	+0.8	3	cluster [5]
	*520		05 09 38.6	-68 49 30	0.41	1.55	С	С	+0.3	· _	2	LHA 120-N 103A, HII region
*************************************	573		05 11 20	-68 57	0.26	0.44	С	с	-0.1	-	2	CSI-68-05114 (B8Ib)
	*588		05 11 51.7	-68 47 17		0.11:	-	-	> -0.5	< +0.2	2	HD 269158 (A), NGC 1863
	594		05 12 10	-67 15	0.26	0.44	С	С	-0.1	-	2	CSI-67-051221 and 2 (B9Ib, B9II)
	*620		05 13 00.2	-70 27 59	0.74	2.00	19.0	25.0	+0.1	+0.6	3	LHA 120-N 193C, HII region [5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	734		05 17 15	-68 56	0.15	0.11	2.1:	С	-0.4	+0.9	1	cluster
	736		05 17 20	-69 11	0.15	0.11	-	-	-0.5	<+0.2	1	BI 122 (B1II, V=13.1)
	*772		05 18 28.7	-69 35 42	0.59	0.56	4.1:	С	-0.3	+0.5	1	cluster
*869 $05 \pm 1307 - 67 08 \pm 00$ 0.1: 0.1: 1.2 2.1: $-0.3 + 0.7$ 1 HD 27191(B), SK-65 52 (B0) *666 $05 \pm 1439 - 654 754$ 0.18 · . · · · · · · · · · · · · · · · · ·	*816		05 19 48.4	-69 41 40	1.85	4.44	С	С	+0.1	-	2	HD 269382 (B5), HD 35517 (WC)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*859	•••	$05\ 21\ 30.7$	-67 08 00	0.11:	0.11:	1.2	2.1:	-0.3	+0.7	1	HD 269400 (B5, V=11.6)
*866 $0.5 \pm 45.7 - 70.01 \pm 4$ 0.56 0.78 9.1 18.7 -0.2 ± 0.7 3 [6] *876 $0.5 \pm 20.35 - 75.816$ 0.56 *88 20.7 C $+0.9 \pm 0.01$ 1NGC199, cluster *877 $0.5 \pm 22.37 - 68.01 \pm 8$ 1.11: 22.20 C C $+1.0 - 2$ HI region *098 $0.5 \pm 20.31 - 68.48 \pm 10.22$ 0.33: $0.1 < -0.3$ CSL-68-052302 (A1b, B=13.6) UCC 201, molec. cloud 925 $0.5 \pm 20.53 - 67.12$ 0.07 0.11 C C $-0.1 - 2$ HI 153 (B21, V=13.6) 946 $0.5 \pm 20.55 - 68.2 \pm 20$ 0.63 1.66 11.2 C $-0.1 - 2$ HI 153 (B21, V=13.6) 947 $0.5 \pm 20.55 - 68.2 \pm 20$ 0.63 1.66 11.2 C $-0.2 - 2$ HI S 274, cluster 948 $0.5 \pm 20.55 - 68.2 \pm 20$ 0.33 C C $-0.2 - 2$ HI S 274, cluster 948 $0.5 \pm 20.55 - 68.2 \pm 20$ 0.33 C C $-0.2 - 2$ HI S 274, cluster 948 $0.5 \pm 20.55 - 67.3 \pm 0.01$ 1.1 $ < -0.2 - 2$ HI S 274, cluster 948 $0.5 \pm 20.55 - 67.3 \pm 0.01$ 1.1 $ < -0.2 - 2$ HI 190 (B11, V=12.5), SK-67 101 (O9III, V=12.6) *1100 $0.5 \pm 20.55 - 67.3 \pm 0.01$ 1.1 $ < -0.3 - 2$ NGC 1984 cluster 1112 $0.5 \pm 28.4 \pm 1 - 66.15 \pm 20 - 19 < -0.3 - 2$ NGC 1984 (cluster *112 $0.5 \pm 28.4 \pm 1 - 66.15 \pm 0.19 < -0.3 - 2$ NGC 1984 (cluster *1130 $0.5 \pm 28.4 \pm 1 - 66.15 \pm 0.19 < -0.3 - 2$ NGC 1984 (cluster *1130 $0.5 \pm 28.4 \pm 1 - 66.15 \pm 0.19 < -0.3 - 2$ NGC 1984 (cluster *1130 $0.5 \pm 28.4 \pm 1 - 66.15 \pm 0.19 < -0.3 - 2$ NGC 1984 (cluster *1130 $0.5 \pm 28.4 \pm 1 - 70.09 \pm 0.22 + 0.33 & 24.8 \pm 5.20 + 0.1 + 0.0 = 1$ HI 180 (B11L) *1199 $0.5 \pm 0.44 + .71 0.71 = 0.52 + 1.33 & 24.8 \pm 5.20 + 0.1 + 0.0 = 1$ HI 180 (B11L) *1199 $0.5 \pm 0.31 + 6.71 + 0.11 = 0.33 + C = C + 0.2 - 2 = 2$ KK 281 108 (A1L, V=12.5) *121 $0.5 \pm 10.4 + 6.71 + 0.11 = 0.33 + C = C + 0.2 - 2 = 2$ KK 281 108 (A1L, V=12.5) *121 $0.5 \pm 10.4 + 6.71 + 0.5 = 0.22 + C = - 2 = 1$ HD 269964 (A0La, V=12.5) *123 $0.5 \pm 31.4 + .70 \pm 9.0 + 3.0 + 11 = 0.38 + C = -0.1 + 0.0 = 1$ HD 269972 (MN, V=13.6) *123 $0.5 \pm 31.4 + .70 \pm 9.0 + 3.0 + 11.3 = 2.20 < C = -0.2 - 2 = 2$ HI 2060 (A1L, V=12.8) *1474 .		105	$05\ 21\ 34.9$	-65 47 54	0.18	-		-	< -0.2	-	2	HD 271191 (B), SK-65 52 (B0)
**67 65 22 03.5 .67 &81 6 0.55 8.88 20.7: C +0.9 +0.0 1 HIT region *0687 65 22 23.7 .68 01 28 11: 22.0 C C +0.1 -0 2 HIT region *068 65 22 03.7 .68 04 19 0.22 0.33:0.1 <-0.3 1 CSC 1929. cluster #107 05 23 10 66 48 0.15 0.22 C C -0.2 - 2 LSC 1.68 0.523 02 (A11b, B=13.6) *061 65 24 06 71 15 0.17: C C -0.1 - 2 HI 13 (B2II, V=13.6) *061 65 24 05 71 15 0.15 0.17: C C -0.1 - 2 HI 24 (Juster *128 05 25 0.3 66 14 57 0.15 0.17: C C -0.2 - 2 H5 274. (Juster *128 05 25 0.3 66 14 57 0.15 0.17: C C -0.2 - 2 H5 274. (Juster *110 05 24 05 73 10 4 0.11 0.11 2.5 4.2 +0.5 -0.7 1 HS 274. (Juster *1110 05 28 03 66 14 57 0.15 0.12: C -0.2 - 2 H1 26 (JUST, V=12.5), SK-67 101 (O9III, V=12.6) *1110 05 28 03 67 13 0.4 0.11 0.11 2.5 4.2 +0.5 -0.7 1 HG 1984, cluster *1126 05 28 43.1 65 16 26 0.11 0.11 2.5 4.2 +0.5 -0.7 1 HG 1984, cluster *1130 0.90 52 84 54 70 09 0.22 0.33 0.8: C -0.1 +0.0 1 HI 026953 (BS, V=1.4) *1130 0.90 52 84 54 70 09 0.22 0.33 0.8: C -0.1 +0.0 1 HI 026954 (JUST, V=12.5), SK-67 101 (O9III, V=12.6) *1149 05 30 42.4 7.1 07 15 0.32 1.33 24.8 52.0 +0.1 +0.9 3 cluster *1179 05 30 43.1 67 19 16 0.22 0.120.6 <+0.2 - 2 H1 26 (1984, cluster *1199 05 30 43.1 67 19 16 0.22 0.120.6 <+0.2 - 2 H1 26 (JUST) *1296 05 31 0.3 -68 48 0.15 0.22 C C C -0.2 - 2 SK-69 108 (JUST, V=12.8) *1296 05 31 0.3 -68 48 0.15 0.22 C C C -0.2 - 2 SK-69 108 (JUST, V=12.8) *1296 05 31 0.3 -68 48 0.15 0.22 C C C -0.2 - 2 SK-69 108 (JUST, V=12.8) *1296 05 31 0.3 -68 48 0.15 0.22 C C C -0.2 - 2 SK-69 108 (JUST, V=12.8) *1296 05 31 0.4 -68 48 0.15 0.22 C C C -0.2 - 2 SK-69 108 (JUST, V=12.8) *1296 05 31 0.4 -68 48 0.15 0.22 C C C -0.2 - 2 SK-69 108 (JUST, V=12.8) *1296 05 31 0.4 -68 48 3 0.16 0.18 C C -0.0 1 HD 269978 (BKb), V=13.1) *124 0.20 53 20.5 -7.4 53 30 0.18 0.18 C C -0.0 1 - 2 SK-68 102 (HIT, V=12.8) *124 0.05 33 0.5 -68 43 