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Determination of the asymptotic behaviour of the heavy flavour 
coefficient functions in deep inelastic scattering 
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~Institute for Theoretical Physics, State University of New York at Stony Brook, New York 11794-3840, 
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Using renormalization group techniques we have derived analytic formulae for the next-to-leading order heavy- 
quark coefficient functions in deep inelastic lepton hadron scattering. These formulae are only valid in the 
kinematic regime Q2 >> m 2, where Q2 and m 2 stand for the masses squared of the virtual photon and heavy 
quark respectively. Some of the applications of these asymptotic formulae will be discussed. 

1. I N T R O D U C T I O N  

Deep inelastic electroproduction of heavy 
flavours is given by 

e - ( t l )  + P ( p )  ----' e - ( ~ 2 ) + Q ( p l ) ( Q ( p 2 )  ) A - ' x / . ( 1 )  

When the virtuality _q2 = Q2 ) 0 ( q = ~1 - t 2  ) 
of the exchanged vector bosons is not too large 
( Q2 ( (  M~ ) the above reaction only gets a 
contribution from the virtual photon and we can 
neglect any weak effects caused by the exchange 
of the Z-bosom If the process is inclusive with 
respect to the hadronic state 'X '  as well as the 
heavy flavours Q((~), the unpolarized cross sec- 
tion is given by 

d2q 2~ra 2 l" 
- (Q~.)~S[{I+ ( 1 -  y)2}F2(x, Q2, m:) 

dxdy 

--y2FL(x , Q:, m2)] ,  (2) 

where S denotes the square of the c.m. energy 
of the electron proton system and the variables x 
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and y are defined as 

Q2 p.q 
x = - - ( o < x <  1 ) , y -  ( O < y <  1),(3) 

2p.q p.¢-1 

with 

_q2 = Q2 = xyS  . (4) 

In the QCD improved patton model the heavy 
flavour contribution to the hadronic structure 
functions, denoted by Fi(x, Q2, m2) (i = 2, L), 
where m stands for the heavy quark mass, can be 
expressed as integrals over the partonic scaling 
variable. This yields the following results 

Fi(x, Q2, m 2) = x - -  e~ 
Z 

k--1 

x 2 s Q2 m 2 

x 2 Q 2  m 2 

(x  :~TNS(z,  Q: m: 
+ A ~ z , t t J ~ , , q .  m 2' ~: )] 

~f~ .... d2: 
2: 

Q2 m 2 
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+ G  z , l . t  2 Hi,g z,  

where z = Q2/(s+ Q:) and s is the square of the 
photon-pat ton centre-of-mass energy (s > 4m2). 
Here the upper boundary of the integration is 
given by z , ~  = Q~/(4m 2 + Q2). 

The function G(z, #2) stands for the gluon den- 
sity whereas the flavour singlet and flavour non- 
singlet combinations of the quark densities are 
given by ~(z ,p  ~) and A ( z , #  2) respectively. In 
the above expressions the charges of the light 
quark and the heavy quark are denoted by el and 
eH respectively. Furthermore, nj  stands for the 
number of light quarks and # denotes the mass 
factorization scale, which we choose to be equal 
to the renormalization scale. The latter shows 
up in the running coupling constant defined by 
as (~2). The heavy quark coefficient functions are 
denoted by L i j  and H , j  (i = 2, L; j = q, g). The 
distinction between them can be traced back to 
the different photon-pat ton production processes 
from which they originate. The functions L,,j 
are at tr ibuted to the reactions where the virtual 
photon couples to the light quark, whereas the 
Hid originate from the reactions where the vir- 
tual photon couples to the heavy quark. Hence 

2 and e~ L~j and H~j in (5) are multiplied by ei 
respectively. The superscripts NS and S on the 
heavy quark coefficient functions refer to fiavour 
non-singlet and flavour singlet respectively. Fur- 
thermore the singlet quark coefficient functions 
Ls and H s ~,q ~,q can be split into non-singlet and 
purely singlet (PS) parts,i.e., 

L s NS PS ,,q = iLq + LLq , (6) 

H s  = + (7) 
z , q  z ) q  , 

with H NS = 0 in all orders of perturbation theory. *,q 
In [1] the heavy quark coefficient functions L~,j 

2 and HLj have been exactly calculated up to a , .  
Expanding them in a power series in (ot,/4~r) k 
they receive contributions from the following par- 
ton subprocesses 

