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Abstract

The array programming paradigm adopts multidimensional arrays as the fundamental
data structures of computation. Array operations process entire arrays instead of just single
elements. This makes array programs highly expressive and introduces data parallelism
in a natural way. Array programming imposes non-trivial structural constraints on ranks,
shapes, and element values of arrays. A prominent example of such violations are out-of-
bound array accesses. Usually, such constraints are enforced by means of run time checks.
Both the run time overhead inflicted by dynamic constraint checking and the uncertainty of
proper program evaluation are undesirable.

In this paper, we propose a novel type system for array programs based on dependent
types. Our type system makes dynamic constraint checks obsolete and guarantees orderly
evaluation of well-typed programs. We employ integer vectors of statically unknown length
to index array types. We also show how constraints on these vectors are resolved using
a suitable reduction to integer scalars. Our presentation is based on a functional array
calculus that captures the essence of the paradigm without the legacy and obfuscation of a
fully-fledged array programming language.

1 Introduction

In the array programming paradigm multidimensional arrays serve as the fundamental data
structures of computation. Such arrays can be vectors, matrices, tensors, or structures with
an even higher number of axes. Scalar values, such as integer numbers or characters, form the
important special case of arrays with zero axes. Array operations work on entire arrays rather
than individual elements. This makes array programs highly expressive and introduces data
parallelism in a natural way. Hence, functional array programs lend themselves well for parallel
execution on parallel computers such as recent multi-core processors [?, ?]. Prominent examples
of array languages are APL [?], J [?], MatLab [?], and SaC [?].
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A powerful concept found in array programming languages is shape-generic programming:
Individual operations and entire algorithms can be specified for arrays of arbitrary size and even
an arbitrary number of axes. For example, element-wise arithmetic works for scalars as well
as for vectors and matrices. However, this flexibility introduces some non-trivial constraints
between function arguments. Element-wise addition requires both arguments to have the same
number of axes and the same number of elements along each axis. The constraints are more
complicated for operations like array access: the selection of an array element requires the length
of the vector of indices to match the number of axes of the array to select from. Moreover, all
elements of the index vector must range within the index bounds of the array.

Interpreted array languages like APL, J, and MatLab are dynamically typed. They feature
a large number of built-in operations that implicitly perform the necessary consistency checks on
the structural properties of their arguments on each application. In contrast, SaC is a compiled
language aimed at high run time performance and automatic parallelization [?]. SaC has a static
type system that employs three layers of array types. While the array element type is always
monomorphic, structural array properties can be described at three different levels of accuracy:
complete information on number of axes and extents, partial information on number of axes but
not their extents, and no structural information at all. Using types with complete structural
information allows the compiler to statically resolve certain classes of structural constraints.
However, complete specification of all array types runs counter the software engineering desire
for generic and abstract specifications and code reuse. Code specialization [?] and partial
evaluation techniques [?] address this problem, but their success is program dependent. In
general, dynamic consistency checks remain prevalent in compiled code. For a language like
SaC this is particularly undesirable because run time checks cause overhead both directly
through their mere execution and indirectly by hampering program optimization.

In either setting, interpreted or compiled, dynamic consistency checks have a further disad-
vantage beyond performance considerations: a program may abort with an error message at any
given time. In particular, for long-running or safety-critical applications such run time errors
are undesirable.

In our current work, we aim at verifying array programs entirely statically. All structural
constraints are enforced at compile time by means of a novel type system that combines sub-
typing with a variant of indexed types [?, ?]. Terms denoting integer vectors are used to index
an array type of a particular shape from the family of array types. As the length of a shape
vector varies with the number of array axes, the sort of the index vector itself is indexed from
a sort family using an integer. For example, the type of element-wise addition of integer arrays
concisely expresses the required equality on argument and result shapes:

add : Πd :: nat. Πs :: natvec(d). [int|s]→ [int|s]→ [int|s]

Our type system rules out applications of the function add for which the arguments cannot be
proved to have equal shape. Thus, program execution can take place without any run time
checks. Furthermore, the structural information provided by these array types allow a compiler
to perform extensive program optimization. For specific arrays, singleton types even capture
the value of an array’s elements. Similar to other approaches based on indexed types such
as dml [?], type checking proceeds by checking constraints on linear integer expressions. In
the system presented in this paper, all well-typed programs are guaranteed not to exhibit any
undesired behavior at run time. A particular challenge in our context is to efficiently resolve
constraints between integer vectors of statically unknown length.

Our approach is rather disruptive than incremental for any existing array programming
language. Hence, we first develop our type system for an abstract functional array calculus
that captures the essence of array programming without the legacy problems of a fully-fledged
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Array Rank Shape vector
1 0 [][

1 2 3
]

1 [3](
1 2 3
4 5 6

)
2 [2 3]

4 5 6

1 2 3

10 11 12

7 8 9

3 [2 2 3]

Figure 1: Ranks and shape vectors of the example arrays

programming language. We follow the example of SaC, but leave out all aspects irrelevant to
our work (e.g. the module and state systems) and somewhat streamline the remaining parts.
Our calculus has some important features currently not supported by SaC, e.g. higher-order
functions and non-homogeneous nestings of multidimensional arrays.

We make the following contributions:

• We specify a language with the essential features necessary for shape-generic functional
array programming with dependent types that allows for both higher-order functions and
complex nestings of multidimensional arrays.

• We define a type system for the static verification of dependently typed array programs
that combines subtyping with a novel variant of indexed types that uses integer vectors
of statically unknown length to index elements of type families.

• We propose a scheme for mapping the resolution of constraints on integer vectors of
arbitrary length to linear integer constraints that may be processed by standard SMT
solvers.

Our approach provides a solution for type-safe functional array programming: any well-
typed array program is guaranteed to yield a proper value. In short: Dependently typed array
programs don’t go wrong!

The paper is organized as follows: Section ?? gives a gentle introduction to multidimensional
arrays. In Section ?? we introduce our calculus for functional array programming and present
its small-step semantics. Section ??, illustrates the kind of programs we are interested in and
motivates our type system for the static verification of array programs described in Section ??.
We outline our concept for vector constraint resolution in Section ??. Finally, we discuss related
work in Section ?? and draw conclusions in Section ??.

2 Multidimensional arrays

A characteristic feature of array programming languages is that only arrays are values, i.e.
legitimate results of computations. Arrays may be vectors, matrices, tensors, or structures with
an even higher number of axes. In particular, arrays may also be scalar values (such as the
integers) which form the important special case of arrays without any axes. The appropriate
abstraction which allows for treating different kinds of arrays in a uniform way are truely
multidimensional arrays.
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Array Index vectors
1 [][

1 2 3
] [

[0] [1] [2]
](

1 2 3
4 5 6

) (
[0 0] [0 1] [0 2]
[1 0] [1 1] [1 2]

)

4 5 6

1 2 3

10 11 12

7 8 9

[0 1 0] [0 1 1] [0 1 2]

[0 0 0] [0 0 1] [0 0 2]

[1 1 0] [1 1 1] [1 1 2]

[1 0 0] [1 0 1] [1 0 2]

Figure 2: Example arrays and the legal index vectors

Multidimensional arrays are characterized by two essential properties: a scalar rank and a
shape vector. The rank denotes an array’s number of axes. Its shape vector contains the array’s
extent along each axis. For a given array, the length of its shape vector equals its rank. Fig. ??
shows a few examples of multidimensional arrays and their basic properties. The scalar array 1
does not have any axes and hence its shape vector is empty. Vectors have a single axis, so the
shape vector of [1 2 3] is [3]. The scheme extends to arrays with an arbitrary number of axes.

The shape vector determines the number of elements in an array. Let A be an array of rank
r and shape vector s. Then the number of elements in A is given by the equation

|A| = Πr
i=1 si.

Individual elements are selected from an array with n axes by means of an index vector of
length n. Both the index vector and the selected element are arrays themselves. Fig. ?? gives
an overview of the admissible index vectors into the arrays from Fig. ??. The first row again
shows the special case of scalar arrays: as the array 1 does not have any axes, the empty vector
is the only legal index vector. Such a selection again yields the array 1. The other cases are
more straightforward. For example, we may index into a matrix using appropriate index vectors
of length two.

A more rigorous syntax for multidimensional arrays is shown in Fig. ?? along with a suitable
evaluation relation for evaluating array terms. We use the notation an to represent comma
separated lists a1, ..., an. In order to express that a property holds for all elements of a sequence
an we write ∀i. p(ai) instead of ∀i. 1 ≤ i ≤ n ⇒ p(ai). Array values have the form [|qp|[sd]|].
In such an array, the integer vector sd represents the shape vector; its length d encodes the
array’s rank. The data vector qp contains the array elements as a sequence of quarks. For the
moment, quarks may only be integers but we will introduce other kinds of quarks in Section ??.
Quarks owe their name to the fact that array programs employ arrays as the atomic units of
computation (all values in the system are arrays). Hence, array elements must be a subatomic
particles.

Fig. ?? shows the array values corresponding to the example arrays. We demand that array
values adhere to a data type invariant: [|qp|[sd]|] is valid iff no axis has negative length and
the number of quarks equals the product of the elements of the shape vector:

1. ∀i.si ≥ 0,

2. p = Πd
i=1si.
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Syntactic forms

t ::= [|qp|[sd]|] | rank t | shape t | sel(t,t) Terms
q ::= c Quarks

v ::= [|qp|[sd]|] Values

Evaluation rules

t −→ t′

rank t −→ rank t′
rank [|qp|[sd]|] −→ [|d|[]|]

t −→ t′

shape t −→ shape t′
shape [|qp|[sd]|] −→ [|sd|[d]|]

t1 −→ t′1
sel(t1,t2) −→ sel(t′1,t2)

t2 −→ t′2
sel(v1,t2) −→ sel(v1,t′2)

∀k. 0 ≤ ik < sk

sel([|qp|[sd]|],[|id|[d]|]) −→ [|qι(d,sd,id)|[]|]

Figure 3: A core system for representing and accessing multidimensional arrays

Array Uniform array representation
1 [|1|[]|][

1 2 3
]

[|1, 2, 3|[3]|](
1 2 3
4 5 6

)
[|1, 2, 3, 4, 5, 6|[2, 3]|]

4 5 6

1 2 3

10 11 12

7 8 9

[|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12|[2, 2, 3]|]

Figure 4: Uniform representations of the example arrays

Inside the data vector, the elements along the innermost array axis are stored densely (row-
major order). For multidimensional arrays, this means that the order of elements is determined
by the lexicographic order of the corresponding index vectors. Let A be an array of rank r and
shape s, and let v be a suitable index vector for A. The function ι then determines the linear
index of the element at position v in the data vector of A:

ι(r, sr, vr) = Σr
i=1 (vi ·Πr

j=i+1 sj) + 1.

Properties of arrays can be accessed using three primitives: rank, shape, and sel. All
operations first evaluate their arguments to array values and then yield an array containing the
desired properties themselves. For an array A = [|qp|[sd]|], rank A evaluates to the integer
scalar d, represented as [|d|[]|]. The term shape A yields the shape vector of A in the form
[|sd|[d]|]. As an example, we apply both functions to a matrix of shape 2× 3:

rank [|1, 2, 3, 4, 5, 6|[2, 3]|] −→ [|2|[]|]
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shape [|1, 2, 3, 4, 5, 6|[2, 3]|] −→ [|2, 3|[2]|]

Since the application of shape to an array results in a vector whose length equals the given
array’s rank, one may think that applying shape twice is another way to obtain the rank,
making the rank primitive obsolete. However, the results are not the same because shape will
always evaluate to a vector whereas rank yields a scalar.

shape (shape [|qn|[sd]|]) −→∗ [|d|[1]|]

rank [|qn|[sd]|] −→ [|d|[]|]

A selection sel(A,[|ie|[e]|]) into a multidimensional array A = [|qp|[sd]|] is evaluated
if two constraints are met. Firstly, the length e of the index vector must equal the rank d of
A. Secondly, the index vector ie must actually denote a valid position in A, i.e. the values of
all quarks ik must range between 0 and sk. The selection will then evaluate to a scalar array
whose sole quark is taken from the data vector of A at position ι(d, sd, id).

Selections with index vectors of invalid length or index vectors denoting a position outside
the array boundaries cannot be evaluated and are thus program errors. To illustrate array
selection, we select the central element from a matrix of shape [3, 3]:

0 ≤ 1 < 3 ∧ 0 ≤ 1 < 3
sel([|1, 2, 3, 4, 5, 6, 7, 8, 9|[3, 3]|],[|1, 1|[2]|]) −→ [|5|[]|]

The evaluation rules for both rank and shape are straightforward: Whenever the argument
reduces to value, a result will be provided. In contrast, successful evaluation of selections
depends on non-trivial constraints between the arguments’ ranks, shape vectors, and the values
of the array elements.

We have introduced the main ideas of multidimensional arrays with a custom syntax for
arrays and a semantics for the essential array operations. In the next section, we will extend
these ideas towards a core language for functional array programming. To pinpoint potential
program errors, we will provide a detailed small-step semantics for our calculus.

3 A Core Functional Array Programming Language

In this section, we specify a core language that captures the essential features necessary for
functional array programming. The language allows for the type-safe specification of shape-
generic array programs. Such programs operate on arrays with an arbitrary shape and even
with an arbitrary number of axes. We deliberately leave out several features of functional
programming languages that would unnecessarily complicate the presentation in this paper.
Among others, the core language does not support polymorphism, algebraic data types, and
general recursion. Nonetheless, since all these features are largely orthogonal to our approach,
we are confident they could be soundly integrated.

