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Abstract 

We study radiation from black holes in the effective theory produced by integrating gravity and 
the dilaton out of 1 + 1 dilaton gravity. The semiclassical wavefunctions for the dressed particles 
show that the self-interactions produce an unusual renormafization of the frequencies of outgoing 
states. Modes propagating in the dynamical background of an incoming quantum state are seen 
to acquire large scattering phases that nevertheless conspire, in the absence of self-interactions, 
to preserve the thermality of the Hawking radiation. However, the in-out scattering matrix does 
not commute with the self-interactions and this could lead to observable corrections to the final 
state. Finally, our calculations explicitly display the limited validity of the semiclassical theory of 
Hawking radiation and provide support for a formulation of black hole complementarity. 

PACS: 04.70.Dy 
Keywords: black hole evaporation, complementarity, back-reaction 

1. Introduct ion 

Much of  the controversy surrounding discussion of  the black hole information loss 

problem hinges on the question of  the validity of  the semiclassical approximation to 
gravity. In Hawking's  original analysis it was argued that back-reaction effects would be 
small and that the Hawking modes could be considered as propagating in a background 
unaffected by their presence [ 1,2]. This assumption seems to lead inevitably to the 
conclusion that black hole evaporation leads pure states to evolve into mixed states. In 
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recent years there have been a growing number of advocates for the point of view that 
the semiclassical theory breaks down in such a way as to restore coherence of the final 
state [3-7] .  Some of these authors have claimed that within the context of a local field 
theory the reasoning employed by Hawking is correct until late into the evaporation and 
therefore exotic string theoretic effects are necessary to resolve the information paradox 
[ 8]. Others have claimed that the breakdown occurs sufficiently early in the lifetime of 
the black hole to be visible within the context of the semiclassical theory itself [5-7,9]. 
Still others have argued that although the standard semiclassical results do break down, 

the low energy theory remains under sufficient control to permit explicit computation of 
nonthermal corrections to the Hawking radiation [ 10,11 ]. 

In this paper we will attempt to shed some light on these competing viewpoints in the 
context of 1 + 1 dilaton gravity coupled to massless scalar matter. Using the techniques 
of [ 12] and [ 10] we will completely integrate out the dilaton and the graviton and 
work with the effective quantum mechanics of gravitationally dressed particles. As such 
we have presumably completely included all the effects of gravitational and dilatonic 
fluctuations in the underlying theory. The resulting quantum mechanics is too nonlinear 
for full canonical or path-integral quantization. Consequently we work in the WKB 

approximation and develop the leading corrections to the wavefunctions of particles 
propagating in a dilaton gravity background in the limit of small h. These improved 
wavefunctions can then be used to repeat the traditional Hawking analysis thereby 
providing the leading back-reaction corrections to black hole radiation. 

We work with the quantum mechanics of dressed particles as opposed to a dressed 
field theory because it is significantly easier to obtain the effective particle theory. We 
are actually interested in understanding the effects of back-reaction on the effective 
second quantized system. It is possible to recover some such insights from the effective 
first quantized theory by identifying the second quantized operators that produce the 
phenomena that we observe in a basis of states in the first quantized language. Our 
philosophy for studying the back-reaction effects is the opposite of the approach pursued 
in [ 13]. Those authors essentially integrated out the matter fields in order to include 
the back-reaction, while we integrate out the graviton and the dilaton. 

Having obtained the effective quantum mechanics, we examine two situations in 
detail. First of all, we study the effect of the gravitational dressing of a single outgoing 
particle on the Hawking flux. The analogous dressing of spherically reduced Einstein 
gravity has been found to give energy dependent shifts of the Hawking temperature 
[ 14,10]. However, we find the temperature for radiation of dressed particles in 1 + 1 
dilaton gravity remains unchanged. This is so despite the fact that the wavefunctions 
and associated Bogliubov coefficients are significantly modified by the self-interactions 
which produce an unusual renormalization of the Kruskal frequencies of outgoing states. 

Next we examine the outgoing radiation in the dynamical background of a single 
incoming quantum particle in an approximation where the self-interactions are turned 
off. The wavefunctions responsible for the late time radiation acquire large scattering 
phases that depend on the incoming state. In general we are able to identify the effect 
of an arbitrary incoming quantum wavefunction on the outgoing wavefunctions. These 
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effects translate into phase shifts of  the Bogliubov coefficients that determine the struc- 

ture of the vacuum misalignment between the horizon and infinity. In the full second 

quantized treatment, these phase shifts should be operator valued expressions connect- 
ing the incoming and outgoing states. Since the WKB approximation can be understood 

in part as a replacement of operators by their expectation values, our results allow us 
to identify the S matrix operator entangling infalling and outgoing states, at least up 

to certain normal ordering problems. The leading terms suggested by [3] and [5-7] ,  
as well as subleading corrections are identified. Despite the entanglement produced by 

this operator, the radiation is seen to be thermal in the approximation in which the 
self-interactions have been turned off. However, we argue that the non-commutativity of 
the in-out scattering operator with the self-interactions could bring out some additional 

information about the structure of the infalling state. 
Finally, we examine the validity of the semiclassical calculations that give these 

results. We find that the computation of the Bogliubov coefficients relating horizon states 

to asymptotic states is not reliable in the presence of infaUing matter. The semiclassical 

method is only reliable when the energies of the various particles involved are small. It 
is seen that even a small incoming energy density leads to huge shifts in the energies 

of the outgoing states. The size of these shifts grows exponentially in time and suggests 
a rapid breakdown of semiclassical methods. Moreover, we find that there are two 
complementary, semiclassically controlled Hilbert spaces with which the system can be 

described. One is appropriate to observers entering the black hole and another is suitable 
for observers of the Hawking radiation. This lends support to the idea of black hole 

complementarity. 

2. Classical solutions of 1 + 1 dilaton gravity 

In this paper we will be integrating the dilaton and the graviton out of 1 + 1 dilaton 
gravity coupled to a fixed number of matter particles. Since the theory is two dimen- 
sional, the fields have no propagating degrees of freedom and "integrating out" amounts 

to fixing a gauge that is consistent with the constraints induced by the presence of matter 
particles. The family of gauges we will choose is quite unusual and is closely related 
to the interesting parameterization of the Schwarzschild black hole adopted in [ 14]. In 
order to have intuitions for the effective theory it is useful to begin by displaying the 

classical black hole solutions of  dilaton gravity in the same gauge so that we know how 

the space is sliced in the absence of any back-reacting particles. The action defining 
1 + 1 dilaton gravity is: 

+ + - ' 1  

with ~b, ~ and ,~ being the dilaton, Ricci scalar and cosmological constant respectively. 3 

3 This action can be derived in a number of ways. First of all, it is the low energy effective action arising 
from SL(2, R)/U( 1 ) coset theory given suitable conventions for the normalization of the dilaton and the 
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u \ /  \ / v  
0 0 

Fig. 1. Penrose diagram for u-v coordinate patch. 

Classical solutions of  this action and several close variants have been analyzed in 

detail in a number o f  papers. (For example, see [16],  [13] and [17].  For a good 

review consult [ 18].) There is a spectrum of black hole solutions which can be written 
in Kruskal-like coordinates as: 

M ~r - d u  dv 
e -2~ = 1~ 2 - -  , ~ 2 U O ,  ds 2 = (M~)/ ,~2 _ ,~2u v (2) 

where M / , t  can be shown to be the mass of  the black hole. (The factor of  ¢r which 

is absent in the solution presented by [ 18] arises from a difference in conventions.) 

A Penrose diagram of  this solution is displayed in Fig. 1. Now consider the following 
coordinate transformation: 

u = -~e -at  e ar v =  e ar 

The metric, and the dilaton are now given by: 

e - 2 ~ = e  aar, d s 2 = - d t 2 + ( d r + ~ d t )  2 (4) 

The important point about these coordinates is that the metric is stationary, and regular at 

the horizon while at the same time being asymptotically fiat. Consequently, the conserved 

energy defined as the generator of  translations with respect to t is the Hamiltonian of  

the system and even applies to states in the interior o f  the black hole. The new r, t 
coordinates give a patch covering regions I and II of  Fig. 1. By changing the sign of  t 

in the metric (4) we patch regions I and IV. By further judicious changes of  sign in the 
relations defining u and v in terms of  r and t we get patches covering regions II and 
III and IV and III. Fig. 2 displays the surfaces of  constant r and t in the metric (4) for 
regions I and II that are of  interest to us. In this parameterization the horizon is found 
at exp -~b = exp ,tr = v/--M-~r/h and the singularity is at exp -~b = 0. 

cosmological constant [15]. It is also the effective field theory that operates within the throats of four 
dimensional, near-extremal, magnetically charged, dilaton black holes [ 13]. Finally, the spherical reduction 
of Einstein gravity gives an action identical to that in Eq. ( 1 ) with the cosmological constant moved out of 
the parentheses. 
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Lines of constant r Lines of constant t 

Fig. 2. Surfaces of constant r and t. 
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With these classical solutions in hand we can repeat Hawking's calculation to eval- 
uate the radiation streaming out of the black hole. The radiation arises because of a 
misalignment of the vacua defined with respect to inertial observers at the horizon and 
at infinity. The vacuum that is defined as the state annihilated by all states of positive 
Kruskal frequency is found to contain a thermal spectrum when probed near future 
infinity. On the other hand the vacuum defined as the state annihilated by the asymptotic 

modes appears singular to inertial observers at the horizon. Since the horizon should not 
be a locally distinguished location, we conclude that the physical vacuum is annihilated 
by the Kruskal modes and that, consequently, there is radiation at infinity. In this paper 
we will improve upon the classic calculations by including the self-interaction of the 
outgoing radiation in the presence of incoming matter. For purposes of comparison it 
is instructive to first reproduce the Hawking calculation in the context of 1 + 1 dila- 
ton gravity coupled to a massless scalar field. (See Giddings and Nelson for a clear 
discussion of a related scenario [ 19] .) In order to do this we must solve the massless 
wave equation in the background (4) to find a complete set of energy eigenstates and a 
complete set of Kruskal momentum eigenstates. The former define the particle spectrum 

measured by the asymptotic observer and the latter are the states that have definite 
frequency with respect to inertial observers at the horizon. Using the conformal flatness 
of the metric it is easy to show that the energy eigenstates are: 

