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Generalization of damping theory for cavities with mirrors of finite transmittivity

R. W. F. van der Plank and L. G. Suttorp
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

~Received 27 July 1995; revised manuscript received 17 October 1995!

Standard damping theory is generalized to incorporate the effects of finite mirror transmittivity. The correc-
tion to the standard Langevin equation for the quasimode annihilation operator is determined in first order in
the transmittivity of the mirrors. From the Langevin equation an effective master equation is derived. As an
example, we study the decay of a single two-level atom at a fixed position in a nonideal cavity. For this case
we find a modification of the damped Rabi oscillations, which depends on the atomic position.

PACS number~s!: 42.50.Ct, 42.50.Md

I. INTRODUCTION

There are mainly two approaches towards describing the
photon loss through the mirrors of a Fabry-Pe´rot cavity. The
first method is rather phenomenological. One quantizes the
electromagnetic field inside the cavity while ignoring the fact
that the mirrors are not perfectly reflecting. The coupling
through the mirrors is then modeled by an interaction with an
external bath. With the use of the Born and Markov approxi-
mations, one can obtain an effective master equation by tak-
ing the trace over the bath degrees of freedom@1#. In the
resulting formalism, the field degrees of freedom are limited
to a discrete set of quasimodes, of which usually only one is
considered.

The second and more fundamental method is based upon
the so-called universe-mode picture. In this approach, the
cavity is embedded in a larger box, the ‘‘universe,’’ the size
of which is taken to infinity. The electromagnetic field inside
the box is quantized and a dense set of universe modes is
found. As derived by Langet al. @2# for cavities with nearly
perfect mirrors, it is possible to bunch these universe modes
into quasimodes and to obtain an effective description. The
field degrees of freedom are then reduced to a nondense,
discrete set. The ensuing master equation has the same form
as the one resulting from the phenomenological approach.
However, the universe-mode picture gives more insight in
the limits of validity of the formalism, especially with re-
spect to the properties of the mirror@3#.

An interesting example of a physical system for which a
precise description of the photon loss is essential is an ex-
cited two-level atom in a cavity with imperfect mirrors. For
that particular model a delay-differential equation has been
derived from the universe-mode approach@4,5#. Unfortu-
nately, this rather complicated equation has to be solved nu-
merically if the reflectivity of the mirrors of the cavity is
taken to be arbitrary. An analytical solution has been found
only for cavities with nearly perfect mirrors. In that case the
formalism can be shown to yield the same predictions as the
~multi-!quasi-mode description of Langet al. @2#, at least for
times much larger than the cavity round-trip time. To estab-
lish this connection several approximations have to be intro-
duced. One of these is equivalent to replacing the spatial
dependence of the universe modes in the cavity by that of the
quasimode in which they participate. This approximation,
which was also used by Langet al. @2#, becomes invalid if

the transmittivity of the cavity is no longer very small.
The restriction to cavities with nearly perfect mirrors in

the formalism of Langet al. is a drawback when applying it
to physical systems. In the present paper we want to show
that the master equation obtained by Langet al. @2# may be
generalized so as to incorporate the effects of a finite mirror
transmittivity. The correction that we will obtain is of first
order in this transmittivity. Since its origin lies in the spatial
dependence of the universe modes, the correction term is
explicitly space dependent.

The theory that we shall present is one-dimensional, so
that transverse effects are neglected. We assume that the
electromagnetic field interacts with matter inside a thin slice
in the cavity, with a thickness small compared to the relevant
wavelengths. For simplicity we consider a cavity with a
semitransparent mirror at one end and a perfectly reflecting
one at the other. In the derivation of the master equation we
shall deal with a single quasimode only. The generalization
to more than one quasimode is straightforward, as our quasi-
modes are associated with strictly independent degrees of
freedom.

In Secs. II and III we will derive the first-order correction
to the standard Langevin equation and the associated master
equation. In Sec. IV we will apply the formalism to the de-
cay of a two-level atom in a nonideal cavity. The master
equation will be solved with the use of the method of damp-
ing bases@6#.

II. GENERALIZED DAMPING THEORY

In this section we will generalize the standard damping
theory, as given by Langet al. @2#, to cavities with mirrors of
small but finite transmittivity. The implications for the
Langevin and master equations will be considered in Sec. III.

Let us consider a cavity enclosed in a large universe. The
universe is bounded by two perfectly reflecting mirrors at
z52L andl . The cavity is formed by the mirror atz5 l and
an additional mirror atz50. The latter mirror is semitrans-
parent, with a small but finite transmittivity. The~real and
positive! reflection and transmission coefficientsr and t of
this mirror satisfy the relationr 21t251. The boundary con-
ditions at the outer mirrors restrict the allowed wave num-
bers to a discrete set with separationp/L for L@ l . In the
continuum limit, obtained whenL approaches infinity, this
set becomes dense. The modes of the universe are given by
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Uk~z!5H jksink~z1L ! ~z,0!

Mksin~klz! ~z.0!, ~2.1!

where we defined

z512z/ l . ~2.2!

