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Generalization of damping theory for cavities with mirrors of finite transmittivity

R. W. F. van der Plank and L. G. Suttorp
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
(Received 27 July 1995; revised manuscript received 17 Octoben 1995

Standard damping theory is generalized to incorporate the effects of finite mirror transmittivity. The correc-
tion to the standard Langevin equation for the quasimode annihilation operator is determined in first order in
the transmittivity of the mirrors. From the Langevin equation an effective master equation is derived. As an
example, we study the decay of a single two-level atom at a fixed position in a nonideal cavity. For this case
we find a modification of the damped Rabi oscillations, which depends on the atomic position.

PACS numbgs): 42.50.Ct, 42.50.Md

[. INTRODUCTION the transmittivity of the cavity is no longer very small.
The restriction to cavities with nearly perfect mirrors in

There are mainly two approaches towards describing th#éhe formalism of Langet al. is a drawback when applying it
photon loss through the mirrors of a Fabryr®tecavity. The to physical systems. In the present paper we want to show
first method is rather phenomenological. One quantizes théhat the master equation obtained by Lagtal. [2] may be
electromagnetic field inside the cavity while ignoring the factgeneralized so as to incorporate the effects of a finite mirror
that the mirrors are not perfectly reflecting. The couplingtransmittivity. The correction that we will obtain is of first
through the mirrors is then modeled by an interaction with arPrder in this transmittivity. Since its origin lies in the spatial
external bath. With the use of the Born and Markov approxi-dependence of the universe modes, the correction term is
mations, one can obtain an effective master equation by tatexplicitly space dependent.
ing the trace over the bath degrees of freeddh In the The theory that we shall present is one-dimensional, so
resulting formalism, the field degrees of freedom are limitecthat transverse effects are neglected. We assume that the
to a discrete set of quasimodes, of which usually only one i§lectromagnetic field interacts with matter inside a thin slice
considered. in the cavity, with a thickness small compared to the relevant

The second and more fundamental method is based updiavelengths. For simplicity we consider a cavity with a
the so-called universe-mode picture. In this approach, th&éemitransparent mirror at one end and a perfectly reflecting
cavity is embedded in a larger box, the “universe,” the sizeone at the other. In the derivation of the master equation we
of which is taken to infinity. The electromagnetic field inside shall deal with a single quasimode only. The generalization
the box is quantized and a dense set of universe modes {8 more than one quasimode is straightforward, as our quasi-
found. As derived by Langt al.[2] for cavities with nearly modes are associated with strictly independent degrees of
perfect mirrors, it is possible to bunch these universe modefeedom.
into quasimodes and to obtain an effective description. The In Secs. Il and 11l we will derive the first-order correction
field degrees of freedom are then reduced to a nondenst the standard Langevin equation and the associated master
discrete set. The ensuing master equation has the same foffiuation. In Sec. IV we will apply the formalism to the de-
as the one resulting from the phenomenological approact¢dy of a two-level atom in a nonideal cavity. The master
However, the universe-mode picture gives more insight irfquation will be solved with the use of the method of damp-
the limits of validity of the formalism, especially with re- ing baseg6].
spect to the properties of the mirr[8].

A|_"| interesting example of a physical_ system f_or yvhich a Il. GENERALIZED DAMPING THEORY
precise description of the photon loss is essential is an ex-
cited two-level atom in a cavity with imperfect mirrors. For  In this section we will generalize the standard damping
that particular model a delay-differential equation has beetheory, as given by Langt al.[2], to cavities with mirrors of
derived from the universe-mode approagh5]. Unfortu-  small but finite transmittivity. The implications for the
nately, this rather complicated equation has to be solved nu-angevin and master equations will be considered in Sec. Ill.
merically if the reflectivity of the mirrors of the cavity is Let us consider a cavity enclosed in a large universe. The
taken to be arbitrary. An analytical solution has been foundiniverse is bounded by two perfectly reflecting mirrors at
only for cavities with nearly perfect mirrors. In that case thez=—L andl. The cavity is formed by the mirror at=1 and
formalism can be shown to yield the same predictions as than additional mirror az=0. The latter mirror is semitrans-
(multi-)quasi-mode description of Lareg al.[2], at least for  parent, with a small but finite transmittivity. Theeal and
times much larger than the cavity round-trip time. To estab{positive reflection and transmission coefficientsandt of
lish this connection several approximations have to be introthis mirror satisfy the relation?+t>= 1. The boundary con-
duced. One of these is equivalent to replacing the spatialitions at the outer mirrors restrict the allowed wave num-
dependence of the universe modes in the cavity by that of theers to a discrete set with separatiehL for L>1. In the
guasimode in which they participate. This approximation,continuum limit, obtained wheh approaches infinity, this
which was also used by Langf al. [2], becomes invalid if set becomes dense. The modes of the universe are given by
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&sink(z+L)  (z<0)
U2 =) Msinkl?)  (z>0), (2.)
where we defined
(=1-17/I. (2.2

The coefficient, alternates betweerr 1 and—1 for con-
secutive values ok. FurthermoreM, is given by

1/2

S
M, = \/1+Szm , (2.3

where the parameter=(1—r)/(2 \/F) is a measure for the
transmittivity of the semitransparent mirror.

and the nearest resonant wave nunigerwhich satisfies the
relation tankgl)=t/(r +1).