1 { - i w t ~ i ( w / ~ ) l n ( e a r q :  x/-M-~/,,/) } (5) ~b± = ~ww exp 

where the upper sign refers to outgoing waves and the lower sign describes infalling 
waves. Note that the outgoing energy eigenstates are singular at the horizon and therefore 
cannot be extended into region II. The Kruskal eigenstates that define the particle 
spectrum at the horizon are found to be: 

O+=eiO~U=exp{i~e-at(ear V / - ~ .  -~ ) }  (6/ 

~b_ =e i°'' = exp eat(e ar + ----~--) (7) 
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In the region I in Fig. 1 the outgoing part of  a massless scalar field can be expanded 

in either of  the sets of  modes ¢+  or ¢+. We write ¢ +  = f dw [a<o¢+o, + a~ip~_,o] = 
t * f dw [b~,¢+<o + boAb+~,]. Since each of  the sets 4b+,o and qs+~, is complete we can write: 

O~ 

j do ' + 4,+,o 
0 

OO 

= / d,o' (8) 
0 

where the second equation follows from the first in view of  the fact that the sets of  states 

{¢+,o} and 0P+<o} are orthonormal under a Klein-Gordon inner product. Analogous 

relations can be computed between the creation and annihilation operators associated 

with ~p+ and ¢+.  Note that the coefficients/3 measure the mixing between positive and 

negative frequencies that is responsible for the Hawking flux. From the second of  the 

Eqs. (8) we see that the Bogliubov coefficients ot and/3 can be computed by projecting 

out the components of  ~b that have definite frequency with respect to t: 

or* = 1 f dt ei°~t ~+ay 

1 f icat * • = d te  ~9+o ~, (9) /3<o~o' ¢+o~ ( r )  

The ¢+~, (r)  in the denominator is the spatial part of  the energy eigenstate ¢+,o. 4 These 

integrals can be computed exactly and give: 

= t,-iT) a 

• • -~roUa 
/3o, o,, = --4,o,o, e (10) 

where/3 can be simply computed from a by analytically continuing w ~ --+ -oY. It can 

be shown that since a~,o,,//3,oo,, is independent of  oY, the black hole radiates a flux 

F ( w )  given by: 

1 1 
F(o))  = la<""//3<"<"'l 2 _ 1 e2~<"l "l - 1 ( i l )  

In other words, the flux is thermal with a temperature of  2~'/,L (We can see this also 
from the fact that Kruskal eigenstates are clearly periodic in imaginary time with period 

4 The Bogliubov coefficients may also be evaluated by taking inner products between the two bases on spatial 
surfaces. However. in the presence of backreacting particles it is not clear how to define the necessary spatial 
surfaces and inner products. In fact it is much more physical to formulate the Bogfiubov transformation as a 
Fourier transform with respect to time that projects out the components of definite frequency in the Kruskal 
eigenstates. 
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27r/A.) All correlation functions in the final state can also be shown to be precisely 

thermal at late times [ 19,20]. 

In the above analysis we made no mention of the states in the interior of the black 
hole. As discussed in [ 19] we must augment the ~b basis by adding modes defined in 
region II. Since the states in the interior of the black hole are inaccessible to asymptotic 
observers, we must trace over these interior modes to describe experiments localized in 

region I. This yields a density matrix that is purely thermal. If  this thermality persists 
all the way through to the endpoint of black hole evaporation, a pure initial state of 

the world will have evolved into a mixed state. This is the content of the information 

loss problem. In the next section we will construct the effective theory of particles 

propagating in a dilaton gravity background and ask whether the self-interactions and 

interactions with infalling matter modify the conclusions regarding thermality of the 

radiation. 

It is important to note that in order to compute the misalignment of the Kruskal and 
asymptotic vacua it is necessary to understand the behaviour of all the excited states 
since the Bogliubov coefficients depend on them. We are going to find that there are 
large effects that threaten the validity of semiclassical computations but that these effects 
vanish in the Kruskal vacuum state. For this reason it may appear that the effects we 

compute are not important because, as discussed above, we specify the initial state to 

be the Kruskal vacuum. However, the computation of the misalignment between the 
Kruskal and asymptotic vacua requires knowledge of the behaviour of the excited states 

at the horizon. We will see that these excited states are very sensitive to self-interaction 

as well as to interaction with infalling states. 

3. Dressed particles in dilaton gravity 

In this section we will construct an effective theory of matter particles by integrating 
the graviton and dilaton out of the action for N point particles coupled to 1 + 1 dilaton 

gravity. We will work in the Hamiltonian formulation of the theory for which purpose 
it is useful to introduce the ADM parameterization of the metric: 

ds  2 = - N  t2 dt 2 + L2(dr  + N ~ dt) 2 (12) 

where N t, L and N ~ are functions of the coordinates r and t. We also define R - exp -~/, 
in terms of which the Lagrangian in Eq. (1) becomes L = R2R + 4 (VR)  2 + 4R 2 A 2. 

In this parameterization, the Hamiltonian formulation of 1 + 1 dilaton gravity can be 
shown to be: 

so = f dr dt [zoL + ~rRk - NtHt - NrHr] -- / dt MADM (13) 

where 7rL and ~rR are the canonical momenta of the fields L and R, MAOM is the ADM 
mass of the system, and Ht and Hr are given below: 
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Ht _-- _L77. 2LR2A2 + L - -  + 2-~ 

Hr = 7rRR' -- ~r~L (14) 

We now couple n point particles to the system. In Hamiltonian form, the matter part of 
the action is: 

SM = ~-~ ( f dt pi:i - / dt dr ( Nt HtM( ri ) W NrHrM( ri ) ) } 
i=i 

H t m ( r i )  = ~ ¢ / ( p i / L )  2 + m2~(r - r i ( t ) ) ,  H r m ( r i )  = - p i t ~ ( r  - r i ( t ) )  (15)  

where m is the mass of the particle which we will take to be zero. Adding SM and So 
describes dilaton gravity coupled to n point particles with MADM, the total energy of 
the system, specifying the Hamiltonian. Note that in the combined action there are no 

time derivatives of N t and N r. Consequently, these quantities can be integrated out of 

the action generating the constraints that Ht +HtM and H~ + HrM must vanish. 

The elimination of the metric and dilaton from this action following the methods 

of [12] and [10] is described in Appendix A. Since the technical details are quite 

confusing we will describe the basic idea of the construction here. Since the dilaton and 
the graviton are not dynamical in two dimensions we can eliminate them by a choice of 

gauge. However, the gauge must be consistent with constraints that arise from varying 
N t and N r. Put another way, the n matter particles cause kinks in the geometry that 
move around with the particles. The action for the motion of these kinks is the only non- 
trivial contribution of the geometry to the dynamics. In eliminating the metric and the 
dilaton from the Lagrangian we have to be careful to dress the particles with the action 

of the kinks in the geometry that they generate. The basic idea of [ 12] and [ 10] is to 
compute the contribution of a kink in the geometry by integrating up the constrained 

action for the geometry in the presence of a particle and then differentiating with respect 

to time to recover the constrained Lagrangian. At first sight this seems a rather strange 
procedure - one may wonder why we could not directly fix a gauge consistent with 

the constraint. The reason for pursuing this awkward procedure is that the constraint 
produced by the propagation of a point particle contains delta function singularities and 

by first integrating past the singularities and then differentiating back we ensure that we 
are not missing any contributions to the dressed action. 

3.1. Trajectories that do not intersect 

In Appendix A we have implemented the procedure for eliminating the dilaton and 
the graviton described in the previous section. It turns out that the geometry between 
the particles looks like a slice of a black hole of fixed mass. This is illustrated in 
Fig. 3 where M i / A  labels the mass outside the ith particle and Mo/A is the mass of the 
background black hole, if any. Furthermore, in a gauge with R = exp Ar and L = 1 we 
obtain the following effective Lagrangian for dressed massless particles: 
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n matter particles in dilaton gravity 

Fig. 3. Particles propagating in dilaton gravity. 
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Crossing Trajectories 
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M n - M o  
(16) 

where r/i is +1 for outgoing particles and -1  for infalling particles. This expression 
should be read as a Hamiltonian formulation of the Lagrangian (L = ~iPifi - H) so 
that (Mn - M0)/A is identified as the Hamiltonian of the system and the canonical 
momentum of the ith particle is: 

( e~"-rliMv/-M-~i~/A 
ar'2 ( ~ - ~ ) - r l i a e 2 a r ' 2 1 n \ e T ~ r - _ - - - ~ a ]  (17) Pci = e ~r 7r 

This expression for the canonical momentum implicitly defines Mi in terms of Mi-i and 

ri and this chain of relations defines Mn/a, the Hamiltonian, in terms of the coordinates 
and momenta of each of the particles. Mi/A should be thought of as the mass parameter 
of the geometry outside the ith particle and so (Mi - Mi-1)/,~ can be understood as 
the energy of the ith particle. 

3.2. Meaning of the effective Lagrangian 

In order to understand the meaning of this effective Lagrangian it is useful to consider 
a single dressed particle whose Lagrangian is given by: 

L =  ( 2 )  f { e a r ( ~ - ~  

! M,-Mo (18) ~ e  2~r In \ 7  a 

Here M0 is the mass of the background black hole and MI is the ADM mass of the 
geometry. At large r we can expand in powers of e x p - a r  and we find that Pc = 
rl(Mi - M o ) / a  + O(exp-ar) .  This correctly tells us that near infinity, to leading 
order, the momentum of the massless particle equals its energy. We wish to interpret the 
effective Lagrangian in terms of the diagrams that have contributed to the dressing of 
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Fig. 4. Diagrams contributing to the effective Lagrangian. 

the particle. In fiat space we should have p = E, and in curved space the interaction with 
the background gives the classical equation p = E f ( r )  where f ( r )  is a function of r 
that can be read off from the geometry. In diagrammatic terms, the diagram proportional 
to E in Fig. 4 gives the classical description of a massless particle in curved space and 
the diagrams with more graviton legs represent the self-interaction corrections. Indeed, 
writing E = (Mi - M0)/A and linearizing Eq. (18) we find that: 

ear 

p = ~Eea r _ Mv/-M-~/A (19) 

This is exactly the relation between momentum and energy for a classical massless 
particle in the dilaton black hole in Eq. (4). This agreement increases our confidence 
that we have correctly derived the effective theory and suggests that an expansion of Pc in 
powers of E = (M1 - M 0 ) / A  amounts to a summation of the n-graviton self-interaction 
diagrams in Fig. 4. The Lagrangian in Eq. (16) contains graviton exchanges between all 
the particles in the system. We can truncate to exchanges of k gravitons by expanding to 
the appropriate powers in the energies of each particle. Note that for outgoing particles 
(~7 = + l  ), Eq. (18) tells us that a particle of finite energy has a momentum that blows 
up as exp ar --, mv/--m--~/a. From the equations of motion computed below we will see 
that Mv/--M~I~/A is the location of the horizon and the blowup is symptomatic of the huge 
redshifts between the horizon and infinity. 