The coefficientjk alternates between11 and21 for con-
secutive values ofk. Furthermore,Mk is given by

Mk5FA11s2
s

s21sin2~Dkl !G
1/2

, ~2.3!

where the parameters5(12r )/(2Ar ) is a measure for the
transmittivity of the semitransparent mirror. Finally,
Dk5k2k0 is the difference of the wave number of the mode
and the nearest resonant wave numberk0 , which satisfies the
relation tan(k0l )5t/(r11).

The universe modes can be grouped into quasimodes.
Each quasimode is associated with a particular resonant
wave numberk0 . The ~positive frequency part of the! elec-
tric field is a sum over all wave numbersk of the annihilation
operatorsak of the corresponding universe modes, with the
mode functions as coefficients. Using the concept of quasi-
modes, we write the electric field as a sum over resonant
wave numbersk0 of

Ek0
~z!5

1

AL(k akUk~z!, ~2.4!

where the summation is restricted tok values with
uDku<p/(2l ). We omit conventional prefactors with\, c,
or k that may occur in the definition of the electric field. In
fact, we assume thatk0@p/(2l ), so that all k in these
prefactors may be replaced by the resonant wave number
k0 . From now on we will restrict ourselves to a single quasi-
mode and accordingly suppress the indexk0 . The generali-
zation to more quasimodes is straightforward, as different
quasimodes correspond to strictly independent degrees of
freedom@7#.

For z.0 we can write the electric field as

E~z!5
1

Al
N ~z!a~z!. ~2.5!

Here we defined

a~z!5(
k

fk~z!ak . ~2.6!

As before, the summation is restricted tok values with
uDku<p/(2l ). Thefk(z) are given by

fk~z!5A l

L
@N ~z!#21Mksin~klz!, ~2.7!

with

N ~z!56F lL(k Mk
2sin2~klz!G1/2. ~2.8!

Here the sign ofN (z) is chosen according to the sign of
sin(k0lz). We do not considerz values for which sin(k0lz) is
equal to zero. For such cases the standard damping treatment
cannot be expected to yield a meaningful description, as will
be explained in Sec. III.

Note that fk(z) depends onz, since the dependence
through the sine functions does not drop out in general.
Therefore, the operatora(z) will also depend onz. Never-
theless, it may be interpreted as a quasimode annihilation
operator; it obeys the standard boson commutation relation
@a(z),a†(z)#51, as we have(kfk

2(z)51.
We now want to derive an equation for the time evolution

of the quasimode annihilation operatora(z) in the Heisen-
berg picture. Before doing so, we have to specify the inter-
actions in the system. Let us assume that the electric field
interacts with matter that is situated in a thin slice inside the
cavity at the positionz. This is the case, for instance, if only
a single atom is present in the cavity, with an interaction
determined by the electric-dipole approximation. If the thick-
ness of the slice is small compared tok0

21 , the interaction
HamiltonianH int depends on the universe-mode annihilation
~and creation! operators through the electric-field operator
~2.5! ~and its Hermitian conjugate! and hence through
N (z)a(z) ~and its Hermitian conjugate!. Thus the Heisen-
berg equation for the annihilation operatorak is

d

dt
ak~ t !52 i ~v01Dvk!ak~ t !1

i

\
@H int~z,t !,a~z,t !#fk~z!,

~2.9!

with v05ck0 and Dvk5cDk. Note that the term
@H int(z,t),a(z,t)# contains a factorN (z).

The formal solution of the Heisenberg equation leads to
the following expression for the quasimode annihilation op-
eratora(z,t):

a~z,t !5(
k

fk~z!e2 i ~v01Dvk!tak~0!

1
i

\E0
t

dt8F~z,t2t8!e2 iv0~ t2t8!

3@H int~z,t8!,a~z,t8!#, ~2.10!

with the memory kernel

F~z,t !5(
k

fk
2~z!e2 iDvkt. ~2.11!

Differentiation with respect tot yields

]

]t
a~z,t !52 iv0a~z,t !1

i

\
@H int~z,t !,a~z,t !#

2 i(
k

fk~z!Dvke
2 i ~v01Dvk!tak~0!

1
i

\E0
t

dt8S ]

]t
F~z,t2t8! De2 iv0~ t2t8!

3@H int~z,t8!,a~z,t8!#. ~2.12!
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In the next section we will discuss this equation under the
assumption that we are only interested in the evolution of
observables on a time scale that is slow compared to the
cavity round-trip time 2l /c, after the trivial time dependence
given by the optical frequencyv0 has been removed.

III. DERIVATION OF THE MASTER EQUATION

In the first part of this section we will discuss the standard
damping theory, which is valid for nearly perfect cavities,
and derive the master equation~19! for this case. In the sec-
ond part we will extend the theory to cavities with small but
finite transmittivity.

In the standard damping theory, first discussed by Lang
et al. @2#, the coefficientsMk are approximated by the for-
mula

Mk5Fcl G

G21Dvk
2G1/2, ~3.1!

with the cavity decay constant@8#

G5s
c

l
. ~3.2!

Furthermore, thez dependence of the modes is approximated
by making the replacement

sin~klz!→sin~k0l z!, ~3.3!

which rendersa(z,t) andfk(z) independent ofz. As a con-
sequence, the normalization factorN (z) defined in ~2.8!
will simply be given by sin(k0lz). Note that forz values for
which sin(k0lz)50 ~or close to 0!, the replacement~3.3! ob-
viously cannot be a good approximation. It is for this reason
that we only considerz values for which sin(k0lz) differs
from zero.