The universe modes can be grouped into quasimodes.
Each quasimode is associated with a particular resonarﬂ

wave numbek,. The (positive frequency part of theelec-
tric field is a sum over all wave numbétf the annihilation

operatorsa, of the corresponding universe modes, with the
mode functions as coefficients. Using the concept of qua
modes, we write the electric field as a sum over resona

wave numberg, of
1
JL

where the summation is restricted th values with
|Ak|=<m/(2]). We omit conventional prefactors with, c,

fi(2)= =2 al2), (2.4

Finally,
Ak=Kk—k, is the difference of the wave number of the mode

i . L .
S[Rerg equation for the annihilation operasyyris
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Here the sign of/(z) is chosen according to the sign of
sin(kgl{). We do not considez values for which sifl{) is
equal to zero. For such cases the standard damping treatment
cannot be expected to yield a meaningful description, as will
be explained in Sec. .

Note that ¢ (z) depends onz, since the dependence
through the sine functions does not drop out in general.
Therefore, the operata(z) will also depend ore. Never-
theless, it may be interpreted as a quasimode annihilation
operator; it obeys the standard boson commutation relation
[a(z),a'(2)]=1, as we hav&,$Z(z)=1.

We now want to derive an equation for the time evolution
of the quasimode annihilation operatafz) in the Heisen-
berg picture. Before doing so, we have to specify the inter-
actions in the system. Let us assume that the electric field
interacts with matter that is situated in a thin slice inside the
cavity at the positiorz. This is the case, for instance, if only
a single atom is present in the cavity, with an interaction
determined by the electric-dipole approximation. If the thick-
ess of the slice is small comparedkg', the interaction
amiltonianH,,; depends on the universe-mode annihilation
(and creatioh operators through the electric-field operator
(2.5 (and its Hermitian conjugateand hence through
/" (z)a(z) (and its Hermitian conjugateThus the Heisen-

d i i

&ak(t):ﬂ(wo*'Awk)ak(t)*'g[Hint(Z,t),a(Z,t)]QSk(Z),
(2.9

with wg=cky and Aw,=cAk. Note that the term

[Hix(zt),a(zt)] contains a factor/ (z).
The formal solution of the Heisenberg equation leads to

or k that may occur in the definition of the electric field. In o following expression for the quasimode annihilation op-

fact, we assume thaty,>/(2l), so that allk in these

eratora(z,t):

prefactors may be replaced by the resonant wave number

ko. From now on we will restrict ourselves to a single quasi-

mode and accordingly suppress the indgx The generali-

a(z,t>=; P (z)e" (@t Aenty, (0)

zation to more quasimodes is straightforward, as different

guasimodes correspond to strictly independent degrees of

freedom[7].
For z>0 we can write the electric field as

1
A(2)=—= I (2)a(z).

N (2.9

Here we defined

a<z>=2k b(2)ay . (2.6)

As before, the summation is restricted kovalues with
|Ak|</(2]). The ¢(2) are given by

[
bu(2)= \[E [ @] Misinkl), (2.7
with

1/2
.,/7/”(2)=i[|E; Mﬁsinz(klg)} . (2.8

it : ,
+—f dt'F(z,t—t’)e @olt=t)
flo

X[Him(Z,t'),a(Z,t')], (21@

with the memory kernel
F(zt)=2 di(2)e 2, (2.1
K

Differentiation with respect to yields

d i
a—ta(z,t)= —iwpa(z,t)+ f—L[Him(z,t),a(z,t)]
—i; Dr(2) Awye™ (w0t ety (0)

+i—ft dt’ iF(zt—t’) g et
ilo \at 7

X[Him(z,t"),a(z,t’)]. (2.12
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In the next section we will discuss this equation under thedependent of the statistics of the quasimode operators at
assumption that we are only interested in the evolution oft=0. For that reasorf(t) is usually called the stochastic
observables on a time scale that is slow compared to thforce and(3.5 the (generalize@lLangevin equation.

cavity round-trip time 2/c, after the trivial time dependence

given by the optical frequency, has been removed.