3 0.18 0.18 C C -0.0 2 - 2 H120 56 (SUT) *1337 05 33 0.7 6.7 43 31 1.1 33 20.8 C	*866		$05\ 21\ 45.7$	-70 01 54	0.56	0.78	9.1	18.7	-0.2	+0.7	3	[5]
*868 $65 22 23.7 .68 61 28 $ 1.11: $22 20$ C C $+1.0 - 2$ *106 $65 23 013 68 8519 0.22$ 0.32: $0.1 < -0.3$ C CSI.68.652302 (A1Ib, B=13.6) *051 $65 23 05 76 12$ 0.07 0.11 C C $-0.01 - 2$ BI 135 (B2II, V=13.6) *051 $65 24 25 0 68 53 22 0.63$ 1.66 11.2 C $-0.1 - 2$ BI 135 (B2II, V=13.6) *051 $65 24 25 0 68 23 22 0.63$ 1.66 11.2 C $-0.1 - 2$ BI 135 (B2II, V=13.6) *052 05 $24 55 0 68 23 22 0.63$ 1.66 11.2 C $-0.2 - 2$ BI 25 (B1I, V=12.5), SK-67 101 (O9III, V=12.6) *100 $65 24 05 0 68 12 0 10 < -0.2 - 2$ BI 126 (BIII, V=12.5), SK-67 101 (O9III, V=12.6) *1100 $65 28 00 3 66 14 57 0.15 < -0.3 - 2 2 BI 126 (BIII, V=12.5), SK-67 101 (O9III, V=12.6) *1100 65 28 00 3 69 10 25 3.88 2 23 1 10.3 4.2 +0.5 -0.7 1 NGC 1884, cluster *112 65 28 43 69 10 59 1.11 0.11 2.4 2.2 -0.3 +1.0 1 H2 269530 (B5, V=11.4)*1125 65 28 43 66 16 50 0.19 < -0.3 - 2 NGC 1983 (B5, V=11.4)*1126 65 28 43 66 174 3 0.11 0.11 2.4 42 -0.5 -0.1 +0.1 H2 269530 (B5, V=11.4)*1127 65 28 43 66 174 1 0.11 0.44 +0.3 <-0.4 + 1 [7]*1160 65 28 45 66 179 16 0 22 0.33 0.8 C - 0.1 +0.0 1 BI 180 (BIII.)*1199 65 3 03 3 67 19 16 0 22 0.33 0.8 C - 0.0 + 0.0 1 H2 100 (B1II.)*1199 65 3 03 4 67 19 16 0 22 0.33 C C C +0.2 - 2 2 SK-68 100 (A1b, V=12.5)1211 65 3 105 69 07 39 0 78 C C > +0.4 - 2 1 Custer J*1209 65 3 103 69 07 39 0 78 C C > +0.4 - 2 H2 2605 (Be)*1239 65 3 104 69 07 39 0 78 C C > +0.4 - 2 H2 2606 (B1I.)*1247 022 05 23 24 9 67 34 35 0.18 0.18 0.8 0.8 -0.3 < +0.1 +10.7 937 (B1Bab)*1247 022 05 23 24 9 67 34 35 0.18 0.18 0.8 0.8 -0.3 < -0.2 - 2 NOVA LANC 1081*137 149 05 33 48 69 172 0 0.11 < -0.3 < -0.2 - 2 NOVA (B1A, E13)*1437 05 33 10 69 13 5. 0.22 0.33 C C C -0.2 - 2 H1 20 260 (B11.)*1444 05 34 35 69 07 39 0.13 < -0.2 - 2 NOVA (A1A C 1881 0.18 0$	*876		$05 \ 22 \ 03.5$	-67 58 16	0.56:	8.88	20.7:	С	+0.9	+0.0	1	NGC 1929, cluster
*908 $05 22 01.3 - 68 68 19 0.22 0.330.1 <-0.3 1 CS188-05230 2 (A11b, B=13.6) 913 05 22 10 - 66 48 0.15 0.22 C C -0.2 -2 LMC-CO21, molec. cloud 926 05 24 26 - 71 15 0.17 C C -0.3 -2 CS17.0520 1 (B01, B=13.0) *961 05 24 06 - 71 15 0.17 C C -0.3 -2 CS17.0520 1 (B01, B=13.0) *961 05 24 06 - 71 15 0.17 C C -0.2 -2 2 SC7.0 (B01, B=13.0) *961 05 24 05 -68 32 32 0.63 1.66 112 C -0.2 -2 2 ST7.0 (VR) 128 05 25 01 3 -65 14 57 0.15 <-0.2 -2 2 ST7.0 (VR) 128 05 25 01 3 -65 14 57 0.15 <-0.0 -2 2 ST7.0 (VR) 1100 05 28 03 -67 13 0 0 11 <-0.0 -2 2 ST7.0 (VR) 1100 05 28 03 -67 13 0 0 111 - 1 <-0.0 -2 2 ST7.0 (VR) 1100 05 28 42 -66 15 25 0 13 -66 15 2 <-0.3 -2 NCC 1978 *1127 05 28 42 -66 15 25 0 13 -4 24 -0.3 +1.0 1 H0 269530 (B5, V=11.4) *1126 05 28 42 -66 15 25 0 13 -4 24 -0.3 +1.0 1 H0 269530 (B5, V=11.4) *1127 05 28 45 -70 09 0.22 0 33 0.8 C -0.1 +0.0 1 ST8 *1130 090 55 28 58 -66 17 41 0.11 0.44 -0.6 <+0.2 -2 2 HV 2605 (B6) 05 0 53 415 -61 71 0 15 0.22 C C -0.2 -2 2 HV 2605 (B-1) 05 0 53 103 -61 741 0.11 0.33 C C C +0.2 -2 2 HV 2605 (B-1) 05 0 53 103 -61 34 7 0.11 0 33 C C C +0.2 -2 2 SK-68 100 (A015h, V=12.5) 05 3 103 -61 34 7 0.11 0 33 C C C +0.2 -2 2 SK-68 100 (A015h, V=12.5) 1211 05 31 10 -69 08 0.11 0 33 C C C +0.4 -2 2 HV 2605 (B-1) 05 0 53 27.7 -67 34 35 0 0.11 0 33 C C C +0.4 -2 2 SK-68 100 (A015h, V=12.5) 1239 05 31 43 -67 43 3 0 1.18 0.32 C C C +0.4 -2 2 SK-68 100 (A015h, V=12.5) 1243 -3 < -0.0 < 1 +0.0 1 H1 26 0672 (B14b) 1250.3 < -0.0 1 H0 26967 (Ope/WNs) *1239 05 31 43 -67 43 3 0 0.15 0.22 C C C -0.2 -2 2 SK-68 100 (A015h, V=12.5) 1243 -3 < -0.0 -2 2 -2 SK-68 100 (A015h, V=12.5) 1243 -3 < -0.0 -2 2 -2 SK-68 100 (A015h, V=12.5) 1243 < -0.2 -2 -2 SK-68 100 (A015h, V=12.5) 1243 < -0.2 -2 -2 SK-6$	*887	• • • •	$05 \ 22 \ 23.7$	-68 01 28	1.11:	22.20	С	С	+1.0	-	2	HII region
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*908		$05 \ 23 \ 01.3$	-68 58 19	0.22	0.33:	-	-	-0.1	< -0.3	1	CSI-68-05230 2 (A1Ib, B=13.6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	913		$05\ 23\ 10$	-66 48	0.15	0.22	С	С	-0.2	-	2	LMC-CO21, molec. cloud
	926		05 23 25	-67 12	0.07	0.11	С	С	-0.1	-	2	BI 153 (B2II, V=13.6)
* 961 05 24 26.9 - 68 22 20 0.63 1.66 11.2 C +0.1 +0.5 3 LHA 120-N 138D, HII region [5] 985 05 24 54 7.1 37 0.26: 0.33: C C -0.2 - 2 H5 274, cluster 128 05 25 01.3 -66 14 57 0.15 < <-0.2 - 2 H5 274, cluster 037 05 28 00.3 -67 43 0.11: 0.11: 2.5 4.2 -0.3 +1.0 1 HD 269393 (DKN) 1112 05 28 43.1 -69 10 59 1.11: 1.44 C C -0.2 - 2 NGC 1984, cluster *1126 05 28 43.1 -69 10 59 1.11: 1.44 C C -0.2 - 2 NGC 1974 *1127 05 28 43.1 -69 10 59 1.11: 1.44 C C -0.2 - 2 NGC 1974, cluster *1130 099 05 28 58 9 -61 74 10 11: 0.44 $+0.3 <-0.4$ 1 [7] 1160 05 29 445 -70 09 0.22 0.33 0.8: C -0.1 +0.0 1 BI 180 (BIIL) *1199 05 30 43.1 -69 134 7 0.11: 0.33: C C $+0.2$ - 2 HV 2605 (Be) *1211 05 31 0.3 1-69 134 7 0.11: 0.33: C C $+0.2$ - 2 HV 2608 (Be) *1211 05 31 0.3 -69 0.8 0.11 0.33 C C $+0.2$ - 2 HV 2608 (Be) *1239 053 11.0 -69 08 0.11 0.33 C C $+0.2$ - 2 HV 2608 (Be) *1239 053 11.0 -69 08 0.11 0.33 C C $+0.2$ - 2 HV 2608 (Be) *1239 053 11.0 -69 08 0.11 0.33 C C $+0.2$ - 2 HV 2608 (Be) *1239 053 11.0 -69 08 0.11 0.33 C C $+0.2$ - 2 HV 2608 (Be) *1239 112 05 32 1.08 -67 44 30 1.48 5.99 C C -0.2 - 2 NOVA LMC 1981 *1259 112 05 32 1.08 -67 44 30 1.48 5.99 C C -0.2 - 2 NOVA LMC 1881 *1260 053 31 48 -70 25 29 0.15: $< -0.2 < - 2$ NOVA LMC 1881 *1274 02 35 24 7.7 -67 34 35 0.18 0.18 $-0.3 < +0.0$ 1 HD 26987 26 (Blab) *1239 05 31 48 -70 52 29 0.35: $< >-0.6 < +0.2$ 2 HV 2608 (Blab) *124 0.0 53 34 48.7 -65 17 29 0.2 0.33 C C C -0.1 - 2 HV 26968 (MV, Piel) 1414 2 05 34 48.7 -66 17 29 - 0.11: - $< >-0.6 < +0.2$ 2 HV 2608 (Blab) *137 140 65 38 48.7 -66 17 29 0.2 0.33 C C C -0.1 - 2 HV 26987 (MV = 13.1) 1442 05 34 45.6 -69 14 20 1.48 5.55 124.2 228.8 $+0.2 +1.0$ 3 Brey 56 (WN, V=1.3.0) *1383 05 36 10.6 -67 43 0 0.18 0.32 C C $-0.04 - 2$ HV 2608 (Blab) *1413 05 36 48.6 -69 24 3 0.09 S 1.11 2.4 C C $-0.02 - 2$ HV 26987 (MV = 13.1) 1443 05 36 48.6 -69 34 20 0.59 1.10 2.2 C C $-0.04 - 1$ HD 37974 (Be,	951		05 24 06	-71 15	0.15	0.17:	С	С	-0.3	-	2	CSI-71-052401 (B9II, B=13.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*961		05 24 26.9	-68 32 32	0.63	1.66	11.2	С	+0.1	+0.5	3	LHA 120-N 138D, HII region [5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	985		05 24 54	-71 37	0.26:	0.33:	С	С	-0.2	-	2	HS 274, cluster
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		128	05 25 01.3	-66 14 57	0.15	-		-	< -0.2	-	2	Brey 30 (WR)
		037	05 26 06.9	-67 31 04	0.11	-	-	-	< 0.0	-	2	BI 169 (B1II, V=12.5), SK-67 101 (O9III, V=12.6)
	*1100		05 28 00.3	-69 10 25	3.88	23.31	10.3	4.2	+0.5	-0.7	1	NGC 1984, cluster
	1112		05 28 30	-67 43	0.11:	0.11:	2.5	4.2	-0.3	+1.0	1	HD 269593 (B5, V=11.4)
	*1126		$05 \ 28 \ 42.1$	-66 16 26	0.19	-	-	-	< -0.3	-	2	NGC 1978
	*1127		05 28 43.1	-69 10 59	1.11	1.44	С	С	-0.2	-	2	NGC 1994 7, cluster
	*1130	099	$05\ 28\ 58.9$	-66 17 41	0.11	0.44	-	-	+0.3	< -0.4	1	[7]
*1199 05 30 42.4 - 71 07 15 0.52 1.33 24.8 52.0 +0.1 +0.9 3 cluster [5] 050 05 30 43.1 -67 19 16 0.21 0.120.6 <+0.2 1 cluster *1209 05 31 05 -68 45 0.15 0.22: C C -0.2 - 2 KK-68 109 (AOlab, V=12.5) 1215 05 31 10 -69 08 0.11 0.33 C C +0.2 - 2 KK-69 168 (B15, V=12.8) *1239 05 31 45.3 -69 07 39 - 0.78 C C >+0.4 - 2 HD 269687 (Ofpe/WN9) *1249 05 32 10.8 -67 44 30 1.48 5.99 C C +0.3 - 2.1 HII region (?) 030 05 32 27.7 -67 34 35 0.18 0.180.3 <+0.0 1 HD 269726 (Balab) *1295 05 33 14.8 -70 25 29 0.15: < <-0.2 - 2 NOVA LMC 1981 *1219 112 05 33 44.5 -69 12 0.22 0.33 C C -0.1 - 2 NOVA LMC 1981 *1317 149 05 33 44.5 -69 12 0.22 0.33 C C -0.1 - 2 SK-69 192 (B1.5, V=12.8) *1310 05 36 0.22 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 56 (WN, V=13.6), B1 227 (0, V=13.7) *1383 05 36 0.22 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 56 (WN, V=13.6), B1 227 (0, V=13.7) *1406 05 36 38.0 -65 43 00 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1410 05 36 48.6 -69 24 43 1.00 0.78 C C -0.4 - 1 HD 37974 (Be, LBV) *1425 05 38 45.6 +021 0.22: 0.22: C C C -0.2 - 2 SK-67 221 (V=12.9) *1406 05 36 38.0 -65 43 00 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1416 05 36 38.0 -65 43 00 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1416 05 36 38.0 -69 43 01 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1416 05 36 38.0 -69 43 01 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1416 05 36 38.0 -69 43 01 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1416 05 36 38.0 -69 43 01 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1416 05 36 38.7 -69 27 0.38 0.85 C C +0.1 - 2 [5] 1467 05 38 57 -69 17 0.38 0.55 C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 38 45.6 69 12 0.32: C C C -0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 38 45.6 69 10 0.39 2.7.7 C C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 38 5.7 -69 27 0.38 0.55 C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 38 5.7 -69 2.1 0.56 C C -0.2 - 2 HD 269926 (WN, V=13.1) 1485 05 43 35.0 -69 0.54 0.19: 0.56 C C +0.2 - 2 HD 269926 (WN, V=13.1) 1485	1160		05 29 45	-70 09	0.22	0.33	0.8:	С	-0.1	+0.0	1	BI 180 (B1II:)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*1199		05 30 42.4	-71 07 15	0.52	1.33	24.8	52.0	+0.1	+0.9	3	cluster [5]
*1209 $05\ 31\ 0.31$ $-69\ 13\ 47$ 0.11: 0.33: C C -0.2 -2 HV 2605 (Be) 1211 $05\ 31\ 10$ $69\ 18\ 45$ 0.15 0.22: C C -0.2 -2 SK-68 109 (AOIab, V=12.5) 1215 $05\ 31\ 10$ $69\ 08$ 0.11 0.33 C C $+0.2$ -2 SK-68 109 (AOIab, V=12.8) *1239 $05\ 31\ 145\ 3$ $69\ 07\ 39$ $-$ 0.78 C C $+0.4$ $-$ 2 HD 269687 (Ofpe/WN9) *1259 112 05\ 32\ 10.8 $67\ 44\ 30$ 1.48 5.99 C C $+0.4$ $-$ 2, 1 HII region (?) $03\ 05\ 32\ 27.7$ $67\ 34\ 35$ 0.18 0.18 $ -3\ <$ <0.3 $ -2.1$ HII region (?) $03\ 0\ 53\ 27.7$ $67\ 34\ 35$ 0.18 0.18 $ -3\ <$ <0.2 HD 269687 (Ofpe/WN9) *1274 022 05\ 32\ 34.9 $67\ 43\ 41$ 1.78 8.88 113.3 280.8 $+0.4$ $+0.7$ 3 LHA 120-N 57A, HII region *1295 $05\ 31\ 48.7$ $66\ 17\ 29$ $-$ 0.11: $ <-0.2\ -$ 2 NOVA LMC 1981 *1317 149 05\ 33\ 48.7 $66\ 17\ 29$ $-$ 0.11: $ <-0.2\ -$ 2 SK-69 192 (B15, V=12.8) *1371 149 05\ 33\ 48.7 $66\ 12\ 0.22\ 0.33\ C\ C\ -0.1\ -$ 2 SK-69 192 (B15, V=12.8) *1373 $05\ 36\ 10\\ 67\ 32\ 0.15\ 0.22\ C\ C\ -0.1\ -$ 2 SK-69 192 (B1.5, V=12.8) *1383 $05\ 36\ 0.2\\ 69\ 15\ 5\ -$ 1.33; C C C $-0.1\ -$ 2 SK-69 192 (B1.5, V=12.8) *1383 $05\ 36\ 0.2\\ 69\ 142\ 1.18\ 5.55\ 124\ 2\ 228.8\ +0.2\ +1.0\ 3$ Brey 58 (WN), nebula [5] 1387 $05\ 36\ 10\\ 67\ 32\ 0.15\ 0.22\ C\ C\ -0.0\ +1.0\ 3$ [5] *14106 $05\ 36\ 38.0\\ 69\ 43\ 0.0\ 0.78\ C\ C\ -0.4\ -$ 1 HD 37974 (Be, LBV) *1425 $05\ 37\ 0.76\\ 69\ 31\ 27\ 0.77\ 1.33\ 2.11\ C\ +1.0\ -0.2\ 1\ MGC 2055$ $05\ 37\ 0.76\\ 69\ 31\ 27\ 0.77\ 1.33\ 2.11\ C\ +1.0\ -0.2\ 1\ MGC 2055$ $05\ 37\ 0.76\\ 69\ 31\ 27\ 0.77\ 1.33\ 2.11\ C\ -0.0\ -$ 2 HD 269926 (WN, V=13.1) 1467 $05\ 38\ 55\\ 60\ 10\ 0.78\ C\ C\ -0.4\ -$ 1 HD 269926 (WN, V=13.1) 147 $05\ 38\ 55\\ 69\ 0.5\ 0.77\ C\ C\ -0.4\ -$ 2 HD 269926 (WN, V=13.1) 1483 $05\ 39\ 21.3\\ 69\ 27\ 0.38\ 0.78\ C\ C\ -0.4\ -$ 2 HD 269926 (WN, V=13.1) 147 $05\ 38\ 55\\ 60\ 0.77\ C\ C\ -0.4\ -$		050	05 30 43.1	-67 19 16	0.21	0.12	•	-	-0.6	< +0.2	1	cluster
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*1209		05 31 03.1	-69 13 47	0.11:	0. 33 :	С	С	+0.2	-	2	HV 2605 (Be)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1211		05 31 05	-68 45	0.15	0.22:	С	С	-0.2	-	2	SK-68 109 (A0Iab, $V=12.5$)
*1239 05 31 45.3 -69 07 39 0.78 C C > +0.4 - 2 HD 26987 (Ofpe/WN9) *129 112 05 32 10.8 -67 44 30 1.48 5.99 C C +0.3 - 2,1 HII region (?) 030 05 32 27. 67 43 45 0.18 0.18 0.3 <+0.0 1 HD 269726 (B8lab) *1274 022 05 32 34.9 -67 43 41 1.78 8.88 113.3 280.8 +0.4 +0.7 3 LHA 120-N 57A, HII region *1295 05 33 14.8 .70 25 29 0.15: < -0.2 - 2 NOVA LMC 1981 *1317 149 05 33 48.7 -66 17 29 - 0.11: - > >-0.5 <+0.2 2 BI 206 (B1II) 1342 05 33 44.5 -69 12 0.22 0.33 C C -0.1 - 2 SK-69 192 (B1.5, V=12.8) *1370 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 56 (WN, V=13.6), BI 227 (0, V=13.7) *1383 05 36 01 -67 32 0.15 0.22: C C -0.2 - 2 SK-67 221 (V=12.9) *1406 05 36 38.0 -69 43 00 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1413 05 36 48.6 -69 24 43 1.00 0.78 C C -0.4 - 1 HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C +1.0 -0.2 1 MG 2055 05 38 55 -69 01 0.38: 0.85 C C +0.1 - 2 [5] 1467 05 38 55 -69 01 0.38: 0.77: C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 39 013 -69 30 05 2 0.74 C C C 2 HD 269926 (WN, V=13.1) 1483 05 39 013 -69 30 05 4 0.19: 0.56 C C +0.2 - 2 HD 269923 (B6lab), Brey 91 (WN) *1519 05 40 33.5 -69 01 0.38: 2.77: C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C 2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C - 0.4 - 1 HD 38489 (Be) 1523 05 40 3.5 -69 01 0.38: 2.77: C C +0.2 - 2 HD 269923 (B6lab), Brey 91 (WN) *1519 05 40 3.5 -69 01 0.38: 0.78 C C - 0.4 - 1 HD 38489 (Be) 1523 05 40 3.67 -69 24 14 0.85 0.78 C C - 0.4 - 1 HD 38489 (Be) 1523 05 40 3.67 -69 24 14 0.85 0.78 C C - 0.4 - 1 HD 38489 (Be) 1523 05 40 3.67 -69 24 124 0.56 1.66 C C +0.2 - 2 HII region *1522 05 40 3.57 -69 26 05 0.37: 1.11 12.4: C +0.2: +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2: +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2: +0.7: 3 [5]	1215		05 31 10	-69 08	0.11	0.33	С	С	+0.2	-	2	SK -69 168 (B1.5, $V=12.8$)
*1259 112 05 32 10.8 -67 44 30 1.48 5.99 C C +0.3 - 2,1 HII region (?) 030 05 32 27.7 -67 34 35 0.18 0.180.3 < +0.0 1 HD 269726 (B8Iab) *1274 022 05 32 34.9 -67 43 41 1.78 8.88 113.3 280.8 +0.4 +0.7 3 LHA 120 N 57 A, HII region *1295 05 33 14.8 -70 25 29 0.15: < -0.2 - 2 NOVA LMC 1981 *1317 149 05 33 48.7 -66 17 29 - 0.11: > -0.5 < +0.2 2 BI 206 (B1II) 1342 05 34 45 -69 12 0.22 0.33 C C -0.1 - 2 SK-69 192 (B1.5, V=12.8) *1370 05 35 55 2 -69 15 55 - 1.33: C C > +0.6 - 2 Brey 56 (WN, V=13.6), BI 227 (O, V=13.7) *1383 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 58 (WN, N, nebula [5] 1387 05 36 10 -67 32 0.15 0.22: C C -0.2 - 2 SK-67 221 (V=12.9) *1406 05 36 68.0 -69 43 40 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1413 05 36 68.0 -69 24 43 1.00 0.78 C C -0.4 - 1 HD 37974 (Be, LBV) *1425 05 37 07.6 -69 11 0.93: 2.77: C C +0.1 - 2 [5] 1467 05 38 55 -69 01 0.93: 2.77: C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 36 0.54 0.52 0.74 C C C -0.4 - 1 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C -0.4 - 1 HD 269926 (WN, V=13.1) 1483 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) 1485 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) 1485 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) 1485 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) 1485 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) 1485 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 269926 (WN, V=13.1) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 260926 (WN, V=13.1) *1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 260926 (WN, V=13.1) *1622 05 43 52.0 -69 26 05 0.37; 1.11 12.4; C +0.2 - 2 HII region *1622 05 43 52.0 -69 26 05 0.37; 1.11 12.4; C +0.2 +0.7; 3 [5] *	*1239		05 31 45.3	-69 07 39	-	0.78	С	С	> +0.4	-	2	HD 269687 (Ofpe/WN9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*1259	112	05 32 10.8	-67 44 30	1.48	5.99	С	С	+0.3	-	2,1	HII region (?)
