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Lattice-ramp-induced dynamics in an interacting Bose-Bose mixture
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We investigate a bosonic quantum gas consisting of two interacting species in an optical lattice at zero and finite
temperature. The equilibrium properties and dynamics of this system are obtained by means of the Gutzwiller
mean-field method. In particular we model recent experiments where the ramp-up of the optical lattice occurs
on a time scale comparable to the tunneling time of the bosons. We demonstrate the violation of adiabaticity of
this process with respect to the many-body quantum states, and we reproduce and explain the oscillations of the
visibility as a function of ramp-up time, as seen in experiments.

DOI: 10.1103/PhysRevA.81.043620 PACS number(s): 03.75.Kk, 03.75.Mn, 67.85.Hj

I. INTRODUCTION

Ultracold gases provide a powerful system for the ex-
perimental investigation of interacting quantum many-body
systems. In combination with optical lattices and tunable inter-
and intraspecies interactions, degenerate quantum gases give
insight into both strongly and weakly correlated regimes, and
possible phase transitions. They allow the direct probing of
fascinating phenomena such as the superfluid to Mott insulator
(SF-MI) transition. In the breakthrough experiment [1] this
transition was shown for the first time, realizing predictions
for the well-known Bose-Hubbard model [2,3] in the case of
a single bosonic species.

Adding a second atomic species results in a wealth of
quantum phases, clearly demonstrating the complexity of
correlated ensembles. Currently, several experimental groups
are working on Fermi-Bose [4–6], Fermi-Fermi [7–10],
and Bose-Bose [11–13] mixtures in optical lattices as they
are promising devices for studies of disorder [14], dipolar
molecule formation [15], and spin arrays [16]. In Bose-Fermi
mixtures [17,18] and Bose-Bose mixtures [19,20], a supersolid
phase has been predicted to exist.

Recently the Florence group has realized a Bose-Bose
mixture of 87Rb and 41K trapped in a three-dimensional (3D)
optical lattice [11]. They showed that the SF-MI transition
of rubidium is shifted toward shallower optical lattices when
potassium is present in the system. The same reduction of the
visibility was seen in experiments where fermions were added
to bosons in optical lattices [4–6].

These experiments are important steps toward the study
of low-temperature properties of atomic mixtures. The exper-
imental investigation of quantum many-body ground states,
for instance with spin ordering, requires the achievement
of rather low temperatures in the lattice. For fermions this
already poses problems before ramping up the optical lattice,
since evaporative cooling becomes inefficient in the degenerate
limit. Bosons, on the other hand, can be cooled to very low
temperatures [21]. However, ramping up the optical lattice
can easily increase the temperature, or more precisely the
entropy, again. This poses the question we address in this
paper: Under which conditions is the ramping up of the optical
lattice sufficiently slow, such that the process is adiabatic?
This question has been investigated before for the case of a
single-species bosonic gas, both by the mean-field technique

we employ here and by methods tailored to one-dimensional
systems [22–24].

Here we systematically map out the visibility of a Bose-
Bose mixture as a function of ramp-up time. We reproduce
and explain the experimentally observed oscillations and relate
them to the issue of adiabaticity. We take into account that this
system breaks the rotational symmetry of the trap, because the
centers of mass of the two species are shifted with respect to
each other due to the gravitational sag. We consider a two-
dimensional system. In this way we keep the numerical effect
manageable, and yet avoid the peculiarities associated with a
one-dimensional system, such as the absence of long-range
order even at zero temperature, which makes the extrapolation
of one-dimensional results to higher dimensions problematic.

The time scale for ramping the optical lattice in the
experiment is usually determined such that the system ends up
in the lowest band of the optical lattice (i.e., the ramping time is
chosen large with respect to the band gap). Since the band gap
is small for shallow optical lattices, sometimes an exponential
ramp-up profile is chosen. However, this does not guarantee
that the ramping process is also adiabatic with respect to the
many-body states in the lowest band [22,24]. This is indeed
not true and can be easily seen from the fact that the tunneling
time for the atoms, thop(s) = π

2
h̄

JRb(s) , is of the same order as
the ramp-up time in most experiments.

The results of our numerical simulations are in agreement
with this qualitative argument. By simulating the ramp-up
of the optical lattice using Gutzwiller mean-field theory, we
observe that in the regime of deep optical lattices the ramp-up
dynamics generally does not lead to the ground state of
the system. The ground state of the system at those lattice
depths typically contains a Mott-insulating plateau with integer
filling in the center. The states obtained after ramping up
the lattice indeed lose the long-range superfluid order in this
region. However, unlike the MI phase, the particle densities
are noninteger. We show that the exponential ramping profile
is even less adiabatic than a linear increase of the depth of the
optical lattice.

By systematically tracing the visibility as a function of
the ramp-up time, we find characteristic oscillations, which
also have been observed in experiments with a single bosonic
species [25] and a two-component bosonic mixture [11]. The
fact that we reproduce these oscillations within the mean-field
dynamics, where heating due to three-body collisions is not
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included, indicates that they are part of the real many-body
dynamics. We interpret these oscillations as a competition
between two effects. The first effect is the finite time the
particles need to localize. For fast ramps, the number of
delocalized particles is far higher than the equilibrium value.
However, phase coherence is generally not present. The second
effect is a coupling to collective excitations, in particular
the breathing mode of the system. Whereas the first effect
enhances the visibility, the second effect destroys it, because
the induced current leads to occupation of finite momentum
modes. The criterion for adiabaticity, we deduce from this, is
the saturation of the visibility as a function of ramp-up time. In
this regime the superfluid fraction reaches its equilibrium value
and the ramp-up is sufficiently slow such that no collective
excitations are excited. The maximum of the visibility, as
sometimes used as an experimental criterion, turns out to be
not a good indication of adiabaticity.