Ill. DERIVATION OF THE MASTER EQUATION

From the Langevin equation a master equation for the
density operatorp of the system can be derived. This is
achieved by considering time derivatives of expectation val-
ues of normally ordered products of the quasimode operators
a anda' and rewriting these with the help .5). Using the

In the first part of this section we will discuss the standardact thatf (t) anda(t) commute, one may reorder the opera-
damping theory, which is valid for nearly perfect cavities, tor products involving the stochastic for¢er its Hermitian
and derive the master equati¢t®) for this case. In the sec- conjugate in such a way thaf(t) is the last factofand
ond part we will extend the theory to cavities with small bUth(t) the firs. Rewriting the expectation values as traces of

finite transmittivity.

products of these operators and the density opegatame

In the standard damping theory, first discussed by Langj,qgs thatf(t) and fT(t) act directly onp. By demanding

et al. [2], the coefficientdM, are approximated by the for-

mula
c r 1/2
M| TR 3D
with the cavity decay constap®]
c
I'=s-—. (3.2

Furthermore, the dependence of the modes is approximate

by making the replacement
sin(kl¢)—sin(kgl ),

which rendersa(z,t) and ¢, (z) independent ot. As a con-
sequence, the normalization factot(z) defined in (2.9
will simply be given by sinkl¢). Note that forz values for
which sinkgl{)=0 (or close to §, the replacemen(3.3) ob-

(3.3

viously cannot be a good approximation. It is for this reaso

that we only consider values for which sirl¢) differs
from zero.

A further approximation is now used. The summation is

no longer restricted td values with|Ak|<#/(2l), but is
replaced(in the continuum limix by an integration ovek

values from—« to +o. The memory kernel can now be

the simple expressioR(z,t)=e" ! (for t=0) and thus

P
(F+E)F(z,t)=0. (3.9

Using (2.10 we can now rewrit€2.12) as
d .
aa(t)z —iwpa(t)—Ta(t)+ ;i—[Him(t),a(t)]Jrf(t),

(3.5

with the abbreviation
f(t)=2, ol —iAw)e (wotdenta (0). (3.6)
k

One easily verifies that not only doé&t) commute with
a(t), it also commutes, fort+0, with both a(0) and
a'(0). Thelatter property, which follows from(2.11) and
(3.4), implies that the statistics df(t#0) is completely in-

that the degrees of freedom associated (tf) are not ex-
cited att=0, one obtaing (t)p=0 andpf'(t)=0. In con-
trast, the statistics of the quasimode operators=@ need

not be specified, so that the dependence ah the quasi-
mode degrees of freedom &0 can be left arbitrary. The
stochastic force drops out under the chosen circumstances, so
that the time derivative of an expectation value of any nor-
mally ordered product of quasimode operators is found as the
expectation value of a sum of products of these operators.
After transforming to the Schdinger picture one finally ar-

Jives at the standard master equatiah for the density op-

erator

d [
giP(0=— 5 [Hinct iwga’a,p(t)]+ Ia,p(t)a']

+Tap(t),a’]. (3.7

As is well known[1], additional terms show up if the de-
grees of freedom associated with the stochastic force are as-

"Sumed to be excited.

The Langevin and master equations derived above are
valid only if the approximations regarding the space depen-
dence and the mode structure are justified. We will now con-
sider the more general case, in which we refrain from mak-
ing these simplifying approximations. A direct consequence

. is that the memory kernéi(z,t) will be a more complicated
"Rinction of time, for which the propert§3.4) certainly will

not hold.
From (2.10 and(2.12 we derive quite generally

p .
Ea(z,t)= —iwea(z,t)—Ta(z,t)+ %—[Hint(z,t),a(z,t)]

aF t—t’
E (Z, )

i [t
+f(z,t)+%fo dt

eiog(t-t)

+TF(zt—t")

X[Hin(z,t"),a(z,t")], (3.9

where we defined
f(zt)=2 (2T —iAwy)e (©ot2adta,(0) (3.9
k

andI" is again given by3.2).
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For small values ok the memory kerneF(z,t) and the
normalization factor/(z) can be approximated in such a
way that only terms up to first order is are retained. As
shown in the Appendix, the normalization factor, which has

i [t ]
f(z,t)+%J'0 dt hF(z,t—t )+TF(zt—t")

been defined irf2.8), then gets the form

+0(s?).  (3.10

N (z)=sin(kgl 5)[1— gv’(z)

Similarly, the memory kernefF(z,t), of which the general
form has been given if2.11), is found approximately as

B 1 (7=0)
Fz0)= e S1+sv(2)]+(slT)+(s?)  (m>1).
(3.11
Here we defined
v(z)=v'(z2)+iv"(2), (3.12
with
L 2 cog2Kkgl ) 1 .
v (Z)——m 5—;[25,3(5)—1]5"1(775)},
(3.13
sin(2kol £)
U,I(Z)Z—ngzokolo. (3.14)

Furthermore, we introduced the dimensionless time variable

r=tc/l. The functionB(¢) in (3.13 is related to the di-
gamma functior(see the Appendjx

Having found the memory kernel, we may derive a

xe 1ot H, (z,t),a(z,t)]