A further approximation is now used. The summation is
no longer restricted tok values withuDku<p/(2l ), but is
replaced~in the continuum limit! by an integration overk
values from2` to 1`. The memory kernel can now be
calculated with the use of the residue theorem. One obtains
the simple expressionF(z,t)5e2Gt ~for t>0) and thus

S G1
]

]t DF~z,t !50. ~3.4!

Using ~2.10! we can now rewrite~2.12! as

d

dt
a~ t !52 iv0a~ t !2Ga~ t !1

i

\
@H int~ t !,a~ t !#1 f ~ t !,

~3.5!

with the abbreviation

f ~ t !5(
k

fk~G2 iDvk!e
2 i ~v01Dvk!tak~0!. ~3.6!

One easily verifies that not only doesf (t) commute with
a(t), it also commutes, fortÞ0, with both a(0) and
a†(0). The latter property, which follows from~2.11! and
~3.4!, implies that the statistics off (tÞ0) is completely in-

dependent of the statistics of the quasimode operators at
t50. For that reasonf (t) is usually called the stochastic
force and~3.5! the ~generalized! Langevin equation.

From the Langevin equation a master equation for the
density operatorr of the system can be derived. This is
achieved by considering time derivatives of expectation val-
ues of normally ordered products of the quasimode operators
a anda† and rewriting these with the help of~3.5!. Using the
fact thatf (t) anda(t) commute, one may reorder the opera-
tor products involving the stochastic force~or its Hermitian
conjugate! in such a way thatf (t) is the last factor@and
f †(t) the first#. Rewriting the expectation values as traces of
products of these operators and the density operatorr, one
finds that f (t) and f †(t) act directly onr. By demanding
that the degrees of freedom associated withf (t) are not ex-
cited at t50, one obtainsf (t)r50 andr f †(t)50. In con-
trast, the statistics of the quasimode operators att50 need
not be specified, so that the dependence ofr on the quasi-
mode degrees of freedom att50 can be left arbitrary. The
stochastic force drops out under the chosen circumstances, so
that the time derivative of an expectation value of any nor-
mally ordered product of quasimode operators is found as the
expectation value of a sum of products of these operators.
After transforming to the Schro¨dinger picture one finally ar-
rives at the standard master equation@1# for the density op-
erator

d

dt
r~ t !52

i

\
@H int1\v0a

†a,r~ t !#1G@a,r~ t !a†#

1G@ar~ t !,a†#. ~3.7!

As is well known @1#, additional terms show up if the de-
grees of freedom associated with the stochastic force are as-
sumed to be excited.

The Langevin and master equations derived above are
valid only if the approximations regarding the space depen-
dence and the mode structure are justified. We will now con-
sider the more general case, in which we refrain from mak-
ing these simplifying approximations. A direct consequence
is that the memory kernelF(z,t) will be a more complicated
function of time, for which the property~3.4! certainly will
not hold.

From ~2.10! and ~2.12! we derive quite generally

]

]t
a~z,t !52 iv0a~z,t !2Ga~z,t !1

i

\
@H int~z,t !,a~z,t !#

1 f ~z,t !1
i

\E0
t

dt8F ]

]t
F~z,t2t8!

1GF~z,t2t8!Ge2 iv0~ t2t8!

3@H int~z,t8!,a~z,t8!#, ~3.8!

where we defined

f ~z,t !5(
k

fk~z!~G2 iDvk!e
2 i ~v01Dvk!tak~0! ~3.9!

andG is again given by~3.2!.
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For small values ofs the memory kernelF(z,t) and the
normalization factorN (z) can be approximated in such a
way that only terms up to first order ins are retained. As
shown in the Appendix, the normalization factor, which has
been defined in~2.8!, then gets the form

N ~z!5sin~k0l z!F12
s

2
v8~z!G1O ~s2!. ~3.10!

Similarly, the memory kernelF(z,t), of which the general
form has been given in~2.11!, is found approximately as

F~z,t !5H 1 ~t50!

e2st@11sv~z!#1O ~s/t!1O ~s2! ~t.1!.
~3.11!

Here we defined

v~z!5v8~z!1 iv9~z!, ~3.12!

with

v8~z!52
2 cos~2k0l z!

12cos~2k0l z! H z2
1

p
@2zb~z!21#sin~pz!J ,

~3.13!

v9~z!522z
sin~2k0l z!

12cos~2k0l z!
. ~3.14!

Furthermore, we introduced the dimensionless time variable
t[tc/ l . The functionb(z) in ~3.13! is related to the di-
gamma function~see the Appendix!.

Having found the memory kernel, we may derive a
Langevin equation from~3.8!. Indeed, since the combination
of the terms within large square brackets can be shown to be
of short range~see the Appendix!, one may simplify the in-
tegral considerably by extracting the other factors. Evaluat-
ing the resulting expression, we arrive at the Langevin equa-
tion

]

]t
a~z,t !52 iv0a~z,t !2Ga~z,t !1 f ~z,t !