This paper is organized as follows: In Sec. II we present
the two-component Bose-Hubbard model we investigate and
explain the Gutzwiller mean-field method we apply. In Sec. III
we present results for T = 0. In Sec. IV we discuss effects
of finite temperature. In Sec. V we present conclusions and
implications for the experiments.

II. MODEL

The two-species bosonic system we consider is described
by the Bose-Hubbard Hamiltonian:

Ĥ =
∑

α=a,b

⎡
⎣∑

〈ij〉
Jα(b̂†iαb̂jα + H.c.) +

∑
i

Uα

2
n̂iα(n̂iα − 1)

−
∑

i

(
µα − V

trap
iα

)
n̂iα

]
+

∑
i

Uabn̂ian̂ib, (1)

where the operator b̂
†
iα(b̂iα) creates (annihilates) a boson of

flavor α, with α = a, b at site i. Since our goal is to model
the experiment [11], we choose the two species as 87Rb
and 41K. The separation of the center of mass of the two
clouds due to the gravitational sag is provided by two spatially
separated parabolic traps V

trap
iα = 1

2mαω2
αd2|ri − rα|2, where

d is the lattice constant, ωα is the trap frequency, ri are the
coordinates of the given lattice site i, and rα are the centers
of the harmonic potentials (see Fig. 1). The frequencies of the
parabolic trap are ωRb = 2π × 36 Hz and ωK = 2π × 53 Hz.
The distance between the two trap centers was chosen in such a
way that the atomic clouds overlap only on a few lattice sites,

FIG. 1. (Color online) Modeling of the gravitational sag by two
spatially separated parabolic trapping potentials. The lattice potential
with the superimposed harmonic trapping potential (here drawn in
one dimension only) is represented by a sinusoidal blue and red line.
Different colors represent the two different bosonic species.
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FIG. 2. (Color online) The tunneling time as a function of the
lattice depth.

as in the experiment [11]. The chemical potentials µα are
adjusted such that the resulting particle numbers correspond
to the particle number ratio of the experiment, NK/NRb ≈ 0.1
[11] (NK ≈ 30, NRb ≈ 300). The parameters Uα, Uab, and
Jα indicate the intra- and interspecies repulsion and the
hopping amplitude. As input we use the experimental values
of the Florence experiments [11]: lattice laser wavelength
λL = 1064 nm, scattering length aRb-K = 163a0, aRb = 99a0,
and aK = 65a0, with a0 the Bohr radius. The hopping constants
Jα and the interaction parameters Uα , Uab are calculated
according to [26]

Jα = 4√
π

h̄2

2mα

(
2π

λL

)2

s3/4
α e−2

√
sα , (2)

Uα =
√

8

π

2π

λL

aαEα
r s3/4

α , (3)

URb-K = 4√
π

kaRb-KEα
r

1 + mRb
mK(

1 +
√

mRbV
Rb
L

mKV K
L

)3/2 s
3
4

Rb, (4)

with the dimensionless lattice depth sα = V α
L /Eα

r , where V α
L

is the depth of the laser-induced potential and Eα
r the recoil

energy of species α. From the hopping constant we directly
obtain the tunneling time of Rb atoms, thop(s) = π

2
h̄

JRb(s) , which
we plot as a function of lattice depth in Fig. 2. For the given
wavelength the depth of the laser-induced lattice potential
is species specific: V Rb

L = 1.1V K
L and EK

r = 2.1ERb
r . This

results in sRb = 2.3sK. In the following we use the short-hand
notation s = sRb. Here we neglect the influence of the parabolic
confinement on the parameters. This is justified because exper-
imentally the potential energy difference between neighboring
lattice wells is much smaller than the barrier height [27].

A. Gutzwiller mean-field approximation

The Hamiltonian equation (1) can in principle be analyzed
by quantum Monte Carlo simulations [28,29]. However,
these simulations are restricted to equilibrium situations and
cannot describe dynamical processes such as the ramping
up of the optical lattice we consider here. Alternatively,
one can apply the time-evolving block decimation (TEBD)
method to simulate the dynamics [24]. However, TEBD is
restricted to one dimension. Here we simulate the experimental
ramp-up dynamics within a mean-field approximation, which
provides good qualitative results [22], requiring a much lower
computational effort than exact numerical alternatives.

043620-2
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Within the Gutzwiller method a mean-field approximation
is applied to the operators b̂

†
iα(b̂iα) in the hopping part of the

Hamiltonian equation (1). This leads to a decomposition of
the lattice Hamiltonian into a sum over decoupled single-site
Hamiltonians, which can be solved numerically:

ĤMF
i =

∑
α=a,b

[
Jα(φ∗

iαb̂iα + H.c.) + Uα

2
n̂iα(n̂iα − 1)

− (
µα − V

trap
iα

)
n̂iα

]
+ Uabn̂ian̂ib, (5)

with φiα = ∑
jn.n.i〈b̂jα〉, where the mean-field parameters

〈b̂jα〉 (superfluid order parameters) have to be found self-
consistently. Since the Hamiltonian is a sum over on-site
Hamiltonians, the many-body wave function is a product wave
function over the lattice sites. However, the different sites
are coupled by the superfluid order parameter φiα . When
the bosons are superfluid, the superfluid order parameter is
nonzero and the phase is constant in space. This establishes
superfluid long-range order in the system.

This mean-field approximation is exact in the weak-
coupling limit [30]. Moreover, it is exact in the limit of infinite
dimensions. Corrections to the mean-field results scale like
1/z, where z is the number of neighbors [19,31]. This means
that on the cubic lattice, where z = 6, the mean-field theory
is well controlled. It still provides qualitatively good results in
two dimensions (z = 4).