*1274 022 05 32 34.9 -67 43 41 1.78 8.88 113.3 280.8 +0.4 +0.7 3 LHA 120.N 57A, HII region *1295 05 33 14.8 -70 25 29 0.15: 2 NOVA LMC 1981 *1317 149 05 33 44.5 -69 12 0.22 0.33 C C -0.1 - 2 BI 206 (B1I) 1342 05 34 45 -69 12 0.22 0.33 C C -0.1 - 2 SK-69 192 (B1.5, V=12.8) *1370 05 35 35.2 -69 15 55 - 1.33: C C >+0.6 - 2 Brey 56 (WN, V=13.6), BI 227 (O, V=13.7) *1383 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 58 (WN), nebula [5] 1387 05 36 10 -67 32 0.15 0.22: C C -0.2 - 2 SK-67 221 (V=12.9) *1406 05 36 48.6 -69 24 43 1.00 0.78 C C -0.4 - 1 HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C +1.0 -0.2 1 NGC 2055 05 38.7 -69 27 0.38: 0.85 C C +0.1 - 2 [5] 1467 05 38 55 -69 01 0.93: 2.77: C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 30 43.6 -69 34 0.0 1.93: 2.77: C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 30 3569 05 4 0.19: 0.56 C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 30 40.6 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 369292 (B61ab), Brey 91 (WN) *1519 05 40 33.5 -69 00 54 0.19: 0.56 C C +0.2 - 2 HD 269923 (B61ab), Brey 91 (WN) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C +0.2 - 2 HD 269923 (B61ab), Brey 91 (WN) *1582 05 40 35.7 -69 26 0 5 0.37: 1.11 12.4: C +0.2 - 2 HD 269923 (B61ab), Brey 91 (WN) *1524 05 40 35.7 -69 26 0 5 0.37: 1.11 12.4: C +0.2 - 2 HII region *1582 05 40 35.0 -69 26 0 5 0.37: 1.11 12.4: C +0.2 - 1 HI 170, DB assoc. *1627 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2 +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2 +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2 +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2 +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.2 +0.7: 3 [5] *1678 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C +0.5 +0.7: 1 HD 270190 (A3);		030	05 32 27.7	-67 34 35	0.18	0.18	-	-	-0.3	< +0.0	1	HD 269726 (B8Iab)
*1295 05 33 14.8 -70 25 29 0.15: 2 NOVA LMC 1981 *1317 149 05 33 487 -66 17 29 - 0.11: > -0.5 < +0.2 2 BI 206 (B1H) 1342 05 34 45 -69 12 0.22 0.33 C C -0.1 - 2 SK-69 192 (B1.5, V=12.8) *1370 05 35 35.2 -69 15 55 - 1.33: C C > +0.6 - 2 Brey 56 (WN, V=13.6), BI 227 (O, V=13.7) *1383 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 58 (WN), nebula [5] 1387 05 36 10 -67 32 0.15 0.22: C C -0.2 - 2 SK-67 221 (V=12.9) *1406 05 36 38.0 -69 43 00 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1413 05 36 48.6 -69 24 43 1.00 0.78 C C -0.4 - 1 HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C +1.0 -0.2 1 NGC 2055 05 38.7 -69 27 0.38: 0.85 C C +0.1 - 2 [5] 1467 05 38 55 -69 01 0.93: 2.77: C C C $+0.2$ - 2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C -0.4 - 1 HD 269926 (WN, V=13.1) 1483 05 40 3.5 -69 054 0.19: 0.56 C C $+0.2$ - 2 HD 269926 (WN, V=13.1) 1483 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1524 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C $+0.2$: $+0.7$: 3 [5] *1668 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+1.1$ -0.5 1 SK -67 266 (O8Lab) *1629 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C $+0.2$: $+0.7$: 3 [5] *1673 05 51 30.1 -71 03 45 0.15 0.11: - C -0.5 < $+0.2$ 1 HD 270190 (A3); NGC 2134	*1274	022	05 32 34.9	-67 43 41	1.78	8.88	113.3	280.8	+0.4	+0.7	3	LHA 120-N 57A, HII region
*1317 149 05 33 48.7 -66 17 29 - 0.11: > -0.5 < +0.2 2 B1 205 (B111) 1342 05 34 45 -69 12 0.22 0.33 C C -0.1 - 2 SK-69 192 (B1.5, V=12.8) *1370 05 35 35.2 -69 15 55 - 1.33: C C > +0.6 - 2 Brey 56 (WN, V=13.6), BI 227 (O, V=13.7) *1383 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 58 (WN), nebula [5] 1387 05 36 10 -67 32 0.15 0.22: C C -0.2 - 2 SK-67 221 (V=12.9) *1406 05 36 38.0 -69 43 00 0.59 1.11 24.8 C -0.0 +1.0 3 [5] *1413 05 36 48.6 -69 24 43 1.00 0.78 C C -0.4 - 1 HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C +1.0 -0.2 1 NGC 2055 05 38.7 -69 27 0.38: 0.85 C C +0.1 - 2 [5] 1467 05 38 55 -69 01 0.93: 2.77: C C +0.2 - 2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C C 2 HD 269923 (B6lab), Brey 91 (WN) *1519 05 40 33.5 -69 054 0.19: 0.56 C C +0.2 - 2 HD 269923 (B6lab), Brey 91 (WN) *1552 05 40 36.7 -69 24 14 0.85 0.78 C C -0.4 - 1 HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C +0.2 - 2 HI 269923 (B6lab), Brey 91 (WN) *1582 05 40 40 -69 51 0.56 1.66 C C +0.2 - 2 HI 269426 (B1II) *1582 05 40 40 -69 51 0.56 1.66 C C +0.2 - 2 HI 269428 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C +0.2 - 2 HI 1 region *1582 05 43 52.0 -69 14 23 0.37 - C C C -0.4 - 1 HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C +0.2 - 2 HII region *1582 05 43 52.0 -69 14 23 0.37 - C C C -0.4 - 1 HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C +0.2 - 2 HII region *1582 05 43 52.0 -69 26 05 0.371 1.11 12.4: C +0.2 : +0.7 : 3 [5] *1678 05 45 57.0 -67 15 35 0.071 1.66 1.2 C +1.1 -0.5 1 SK -67 266 (O8Iab) *1673 05 51 30.1 -71 03 45 0.15 0.11: - C -0.5 <+0.2 1 HD 270190 (A3); NGC 2134	*1295		05 33 14.8	-70 25 29	0.15:	-	-	-	< -0.2	_	2	NOVA LMC 1981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*1317	149	05 33 48.7	-66 17 29	-	0.11:	•	-	> -0.5	< +0.2	2	BI 206 (B1II)