1
i

\
@H int~z,t !,a~z,t !#S 11G

l

c
v~z! D ,

~3.15!

which contains terms that are linear ins5G l /c. The stochas-
tic force f (z,t) is given by~21! as before.

From the Langevin equation we can derive a master equa-
tion in a similar way as described in the first part of this
section. To that end one starts again by considering the time
derivative of the expectation valuêa†

p
(z,t)aq(z,t)& of a

normally ordered product of quasimode creation and annihi-
lation operators. From~9! and ~20! we can easily prove the
identity

f ~z,t !1
i

\E0
t

dt8F ]

]t
F~z,t2t8!1GF~z,t2t8!G

3e2 iv0~ t2t8!@H int~z,t8!,a~z,t8!#

5(
k

fk~z!~G2 iDvk!ak~ t !, ~3.16!

which shows that the combination at the left-hand side com-
mutes witha(z,t). Note that f (z,t) itself may or may not
commute witha(z,t), depending on the interaction Hamil-
tonian. When evaluating the expectation value with the use
of ~3.8!, we can bring the combination~3.16! through all
factors a(z,t) to the right @and its Hermitian conjugate
through all factorsa†(z,t) to the left#. Subsequently, the in-
tegral term can be eliminated in a similar way as in deriving
~3.15!. The resulting expression for the time derivative of

^a†
p
(z,t)aq(z,t)& is then found to contain the contribution

p^ f †~z,t !a†
p21

~z,t !aq~z,t !&1q^a†
p
~z,t !aq21~z,t ! f ~z,t !&.

~3.17!

Rewriting this expression as the trace of a sum of products of
the relevant operators and the density operatorr, one finds
that the stochastic force acts directly onr, as before. In the
standard damping theory one may chooser in such a way
that operating with the stochastic force onr yields zero. The
freedom to make that choice is a consequence of the fact that
the stochastic force and the quasimode operators are associ-
ated with different degrees of freedom. In the presence case
the situation is somewhat more subtle. In fact, the commuta-
tor of f (z,t) anda†(z,0) is given by

@ f ~z,t !,a†~z,0!#5e2 iv0tF ]

]t
F~z,t !1GF~z,t !G ,

~3.18!

as follows from~2.6! and ~3.9!. As we have seen, the right-
hand side approximately vanishes fort@ l /c, so that for
these values oft the degrees of freedom associated with the
stochastic force are indeed independent of those connected to
the quasimode operatora(z,0). As before, we may therefore
assume that the degrees of freedom associated withf (z,t)
are not excited, so that one gets once moref (z,t)r50, at
least for values oft that are much larger thanl /c. Similarly,
we may assume thatr f †(z,t)50 for t much larger thanl /c.

By transforming to the Schro¨dinger picture, one finally
arrives at the master equation

d

dt
r~ t !52

i

\
@H int~z!1\v0a

†~z!a~z!,r~ t !#

1G@a~z!,r~ t !a†~z!#1G@a~z!r~ t !,a†~z!#

1
i

\
G
l

c
v* ~z!†a~z!,r~ t !@a†~z!,H int~z!#‡

2
i

\
G
l

c
v~z!†@H int~z!,a~z!#r~ t !,a†~z!‡.

~3.19!

As compared to the standard master equation, the equation
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derived here contains additional terms that are of the order of
s5G l /c. They account, at least approximately, for the ef-
fects of a nonideal cavity mirror and the ensuing nontrivial
space dependence of the quasimodes. The extra terms are
different from what might have been expected naively from
the form of the Langevin equation~3.15!, as they cannot be
found by multiplying the interaction Hamiltonian by a factor
of 11Gv(z) l /c. The reason for that is obvious from the
derivation given above: the stochastic forcef (z,t) does not
commute witha(z,t) in general, but should be taken to-
gether with the correction term, as done in~3.16!.

It remains to be checked whether the master equation con-
serves the Von Neumann conditions of Hermiticity and posi-
tive definiteness of the density operator. It is easily shown
that Hermiticity is indeed conserved, but that the master
equation may violate positivity in second order ins. Such a
violation stems from the fact that only first-order terms ins
were considered. In the example that we will consider in the
following section, an additional~phenomenological! damp-
ing term ensures positivity in all orders ins.

Note that the generalization to several quasimodes is
straightforward. This is a direct consequence of the fact that
annihilation and creation operators associated with different
quasimodes commute. The following multimode master
equation is thus easily derived:

d

dt
r~ t !52

i

\
@H int~z!,r~ t !#2 i(

k0
vk0

@ak0
† ~z!ak0~z!,r~ t !#

1G(
k0

@ak0~z!,r~ t !ak0
† ~z!#

1G(
k0

@ak0~z!r~ t !,ak0
† ~z!#

1
i

\
G
l

c(k0
vk0* ~z!†ak0~z!,r~ t !@ak0

† ~z!,H int~z!#‡

2
i

\
G
l

c(k0
vk0~z!†@H int~z!,ak0~z!#r~ t !,ak0

† ~z!‡.

~3.20!