To rule out program errors such as the invalid array selection the language employs types
for arrays that describe both the type of the quarks inside an array as well as its shape. In
particular, the shape component of a type is itself an expression. This makes our array types a
variant of dependent types. To keep type checking decidable, we restrict the shape expressions
to a dedicated index language in which only predefined and well-behaved (i.e. linear) operations
are permitted. Type checking then reduces to solving constraints over these index terms.
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I ::= idx | idxvec(i) | {I in ir} Index sorts

i ::= c | x | [in] | ~f(i,i) | f2(i,i) Index terms
ir ::= i | i.. | ..i | i..i Index ranges

T ::= [Q|i] | S(i) Types
Q ::= ⊥Q | int | T → T | Πx :: I. T | {Tn} | Σx :: I. T Quark types
S ::= num | numvec Singleton types

t ::= [|qp|[cn]|] | x | t t | t ′i Terms
| let x = t in t | {tn} | let {xn} = t in t
| {′i,t : Σx :: I. T} | let {′x, x} = t in t
| [tp|[cn]] | f t | gen x < t of t with t
| loop x < t, x = t with t | case t in m

q ::= c | λx :T. t | λ′x :: I. t | {vn} | {′i,v:Σx :: I. T} Quarks
m ::= r ⇒ t | m | else⇒ t Matches
r ::= t | t.. | ..t | t..t Ranges

f ::= ~f | f2 | rank | shape | length | sel Built-ins
~f ::= vec | ++ | take | drop Vector ops

f2 ::= + | - | min | max Dyadic ops

v ::= [|qp|[cn]|] Values
rv ::= v | v.. | ..v | v..v Value ranges

Figure 5: Syntax of a core language for typed functional array programming

The syntax of the language is shown in Fig. ??; its operational semantics is shown in
Figs. ??–??. The language description can be divided into three conceptual sections: The top
section defines the index language which is used to index types from the type families. The
next section describes the types used in the system. The remainder of the figure defines the
term language, namely the quarks and array terms. The discussion in this section will follow
the same route.

3.1 Index language

As mentioned before, types may only depend on the terms of a specific index language in order
to keep type checking decidable. The index terms are solely used for type checking; they are
not subject to evaluation. All index terms belong to an index sort. idx is the sort of integer
scalars, idxvec(i) is the sort-family of integer vectors. In this sort family, a sort for vectors
of a particular length is designated using a scalar index term i. We use index vectors to index
into the family of multidimensional array types.

Scalar index terms are integer constants c, variables of sort idx, and applications of linear
dyadic functions such as addition and subtraction to scalar index terms. Index vectors may
also be variables of a vector sort, but can be constructed from scalar index terms as well. For
example, the index vector [0, 1, 2] belongs to the sort idxvec(3). We may also apply binary
linear functions to index vectors of equal length. This yields another index vector of that sort
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by element-wise application of the given function. In particular, we may form vectors whose
length is given by a scalar index term. For a non-negative scalar index l and another scalar
index i, vec(l,i) yields an index vector of length l whose elements all equal i. There are also
index vector terms that map between the index sorts. Vectors may be concatenated using a ++ b
which appends the vector b of length lb to the vector a of length la. Naturally, the result is
of sort idxvec(la + lb). Conversely, vectors can be split using the operations take and drop.
For a given vector v of length l and a scalar index expression i with 0 ≤ i ≤ l, take(i,v) and
drop(i,v) denote the prefix of v with length i and the suffix of v with length l - i, respectively.
Thus we have take(i,v) ++ drop(i,v) = v.

Index sorts can be restricted to specific ranges using the subset notation {I in ir}. Given
two scalar index terms a and b, the sort {idx in a..b} denotes all x of sort idx for which
a ≤ x < b. Both boundaries may be omitted, indicating ±∞ as the boundaries. A sort of the
form {I in i} denotes a sort that contains i as its single element. In the following we will use
nat = {idx in 0..} and natvec(i) = {idxvec(i) in vec(i,0)..}.

3.2 Types for array programs

There are two major kinds of types for array programs: quark types for describing the quarks
inside an array and array types for describing entire arrays through its quark type and its
shape. Quark types and array types follow the mutually recursive structure of quarks and array
values. The array type [Q|i] describes all arrays whose elements have quark type Q and whose
shape vector is characterized by the index vector i. For example, the type of an integer vector
[|1, 2, 3, 4|[4]|] is [int|[4]], while a scalar integer [|7|[]|] has type [int|[]].

The integer quarks of type int are the only primitive values used in the language. Clearly,
other base types could be supported as well. In addition, there are also structured quarks:
abstractions λx :T1. t of type T1 → T2, index abstractions λ′x :: I. t of type Πx :: I. T , tuples
of arrays values {v1, .., vn} of type {T1, .., Tn}, and dependent pairs {′i,v:Σx :: I. T} of type
Σx :: I. T . The bottom quark type ⊥Q is not associated with a particular quark. Instead, it
serves as a quark type for empty arrays such as the empty vector [||[0]|] which has type
[⊥Q|[0]]. To capture the intuition that an empty array may have an arbitrary quark type,
⊥Q is a subtype of every quark type.

Due to the significance of integer scalars and vectors for array programs, we provide singleton
types for these arrays that do not only characterize their shape, but also the values of the
contained integer quarks. The type num(i) characterizes all scalar integer arrays whose quark
is identical to the index i. By means of subtyping, each num(i) is also an [int|[]]. Similarly,
an integer vector of type numvec(i) is also an [int|[l]] provided that the index vector i is
of sort idxvec(l). Thus, the above arrays [|7|[]|] and [|1, 2, 3, 4|[4]|] also have the more
specific types num(7) and numvec([1, 2, 3, 4]), respectively.

3.3 Syntax and semantics of array programs

We now explain the syntax and semantics of the terms of the array language. The evaluation
rules of the basic language elements is defined in Fig. ??.

3.3.1 Functions

The abstraction quark λx :T1. t allows to specify arrays of functions. Its type is the function
quark type T1 → T2. The application t1 t2 is explained by the evaluation rules E-App1, E-
App2, and E-AppAbs. Following a call-by-value regime, the application first evaluates both the
operator t1 and the operand t2. Only if t1 evaluates to a scalar array with a single abstraction
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t1 −→ t′1 (E-App1)
t1 t2 −→ t′1 t2

t2 −→ t′2 (E-App2)
v1 t2 −→ v1 t′2

[|λx :T. t|[]|] v2 −→ t[x 7→ v2] (E-AppAbs)

t −→ t′ (E-IApp)
t ′i −→ t′ ′i

[|λ′x :: I. t|[]|] ′i −→ t[x 7→i i] (E-IAppIAbs)

tj −→ t′j
(E-Tup1)

{vj−1, tj , t
n−j} −→ {vj−1, t′j , t

n−j}

{vn} −→ [|{vn}|[]|] (E-Tup2)

t −→ t′ (E-ITup1)
{′i,t : Σx :: I. T} −→ {′i,t′ : Σx :: I. T}

{′i,v : Σx :: I. T} −→ [|{′i,v:Σx :: I. T}|[]|] (E-ITup2)

t1 −→ t′1 (E-Let)
let p = t1 in t2 −→ let p = t′1 in t2

let x = v1 in t2 −→ t2[x 7→ v1] (E-LetVal)

let {xi} = [|{vi}|[]|] in t2 −→ t2[x1 7→ v1]..[xn 7→ vn] (E-LetTup)

let {′x1, x2} = [|{′i,v:Σx :: I. T}|[]|] in t2 −→
t2[x1 7→i i][x2 7→ v] (E-LetITup)

Figure 6: Basic semantics of typed array programs

[|λx :T. t|[]|], the entire application will take a β-reduction step by substituting all free
occurrences of x in t with the evaluated argument.

The index abstraction quark λ′x :: I. t allows us to abstract an index variable from both
terms and types. The type of the index abstraction is Πx :: I. T , where T may refer to the index
identifier x. By abstracting an index vector from the shape of a function argument, we can
specify operations applicable to arrays of arbitrary shape. Taking this idea further, we may
abstract the length from this index argument and obtain a rank-generic function.

Index abstractions are applied to index arguments with the index application t ′i. As defined
by the evaluation rules E-IApp and E-IAppIAbs, the index application t ′i only evaluates the
applied term t but not the index argument i. Provided that t evaluates to a scalar array with a
single index abstraction quark [|λ′x :: I. t|[]|], the index application takes an evaluation step
by substituting all index identifiers x in t with i.

3.3.2 Tuples

Besides constants and (dependent) functions, arrays may also contain n-ary tuples of arrays
and dependent pairs that couple index terms with arrays. The tuple quark {v1, ..., vn} of type
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{T1, ..., Tn} encloses n array values into a single quark, thus allowing for arrays containing
(tuples of) arrays.

Since all quarks in an array must have a common type, tuples only allow for uniform nest-
ings in which all inner arrays have the same shape. This restriction is overcome with the
dependent pair quark {′i,v:Σx :: I. T} of type Σx :: I. T . In a dependent pair, the type of the
second component may depend on the index that is the first component. The type annota-
tion Σx :: I. T is necessary because the typing of a dependent pair is ambiguous. For exam-
ple, the dependent pair {′2, [|2, 2|[2]|]} has type Σx :: nat. [int|[x]], but also the types
Σx :: nat. [int|[2]], Σx :: nat. numvec([x, x]), and Σx :: nat. numvec([2, x]), among others.
Vice versa, several dependent pairs have the same type: both dependent tuples {′2, [|2, 2|[2]|]}
and {′3, [|1, 2, 3|[3]|]} have the type Σx :: nat. [int|[x]]. Thus, by abstracting a variable
from the shapes of the arrays in a dependent pair, we may form nestings of heterogeneous
arrays.

Tuple quarks and dependent pair quarks only contain fully evaluated array values. The
tuple constructor {t1, ..., tn} is a term that allows to form tuples from arbitrary expressions. It
first evaluates all terms ti to values vi from left to right (E-Tup1) and then reduces to a scalar
array with a single tuple quark {v1, .., vn} according to rule E-Tup2. Analogously, there is also
constructor term for dependent pairs {′i,t : Σx :: I. T} which is explained by the rules E-ITup1
and E-ITup2.

3.3.3 Let binding

The let binding allows to give names to the values of complex subterms. As outlined by the
evaluation rules E-Let and E-LetVal, let x = t1 in t2 first evaluates t1 to a value and then
replaces all free identifiers x in t2 with the result. Moreover, the let binding serves to unpack
tuples and dependent pairs (E-LetTup, E-LetITup). Provided that t1 evaluates to a scalar
array with a single tuple quark {v1, .., vn}, the binding let {x1, .., xn} = t1 in t2 will evaluate
to t2 in which each identifier xi has been replaced with the ith tuple component vi from left to
right. Similarly, when t1 yields a dependent pair {′i,v:Σx :: I. T}, let {′x1, x2} = t1 in t2 will
first substitute x1 with the index term i in t2 and then replace x2 with the value v in the body.

3.3.4 Built-in operations

The operational semantics of the more array specific language elements is shown in Fig. ??.
The primitives rank and shape are already known from Section ??. An additional primitive
length determines the length of a given vector. The operations +, -, max, and min can be
applied to pairs of shape-conforming integer arrays. Their evaluation is defined by the rule
E-Bin as per-element applications of the respective operation. The selection sel {a, x}, also
written a.[x], selects for any valid selection vector x an element from a. For any non negative
integer l and scalar array b, vec {l, b} yields a vector of length l whose elements are all b. For a
vector v of length l and an integer n with 0 ≤ n ≤ l, take {l, v} and drop {l, v} yield the prefix
of v with length l and the suffix of v with length n− l, respectively.

3.3.5 Array construction

The array constructor [tn|[fd]] with ∀i. fi > 0 and n = Πd
i=1fi creates an array by evaluating

the cell terms tj , which must all evaluate to array values of the same shape. The shape of the
newly formed array is prefixed with the frame shape fd. Its suffix is the common shape vector
of the evaluated cells. As shown in the evaluation rules E-Arr1, the cells are evaluated in no
specific order, thus introducing a data parallel flavor of concurrency. The data vector of the
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t −→ t′ (E-PrfApp)
f t −→ f t′

rank [|qp|[sd]|] −→ [|d|[]|] (E-Rank)

shape [|qp|[sd]|] −→ [|sd|[d]|] (E-Shape)

length [|ql|[l]|] −→ [|l|[]|] (E-Length)

f2 [|{[|qp|[sd]|], [|rp|[sd]|]}|[]|] −→ [|f̃2(q1, r1), .., f̃2(qp, rp)|[sd]|] (E-Bin)

∀k. 0 ≤ ik < si (E-Sel)
sel[|{[|qp|[sd]|], [|id|[d]|]}|[]|] −→ [|qι(d,sd,id)|[]|]

l ≥ 0
(E-Vec)

vec[|{[|l|[]|], [|q|[]|]}|[]|] −→ [| q, .., q︸ ︷︷ ︸
l

|[l]|]

++[|{[|qm|[m]|], [|q′n|[n]|]}|[]|] −→ [|qm, q′n|[m+̃n]|] (E-Cat)

0 ≤ n ≤ l
(E-Take)

take[|{[|n|[]|], [|ql|[l]|]}|[]|] −→ [|q1, .., qn|[n]|]

0 ≤ n ≤ l
(E-Drop)

drop[|{[|n|[]|], [|ql|[l]|]}|[]|] −→ [|qn+1, .., ql|[l−̃n]|]

tj −→ t′j
(E-Arr1)

[tj−1, tj , t
n−j|[fd]] −→ [tj−1, t′j , t

n−j|[fd]]

[[|qp
i |[c

e]|]n|[fd]] −→ [|qp
1 , .., qp

n|[f
d, ce]|] (E-Arr2)

t1 −→ t′1 (E-GenF)
gen x < t1 of t2 with t3 −→ gen x < t′1 of t2 with t3

t2 −→ t′2 (E-GenC)
gen x < v1 of t2 with t3 −→ gen x < v1 of t′2 with t3

∀k. fk ≥ 0 ∃j. fj = 0
(E-GenE)

gen x < [|fd|[d]|] of [|ce|[e]|] with t −→ [||[fd, ce]|]

∀k. fk > 0 ∀yd ∈ ~0..fd. cι(d,fd,yd) = t[x 7→i [yd]][x 7→ [|yd|[d]|]]
(E-Gen)

gen x < [|fd|[d]|] of v with t −→ [cp|[fd]]

t1 −→ t′1 (E-Loop1)
loop x1 < t1, x2 = t2 with t3 −→ loop x1 < t′1, x2 = t2 with t3

∀k. 0 ≤ sk

∀vd ∈ ~0..sd. fι(d,sd,vd) = [|λy. t3[x 7→i [vd]][x 7→ [|vd|[d]|]]|[]|]
(E-Loop2)

loop x < [|sd|[d]|], y = t2 with t3 −→ fp ...(f1 t2)

Figure 7: Semantics of the array specific built-in operations
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new array is obtained by concatenating the cells’ individual data vectors, e.g.