7*(q) + g(kt) --* Q(pl) + Q(p2), (8) 

7*(q) + g(kt) --* g(k:) + Q(pl) + Q(p2), (9) 

and 

7*(q)+q(~)(kl) ---,q(~)(k2)+Q(pl)+Q(p2).(10) 

For reaction (9) one has to include the virtual 
gluon corrections to the Born process (8). The 
contributions from (8) and (9) to the heavy quark 

coefficient functions are denoted by H~)d and H,ti~' 
respectively. The patton subprocess (10) has two 
different production mechanisms. The first one is 
given by the Bethe-Heitler process (see figs. 5a,5b 

in [1]) leading to KS s'O) and the second one  c a n  

be attr ibuted to the Compton reaction (see figs. 
5c,5d in [11). Notice that  L,P, s and Ls,,9 are zero 
through order a~. Then, from (6), one infers that 

NS,(2) S,(2) L~,q = L~,q . Finally we want to make the re- 
mark that there are no interference terms between 
the Bethe-Heitler and the Compton reactions in 
(10) if one integrates over all final state momenta. 

The complexity of the second order heavy 
quark coefficient functions prohibits publishing 

~NS,(2) 
them in an analytic form, except for /q,q , 
which is given in Appendix A of [2], so that they 
are only available in large computer programs 
[1], involving two-dimensional integrations. To 
shorten the long running time needed for the com- 
putation of the structure functions in (5) we have 
tabulated the coefficient functions in the form of a 
two dimensional array in the variables 7/and ~ in 
a different computer program [3]. These variables 
are defined by 

Q2 
(1 - z).~ _ 1 ~ ---- ~ -5  (11)  

~7-- 4z ' " 

However when ~ >> 1 (Q2 >> m 2) numerical in- 
stabilities appear so that it is desirable to have 
analytic expressions for the heavy quark coeffi- 
cient functions in that  region. Moreover it turns 
out that for ¢ > 10 the asymptotic expressions for 
H(2) . vs,(2) (10) approach the exact ones 2,a (9) and ~2,q 
so that the former can be used for eharm produc- 
tion at the HERA eollider provided Q2 > 22.5 
(GeV/c 2) (me = 1.5 (GeV/c).  Furthermore one 
can use these asymptotic formulae in the context 
of the variable flavour number scheme as has been 
explained in [4]. 
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2.  M E T H O D  

We will now explain how the asymptotic form 
(Q2 >> m 2) of the heavy quark coefficient func- 
tions H,,j , Li, 1 (5) can be derived using the 
renormalization group and the operator product 
expansion (OPE) techniques. Using these tech- 
niques one can avoid the computation of the cum- 
bersome Feynman integrals and phase space in- 
tegrals which arise in the calculation of the pro- 
cesses in (8) - (10). In the limit Q2 >> m 2 the 
heavy quark coefficient functions behave logarith- 
mically as 

k Q2 m2) = 

1=0 

× In I Q2 
m= , (12) 

with a similar expression for L ~ .  The above 
large logarithms originate from collinear diver- 
gences which arise when Q2 is kept fixed and 
m 2 -~ 0. As has been shown in [2] each fixed 
order term in expression (12) can be written as 

t I i . j ( ~ , ~ - 2 )  : A , j ( ~ ) ® C i , , ( ~ g ~ . ) ,  (13) 

where the power of a ,  has to match on the left 
and right hand sides. There is a similar expres- 
sion for Li.j (i = 2, L; k , j  = q,g). Notice that 
we have suppressed the dependence on the scal- 
ing variable z in (12) and the convolution symbol 
® is defined by 

(, - -  f01 f01 dzl dz= 6(z - zlz2) 

xf(zl)g(z2) • (14) 

The fight quark and gluon coefficient functions 
2 in [5]. Ci,k have been calculated up to order a ,  

The operator matrix elements (OME's) Akj are 
now also known up to the same order in pertur- 
bation theory (see [2]). They are defined by 

A~j =< jlOk[j >, (15) 

where O~ represent the local operators which 
show up in the operator product expansion of 

the two electromagnetic currents which appear in 
the calculation of the process (1). Notice that 
the OME's in (15) are finite which means that  
all renormahzations and mass factorizations have 
already been carried out° The last operation is 
needed because of the collinear divergences which 
appear in the OME's when the external on-mass- 
shell massless quarks and gluons are coupled to 
internal massless quanta. The ultraviolet and 
collinear divergences are regulated by using the 
method of n-dimensional regularization. The re- 
moval of these divergences has been done in the 
MS-scheme. For the computation of the heavy 

quark coefficient functions Hi(,t: (8) H~,2: (9) we 

the OME's A~ 2 and A~! respectively, which need 
are given by the Feynman graphs in figs.l,2 of [2]. 