*1370 05 35 35.2 -69 15 55 - 1.33: C C > +0.6 - 2 Brey 56 (WN, V=13.6), BI 227 (O, V=13.7) *1383 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 +0.2 +1.0 3 Brey 58 (WN), nebula [5] 1387 05 36 10 -67 32 0.15 0.22: C C $-0.2 - 2$ SK-67 221 (V=12.9) *1406 05 36 38.0 -69 43 00 0.59 1.11 24.8 C $-0.0 +1.0$ 3 [5] *1413 05 36 48.6 -69 24 43 1.00 0.78 C C $-0.4 - 1$ HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C $+1.0 -0.2$ 1 NGC 2055 05 38 70 -69 27 0.38: 0.85 C C $+0.1 - 2$ [5] 1467 05 38 55 -69 01 0.93: 2.77: C C $+0.2 - 2$ HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C $-0.4 - 1$ HD 269923 (B6lab), Brey 91 (WN) *1519 05 40 36.7 -69 24 14 0.85 0.78 C C $-0.4 - 1$ HD 269923 (B6lab), Brey 91 (WN) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C $-0.4 - 1$ HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C $+0.2 - 2$ HI region *1582 05 42 32.1 -69 14 23 0.37 $-$ C C $<-0.4 - 1$ HD 38489 (Be) 1523 05 40 40 $-69 51$ 0.56 1.66 C C $+0.2 - 2$ HI region *1582 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C $+0.2 - 2$ HI region *1682 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C $+0.2 - 2$ HI region *1682 05 43 52.0 $-69 265 0.37$: 1.11 12.4: C $+0.2 - 2$ HI region *1683 05 45 57.0 $-67 15 35 0.07$: 1.66 1.2 C $+1.1 -0.5$ 1 SK -67 266 (O8Iab) *1763 05 51 30.1 -71 03 45 0.15 0.11: $-$ C $-0.5 <+0.2$ 1 HD 270190 (A3); NGC 2134	1342		05 34 45	-69 12	0.22	0.33	С	С	-0.1	-	2	SK-69 192 (B1.5, $V=12.8$)
*1383 05 36 02.2 -69 14 22 1.48 5.55 124.2 228.8 $+0.2$ $+1.0$ 3 Brey 58 (WN), nebula [5] 1387 05 36 10 -67 32 0.15 0.22: C C -0.2 -2 SK-67 221 (V=12.9) *1406 05 36 38.0 -69 43 00 0.59 1.11 24.8 C -0.0 $+1.0$ 3 [5] *1413 05 36 48.6 -69 24 43 1.00 0.78 C C -0.4 -1 1 HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C $+1.0$ -0.2 1 NGC 2055 05 37 07.6 -69 27 0.38: 0.85 C C $+0.1$ -2 [5] 1467 05 38 55 -69 01 0.93: 2.77: C C $+0.2$ -2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C $+0.2$ -2 HD 269923 (B6Iab), Brey 91 (WN) *1519 05 40 33.5 -69 00 54 0.19: 0.56 C C $+0.2$ -2 BI 264 (B1II) *1522 05 40 40 -69 51 0.56 1.66 C C $+0.2$ -2 HII region *1582 05 40 40 -69 51 0.56 1.66 C C $+0.2$ -2 2 HII aska9 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C $+0.2$ -2 2 HII region *1582 05 42 32.1 -69 14 23 0.37 $-$ C C C -0.4 $-$ 1 HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C $+0.2$ -2 2 HII region *1582 05 42 32.1 -69 14 23 0.37 $-$ C C C -0.5 $-$ 1 LH 111, OB assoc. *1622 05 43 52.0 -69 265 0.37: 1.11 12.4: C $+0.2$: $+0.7$: 3 [5] *1678 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+1.1$ -0.5 1 SK -67 266 (O8Iab) *1763 05 51 30.1 -71 03 45 0.15 0.11: $-$ C -0.5 $<+0.2$ 1 HD 270190 (A3); NGC 2134	*1370	•••	05 35 35.2	-69 15 55	-	1.33:	С	С	> +0.6	-	2	Brey 56 (WN, $V=13.6$), BI 227 (O, $V=13.7$)
138705 36 10-67 320.150.22:CC -0.2 -2 SK-67 221 (V=12.9)*140605 36 38.0-69 43 000.591.1124.8C -0.0 $+1.0$ 3[5]*141305 36 48.6-69 24 431.000.78CC -0.4 -1 HD 37974 (Be, LBV)*142505 37 07.6-69 31 270.07:1.332.1:C $+1.0$ -0.2 1NGC 205505 38 55-69 010.93:2.77:CC $+0.1$ -2 [5]146705 39 21.3-69 30 520.74CCC 2 HD 269926 (WN, V=13.1)148305 39 21.3-69 30 520.74CC 2 2 HD 269923 (B6lab), Brey 91 (WN)*151905 40 33.5-69 00 540.19:0.56C 0.4 1 HD 38489 (Be)152305 40 36.7-69 24 140.850.78C 0.4 1 HD 38489 (Be)152305 40 40-69 510.561.66C $+0.2$ 2 HII region*158205 43 52.0-69 26 50.37:1.1112.4:C $+0.2$: $+0.7$ 3152405 43 52.0-69 26 50.37:1.1112.4:C $+0.2$: $+0.7$:3[5]*158205 43 52.0	*1383	•••	05 3 6 02.2	-69 14 22	1.48	5.55	124.2	228.8	+0.2	+1.0	3	Brey 58 (WN), nebula [5]
*1406 05 36 38.0 -69 43 00 0.59 1.11 24.8 C $-0.0 +1.0$ 3 [5] *1413 05 36 48.6 -69 24 43 1.00 0.78 C C $-0.4 - 1$ HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C $+1.0 -0.2$ 1 NGC 2055 05 38.7 -69 27 0.38: 0.85 C C $+0.1 - 2$ [5] 1467 05 38 55 -69 01 0.93: 2.77: C C C $+0.2 - 2$ HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C $ 2$ HD 269923 (B6Iab), Brey 91 (WN) *1519 05 40 33.5 -69 00 54 0.19: 0.56 C C $+0.2 - 2$ HD 269923 (B6Iab), Brey 91 (WN) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C $-0.4 - 1$ HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C $+0.2 - 2$ HII region *1582 05 43 52.0 -69 26 5 0.37: 1.11 12.4: C $+0.2 - 2$ HII region *1682 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+1.1 -0.5$ 1 SK -67 266 (O8Iab) *1633 05 51 30.1 -71 03 45 0.15 0.11: - C $-0.5 <+0.2$ 1 HD 270190 (A3); NGC 2134	1387		05 3 6 10	-67 32	0.15	0.22:	С	С	-0.2	-	2	SK-67 221 (V=12.9)