[[|1, 2, 3|[3]|], [|4, 5, 6|[3]|]|[2]] −→∗ [|1, 2, 3, 4, 5, 6|[2, 3]|].

Whereas array constructors statically fix the frame shape, with-loops allow for shape-generic
array definitions. The concept of the with-loop originates from SaC. We have simplified its
syntax and semantics for the context of this work. An expression gen x < t1 of t2 with t3
defines an array with a frame of shape t1 that contains cells of the cell shape t2. Each cell is
computed by evaluating the cell term t3 in which x is assigned the cell’s position inside the
frame.

Using a with-loop, we can for example apply a function f to each element of an array a,
yielding an array of results:

gen x < shape a of [||[0]|] with (f a.[x])

Both the frame shape and the cell shape are evaluated before the actual evaluation of the
with-loop takes place (E-GenF, E-GenD). Provided that t1 evaluates to a strictly positive
integer vector [|sd|[d]|], the cell shape may be ignored and the entire expression is evalu-
ated according to rule E-Gen. The with-loop evaluates in one step to an array constructor
[tpc|[sd]], that in turn will evaluate to the result array by the rules E-Arr1 and E-Arr2.
Each cell expression tpc is obtained by first substituting the index identifier x in t3 with an in-
dex vector denoting the cell’s position inside the frame and subsequently replacing the regular
identifier x in t3 with an array of the same content. If t1 specifies an empty frame shape, the
whole with-loop will evaluate to an empty array of shape t1 ++ t2 as stated by rule E-GenE.
Having no quarks, the empty array has quark type ⊥Q and is thus compatible with any other
quark type.

3.3.6 Reduction

The loop expression traverses an index space in lexicographic order with a single loop-carried
dependency. It is possible to define loops with both scalar and vector boundaries. We restrict
our presentation to the latter. In a term of the form loop x1 < t1, x2 = t2 with t3, the
non-negative integer vector t1 defines the index space. t2 serves as the initial value of the
accumulator x2. The loop body t3 is evaluated for all non-negative vectors up to t1 in ascending
lexicographic order. Thereby, the current position is bound to the identifier x1, The accumulator
x2 represents the intermediate loop result. As an example, we provide a loop that computes
the sum of integers from an array a of any shape:

loop x < shape a, s = [|0|[]|] with s + a.[x]

3.3.7 Conditional

Finally, the language provides support for a generalized form of a conditional. Its semantics
is shown in Fig. ??. The expression case t in m evaluates to one of multiple branches in m
depending on the value of the integer (vector) t. The branching condition is first evaluated to
a value. This value is then successively compared with the ranges specified in the branches of
the form r ⇒ tb | mn. If the value of t lies in the range r, the conditional evaluates to tb.
Otherwise, the next branch in mn is tried. In case there is no matching branch, the terminal
else⇒ te branch will be evaluated.
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t −→ t′ (E-Case)
case t in m −→ case t′ in m

case v in else⇒ t −→ t (E-Else)

r −→ r′ (E-Range)
case v in r ⇒ t | m −→ case v in r′ ⇒ t | m

M(v, rv)
(E-Match)

case v in rv ⇒ t | m −→ t

¬M(v, rv)
(E-Next)

case v in rv ⇒ t | m −→ case v in m

Figure 8: Semantics for conditional expressions

Using the case construct, we may for example define a dynamic check to verify that a
selection vector x points to a valid position in an array a. In particular, the type checker will
make use of this knowledge when it checks the selection a.[x]:

case x in vec {length x, 0}..shape a ⇒ a.[x] | else⇒ 0

In this section, we have presented a core language for type-safe functional array program-
ming. The emphasis lies on the combination of shape-generic programming and dependent
types.

4 Shape-generic array programming with dependent types

We now illustrate shape-generic array programming with dependent types with a series of
practical examples. To improve legibility, we will employ some notational simplifications. The
type of a scalar array is denoted by its quark type Q instead of its full array type [Q|[]].
Similarly, we abbreviate a scalar array value [|q|[]|] with its sole quark q. To aid the definition
of more complex functions, we will use a notation similar to Haskell programs in which the
type declaration and the definition of a function appear on separate lines. The transformation
of the notational extensions into the core language should be straightforward.

4.1 Shape-generic array operations

Using the with-loop, shape-generic algorithms may be specified. As a first example, we develop
a shape-generic map operation that applies a function to each element of an array. map is a
uniform array operation, i.e. an operation whose result shape depends solely on the shapes of
its arguments. We start with a shape-specific implementation for 2× 2 matrices:

map : (int→ int) → [int|[2, 2]]→ [int|[2, 2]]

map f a = gen x < [|2, 2|[2]|] of [||[0]|] with f a.[x]

Using dependent types, we can generalize map such that it becomes applicable to arbitrary
matrices. We abstract the index variable s from the shape component of the array type. In
the definition, we replace the concrete frame shape with shape a that gives us the appropriate
value. Despite the function’s generality, the type states precisely the necessary conformance of
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the argument and the result shape:

map : Πs :: natvec(2).
(int→ int) → [int|s]→ [int|s]

map ′s f a = gen x < shape a of [||[0]|] with f a.[x]

Even more general, by abstracting from the length of the index vector s, we obtain a variant
of map that is applicable to any integer array, no matter whether it is a scalar, a vector, a
matrix, or anything else. It is noteworthy that this generalization does not require to change
the definition of map any further.

map : Πr :: nat. Πs :: natvec(r).
(int→ int) → [int|s]→ [int|s]

map ′r ′s f a = gen x < shape a of [||[0]|] with f a.[x]

To provide an example that uses of non-scalar array cells, we define multiplication for arrays
of complex numbers. We represent complex numbers as two-element vectors of doubles, stored
in the cells of a double array. Thus, a complex array of shape s is represented by a double array
of shape s ++ [2]. For each complex product, the program cpxmul selects the real and imaginary
parts of the corresponding numbers from the argument arrays. The resulting complex number
becomes a cell in the result array.

cpxmul : Πr :: nat. Πs :: natvec(r).
[double|s ++[2]]→ [double|s ++[2]]→ [double|s ++[2]]

cpxmul ′r ′s a b =
gen x < take {rank a - 1, shape a} of [|2|[1]|] with

let ar = a.[x ++ [0]] in let ai = a.[x ++ [1]] in
let br = b.[x ++ [0]] in let bi = b.[x ++ [1]] in
[ar*br - ai*bi, ar*bi + ai*br|[2]]

An example for a non-uniform array operation is the generalized selection gsel. It overcomes
the restriction that the length of a selection vector must match the rank of the array selected
into. Given a shorter selection vector x and an array a, it selects an array slice of those elements
whose position in A is prefixed with x. The shape of the result is thus drop {length x, shape a}.
We use a singleton type for the selection vector to enforce that its value must range between ~0
and a prefix of the array shape.

gsel : Πr :: nat. Πs :: natvec(r).
Πl :: {nat in ..r + 1}. Πv :: {natvec(l) in ..take(l,s)}.
[int|s]→ numvec(v)→ [int|drop(l,s)]

gsel ′r ′s ′l ′v a x = gen y < drop {length x, shape a} of [||[0]|]
with a.[x ++ y]

Another interesting example is iota, a function that combines the power of singleton types
with dependent pairs. Given a non-negative integer vector v, iota yields an array that contains
all valid index vectors into an array of shape v. The Σ-type indicates precisely that the values
of the vectors range between ~0 and v.

iota : Πr :: nat. Πs :: natvec(r).
numvec(s)→ [Σy :: {natvec(r) in ..s}. numvec(y)|s]

iota ′r ′s v = gen x < v of [||[0]|]
with {′x,x : Σy :: {natvec(r) in ..s}. numvec(y)}
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The result of iota can for example be used with the multiple selection msel. It takes an
array a and another array i of (legal) selection vectors into a. msel then performs a selection
into a for every vector in i and yields the array of all results.

msel : Πr :: nat. Πs :: natvec(r).
Πt :: nat. Πu :: natvec(t).
[int|s]→ [Σy :: {natvec(r) in ..s}. numvec(y)|u]→
[int|u]

msel ′r ′s ′t ′u a i = gen x < shape i of [||[0]|]
with let {′j, y} = i.[x] in a.[y]

Using loops, we can define shape-generic variants of the well-known higher-order functions
fold. While foldl traverses the array elements in lexicographic order, foldr starts with the
greatest array index and progresses in descending order.

foldl : Πr :: nat. Πs :: natvec(r).
(int→ int→ int) → int→ [int|s]→ int

foldl ′r ′s f n a =
loop x < shape a, acc = n with (f acc a.[x])

foldr : Πr :: nat. Πs :: natvec(r).
(int→ int→ int) → int→ [int|s]→ int

foldr ′r ′s f n a =
let as = shape a in
let b = as - (vec {length as, 1}) in
loop x < shape a, acc = n with (f a.[b - x] acc)

4.2 Case study: Inner product

As a more elaborate example for the expressive power of shape-generic functional array pro-
gramming, we now present a program for computing matrix products. We will then generalize
this program with little effort such that it can also be used to compute matrix-vector products,
vector-vector products and similar operations.

Matrix multiplication is a shape-generic function with complex constraints on the shapes of
its arguments. Only if the number of columns of the first matrix equals the number of rows of
the second matrix, the result matrix will have as many rows as the first argument and as many
columns as the second.

matmul : Πp :: natvec(1). Πq :: natvec(1). Πr :: natvec(1).
[int|p ++ q]→ [int|q ++ r]→ [int|p ++ r]

We implement matrix multiplication by means of a with-loop that for each element of the
result array fetches the corresponding row from the first argument and the column from the
second argument. It then combines both vectors into a scalar by element-wise multiplication
and subsequent reduction by summation.

matmul ′p ′q ′r a b =
let pp = take {1, shape a} in
let rr = drop {1, shape b} in
gen x < pp ++ rr of [||[0]|] with

let arow = gsel ′2 ′(p ++ q) ′1 ′(take(1,x)) a (take {1, x}) in
let bcol = fsel ′2 ′(q ++ r) ′1 ′(drop(1,x)) b (drop {1, x}) in
sum ′1 ′q (mul ′1 ′q arow bcol)
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In addition to the generalized selection gsel for selecting rows, the program uses a similar
function called fsel for selecting columns. The function sum is defined in terms of foldl. In
the definition of mul we assume we have an infix operator ∗ for computing the integer product.

fsel : Πr :: nat. Πs :: natvec(r).
Πl :: {nat in ..r + 1}. Πv :: {natvec(l) in ..drop(r - l,s)}.
[int|s]→ numvec(v)→ [int|take(r - l,s)]

fsel ′r ′s ′l ′v a x =
gen y < take {(rank a) - (length x), shape a} of [||[0]|]
with a.[y ++ x]

sum : Πr :: nat. Πs :: natvec(r). [int|s]→ int
sum ′r ′s a = foldl ′r ′s (λx : int. λy : int. (x + y)) 0 a

mul : Πr :: nat. Πs :: natvec(r). [int|s]→ [int|s]→ [int|s]
mul ′r ′s a b = gen x < shape a of [||[]|] with a.[x] ∗ b.[x]

An interesting generalization of the matrix multiplication scheme is the inner product ip.
Instead of restricting its arguments to (suitable) matrices, ip allows the arguments to have
arbitrary shapes and an arbitrary number of axes as long as the last axis of the first argument
is as long as the first axis of the second argument. The inner product then combines all the
vectors along the last axis (rows) of the first array with all vectors along the first axis (columns)
of the second array in the same style as matrix multiplication. The algorithm for the inner
product can be obtained from the matrix multiplication with minimal effort by simply adding
index parameters for the array ranks and slight modification of the code.

ip : Πd :: nat. Πe :: nat.
Πp :: natvec(d). Πq :: natvec(1). Πr :: natvec(e).
[int|p ++ q]→ [int|q ++ r]→ [int|p ++ r]

ip ′d ′e ′p ′q ′r a b =
let dd = (rank a) - 1 in
let pp = take {dd, shape a} in
let rr = drop {1, shape b} in
gen x < pp ++ rr of [||[0]|] with

let arow = gsel ′(d + 1) ′(p ++ q) ′d ′(take(d,x)) a (take {dd, x}) in
let bcol = fsel ′(e + 1) ′(q ++ r) ′e ′(drop(d,x)) b (drop {dd, x}) in
sum ′1 ′q (mul ′1 ′q arow bcol)

Having defined the algorithm for the shape-generic inner product, we may derive rank-
specific algorithms for matrix multiplication of matrix-vector products by partial application:

matmul = ip ′1 ′1
matvecmul = ip ′1 ′0
sprod = ip ′0 ′0

5 Type checking

The evaluation rules will only evaluate array terms under certain constraints between ranks,
shape vectors, and even array elements. To rule out programs that won’t evaluate to a value,
we now present a type system for static verification of array programs. Besides the terms, array
programs also contain index terms as well as sort and type declarations. Thus, in addition
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Γ ` idx :: ∗I (WFS-Idx)

Γ ` i :: {idx in 0..}
(WFS-Vec)

Γ ` idxvec(i) :: ∗I

Γ ` I :: ∗I Γ ` ir :: Ir Γ, x :: I ` x :: Ir
(WFS-Subset)

Γ ` {I in ir} :: ∗I

Figure 9: Well-formedness of sorts

to type checking the terms, we must sort check the index terms and verify the declarations’
well-formedness.

