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Abstract 

We generalize the concept of symplectic maps to that of k-symplectic maps: maps whose kth 
iterates are symplectic. Similarly, k-symmetries and k-integrals are symmetries (resp. integrals) 
of the kth iterate of the map. It is shown that k-symmetries and k-integrals are related by the 
k-symplectic structure, as in the k - 1 continuous case (Noether's theorem). Examples are given 
of k-integrals and their related k-symmetries for k = 1 . . . . .  4. 

P A C S :  02.30.Ks; 02.90.+p 
Keywords :  Difference equations; k-symplectic maps; k-Lie symmetries; k-integrals 

I.  Introduction 

In recent years there has been considerable effort expended to extend theorems 

and techniques for differential equations to their discrete analogue, difference equa- 

tions [1,4, 5, 10, 13, 15, 17, 21 25, 27]. Hamiltonian systems form an important subclass 

of  ordinary differential equations: the corresponding discrete theory is that o f  symplec- 

tic maps. Such maps have been investigated by a number o f  authors [3,9, 19,28]. In 

particular, Maeda [16] was able to show that Noether 's  result linking symmetries and 
first integrals [20] extends to symplectic maps. 

Within the last two years it has been noticed that discrete systems can admit a type 

o f  symmetry unavailable in continuous-time systems. These are k-symmetries, which 
are not symmetries o f  the map itself but of  the kth iterate of  the map. Discrete k- 

symmetries o f  various types have been reported [ 11, 12]. 

* Corresponding author. 
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In this article we introduce the concept of  k-Lie symmetries (that is cont inuous  

k-symmetries)  o f  discrete symplectic maps. In fact, we extend this to k-symplectic 

maps, whose kth iterates preserve the symplectic structure. We show that the Noether 

correspondence between symmetries and first integrals o f  Hamiltonian systems ex- 

tends to a relation between kl-Lie symmetries and k2-integrals of  k3-symplectic maps 
(where in general kl ,k2  and k3 need not be equal). While this reduces to Maeda 's  
result in the c a s e  k l  = k2  = k3 = 1, our proof  is independent of  his and rather 

simpler. 

We also show that a k-symplectic map may imply the existence of  several distinct 

symplectic structures for the kth iterate, so that a single k-symmetry may be used to 

determine several first integrals and vice versa. 
In Section 4 we provide various examples for k = 1,2, 3 and 4. 

2. Symplectic and k-symplectic maps 

A map f : R 2n ---+ R 2n (or f : C 2n ~ C 2n) is symplectic if  it preserves a symplectic 

structure on R 2~ (respectively C2n). It is k-symplectic if  the kth iterate f[k] preserves 

the symplectic structure. Throughout this section we will use R 2n for economy: all the 

arguments can be extended trivially to the complex case. 
Recall that a symplectic structure f2 on R 2n satisfies the following conditions: 

1. f2 is a skew-symmetric matrix, g2 r = - f2 ;  

2. [2 satisfies the Jacobi identity 

~il  k + ~ l  Qki + [2kl ~ij  =-- O, i , j ,  k = 1 . . . .  ,2n  ; 
/=I 

3. (2 has maximal rank. 

In general, i f 9  is a function on R 2" we will write 9' := , q o f  and 9 tk) := 9 o f  [~1, that 
is the image of  9 under the mapping and its k-iterate• Note that (2 is a matrix-valued 
function, so f2' = f2 o f ,  etc. 

The derivative map f ,  o f  f is the matrix 

0fj 0fl 
OXl ~X2n 

f *  :=  

~xj ~x2,, 

Thus, if  a vector field ~ on R 2n has components ~j(P/0xj), it is carried by f to the 

vector f , ¢  with components )-~'~k f ,  jk~k(O/Ox/). 

Some care is necessary with the transformation properties of  f2. Usually, the sym- 
plectic structure is given by a 2-form, or skew, 2-covariant tensor ~o. With that choice, 
the Noether relationship between a symmetry ( of  a Hamiltonian system and its 
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corresponding integral I is given by V I  = ~r~o. It will be more convenient in this 

article to take the matrix inverse o f  the 2-form, so we will have a skew, 2-contravariant 
tensor f2. The Noether relation is then ~ = (V I (2 )  r. 

With the above notation, f is symplectic if 

./,Of,r = f t .  