*1413 05 36 48.6 -69 24 43 1.00 0.78 C C $-0.4 - 1$ HD 37974 (Be, LBV) *1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C $+1.0 -0.2$ 1 NGC 2055 05 38.7 -69 27 0.38: 0.85 C C $+0.1 - 2$ [5] 1467 05 38 55 -69 01 0.93: 2.77: C C C $+0.2 - 2$ HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C $ 2$ HD 269923 (B6Iab), Brey 91 (WN) *1519 05 40 33.5 -69 00 54 0.19: 0.56 C C $+0.2 - 2$ HD 269923 (B6Iab), Brey 91 (WN) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C $-0.4 - 1$ HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C $+0.2 - 2$ HII region *1582 05 42 32.1 -69 14 23 0.37 - C C C $-0.4 - 1$ HD 38489 (Be) *1523 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+0.2 + 0.7: 3$ [5] *1678 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+1.1 -0.5$ 1 SK -67 266 (O8Iab) *1763 05 51 30.1 -71 03 45 0.15 0.11: - C $-0.5 <+0.2$ 1 HD 270190 (A3); NGC 2134	*1406	•••	05 36 38 .0	-69 43 00	0.59	1.11	24.8	с	-0.0	+1.0	3	[5]
*1425 05 37 07.6 -69 31 27 0.07: 1.33 2.1: C +1.0 -0.2 1 NGC 2055 05 38.7 -69 27 0.38: 0.85 C C +0.1 -2 [5] 1467 05 38 55 -69 01 0.93: 2.77: C C C +0.2 -2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C 2 2 HD 269923 (B6Iab), Brey 91 (WN) *1519 05 40 33.5 -69 00 54 0.19: 0.56 C C $+0.2 - 2$ BI 264 (B1II) *1522 05 40 36.7 -69 24 14 0.85 0.78 C C $-0.4 - 1$ HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C C $+0.2 - 2$ HII region *1582 05 42 32.1 -69 14 23 0.37 $-$ C C C $-0.5 - 1$ LH 111, OB assoc. *1622 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C $+0.2: +0.7:$ 3 [5] *1678 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+1.1 -0.5$ 1 SK -67 266 (O8Iab) *1763 05 51 30.1 -71 03 45 0.15 0.11: $-$ C $-0.5 <+0.2$ 1 HD 270190 (A3); NGC 2134	*1413	•••	05 36 48.6	-69 24 43	1.00	0.78	С	С	-0.4	-	1	HD 37974 (Be, LBV)
0538.7-69270.38:0.85CC+0.1-2[5]1467053855-69010.93:2.77:CC+0.2-2HD269926 (WN, V=13.1)1483053921.3-6930520.74CCC2HD269923 (B6Iab), Brey 91 (WN)*1519054033.5-6900540.19:0.56CC+0.2-2BI264 (B1II)*1522054036.7-6924140.850.78CC-0.4-1HD38489 (Be)1523054040-69510.561.66CC+0.2-2HII region*1582054232.1-6914230.37-CC <-0.5 -1LH111, OB assoc.*1622054352.0-69260.37:1.1112.4:C $+0.2:$ $+0.7:$ 3[5]*1678054557.0-6715350.07:1.661.2C $+1.1$ -0.5 1HD270190 (A3); NGC2134*163055130.1-7103450.150.11:-C -0.5 </td <td>*1425</td> <td></td> <td>05 37 07.6</td> <td>-69 31 27</td> <td>0.07:</td> <td>1.33</td> <td>2.1:</td> <td>С</td> <td>+1.0</td> <td>-0.2</td> <td>1</td> <td>NGC 2055</td>	*1425		05 37 07.6	-69 31 27	0.07:	1.33	2.1:	С	+1.0	-0.2	1	NGC 2055
1467 05 38 55 -69 01 0.93: 2.77: C C $+0.2$ -2 HD 269926 (WN, V=13.1) 1483 05 39 21.3 -69 30 52 0.74 C C C $$ 2 HD 269923 (B6lab), Brey 91 (WN) *1519 05 40 33.5 -69 00 54 0.19: 0.56 C C $+0.2$ -2 BI 264 (B1II) *1522 05 40 36.7 -69 24 14 0.85 0.78 C -0.4 $-$ 1 HD 38489 (Be) 1523 05 40 40 -69 51 0.56 1.66 C $+0.2$ -2 HII region *1582 05 42 32.1 -69 14 23 0.37 $-$ C -0.5 $-$ 1 HD 11, OB assoc. *1622 05 43 52.0 -69 26 05 0.37: 1.11 12.4: C $+0.2$: $+0.7$: 3 [5] *1678 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C $+1.1$ -0.5 1			05 38.7	-69 27	0.38:	0.85	С	с	+0.1	-	2	[5]
148305 39 21.3-69 30 520.74CCC2HD 269923 (B6Iab), Brey 91 (WN)*151905 40 33.5-69 00 540.19:0.56CC $+0.2$ -2BI 264 (B1II)*152205 40 36.7-69 24 140.850.78CC -0.4 -1HD 38489 (Be)152305 40 40-69 510.561.66CC $+0.2$ -2HII region*158205 42 32.1-69 14 230.37-CC <-0.5 -1LH 111, OB assoc.*162205 43 52.0-69 26 050.37:1.1112.4:C $+0.2:$ $+0.7:$ 3[5]*167805 45 57.0-67 15 350.07:1.661.2C $+1.1$ -0.5 1SK -67 266 (O8Iab)*176305 51 30.1-71 03 450.150.11:-C -0.5 $<+0.2$ 1HD 270190 (A3); NGC 2134	1467		05 38 55	-69 01	0.93:	2.77:	С	С	+0.2	-	2	HD 269926 (WN, V=13.1)
	1483		05 39 21.3	-69 30 52	0.74	С	С	С	-	-	2	HD 269923 (B6Iab), Brey 91 (WN)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*1519		05 40 33.5	-69 00 54	0.19:	0.56	С	С	+0.2	-	2	BI 264 (B1II)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*1522		$05 \ 40 \ 36.7$	-69 24 14	0.85	0.78	С	С	-0.4		1	HD 38489 (Be)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1523		05 40 40	-69 51	0.56	1.66	С	С	+0.2	-	2	HII region
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*1582		$05 \ 42 \ 32.1$	-69 14 23	0.37	•	С	С	< -0.5	-	1	LH 111, OB assoc.
*1678 05 45 57.0 -67 15 35 0.07: 1.66 1.2 C +1.1 -0.5 1 SK -67 266 (O8Iab) *1763 05 51 30.1 -71 03 45 0.15 0.11: - C -0.5 < +0.2 1 HD 270190 (A3); NGC 2134	*1622		05 43 52.0	-69 26 05	0.37:	1.11	12.4:	С	+0.2:	+0.7:	3	[5]
*1763 05 51 30.1 -71 03 45 0.15 0.11: - C $-0.5 < +0.2$ 1 HD 270190 (A3); NGC 2134	*1678		05 45 57.0	-67 15 35	0.07:	1.66	1.2	С	+1.1	-0.5	1	SK -67 266 (O8Iab)
	*1763		$05 \ 51 \ 30.1$	-71 03 45	0.15	0.11:	-	С	-0.5	<+0.2	1	HD 270190 (A3); NGC 2134

Notes to Table 7 : [], references as defined in Table 2; see also section 4.2. LI-LMC 1130 : Zijlstra et al. (paper II) find a bright R counterpart (SP 44-29), and Reid et al. find 2 possible optical identifications; the infrared colours indicate that the star is not obscured; either the star is not associated with the IRAS source (Zijlstra et al.), either it is a hot star, or it is embedded in a nebula.