We specify the typing rules in a declarative style. Although this style makes the rules
short and clear, it also allows rules to be applied in non-deterministic order and may result in
potentially infinite typing derivations. We briefly sketch out how the rules may be adapted for
obtaining a type checking algorithm at the end of the chapter.

5.1 Typing context

All relations necessary for verifying array programs employ a common typing context Γ. It
includes type declarations x : T , sort declarations x :: I, and additional constraints for confining
index terms to specific index ranges, e.g. x + 1 in 0..10. We assume that all variable names are
pairwise distinct and that all types, sorts, and index terms used in the context are well-formed.
In particular, all index variables used in a specific context element must have been declared
earlier.

Γ ::= · | Γ, x : T | Γ, x :: I | Γ, i in ir

5.2 Semantic judgments

During type checking, it is often necessary to verify that the value denoted by an index term
only ranges within specific bounds. We employ the two judgments Γ |= i in ir and Γ ~|= i in ir
to prove such propositions for scalar indices and for index vectors, respectively: Both judgments
are decided outside of the type system with decision procedures working on the interpretation
of the sorts idx and idxvec(i) as integers and vectors of integers. We will describe these
procedures in Section ??. Using the index judgment for vectors, we may, for example, verify
that a vector of positive numbers is also non-negative:

r :: {idx in 0..}, s :: {idxvec(r) in vec(r,1)..} ~|= s in vec(r,0)..

5.3 Well-formedness of sorts

Fig. ?? shows the relation Γ ` I :: ∗I for checking well-formedness of index sorts. Using the
sorting relation Γ ` i :: I, WFS-Vec ensures that, for every vector sort idxvec(i), i is a
non-negative integer. WFS-Subsort accepts only those subset sorts {I in ir} whose bounds
in ir have a sort compatible with the base sort I, i.e. they have a common root sort Ir.

5.4 Sort checking

Every index term has an infinite number of sorts. For example, the index term 1 + 1 may, as
any scalar index, have the sort idx. But it is also a natural number {idx in 0..}, a number
between 0 and 10 {idx in 0..10}, and an integer equal to 2 {idx in 2}.
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Γ ` i :: {I in ir}
(S-Superset)

Γ ` i :: I

Γ ` i :: idx Γ ` i :: I Γ |= i in ir
(S-SSubset)

Γ ` i :: {I in ir}

Γ ` i :: idxvec(il) Γ ` i :: I Γ ~|= i in ir
(S-VSubset)

Γ ` i :: {I in ir}

Γ ` i :: idxvec(i1) Γ ` i2 :: {idx in i1}
(S-VLen)

Γ ` i :: idxvec(i2)

x :: I ∈ Γ
(S-Ctx)

Γ ` x :: I

Γ ` c :: idx (S-Idx)

∀j. Γ ` ij :: idx
(S-Vect)

Γ ` [i1, .., in] :: idxvec(n)

Γ ` i1 :: {idx in 0..} Γ ` i2 :: idx
(S-Vec)

Γ ` vec(i1,i2) :: idxvec(i1)

Γ ` i1 :: idxvec(m) Γ ` i2 :: idxvec(n)
(S-Cat)

Γ ` i1 ++ i2 :: idxvec(m +n)

Γ ` i1 :: {idx in 0..n + 1} Γ ` i2 :: idxvec(n)
(S-Take)

Γ ` take(i1,i2) :: idxvec(i1)

Γ ` i1 :: {idx in 0..n + 1} Γ ` i2 :: idxvec(n)
(S-Drop)

Γ ` drop(i1,i2) :: idxvec(n - i1)

Γ ` i1 :: idx Γ ` i2 :: idx
(S-SBin)

Γ ` f2(i1,i2) :: idx

Γ ` i1 :: idxvec(i) Γ ` i2 :: idxvec(i)
(S-VBin)

Γ ` f2(i1,i2) :: idxvec(i)

Γ ` i :: idx (RS-SFrom)
Γ ` i.. :: idx

Γ ` i :: idx (RS-STo)
Γ ` ..i :: idx

Γ ` i1 :: idx Γ ` i2 :: idx
(RS-SFromTo)

Γ ` i1..i2 :: idx

Γ ` i :: idxvec(il) (RS-VFrom)
Γ ` i.. :: idxvec(il)

Γ ` i :: idxvec(il) (RS-VTo)
Γ ` ..i :: idxvec(il)

Γ ` i1 :: idxvec(il) Γ ` i2 :: idxvec(il) (RS-VFromTo)
Γ ` i1..i2 :: idxvec(il)

Figure 10: The sorting relation
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Γ ` int : ∗Q (QWF-Int)

Γ ` T1 : ∗ Γ ` T2 : ∗
(QWF-Fun)

Γ ` T1 → T2 : ∗Q

Γ ` I :: ∗I Γ, x :: I ` T : ∗
(QWF-Pi)

Γ ` Πx :: I. T : ∗Q

∀j. Γ ` Tj : ∗
(QWF-Tup)

Γ ` {Tn} : ∗Q

Γ ` I :: ∗I Γ, x :: I ` T : ∗
(QWF-Sigma)

Γ ` Σx :: I. T : ∗Q

Γ ` Q : ∗Q Γ ` i :: {idxvec(n) in vec(n,0)..}
(WF-Array)

Γ ` [Q|i] : ∗

Γ ` i :: idx (WF-Num)
Γ ` num(i) : ∗

Γ ` i :: idxvec(n)
(WF-Numvec)

Γ ` numvec(i) : ∗

Figure 11: Well-formedness of types and quark types

The rules at the top of the sorting relation shown in Fig. ?? formalize this intuition. The
rule S-Superset states that every index of sort {I in ir} is also of sort I. Conversely, if we can
prove that an index term i of sort I is constrained by a range ir then it is also of sort {I in ir}.
Depending on whether i is a scalar or a vector, the rules S-SSubset and S-VSubset will prove
the constraint using the scalar or the vector judgment, respectively. It is noteworthy that there
are no other rules employing the constraint provers.The rule S-VLen uses this machinery to
identify vector sorts of equal lengths, e.g. a vector of sort idxvec(1 + 2) also has sort idxvec(3).

The rules for checking index terms determine for each term a general sort according to the
term’s meaning as described in Section ?? while requiring only the necessary preconditions.
The last rules in the figure define an auxiliary sorting relation Γ ` ir :: I for checking the
well-formedness of index ranges.

5.5 Well-formedness of types

The well-formedness relations for quark types Γ ` Q : ∗Q and types Γ ` T : ∗ are shown in
Fig. ??. The relations follow the mutually recursive structure of the types. A quark type is
well-formed if the types and sorts it refers to are well-formed. Similarly, an array type [Q|i] is
well-formed if Q is a well-formed quark type and the index expression i denotes a non-negative
vector. The type of singleton scalars num(i) requires a scalar index term i, whereas singleton
vector types numvec(i) need an index vector. Note that ⊥Q is not a well-formed quark type:
it may arise during type-checking but the programmer is not allowed to use it explicitly in a
program.
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5.6 Subtyping

The subtype relations on types Γ ` T <: T and quark types Γ ` Q <:Q Q, shown in Fig. ??,
follow the same mutually recursive pattern. Both relations are reflexive and transitive. The
bottom quark type ⊥Q is a subtype of every quark type. As in other type systems, subtyping
on function quark types is contravariant in the argument type and covariant in the result
type (QSub-Fun). More generally, according to QSub-Pi, a dependent function quark type
Πx1 :: I1. T1 is a subtype of another dependent function type Πx2 :: I2. T2 if two conditions are
met: Firstly, I2 must denote a subset of I1. This is verified by declaring a fresh variable x of
sort I2 and deriving that x then also has sort I1. Secondly, when applied to an argument of sort
I2, the result of the first function must have a type which is a subtype of the second function’s
result type. The subtype relation for both the tuple quark type {Tn} and the dependent pair
quark type Σx :: I. T is covariant in all positions.

The rules Sub-Num and Sub-Numvec formalize that every singleton scalar is also a scalar
integer array and that a singleton vector is also a an integer vector. Subtyping on array types
is covariant: by Sub-ArrQ, an array type [Q1|i] is a subtype of another array type [Q2|i]
when Q1 is a subtype of Q2. This intuitive subtyping rule is known to cause problems in the
presence of mutable arrays [?]: An array of type [Q1|i] may be known in a different context as
a [Q2|i], with Γ ` Q1 <:Q Q2. Now, updating an element in the latter context with a quark
of type Q2 will break the typing in the former context. It is a clear advantage of immutable
arrays that they are not affected by this subtle issue. The array types [Q|i1] and [Q|i2] are
equivalent by rule Sub-ArrShp if i1 and i2 denote the same shape. Sub-Single defines a
similar equality for singleton types.

5.7 Type checking

Now that we treated all the prerequisites, we can define the typing relation Γ ` t : T and the
quark typing relation Γ ` q :Q Q. The most basic typing rules for functional array programs
are summarized in Fig. ??. The subsumption rules QT-Sub and T-Sub state that quarks and
terms have multiple types through subtyping.

According to rule T-Val, type checking of non-empty array values [|qp|[sd]|] requires to
verify that each quark qi has the same quark type Q. For arrays of abstractions, Q has the
form T1 → T2. Using the declared domain type T1, the rule QT-Abs, checks an abstraction
quark λx :T1. t by inserting x : T1 into the environment and determining its result type T2.
The rule for dependent functions works analogously. A dependent pair {′i,t:Σx :: I. T} has the
quark type Σx :: I. T if the index term i has sort I and if the term t has the type obtained by
substituting all references to the identifier x in T with the index term i.

For an empty array value without quarks, no precise quark type can be determined. For
this reason, rule T-ValE assigns it the bottom quark type ⊥Q, which is a quark subtype of
any quark type. In addition to their array types, constant integer scalars and vectors also have
more specific constant singleton types.

The rules T-App and T-IApp ensure that only scalar arrays of (dependent) functions can
be applied to suitable arguments. The result of applying a dependent function of type Πx :: I. T
to an index i has type T in which all index identifiers x have been replaced with i. Well-typed
tuple and dependent pair constructors yield scalar arrays containing the respective quark. Vice
versa, unpacking can only be performed for scalar tuples.

Typing of the array specific built-ins is shown in Fig. ??. The rank and shape primitives
can be applied to arbitrary arrays and yield singleton types. length is only applicable to
singleton vectors and yields a scalar singleton. Three rules are used to type applications of
binary operations: They may be applied to integer arrays of equal shape (T-Bin), yielding
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Γ ` Q <:Q Q (QSub-Refl)

Γ ` Q1 <:Q Q2 Γ ` Q2 <:Q Q3
(QSub-Trans)

Γ ` Q1 <:Q Q3

Γ ` ⊥Q <:Q Q (QSub-Bot)

Γ ` S1 <: T1 Γ ` T2 <: S2 (QSub-Fun)
Γ ` T1 → T2 <:Q S1 → S2

Γ, x :: I2 ` x :: I1 Γ, x2 :: I2 ` T1[x1 7→i x2] <: T2
(QSub-Pi)

Γ ` Πx1 :: I1. T1 <:Q Πx2 :: I2. T2

∀j. Γ ` Tj <: Sj
(QSub-Tup)

Γ ` {Tn} <:Q {Sn}

Γ, x :: I1 ` x :: I2 Γ, x1 :: I1 ` T1 <: T2[x2 7→i x1]
(QSub-Sigma)

Γ ` Σx1 :: I1. T1 <:Q Σx2 :: I2. T2

Γ ` T <: T (Sub-Refl)

Γ ` T1 <: T2 Γ ` T2 <: T3 (Sub-Trans)
Γ ` T1 <: T3

Γ ` Q1 <:Q Q2
(Sub-ArrQ)

Γ ` [Q1|i] <: [Q2|i]

Γ ` i1 :: idxvec(i) Γ ` i2 :: {idxvec(i) in i1}
(Sub-ArrShp)

Γ ` [Q|i1] <: [Q|i2]

Γ ` i1 :: I Γ ` i2 :: {I in i1}
(Sub-Single)

Γ ` S(i1) <: S(i2)

Γ ` num(i) <: [int|[]] (Sub-Num)

Γ ` i :: idxvec(il) (Sub-Numvec)
Γ ` numvec(i) <: [int|[l]]

Figure 12: Subtyping on types and quark types

another of the same element type and shape. More interestingly, when applied to (compatible)
singletons (T-BinS, T-BinV), the result is also a singleton whose value is characterized by the
application of the operation to the original singletons’ indices. The vector operations vec, take,
and drop always require appropriate singleton arguments and yield a singleton vector formed
in the same way.