B. Dynamics

The Gutzwiller mean-field method can straightforwardly
be generalized to time-dependent calculations [2]. At zero
temperature, the total wave function is assumed to be a product
wave function over the lattice sites: |�(t)〉 = ∏

i |ψ(t)〉i , with
|ψ(t)〉i = ∑

na,nb
βi,na,nb

(t)(b̂†ia)na (b̂†ib)nb |0〉.
Each of the on-site wave functions is evolved in time

according to the local Schrödinger equation

ih̄∂t |ψ(t)〉i = ĤMF
i (t)|ψ(t)〉i .

This constitutes a set of coupled nonlinear differential equa-
tions for the βi,na,nb

(t), which have to be solved. The resulting
mean-field dynamics conserves the average total particle
numbers 〈N̂α〉. In order to achieve number conservation
numerically, the wave function on each lattice site is updated
sequentially by taking into account the already updated
superfluid order parameters of the previous sites. This method
keeps the total particle number constant (deviations < 0.1‰)
[32], without need of a time-evolving chemical potential [22].

C. Finite temperature

The Gutzwiller mean-field method is also readily gener-
alized to nonzero temperature. In this case the total system
is described by a density matrix ρ̂(t). Expectation values are
obtained as 〈Ô〉(t) = Tr[ρ̂(t)Ô]. In the mean-field approxi-
mation ρ̂(t) factorizes over the lattice sites as ρ̂(t) = ∏

i ρ̂i(t),

with ρ̂i(t) = ∑
n

e−βEi
n

Zi
|ψn(t)〉i i〈ψn(t)|, where |ψn(t)〉i are the

states at site i and time t and Zi are the on-site partition
functions. This representation is also valid out of equilibrium.
The local density matrix ρ̂i(t) obeys the Von Neumann

equation

ih̄∂t ρ̂i(t) = [
ĤMF

i (t), ρ̂i(t)
]
. (6)

The von Neumann time evolution is unitary and hence
preserves the weights in the density matrix. Thus the thermal

weights in the density matrix e−βEi
n

Zi
in the ramp simulation

are time independent, where En are the initial eigenvalues of
the system and Zi is the initial partition function. The initial
inverse temperature β = 1/kBT is set to an experimentally
reasonable value. Since in the Gutzwiller approach the density
matrix factorizes over the lattice sites, this puts severe
restrictions on the possibility of (local) thermalization. In
order to account for dissipation, such as induced by three-body
losses, one has to apply the Lindblad equation [33].

Mean-field theory predicts the existence of long-range order
at low but nonzero temperatures in any spatial dimension.
This means that the correct physics in two dimensions is not
fully recovered at finite temperatures. In three dimensions,
mean-field theory describes the correct behavior of the
system at zero and nonzero temperature. Our two-dimensional
simulations can thus be viewed as a qualitative description of
the experiments in [11].

III. RESULTS FOR T = 0

At low lattice depth the system does not fulfill the single-
band and tight-binding approximation required for the Bose-
Hubbard Hamiltonian in Eq. (1) to be valid. We therefore
start our calculations at s = 5 where 87Rb is already far in the
tight-binding and the lowest band regime. The corresponding
lattice depth for 41K is sK = 2.17. Since the ratio between
the bandwidth 4JK and the bandgap Egap = 2

√
skEr is

small for the initial sK (4J K/Egap ≈ 0.03), the single-band
approximation is also satisfied for 41K. We assume that the
wave function still corresponds to the ground state when the
ramp in the experiment reaches this initial lattice depth. This
is a valid assumption, since interactions are still weak for
s = 5 and the ramping time in the experiments is chosen
adiabatic with respect to the band gap, which guarantees that
the particles remain in the lowest band. Starting with s = 4
and s = 6 indeed did not change our results.

Although the ramp of the lattice affects both species,
only effects of the ramp-up dynamics on the 87Rb atoms are
discussed in the following, like in the experiments [11].

To investigate the adiabaticity of the lattice ramp, we now
first present results for the density distribution in real space as
well as in momentum space. Later on we focus on the visibility.

A. Density profiles

1. Real space

To investigate the effect of the ramping dynamics we first
compare the density distributions in real space after the lattice
ramp-up with static density profiles at the corresponding final
lattice depth. The static profiles originate from the ground state
at T = 0 for a given s.

For small final s (s < 10) the density profiles agree perfectly
with the static ones independently of the ramping time. For
larger s, longer ramping times are needed to achieve good
agreement between the profiles. In particular, for s � 15 in
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FIG. 3. (Color online) Particle density and superfluid order
parameter of 87Rb along a cut in the x direction through the center
of the trap (y = 0). (a) For s = 15 and ramp duration t = 50 ms
(red dashed line) the particles in the center of the trap are in the
“frozen phase” in contrast to the ground-state profile (blue solid line),
where a Mott plateau is present. This is indicated by the noninteger
density nRb and nonzero local superfluid order parameter |〈b̂Rb〉| (c).
(b) For s = 22 and t = 50 (red dashed line) a density wave is induced
due to the fast ramp and high nonadiabaticity. Global parameters:
L = 45, NRb = 303, NK = 30, and URb-K = 1.93URb. For (a) and
(c), JRb = 0.02URb, and for (b) and (d), JRb = 0.004URb.

equilibrium a Mott plateau appears in the center of the trap.
However, the dynamically evolved wave function remains a
superposition of various Fock states for fast ramps. This can
be understood by the following argument. In the limit of an
instantaneous increase of the lattice depth the superfluid wave
function consisting of local superpositions of various Fock
states remains unchanged. Since the hopping J decreases
exponentially with increasing lattice depth, after this sudden
step to a deep lattice the time-evolution operator consists
mainly of the interaction part Un̂(n̂ − 1)/2, which rotates
the phase of each Fock state independently but leaves the
local wave function in a superposition of multiple Fock states.
The situation is similar for fast ramp and leads to noninteger
particle density [see Figs. 3(a) and 3(b)] and nonzero local
superfluid order parameter [see Figs. 3(c) and 3(d)]. Although
the absolute value of the superfluid parameter is not vanishing,
long-range order is destroyed as the complex phases of 〈b̂i〉
are no longer constant over the lattice. Correlations between
the phases, however, can be partially recovered for certain
ramp-up times. This corresponds to the collapse-and-revival
physics [25]: After time intervals of length 2πh̄/U all the
individual phases are back in phase and global phase coherence
is restored. Away from the revival times, due to the vanishing
coherence this phase is not a SF phase; we refer to it as a
“frozen” phase.