IV. DECAYING ATOM IN A NONIDEAL CAVITY

To illustrate the consequences of the additional terms in
the master equation, we will treat the decay of a single two-
level atom in a cavity. This problem has been studied exten-
sively before. For a cavity with perfect mirrors, it reduces to
the Jaynes-Cummings model@9#. The effect of a finite prob-
ability for a photon to escape through nearly perfect mirrors
was first discussed by Haroche@10#. The influence of a ther-
mal reservoir on the atomic decay was considered by Sach-
dev @11#. A more general model, in which, moreover, the
effects of atomic damping terms in transverse directions are
taken into account, has been analyzed by Ciracet al. @12#
and by Briegel and Englert@6#. The latter use the method of
damping bases, which we will do as well. Numerical studies
of atomic decay in a cavity with mirrors of arbitrary reflec-
tivity have been carried out by Feng and Ujihara@5#. The
relation of their work and ours will be discussed below.

Some authors have considered the decay of an atom in a
cavity by using Fermi’s golden rule as a starting point and
avoiding the introduction of quasimodes. This makes it pos-
sible to study three-dimensional generalizations@13# as well.
However, in this way the Rabi-type oscillations are not re-
trieved.

We assume that there is no detuning between the cavity
and the atom, so that the atomic transition frequency coin-
cides with a quasimode resonant frequency. We use the
electric-dipole approximation to describe the interaction of
the atom at a positionz with the electromagnetic field. We
will neglect all nonresonant quasimodes.

Adopting the rotating-wave approximation, we may write
the interaction Hamiltonian as

H int~z!52 1
2 \g~z!@a†~z!s21a~z!s1#. ~4.1!

Heres6 are the usual Pauli spin matrices often employed to
describe a two-level atom. The~real! coupling constantg(z)
is given by ḡN (z), where ḡ contains the atomic dipole-
moment matrix element andN (z) is given by~3.10!.

The master equation, of which the general form has been
derived above, reads for the present case

d

dt
r52

i

\
@H int ,r#1Lar1Lasr1Lsr, ~4.2!

with

Lar5G~@a,ra†#1@ar,a†# !, ~4.3a!

Lasr5
i

2
Gw@a†,s2r#2

i

2
Gw* @rs1 ,a#, ~4.3b!

Lsr5
g i

8
~@s2 ,rs1#1@s2r,s1# !. ~4.3c!

The first three terms in~4.2! follow directly from the master
equation of Sec. III, while the last term is a standard atomic
damping term@1#, which accounts for the decay of the atom
through all transverse field modes not included in the quasi-
mode. The atomic damping term is of the form usually found
when considering radiative decay only@1#. We have moved
to the interaction picture, so that the optical frequencyv0
has been transformed away.

The second term in~4.2! is the correction term to standard
damping theory. It depends on the coupling parameterw,
which is defined as

w~z!5w8~z!1 iw9~z!5
l

c
g~z!v~z!, ~4.4!

wherev(z)5v8(z)1 iv9(z) has been given in Sec. III. Note
that we will assume thatw is small, as we have included
first-order correction terms in the master equation only.

It can be shown that positivity is conserved by the master
equation for parameter values satisfyingg i>

1
2Guwu2. In fact,

the master equation can be written as

d

dt
r5Ar1rA†12G~a2 1

4 iws2!r~a†1 1
4 iw*s1!

1 1
4 ~g i2

1
2Guwu2!s2rs1 , ~4.5!
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where A is an operator of which the precise form is not
relevant here. From this form of the master equation it fol-
lows directly that a density operator that is positive definite
at t50 can never lose that property during its evolution if the
coefficient of the last term is non-negative.

We will solve the master equation with the use of the
damping bases introduced in@6#. We write the density matrix
in the form

r5r0s01rzsz1r2s21r1s1 , ~4.6!

with s05
1
2 (12sz) and with the expansions

r05(
n,k

an,k~ t !rn,k , ~4.7a!

rz5(
n,k

bn,k~ t !rn,k , ~4.7b!

r25(
n,k

gn,k21~ t !rn,k , ~4.7c!

r15(
n,k

hn,k11 ~ t !rn,k , ~4.7d!

where the sums are taken over integerk and non-negative
integer n. Here rn,k are the eigenoperators ofLa . They
satisfy the eigenvalue equation

Larn,k522GS n1
uku
2 D rn,k ~4.8!

and are given by the expressions

rn,k55 a†k~21!a
†a1nS n1k

a†a1kD ~k>0!

~21!a
†a1nS n1uku

a†a1uku D auku ~k,0!.

~4.9!

The master equation~4.2! leads to a set of coupled differ-
ential equations for the coefficients in the expansions~39!.
These coefficients can be taken together in four-dimensional
vectorsXn,k , as in the standard damping theory@6#. For
k50 the vectorsXn,k are

Xn,05S an11,0

bn,0

2 ign,0

2 ihn,0

D ~n>0!, ~4.10!

X21,05S a0,0

0

0

0

D . ~4.11!

For kÞ0 the vectorsXn,k are nearly~but not completely!
analogous@6#. They will not be needed in the following.