The Bethe-Heitler coefficient functions -'H~.~ '(2) 

.PS,(2) whereas (10) requires the calculation of AQq 

for the Compton coefficient function bQq~Ns'(2) (10) 
.NS,(2) 

one has to compute Aqq The results for these 
OME's can be found in appendix C of [2]. Substi- 
tution of Ak~ and Ci,~ in (13) leads to the asymp- 
totic heavy quark coefficient functions which are 
presented in Appendix D of [2]. 

3.  R E S U L T S  

We are now interested to find out at which val- 
ues of ~ (11) or Q2 the asymptotic coefficient 
functions approach the exact ones computed in 
[1] and [3]. For that purpose we defne the ratio 

R!t! which is given by 

, - , -exact , ( t )  / 

R z ,  ~ ,  = . . . .  ymp, (L)  / 
_flirt is, ~, m2/#  2) 

where H:,7°t and It:,7 mp stand for the exact 
[1], [3] and asymptotic [2] heavy quark coeffi- 
cient functions respectively. Choosing #2 = rn 2 
and the range 5 < ~ < 10 5 , we have plotted as 

an example R (2) in fig.1 and ~(2) in fig.2 for L,g *~2,g 
z = 10 -2 and z = 10 - 4 .  The reason that we 
have chosen these two ratios is that  the coeffi- 
cient functions rr(2) and u(2) "L,g ~'2,g (9) constitute the 
bulk of the radiative corrections to the Born reac- 

. exact,(2) and tion (8). From fig.1 we infer that nL,g 
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Figure 1. R (2) plotted as a function of~ for fixed L,g 
z = 10 -2 (solid line) and for z = 10 -4 (dashed 
line). 
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Figure 2. ~(2) plotted as a function of ~ for fixed 
z = 10 -2 (solid line) and for z = 10 -4 (dashed 
line). 

2T..j a s y m p ,  ( 2 ) 
L,y coincide when ~ >__ ~min = 103 and 

there is essentially no difference between the ra- 
tios for z = 10 -2 and z = 10 -4. In the case 
of "'2,gT-Texact'(2) and ~2,gTd'asymp'(2) (see fig.2) the above 

~-value is much smaller and both coefficient func- 
tions coincide when ~ >_ ~ml, = 10, which is quite 
insensitive to the values chosen for z. The rea- 
son why the convergence of R~L~ to one is so s l o w  

in comparison to ~t(2) is unclear. Apparently the 

logarithmic terms in rr  . . . .  t,(2) "L ,g  start  to dominate 
the coefficient functions at much larger values o f (  
than is the case for rr  . . . .  t,(2) "'2,g . A similar observa- 

P S , ( 2 )  tion has been made for Hi, q . The small value 
found for ~ml, in the case of H2,g is very inter- 
esting for charm production where F2(z, q2, m~) 
can be measured with much higher accuracy than 

FL(z,  Q2, rn2). Since rr(2) dominates the radia- 

tive corrections to F2(z, Q2, m~) one can state 
that  for Q2 > 22.5 (GeV/c)  2 (me = 1.5 GeV/c)  
the exact coefficient functions can be replaced by 
their asymptot ic  ones. However before one can 

draw definite conclusions about  the dominance of 
the terms I n t ( Q 2 / m  2) on the level of the struc- 
ture functions one must first convolute the heavy 
quark coefficient functions with the pat ton densi- 
ties (see (5)) .  This will be done in future work. If  
it turns out that  the above logarithms also dom- 
inate Fk(z, Q 2  m2), in particular for k = 2, then 
these terms have to be resummed using the renor- 
malization group equations. This is done using 
the variable flavour number scheme approach [4]. 
One of the features of this method is that  one has 
to define a charm density in the proton which is 
a convolution of the OME's  A k j  (15) and the 
light pa t ton  densities ~ and G in (5). Hence for 

: the charm quark behaves like a light Q2 >> mc 
pat ton provided the large logarithmic terms dom- 
inate the proton structure functions in (5). 
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