The typing rule T-Sel statically enforces all the necessary preconditions of the selection: the
selection vector must be a singleton with appropriate length that ranges within the boundaries
of the array selected into. A (valid) selection always yields a scalar array but never a singleton.

An array constructor with frame shape f is well-typed if all cells have the same quark type
Q and the same shape ic. The new array then has type [Q|f ++ ic]. In the special case where
all cells of a vector are singleton scalars, rule T-ArrNumvec gives the array the appropriate
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Γ ` q :Q Q1 Γ ` Q1 <:Q Q2
(QT-Sub)

Γ ` q :Q Q2

Γ ` c :Q int (QT-Int)

Γ, x : T1 ` t : T2
(QT-Abs)

Γ ` λx :T1. t :Q T1 → T2

Γ, x :: I ` t : T
(QT-Pi)

Γ ` λ′x :: I. t :Q Πx :: I. T

∀j. Γ ` vj : Tj
(QT-Tup)

Γ ` {vn} :Q {Tn}

Γ ` Σx :: I. T : ∗Q Γ ` i :: I Γ ` t : T [x 7→i i]
(QT-Sigma)

Γ ` {′i,t:Σx :: I. T} :Q Σx :: I. T

Γ ` t : T1 Γ ` T1 <: T2 (T-Sub)
Γ ` t : T2

x : T ∈ Γ
(T-Ctx)

Γ ` x : T

n > 0 ∀j. Γ ` qj :Q Q
(T-Val)

Γ ` [|qn|[sd]|] : [Q|[sd]]

Γ ` [||[sd]|] : [⊥Q|[sd]] (T-ValE)

Γ ` [|c|[]|] : num(c) (T-Num)

Γ ` [|cn|[n]|] : numvec([cn]) (T-Numvec)

Γ ` t1 : [T1 → T2|[]] Γ ` t2 : T1 (T-App)
Γ ` t1 t2 : T2

Γ ` t : [Πx :: I. T|[]] Γ ` i :: I
(T-IApp)

Γ ` t ′i : T [x 7→i i]

∀j. Γ ` tj : Tj
(T-Tup)

Γ ` {tn} : [{Tn}|[]]

Γ ` Σx :: I. T : ∗Q Γ ` i :: I Γ ` t : T [x 7→i i]
(T-ITup)

Γ ` {′i,t : Σx :: I. T} : [Σx :: I. T|[]]

Γ ` t1 : T1 Γ, x : T1 ` t2 : T2
(T-Let)

Γ ` let x = t1 in t2 : T2

Γ ` t1 : [{Tn}|[]] Γ, x1 : T1, .., xn : Tn ` t2 : Tn+1
(T-Unpack)

Γ ` let {xn} = t1 in t2 : Tn+1

Γ ` t1 : [Σx :: I. T|[]] Γ, xi :: I, x : T [x 7→i xi] ` t2 : T2
(T-IUnpack)

Γ ` let {xi, x} = t1 in t2 : T2

Figure 13: Basic typing rules
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Γ ` t : [Q|i] Γ ` i :: idxvec(il)
(T-Rank)

Γ ` rank t : num(il)

Γ ` t : [Q|i]
(T-Shape)

Γ ` shape t : numvec(i)

Γ ` t : numvec(i) Γ ` i :: idxvec(il) (T-Length)
Γ ` length t : num(il)

Γ ` t : [{num(i1), num(i2)}|[]]
(T-BinS)

Γ ` f2 t : num(f2(i1,i2))

Γ ` t : [{numvec(i1), numvec(i2)}|[]]
Γ ` i1 :: idxvec(i) Γ ` i2 :: idxvec(i)

(T-BinV)
Γ ` f2 t : numvec(f2(i1,i2))

Γ ` t : [{[int|i], [int|i]}|[]]
(T-Bin)

Γ ` f2 t : [int|i]

Γ ` t : [{[Q|is], numvec(i)}|[]] Γ ` is :: idxvec(il)
Γ ` i :: {idxvec(il) in vec(il,0)..is}

(T-Sel)
Γ ` sel t : [Q|[]]

Γ ` t : [{num(il), num(i)}|[]] Γ ` il :: {idx in 0..}
(T-Vec)

Γ ` vec t : numvec(vec(il,i))

Γ ` t : [{numvec(i1), numvec(i2)}|[]]
(T-Cat)

Γ ` ++ t : numvec(i1 ++ i2)

Γ ` t : [{num(i), numvec(iv)}|[]]
Γ ` iv :: idxvec(il) Γ ` i :: {idx in 0..il + 1}

(T-Take)
Γ ` take t : numvec(take(i,iv))

Γ ` t : [{num(i), numvec(iv)}|[]]
Γ ` iv :: idxvec(il) Γ ` i :: {idx in 0..il + 1}

(T-Drop)
Γ ` drop t : numvec(drop(i,iv))

∀j. Γ ` tj : [Q|i]
(T-Arr)

Γ ` [tp|[cn]] : [Q|[cn] ++ i]

∀j. Γ ` tj : num(ij)
(T-ArrNumvec)

Γ ` [tn|[n]] : numvec([in])

Γ ` t1 : numvec(i1) Γ ` i1 :: {idxvec(n) in vec(n,0)..}
Γ ` t2 : numvec(i2) Γ ` i2 :: {idxvec(m) in vec(m,0)..}

Γ, x :: {idxvec(n) in vec(n,0)..i1}, x : numvec(x) ` t3 : [Q|i2]
(T-Gen)

Γ ` gen x < t1 of t2 with t3 : [Q|i1 ++ i2]

Γ ` t1 : numvec(i) Γ ` i :: {idxvec(n) in vec(n,0)..} Γ ` t2 : T
Γ, x1 :: {idxvec(n) in vec(n,0)..i}, x1 : numvec(x1), x2 : T ` t3 : T

(T-Loop)
Γ ` loop x1 < t1, x2 = t2 with t3 : T

Figure 14: Typing rules for the array-specific language elements
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Γ ` t : S(i) Γ |S(i) ` m : Tm
(T-Case)

Γ ` case t in m : Tm

Γ ` t : T (T-Else)
Γ |S(i) ` else⇒ t : T

Γ |S(i) ` r ::r ir Γ, i in ir ` t : T Γ |S(i) ` m : T
(T-Range)

Γ |S(i) ` r ⇒ t | m : T

Γ ` t : S(ir) Γ ` ir :: I Γ ` i :: I
(IR-Eq)

Γ |S(i) ` t ::r ir

Γ ` t : S(ir) Γ ` ir :: I Γ ` i :: I
(IR-From)

Γ |S(i) ` t.. ::r ir..

Γ ` t : S(ir) Γ ` ir :: I Γ ` i :: I
(IR-To)

Γ |S(i) ` ..t ::r ..ir

Γ ` t1 : S(i1) Γ ` t2 : S(i2)
Γ ` i1 :: I Γ ` i2 :: I Γ ` i :: I

(IR-FromTo)
Γ |S(i) ` t1..t2 ::r i1..i2

Figure 15: Typing rules for conditional expressions

singleton vector type. Typing of a with-loop gen x < t1 of t2 with t3 verifies that the frame
shape t1 and the cell shape t2 are non-negative vectors associated with the index vectors i1 and
i2, respectively. For checking the cell expression t3, the identifier x is bound to both a vector
sort ranging between zero and the frame shape and a singleton vector with exactly that value.
If the cell expression then has type [Q|i2], where i2 is also the value of the cell shape t2, then
the with-loop has type [Q|i1 ++ i2].

Similarly, typing of a loop loop x1 < t1, x2 = t2 with t3 also requires that the loop boundary
t1 is a non-negative singleton vector. In addition to binding x1 to an appropriate sort and a
singleton vector, the accumulator x2 is bound to the type of the initial value t2 during type
checking of the loop expression t3. If the loop expression preserves the accumulator’s type, that
type is also given to the entire loop.

Conditional expressions of the form case t in m are typed according to the typing rules
in Fig. ??. The type of the branching condition t is determined first and must be a singleton
type. Its type is needed to verify that all ranges are compatible to the branching condition, i.e.
that all ranges are are integer singletons of the same shape as t. For this purpose, the auxiliary
typing relation Γ |S(i) ` m : T takes the branching expression’s type S(i). For branches of
the form r ⇒ t | m, the rule T-Range uses the range index relation Γ |S(i) ` r ::r ir to check
that the boundaries in r are indeed appropriate singletons denoting an index range ir. Since
the branch is only evaluated if the value of the branching condition lies within the range r, it
checks the branch with the additional property i in ir. The branch must then have the same
type as the other branches. The type of the terminal branch else⇒ te is just the type of te.

5.8 Properties of the type system

Having introduced all the rules, we can now prove that the type system indeed provides type-
safety. For this, we have to show that each (closed) well-typed term is either a value or can
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make an evaluation step. Moreover, evaluation should preserve the well-typedness such that the
term can be evaluated further. In our context, where we did not provide facilities for general
recursion, this means that any well-typed array program will terminate yielding an array value.

Theorem 5.1 (Progress) For all closed and well-typed array terms t, either t is value or
∃t′. t −→ t′.

Proof: By induction on typing derivations (see appendix).

Theorem 5.2 (Preservation) If Γ ` t : T and t −→ t′, then Γ ` t′ : T .

Proof: By induction on typing derivations (see appendix).
We have specified the typing rules in a declarative style, which is concise but does not allow

for a immediate implementation in a type checking algorithm. In particular, since neither index
terms have a unique sort nor terms have a unique type, the sort and type conversion rules are
applicable in non-deterministic order. In order to derive a decidable type checking algorithm,
the non-determinism must be tamed. Since defining an algorithmic set of typing rules is beyond
the scope of this paper, we briefly sketch out the necessary modifications.

First, while most sort checking rules (Fig. ??) are syntax directed, the sort conversion
rules apply in non-deterministic order. The sort conversion rules must be eliminated, their
functionality transported into the all rules (not just those of the sorting relation) that require
it. Second, subtyping (Fig. ??) introduces potential non-termination as the rules for transitivity
and type equivalence rules apply arbitrarily. Via subsumption, these infinite derivations may
arise anywhere in the typing derivation (Figs. ??–??). Thus, the subtyping rules must be
replaced by an algorithm that checks whether a type is a subtype of another type. Instead of
relying on subsumption, the typing scheme must apply this algorithm explicitly when necessary.
Furthermore, without subsumption, bounded type joins and meets must be computed whenever
a term’s type depends on the types of more than one of its sub terms. Finally, more than one
rule may apply for array values and array constructors. In these cases, preference must be given
to the more special num and numvec types.

6 Resolving Constraints

Type checking of array programs relies on the semantic judgments Γ |= i in ir and Γ ~|= i in ir.
They provide proof that under a given set of assumptions Γ the value denoted by an index term
i is constrained to an interval ir. Both judgments are decided using procedures that operate on
the interpretation of the index sorts idx and idxvec(i) as integers and vectors of integers.

We partition the context Γ into the set S(Γ) which contains scalar sort declarations and
properties and the set V(Γ) consisting of vector sort declarations and constraints on vectors.
Both sets don’t contain sort declarations of subset sorts. These are transformed into a dec-
laration of the root sort and a subsequent sequence of constraints, e.g. x :: {idx in 0..}  
x :: idx, x in 0.. . The type declarations in Γ are dispensable for constraint resolution. As
shown in the example below, the scalar index terms in V(Γ) may refer to variables from S(Γ).
However, there is no converse dependency since no scalar term has a vector sub term.

Γ = d :: {idx in 0..}, s :: {idxvec(d) in vec(d,1)..}, x : [int|s]
S(Γ) = d :: idx, d in 0..
V(Γ) = s :: idxvec(d), s in vec(d,1)..
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Scalar judgments Γ |= i in ir are checked using the assumptions in the set S(Γ) only.
The judgment is stated as a satisfiability problem with linear integer arithmetic by interpret-
ing the index properties as linear inequalities. Current SMT solvers with support for linear
arithmetic [?, ?] can then refute the negated property, thereby validating the judgment.

d :: idx, d in 0.., e :: idx, e in d.. |= e in 0..
⇔ d ≥ 0 ∧ e ≥ d ∧ ¬ e ≥ 0

The decision procedure for vector judgments Γ ~|= i in ir takes both sets S(Γ) and V(Γ)
into account. Similar to the approach for scalars, we rewrite the problem such that is verifiable
with existing means. A straightforward approach would be to split up all vectors into scalar
elements and to solve the resulting scalar formula. However, as the length of vectors typically
depends on a variable bound in S(Γ), no finite number of elements will suffice. Thus, instead
of rewriting the problem as a scalar formula, we state it as a formula in the array property
fragment identified in [?] for which satisfiability is decidable.

An array property is a formula of the form ∀i. ϕI(i) ⇒ ϕV (i) where the index guard ϕI in
our case always takes the form 0 ≤ i∧ i ≤ l− 1 for some linear term denoting the vector length
l. For readability, we write 0 ≤ i < l. In the value constraint, the quantified variable i may only
be used in read expressions of the form a[i].

The latter restriction rules out to express dependencies between a vector element at position
i and another element at position j 6= i. For this reason, we cannot straightforwardly rewrite
constraints between index vectors whose that contain the structural operations take, drop,
or ++ as array properties. Scheme T transforms well-behaved index vector terms into value
constraint terms; Scheme P transforms entire vector constraints into array properties, where |i|
denotes the length of a vector term and each j is a fresh variable.