The coupled differential equations for the vectorsXn,k
have the general form@6#

d

dt
Xn,k5Mn,kXn,k1Gn,kXn11,k ~4.12!

for all integerk andn, with n>21. BothMn,k andGn,k are
434 matrices. The matrixMn,k is the sum of a zeroth-order
term that is independent ofw and a first-order term linear in
w:

Mn,k5Mn,k
~0!1Mn,k

~1! . ~4.13!

For k50 andn>0 one finds

Mn,0
~0!5S 22G~n11! 0 2g~n11! 22g~n11!

0 22Gn2g i 22g~n11! 2g~n11!

2
1

2
g

1

2
g 2G~2n11!2

1

2
g i 0

1

2
g 2

1

2
g 0 2G~2n11!2

1

2
g i

D , ~4.14!

Mn,0
~1!5S 0 0 2Gw* ~n11! 22 Gw~n11!

0 0 0 0

0
1

2
Gw 0 0

0 2
1

2
Gw* 0 0

D , ~4.15!
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while for k50 andn521 one getsM21,050. Analogous
expressions can be derived forMn,k with kÞ0. Finally, we
have to specify the matrixGn,k , which turns out to be inde-
pendent ofw. For k50 andn>0 it reads

Gn,05S 0 0 0 0

0 0 0 0

0 g 0 0

0 2g 0 0

D , ~4.16!

whereas it vanishes fork50 andn521. Similar results are
obtained forGn,k with kÞ0.

The differential equations~4.12! can be solved for given
initial conditions. From the structure of the equations it fol-
lows that the time evolution is determined by the eigenvalues
of the matricesMn,k . In first order ofw, these can be found
by starting from the eigenvalue problem forMn,k

(0) and using
perturbation theory. Fork50 and n>0 we obtain in this
way the set of eigenvalues

l1,252G~2n11!2
1

2
g i64gGw9~n11!/S,

~4.17a!

l3,452G~2n11!2
1

2
g i6

1

2
iS64igGw8~n11!/S,

~4.17b!

with S5@16g2(n11)2(2G2g i)
2#1/2. Here we assumed

that the system is underdamped, that is, we took the argu-
ment of the square root to be positive. In the overdamped
case the analytic continuation of the square root must be
taken. Furthermore, it should be noted that in zeroth order
two eigenvalues coincide. To evaluate the perturbed eigen-
values this degeneracy has been taken into account properly
by employing degenerate perturbation theory. The above ex-
pressions for the eigenvalues are valid fork50 only. The
expressions forkÞ0 are somewhat more complicated. Fur-
thermore, we assumed thatSÞ0; the special caseS50, for
which all four eigenvalues coincide in zeroth order, has to be
treated separately.

To study the time evolution of the system in more detail
we shall discuss a special case, with a particular initial con-
dition. Let us consider the case that att50 no photon is
present in the system, while the atom is in its excited state.
This implies that fort50 one hasa0,05b0,051, whereas all
other coefficients vanish. In other words, one starts with vec-
tors Xn,k(t50) that are different from zero only for
(n,k)5(21,0) or (0,0). Due to the structure of~4.12!, it
follows that also fort.0 these values of (n,k) are the only
ones for whichXn,k differs from zero. Moreover, the equa-
tions for these two vectors are not coupled, sinceG21,0 van-
ishes. The time dependence ofX21,0 is trivial, while that of
X0,0 is governed by the eigenvalues of the matrixM0,0.
These eigenvalues have been given above in first-order per-
turbation theory. It is a straightforward task to determine the
associated eigenvectors up to first order. With the use of
these, one gets the following explicit expressions for the co-
efficients in the density matrix:

a0,0~ t !51, ~4.18a!

a1,0~ t !52
8g

S2 S g12Gw8
S228g2

S2 D FcosS 12St14g
G

S
w8t D

2coshS 4gG

S
w9t D Ge2@G1~1/2!g i#t, ~4.18b!

b0,0~ t !5F 1S2 SS228g228gGw8
S2216g2

S2 D
3cosS 12St14g

G

S
w8t D1

8g

S2 S g1Gw8
S2216g2

S2 D
3coshS 4gG

S
w9t D1

2G2g i

S3
~S228gGw8!

3sinS 12St14g
G

S
w8t D1

8g

S3
~2G2g i!Gw9

3sinhS 4gG

S
w9t D Ge2@G1~1/2!g i#t, ~4.18c!

g0,0~ t !5@h0,0~ t !#*5H 2
i

S2
~2G2g i!S g1 iGw9

1
S2216g2

S2
Gw8D FcosS 12St14g

G

S
w8t D

2coshS 4gG

S
w9t D G1

i

SS g1Gw
S228g2

S2 D
3FsinS 12St14g

G

S
w8t D

1 i sinhS 4gG

S
w9t D G J e2@G1~1/2!g i#t, ~4.18d!

whereS is now given byS5@16g22(2G2g i)
2#1/2. As be-

fore, the solutions for the overdamped case follow by ana-
lytical continuation of the square rootS. The effect of such
an analytical continuation is easily seen. It basically inter-
changes the roles of the hyperbolic and trigonometric func-
tions.

The explicit forms for the coefficients of the density ma-
trix as given here yield direct information on the evolution of
physical properties of the system, such as the average photon
number or the average population inversion. Indeed, one eas-
ily proves the relations
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^a†~z!a~z!&~ t !5a1,0~ t !, ~4.19a!