 Table 8. Comparison between the IRAS flux determinations

LI	TRM	IRAS-PSC	LI	S ₁₂ TRM	PSC	LI	S ₂₅ TRM	PSC		LI	S ₆₀ TRM	PSC	LI	S ₁₀₀ TRM	PSC
375	117	05039-6724	0.37	0.30	0.71	1.22	0.69	1.96		с	-	<34.3	С	-	<83.6
383	048	05042-6720	0.56	0.58	0.54	0.56	0.27	0.24		-	-	<34.3	-	-	<83.6
416	134	05054-6739	•		< 0.51	0.33	0.18	0.11		-	С	< 3.6	-	С	<19.2
463	009	05073-6752	0.22	0.15	<0.25	0.44	0.30	0.35	0	.8:	-	< 3.2	-	-	<18.1
513	012	05094-6751	0.15:	0.13	<0.25	0.44	0.42	0.44	0	-		< 2.4	- 42	-	<12.0
532	023	05099-0740	0.19	0.18	0.20	0.44	0.41	0.44	0.	-	0.00	< 0.1	1.2		< 9.8
564	140	05110-6711	0.07:	0.19	< 0.25	0.28	-	0.27		С	-	< 5.8	С	-	<35.2
567	100	05110-6616	0.19	0.17	<0.27	0.33	0.30	0.28		-	-	< 0.40	-	-	<10.9
570	004	05112-6755	0.41	0.42	0.48	0.33	0.29	0.34	1	2	-	0.91	2.1:	-	<21.8
571	024	05113-6739	0.33	0.26	0.30	0.17	0.17	<0.25			-	<2.3	-	-	<16.9
578	072	05100 6700	0.19	0.14	0.27	0.11:				С		-26	С	-	-15.2
663	043	05148 6730	0.26	0.30	0.37	0.33	0.31	0.33	0	8.	0.5	<2.0	ċ		<72.0
678	110	05154-6535	4 07	4 07	5 31	2.00	1 69	1.80	1	.0.	-	0.49	-	-	<1.3
775	028		0.22	0.21	-	0.11:	-	-	-	•	-	•	-	-	-
793	020	05190-6748	0.30	0.34	0.37	0.22	0.23	0.28		-	-	<2.4	-	-	<13.4
800	008	0519 3-6754	0.30	0.38	0.30	0.11:	-	<0.25			-	< 2.7	-	-	<25.5
812	006	•••	0.15	0.19	-	0.11	-	-		С	-	-	С	-	-
814	090	05214-6749	0.26	0.14	0.24	2 66	- 1 88	1 60	6	2	-	<32.9	10 4·	-	<27.6
861	011	05216-6753	3.22	3.90	4.10	13.43	12.39	14.56	26.	1	31.7	<32.9	20.8:	-	<77.8
914	059		0.37	0.12	-	0.33	0.11	-		Ċ	С	•	С	-	-
932	108	05235-6544	0.41	0.32	0.30	0.22	0.18	0.19	0	.8:	-	<1.6	8.3:	•	<35.2
938	001	05237-6755	0.15:	0.15	0.23	1.66	1.16	1.30	4	.1:	4.9	<27.2	С	-	<19.7
957	016	05242-6748	0.19	0.18	<0.25	0.22	0.26	0.34		-	-	<2.6	ċ	-	<17.7
1055	040	05273-6624	0.19	0.16	0.29	0.11:	0.29	0.37		-	-	<20	Ċ		<16.2
1107	065	00210-0024	0.19	0.15	0.20	0.11:	- 0.20	-	0	.4:	_	-	2.1:	-	-
1116	114		0.15	0.12	-	0.22	0.18	-	, I	Ċ	•	-	С	-	-
1130	099	05289-6617	0.11	0.13	< 0.26	0.44	0.37	0.43		-	-	<1.9	-	-	<32.5
1135	085	05291-6643	0.30	0.32	0.35	0.17:	0.10	< 0.25		-	-	<2.0	-	-	<19.1
1149	054	05293-6715	0.41	0.27	0.32	0.33	0.22	0.18		-	-	<3.9	-	-	<23.6
1155	069	05299-6720	0.19	0.19	0.21	0.22	0.15	<0.25		2		<17	-	-	<23.2
1177	079	05300-6651	0.26:	0.22	0.30	0.22	0.15	<0.25		-	-	<1.3	-	-	<8.3
1186	075	05303-6655	0.22	0.19	0.25	0.22	0.12	< 0.25		-	-	<5.0	-	-	<29.6
1190	046	05304-6722	0.48	0.42	0.48	0.22	0.24	0.25		-	-	<3.4	-	-	<23.0
1234	089	05315-6631	0.33	0.26	0.28	0.22:	0.21	0.19		-	-	<2.6	-	-	<135.
1238	101	05316-6604	0.41	0.36	0.40	0.44	0.35	0.38		-	-	<2.2	-	-	<13.6
1241	112	05321-6744	1 48	0.10	0.98	5 99	0.12	5.82		ā	-	< 58 5	ċ	-	<192
1266	104	05324-6551	4.25	5.54	5.12	1.55	1.17	1.52		-	0.2	<1.9	-	-	<13.6
1280	058		0.52	0.30	-	0.44	0.31	-		-	•	-	-	-	•
1281	005	05327-6757	0.41	0.53	0.70	0.56	0.44	0.55		-	-	<3.2	•	-	<22.2
1286	060	05329-6708	0.85	0.92	0.98	1.83	1.59	1.48	0	.4:	-	<2.7	-	-	<27.6
1292	021	05330-6743	1.18	0.72	0.74	4.22	3.23	3.18	(U	-	< 38.5	C	-	91.7 ~12.1
1294	078	05334-6706	0.20	0.27	0.25	0.11:	0.19	0.12		-	0.30	< 2.3	:	-	<27.9
1315	039	00001-0100	0.19	0.14	•	0.33	0.10	-	(d	C		С	С	
1317	149	05338-6617	-	-	<0.25	0.11:	0.15	0.18		-	-	$<\!2.5$	-	-	<11.9
1360	062		0.19	0.12	-	0.11:	0.1 3	-		-	-	-	-	-	-
1366	068	05354-6657	0.33	0.30	0.33	0.22	0.22	0.29	~	-	-	<2.8	-	-	<23.5
1382	077	05360-6648	0.22	0.22	0.24	0.22	0.15	<0.25	0	.8:		<2.3		-	<13.1
1385	145	05363-6610	0.26	- 1 84	1 84	0.22	0.10	0.51	5.		2.3	<35	U .	-	<72.5
1399	067	05364-6657	0.33	0.32	0.35	0.33	0.27	0.34		-	-	<3.3	-	-	<19.3
1513	148	05404-6619	-	-	<0.25	0.44	0.33	0.41		-	-	<2.6	-		<13.8
1587	055		0.15	0.16	-	-	-	•		-	-	-	-	•	-
1602	135	05433-6728	0.15	-	< 0.25	0.22:	0.12	0.10	0	.8:	-	<3.5	C	-	<27.0
1623	019	05439-6743	8.18	10.66	12.22	4.55	4.55	4.57	0	.8:	-	<1.5	C	-	<21.4