=; S (2)(T—iAwp)a(t), (3.16

which shows that the combination at the left-hand side com-
mutes witha(z,t). Note thatf(z,t) itself may or may not
commute witha(z,t), depending on the interaction Hamil-
tonian. When evaluating the expectation value with the use
of (3.8, we can bring the combinatio(8.16 through all
factors a(z,t) to the right[and its Hermitian conjugate
through all factorsa’(z,t) to the leff. Subsequently, the in-
tegral term can be eliminated in a similar way as in deriving
(3.195. The resulting expression for the time derivative of

(an(z,t)aq(z,t)> is then found to contain the contribution

p(fT(z,t)anfl(z,t)aq(z,t)) +q(a(zhat Lz H)f(z1)).
(3.17

Rewriting this expression as the trace of a sum of products of
the relevant operators and the density opergtoone finds

that the stochastic force acts directly pnas before. In the
standard damping theory one may chops@é such a way

that operating with the stochastic force pryields zero. The
freedom to make that choice is a consequence of the fact that
the stochastic force and the quasimode operators are associ-
ated with different degrees of freedom. In the presence case
the situation is somewhat more subtle. In fact, the commuta-
tor of f(z,t) anda'’(z,0) is given by

[f(z,t),a'(z,0]=e '@d %F(Z,I)JrFF(z,t)},
(3.18

Langevin equation froni3.8). Indeed, since the combination as follows from(2.6) and(3.9). As we have seen, the right-
of the terms within large square brackets can be shown to bdand side approximately vanishes forl/c, so that for

of short ranggsee the Appendjx one may simplify the in-

these values df the degrees of freedom associated with the

tegral considerably by extracting the other factors. EvaluatStochastic force are indeed independent of those connected to
ing the resulting expression, we arrive at the Langevin equathe quasimode operate(z,0). As before, we may therefore

tion

%a(z,t)= —iwea(z,t)—Ta(z,t)+f(z1)

+ %[Hint(zlt)ia(zat)] 1+1—‘|EU(Z))1
(3.15

which contains terms that are linearssI'l/c. The stochas-
tic force f(z,t) is given by(21) as before.

assume that the degrees of freedom associated fth)
are not excited, so that one gets once mifet)p=0, at
least for values of that are much larger thdiwc. Similarly,
we may assume thatf T(z,t)=0 for t much larger thar/c.

By transforming to the Schdinger picture, one finally
arrives at the master equation

) |
Sep(1)=— [Hi(2) +hoa'(2)a(2),p(1)]
+Ta(2) p(hal(2)]+ ITa@2)p(t) a'(2)]

+

_ t .
From the Langevin equation we can derive a master equa- 7T cv (@[a2),p(t[a'(2), Hin(2)]]

tion in a similar way as described in the first part of this
section. To that end one starts again by considering the time

derivative of the expectation vaIu(ean(z,t)aq(z,t» of a
normally ordered product of quasimode creation and annihi-
lation operators. Froni9) and (20) we can easily prove the

identity As

i
- 2T @M Hin(2),(2) () 2" ()]

(3.19

compared to the standard master equation, the equation
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derived here contains additional terms that are of the order dfome authors have considered the decay of an atom in a
s=TI'l/c. They account, at least approximately, for the ef-cavity by using Fermi's golden rule as a starting point and
fects of a nonideal cavity mirror and the ensuing nontrivialavoiding the introduction of quasimodes. This makes it pos-
space dependence of the quasimodes. The extra terms aible to study three-dimensional generalizatiph3)] as well.
different from what might have been expected naively fromHowever, in this way the Rabi-type oscillations are not re-
the form of the Langevin equatio3.15, as they cannot be trieved.
found by multiplying the interaction Hamiltonian by a factor We assume that there is no detuning between the cavity
of 1+T'v(2)l/c. The reason for that is obvious from the and the atom, so that the atomic transition frequency coin-
derivation given above: the stochastic forfiqg,t) does not cides with a quasimode resonant frequency. We use the
commute witha(z,t) in general, but should be taken to- electric-dipole approximation to describe the interaction of
gether with the correction term, as done($116). the atom at a positiom with the electromagnetic field. We
It remains to be checked whether the master equation comwill neglect all nonresonant quasimodes.
serves the Von Neumann conditions of Hermiticity and posi- Adopting the rotating-wave approximation, we may write
tive definiteness of the density operator. It is easily showrthe interaction Hamiltonian as
that Hermiticity is indeed conserved, but that the master
equation may violate positivity in second ordersnSuch a Hin(2)=— 2 hg(z)[a’(2)o_+a(z)o,]. (4.0
violation stems from the fact that only first-order termssin
were considered. In the example that we will consider in thd1ereo .. are the usual Pauli spin matrices often employed to
following section, an additionalphenomenologicaldamp- ~ describe a two-level atom. THeea) coupling constang(2)
ing term ensures positivity in all orders & is given by g./(z), whereg contains the atomic dipole-
Note that the generalization to several quasimodes ig1oment matrix element and (2) is given by(3.10.
straightforward. This is a direct consequence of the fact that The master equation, of which the general form has been
annihilation and creation operators associated with differenierived above, reads for the present case
quasimodes commute. The following multimode master
equation is thus easily derived:

i o ,
aiP= " zHinuplt Lapt Lagpt Lop, (4.2

d i .
GiP(0=— +THm(D.p(0]-1 S wyfal (Dag@.pm] W
o Zap=T([a,pa']+[ap,a']), (4.3

, . .
+sz0 [ak,(2).p(D)a(2)] Fap= 'Erw[a*,a_p]— IEFW*[p0'+ al, (4.3b

T2 (a2 (0).2(2)] Sap= o po 1+ [0 po.)). (430

+ fI_LFIEZ Uﬁo(z)[ako(z):P(t)[alo(z),Him(Z)]] The first three terms i4.2) follow directly from the master
ko equation of Sec. lll, while the last term is a standard atomic
. dhampir;lg t”ernfl], whicr} alc(:jcounés for the dlec(;a)éi of the atom
N , T through all transverse field modes not included in the quasi-
h r ckzo Uko(z)[[H'“t(Z)’ako(z)]p(t)’ako(z)]' mode. The atomic damping term is of the form usually found
(3.20 when considering radiative decay orily]. We have moved
to the interaction picture, so that the optical frequeagy
has been transformed away.
IV. DECAYING ATOM IN A NONIDEAL CAVITY The second term if¥.2) is the correction term to standard

damping theory. It depends on the coupling parameter
To illustrate the consequences of the additional terms "@vhicﬁ is? define)(lj as P ping p g

the master equation, we will treat the decay of a single two-

level atom in a cavity. This problem has been studied exten- [

sively before. For a cavity with perfect mirrors, it reduces to w(z)=w'(2) +iw"(z)= - 9(2)v(2), (4.4

the Jaynes-Cummings mod@]. The effect of a finite prob-

ability for a photon to escape through nearly perfect mi”or%vherev(z)=v’(z)+iv”(z) has been given in Sec. IIl. Note
was first dispussed by Har_ocljlaO]. The influen_ce of ather-  that we will assume thaw is small, as we have included
mal reservoir on the atomic decay was considered by Sachiyst-order correction terms in the master equation only.

dev [11]. A more general model, in which, moreover, the |t can be shown that positivity is conserved by the master

effects of atomic damping terms in transverse directions argquation for parameter values satisfying= 2| w|2 In fact,
taken into account, has been analyzed by Cetal. [12]  {he master equation can be written as

and by Briegel and Englef6]. The latter use the method of

damping bases, which we will do as well. Numerical studies  d . L ek

of atomic decay in a cavity with mirrors of arbitrary reflec- giP~AptpAT+2l(a—ziwo_)p(@+ziw o)
tivity have been carried out by Feng and Ujihdf. The

relation of their work and ours will be discussed below. +3(y—3Twldo_po,, (4.5

o
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where A is an operator of which the precise form is not The master equatiof®.2) leads to a set of coupled differ-

relevant here. From this form of the master equation it fol-ential equations for the coefficients in the expansi(38).

lows directly that a density operator that is positive definiteThese coefficients can be taken together in four-dimensional

att=0 can never lose that property during its evolution if thevectors X,, , as in the standard damping thedi]. For

coefficient of the last term is non-negative. k=0 the vectorsX, , are
We will solve the master equation with the use of the

damping bases introduced|i]. We write the density matrix

in the form @n+10
pP=po0otpo,tp_o_+pio,, (4.6) Xno= _ﬁir;o (n=0), (4.10
n,0
with op= 3 (1— o,) and with the expansions o
Po=2>, an(Dpnk, (4.79
n.k @00
pz= 24 BridDpnic (4.7b) X10=| o |- (4.1
0
P-=2 Yni-1(Dpn; (4.79

For k#0 the vectorsX,  are nearly(but not completely

analogoug6]. They will not be needed in the following.