Similarly, f is k-symplectic if 

( f [ q ) , Q ( f [ q ) , r  = ~(k),  

or equivalently 

( f , ) ~ - l ) . . .  ( f ,  )~l) f , ~  fr, ( fr, )¢J~ . . . ( f~, )~k-I~ = ~2l~.) . 

We say that f is strictly k-symplectic if k is the smallest positive integer for which 

this is true. 

The gradient of  a function, Vg, will be considered to be a row vector. Note that in 

general V ~ ~ V. In fact, V~g = ( V g ) ( j , )  - j .  

3. k-integrals and k-symmetries 

A function I : R 2n --+ R is an integral (or conserved quantity) o f  a map f if 1 z = 1. 

The extension of  this definition to k-integrals is immediate: I is a k-integral o f  f if 

1/k) = I. That is to say I is a k-integral of  f if and only if I is an integral of  f f q .  

We say that I is a strict k-integral if it is a k-integral and in addition [(J) ~L 1 if 

j < k .  
In a similar way, a vector field ~ is a symmetry of  f if f , ~  = ~' (which is 

equivalent to requiring that the flow of  ~ maps orbits of  f to orbits [4, 17]). Thus, 

is a k-symmetry of  f if and only if ~ is a symmetry of  f[k], or ( f [ q ) , ~  = ~lk). It is 

a strict k-symmetry if it is not also a j -symmetry for any j < k. 

Proposition 1. I f  l is a (strict)  k-h~tegral and  ~ a (strict)  k - s y m m e t r y  oJ f ,  then I'  

is a (strict)  k- integral  and  ( f ,  ) 1~, is a (strict)  k -symmetry .  

The following result will be used again later, so we state it separately as a lemma. 

Lemma 2. ( f t q ) , ( f , ) - I  = ( f ,~k) ) - l ( f Iq )~ .  

Proof of Lemma 2. The LHS can be expanded as 

( f [ k l ) , ( f , )  I = Jr(k-l), . . . f , ( J , )  I = (.r¢k)~.l, , ,(~[k]~,., , ,  . [] 

I Note that what we call a strict k-symmetry is called a k-symmetry in Refs. [1 l, 12]. 
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Proof  of  Proposition 1. Clearly, (i,)(k) = (l(k)), = I ' .  Suppose then that (I ' )  (j) = I t 
with j < k. If  we iterate each side a further k - 1 times and use that fact that I {kl = ! 

we obtain i(k+j) = i(j) = I, which is a contradiction. 

For the symmetry case, consider ( f [ k ] ) ,  ( ( f , ) - t  ~,). From the lemma we can rewrite 

this as (f~,k))-l[(f[k]),~], .  Using the fact that ~ is a k-symmetry, this becomes 

= 

SO ( f *  ) -  1 ~,' is a symmetry of  f[k]. 
If  it is also a symmetry of  f[J] for some j < k, then ( f ( j ) ) , ( ( f , ) - l ~ , ) =  [ ( f , ) - i  

~'](J). Using the calculation above with j in place o f  k, we find that this is equivalent 

to ( f [ J ] ) , ~  = ~(J), contradicting the assumption that ~ is a strict k-symmetry. [] 

The following theorem is equivalent to results derived by Maeda [16]. 

Theorem 3. Suppose that f is a symplectic map with respect to Q and that I is an 
integral. Then ~ :=  (27IQ) r is a symmetry o f f  such that ~q~£2 = O. 2 Conversely, i f  ~ 
is a symmetry o f f  which satisfies £#~(2 = O, then there is a (possibly time-dependent) 
integral I : R 2n -~ R such that ~ = (x71~2) r. 

Proof.  Consider ~ :=  (271(2) r, so that ~ ' =  (27'I ' t2 ' )  r. Since f is assumed to be 

symplectic we have ~2' = f ,  t 2 f ,  r. Together with the transformation property of  2 7 we 

have 

~' = ( 2 7 I ' ( f , ) - l f ,  f2fr,) r = f , (27If2)  r = f , ¢ .  

Thus ~ is a symmetry. Since £2 satisfies the Jacobi identity, the condition 5°¢f2 = 0 is 

equivalent to requiring that 

0 (o9,j~k) ~ j (~o , i rk )  O, (1) 
Ox i 

where 09 :=  £2 -1 . Note that in three dimensions, this is just 27 × (~ra;)  = 0. That this 

is satisfied follows directly from the fact that ~ro9 = 271. 

For the converse we have L,e¢to = 0 and therefore 

&-5 = o .  