T JxK[i] = x[i]
T JstK[i] = s

T Jf2(v1, v2)K[i] = f2(T Jv1K[i], T Jv2K[i])

P Ji1 in i2K = (∀j. 0 ≤ j < |i1| ⇒ T Ji1K[j] = T Ji2K[j])
P Ji1 in i2..K = (∀j. 0 ≤ j < |i1| ⇒ T Ji2K[j] ≤ T Ji1K[j])
P Ji1 in ..i2K = (∀j. 0 ≤ j < |i1| ⇒ T Ji1K[j] < T Ji2K[j])
P Ji1 in i2..i3K = (∀j. 0 ≤ j < |i1| ⇒ T Ji2K[j] ≤ T Ji1K[j] ∧ T Ji1K[j] < T Ji3K[j])

The following example shows a judgment for verifying that a vector of arbitrary length
with strictly positive elements is also a non-negative vector and the corresponding satisfiability
problem encoded in the array property fragment. As described in [?], the quantifiers can
be correctly eliminated from this formula by first converting into negated normal form and
subsequently instantiating the quantifiers.

d :: idx, d in 0.., s :: idxvec(d), s in vec(d,1).. ~|= s in vec(d,0)..
⇔ d ≥ 0 ∧ (∀i. 0 ≤ i < d ⇒ s[i] ≥ 1) ∧ ¬(∀i. 0 ≤ i < d ⇒ 0 ≤ s[i])

In general, a vector judgment Γ ~|= i in ir also contains the structural vector opera-
tions take, drop, and ++. These cannot be translated into the array property fragment,
as they establish constraints between vector elements with different indices. E.g. for vec-
tors x :: idxvec(n), y :: idxvec(n + 5) the property x in drop(5,y) would translate to
(∀i. 0 ≤ i < n ⇒ x[i] = y[i + 5]). Unfortunately, it was shown in [?] that extending the array
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property fragment with arithmetic expressions over universally quantified index variables gives
a fragment for which satisfiability is undecidable.

Nonetheless, almost all vector judgments arising in practical programs can still be decided,
because the structural operations can be eliminated in a simple, yet effective preprocessing step.
Only when the structural operations can’t be eliminated, the judgment can neither be validated
nor refuted. In this situation, the program is rejected with an appropriate error message. We
informally sketch out the transformation of judgments with structural vector operations by
means of an example. The example arises during type checking of the generalized selection
gsel.

gsel : Πr :: nat. Πs :: natvec(r).
Πl :: {nat in ..r + 1}. Πv :: {natvec(l) in ..take(l,s)}.
[int|s]→ numvec(v)→ [int|drop(l,s)]

gsel ′r ′s ′l ′v a x = gen y < drop {length x, shape a} of [||[0]|]
with a.[x ++ y]

In order to verify that the selection inside the with-loop does not exceed the array bounds,
the following judgment must be validated.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s :: idxvec(r), s in vec(r,0).., v :: idxvec(l), v in vec(l,0)..take(l,s),
y :: idxvec(r - l), y in vec(r - l,0)..drop(l,s) ~|= v ++ y in vec(r,0)..s

Vector v is constrained by the first l elements of s whereas y depends on the last r - l
elements of s. Furthermore, the concatenation of v and y is compared to the entire vector s.
During preprocessing, s is thus split into two vectors s1 of length l and s2 of length r - l. All
occurrences of take(l,s) and drop(l,s) are then substituted with s1 and s2, respectively. s
itself is consistently replaced with s1 ++ s2.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s1 :: idxvec(l), s2 :: idxvec(r - l), s1 ++ s2 in vec(r,0)..,
v :: idxvec(l), v in vec(l,0)..s1, y :: idxvec(r - l), y in vec(r - l,0)..s2

~|= v ++ y in vec(r,0)..s1 ++ s2

The intermediate result has no take and drop operations left, but some concatenations. These
are eliminated by splitting up the properties they appear in. s1 ++ s2 in vec(r,0).. is split into
the two properties s1 in vec(l,0).., s2 in vec(r - l,0)... The conclusion v ++ y in vec(r,0)..s1 ++ s2

is treated similarly. Both vectors v and s1 have length l. The property is thus split at that point,
yielding the two properties v in vec(l,0)..s1, y in vec(r - l,0)..s2. The result contains no
further structural operations. It may be validated after rewriting it as a formula in the array
property fragment.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s1 :: idxvec(l), s2 :: idxvec(r - l), s1 in vec(l,0).., s2 in vec(r - l,0)..,
v :: idxvec(l), v in vec(l,0)..s1, y :: idxvec(r - l), y in vec(r - l,0)..s2

~|= v in vec(l,0)..s1, y in vec(r - l,0)..s2

Elimination of structural operations fails if the constraints don’t imply how to split a variable
or a vector constraint into segments. We obtain an example of this when we change the order
of x and y inside the selection of gsel and once more check whether all accesses to a are in
bounds.

gsel ′r ′s ′l ′v a x = gen y < drop {length x, shape a} of [||[0]|]
with a.[y ++ x]
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After eliminating take and drop operations as in the previous example, we get the following
intermediate judgment.

r :: idx, r in 0.., l :: idx, l in 0..r + 1,

s1 :: idxvec(l), s2 :: idxvec(r - l), s1 ++ s2 in vec(r,0)..,
v :: idxvec(l), v in vec(l,0)..s1, y :: idxvec(r - l), y in vec(r - l,0)..s2

~|= y ++ v in vec(r,0)..s1 ++ s2

In the property y ++ v in vec(r,0)..s1 ++ s2, the vectors y and s1 have length r − l and length
l, respectively. The scalar constraints don’t allow to derive whether r − l < l, r − l = l, or
r − l > l and thus the property can’t be split any further. In consequence, the entire program
is rejected with a message that points out the location of the structural error.

Due to permuting x and y, the last variant of gsel was erroneous to start with and should
not have been accepted anyways. In fact, we did not yet encounter a valid program that was
rejected because of a structural problem. This is not surprising as the structure of shape vectors
and array index vectors is crucial for every rank-generic program.

A potential alternative would be to rule out all cases in which the structural operations
cannot be eliminated a priori by reflecting the structure of index vectors in their sort. For
example, an index vector v1 could have the sort idxvec(l1, l2) to indicate that it consists of two
segments of the stated lengths. Whenever it is combined with other vectors v2, v3 in a dyadic
operation f(v1, v2) or in a vector property v1 in v2..v3, the other vectors must have provably
the same structure. By construction, all structural operations could then be eliminated in single
step, allowing to rewrite the judgment as an array property immediately.

7 Related Work

The work presented in this paper combines multidimensional, irregularly nested array program-
ming with dependent types. In the following, we briefly mention work from the different areas
of programming language research that’s related to our’s.

Array languages like MatLab [?], APL [?, ?], J [?] or Nial [?] are interpreted and mostly
untyped. In particular they are known for offering a plethora of well optimized operators for
each array operation supported by the language. This stands in contrast to our work in which
we try to condense the essence of multidimensional array programming into a small number of
primitively recursive constructs.

As soon as attempts are made to compile array programs for efficient execution, knowledge
about the array properties and their relationships becomes crucial. For example in FISh [?],
each function f is accompanied by a shape function #f which maps the shape of the argument
to the shape of the result. Shape inference proceeds by first inlining all functions and then
statically evaluating all shape functions. FISh rejects all programs that contain non-constant
array shapes. In our approach, we may statically verify shape- and rank-generic programs
without excessive inlining. Rediscovering array properties for better compilation of untyped
array languages such as MatLab is an area of ongoing research, see for example [?, ?, ?]. In
our context the array types contain everything the programmer knows about the structural
properties of the program, eliminating the need for such work.

The field of functional array programming was pioneered by Sisal [?] and Nesl [?]. Sisal
demonstrated that functional array programming and implicit parallelization can achieve com-
petitive run time performance, despite the aggregate update problem. While Sisal restricts
itself to (one-dimensional) vectors of homogeneously nested vectors, Nesl also supports ir-
regularly nested vectors. Recent work has been going on to integrate nested data-parallelism
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into Haskell [?, ?]. In contrast to our work, these approaches provide no support for truly
multidimensional arrays.

As the last field of related work we survey the research area of dependently typed program-
ming [?]. Dependent types naturally lend themselves for describing arrays as they allow the
use of (dynamic) terms to index within families of types. Indeed, the classical example for
dependently typed programming is the index family of vectors from which an element with a
particular length is selected. The expressive power of dependent types renders the problem of
type equality generally undecidable as it boils down to deciding whether any two expressions
denote the same value. For example, Cayenne [?] is a fully dependently typed language. Its
type system is undecidable and it lacks phase distinction. Both problems can be overcome by
restricting the type language as done in epigram [?, ?], which rules out general recursion in
type-forming expressions to retain decidability. Recently, the Ynot project aims at integrating
dependent types into programming systems with effectful computations [?].

Most closely related to our approach are more light-weight approaches such as Xi and Pfen-
ning’s dml [?], Xi’s applied type system [?], and Zenger’s indexed types [?]. These approaches
allow term-indexing into type families only for certain index sorts. The type-checking problem
is reduced to constraint solving on these sorts, which is decidable. Our work shares some of
its technical underpinnings with dml. Xi and Pfenning also proposed the use of dependent
types for the elimination of array boundary checks. However, apart from that, dml offered no
particular support for array programming or data parallelism.

8 Conclusion

Making the expressive power of dependent types available for practical program development is
a subject of ongoing research. It is a particular challenge to design programming systems with
dependent types in a way such that a user is not required to have expert knowledge in type
theory. We think that in the array programming paradigm, employing dependent types is both
intuitive and beneficial.

Dependent types are intuitive for array programs because rank and shape are inherent prop-
erties of multidimensional arrays. Scientific programmers are used to specifying their algorithms
in terms of array shapes: every undergraduate course on linear algebra teaches the type of ma-
trix multiplication as Rm×n×Rn×p → Rm×p. For specifications like this, dependent types allow
the developer to concisely express the function signature in a computer program.

Dependent types are beneficial for array programs, because structural constraints are crucial
for their safe evaluation. A type system with dependent types can statically enforce the relevant
constraints, thus ruling out programs that may fail during evaluation. Without potential run
time errors, the accepted programs do not need to perform expensive run time checks. Moreover,
a compiler can exploit the structural properties encoded in the dependent types for extensive
program optimization.

Since our type system uses an SMT solver to verify the necessary constraints, type checking
proceeds fully automatically. The system thus resembles a type system for a mainstream pro-
gramming language that either accepts or rejects a program with an appropriate message. In
case of rejecting a program, our system can even provide precise values of the index variables
for which the program will fail. This behavior is similar to a model checking tool that yields a
counter example for which the desired property is violated.

The ideas presented in this paper form the basis of the functional array programming lan-
guage Qube. We are currently developing a compiler [?] for Qube that implements dependent
array types as proposed in this paper. To simplify programming with indexed types, the sys-
tem allows implicit index arguments which are automatically reconstructed if omitted [?]. We
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envision to exploit the information provided by the dependent types to generate more efficient
array programs both for sequential and parallel execution. For example, provided we know
that the execution of otherwise dead code does not cause a run time error, this code can safely
be eliminated even with a call-by-value semantics. Similarly, we may replace selections into
arrays defined by means of with-loops with the selected element’s definition, thereby achieving
deforestation. Finally, in combination with a memory management scheme based on run time
reference counting or a linear type system, we may often perform destructive array updates
even in our context of immutable arrays. The structural information in the dependent types
will help the compiler to identify potentially reusable arrays. Eventually, a substantially revised
and extended future version of SaC may incorporate the essential concepts of Qube.

Acknowledgments We would like to thank Florian Büther and Markus Weigel for contribut-
ing to the compiler for the Qube language. We also thank Johannes Blume for many interesting
discussions about resolution of vector constraints.

A Proofs

Proof of Theorem ?? (Progress):
For all closed and well-typed array terms t, either t is value or ∃t′. t −→ t′.

Proof: By induction on typing derivations.

1. Case T-Ctx: t = x
t not closed.

2. Case T-Val: t = [|qp|[sd]|] ∀j. ` qj : Q T = [Q|[sd]]
t is a value.

3. Case T-ValE: t = [||[sd]|] T = [⊥Q|[s
d]]

t is a value.

4. Case T-Num: t = [|c|[]|] T = num(c)
t is a value.

5. Case T-Numvec: t = [|cn|[n]|] T = numvec(cd)
t is a value.

6. Case T-App: t = t1 t2 ` t1 : [T1 → T2|[]] ` t2 : T1 T = T2

By the hypothesis, either t1 is a value or it can make an evaluation step; t2 similar.

(a) t1 takes a step: E-App1 applies with t′ = t′1 t2.

(b) t1 is a value, but t2 takes a step: E-App2 applies with t′ = t1 t′2.

(c) t1, t2 are both values. t1 must have the form [|λx :T1. t3|[]|]. Rule E-AppAbs
applies with t′ = t3[x 7→ t2].

7. Case T-IApp: t = t1
′i ` t1 : [Πx :: I. T2|[]] ` i :: I T = T2[x 7→i i]

By the hypothesis, either t1 is a value or it can make a step of evaluation.

(a) t1 makes a step: E-IApp applies with t′ = t1
′i.

(b) t1 is a value which must have the form [|λ′x :: I. t2|[]|]. E-IAppIAbs applies with
t′ = t2[x 7→i i].
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8. Case T-Tup: t = {tn} ∀j. ` tj : Tj T = [{Tn}|[]]
By the induction hypothesis, each tj is either a value or it can make an evaluation step.

(a) tj−1 are all values and tj takes a step: E-Tup1 applies with t′ = {tj−1, t′j , t
n−j}.