3.3. Crossing trajectories 

Having understood the dressed Lagrangian describing particle trajectories that do not 
intersect we turn to the description of particles that cross each other. In the right hand 
Fig. 3, we have two particles whose trajectories intersect. Before and after crossing the 
two particle Lagrangian (16) describes the system, but we must give a prescription for 
determining the mass parameter/I,tl that determines the geometry between the particles 
after crossing. ( m o / a  and M2/A are unchanged because the former is the mass of the 
background black hole and latter is the total conserved energy.) The splicing prescription 
is derived from the observation that the crossing of particles does not involve any actual 
displacement so that we expect total energy and momentum to be conserved. Applying 
this to the right hand Fig. 3 and using the effective momenta given in Eq. (17) we 
arrive at the splicing condition: 
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(e2arc Mo__o]r~ (e2ar< - M2~r~ (e2Ar< - M,~'~ (e2ar< il, ll~r~ 
a2 ) a2 ) = a2 ) - a2 ) (20) 

where rc is the position at which the crossing occurs. Letting MblA -- (M2 - Ml )IA 
and Mb/A = (fill - Mo)/A be the energies of the infalling particle before and after 
collision with the outgoer we can write the splicing condition as: 

f4b~r Mb~r (Mb~rla 2) (iVla~rla 2) 
- 7 + ( + l ,i ) ( ea,. - l ,l ) (21) 

Here Ma/A is the energy of the outgoing particle prior to the collision. We see that the 
energy of the infaller is shifted by the collision. The significance of this shift will be 
discussed in Section 6. 

3.4. Equations of motion 

To complete the description of the dressed classical mechanics of particles in dilaton 

gravity we must compute the equations of motion since the classical trajectories will 
be necessary for the WKB quantization of the theory in the next section. Since we 
are in the Hamiltonian formalism the equations of motion are given by ~i = aH/apl = 
( 1/A) aMn/aPi where all the ri and the pj for j q: i are held constant in taking the partial 
derivatives. Generically, the classical kinematics of a highly nonlinear Lagrangian like 
the one in Eq. (16) can only be integrated if there are a sufficient number of conserved 
quantities present in the system. Fortunately, because neither the dilaton nor the graviton 

is dynamical we expect that the energy of every particle (Ei = (Mi - Mi-l)/A) is 
individually conserved in the absence of crossing of trajectories. 

It is shown in Appendix B that the system of n dressed particles is classically inte- 
grable since the Mi are time-independent and have mutually vanishing Poisson brackets. 
With this observation in hand, we derive the equations of motion by noting from 
Eq. (17) that the Hamiltonian Mn/A on depends on Pi only via its dependence on 
M,-I which in turn depends o n  Mn-2 and so on until we reach M i which is implicitly 

expressed as a function of Pi. So we have ~i = (aMn/aMn- 1 ) r,,p,"" (aMi+ 1/aMi) ri+l.pi+l 
X (aMi/@i)r,,M,_,. These derivatives can be computed by differentiating both sides of 
Eq. (17) and rearranging terms. The subscripts indicate the variables in Eq. (17) that 
are to be held constant while taking the derivatives. Putting everything together we find 
the equations of motion for the dressed particles: 

i ' i=  ~i ,,[ear ̀  j ear,÷, 7~i+l  gV/-~l~/a \'e,~rk+---~--71k+l MVF-~-~-"-'~/A j 
k=i + 1 

The integrability of the system now comes to our rescue - all the M i are constant and so 
we can integrate the equation of motion of the outermost particle, use the trajectory to 
integrate the motion of the next inner particle and so on until all the classical trajectories 
have been computed. If particle trajectories cross we must use one set of Mi prior to 
crossing and another after crossing following the splicing prescription described in the 
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previous subsection. For use in the next section we integrate the equation of motion of 
a single dressed particle: 

Mv/-M-~ (e  ar - r/Mv/--~l~/,t) = e~at(e at(°) -- r/Mv/-Ml~/,t) (23) i" = rl aear , 

This equation of motion is identical to the equation for geodesic motion of a massless 
particle in the metric (4) for a black hole of mass M f f , L  Indeed, for an outgoing 

trajectory (r/ = +1)  we see that the particle can only escape to infinity if e at(°) > 

Mv/-M-~/,~. As discussed in Section 2 a black hole of mass M l / a  has its horizon at 

e ar = Mv/--M-~l~/a. We see that at the level of the equations of motion a single dressed 
particle moves as though the metric is determined by the total ADM mass (MI)  as 

opposed to just the mass of the background black hole (M0). 

We would like to use the effective Lagrangian in Eq. (16) to construct the quantum 

mechanics of the system. Given N particles we have a dressed Lagrangian that describes 

the propagation of these particles within N particle Fock space. We need not be disturbed 
that the lack of a second quantized formulation will prevent us from seeing the particle 
production associated with the Hawking radiation. The Hawking flux is not associated 
with "vertices" in the usual perturbative sense of particle production - the Hawking 
particles appear because of a mismatch of vacua between the inertial pbserver at the 

horizon and the observer at infinity. Given that we are in the N-particle Fock space we 
do not expect the number of particles to change via interactions between the N particles. 
Therefore, given that N Hawking particles are produced, we can study their back reac- 

tion effects by constructing the quantum mechanics described by the Lagrangian (16) 

within the N particle Fock space. Nevertheless, there is a difficulty with quantizing the 

system of gravitationally dressed particles. Because the Lagrangian is so nonlinear in the 

coordinates and momenta we cannot simply promote these quantities to operators and 
canonically quantize the system since we would be faced with difficult normal ordering 

problems. The most reasonable procedure towards quantizing the system appears to be 
to study the semiclassical limit in which h ~ 0 so that action of classical trajectories of 
the particles and the small fluctuations around these trajectories dominate the quantum 

physics. In the next section we will describe the WKB procedure for carrying out such 
a quantization and then we will apply the procedure to computing the wavefunctions 

of the dressed particles. The resulting states presumably include all the self-interaction 
corrections arising from self-exchange of the longitudinal graviton and dilaton. 

4. Computation of dressed wavefunctions 

We are forced to resort to semiclassical methods to quantize the effective theory 
because it is too nonlinear for canonical or full path integral quantization. The basic 
idea of the semiclassical method is to observe that in the limit of small h, the trans- 
port of wavefunctions is dominated by classical trajectories. (See Gutzwiller [21].) 
In general, if ¢ ( r ( 0 ) )  = p ( r ( O ) ) e x p i S ( r ( O ) )  is the wavefunction at early times, 
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the transport of the wavefunction to late times is described by the equation ¢ ( r ,  t) = 
f d r ( O ) ¢ ( r ( O ) ) K ( r ( O ) ; r , t ) .  Here K is the propagator given by the path integral 

K(r(O);r,  t) = fr~o ~ 79rexp ( i /h )S(r )  and S is the action for the path r. For small 
h, extrema of the action dominate the path integral and the integral can be well ap- 
proximated as the saddlepoint phase times the determinant of the quadratic fluctuations 
around the saddlepoint. To use the semiclassical propagator to calculate the transport 
of wavefunctions we must calculate the above integral over the initial positions r (0) .  
Because the propagator has been calculated by the method of saddlepoints, it is only 
consistent to do the integral over r(0)  by the method of saddlepoints as well. It is useful 
to note that the phase of the integrand is proportional to 1/h whereas the amplitude is 
O( 1 ) so that the saddlepoint is consistently calculated from the phases alone. In other 
words, we evaluate the integrand at the coordinate r (0)  ~ at which the phase of the 
integrand is minimized and then we calculate the determinant of quadratic fluctuations 
around this point. Because it is suppressed by a power of h, the amplitude p does 
not enter the calculation of the determinant and is simply evaluated at the saddlepoint. 
Putting all these facts together we arrive at the following expression for the semiclassical 
propagation of a wavefunction that starts at t = 0 as ~bo(r(0)) = p(r(O))e~S°(r(°)): 

I - O2R( r, ro, t)/ararol 
~( r, t) = p( ro) _ _(a2So~-;0)--~+~2-~r'r-~'t)/ar2o) e ~i(sO(ro)+R(r'ro't) ) 

r 

R( r, ro, t) = / p ( r ' ,  E)dr'  - Et (24) 

ro 

In this expression E and r0 are the self-consistent solutions to the equations: 

r=r(ro ,  E , t ) ,  aSo =p(ro,  E) (25) 
Oro 

The first of these equations is the equation of motion for the classical trajectory of 
energy E that starts at r0 and the second equation is standard relation between the 
action and the momentum of a classical particle. The semiclassical method requires that 
the frequency of the wavefunction varies sufficiently slowly for us to define a local 
energy in every segment of the wave. The content of the above equations is that this 
local energy at ro is transported along the classical trajectory of that energy that starts 
at r0 and is deposited at the final point of the trajectory after a time t. As a final check 
note that imposing the condition that E is constant giving an energy eigenstate can be 
shown to yield the following wavefunction: 

1 e~[frt,(r.E)dr-Et ] ¢,(r, t) = - ~  (26) 

This is the familiar WKB expression for energy eigenstates in one dimensional quan- 
tum mechanics. We now apply this formalism to the gravitational self-interaction of 
particles in dilaton gravity. Note that in computing overlap integrals of semiclassical 
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wavefunctions it is only consistent to use the method of saddlepoints since the WKB 
wavefunctions have themselves been computed in that manner. 