It is a standard result (the l-dimensional case o f  the Poincar5 Lemma [6, p. 224]) that 
this implies the existence o f  a function I such that ~r~o = 271, whence ~ = (WIQ) r. 
Now since ~ is a symmetry o f  f ( f , ~  = ~'), 

( V l ) '  = (~Tco)t = ( f , ~ ) T ( f ,  )--T co( f ,  )-I = ~Tog(f,)--I = 27'1, 

2 Here dr denotes the Lie derivative with respect to ~ [6, p. 147]. For a symplectic structure Q, the condition 
L-a~(2 = 0 reduces to equation (1). 
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where A - r  := ( A - l )  r. Therefore, V(I  - I  t) = O, so F = I + c, leading to the time- 

dependent integral [(n) = I - nc. [] 

Note. The relation between symmetries and integrals is exactly as in the continuous 
case [2, 14]. Therefore, the well known results for the continuous case combined with 
the theorem suffice to show that the algebra of symmetries ~ such that LP~f2 = 0 
(sometimes called Noether symmetries) with the Lie bracket, is isomorphic to the 
algebra of first integrals, modulo constants, with the Poisson bracket. The result proved 
by Maeda is somewhat different to the theorem above, but is equivalent to it. 

Corollary 4. I f  I is a ki-integral of  a k2-symplectic map f ,  then ~ := (VIf2) r is' a 

k3-symmetry of  f and ~ f 2  = O, where k3 is the least common multiple o f  ki,k2. 
Conversely, if  ~ is a ki-symmetry o f f  satisfying ~ ( 2  = 0 and f is k2-symplectic 
then there is a (possibly time-dependent) k3-integral I such that ~ = (VIO) r. 

Proof. Replace f by f[k3] in the theorem. [] 

Note. It may occur that the resulting k3-symmetry is also a j-symmetry, where j 

is some divisor of k3. In that case the k3-symmetry is not strict. The same applies to 
integrals. 

An interesting question appears at this point. Given a k-integral 1, we know from 
Proposition 1 that 1 (1),I(2),...,I(k-I) are also distinct k-integrals (although they need 

not be independent). We know from Theorem 3 and its corollary that there is a sym- 
metry ~ corresponding to I. Using Proposition 1 again, we have that ~ := ( f , ) - I ~  is 
a symmetry of f[k]. The question is whether ~ is the symmetry associated to I t. 

The answer is yes if we impose the condition that f be symplectic. 

Proposition 5. Let f be a symplectic map with a k-&tegral I and corresponding 
k-symmetry 4. Then the k-symmetry corresponding to I t is ( f ,  ) - l  ~. 

Proof. Consider 

( V i a ) '  = V'I tQ ' = V I ' ( f ,  ) - i f ,  (2f ,  r = ( V I ' Q ) f , r .  

Therefore, the symmetry ~ = (VFf2) r corresponding to F satisfies 

f , ~  = (VIf2) ' r  = ~' 

or ~ = ( f , ) - l ~ , .  [] 

In the more general case where f is strictly k-symplectic, this need no longer be 
true. 

Example 6. Consider the involution 

f ( x ,  y ,u ,v)  = (v, y ,u ,x)  . (2) 
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As f[2] is the identity f is trivially 2-symplectic for any symplectic structure on R 4 

and any function R 4 ---+ R is a 2-integral o f  f .  So take the symplectic structure 

( 2 =  0 0 0 - 
0 0 
1 0 

and the 2-integral I(x, y, u, v) := x. 
The symmetry corresponding to I is -O/Ou. Now F(x, y, u, v) = v, with correspond- 

ing symmetry ~/Oy. On the other hand, ( f , ) - I  O/Ou' = O/Ou, so the answer is no. 

The reason that this fails i f  f is only k-symplectic is that if  f , ( 2 f f  # f2' the relation 
between vector fields and functions is changed. In this example, the symplectic structure 

transforms to 

0 

- 1  0 0 0 

0 0 0 

0 0 - 1  

after one iteration, i.e. (2 = ( f , ) - l ( 2 , ( f , ) - r .  Note that ~ does pair I '  with ~/Ou. 
The next proposition demonstrates that the new correspondence is still a symplectic 

structure. 

Proposition 7. I f  f is k-symplectic with respect to (2, then (2 := ( f , ) -  l (2, ( f , ) -  r is 
also a symplectic structure and f is k-symplectic with respect to (2. 