^sz&~ t !52b0,0~ t !21, ~4.19b!

^a~z!s1&~ t !5@^a†~z!s2&~ t !#*54g0,0~ t !. ~4.19c!

As follows from the results presented here, the correction
term in the master equation leads to several modifications in
the time evolution of the density matrix. These modifications
are determined by the nonideality parameterw. The results
from standard damping theory are recovered by settingw
equal to zero in all formulas.

The expressions~4.18! depend on the coupling constant
g(z)5ḡN (z), both directly and through the square rootS.
By using ~3.10! and ~4.4! we can rewrite g(z) as

g0(z)2
1
2 Gw8(z) in first order ofs. Here we introduced the

zeroth-order coupling constantg0(z)5ḡ sin(k0lz). Corre-
spondingly,S(z) may be expanded up to terms linear ins;
the result isS0(z)28g0(z)Gw8(z)/S0(z), where we defined
S0(z)5@16g0(z)

22(2G2g i)
2#1/2. With the use of these ex-

pansions the coefficients~4.18! can be simplified consider-
ably. The coefficientb0,0, for instance, which determines the
average atomic population inversion, becomes

b0,0~ t !5FS0228g0
2

S0
2 cosS 12S0t D 1

8g0
2

S0
2 coshS 4g0 G

S0
w9t D

1
2G2g i

S0
sinS 12S0t D 1

8g0
S0
3 ~2G2g i!Gw9

3sinhS 4g0 G

S0
w9t D Ge2@G1~1/2!g i#t. ~4.20!

As can be seen from this expression, the damped Rabi oscil-
lations of the average atomic population inversion, which are
characteristic for a decaying atom in a cavity, get modified if
the mirrors are no longer nearly perfect. The changes in the
time evolution of the population inversion are brought about
by hyperbolic functions that depend onw9. Its counterpart
w8 has no effect on the evolution of the population inversion,
although it does influence the average photon number.

The changes in the evolution of the atomic population due
to the finite mirror transmittivity depend quite sensitively on

the position of the atom. This fact has been observed before
in the context of the numerical studies presented in@5#. Here
it can be established analytically by considering the depen-
dence ofw9 on z, which follows from~3.14! and ~4.4!:

w9~z!522zs
g0~z!

G

sin~2k0l z!

12cos~2k0l z!
. ~4.21!

For an atomic positionz at an antinode one hasw9(z)50, so
that the damped Rabi oscillations remain unperturbed in that
case. On the other hand, for values ofz halfway between a
node and a antinode one hasuw9(z)u52zsg0(z)/G, so that
the hyperbolic functions do modify the oscillations in the
atomic population inversion for such configurations. An ex-
ample of such a modification of the time evolution is shown
in Fig. 1, where the behavior of the population inversion is
plotted for values oft that are of the order ofG21. The
influence of the finite mirror transmittivity is particularly
manifest for those values oft where the oscillating atomic
population inversion reaches a minimum. In fact, for a cavity
with nearly perfect mirrors~or for atoms situated at an anti-
node! the population inversion really vanishes periodically,
whereas for the nonideal case the population inversion re-
mains finite at the minima and becomes zero only for infinite
t. This feature has also been found in the numerical work by
Feng and Ujihara@14#. In the overdamped case the time evo-
lution of the atomic population inversion is modified as well.
The corrections are determined then by trigonometric func-
tions, which give oscillating contributions. Whether the sys-
tem is overdamped or not depends on the magnitude ofG as
compared tog0 . It should be noted that the ratio of these
parameters can be chosen independently of the value of
s5G l /c. The latter has to be small in order that the present
theory be valid.

V. CONCLUSION

The main results of the present paper are the master equa-
tion ~3.19! and its multimode generalization~3.20!. These
equations describe the time evolution of the density matrix
for a system inside a cavity with mirrors of a small but finite
transmittivity. As compared to the standard master equation,
which is valid for systems in cavities with vanishingly small
transmittivity, the equations derived here contain additional
terms. These terms arise from the interplay of the photon
escape through the mirrors, on the one hand, and the inter-
action of the electromagnetic field inside the cavity, on the
other hand.

To derive the master equation we had to introduce several
simplifying assumptions. First of all, we neglected the spatial
variation of the fields in the directions tranverse to the axis of
the cavity, that is, we adopted a one-dimensional description
of the system. Furthermore, we assumed that the fields inter-
acts only at a single~one-dimensional! position in the cavity,
so that only the field at that point enters the interaction
Hamiltonian. Starting from these assumptions we could de-
rive Langevin equations and master equations in which the
influence of the transmittivity of the mirrors has been taken
into account in a perturbative way. In deriving the master
equation we supposed that the degrees of freedom of the
electromagnetic field that are associated with the stochastic

FIG. 1. Average atomic populationb0,0 as a function~—! of the
dimensionless timeGt for s50.15, G53g i , and g052G, com-
pared with the prediction~– –! of standard damping theory.
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force are not excited. It is straightforward to generalize the
theory so as to include the effects of excitation of these de-
grees of freedom.