Ramping the lattice to higher s with the same ramp-up
time means effectively a faster increase of the lattice depth per
time unit. This causes not only significant deviations from the
static density profiles but also the formation of density waves
[Fig. 4(b)]. This behavior is observed for ramp-up times below

100 ms. The density waves provide further evidence that the
final state reached after the lattice ramp is not necessarily the
ground state.

We finally examine the rotational symmetry of the density
profile of the Rb atoms. Due to the presence of the K species
(and hence additional repulsive interactions), the rotational
symmetry of the Rb cloud is always broken. However, this
effect is only very pronounced for large s. Deep in the MI
regime the compressible superfluid boundary layer, adjacent
to the cloud of K atoms, disappears because of the strong
repulsive force experienced by the K atoms. The corresponding
superfluid order parameter vanishes in the ground state. This
is different in the case of the time-evolved profiles: As the
87Rb atoms for t = 50 s = 22 ms are in the “frozen” phase,
the breaking of circular symmetry is far less pronounced as in
the static case, where the system is already Mott-insulating.

2. Momentum space

More information regarding superfluid long-range order
is available in momentum space. Besides, in contrast to the
real-space particle distribution, information on the momentum
distribution is experimentally well accessible by time-of-flight
measurements. The nonadiabaticity and oscillations in the
density profile are mirrored in the momentum distribution.
To accentuate the global behavior as a function of the ramp-up
time and the final lattice depth we show only the values
averaged over an equilibration time of 16 ms.

Whereas for a homogeneous system of noninteracting
particles the momentum distribution is a single delta peak at
�k = (0, 0), the momentum distribution of a trapped system
of interacting particles has a constant background due to
noncondensed particles and shows broadening because of
the trap. This latter effect dominates over the broadening by
short-range fluctuations, which are neglected in the Gutzwiller
approximation.

As pointed out in the previous section, for short ramp-up
times and deep lattices the local superfluid order parameter
remains finite in the region where the static calculation predicts
a MI plateau. Particles stay “frozen” in a superfluid-like phase
indicated by noninteger particle densities and finite local
superfluid order parameter. Although in the dynamic case all
Rb atoms seem to be superfluid, the phase coherence is lost.
This is shown in Fig. 4. The reduced central peak in the n(�k)
profile compared to the static data clearly indicates destroyed
long-range order in the system [Fig. 4(a)]. In extremely
nonadiabatic cases the central peak becomes smaller than the
side peaks or even the background value n(�k = (π, π )). This
leads to a significant broadening of the momentum distribution.
Additionally the ±�k symmetry breaks down [Fig. 4(b)].

B. Visibility

The most convenient way to compare the experimental
momentum distribution with our theoretical results is to
calculate the visibility η for the 87Rb atoms as a function
of lattice depth s:

η(s) = ns(�k = (0, 0)) − ns(�k = (π, π ))

ns(�k = (0, 0)) + ns(�k = (π, π ))
. (7)
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FIG. 4. (Color online) Particle density in momentum space along
a cut in the (1,0) direction for ky = 0. (a) In the static calculations
(blue solid line) the central peak at �k = (0, 0) is present, due to the
SF shell, and small side peaks at nonzero �k are due to the MI core in
the middle of the trap. Fast ramps with t = 50 ms (red dashed line)
drive the particles into a frozen phase with lowered phase coherence,
which is mirrored in a decreased central peak. (b) Ramping within
the same time to a deeper lattice is highly nonadiabatic. The central
peak becomes smaller than the side peaks or even the background
value n(�k = (π, π )) and the ±�k symmetry disappears.

Here ns(�k) corresponds to the spatial Fourier transform of
〈b̂†i b̂j〉(s). In the experimental procedure [11] the height of the
first-order peaks is compared with the minimum in n(�k) at
the same distance from the central zero-order peak, to divide
out the contribution of the Wannier function. Our calculations
are performed within the tight-binding model [Eq. (1)] and do
not include the shape of the Wannier function. We therefore
calculate the visibility by comparing the central peak with the
minimum at the edge of the Brillouin zone.

The n(�k) values are extracted in the experiment [11]
by integrating finite square areas around the peaks instead
of taking single values. Application of this method to our
theoretical data shifts the visibility for all ramp-up times. This
is a small quantitative effect and depends on the extent of the
integration area. It has no effect on the conclusions drawn in
this paper.

In order to investigate the reduction of the visibility in
a systematic way, we now subsequently analyze the role of
the second species, the ramp-up profile of the lattice, and the
ramp-up time.

1. Effect of the second species

It is observed experimentally that addition of 41K to a
system of 87Rb particles reduces the phase coherence and
the visibility [11]. Our simulations reproduce this behavior
for similar parameters and particle number ratios as in the
experiment (i.e., NRb ≈ 303 and NK ≈ 30). We observed
this effect for all simulated ramping times (from 50 to
300 ms with a linear ramp-up profile) as well as in the
static case [Figs. 5(a) and 5(b)]. In particular, the destructive
effect of the 41K on the phase correlations of the superfluid
order parameter of 87Rb is more pronounced in the dynamic
case than in the static one. This indicates that the second
species enhances the nonequilibrium induced by the lattice
ramp.