P+:§< Tnk+1(DPn ks (4.70 The coupled differential equations for the vectofg
' have the general forif6]

where the sums are taken over integeand non-negative
integern. Here p,  are the eigenoperators df,. They

satisfy the eigenvalue equation gt Xnk= M Xkt G kX 1k (4.12
|K]
Zapnk= 2| n+ o |Pnk 48 forall integerk andn, with n=—1. BothM , andG,, , are
4X 4 matrices. The matriM ,  is the sum of a zeroth-order
and are given by the expressions term that is independent @f and a first-order term linear in
w:
Tk ata+n >
a™(—1) R (k=0)
a'at+k — N0 (1)
Pnk= 1k (4.9 I\/lnyk_Mn,k—i_Mn,k- (4.13
(—1)a'atn K af  (k<0). .
a'a+ K| Fork=0 andn=0 one finds
=2I'(n+1) 0 2g(n+1) —2g9(n+1)
0 —2I'n—vy, —-2g(n+1) 2g(n+1)
1 1 1
(0)_
Mpo= ~59 59 —I'(2n+1)=-5y 0 : (4.14
! - 0 r'zn+1 !
59 59 (2n+1)—3y
0 0 2I'w*(n+1) —-2T'w(n+1)
0 0
1
M= 0 STw 0 0 , (4.15
0o - EI‘W* 0 0
2
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while for k=0 andn=—1 one getsM _, ,=0. Analogous agdt) =1, (4.183
expressions can be derived fist,, , with k#0. Finally, we ’
have to specify the matri&, ,, which turns out to be inde-
pendent ofw. Fork=0 andn=0 it reads
0 0 00 9 g orw S50 L Stragmw
al,o(t)__? g+ Z co > t+ ggwt
s 0O 0 0O it
"o 0 of 419 r [T+(1/2)y]t
— —w" - b
0 —g 0 0 cos)‘(4g W t) e I, (4.180b
whereas it vanishes fde=0 andn= —1. Similar results are
obtained forG,, , with k#0.
The differential equation$4.12 can be solved for given 1 S2—16g2
initial conditions. From the structure of the equations it fol- b’o,o(t):{g( S?—8g?—8gl'w’ T)
lows that the time evolution is determined by the eigenvalues
of the matricesM,, . In first order ofw, these can be found , ,
by starting from the eigenvalue problem for{) and using 1 r\ 84 ,S°—16g
perturbation theory. Fok=0 andn=0 we obtain in this xco 28t+4g SW t s? g+lw s?
way the set of eigenvalues
1 xcosr<4 Lwt]+ 2 s ggrw)
M= —T(2n+1)~ = 4gTW'(n+1)/S, 95 F 9
(4.173
><'184r’ 892F rw”
1 1 sin E t+ g§Wt +§( —'yH) w
Nz=—T'(2n+1)— EyHtEiSi4igFW’(n+ 1)/S,
(4.17bH r
><sin|-(4g§w”t) g [T+12yt (4.1890

with S=[16g%(n+1)—(2I'—y))?]¥2% Here we assumed

that the system is underdamped, that is, we took the argu-
ment of the square root to be positive. In the overdamped
case the analytic continuation of the square root must be
taken. Furthermore, it should be noted that in zeroth order

i
Yool t)=[m00(t)]* =( - §(2F— y)| g+irw”

two eigenvalues coincide. To evaluate the perturbed eigen-
values this degeneracy has been taken into account properly
by employing degenerate perturbation theory. The above ex-
pressions for the eigenvalues are valid ko0 only. The

S*-169°

+ 2

rw’ L Stragw
W' || cog 5 StHag gw't

2 2
expressions fok#0 are somewhat more complicated. Fur- —cosl{ 4g£w”t + L g+FWS _2 9 )
thermore, we assumed th@t 0; the special casé=0, for S S S
which all four eigenvalues coincide in zeroth order, has to be 1 r
treated separately. x| sin —St+4g—w’t)

To study the time evolution of the system in more detail 2 S
we shall discuss a special case, with a particular initial con- r
dition. Let us consider the case thattatO no photon is +i sinl—( 4g—w”t) ]e[”ﬂ/z)*/]t, (4.180
present in the system, while the atom is in its excited state. S

This implies that foit=0 one hasy o= B o= 1, whereas all

other coefficients vanish. In other words, one starts with vec-

tors X, (t=0) that are different from zero only for

(n,k)=(-1,0) or (0,0). Due to the structure ¢#.12, it  whereS is now given byS=[16g2— (2I' - y))4]*% As be-
follows that also fort>0 these values ofr(,k) are the only fore, the solutions for the overdamped case follow by ana-
ones for whichX,, , differs from zero. Moreover, the equa- lytical continuation of the square ro& The effect of such
tions for these two vectors are not coupled, sifice pvan-  an analytical continuation is easily seen. It basically inter-
ishes. The time dependenceXf  q is trivial, while that of  changes the roles of the hyperbolic and trigonometric func-
Xo,0 is governed by the eigenvalues of the mathi . tions.