Proof.  I f  f is invertible then so is f , ,  hence ( f , ) - 1 ( 2 ~ ( f , ) - r  is skew and maximal 

rank. 
Let {-,-}a be the Poisson bracket determined by (2. The Jacobi condition on g2 is 

then 

{{hl,h2}a, h3}o + (cyclic permutations) = 0, Vhj C C ~ ( R 2 n ) .  

Now we claim that 

= 

To see this, recall that the LHS is equal to (Vhl  (2(XTh2 )r )', so using the transformation 
properties of  E 7 we obtain 

( { h l , h 2 } f l ) , ,  t - 1  t V h l ( f ,  ) (2 ( f , ) - r ( V h ~ ) T  ' ' = = { h i , h 2 }  ~ . 

It follows that 

{{h~l,h~}D,h~3}~2 + (cyclic permutations) = 0, Vhj ~ C ~ ( R 2 n ) .  

Since for every function h on R 2n there is a function g such that h = g' ,  this demon- 
strates that (2 satisfies the Jacobi identity. 
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To see that f is k-symplectic wrt (2, we have to show 

( f l k l ) ,  (2( f I<)T ,  : (2(k) . 

Using Lemma 2 and the definition of (2, the LHS becomes 

( f . (k))_,(  f.[k]).~2,(f.[k]),r(f.(k))_ r ,, #k),_~o(k+,),  C(k),_T (2,k) = ~ , J > k  ) o :  I j #  ! ~ . D 

Thus, if a map f is k-symplectic but not symplectic, f effectively maps between 

different symplectic structures. While the k-integrals and k-symmetries are the same 
for each symplectic structure, the homomorphism between them changes, as shown in 
the following proposition. 

Proposition 8. I f  I is a kl-integral and ~ : :  (~71~2) r is a k2-symmetry oJ'a map .f 
which is k3-symplectic with respect to ~2, then the kl-integral I' and the k2-symmetry 

:= ( f . )  J~' are related by ~ : (VI'(2) for arbitrary kl,k2,k3 ~ N, where (2 is 
defined as in Proposition 7. 

Proof. 

( f . ) - ' ~ . '  = ( ) ' , )  J(VI~) 'T = ( f . )  ~(V ' I '~ ' )  r 

= ( V I ' ( f . ) - I Q ' ( J , ) - r )  r = (Vl ' (2)  r. [] 

It should be noted that the combination of the above propositions can be used to 

find additional k-symmetries by the following two step procedure. 
1. Simply calculate the k-integrals I (~) . . . .  , i(k-1). 

2. From each of these we can derive further k-symmetries (which may or may not 
~ ~, 

be new) by using the alternative symplectic structures ~2, ~ , . . .  
Example 6 above demonstrates this. The function l(x, y, u, v) = u is an integral of the 

map (2), so step 1 gives nothing new. However, the corresponding symmetry generators 

using f2 and (2 are distinct, - ~ / &  and -~/~v, respectively. 
Let Q{M} be defined inductively by 

(2 {1l := (2; ~2 {j+l) := j = 1,2 . . . . .  

The above discussion is summarized in the theorem below, which follows from 

Propositions 1, 7 and Theorem 3. 

Theorem 9. Let I be a k-integral of  a k-symph'ctic map f .  Then the vector fields" 
~i,j "= ~Tl(i)Q{J} are k-symmetries of  f .  

Note that there remains an open question: while Theorem 3 guarantees that 
~ -  (2{J} = 0, it is not clear if ~ Q{k} is zero for arbitrary k. It can be shown that 
~ ,  ~2{k}=0 in the case where a non-trivial linear combination a•{;} + b(2 {k} is a 
symplectic structure, so that (2{J} and ~{k} are compatible in the sense of  [8, 18]. 
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The importance of  this is that since (i,j is then a Noether symmetry with respect 

to I2 {k}, there is a (possibly new) k-integral i such that 

In other words, ~2{J}(O{k}) -1 is a recursion operator. For a general discussion of  

recursion operators in finite-dimensional Hamiltonian mechanics, see [7]. Recursion 
operators are best known for their role in completely integrable, infinite-dimensional 

Hamiltonian dynamics. For example, they can be used to generate the: hierarchy of  

conserved quantities for the KdV equation, see [8, 18]. 

Referring again to Example 6, we find that f2 and t) are compatible: Thus, we have 

that <LPO/Ox(2 = 0 and 5~0/0vf2 -- 0, leading to the new integral y in each case. 