The reason for the lower 87Rb visibility in the presence of
41K in the static case is the following. The repulsive interaction

0.4
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t = 300 ms
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(b)

Rb only
Rb+K
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FIG. 5. (Color online) Visibility for pure 87Rb (blue solid line)
and in the presence of 41K (red dots) after a t = 300 ms ramp
(a) and in the static case (b). In both cases the visibility of pure
87Rb is higher.

between the species pushes the 87Rb atoms out of the overlap
region and enhances the 87Rb density in the trap center. This
increases the interaction energy of the 87Rb and brings the
particles closer to the SF-MI transition, thus decreasing the
coherence of the system in the static case [23].

The dynamic lattice ramp to deep lattices leads to even a
lower visibility than in the static case. This can be explained
by the following argument. As we will show later, one of
the reasons for the nonadiabaticity of the ramp-up is the
excitation of collective modes. This effect results from the
interplay between the intraspecies repulsion and the increase
of the lattice depth, which squeezes the atomic cloud. When
41K is present, the clouds exert a repulsive force on each
other, even though the overlap region is small. This leads to
additional collective modes in the system, which lowers the
phase coherence and hence the visibility. In the following we
will quantify this statement. This mechanism could explain
why in experiments a reduced visibility is always seen when a
second species is added.

2. Effect of the ramp-up profile

In this section we investigate the effect of the profile of
the lattice ramp on adiabaticity. Our motivation is that in
experiments the ramping profiles are usually of exponential
shape to keep particles in the lowest band at the beginning
of the ramp. For a better comparison between the simulated
linear profile and the one used in experiment we also used the
same shape as in [11]:

s ′(t ′) = (
e

t ′
0.4t − 1

) s

e
1

0.4 − 1
, (8)

where s is the final lattice depth and t the ramping time.
We performed calculations for 50- to 300-ms ramp-up times.
These simulations demonstrate that the exponential ramp leads
to a lower visibility than the linear profile (Fig. 6). The highly
nonadiabatic ramp-up time of 75 ms with an exponential
profile leads even to negative visibilities [Fig. 6(a)]. This
indicates that the system displays collapse-and-revival physics
for these short ramping times. Extending the ramping time
to t = 200 ms results in an almost adiabatic linear ramp for
s � 15 as the calculated visibility corresponds very well to
the static case [Fig. 6(a)]. The visibility of 87Rb after the
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FIG. 6. (Color online) Effect of the ramping profile on the
visibility of 87Rb in the presence of 41K. (a) The resulting visibility
after a t = 75 ms ramp with the linear ramp (blue solid line) lies closer
to the adiabatic static visibility (red solid line) than the visibility after
the ramp with the exponential profile (green dashed line). (b) Results
with the same profiles but for a t = 200 ms ramp.

200-ms exponential ramp is higher than after 75 ms but still
lower than the linear results. For deep lattices with s = 22 the
exponential ramp-up profile leads to a higher visibility than the
linear ramp. However, this is because the exponential ramp-up
is still highly nonadiabatic for this ramping time, leading to a
large SF fraction, whereas the linear ramp is closer to being
adiabatic.

The observation that the exponential ramp-up profile leads
to less adiabatic behavior is explained by the fact that this
profile has a low ramp-up velocity for the smaller lattice depths,
where the interaction only plays a minor role, whereas for
the higher lattice depths, where many-body effects become
important, the ramping velocity is very high. For this reason
further investigations were performed exclusively with a linear
ramp-up shape.

3. Effect of the ramp-up time

Finally, we investigate the effect of the ramp-up time on
the visibility. Whereas one would expect that a slower ramp
automatically enhances the adiabaticity and the visibility, in
the simulations we observe that only the dynamic real-space
particle distributions become similar to the static ones. The
visibility, and therefore the phase coherence, remains different
from the ground-state one. Especially for intermediate ramping
times the behavior is counterintuitive (Fig. 7). While for lattice
depth s < 15 the visibility increases monotonically with the
ramp-up time (Fig. 7 inset), deeper in the MI regime this
tendency is washed out. This is surprising as the longer ramp
is expected to be more adiabatic. Plotting the visibility as
a function of ramp-up time for a fixed s demonstrates that
the effect of the ramping time is not the same for all s

(Fig. 8). We distinguish two different regimes. Ramping up
to shallow lattices s � 12 is adiabatic on all time scales and
thus not affected by the ramp duration. In the regime of final
lattice depth around the SF-MI transition and in the MI phase,
oscillations in the visibility occur.

These oscillations were also observed experimentally
[11,25] but not yet explained. In the next section we give an
explanation in terms of coupling to the collective modes of the
system. Before this we add some remarks on the figures. The
oscillating behavior depends on the ramp-up profile [Figs. 9(a)

0

0.2

0.4

0.6

0.8

1

10 14 18 22

η

s

0.8

1

14 16 18

stat
t = 125 ms
t = 100 ms
t = 50 ms

FIG. 7. (Color online) Calculated visibilities for 125-ms (green
squares), 100-ms (pink crosses), and 50-ms (blue dots) ramping
durations compared to the static visibility (black dots, not connected
by a line). The inset demonstrates that for s < 17 the visibility after a
125-ms ramp lies closer to the static visibility than after a 100-ms one
and vice versa for deeper lattices. The increase of the visibility for
deep lattices for t = 50 ms is due to the highly nonadiabatic revival
of the coherence.

and 9(b)]. The exponential shape shifts the oscillations to
longer ramp-up times. The presence of 41K has only a minor
effect on the oscillations: The second species only leads to a
global shift in the visibility without changing the position of
maxima and minima [Figs. 9(c) and 9(d)]. This is consistent
with the experimental findings [11].