4.1. Self-interaction corrections to radiation 

We will now compute the self-interaction corrections to wavefunctions of single 
particles propagating in dilaton gravity. Having computed the dressed spectrum we will 
repeat the calculation of the Hawking radiation in Section 2 with the improved modes. 
In fact we will only work with the phase of the wavefunction because, as discussed 
above, the saddlepoints in the overlap integrals that give the Bogliubov coefficients 
are insensitive to the amplitude which is suppressed by a power of h. Eq. (24) says 
that the phase of the single particle dressed WKB wavefunction is given by S(r, t) = 
So(ro) +f~ pcdr- (Mi -Mo)t/A where we have identified the energy of the particle as 
the ADM mass (M1/A) minus the mass of the background black hole, and where Pc is 
the coefficient of ? in Eq. (18). We are interested in the self-interaction of the outgoing 
wavefunctions that are responsible for producing the Hawking radiation. Integrating Pc 
we find: 

R = fpc dr=l[eAr(V~~r ~ )  

-{M°~-e2~)ln(ea~\---~- 

+ fMlTr\__ _ e2ar) in (ear _ 

According to Eq. (25) we must also self-consistently solve for MI and r0 using the 
equation of motion, Eq. (23), and the initial condition So. We will imagine that the 
self-interactions are turned off until t = 0 and the wavefunction starts in an outgoing 
Kruskal eigenstate as in Eq. (6).  So we take So = (2k/Tr)(e "~r --  MV~-'~/A ) . The self- 
consistency conditions in Eq. (25) are solved in Appendix C to arrive at the leading 
order dressed WKB phase at late times: 

_ kA (ear v ~ )  S(r't) - 2 Mv/-'M~ (exp ( ~ )  - I) A (28) 

The late time wavefunction is e is and therefore looks exactly like the Kruskal eigenstate 
in the initial condition with a redefined frequency. 
Note that (Mx/-M--ff~/A)(exp(kA/Mv/-M'o-~) - 1) is k to leading order for small k so that 
states of small Kruskal momentum are unaffected. However, as we shall shortly see, 
virtual states of very large Kruskal momentum are responsible for the production of the 
Hawking radiation and so this frequency redefinition is important for them. 

Having computed the one-particle dressed wavefunctions we are in a position to 
analyze the physical effects arising from gravitational self-interaction. Kraus and Wilczek 
have found that such self-interactions cause a energy dependent shift of the radiation 
temperature for Schwarzschild and Reissner-Nordstrom black holes [ 14,10], and it is 
interesting to understand whether such effects can occur in the context of the two 
dimensional black holes. We have computed the dressed analogues of the Kruskal 
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eigenstates above, and if we also compute the dressed energy eigenstates we can find 

the Bogliubov transformations responsible for producing the Hawking radiation. From 
Eqs. (26) and (27) we know that the phase of a dressed energy eigenstate is S ~ , ( r ,  t )  = 

R ( r )  - co t  with (Ml - M0)/A = co. In computing the dressed Kruskal eigenstates we 
assumed that the particles had small energies and expanded to leading order in these 

energies. Under the same assumptions, So, becomes: 

S o ~ ( r ,  t) = -~ In e ar - co t  - 2-A 

Writing the dressed energy eigenstate as ~o = e is" (we are ignoring amplitudes) 

we can compute the Bogliubov transformations between the dressed states using the 
relations (9).  To be consistent within the serniclassical framework, the integrals in 

Eq. (9) should be regarded as overlap integrals between the two dressed bases and 
should be carried out by the method of saddlepoints. Define col/,~ = (2/~')(Mv/-M-~/I) 

x [exp(k,~/Mv/--M-~) - 11 and u f  = e -a t ( e  Ar - MV'~-~/A) so that the dressed Kruskal 
states are 0 = e x p ( i ( c o ' / 1 ) u f )  • Then the saddlepoints for the a and fl integrals occur 

at: 

co , f l *  e -,•t = co 
or* : e - '~ t  = c o t ( e a  r _ MV/--M~ / , ~  ) : co' ( e "~r - -  ~ / A )  (30) 

We are interested in the radiation of moderate co seen by the asymptotic observer and so 
we see that the saddlepoint for a occurs at very late times. The saddlepoint time for fl 
is off the real axis, but also has a large real part. Because of this it is consistent to use 

the late time form of the dressed wavefunctions as we are doing. Ignoring amplitudes 
of wavefunctions, the saddlepoint integral gives: 

. = ei(3to/2) t)  . = ei(3to/2,~) _ .  _-~rto/A ao,~o' , fl~oo,' = uo, o,, e (31) 

AS in Section 2 Io to jk / f loJk l  is independent of k and so we reach the conclusion once 
again that the dressed energy eigenstates are thermally populated with a temperature of  
( 2 ~ ) / h  if the system is prepared in a state annihilated by the dressed Kruskal states. 

We have not found a shift of the Hawking temperature unlike Kraus and Wilczek 

[ 10,11]. This is not surprising in retrospect because the temperature of dilaton black 

holes depends only on the cosmological constant and we do not expect the self- 
interactions of the matter particles to renormalize this quantity. Nonetheless, the fre- 
quency redefinition derived here is quite dramatic and we may wonder whether there 
are any physical effects associated with it. To resolve this question we would need to 
compute the amplitudes of  the effective wavefunctions and examine whether the n-point 
functions of the Hawking state are changed. We do not expect any such changes be- 
cause the frequency renormalization derived here does not mix positive and negative 
frequencies. The structure of the effective wavefunctions strongly suggests that the net 
effect of the self-interactions is merely a frequency redefinition. 
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In computing the Bogliubov transformations we used only the leading order dressed 

wavefunctions in Eq. (28).  One may wonder whether the subleading corrections could 

lead to nonthermal population of  states in the radiation. We do not expect this to happen 

because the computations in Appendix C show that the Kruskal eigenstates will depend 

on time via factors of  e -at  . Consequently these states are periodic in imaginary time 

with a period of  2rr/A suggesting that the spectrum will look thermally populated even 
when the subleading terms are accounted for. 

Before concluding this section there are two more useful lessons to draw. The first 

is that the Kruskal momenta contributing to late time radiation grow linearly with 

time and the second is that the self-interaction corrections are unimportant for infalling 

states. To show the first point we return to Eq. (8) to express the dressed energy 

eigenstates in terms of  the dressed Kruskal states: c),o = fda/(a,o,o,~b~,, + fl~,~,,~*,). 
The ~ol dependent part in integrand of  the first term is e x p ( - i ( r o / A ) l n ~ o '  + i ( o a ' / A ) u f )  
( u f  is defined above). The saddlepoint that dominates the integral over oJt is at ~o' = 

w / u f =  ~ o / ( e - a ' ( e  a t -  Mv/-M--~/A)) which grows exponentially in time at fixed r. Since 

w' ~x exp(ka/Mv/--M--~) for large k, we see that k grows linearly in time. 5 

Finally, we can ask whether incoming states are strongly affected by self-interactions. 

Physically, we do not expect large effects because the relationship between momentum 

and energy for incoming particles does not become singular at horizon. The lack of  
any large effects can be shown in the WKB language by taking So = ( 2 k / r r ) ( e a r +  
Mv/-M-7~/A), so that we have an incoming Kruskal eigenstate as the initial condition, 

with r / =  - 1  in Eq. (17) for the canonical momentum. In the calculation of  the dressed 
wavefunctions in Appendix C, the exponentiation of  the Kruskal frequency k arises in 

the course of  solving the WKB consistency conditions in Eq. (25).  It is a simple matter 

to show that the incoming initial conditions described above do not result in such an 

exponentiation for low energy incoming particles even in the region near the black hole 
horizon. 

5. In-out  scattering 

Giddings and Nelson have carried out a calculation of  the Hawking flux in the 1 + 1 

dilaton geometry produced by a classical infalling state [ 19]. In this section we will 
study the radiation produced in the dynamical background of  a quantum mechanical 

infalling state. A complete treatment of  this problem involves consideration of  the two- 

particle states in Fock space in which one particle is coming in and one particle is going 
out, treated with the two particle version of  Lagrangian (16).  The full problem is very 

5 There is a subtlety regarding whether the ~bco is to be expressed as an integral over k or over the redefined 
fi'equency o] = Mv~7~[exp(kA/M,¢~-~) - 1]. In the above discussion we used the redefined frequency in 
the integration measure. In fact in the small h limit of interest to us here (we are considering the limit where 
the semiclassical wavefunctions are reliable) both integration measures yield the same conclusion concerning 
the values of k that dominate the integral. This is because, in the semiclassical limit, the integral is dominated 
by the O( 1/h) phases in the wavefunctions *p and in the Bogliubov coefficients. This means that the O( 1 ) 
measure in the integral is not important for determining the important regions of the integrand. 
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hard to analyze because of the non-linearities of the gravitational interactions between 

the particles and because the self-interactions do not commute with the in-out scattering. 
We will consider the structure of the states in the full two particle Fock space in the 
next section and restrict ourselves to an approximate (and possibly more insightful) 
version of the problem here. First of all, we will semiclassically evolve an infalling 
quantum mechanical packet to produce a geometry whose ADM mass is uncertain and 
then we will study the Hawking problem in this background. By examining the form 

of the resulting scattering of the outgoing radiation we are able to identify the in-out 

scattering matrix for an arbitrary infalling state up to certain ordering problems. This 
will enable us to identify the effect an arbitrary infalling state has on the spectrum 

of outgoing particles. From this identification we are able to draw some qualitative 

conclusions regarding the return of information in the radiation in the presence of the 

full self-interactions. 
We now want to construct two-particle WKB wavefunctions. This can be done in the 

same way as discussed at the beginning of Section 4. The phase of the two particle wave- 

function is given by S( ra, rb, ta, tb ) = So ( ra( O ) , rb ( O ) ) + f padra + f pbdrb--Eata--Ebtb. 
In this equation we have two times to and tb because we may choose to evolve the in- 

coming part of the two particle wavefunction forward for a different amount of time 
from the outgoing part of the wavefunction. As in the one particle case we must solve 

self-consistently for Ea, Eb, ra(O) and rb(O) in terms of ra, rb, ta and tb by using the 
two equations of motion and the initial conditions that 3So(ra(O),rb(O))/ara(O) = 
p,~(r~(0)) and aSo(ra(O),rb(O))/arb(O) = pb(rb(O)) .  In this section we are inter- 
ested in the effect an incoming state has on the outgoing radiation. So we will take 

0, = 0 so that the incoming state is not evolved forward in time at all - we simply 

specify the incoming state at t = 0 and compute its effects on the outgoing part of the 
wavefunction. In other words, instead of specifying the two particle configuration space 
as {ra,rb} at some time t we choose the configuration space to be {ra, rb(O)} and 
write the wavefunction in terms of these coordinates. Furthermore we will prepare the 

system at t -- 0 so that So(ra(O),rb(O))  = Soa(ra(O)) + Sob(rb(O)) - in other words, 
the incoming and outgoing wavefunctions are not entangled at t = 0 either by assuming 

that the interactions are turned off at earlier times or by picking well separated initial 
wavepackets. As in Section 4 wavefunction amplitudes in the semiclassical approxima- 

tion are computed as determinants of fluctuations around saddlepoints and are relatively 
unimportant since they are suppressed by a power of h. For this reason we will omit 

them as we did in the previous section. 