4. Examples 

Here we give some examples of  k-integrals and k-symmetries for k --- 1 . . . . .  4. 
Examples with higher values of  k can easily be constructed in higher dimensions. 

4.1. The case k = 1 

The case k = 1 is o f  course that o f  integrals o f  symplectic maps. For the case of  

maps in the plane, an 18-parameter family of  integrable (and reversible) maps is given 

in [26]. 
Define the quartic polynomials f j  and 9/ as components of  

f ( x ) - - ( f i ( x ) , f z ( x ) , f 3 ( x ) )  = ( A o X )  × ( A I X )  , 

o(x) = (01 ix ) ,  o2(x) ,  0 3 ( x ) )  = (ASX) × 

where 

Ai : =  t~i gi ~i , i = 0, 1; X := . 

/£i •i # i  

The entries in Ai are 18 arbitrary parameters. 
I f  we now define the map M ( x , y ) =  (x' ,  y ' )  by 

x '  := f l ( y )  - x f 2 ( y )  y ,  := 01(x') - y02(x')  
f 2 ( Y )  - x f 3 ( y ) '  02(x t) - yo3 (x ' )  ' 

it can be shown that M is symplectic with respect to 

1 
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where 

pi(x, y )  :=  ~ix2y 2 4- flix2y + 7i x2 4- (~ixy 2 4- eixy + ~ix + tciy 2 + 2iy  4- Iti , 

i = 0 , 1 .  

Moreover, the function 

po(x, y) 
I(x ,  y )  . -  - -  

p l ( x , y )  

~0x2y 2 4- flOx2y 4- 70 x2 4- 6OXy 2 4- eOxy +¢OX + l¢0y 2 4- 20y + #0 

~lX2y 2 4- fllX2y 4- "ll x2 4- 61xy 2 + e l x y  + ¢lX + ~ly  2 4- 21y + #1 

is an integral o f  M. 

The corresponding symmetry is generated by the vector field ¢ :=  (VIO)  T, or 

1 (~10 OI 0 ) 
=p-?k y x ax@ " 

As an example with two degrees of  freedom we take a system investigated by 

Bruschi et al. [3], in the form used by Suris to produce integrable maps with 2N 

degrees of  freedom [28]. 

Define M ( x ,  y,  u, v) :=  (x t , / ,  u ~, v ~ ) as follows (with a an arbitrary constant): 

t 2ax 
x :=  - y  + - -  , 

1 4- axu  

yt :=X 

p 2au 
U : =  - - V  @ - -  , 

1 + axu  

V t " = U  . 

The map M is symplectic with respect to 

O : =  
i o ooil 0 0 - 1  

0 1 0 

- 1  0 0 

and has integrals 

l l ( X , y , u , v )  : = x v  -- yu  , 

I2(x, y, u, v) :---- xu 4- yv  -- a(xv + y u )  + a x y u v  . 
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It is then easy to find the corresponding symmetries 

~ , ( x , y , , , , ~ )  := - x ~  - y ~  + u g  + 

~z(x, y, u, v ) : =  ( - y  ÷ ax(1 - yu))~--£ + (x - ay(1 - xv))~--~ 

+ ( - v  + au(l - xv)) ~--~ + ( u -  a v ( 1 -  y u ) ) ~  . 

4.2. The case k = 2 

We can construct a symplectic 2-dimensional map with a 2-integral as follows. First 

take an arbitrary bi-quadratic in the dependent variables x, y: 

I(X, y )  = Ax2 y 2 "+- Bx2 y -l- C x y  2 q- l~xy  q- lEx 2 -1- p y2 nt - CJX -I- I2I y . 

Then choose a linear involution 

L(x,y) :=  ( y , x ) ,  

(i.e. L 2 = Id). 

From [ we construct an I such that I(L(x, y ) )  = 2 wi th  ,~2 = 1,  

I :=  i (x ,y)  + 2i(L(x ,y)) .  (3) 

With the choice 2 = - 1 ,  

I (x ,y)  = (/} - C ) ( x 2 y  - y2x )  -}- (E  - / ~ ) ( x  2 - y 2 )  q_ ( ~  _ H ) ( x  - y ) .  