These eigenvalues have been given above in first-order per- The explicit forms for the coefficients of the density ma-
turbation theory. It is a straightforward task to determine thetrix as given here yield direct information on the evolution of
associated eigenvectors up to first order. With the use ophysical properties of the system, such as the average photon
these, one gets the following explicit expressions for the conumber or the average population inversion. Indeed, one eas-
efficients in the density matrix: ily proves the relations
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the position of the atom. This fact has been observed before
in the context of the numerical studies presentefbinHere

it can be established analytically by considering the depen-
dence ofw” on z, which follows from(3.14) and(4.4):

B0,0

0.1 _
9o(z) sin(2kel )

w"(z)=—-2(s T I—cos2kyid)’ (4.2

For an atomic positioz at an antinode one hag'(z)=0, so
that the damped Rabi oscillations remain unperturbed in that
case. On the other hand, for valueszolialfway between a
node and a antinode one hag’(z)|=2¢sgy(2)/T’, so that
the hyperbolic functions do modify the oscillations in the
atomic population inversion for such configurations. An ex-
ample of such a modification of the time evolution is shown
in Fig. 1, where the behavior of the population inlversion is
_ plotted for values oft that are of the order of ~*. The
<a*(z)a(z)>(t)—a1’dt), (4.193 influence of the finite mirror transmittivity is particularly
_ manifest for those values dfwhere the oscillating atomic
(02D =2F0dV)~1, (4.19 population inversion reaches a minimum. In fact, for a cavity
At *_ with nearly perfect mirrorgor for atoms situated at an anti-
(a(2)a ) =[(a'(2)o_ )] =4yodV). (4.190 node the population inversion really vanishes periodically,
As follows from the results presented here, the correctiofvNereas for the nonideal case the population inversion re-
term in the master equation leads to several modifications if"&ins finite at the minima and becomes zero only for infinite
the time evolution of the density matrix. These modificationst: This feature has also been found in the numerical work by
are determined by the nonideality parameterThe results F€nd and Ujiharal4]. In the overdamped case the time evo-
from standard damping theory are recovered by setting lution of the_atom|c populatlc_Jn inversion is modlfled as well.
equal to zero in all formulas. 'I_'he corrections are (_jete_rmlned t_hen_ by trigonometric func-
The expression§4.18 depend on the coupling constant t|on§, which give oscillating contributions. Whether the sys-
9(2)=g./ (2), both directly and through the square r@t tem is overdamped or not depends on the magn_ltudéaxﬁ
By using (3.10 and (4.4 we can rewrite g(z) as compared tog,. It should be _noted that the ratio of these
9o(2)— 2 TW'(2) in first order ofs. Here we introduced the parameters can be chosen independently of the value of

, S, s=T'l/c. The latter has to be small in order that the present
zeroth-order coupling constardgy(z)=g sin(Kl¢). Corre- theory be valid.
spondingly,S(z) may be expanded up to terms linearsn
the result isSy(z) —8gy(2)I'w’ (2)/Sy(z), where we defined
So(2) =[16g0(2)2— (2I' - ¥))2]¥2 With the use of these ex- V. CONCLUSION
pansions the coefficient®.18 can be simplified consider- The main results of the present paper are the master equa-
ably. The coefficienBy o, for instance, which determines the {jon (3.19 and its multimode generalizatio8.20. These
average atomic population inversion, becomes equations describe the time evolution of the density matrix

for a system inside a cavity with mirrors of a small but finite

) transmittivity. As compared to the standard master equation,

FIG. 1. Average atomic populatigy o as a function—) of the
dimensionless timd't for s=0.15, '=3y, andgy,=2I", com-
pared with the predictioi— —) of standard damping theory.

which is valid for systems in cavities with vanishingly small
transmittivity, the equations derived here contain additional
terms. These terms arise from the interplay of the photon
n %(21“— W escape through the mirrors, on the one hand, and the inter-
S ﬁ Y action of the electromagnetic field inside the cavity, on the
r other hand.

. . CIT 4 (12 it To derive the master equation we had to introduce several
XSII‘]?’(4QO§W t) e[, (4.20 simplifying assumptions. First of all, we neglected the spatial

variation of the fields in the directions tranverse to the axis of

As can be seen from this expression, the damped Rabi oscilhe cavity, that is, we adopted a one-dimensional description
lations of the average atomic population inversion, which aref the system. Furthermore, we assumed that the fields inter-
characteristic for a decaying atom in a cavity, get modified ifacts only at a singléone-dimensionalposition in the cavity,
the mirrors are no longer nearly perfect. The changes in theo that only the field at that point enters the interaction
time evolution of the population inversion are brought aboutHamiltonian. Starting from these assumptions we could de-
by hyperbolic functions that depend evi'. Its counterpart rive Langevin equations and master equations in which the
w’ has no effect on the evolution of the population inversion,influence of the transmittivity of the mirrors has been taken
although it does influence the average photon number. into account in a perturbative way. In deriving the master

The changes in the evolution of the atomic population dueequation we supposed that the degrees of freedom of the
to the finite mirror transmittivity depend quite sensitively on electromagnetic field that are associated with the stochastic

5—805 (1
Bodt)= {S';SQO—O COS(ESot

.89 4go W't
— cosh 4gg =W
So So

2I'— ’y”