5.1. Leading order in-out scattering 

We begin by turning off the self-interactions in order to understand the effects of 
the in-out interactions by themselves. The effects of self-interactions are considered in 

Section 5.4. 
Consider an incoming quantum wavepacket propagating in the background of a 

black hole of mass Mo/A. The state is specified by an initial wavefunction ~b0 = 
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P0 exp iSbo ( rb  (0)) .  Removing the self-interactions amounts to keeping only the tadpole 
diagram proportional to E in Fig. 4 and so we will call this the "tadpole approximation". 
As discussed in Section 3.1 this can be achieved by linearizing the relation between 
the momentum and energy of a particle in Eq. (17). Doing this gives the following 
relations: 

M b  e arb 

Pb = /~ e arb + goTr/A ' i'b = - -1  earb ~ (32) 

Integrating this equation of motion we find that the classical trajectories dominating the 
evolution of the infalling wavepacket have the equations: 

(ear" + - v / - - ~  ~ ° ~ )  =e-at(ear~(°)+-'v-'--~) (33) 

If the initial wavepacket is not an energy eigenstate, then the geometry will not be in an 
eigenstate of the ADM mass. Indeed, identifying pb0 = OS~/Orb(O) as the momentum 
of the initial state, the relations in Eq. (32) tell us that the sector of the wavefunction 
dominated by the classical trajectory starting at rb(O) has an ADM mass given by: 

M2 =_ _ _  _ + e -arb(O) e arb(O) + (34) 
a A a arb(O) 

We can use these observations to carry out the semiclassical evolution of outgoing states 
in the quantum background produced by the state ~bbo. 

Consider an outgoing wavefunction propagating in the background produced by the 
infalling packet. Prior to crossing the infalling state the outgoer travels in a background 
of mass mo/a and after crossing the background has a mass M2/A which depends on 
the sector of the infalling state under consideration. Removing the self-interactions of 
the outgoer by linearizing Eq. (17) gives: 

M a  e ara 
Before: Pa = 

A e ar° - Mv/-M-~/A 

i~.'la eara 
After: Po = A ear° - Mv/-M--~/A (35) 

where M~/A is the energy of the trajectory before the collision and Ata/A is the energy 
after the collision. The equations of motion before and after crossing are: 

Before: ra = (1 M V"-~--~'~ earo 
\ earo A ,] ' 

After: i'a = 1 ear. A , e Ar" 

eat (eara(O) v~)  - (36) 

x ~ )  =e_aO_,c, (ear c x / ~ )  (37) 

where tc and rc are the time and position at which the outgoing classical trajectory 
intersects with the incoming classical trajectory that starts at rb(O). This completes the 
specification of the leading order classical mechanics of the outgoing particles in the 
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backgrounds produced by the infalling quantum state. These ingredients will be used in 

the next section to compute the approximate semiclassical quantum mechanics of the 

outgoing states in the quantum infalling background. 

5.2. Tadpole corrected two-particle wavefunctions 

As discussed earlier the phase of the two particle wavefunction is given by: 

rc 

S(ra, t, rb(O)) = Sbo(rb(O) ) -1- Sao(ra(O)) + f padra 

ra(O) 

ra 

+ fp, ,dro - l~la(t - tc)/h, 

re 

(38) 

(We have split the usual integral f ( p  d r - H d t )  into the parts before and after crossing.) 

Performing the integrals we find: 

(39) f padr~= ~ln [e~'°- Mv/--M-~/a] Ma [ e a r ' -  Mv/"M-~/A ] 
L 7: Mv/__M__~/Aj + ~ In LeAr~i - - ~ A J  

Note that the equations of motion (36) and (37) tell us the ratios within the logarithms 
in terms of the time travelled before and after the collision with the infaUer. Using these 
relations in Eq. (39) we find that the phase of the two particle wavefunction in the 

tadpole approximation is given by: 

(40) S(ra, t, rb(O) ) = Sbo(rb(O) ) q- Sao(ra(O) ) 

So we need only solve for ra(O) as a function of ra, t and rb(O ) in order to compute 
the WKB phase of the two-particle wavefunction. 

Let us take Sad = ( k / A ) ( e  ar~(°) - Mv/-M-~/A) so that we have an outgoing Kruskal 
eigenstate. Using the equations of motion of the outgoing particle before and after 
scattering it is easy to write r~(0) in terms of ra, t and rc where rc is the position 
at which the collision with the infaller occurs. Next we use the equations of motion 
of the infaller before scattering along with the equation of motion of the outgoer after 

scattering to find that: 

(e r  Uou  in 

where we have defined Uout = e-at(e ~r° - ~ / A )  and via = (e Arb(°) + M ~ / A ) .  At 
late times on 77 + , which is the region of interest to us, the solution to the equation is: 

e '~r~ "~ ~ -t- U°utUin (42) 
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Using this late time solution for exp ,~rc in the outgoing equations of motion yields a 
solution for exp ,~r a ( 0 )  that gives the following result for the phase of the outgoing part 
of the wavefunction: 

S(ra(O)) = -~e- e ar° + "-~ k(M2 - Mo)/A~ (43) 
Uin ,] 

Finally, we can use Eq. (34) for the mass of the geometry M2//~ in the sector of the 
two-particle wavefunction labelled by rb(O). The semiclassical method is only valid 
when the energy of the incoming state is small compared to the mass of the black hole 
(Mb << M0) so that we can expand the v/-'M~r to leading order arriving at the following 
expression for the phase of the two-particle WKB wavefunction: 

S(ra't'rb(O) )=Sb°(rb(O)) +-~e-at  ( ear" ~ )  

+ ~ P _  [1 Ae-lttUin] 
2 Mv/-M-~0~j P+ (44) 

where we have identified P_ = k as the outgoing Kruskal momentum and P+ = 

Mb/Vin = exp--Arb(0) (-aSoo/ar6(O)) as the Kruskal momentum flowing in from the 
initial coordinate rb(0). Comparing with Eq. (6) for the outgoing Kruskal eigenstates 
we see that the last expression has the structure of a scattering phase shift induced in 
the outgoing state by the incoming state. 

5.3. Tadpole corrected physics 

First let us examine the structure of the two particle wavefunction in Eq. (44). The 
leading term on the second line, 7rP_P+/A 2 is the two dimensional reduction of the 
shockwave interaction first advocated by 't Hooft [3,5,6]. The term that is suppressed 
by ~ arises because the position of the horizon moves when the infalling state falls 
into the black hole. This shift of the horizon "squeezes" the region outside the black 
hole causing a deformation of the wavefunction of states defined in the exterior region. 
In general, the term on the second line represents a scattering phase shift produced in 
the outgoing state by the incoming state and has a structure somewhat reminiscent of 
the exact S-matrix in the electromagnetic analogue problem studied by [22]. However, 
we do not expect the subleading correction computed here to restore the information 
about the infalling state to infinity since we do not have a systematic series of such 
corrections of the necessary structure. 

The two particle wavefunction in Eq. (44) can be used to identify the scattering 
operator that acts on the outgoing state in the presence of the infalling wavepacket. To 
do this observe that in the WKB method operators are essentially replaced by expectation 
values taken locally in every segment of the wavefunction with slowly varying phase. 
For example, the quantity P+ = exp--Arb(O) (--aSbo/arb(O)) is tO be understood as an 
expectation value of P+ taken locally in the neighbourhood of rb(O). Indeed, identifying 
the momentum Pb (0) = aSoo/arb (0) (and similarly Pa) w e  can promote the coordinates 
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and momenta appearing in the scattering phase shift computed above to operators and 

arrive at the scattering operator acting on the outgoing states up to ordering problems. 
This scattering operator has the effect of entangling the outgoing and incoming states. 

Next, we calculate the Hawking radiation in the dynamical background produced by 

the incoming state via computation of the Bogliubov coefficients. In order to do this we 

need the form of the energy eigenstates as measured by the asymptotic observer. Using 

Eq. (26) we find the phase of an asymptotic energy eigenstate to be: 

r 

So,(r~,, t, rb ( 0 ) )  = Sbo(rb(O) ) + f mdra - tot 

=Sbo(rb(O))  + ~ - l n  e Ar" - - to t  (45) 

Note that So, diverges at exp Ara = Mv/-M-'~/,~ where the horizon of the black hole is 

located after the infalling mode has fallen in. In previous sections we have only worked 

with states defined in the exterior of the black hole but in what follows we will need 

to augment the wavefunctions exp iSo, with modes defined in the interior of the black 

hole. This is necessary because the Kruskal eigenstates in our initial conditions have 

support both inside and outside the black hole and therefore a full analysis of the final 
state requires modes defined in both these regions. Since the definition of a "particle" 
is somewhat ambiguous inside the black hole, we are free to pick any convenient basis 
to augment the set ~b,o = exp iSo,. In the interior of the black hole we therefore pick the 

set ~o = exp iS, o where: 

) So~(ra, t, rb(O) ) = Sbo(rb(O) ) + --~ In e ar" -- tot (46) 

In Eq. (8) we had defined the Bogliubov coefficients a and /3 relating ~bo, to the 

Kruskal basis. Now define & and D analogously to relate q~o, to the Kruskal states. Using 
the relations (9) and their analogues for & and D we find that saddlepoint calculations 

give the following results:6 

tX*k(rb(O))=eicrkP+/A2eio, /~(k)i ta/a 

10*k ( rb ( O ) ) = --e-iTrkP+ / a2eitO/ a = - -  a *o,k e-~o,/ a 

^ * * , ^ * * ( 4 7 )  Olwk(rb(O)) =oltok(rb(O)) e ¢ro,/a flo,k(rb(O)) = flo,k(rb(O)) e 7ro,/A 

We have written these Bogliubov coefficients as functions of r b ( O )  in order to emphasize 
that P+ = exp- -Arb(O)( - -OSbo/arb(O))  is a function of rb(0) and that the in-out 

6 Once again, since we are working in the semiclassical limit of small h and since the computation of 
Bogliubov coefficients is to be regarded as an overlap integral between semiclassical wavefunetions, it is only 
consistent to perform these integrals via the saddlepoint method. 
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scattering represents an entanglement that prevents us from separating the Hilbert space 
into a product of incoming and outgoing states. 