Now we search for a new mapping M which leaves I invariant. To simplify the 

task, we assume that M has the form M(x,y)  = (x'(x, y), y). Using new constants 

B : = / }  - C, E : = / ~  - P and G = G - H,  the invariance condition is 

0 = l ( x ' ,  y )  - I (x ,  y )  = B ( x ' 2 y  - x 2 y  - x ' y  2 + x y  2) q- E ( x  '2 - x 2) q- G(x '  - x )  

= (x'  - x ) { B y ( x '  + x - y )  + ~ ( x '  + x )  + a }  

So provided that M is not trivial, we have 

x ' = - x  + \ ~Ty-7- Y. ./ ' 

yl = Y .  

The desired map f is then defined to be the composite f :=  L o M,  

f (x, y ) = ( y, --x + \ -~y ~ B Y 2 - G "~j ) . 
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Since l (L(x,  y ) )  = - l ( x ,  y )  and l (M(x ,  y ) )  = I(x, y) ,  we have 

I ( f ( x ,  y ) )  = - I ( x ,  y ) ,  

l (  f[2](x, y )  ) = l(x,  y )  , 

so I is a 2-integral of  f as required. 
Checking the Poisson bracket for the canonical symplectic form 

[0 ;] 
~?= - 1  ' 

demonstrates that 

{x,y} = {x', y ' }  = 1 

with (x', y ' )  := f ( x , y ) .  
The corresponding 2-symmetry ~ then satisfies 

0I 
~.i = ~ , j  , j &j 

so the 2-symmetry is generated by 

[B(2xy - x 2 ) + 2yE  + G] + [B(2xy - y2 ) + 2xE + G] ~y . 

4.3. The case k = 3  

The simplest way to obtain an example of a 3-integral is to take the real form of a 

2-dimensional complex system, then set the 2 in Eq. (3)  to be a 3rd root o f  unity. 

Starting from the quadratic 

l(z,  w)  : =  z2w 2 q- Bz + Cw 

and the class of mappings L(z, w)  := (w, vz), we require that 

I(L(z, w) )  = 2I(z, w), 2 = v 2 

(note that it is not necessary that L TM - Id). This yields the conditions 

) 3 =  1, C = B/2 . 

Thus, 

l(z, w)  := z2w 2 + Bz + 22Bw . 

Taking a second map of the form M ( z , w )  := ( z ' ( z ,w ) ,w )  and solving the invariance 

condition I ( z ' , w ) =  l ( z , w )  as in Section 4.2, the condition is 

(z '  - z )  (w2(z  ' + z~ + 8 )  = 0 
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which can be solved for z': 

B 
Z t ~ - - Z  - -  - -  

W 2  " 

Combining L and M into f := L o M as before, we have 

To obtain the real form we set 

- 1  + i v ~  
2--  2 ' z = x + i y ,  w = u + i v ,  

and assume, for convenience, that the constant B C R. This gives 

1 
f ( x , y , u , v ) =  u , v , ~ ( x -  y v ~ )  + B i(u2 v2 

2(u2 + v2 ) - + 2uvx/3), 

~(y  + xx/3) + 2(u2 + V2)2-[(U2 -- / )2)V~ -- 2uv] . 

It can be checked that this map is 3-symplectic with respect to either of 

[i ° 
f21= 0 0 

1 

0 

In fact, f,c~jr, 
complex structure 

0 1 
- 1  0 

J =  
0 0 
0 0 

0 - 1  
- 1  0 

0 0 
0 0 

or  ~2  

[ 010 0 
0 0 " 

- 1  0 

= Af2j., where A = 3(_11 + JV~)  is the real form of 2 with J the 00] 
0 0 j2 = -1  
0 1 ' 

- 1  0 

These two symplectic structures satisfy 02 - -  J~"21 and they can be interpreted as arising 
from the real and imaginary parts of the symplectic structure on C2: if the symplectic 
structure is 

( 2 = ( a + i b )  IO -10] a, b c I I  
1 ' ' 

then the corresponding symplectic structure on 114 is aO1 + b(22. Note that in this 
example 

1 
51 = - -g ( l  -k Jx/~)Ol ----- ~--O2 

so had we known only one symplectic structure, call it f2, then the other could have 
been found by calculating ~ as defined in Proposition 7. 
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The original complex 3-integral I can be decomposed into real and imaginary parts, 

providing a pair of  3-integrals for f :  

B 
Ii (x, y, u, v) = (x 2 - y2 )(u 2 _ v 2 ) _ 4xy uv + -~ (2x - u + v V~)  , 

B 
12(x, y, u, v) = 2xy(u 2 - v 2) + 2uv(x 2 - y2) + ~ ( 2 y  - v - uv/3) . 