The additional terms in the master equation have a rather
simple structure. It is therefore relatively easy to determine
the consequences of a finite mirror transmittivity in any spe-
cific model that satisfies the general assumptions described
above. To show this we have evaluated the time dependence
of the density operator that describes the decay of a single
excited two-level atom in an otherwise empty cavity. From
our results certain features, such as the modification of the
damped Rabi oscillations brought about by the finiteness of
the mirror transmittivity, could be studied analytically,
whereas previous treatments had to depend on numerical
methods.

It should be stressed that the example of the decaying
atom was presented only as an illustration of the applicability
of our master equations. For that reason, we confined our-
selves in the discussion to the time dependence of the atomic
population inversion starting from a simple initial condition.
The generalization to different initial conditions is straight-
forward. Other models with effective nonlinear interactions
of the fields inside the cavity may likewise be discussed on
the basis of the master equations found here.
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APPENDIX

In this appendix we will present some details of the deri-
vation of the Langevin equation~3.15!. The memory func-
tion defined in~2.11! can be written as

F~z,t !5
1

2@N ~z!#2 H I ~s,t!2
1

2
cos~2k0l z!@ I ~s,t12z!

1I ~s,t22z!#1
i

2
sin~2k0l z!@ I ~s,t12z!

2I ~s,t22z!#J , ~A1!

with t5ct/ l , z512z/ l , and

@N ~z!#25
1

2
@ I ~s,0!2cos~2k0l z!I ~s,2z!#. ~A2!

Here I (s,t) is defined by

I ~s,t!5
A11s2

p E
2p/2

p/2

dx
s

s21sin2x
cos~xt!. ~A3!

The integralI (s,t), which is even int, can be split in
two parts by writings/(s21sin2x) as the sum ofs/(s21x2)
and a remainder. For smalls andt>0 the first part is

A11s2

p E
2p/2

p/2

dx
s

s21x2
cos~xt!

5e2st1stF12
2

p
Si~p t/2! G

2
4 s

p2 cos~p t/2! 1 O ~s2!. ~A4!

The second part can likewise be calculated approximately for
small s. For t>0 it becomes

s

pE2p/2

p/2

dx
x22sin2x

x2sin2x
cos~xt!1O ~s2!

52stF12
2

p
Si~pt/2! G 1

4 s

p2 cos~p t/2!

1
2 s

p
sin~pt/2! @ t b~t/2!21 # 1 O ~s2!, ~A5!

where @15# has been used. Hereb(x) is defined as
1
2c„(x11)/2…2 1

2c(x/2), with c(x) the digamma function.
Putting both parts ofI (s,t) together we have found, for

t>0,

I ~s,t!5e2st1
2s

p
sin~pt/2!@tb~t/2!21#1O ~s2!.

~A6!

FIG. 2. Real ~—! and imaginary ~– –! parts of
(s1]/]t)F(z,t) as a function oft5ct/ l , for s50.05,z50.5l , and
either ~a! sin@k0(l2z)#51 or ~b! sin@k0(l2z)#5cos@k0(l2z)#51/A2.
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For t50 one verifies thatI (s,0)51, while for t.1 one has
I (s,t)5exp(2st)1O (s/t)1O (s2). Substitution of these
results in~A1! and ~A2! leads to~3.10! and ~3.11!.

The Langevin equation~3.15! is obtained by investigating
the time behavior of the combination (G1]/]t)F(z,t) of the
memory kernel and its derivative, which occurs in~3.8!. This
combination is appreciably different from zero only for val-

ues oft that are of the order of 1, so thatt is of the order of
l /c. Its time dependence is plotted in Fig. 2 in dimensionless
units, forz in the middle of the cavity and either at an anti-
node or halfway between a node and an antinode. As we
assumed that the time scale for the evolution of all observ-
ables is much larger thanl /c ~after the optical frequency has
been transformed away!, we can now calculate the last term
in ~3.8! for t@ l /c by the substitution

i

\E0
t

dt8S ]

]t
F~z,t2t8!1GF~z,t2t8! De2 iv0~ t2t8!@H int~z,t8!,a~z,t8!#

→
i

\ F E
0

`

dt8S ]

]t8
F~z,t8!1GF~z,t8! D G @H int~z,t !,a~z,t !#. ~A7!

Employing ~A1! we obtain

E
0

`

dt8F ]

]t8
F~z,t8!1GF~z,t8!G5

1

2@N ~z!#2 H @12cos~2k0l z!#E
0

`

dtS ]

]t
I ~s,t!1sI~s,t! D

1cos~2k0l z!E
0

2z

dt
]

]t
I ~s,t!2 i sin~2k0l z!E

0

2z

dt I ~s,t!J . ~A8!

Inserting the approximate form~A6! and evaluating the integrals we finally get

E
0

`

dt8F ]

]t8
F~z,t8!1GF~z,t8!G5G

l

c
v~z!1O ~s2!, ~A9!

where we used~3.2! and~3.12!–~3.14!. The Langevin equation~3.15! is found upon substitution of~A7! with ~A9! in ~20!. As
is obvious from the above derivation, the fast decay of the combination (G1]/]t)F(z,t), with a decay time of the order of the
cavity round-trip timel /c, is instrumental in establishing the Markov property of the ensuing Langevin equation.
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