4. Explanation of visibility oscillations

We now turn to the explanation of the oscillations in the
visibility. A closer look at the simulations shows that the
only component contributing to the visibility which oscillates
in time at a fixed s is n(�k = (0, 0)). The particle density in

0.1

0.4

0.7

1

100 200 300

η

t [ms]

s=7
s=14
s=16
s=19
s=22

FIG. 8. (Color online) Visibility as a function of ramp-up time.
For s = 7 (red solid line) all considered ramping times are adiabatic
and the visibility is independent of the ramp-up time. For s = 14 (blue
asterisks) a longer ramp leads to the ground-state visibility, indicating
300 ms as the appropriate ramp-up time. For s � 17 oscillations are
induced, as explained in the text.
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FIG. 9. (Color online) Effect of the ramping profile on the
visibility oscillations [(a) and (b)] and effect of the second
species [(c) and (d)]. For intermediate lattices (e.g., s = 16)
the exponential ramp-up profile (blue dashed line) damps the
oscillations, which are present for the linear profile (red solid
line) (a). For s = 22 and an exponential ramp (b) a nonadia-
batic maximum appears. The presence of a second species (blue
dashed line) [(c) and (d)] only induces a global shift of the
visibility.

momentum space is given by

n(�k = (0, 0)) = 1

L2

L2∑
i=1

(〈n̂i〉− r2
i

) + 1

L2

∣∣∣∣∣∣
L2∑
i=1

rie
−iφi

∣∣∣∣∣∣
2

, (9)

where L2 is the total number of lattice sites and ri(rj ) and
φi(φj ) are the absolute value and the phase of the local
superfluid order parameter on a site i (j ), respectively:
〈b†i 〉 = rie

−iφi . We can separate the contribution of the absolute
value and the phase to the visibility. The absolute value ri

shows monotonic behavior and is continuously decreasing
if the ramp-up time is reduced. This is measured by the
Gutzwiller SF fraction fc = ∑

i |〈bi〉|2/N . In Fig. 10(d) the SF
fraction is continuously decreasing and always higher than the
equilibrium value. Only for long ramping times (t = 300 ms)
do the dynamical and static SF fraction approach each other.
This means that for the short ramping times the visibility is
dominated by this anomalously large SF fraction. However, for
very fast ramping times the SF fraction is high, but the phases
are uncorrelated, leading to a low visibility. With increasing
ramping time the phase coherence builds up and compensates
the decay of the SF fraction, leading to an increasingly higher
visibility.

For even longer ramping times the visibility decreases
again. We explain this by an enhanced coupling to the
collective breathing mode of the system induced by the lattice
ramp. Increasing the lattice depth results in an increased
ratio of the strength of the harmonic trapping potential and
the hopping constant J . This forces the particles to move
toward the center of the parabolic trap and leads to a higher
occupancy in the middle of the trap. At the same time the
particles experience a higher repulsion as U (s) grows with
the lattice depth [see Eq. (3)]. This repulsion acts against
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FIG. 10. (Color online) (a) Oscillations of the radius of the
Rb cloud during the waiting time of 16 ms after a t0 = 125 ms
ramp to s = 22. The data are fitted by f (t) = 0.135 sin(0.18t +
5.19) exp−0.031(t−t0) + 48.857 (blue line). The sinusoidal form cor-
responds to the excitation of the breathing mode. (b) The current
at s = 22, averaged over the waiting time and renormalized with
respect to the SF fraction, induced after different ramp-up times. The
maximum of the renormalized current indicates the regime with the
maximal coupling to the collective modes. The second species leads
to an enhanced coupling for all ramp-up times. (c) The SF fraction
averaged over the waiting time as a function of ramping time at
s = 22. The “freezing” in the SF phase is dominant for fast ramps.
For longer ramp-up the system approaches the ground-state (static)
value and the ramp is getting more adiabatic. The 41K slightly reduces
the SF fraction.

the increasing population and induces a reverse flow. The
interplay between these two mechanisms yields the collective
modes.

We indeed find numerical evidence for these collective
oscillations by observing the cloud size R2 = 〈�r2〉 − 〈�r〉2

during the waiting time after the ramp. The sinusoidal
oscillations of R2 indicate the collective movement of particles
within the breathing mode in Fig. 10(a). The data for other
ramp-up times can also be fitted similarly. This leads to the
conclusion that only the breathing mode is excited. Depending
on the ramping time the amplitude of the oscillation changes.
In particular, the amplitude is continuously decreasing when
the ramping time is made longer. However, this is mainly
due to the decreasing SF fraction, which reduces the number
of mobile particles. Renormalizing the amplitude by the SF
fraction leads to a peak at the position of the minimum of the
visibility, which evidences that the coupling to the modes is
responsible for this minimum.

Analysis of the total current in the system, I =∑
〈ij〉 |〈b̂†i b̂j − b̂

†
j b̂i〉|2, further clarifies this. The total cur-

rent is decaying because of the decaying SF fraction. To
investigate the relative motion of the mobile particles we
therefore renormalize the total current by f 2

c : Ir = I/Nf 2
c .

This function again shows a clear maximum at the position
of the visibility minimum [see Fig. 10(c)]. As the coupling
to collective modes destroys the phase coherence, this fully
agrees with the minimum in visibility for a 125-ms ramp [see
Fig. 9(d)].
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For t > 150 ms the SF fraction approximates the static
value and the collective modes are less excited. This is the
most adiabatic ramping regime.

For the exponential ramp-up profile, the oscillations are
shifted [Figs. 9(a) and 9(b)]. This is because the SF fraction
remains anomalously high even for long ramping times
and the visibility is dominated by this effect. In particular
the maximum at tramp = 200 ms for s = 22 is explained
by the high SF fraction and is thus a highly nonadiabatic
point. The decrease of the visibility at t = 300 ms for
s = 22 is explained by an enhanced coupling to collective
excitations.

The fact that the presence of a second species leads only to a
small shift in the visibility is explained by the observation that
the overlap of the atomic clouds is very small and the modes
are mainly excited by the increased repulsion between the
87Rb particles when the optical lattice is ramped up. However,
the second species induces additional modes, which lower
the visibility. This is seen in the higher renormalized current
in Fig. 10(b) for the mixture compared to the single-species
system.