N (1
sin ESOt
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force are not excited. It is straightforward to generalize the
theory so as to include the effects of excitation of these de- 0.05
grees of freedom. s
The additional terms in the master equation have a rather SF+F
simple structure. It is therefore relatively easy to determine
the consequences of a finite mirror transmittivity in any spe- 0
cific model that satisfies the general assumptions described
above. To show this we have evaluated the time dependence
of the density operator that describes the decay of a single
excited two-level atom in an otherwise empty cavity. From

our results certain features, such as the modification of the 005 I 1 n
damped Rabi oscillations brought about by the finiteness of 0 10 T 20
the mirror transmittivity, could be studied analytically,
whereas previous treatments had to depend on numerical 005 |- ' I(b) -
methods.

It should be stressed that the example of the decaying sF+F’

atom was presented only as an illustration of the applicability
of our master equations. For that reason, we confined our-
selves in the discussion to the time dependence of the atomic
population inversion starting from a simple initial condition. '
The generalization to different initial conditions is straight- !
forward. Other models with effective nonlinear interactions !
i

of the fields inside the cavity may likewise be discussed on -0.05 | | -
the basis of the master equations found here. 0 10 T 20
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APPENDIX
. . . . . 2
In this appendix we will present some details of the deri- =e 5+s71— —Si(7 72) }
vation of the Langevin equatio(8.15. The memory func- m

tion defined in(2.11) can be written as 4s

—codm72) + (s?). (A4)

1 1
F(z,t)= W%(S,T)— E 0032k0| DI(s,7+20)

+|(s,7—2g)]+|§ sin(2kol O[1(s,7+2¢) smalls. For 7=0 it becomes
—1(s,7—20)]¢, (A1) S (@2 X2 — sirx I
; o de Cog XT)+ 9(s%)
with r=ct/l, {=1-2/l, and 2 4s
=—s71—- ;Si(WT/Z) + ?COS(W 72)
1
[.,/J/'(z)]zzi[l(s,O)—cos{Zkolg)l(s,zg)]. (A2) 25

+ —sin(wA2) [ 7h(72) 1] + o(s?), (A5)

Herel(s,7) is defined by
where [15] has been used. Hergg(x) is defined as
, S((x+1)/2)— 34(x/2), with (x) the digamma function.
Vits f”’z S (A3) Putting both parts of(s,7) together we have found, for
o

dX————— COS(X7).
a2 S+ sirPx (x7) =0,

I(s,7)=

The integrall (s,7), which is even inr, can be split in
two parts by writings/(s?+ sir’x) as the sum o8/(s?+ x?)
and a remainder. For smalland 7=0 the first part is (AB)

I(s,7)=e 5"+ 2—: sin(wr/2)[ 78(7/2) — 1]+ (s?).

The second part can likewise be calculated approximately for
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For =0 one verifies thak(s,0)=1, while for 71 one has ues ofr that are of the order of 1, so thats of the order of
I (s,7)=exp(sn+(s/7)+(s?). Substitution of these I/c. Itstime dependence is plotted in Fig. 2 in dimensionless
results in(A1) and (A2) leads to(3.10 and (3.11. units, forz in the middle of the cavity and either at an anti-

The Langevin equatiof8.15 is obtained by investigating node or halfway between a node and an antinode. As we

. . L assumed that the time scale for the evolution of all observ-
the time behavior of the combinatiol ¢- 9/ Jt)F(z,t) of the ables is much larger thdiic (after the optical frequency has

memory kernel and its derivative, which occurd®8). This  peen transformed awgywe can now calculate the last term
combination is appreciably different from zero only for val- in (3.8) for t>1/c by the substitution

i [t d : .
—f dt’(—F(z,t—t')+FF(z,t—t’))e"”0<tt [Hin(z,t"),a(z,t")]
tJo ot

J': dt’(%F(z,t’)JrFF(z,t’))}[Him(z,t),a(z,t)]. (A7)

i
-7
Employing (A1) we obtain

[“al?
0 J

1 ® J
TF(Z,t')‘FFF(Z,t,)}: Wr[.'].—COS(Zk()MV)]f0 dT(EJ(S,T)'FSKS,T))

20 9 o 2
+cos(2k0|g)fo dr——I(s,7)~i sm(2k0|g)f0 dTI(s,T)]. (A8)

Inserting the approximate foritA6) and evaluating the integrals we finally get

[“ar
0

where we used@3.2) and(3.12—(3.14). The Langevin equatio(B.15 is found upon substitution qA7) with (A9) in (20). As
is obvious from the above derivation, the fast decay of the combinalieni{ dt) F(z,t), with a decay time of the order of the
cavity round-trip timel/c, is instrumental in establishing the Markov property of the ensuing Langevin equation.

d

|
Py F(z,t')+TF(zt) =r6v(z)+,/z>(s2), (A9)
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