(b) All tj are values: E-Tup2 applies with t′ = [|{tn}|[]|].

9. Case T-ITup: t = {′i,t2 : Σx :: I. T2} ` Σx :: I. T2 : ∗Q ` i :: I
` t2 : T2[x 7→i i] T = [Σx :: I. T2|[]]

By the hypothesis, either t2 is a value or can make an evaluation step.

(a) t2 makes a step: E-ITup1 applies with t′ = {′i,t′2 : Σx :: I. T}.
(b) t2 is a value: E-ITup2 applies with t′ = [|{′i,t2:Σx :: I. T2}|[]|].

10. Case T-Let: t = let x = t1 in t2 ` t1 : T1 x : T1 ` t2 : T2 T = T2

By the induction hypothesis t1 is either a value or can take an evaluation step.

(a) t1 takes a step: E-Let applies with t′ = let x = t′1 in t2.

(b) t1 is a value: E-LetVal applies with t′ = t2[x 7→ t1].

11. Case T-Unpack: t = let {xn} = t1 in t2 ` t1 : [{Tn}|[]]
x1 : T1, ..., xn : Tn ` t2 : Tn+1 T = Tn+1

By the induction hypothesis t1 is either a value or can take an evaluation step.

(a) t1 takes a step: E-Let applies with t′ = let {xn} = t′1 in t2.

(b) t1 is a value of the form [|{vn}|[]|].
E-LetTup applies with t′ = t2[x1 7→ v1]..[xn 7→ vn].

12. Case T-IUnpack: t = let {′x1, x2} = t1 in t2 ` t1 : [Σx :: I. T|[]]
x1 :: I, x2 : T [x 7→i x1] ` t2 : T2 T = T2

By the induction hypothesis t1 is either a value or can take an evaluation step.

(a) t1 takes a step: E-Let applies with t′ = let {′x1, x2} = t′1 in t2.

(b) t1 is a value of the form [|{′i,v:Σx :: I. T}|[]|].
E-LetITup applies with t′ = t2[x1 7→i i][x2 7→ v].

13. Case T-Rank: t = rank t1 ` t1 : [Q|i] ` i :: idxvec(il)
T = num(il)

By induction, either t1 is a value or can make an evaluation step.

(a) t1 evaluates one step: E-PrfApp applies with t′ = rank t′1.

(b) t1 is a value of the form [|Qp|[sd]|]. Rule E-Rank applies with t′ = [|d|[]|].

14. Case T-Shape: t = shape t1 ` t1 : [Q|i] T = numvec(i)
By induction, either t1 is a value or can make an evaluation step.

(a) t1 evaluates one step: E-PrfApp applies with t′ = shape t′1.

(b) t1 is a value of the form [|Qp|[sd]|]. Rule E-Shape applies with t′ = [|sd|[d]|].

15. Case T-Length: t = length t1 ` t1 : numvec(i)
` i :: idxvec(il) T = num(il)

By induction, either t1 is a value or can make an evaluation step.

(a) t1 evaluates one step: E-PrfApp applies with t′ = length t′1.
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(b) t1 is a value of the form [|cl|[l]|]. Rule E-Length applies with t′ = [|l|[]|].

16. Case T-BinS: t = f2 t1 ` t1 : [{num(i1), num(i2)}|[]]
T = num(f2(i1,i2))

By induction, either t1 is a value or can make an evaluation step.

(a) t1 evaluates one step: E-PrfApp applies with t′ = f2 t′1.
(b) t1 is a value of the form [|{[|c1|[]|], [|c2|[]|]}|[]|]. Rule E-Bin applies with

t′ = [|f2(c1,c2)|[]|].

17. Case T-BinV: t = f2 t1 ` t1 : [{numvec(i1), numvec(i2)}|[]]
` i1 :: idxvec(i) ` i2 :: idxvec(i)
T = numvec(f2(i1,i2))

By induction, either t1 is a value or can make an evaluation step.

(a) t1 evaluates one step: E-PrfApp applies with t′ = f2 t′1.
(b) t1 is a value of the form [|{[|cl|[l]|], [|dl|[l]|]}|[]|]. Rule E-Bin applies with

t′ = [|f2(c1,d1), .., f2(cl,dl)|[l]|].

18. Case T-Bin: t = f2 t1 ` t1 : [{[int|i], [int|i]}|[]] T = [int|i]
By induction, either t1 is a value or can make an evaluation step.

(a) t1 evaluates one step: E-PrfApp applies with t′ = f2 t′1.
(b) t1 is a value of the form [|{[|cp|[sd]|], [|cp|[sd]|]}|[]|]. Rule E-Bin applies with

t′ = [|f2(c1,d1), .., f2(cp,dp)|[sd]|].

19. Case T-Sel: t = sel t1 ` t1 : [{[Q|is], numvec(i)}|[]]
` is :: idxvec(il) ` i :: {idxvec(il) in vec(il,0)..is}
T = [Q|[]]

By induction, either t1 is a value or can make an evaluation step.

(a) t1 makes one evaluation step: E-PrfApp applies with t′ = sel t′1.
(b) t1 is a value of the form [|{[|qp|[sd]|], [|cd|[d]|]}|[]|]. The sort of the singleton

index asserts that ∀j. 0 ≤ cj < sj . By rule E-Sel, t′ = [|qι(d,sd,cd)|[]|].

20. Case T-Vec: t = vec t1 ` t1 : [{num(i1), num(i2)}|[]]
` i1 :: {idx in 0..} T = numvec(vec(i1,i2))

By induction, either t1 is a value or can make an evaluation step.

(a) t1 makes one evaluation step: E-PrfApp applies with t′ = vec t′1.
(b) t1 is a value of the form [|{[|d|[]|], [|c|[]|]}|[]|]. The sort of the singleton index

asserts that d ≥ 0. By rule E-Vec, t′ = [|c, ..., c|[d]|].

21. Case T-Cat: t = ++ t1 ` t1 : [{numvec(i1), numvec(i2)}|[]]
T = numvec(i1 ++ i2)

By induction, either t1 is a value or can make an evaluation step.

(a) t1 makes one evaluation step: E-PrfApp applies with t′ = ++ t′1.
(b) t1 is a value of the form [|{[|cm|[m]|], [|dn|[n]|]}|[]|]. Rule E-Cat applies

with t′ = [|cm, dn|[m + n]|].

22. Case T-Take: t = take t1 ` t1 : [{num(i1), numvec(i2)}|[]]
` i2 :: idxvec(idxvec(il)) ` i1 :: {idx in 0..il + 1}
T = numvec(take(i1,i2))

By induction, either t1 is a value or can make an evaluation step.
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(a) t1 makes one evaluation step: E-PrfApp applies with t′ = take t′1.

(b) t1 is a value of the form [|{[|c|[]|], [|dn|[n]|]}|[]|]. The sort of i1 ensures that
0 ≤ c ≤ n such that rule E-Take applies with t′ = [|d1, .., dc|[c]|].

23. Case T-Drop: t = drop t1 ` t1 : [{num(i1), numvec(i2)}|[]]
` i2 :: idxvec(idxvec(il)) ` i1 :: {idx in 0..il + 1}
T = numvec(drop(i1,i2))

By induction, either t1 is a value or can make an evaluation step.

(a) t1 makes one evaluation step: E-PrfApp applies with t′ = drop t′1.

(b) t1 is a value of the form [|{[|c|[]|], [|dn|[n]|]}|[]|]. The sort of i1 ensures that
0 ≤ c ≤ n such that rule E-Drop applies with t′ = [|dc+1, .., dn|[n− c]|].

24. Case T-Arr: t = [tn|[fd]] ∀j. ` tj : [Q|i]
T = [Q|[fd] ++ i]

By induction, each tj is either a value or can make an evaluation step.

(a) One tj makes an evaluation step: E-Arr1 applies with t′ = [tj−1, t′j , t
n−j|[fd]].

(b) All tj are values of the form [|qp
j |[c

e]|] that do all have the same shape ce and all
quarks are compatible since they have all the same type. Thus, rule E-Arr2 applies
with t′ = [|qp

1 , .., q
p
n|[fd, ce]|].

25. Case T-ArrNumvec: t = [tn|[n]] ∀j. ` tj : num(ij)
T = numvec([in])

By induction, each tj is either a value or can make an evaluation step.

(a) One tj makes an evaluation step: E-Arr1 applies with t′ = [tj−1, t′j , t
n−j|[n]].

(b) All tj are values of the form [|cj|[]|]. Rule E-Arr2 applies with t′ = [|cn|[n]|].

26. Case T-Gen: t = gen x < t1 of t2 with t3
` t1 : numvec(i1) ` i1 :: {idxvec(n) in vec(n,0)..}
` t2 : numvec(i2) ` i2 :: {idxvec(m) in vec(m,0)..}
x :: {idxvec(n) in vec(n,0)..i1},
x : numvec(x) ` t3 : [Q|i2] T = [Q|i1 ++ i2]

By induction, t1 and t2 are either values or can make an evaluation step.

(a) t1 −→ t′1: rule E-GenF applies with t′ = gen x < t′1 of t2 with t3.

(b) t1 is a value and t2 makes a step: evaluation rule E-GenC applies with t′ =
gen x < t1 of t′2 with t3.

(c) Both t1 and t2 are non-negative integer array values of the form [|fd|[d]|] and
[|ce|[e]|], respectively. One fj is equal to zero, indicating an empty array frame.
E-GenE applies with t′ = [||[fd, ce]|].

(d) Both t1 and t2 are non-negative integer array values of the form [|fd|[d]|] and
[|ce|[e]|], respectively. All fj are strictly positive. The evaluation rule E-Gen
applies with t′ = [sp|[fd]] with each array cell sj = t3[x 7→i [yd]][x 7→ [|yd|[d]|]]
for every position yd inside the array frame.

27. Case T-Loop: t = loop x1 < t1, x2 = t2 with t3 ` t1 : numvec(i1)
` i1 :: {idxvec(n) in vec(n,0)..} ` i2 : T2

x1 :: {idxvec(n) in vec(n,0)..i1}, x1 : numvec(x1),
x2 : T2 ` t3 : T2 T = T2

By the induction hypothesis, t1 is either a value or can make an evaluation step.
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(a) t1 makes an evaluation step to t′1: E-Loop1 applies with t′ = loop x1 < t′1, x2 = t2 with t3.

(b) t1 is a non-negative integer array value of the form [|sd|[d]|]. The evaluation rule
E-Loop2 transforms the loop into a sequence of functions applied to the initial value
t2 such that t′ = fp ...(f1 t2).
Each function is fj = [|λx :T2. t3[x 7→i [yd]][x 7→ [|yd|[d]|]]|[]|] for every posi-
tion yd inside the frame sd.

28. Case T-Case: t = case t1 in m ` t1 : S(i) · |S(i) ` m : Tm T = Tm

By the hypothesis, t1 is either a value or it can take an evaluation step. m may either be
a final else branch else⇒ t2 or a regular branch r ⇒ t3 | m2.

(a) t1 makes a step, then E-Case applies with t′ = case t′1 in m.

(b) t1 is a value and m = else⇒ t2. By T-Else: ` t2 : Tm.
Rule E-Else applies with t′ = t2.

(c) t1 is a value and m = r ⇒ t3 | m2.
By T-Range: · |S(i) ` r ::r ir i in ir ` t3 : Tm

· |S(i) ` m : Tm
The range r either contains values or can can make an evaluation step with the
rules ER-*. The typing of r ensures that its boundaries have the same shape as the
branching condition t1. Thus, when the range is a value, either M(t1, r) or ¬M(t1, r).

i. r makes a step: E-Range applies with t′ = case t1 in m2.
ii. r consists of values and M(t1, r), then E-Match applies with t′ = t3.
iii. r consists of values and ¬M(t1, r), then E-Next applies with t′ = case t1 in m2.

Proof of Theorem ?? (Preservation):
If Γ ` t : T and t −→ t′, then Γ ` t′ : T .

Proof: By induction on typing derivations.

1. Case T-Ctx: t = x
There is no t′ with x −→ t′.

2. Case T-Val: t = [|qp|[sd]|] ∀j.Γ ` qj : Q T = [Q|[sd]]
t is a value.

3. Case T-ValE: t = [||[sd]|] T = [⊥Q|[s
d]]

t is a value.

4. Case T-Num: t = [|c|[]|] T = num(c)
t is a value.

5. Case T-Numvec: t = [|cn|[n]|] T = numvec(cd)
t is a value.

6. Case T-App: t = t1 t2 Γ ` t1 : [T1 → T2|[]] Γ ` t2 : T1 T = T2

(a) Case E-App1: t1 −→ t′1 t′ = t′1 t2
The result follows from the induction hypothesis and T-App.

(b) Case E-App2: t1 = v1 t2 −→ t′2 t′ = v1 t′2
Similar.
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(c) Case E-AppAbs: t1 = [|λx :T3. t3|[]|] t2 = v2 t′ = t3[x 7→ v2]
For t1 to have type [T1 → T2|[]] it must hold that Γ ` T1 <: T3 and Γ, x : T3 `
t3 : T2. By T-Sub, we know that Γ ` t2 : T3. Assuming that the substitution is type
preserving, we obtain Γ ` t′ : T2.

7. Case T-IApp: t = t1
′i Γ ` t1 : [Πx :: I. T2|[]] Γ ` i :: I

T = T2[x 7→i i]

(a) Case E-IApp: t1 −→ t′1 t′ = t′1
′i

The result follows from the induction hypothesis and T-IApp.