The additional induced modes in the system due to the
presence of 41K not only explain the lower visibility but
also offer an explanation for the experimental observation
that adding a second species leads to a broadening of the
momentum profile beyond a certain lattice depth [11]. The
presence of collective modes leads to macroscopic occupation
of single-particle states with nonzero momentum and hence
broadens the momentum distribution. It is worth noting that
for this explanation the amount of spatial overlap of the
two species is less important: As long as the two clouds
touch, they can exert a force on each other. This explains
why this effect was already found for widely separated
components.

IV. RESULTS FOR NONZERO T

In order to understand the effect of finite temperature in
the experiments we also perform simulations for this case.
We perform simulations for initial temperatures of 19 nK
(kBT2 = 2.2JRb,s=5) and 12.6 nK (kBT1 = 1.5JRb,s=5). This is
in the range of typical experimental temperatures, which can
be estimated as detailed in the Appendix. To investigate the
adiabaticity of the ramp at finite temperature we again compare
time-dependent ramp-up simulations with static results. The
latter correspond to the ensemble in thermal equilibrium
at a final lattice depth with effective inverse temperature
β̃ = 1/kBT̃ . The effective temperature is chosen such that
the entropy of the static system equals the initial entropy of
the ramped system. The static results thus represent an adia-
batically ramped and completely thermalized ensemble. Ac-

cordingly, the static density matrix is ρ = ∑
n

e−β̃Ei
n

Zi
|En〉i i〈En|,

where En, |En〉i are the eigenvalues and eigenstates of the
Hamiltonian at site i, respectively.

A. Density profiles

We first investigate the density profiles in real space at
kBT1 = 1.5JRb,s=5. Ramping in 50 ms to s = 12 provides a
density profile similar to the static thermalized result with
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FIG. 11. (Color online) Finite-temperature results for the particle
density and superfluid order parameter of 87Rb at final lattice depths
of s = 12, 16 along a cut in the x direction through the center of
the trap (y = 0). All dynamic profiles are calculated for the temper-
ature kBT1 = 1.5JRb,s=5. (a) For the 50-ms ramp (red dashed line)
the results correspond well to the static thermalized ensemble (blue
solid line) with effective temperature kBT̃1 = 0.95JRb,s=5. However,
the local superfluid order parameter is reduced in the center of the
atomic cloud (c). (b) After the ramp to s = 16 the dynamic profiles
differ from the static ones with corresponding effective temperature
kBT̃2 = 0.42JRb,s=5. A density plateau is formed in the center of the
trap at a noninteger density. For the 50-ms ramp (red solid line) density
waves appear around this plateau. (d) The superfluid order parameter
(red solid line) is peaked in the region where the density waves appear.
Parameters are L = 60, NRb = 303, NK = 30, and URb-K = 1.93URb,
For (a) and (c), JRb = 0.24URb, and for (b) and (d), JRb = 0.02URb.

effective temperature kBT̃1 = 0.95JRb,s=5 [see Fig. 11(a)]. The
local superfluid order parameter, however, differs from the
value in thermal equilibrium [see Fig. 11(c)]. In the center of
the 87Rb cloud the local superfluid order parameter is reduced.
Hence the system after the ramp does not correspond to an
adiabatically ramped and thermalized ensemble. At deeper
lattices the dynamic density profiles do not fit the thermal
static distribution. Figure 11(b) demonstrates the squeezing
of the dynamic profile for s = 16 compared to the static one
with effective temperature kBT̃2 = 0.42JRb,s=5. Similar to the
T = 0 case, the fast 50-ms ramp is nonadiabatic and induces
density waves around the plateau [see Fig. 11(b)]. The peaked
local superfluid order parameter in Fig. 11(d) corresponds to
the region where the density waves appear. For t = 300 ms
in Fig. 11(b) a plateau is formed at noninteger density in
the center of the trap. At the same time the corresponding
local superfluid order parameters vanish which, indicates a
formation of a normal phase instead of a MI plateau as found
previously in the T = 0 case.

B. Visibility and oscillations

As shown in the previous section, with increasing tem-
perature and lattice depth the condensate depletes. This also
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FIG. 12. (Color online) Visibility after a 300-ms ramp-up for
kBT1 = 1.5JRb,s=5 (green dots) and kBT2 = 2.2JRb,s=5 (blue triangles)
compared with T = 0 (red solid line). The visibility decreases with
increasing temperature.

lowers the visibility. In Fig. 12 this behavior is exemplified
for a 300-ms ramp. For low temperature kBT1 = 1.5JRb,s=5

and shallow lattices s � 12 the visibility is hardly changed
compared to T = 0. With increasing lattice depth, however,
the superfluid order parameter vanishes in the trap center,
leading to a decreased visibility. For higher temperature
(kBT2 = 2.2JRb,s=5) the fraction of the atoms in the normal
phase increases, thus lowering the visibility further.

The visibility oscillations are affected as well. When
temperature and final lattice depth are sufficiently small,
the only effect of the temperature is to reduce the visibility
[Fig. 13(a); kBT1 = 1.5JRb,s=5]. Although the absolute value
of the local superfluid parameter is reduced in the center
of the trap for a slow lattice ramp compared to a fast ramp
[Fig. 11(d)], the phase coherence in the latter case is almost
completely destroyed. This leads to a higher visibility for a
300-ms ramp than for a 50-ms one. For kBT2 = 2.2JRb,s=5

the visibility oscillations are suppressed and the minimum at
t = 200 ms disappears. We can understand the disappearance
of the minimum in the visibility in a qualitative way by
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FIG. 13. (Color online) Visibility as a function of ramp-up time
for different temperatures and final lattice depths. (a) At shallow
lattices for T = 0 (red solid line) oscillations appear with a visibility
minimum at t = 200 ms. For kBT1 = 1.5JRb,s=5 (blue dashed line)
the global visibility and the oscillation amplitude are reduced.
Higher temperature (kBT2 = 2.2JRb,s=5, green dotted line) blurs the
oscillations. (b) For s = 19 the shape of the oscillations at T = 0
is mainly conserved for kBT1 = 1.5JRb,s=5. The graph is shifted to
lower visibility and longer ramp-up times. At kBT2 = 2.2JRb,s=5 only
one maximum at t = 200 ms is present.

comparing the excitation energy of the breathing mode with
the temperature. We indeed find that the temperature here is
higher than the excitation energy, meaning that the mode is
already thermally occupied and that the ramp of the lattice has
less effect.