Despite the entanglement produced by the scattering, since [~o~k/flo~[ is independent 
of both k and rb(O),  the standard arguments used in Section 2 tell us that the Kruskal 
vacuum state contains a thermal spectrum of particles of temperature 27r/A. (See [ 19] 
and [20] for explanations of the standard arguments.) Indeed, we can show that the 
final Hawking state is left completely unaffected by the P+P_ phase accumulated during 
the in-out scattering. To show this, let ak be the annihilation operator for the Kruskal 
mode k and let bo, and bo, be the annihilation operators for the asymptotic modes ~b,o 
and q~,o defined in the previous section. Then the Bogliubov coefficients can be used to 
relate the various creation and annihilation operators [ 19] : 

= f dw [ao, k bo~ + fl*k b+ + &o~k bo~ + ~*k b+] (48) ak 

The state of the system is defined to be the one that is annihilated by all the operators 
ak. Putting in the Bogliubov coefficients in Eq. (47) it is clear that the scattering phase 
can be factored out of Eq. (48) giving: 

ak = e-i~rke+/ a2atk (49) 

where a~ is the Kruskal annihilation operator in the absence of the scattering phase 
shifts. Since the Hawking state in the absence of scattering is the one annihilated by 
all the a~ we can see that the same state is annihilated by the ak so that the in-out 
scattering does not affect the state at all. Indeed, the only trace of the infalling state 
in the radiation is that the energy eigenstates are defined in a geometry whose mass is 
determined by the energy carried into the black hole by the infaller. 

5.4. I n -ou t  scattering with self- interaction 

In previous sections we have computed the effects on the Hawking radiation of 
self-interactions and of an infalling state. The former led to a renormalization of the 
frequency of outgoing Kruskal states and the latter produced a scattering phase shift. We 
may wonder whether the two effects together can be responsible for any added recovery 
of information. The problem is that the severe non-linearities of the self-interacting 
system in the presence of an incoming state preclude analysis except in very special 
kinematical regimes. Therefore, despite extensive calculations in the more complete 
scenario we will be satisfied with a qualitative discussion of the phenomena that can be 
expected. 

The in-out scattering does not commute with the self-interactions since the scattering 
shifts the phase of the wavefunction by an amount proportional to the outgoing Kruskal 
momentum and the self-interactions renormalize this momentum. Let us imagine that the 
self-interactions are turned off until t = 0. Then as time passes, the wavefunction grad- 
ually renormalizes its Kruskal momentum k to [exp (kA/Mx/-M--~) - 1]. The scattering 
phase shift acquired upon interaction with the incoming state will depend on how far the 
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state has been permitted to renormalize itself. This can potentially leave a trace of the 
time of interaction in the outgoing wavefunction thereby carrying out some information 
regarding the composition of the incoming wavepacket. Careful scrutiny shows that the 
particular feature of the self-interacted wavefunctions that could carry this information 
would be the shifts • and t~ in exponent on the right side of Eq. (C.3). These quantities 
are expected to be shifted by the interaction with the infaller and will not cancel in 
the final state like the P+P_ shifts in the previous section. In other words, the in-out 
interactions could affect the renormalization of the Kruskal frequency in such a way as 
to enable some return of information. 

6. Are semiclassical methods valid? 

The results of previous sections appear to demonstrate that self-interactions and the 
in-out scattering have little effect on the late time radiation despite dramatic effects on 
the individual states involved in the computation. In this section we will address some 
consequences of the fact that the results in the previous sections also demonstrate that 
the semiclassical approximation is breaking down rapidly. 

To see this, note that the semiclassical methods are only valid when the energies of 
the particles involved are small. Now, given the Bogliubov coefficients in Eq. (47), an 
energy eigenstate of energy to in the region outside the black hole can be constructed 
from the Kruskal states as qbo, = f dk [ot,o~k + f l~ ,~] .  It is easily shown that this 
integral is dominated by modes with: 

to 

k = e_at (ear" _ Mv/-M-~/A) (50) 

Since the typical late time radiation has energy A/2zr, this means that the modes that 
contribute to the Hawking flux have a Kruskal momentum k that is growing exponentially 
in time. 

Now, the equation aSao/Ora(O) = pa(ra(O)) combined with Eq. (35) before the 
collision and the Kruskal initial condition for Sao gives the relation ~ = k(e ara(°) - a 
M v ' ~ A ) .  Using the solution for exp Ara(0) arrived at in Section 5.2 we find that the 
energy of the outgoing state prior to scattering from the incoming state is given by: 

M---SA = ke-at ear" + A2 (51) 

with P+ = e x p - a r b ( 0 )  ( -asb0 /a rb(o) ) .  Since k is growing exponentially in time we 
see that the Hawking flux emerges from states dominated by classical trajectories that 
have exponentially high energies before collision with the infalling state. At the formal 
level this invalidates the semiclassical approach and suggests that the results of previous 
sections should not be believed. 

In the calculation of the Hawking radiation, there are no real particles in the system 
that have these high energies since the state is defined to be the Kruskal vacuum. 
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Fig. 5. Diagrams contributing to the Hawking state. 

Therefore, a common argument says, the large shifts described above do not threaten the 

validity of the semiclassical computations. However, the calculation of the misalignment 

of Kruskal and asymptotic vacua requires use of the Bogliubov coefficients which 
depend on the excited states of the system. So, even if the system is placed in an initial 

state which apparently acquires no semiclassical corrections (being a state of Kruskal 
momentum zero) the calculation of Bogliubov coefficients has limited validity because 
of the large corrections to the excited states. Put another way, the precise form of the 

vacuum redefinition depends on the behaviour of modes of nonzero Kruskal momentum 

which acquire large corrections. A way to see this explicitly is in the formula for 

the Hawking state exp (b+~*a- lb+) lO  ) where a and /3 are "matrices" of Bogliubov 
coefficients ~ok and /3o~k and the operators b + create asymptotic states. (This can be 
derived as the solution to the condition that the Hawking state is annihilated by the 
Kruskal mode operators [ 19,20] .) This formula has the structure of pairs of particles 
coming out of some loop diagram as in Fig. 5. The matrix product/3*oL - I  involves a 
sum on intermediate Kruskal states and is essentially a summation over the particles 

running around the loops in Fig. 5. As discussed earlier, the states in these loops have 
energies that grow exponentially with time prior to scattering from the incoming state. 

This suggests that we simply do not have sufficient control over the summation on 

virtual processes implicit in the computation of the Hawking state to be able to believe 
that the semiclassical results have exact validity. 

We may fear that the results presented here are gauge dependent since we are working 
with a particular parameterization of the dilaton black hole. However, this fear is allayed 

by observing that the method of this paper is to compute the the WKB phase which 
is given by f p dr, a reparameterization invariant quantity. So the exponentially large 
scattering phase shifts that threaten the validity of the semiclassical calculations should 

appear in any parameterization including one that only uses the "nice slices" of [23]. 
Another objection that is sometimes raised is that arguments regarding the breakdown of 
the semiclassical approximation involve "postdiction" whereby we try to reason about 
the states from which a low energy state at the current time could have developed. It 
has been argued that difficulties with such "postdiction" should not be interpreted as 
evidence for breakdown of the semiclassical theory [23]. In fact, the problem should 
rather be phrased in terms of the structure of the Hilbert space on which the field theory 
is defined as we will discuss in the next section. 
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6.1. Structure of the Hilbert space and complementarity 

237 

As discussed above, the Hawking state is calculated by computing the misalignment 
between the vacuum defined by inertial observers at the black hole horizon and by 
observers at infinity. This misalignment depends on the structure of the excited states 
of the system. In the presence of infalling matter, the Hilbert space contains both an 
infalling and outgoing component. In Section 5.1 the states in this in-out Hilbert space 
were approximated by removing the self-interactions and by having the infalling state 

propagate in the static background black hole while the outgoing state propagated in 
the quantum mechanical geometry thus produced. In fact, a complete treatment involves 

a study of two particle states with one infaller and one outgoer treated with the two 
particle version of the self-interacted Lagrangian (16). In this section we consider such 
two particle states and find that the interactions between the infaller and outgoer lead to 
serious difficulties with the definition of the Hilbert space. 

Using the conventions of the right-hand Fig. 3 we take Ma/A = (MI - M0)/A and 
Mh/a = (M2 - Ml )/A to be the energies of the outgoing and incoming particles before 
scattering. Similarly, take )(4a/A = (M2 - )IT/1)/A and lftb/A = ( / ~ 1  - Mo)/,~ to be 
the energies of the outgoing and incoming particles after scattering. We will begin by 
assuming that all these energies are much smaller than the black hole mass so that 
the semiclassical treatment is valid and show that in the kinematical regime relevant to 
the Hawking radiation, we are driven well out of the regime of validity. The splicing 
prescription in Eq. (21) gives Mb in terms of the incoming energies and the position rc 
at which the scattering occurs. Using the splicing prescription and energy conservation 
with the two particle equations of motion derived in Section 3.4, we can imitate the 
analysis of the self-interactions and the in-out scattering in Sections 4.1 and 5.1. Define 
Uout = (exp Ar a --  MV/"~-~/A)exp--At and /)in = (exp Arb(O) + ~ / A ) .  Then, given 
some infalling energy Mb/A, it is easy to show that at late times on 2 "+, when Uout Vin << 
Mb/a 2 << Mo/a  2, the following results hold in the leading order: 

Ma rr to~ Mb 
- -  ---- WtUout "l- (52) 

A A 2 Vin 

l~[a t l~lb M b  7r to I M b  
- + ( 5 3 )  = (O Uout,  A2 

~, ~ A /)in 

where we have defined the self-interaction renormalized frequency: 

to '= 2 Mx/-'M~°~ ( e ( k a / M x / - ~ f f ) T r  - 1 )  (54) 

Here we have used the fact that the energies of the particles are assumed to be small to 
use the approximations made in the section on self-interaction corrections, as well as to 
drop some terms of order O(Mo/M0) which give negligible corrections to the equations 
of motion of the outgoing particle prior to scattering. 