(b) Case E-IAppIAbs: t1 = [|λ′x :: I. t2|[]|] t′ = t2[x 7→i i]
For t1 to have type [Πx :: I. T2|[]] it must hold that Γ, x :: I ` t2 : T2[x 7→i i].
Assuming that the index substitution is type preserving, we obtain Γ ` t′ : T2[x 7→i i].

8. Case T-Tup: t = {tn} ∀j. Γ ` tj : Tj T = [{Tn}|[]]

(a) Case E-Tup1: tj −→ t′j t′ = {tj−1, t′j , t
n−j}

The result follows from the induction hypothesis and T-Tup.

(b) Case E-Tup2: t = {vn} t′ = [|{vn}|[]|]
By QT-Tup and T-Val Γ ` t′ : [{Tn}|[]].

9. Case T-ITup: t = {′i,t2 : Σx :: I. T2} Γ ` Σx :: I. T2 : ∗Q Γ ` i :: I
Γ ` t2 : T2[x 7→i i] T = [Σx :: I. T2|[]]

(a) Case E-ITup1: t2 −→ t′2 t′ = {′i,t′2 : Σx :: I. T}
The result follows from the induction hypothesis and T-ITup.

(b) Case E-ITup2: t2 = v2 t′ = [|{′i,v2:Σx :: I. T2}|[]|]
By QT-Sigma and T-Val we have Γ ` t′ : [Σx :: I. T2|[]].

10. Case T-Let: t = let x = t1 in t2 Γ ` t1 : T1 Γ, x : T1 ` t2 : T2 T = T2

(a) Case E-Let: t1 −→ t′1 t′ = let x = t′1 in t2
By the induction hypothesis and T-Let.

(b) Case E-LetVal: t1 = v1 t′ = t2[x 7→ v1]
By type preservation of substitution we have Γ ` t′ : T2.

11. Case T-Unpack: t = let {xn} = t1 in t2 Γ ` t1 : [{Tn}|[]]
Γ, x1 : T1, ..., xn : Tn ` t2 : Tn+1 T = Tn+1

(a) Case E-Let: t1 −→ t′1 t′ = let {xn} = t′1 in t2
By the induction hypothesis and T-Unpack.

(b) Case E-LetTup: t1 = [|{vn}|[]|] t′ = t2[x1 7→ v1]..[xn 7→ vn]
By type preservation of substitution we have Γ ` t′ : Tn+1.

12. Case T-IUnpack: t = let {′x1, x2} = t1 in t2 Γ ` t1 : [Σx :: I. T|[]]
Γ, x1 :: I, x2 : T [x 7→i x1] ` t2 : T2 T = T2

(a) Case E-Let: t1 −→ t′1 t′ = let {′x1, x2} = t′1 in t2
By the induction hypothesis and T-IUnpack.

(b) Case E-LetITup: t1 = [|{′i,v:Σx :: I. T}|[]|]
t′ = t2[x1 7→i i][x2 7→ v]

By type preservation of index substitution, substitution we have Γ ` t′ : T2.
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13. Case T-Rank: t = rank t1 Γ ` t1 : [Q|i] Γ ` i :: idxvec(il)
T = num(il)

(a) Case E-PrfApp: t1 −→ t′1 t′ = rank t′1
By the induction hypothesis and T-Rank.

(b) Case E-Rank: t1 = [|qp|[sd]|] t′ = [|d|[]|]
Since d is the integer denoted by il, we have by T-Num Γ ` t′ : num(il).

14. Case T-Shape: t = shape t1 Γ ` t1 : [Q|i] T = numvec(i)

(a) Case E-PrfApp: t1 −→ t′1 t′ = shape t′1
By the induction hypothesis and T-Shape.

(b) Case E-Shape: t1 = [|qp|[sd]|] t′ = [|sd|[d]|]
Since sd is the integer vector denoted by i, we have by T-Numvec Γ ` t′ : numvec(i).

15. Case T-Length: t = length t1 Γ ` t1 : numvec(i)
Γ ` i :: idxvec(il) T = num(il)

(a) Case E-PrfApp: t1 −→ t′1 t′ = length t′1
By the induction hypothesis and T-Length.

(b) Case E-Length: t1 = [|cl|[l]|] t′ = [|l|[]|]
Since l is the integer vector denoted by il, we have by rule T-Num Γ ` t′ : num(il).

16. Case T-BinS: t = f2 t1 Γ ` t1 : [{num(i1), num(i2)}|[]]
T = num(f2(i1,i2))

(a) Case E-PrfApp: t1 −→ t′1 t′ = f2 t′1
By the induction hypothesis and T-BinS.

(b) Case E-Bin: t1 = [|{[|c1|[]|], [|c2|[]|]}|[]|] t′ = [|f2(c1,c2)|[]|]
As c1 and c2 are the integers denoted by i1 and i2, f2(i1,i2) denotes f2(c1,c2).
Thus, by T-Num, Sub-Single, and T-Sub Γ ` t′ : num(f2(i1,i2)).

17. Case T-BinV: t = f2 t1 Γ ` t1 : [{numvec(i1), numvec(i2)}|[]]
Γ ` i1 :: idxvec(i) Γ ` i2 :: idxvec(i)
T = numvec(f2(i1,i2))

(a) Case E-PrfApp: t1 −→ t′1 t′ = f2 t′1
By the induction hypothesis and T-BinV.

(b) Case E-Bin: t1 = [|{[|cl|[l]|], [|dl|[l]|]}|[]|]
t′ = [|f2(c1,d1), .., f2(cl,dl)|[l]|]

As cl and dl are the integer vectors denoted by i1 and i2, f2(i1,i2) denotes the
element-wise application of f2 to cl and dl. Thus, by T-Numvec, Sub-Single, and
T-Sub Γ ` t′ : numvec(f2(i1,i2)).

18. Case T-Bin: t = f2 t1 Γ ` t1 : [{[int|i], [int|i]}|[]] T = [int|i]

(a) Case E-PrfApp: t1 −→ t′1 t′ = f2 t′1.
By the induction hypothesis and T-Bin.

(b) Case E-Bin: t1 = [|{[|cp|[sd]|], [|cp|[sd]|]}|[]|]
t′ = [|f2(c1,d1), .., f2(cp,dp)|[sd]|]

By T-Val, the result has type [int|i].
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19. Case T-Sel: t = sel t1 Γ ` t1 : [{[Q|is], numvec(i)}|[]]
Γ ` is :: idxvec(il)
Γ ` i :: {idxvec(il) in vec(il,0)..is}
T = [Q|[]]

(a) Case E-PrfApp: t1 −→ t′1 t′ = sel t′1.
By the induction hypothesis and T-Sel.

(b) Case E-Sel: t1 = [|{[|qp|[sd]|], [|cd|[d]|]}|[]|]
t′ = [|qι(d,sd,cd)|[]|]

By T-Val Γ ` t′ : [Q|[]].

20. Case T-Vec: t = vec t1 Γ ` t1 : [{num(i1), num(i2)}|[]]
Γ ` i1 :: {idx in 0..} T = numvec(vec(i1,i2))

(a) Case E-PrfApp: t1 −→ t′1 t′ = vec t′1.
By the induction hypothesis and T-Vec.

(b) Case E-Vec: t1 = [|{[|d|[]|], [|c|[]|]}|[]|]
t′ = [|c, ..., c|[d]|]

As i1 denotes the integer d and i2 denotes c, vec(i1,i2) denotes just the vector of
length d containing c in every position. By T-Numvec, Γ ` t′ : numvec([c, .., c])
but (through Sub-Single and T-Sub) is also has type numvec(vec(i1,i2)).

21. Case T-Cat: t = ++ t1 Γ ` t1 : [{numvec(i1), numvec(i2)}|[]]
T = numvec(i1 ++ i2)

(a) Case E-PrfApp: t1 −→ t′1 t′ = ++ t′1.
By the induction hypothesis and T-Cat.

(b) Case E-Cat: t1 = [|{[|cm|[m]|], [|dn|[n]|]}|[]|]
t′ = [|cm, dn|[m + n]|]

As i1 denotes the vector cm and i2 denotes dn, i1 ++ i2 denotes the result of concate-
nating cm and dm. By T-Numvec, Γ ` t′ : numvec([cm, dm]) which by Sub-Single
is a subtype of numvec(i1 ++ i2).

22. Case T-Take: t = take t1 Γ ` t1 : [{num(i1), numvec(i2)}|[]]
Γ ` i2 :: idxvec(idxvec(il)) Γ ` i1 :: {idx in 0..il + 1}
T = numvec(take(i1,i2))

(a) Case E-PrfApp: t1 −→ t′1 t′ = take t′1.
By the induction hypothesis and T-Take.

(b) Case E-Take: t1 = [|{[|c|[]|], [|dn|[n]|]}|[]|]
t′ = [|d1, .., dc|[c]|]

As i1 denotes c and i2 denotes the vector dn, the index term take(i1,i2) denotes the
first c elements of dn. The type rule T-Numvec thus gives Γ ` t′ : numvec([d1, .., dc])
which by Sub-Single is a subtype of numvec(take(i1,i2)).

23. Case T-Drop: t = drop t1 Γ ` t1 : [{num(i1), numvec(i2)}|[]]
Γ ` i2 :: idxvec(idxvec(il)) Γ ` i1 :: {idx in 0..il + 1}
T = numvec(drop(i1,i2))

(a) Case E-PrfApp: t1 −→ t′1 t′ = drop t′1.
By the induction hypothesis and T-Drop.
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(b) Case E-Drop: t1 = [|{[|c|[]|], [|dn|[n]|]}|[]|]
t′ = [|dc+1, .., dn|[n− c]|]

As i1 denotes c and i2 denotes the vector dn, the index term drop(i1,i2) de-
notes the last n − c elements of dn. The type rule T-Numvec thus gives Γ `
t′ : numvec([dc+1, .., dn]) which by Sub-Single is a subtype of numvec(drop(i1,i2)).

24. Case T-Arr: t = [tn|[fd]] ∀j. Γ ` tj : [Q|i]
T = [Q|[fd] ++ i]

(a) Case E-Arr1: tj −→ t′j t′ = [tj−1, t′j , t
n−j|[fd]]

The result follows from the induction hypothesis and T-Arr.

(b) Case E-Arr2: t = [[|qp
j |[c

e]|]n|[fd]] t′ = [|qp
1 , .., q

p
n|[fd, ce]|]

The cell shape ce is the shape denoted by the index vector i. By rule T-Val we have
Γ ` t′ : [Q|[fd, ce]] which by Sub-ArrShp is a subtype of [Q|[fd] ++ i].

25. Case T-ArrNumvec: t = [tn|[n]] ∀j. Γ ` tj : num(ij)
T = numvec([in])

(a) Case E-Arr1: tj −→ t′j t′ = [tj−1, t′j , t
n−j|[n]]

The result follows from the induction hypothesis and T-ArrNumvec.

(b) Case E-Arr2: t = [[|cj|[]|]
n|[n]] t′ = [|cn|[n]|]

Each ij denotes the corresponding integer cj . By rule T-Numvec the result t′ has
the type numvec([cn]). However, by Sub-Single and T-Sub Γ ` t′ : numvec([in]).

26. Case T-Gen: t = gen x < t1 of t2 with t3
Γ ` t1 : numvec(i1) Γ ` i1 :: {idxvec(n) in vec(n,0)..}
Γ ` t2 : numvec(i2) Γ ` i2 :: {idxvec(m) in vec(m,0)..}
x :: {idxvec(n) in vec(n,0)..i1},
x : numvec(x) ` t3 : [Q|i2] T = [Q|i1 ++ i2]

(a) Case E-GenF: t1 −→ t′1 t′ = gen x < t′1 of t2 with t3
The result follows from the hypothesis and E-Gen.

(b) Case E-GenC: t1 = v1 t2 −→ t′2 t′ = gen x < t1 of t′2 with t3
The result follows from the hypothesis and E-Gen.

(c) Case E-GenE: t′ = [||[fd, ce]|]
By T-Val, Γ ` t′ : [⊥Q|[f

d, ce]]. By QSub-Bot, Sub-ArrQ, and Sub-ArrShp,
this is a subtype of [Q|i1 ++ i2].

(d) Case E-Gen: t′ = [sp|[fd]] with each array cell
sj = t3[x 7→i [yd]][x 7→ [|yd|[d]|]].
fd is the integer vector denoted by the index expression i1. By type preserva-
tion of index substitution and substitution, we have according to rule T-Arr Γ `
t′ : [Q|[fd] ++ i2]. Through Sub-ArrShp this is a subtype of [Q|i1 ++ i2].

27. Case T-Loop: t = loop x1 < t1, x2 = t2 with t3 ` t1 : numvec(i1)
` i1 :: {idxvec(n) in vec(n,0)..} ` i2 : T2

x1 :: {idxvec(n) in vec(n,0)..i1}, x1 : numvec(x1),
x2 : T2 ` t3 : T2 T = T2

(a) Case E-Loop1: t1 −→ t′1 t′ = loop x1 < t′1, x2 = t2 with t3
The result follows from the hypothesis and E-Loop.
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(b) Case E-Loop2: t′ = fp ...(f1 t2) with each function
fj = [|λx :T2. t3[x 7→i [yd]][x 7→ [|yd|[d]|]]|[]|]
By iterated application of T-App, we see that Γ ` t′ : T2.

28. Case T-Case: t = case t1 in m T = Tm

By the induction hypothesis, the type is preserved during the evaluation of the branch-
ing condition (E-Case) and the evaluation of the ranges in the individual branches (E-
Range). Since all branches have the same type Tm, t′ has type Tm for any branch the
conditional may evaluate under the rules E-Match and E-Next.
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