Moreover, provided we use a symplectic structure such that Jr2 is skew, the Cauchy-- 

Riemann equations guarantee that integrals arising in this way are in involution, 

{I1,12} = 0 as in this case. 

The symmetries corresponding to ll and 12 (using O1 ) are 

~'(x' y ' u ' v )  = ( - 2 v ( x 2 -  y 2 ) - 4 x y u  + Bv/5/2)  ~x f--7') + ( 2 u ( x 2 - y 2 ) - 4 x y v - B / 2 )  . 

+ 4xuv)~--~ - ( 2 x ( u 2 - v  2) - 4 y u v  + B)f~'v, + ( 2 y ( u 2 - v  2) 

¢2{x, y ,u,v)  = (2u{x2- y 2) - 4xyv - u/2)~ + {2~(x 2 -  y2) + 4xy,, - 8 ~ / 2  ) ~  

- 4yuv  + - 2y(u2_ + ~ ~2X~U2 ~ ~2~ 

Note that here 

h , a ~  -~ = -½(1 + V"gf~2(2~-') . 

I f  we calculate VIj01(2~ 1 as in step 2 of  the procedure above Theorem 9, we obtain 

a linear combination of  I1 and /2, so in this case the second step provides no new 

3-integrals. 

4.4. The case k = 4 

As in the k = 3 case, we proceed by working with a symplectic map on C 2, this 

time choosing 2 to be a fourth root o f  unity. 

Starting from the quadratic 

l(a, w)  : =  Az2w -k Czw 2 q- Bz + D w  

and the 4th order mapping L(z, w ) : =  ( w , - z ) ,  we then require that 

I(L(z,  w)  = 21(z, w ) ,  

or explicitly 

C = 2-1A, D = 2B, 2 z = - 1  . 

Thus, 

l(z, W) : =  A(z2w - 2 z w  2) q- B(z  -}- 2 w )  . 
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We then seek another map M ( z , w )  := ( z ' ( z , w ) , w )  satisfying l ( z ' , w )  = I ( z , w )  as 
before. The invariance condition is 

A[(z'  + z ) w -  2w 2] + B = 0 ,  

which can be solved for z': 

B 
z ' = - z + 5 ~ w - - - .  

A w  

Combining L and M into f := L o M as before, we have 

f ( z , w ) : =  w , z - , ~ w + - ~ w  . 

Setting 2 = i, z = x + iy, w = u + iv and assuming the constants A and B to be real, 
we obtain the real form 

( Bu A( u 2 + v 2  ) B Y )  f ( x , y , u , v ) =  u , v , x + v +  A ( u Z + v 2 ) ,  y - u  . 

This map is 2-symplectic (and hence 4-symplectic) with respect to either of 

[i Ii °li] ~'~1 ---- 0 0 --1 0 0 0 
1 0 0 o r  0 2  = 0 0 " 

0 0 0 -1  0 

In this case fr, (2jfr, = _f25" 
The original complex 4-integral I can be decomposed into real and imaginary parts, 

providing a pair of 4-integrals for f :  

Ii(x, y,u,  v) = A ( u ( x  2 - y2) + y(u 2 _ v2) + 2vx(u - y ) )  + B(x - v) , 

I2(x, y , u , v )  = A(v(x  2 - y2) - x(u: - v 2) + 2uy(x  + v)) + B ( y  + u) . 

Moreover, {I1,12} = 0 is automatically satisfied as in Section 4.3. 
The corresponding symmetries (using f21 ) are 

+ v y - u x ) +  B)~--~- A(x  2 -  yZ + 2vx + 2uy)~-- 7 ~ l ( x , y , u , v ) = ( 2 A ( x y  

+ A(u 2 - v 2 - 2uy - 2vx)  + (2A(ux - vy  + uv) + B)-~v , 

- x 2 - 2 u y -  2vx)~-'~ -- + ( A ( 2 u x -  2 v y -  2 x y ) -  B ) ~  - ~2(x, y , u , v ) =  A ( y  2 
GX y 

+ (2A(uv + ux - vy )  + B ) ~  u + A ( v  2 -  u 2 + 2uy + 2 x v ) S  ~ . 

Note also that because I '  = iI, we have that 

1; = 12, I~ = - 6  • 
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