We are now in a position to extract the most important physical consequences of the 
self-interacted in-out scattering. First of all, the results on the self-interactions and in-out 
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naked 
singularity 

Fig. 6. The black hole geometry corresponding to the two-particle scattering process between a low energy 
incoming mode and a typical outgoing mode. The interior geometry lies in the future of an unacceptable 
naked singularity and therefore its classical interpretation is suspect. 

scattering have told us that the typical energy of  the outgoing particle is unchanged from 
the classic result and will be .(-la/A ,-~ ,t/2zr. So, from Eq. (53) ,  to' ,-~ (h/2"rr)/Uout. 
From the definition of  Uout we see that to~ is growing exponentially with time. Now 
consider a low energy mode dropped into the black hole with some small Mb. Looking 

at the solution for Ma, and using the exponential growth of  to', we see that the state in 
the two particle Hilbert space responsible for producing the late-time Hawking radiation 

is dominated by classical trajectories with exponentially large energies before scattering 
from the infalling state. 7 

The first lesson of  these huge energy shifts is that states of  absurdly high energies 
will have to be admitted into the Hilbert space on the early slice to produce the states 

on the late slice necessary to support the Hawking radiation. Furthermore, i f  we require 

that we are able to observe late time Hawking radiation of reasonable energies, then 

Eq. (53) shows that low-energy infalling modes will necessarily be scattered by the 
outgoer into states inside the black hole with extremely large energies. 

The huge energies developed by the particles can also be rewritten as the difference 
in the masses of  the geometries on either side of  the particle. I f  we would require the 

mass of  the internal black hole Mo/,,l to remain fixed, the huge energies into which 
the infalling particle is scattered imply that we would have to admit states of  absurdly 
high ADM mass into the late slice Hilbert space. This would clearly be unphysical. 
Instead, we should require that the total energy of the system, as given by the ADM 
mass, remains at some reasonable fixed values M2/,t,  and consider the states of  the 
system with this total energy. In that case, the huge energies into which the infalling 
particles are scattered imply that the interior black hole geometry must have a negative 
mass thereby displaying a naked singularity. (See Fig. 6.) Both alternatives, absurdly 
high energy states in the Hilbert space and naked singularity geometries, seem quite 

7 As discussed in the previous section, despite the fact there are no "real" outgoing particles interacting with 
the infaller, the computation of the vacuum misalignment depends precisely on the behaviour of these excited 
states. 
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unpalatable. 
There are two complementary ways to avoid both difficulties. The first is to require 

that the radiation observed at late times has exponentially small energies so that the 
states in the Hilbert space that are responsible for producing the radiation never have 
energies exceeding some finite cutoff. This allows the infalling matter to propagate into 
the black hole interior without developing very high energies on the late time slice. This 
prescription therefore gives a construction of a Hilbert space appropriate to an infalling 
observer. However, this seems like an unacceptable solution to an outside observer since 
it involves a drastic cutoff on the outgoing modes that tends to zero energy at late times. 
The complementary solution is to restrict the infalling modes to have exponentially 
small energies. Under this circumstance also, the states in the late time Hilbert space 
remain well defined. However, this prescription clearly imposes severe restrictions on 

the physics that the infalling observer can observe. 
The dilemma seems to force the conclusion that the semiclassical theory of Hawking 

radiation, even with the self-interaction corrections, breaks down rapidly. Furthermore, 
there are two complementary, semiclassically controlled Hilbert spaces at late times. One 
is appropriate for describing the physics seen by the infaller, and the other is appropriate 
to a description of the Hawking radiation. It is possible that these complementary 
Hilbert spaces should be identified in some way giving a realization of black hole 

complementarity. 

7. Conclusion 

In this paper we have studied back-reaction effects in Hawking radiation from 1 + 1 
dilaton black holes. First of all, we constructed the effective theory produced by integrat- 
ing out gravity and the dilaton and used this to study the self-interaction of the Hawking 
radiation. We found an unusual renormalization of the Kruskal frequency of outgoing 
states that nevertheless left the Hawking temperature unchanged. Then we studied the 
radiation issuing from a dynamical background produced by a quantum mechanical state 
falling into a black hole. This calculation was carried out in an approximation where 
the self-interactions were removed in order to examine the scattering effects separately. 
The in-out interaction was found to produce large scattering phases in outgoing states 
that nevertheless conspire to leave the Hawking state essentially unchanged. Finally, we 
asked whether these semiclassical conclusions could be trusted. We displayed the evi- 
dence that semiclassical methods have limited validity in constructing the Hilbert space 
on late slices. We concluded from this that the structure of the semiclassically controlled 
Hilbert space supports a formulation of black hole complementarity. 
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Appendix A. Derivation of the effective action 

In this appendix we will discuss the derivation of the effective action for dressed 
particles in 1 + 1 dilaton gravity. The derivation will closely follow the work of Kraus 

and Wilczek [10] as well as [12]. The reader is referred to these references for more 
detailed discussions - the basic steps are reproduced here mainly for ease of reference. 

Fig. 3 is a useful picture of the scenario being considered. The plan of this section is 
as follows. First we implement the constraints in 1 + 1 dilaton gravity and integrate 

the action for an arbitrary constrained trajectory of the geometry and the particles 

propagating in it. Differentiating this action with respect to time gives a Lagrangian in 

which the constraints have been incorporated. Fixing a gauge to eliminate redundant 

degrees of freedom yields the effective Lagrangian for dressed particles. 
In Section 3 we presented the Hamiltonian formulation of 1 + 1 dilaton gravity coupled 

to N matter particles. Since the resulting action did not contain time derivatives of the 
v a r i a b l e s  N t a n d  N r, these quantities can be integrated out generating the constraints 

that Ct = HtM + Ht = 0 and Cr = HrM + Hr -- 0. By considering the linear combination 
of constraints (7rT"rL/2LR 2) Cr + (R~/RL)Ct = 0 where the prime denotes O/Or we find 
that: 

u 7rTrt, R ' , / ( P i ] Z + m z ]  t~ ( r - r i ( t ) )=0  
- M ' -  Z 2--~-~Pi+ L R V k L /  (A.1) 

i=1 J 
with M given by: 

M = 2 N + -~. a2R 2 - (R' /L)  2 ( 1 . 2 )  

This tells us that in the regions away from each of the particles the quantity M is 
constant and these constants have been labelled Mi in Fig. 3. Indeed it can be shown 
that in the regions between the particles the geometry is that of a black hole of mass 
Mi/~.. Since Eq. (A. 1 ) tells us that M i is independent of r we can invert the relationship 
in Eq. (A.2) to find the following expressions for 1rL and ~rR: 

~L = 2Rx/MiTr + (R'/L) 2 - aZR 2 , 7rR = 7r~L/R' (A.3) 
~r 

The equation for ~R is taken straight from the expression for the constraint H~ in 
Eq. (14). To find the relationship between the Mi w e  observe that the constraints at the 
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are consistent with L and R being continuous at the positions of the particles with 7rL 

and 7rR free from singularities there. Then, integrating the constraints Cr and Ct across 

the positions of the particles gives: 

"lT"L ( r i Jr- e )  - -  "rl'L ( r i - -  ¢E ) = 

Rt(ri A- e) - Rt(Pi - E) . . . .  

-Pi 
L(:i) 

L(Pi) t / (  Pi ~2 

R(ri) V\~J  + m 2 (A.4) 

In these equations, Pi refers to the position of the ith particle. Simultaneous solutions of 

each pair of equations for each i expresses M i in terms of M i - 1  and Pi. 
We now follow the procedure of Kraus and Wilczek to derive the effective action 

for the dressed particle trajectories. The idea is that the particles drag kinks in the 
geometry around with them and we seek to include the contribution of these kinks 

to the action as part of the gravitational dressing of the particles themselves. To do 
this we will work with a single particle in dilaton gravity - the generalization to N 
particles that do not cross will be trivial since we will just have to add similar pieces 
for every particle in the system. So we consider a single particle trajectory rl( t)  in 

Fig. 3 with Mo/,~ being the mass of the geometry for r < rl and M1/A, the mass 
for r > rl, is the ADM mass and Hamiltonian of the system. We begin by noting 

that the action for an infinitesimal variation of the geometry and particle trajectory is 

dS = pdr I + f ( 7rL 6L + ~R 6R) dr - ( M1 / A) dt. We want to integrate S = f dS for paths 
of the system that obey the constraints. The key observation is that for r < >  rl,  ~rL and 

7rR are fixed by the constraints as a function of L and R. Consequently, the Hamilton- 
Jacobi function for a trajectory of the geometry, S = f(~rLSL + ~rR,~R) is independent 

of trajectory and is a function only of endpoints. Let us first consider trajectories of 

the geometry that leave M0 and M1 fixed. In the regions r < rl and r > rl we can 
follow [12] to integrate S from a configuration A to a configuration B as follows. 

Starting from any configuration we can integrate L(r) along a path of constant R(r)  to 
a configuration with (R~/L) = x/MTr - AZR 2. This configuration has 7rL = 7rR = 0 and is 

therefore static. Then holding this relation between R' and L fixed we integrate to some 
other standard static configuration. The second leg of the integration has ~rL = ~rR = 0 

and so does not contribute anything. To integrate between any pair of configurations A 
and B we integrate in this manner from A to the standard configuration and from there 

to B. This gives the following action for the motion of the geometry in the regions 

r > rl and r < rl in which we have dropped the constant arising from the lower limit 
of the L integration: 

S= / drFo(r, t )  + drF l ( r , t )  (A.5) 

0 r~+¢  

where we define B i = ~/A2R(r) 2 - Mi'n" and 
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2RL / (Rt)2_ B~ + 2RR'In [(R'/L) - v/(R'/L)2-B~ ] 
F, = V \ - - £ /  - g -  (A.6) 

Eq. (A.5) is the action for a trajectory for which there are no variations of the geometry 
at rl, the position of the shell and which keeps the mass MI constant. To find the action 
for a general trajectory of the geometry consider a general variation of Eq. (A.5) with 
respect to L and R. We find that: 

oo  oo  

[OFI (rl OFI. e) d~l + f d r ~ d M l  dS = dr [~'tfiL + qrgtR] + [-~ + e) -- -~trl -- J OMl 
0 rl 

(A.7) 

where d/~ represents the total variation in R at the position of the particle and dMi 
is the variation in the ADM mass caused by an arbitrary variation of L and R. The 
term proportional to dR arises because W is constrained to be discontinuous across 
the position of the particle (Eq. (A.4)) and represents the contribution of the kink in 
the geometry. The terms proportional to dMl arises because a general variation of the 

geometry can change the mass of the system. There is no contribution from dMo because 
we assume that the mass of the background black hole is held fixed. Since we must 
require that 8S/t3R = 7rR and 8S/6L =¢rt, we must subtract the integrated contribution 
of the two anomalous variations on the right of Eq. (A.7). Putting everything together 
we arrive at the following action for a constrained variation of dilaton-gravity coupled 

to a single particle: 

r,/e f ~ d l ~ [ a F l ( r  ' OFl ] S= drFo + drF1 - dt--~ [ ~ 7  -4-6) - ~ - 7 ( r l - 6 )  

0 rj+~ 0 

i jt / af dt dr I O-'MIOFI dt--£-Ml 
0 rl 0 

(A.8) 

Here /~ = R(rl) is the value of R at the position of the particle. Although we have not 
explicitly considered the contribution of a variation of rl to the action, the integrability 
of the equations ensures that such a piece has been included as can be checked by 
explicitly differentiating back. 