V. DISCUSSION AND CONCLUSION

Using a time-dependent Gutzwiller model for an interacting
Bose-Bose mixture we investigated the ramp-up of the optical
lattice at zero and at finite temperatures.

The nonadiabaticity of the lattice ramp was analyzed by
comparing density profiles in real and momentum space and
by studying the visibility. The adiabatic regime is reached
when the density profiles as well as visibility agree with the
equilibrium results.

We have shown that a ramp-up of the optical lattice carried
out on a time scale comparable to the tunneling time does not
necessarily provide the ground state of the system. Depending
on the ramp-up time, ramping the lattice at T = 0 leads to the
trapping of the particles in a “frozen” phase with noninteger
particle number and nonzero local superfluid order parameter
but vanishing global phase coherence. Ramping the lattice
at finite temperature additionally causes a depletion of the
condensate. The latter grows with increasing temperature.
Both ramp effects lead to decreased visibility.

The ground-state visibility was only reached for shallow
lattices within the investigated ramping times. The fact that
one needs rather long times to be completely adiabatic for deep
lattices is rooted in the critical slowing down of the hopping at
the SF-MI phase boundary at T = 0 or the SF-normal phase
boundary at finite temperature.

For T = 0 we demonstrated in addition that the lin-
ear lattice ramp is more adiabatic than the exponential.
We found that a longer ramp-up time does not naturally
lead to a better visibility. In fact, depending on the final
lattice depth oscillations may occur for T = 0 and low
temperatures.

We explain these oscillations by a coupling of the ramp-up
process to the collective modes of the system. This is consistent
with the appearance of density waves in the system. Lowered
superfluidity and a larger normal phase prevent collective
excitations at higher temperatures. One of our main results
is that the maximum in the visibility is not a good indication
of adiabaticity. This regime is in fact highly nonadiabatic,
since the maximum is caused by an anomalously large SF
fraction induced by the short ramping time. The region where
the visibility saturates is the most adiabatic. However, in our
approach three-body collisions and heating are not included.
These processes become relevant at long time scales and also
lead to nonadiabaticity.

In experiments, the presence of a second species destroys
the phase coherence of the majority species, leading to a
decreased visibility. In contrast, previous theoretical static
calculations predict either enhanced or decreased long-range
order, depending on the actual particle ratio [23]. Here we
observed that for T = 0 the dynamical ramp induces additional
nonequilibrium and leads to a more pronounced visibility
decay in the region where a static calculation also predicts
lowering. We explained this in terms of an enhanced current
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in the system. This supplementary visibility reduction could
be the reason for the experimental findings.
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APPENDIX: ESTIMATION OF THE TEMPERATURE
IN A WEAK LATTICE

The ramp-up in our work starts at s = 5 and not at s = 0, as
in the experiment, due to the required tight-binding regime of
the Hubbard model. Therefore, starting from s = 5 we have to
recalculate the temperature based on the initial experimental
temperature of 73 nK [11] before the ramp. It can be shown
by the following argument that the ramp-up of the optical
lattice cools the system. For a first estimate let us assume
that the lattice is ramped up adiabatically from s = 0 to
s = 5 and that the particles are noninteracting. The initial
slow ramp of the exponential or any other ramping profile
realizes the first condition. The second condition is strictly
satisfied only in shallow lattices. For s = 5, where URb ∼ JRb,
it can be assumed to be roughly satisfied and leads to the right
temperature range.

In the case of an adiabatic lattice ramp the entropy of the
system S = −kB

∑
k{ln[1 + nk](1 + nk) − nk ln nk} remains

constant. As the experiments start from s = 0, the initial

dispersion corresponds to the free particle dispersion εi
k =

h̄2�k2/2m. The final situation is a tight-binding case and
the particle density is evaluated with the dispersion ε

f

k =
−2J [cos(kxa) + cos(kya)], where a is the lattice constant.
As the noninteracting condensate is located around �k = (0, 0)
the tight-binding dispersion can be approximated by a Taylor
series as ε

f

k ≈ J (�ka)2. The initial and final particle densities

n
i,f

k = (eβε
i,f

k − 1)−1 have the same functional dependence
on momentum k. The sum over functions with the same
functional k dependence in the entropies can only remain
constant when these functions are identical. This is realized
when the particle density nk for the initial lattice depth
corresponds to the final one. From the equality of initial and
final particle densities the criterion for the final temperature
follows as T f /T i = ε

f

k /εi
k . From here the final temperature

can be estimated as T f = T iJλ2m/2h̄2, where λ is the laser
wavelength and J is the hopping amplitude at the final lattice
depth [34].

For a lattice ramp to s = 5 the initial temperature of
73 nK is lowered by a factor of 2. As for this lattice depth
the system is in the SF regime, the thermal energy competes
with the hopping energy J . At this point the dimensionality of
the experiment has to be taken into account. As the hopping
scales with the number z of the next neighbors the ratio T f /zJ

for our 2D system studied here should correspond to the ratio
of the experimental 3D system. This lowers the calculated
temperature by an additional factor of 2/3, providing the
effective temperature T f = 24 nK for our equivalent 2D
system.
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