We are now in a position to derive the effective constrained Lagrangian for this system 
by differentiating the action in Eq. (A.8). Indeed, writing L = dS/dt, and using the 
integrated constraints for a massless particle (m -- 0) in Eq. (A.4) in imitation of Kraus 
and Wilczek [ 10], we find the following Lagrangian: 
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[(R,/,)< 
r I - - ~  O 0  

+ f dr [TrLL +'n'R/~] + f dr ['trLL +¢rRR] MIA (A.9) 

0 r+l+~ 

In this equation > and < indicate positions on either side of the particle at ri that are 
infinitesimally close by, but not subject to the constraint in Eq. (A.4). Furthermore, 
r/ = + = sign(p). The expression on the second line is the contribution of a kink in 

the geometry to the effective Lagrangian and all the effort of integrating up the action 
and differentiating back has been designed to correctly pick up this contribution. We 
are now free to fix a gauge for L and R. A particularly convenient gauge is L = 1 and 
R = exp ar  which yields the following effective Lagrangian: 

( ear - l l ~ l , 4  ) L=(-~)i'{ear( M%l-M---~o~-vi--~-lTAe2arln,-~r t i b i A , i } -  --  MI 

(A.lO) 

This equation is to be interpreted as L = p¢171 - H where H = MI/A is the Hamiltonian 
of the system and Pcl is the effective canonical momentum. In fact, it is convenient to 
subtract out the constant contribution of the background black hole to the Hamiltonian 
to write the Hamiltonian as H = (MI - M0)/A. To get the effective Lagrangian for 
multiple particles we need only add a similar p~ term for each particle and pick the 

new ADM mass as the Hamiltonian. This has been done is Section 3. 

Appendix B. Integrability of the dressed mechanics 

In this appendix we will demonstrate that the quantities Mi that determine the masses 
of the geometries in between the particles form a system of N conserved quantities 
with mutually vanishing Poisson brackets. This shows that the effective dynamics of 
the system is classically integrable so long as the particles do not cross each other. To 
show that dMi/dt = 0 we start with the observation that dM~/dt = 0 since M~/A 
is the global Hamiltonian of the system. Next, observe that Eq. (17) defining Pci can 
be written as a definition of Mi-i in terms of the dynamical of variables of the ith 
particle and Mi: Mi-!  = Mi- l (P i ,  r i ,Mi ) .  Let us take as the induction hypothesis that 
dMi+l/dt = 0. We can write: 

dM_____2i_ cgMi dMi+l + OM---------L-i dpc(i+i-----------2)) + OM-----Li dri+------~l (B.1) 
dt ogi+l dt OPc(i+l) dt ari+l dt 

We now compute the various partial and total derivatives required to evaluate this 
expression and plug back in. First of all note that Eq. (17) for the canonical momenta 
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can be written in the form Pc(i+l) = f ( M i ,  ri+l ) - f (Mi+l ,  ri+l) for a suitably chosen 
function f .  Define the quantities: 

Of(Mi,  ri+l ) 
A ( Mi, ri+l ) = 

aMi 

B(Mi ,  Mi+l,ri+l ) = Of(Mi,  ri+l) Of(Mi+l,ri+l) 
Ori+l c?ri+l (B.2) 

We can now differentiate both sides of the equation for Pc(i+]) to get: 

OMi 
I = A(Mi ,  ri+l ) - -  

OPc(i+l) 

OMi 
0 = B(Mi ,  Mi+l, ri+! ) + A(Mi ,  ri+l ) - -  (B.3) 

Ori+l 

These expressions can be solved to find the partial derivatives in Eq. (B.1). Finally, we 

want to compute dri+!/dt and dpc(i+l)/dt. Since M u / a  is the Hamiltonian these are 

given by dri+j/dt  = (1/a)aMu/Opi+! and dpc(i+!)/dt = (-1/a)aMu/ari+] where the 
partial derivatives are taken while holding all the other canonical pairs {ri,Pci} constant. 
We can use the chain of definitions of m i in terms of Mi_ 1 to compute these derivatives 
as: 

dri+l K 3Mi+l dpc(i+l ) - K  OMi+l 

dt ,~ 0 P c ( i + l )  ' dt ,~ Ori+l 

with K defined as: 

(B.4) 

( OMN ~ . . . (OMi+2~  

K =-- \O---M~U--lJrN,pcN \aM/+l/ri+2,Pc(i+2 ) 

Putting these expressions back into Eq. (B.1) we find that 

(B.5) 

dMi aMi dMi+l - 1 KB(Mi ,  Mi+l, ri+l ) 

dt - aMi+l d - ~  % A(Mi ,  ri+l ) A(Mi+l, ri+l ) 

- B ( M i ,  Mi+l, ri+! ) - K  
+ = 0 (B.6) 

A(Mi ,  ri+l ) A(Mi+I, ri+! ) 

where we have used the induction hypothesis that dMi+l/dt  = 0 that is satisfied for Mu. 
Having shown that the Mi are conserved we show that they have mutually vanishing 

Poisson brackets. The Poisson brackets are given by: {Mi, My} = ~k(aMi/Ork  aMj/apk 
--aMi/OPk OMi/ark) where each partial derivative is evaluated while holding all other 
canonical variables constant. We can use the Eqs. (17) for the canonical momenta as 
an implicit chain of definitions of Mi in terms of Mi-I: Mi = Mi(Pci, r i ,Mi - l ) .  This 
permits us to write Mi = gi({Pcj,rj}j<_i). So consider { g i ,  Mj}  for j > i. Because 
each M i is defined in terms of pj and rj for j _< i, this Poisson bracket is given 

by: {Mi, M j}  = )-~k<_i(agi/arkag.i/aPk - a g j / a p k a g i / a r k ) .  Now define G(i , k )  = 
( aMi/cqMi_l ) . . .  (aMk+l/aMk) with G( i, i) -- 1. Then OMi/Ork = G( i, k )aMt/ark  and 
aMi/Opck = G(i,  k)aMk/@ck. This gives us the result that: 
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[OMk OMk OMk OMk] 
{Mi, M j } = ~ G ( i , k ) G ( j , k )  i--~r k 3pck dpck ~rkJ  = 0  (B.7) 

k<_i 

This proves that the Poisson brackets of the Mi vanish. 
We have seen that the Mi form a set of N mutually commuting quantities with 

vanishing Poisson brackets. This tells us that the system of N gravitationally dressed 

particles is classically integrable so long as the particles do not cross. 

Appendix C. Computation of one particle dressed wavefunctions 

In this appendix we will solve the WKB self-consistency conditions in Eq. (25) in 
order to compute the one particle dressed wavefunctions. It is useful to define • and 

as the following small quantities: 

Mv/-M---~I~- M'c/-M~+•,  e a t ° -  Mv/-M-~l~+6- Mv/-'M-'~+•+~ (C.1) 
A A A A 

In these equations • measures the difference between the boundary of the trapped sur- 

faces for self-interacting particles and the event horizon associated with the background 
black hole. The small quantity d~ measures how far the initial position of the particle 

deviates from the boundary of the trapped surfaces. Using the initial condition So and 
the equation of motion (23) the self-consistency conditions (25) can now be written 

as: 

In order to solve these equations we have to specify the kinematical regimes that 
are of interest to us so that we can make suitable approximations. We are interested 

in observing the radiation at late times on 2 "+. So we will take e ar >> ~ / A  
so that the observations are made far from the horizon of the black hole while u = 
e-at (e  ar - M ~ / A )  is small. We will also assume that the outgoing state has an 

energy much smaller than Mo/A, the energy of the black hole, because the semiclassical 

methods are not reliable for extremely energetic states. This choice of kinematical regime 
implies that both e and 3 are much smaller that Mv/-M--~o~/A. It is shown in Section 4.1 
that Hawking radiation observed at a time t arises from states with Kruskal momenta 
that grow rapidly with time and this tells us that for the physics questions of interest to 
us we can drop the E and the B in the exponent of Eq. (C.3) to leading order. Having 
linearized the equations in this way we solve them to find that: 

- e -a ' (e  ar - Mx/-M-~/A) ( 7 _  1) (C.4) e - a t ( e  ar m v / - ~ / A )  • = 

= 1 + e -a t (T  - 1) ' 1 + e-'~t('y - 1) 
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( kA + f ( r , t , k ,  Mo)) (C.5)  Y --- exp 

In the equat ion for y, the funct ion f is zero to leading order - we have included it 

merely to remind  us that there are addit ional  subleading dependencies  that we have 

omitted. 

We are now ready to calculate the phase of  the dressed wavefunct ion S(r, t) = 
So(ro) + R(r) - R(ro) - ( M l  -- Mo)t/a where R = fpc dr is given in Eq. (27 ) .  Since 

we have only  calculated • and 8 to leading order we should l inearize R in terms of  

these small  quanti t ies.  Keeping terms of  order • ,  8, • In • and 8 In 8, we substi tute our  

solut ions for these quanti t ies  to find: 

S ( r ' t ) = 2  Mx/-"-----°Zre-at( A V ~ )  ( y - l )  

[1 + f ( r , t , k ,  Mo) + I n ( 1  + e - a ' ( y -  1))] 
× 1 + e-at(y  - 1) (C.6)  

As discussed earlier we expect f to be small  and from Eq. (C.4)  we see that if  • is 

assumed to be small  then at late t imes on Z + (large r with e-at(ear-Mv/-M-'~/A) small)  

e-at( ')/-  1) must  be  small  also. This yields the leading order dressed wavefunct ion in 

Eq. (28)  
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