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Abstract

We investigate the effects of memory on the stability of evolutionary selec-

tion dynamics based on a multi-nomial logit model in an asset pricing model

with heterogeneous beliefs. Whether memory is stabilizing or destabilizing

depends in general on three key factors: (1) whether or not the weights on

past observations are normalized; (2) the ecology of forecasting rules, in par-

ticular the average strength of trend extrapolation and the spread in biased

forecasts, and (3) whether or not costs for information gathering of economic

fundamentals have to be incurred.

JEL classification: C61, D84, E32, G12.

Key Words: fitness measure, asset pricing, bifurcations, evolutionary se-
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1 Introduction

Heterogeneous expectations models are becoming increasingly popular in various

fields of economic analysis, such as exchange rate models (De Grauwe et al., 1993;

Da Silva, 2001; De Grauwe and Grimaldi, 2005; 2006), macro-monetary policy

models (Evans and Honkapohja, 2003; Evans and McGough, 2005; Bullard et al.,

2008; Anufriev et al., 2009), overlapping-generations models (Duffy, 1994; Tuin-

stra, 2003; Tuinstra and Wagener, 2007) and models of socio-economic behaviour

(Lux, 1995, Brock and Durlauf, 2001; Alfarano et al., 2005). Yet the application

with the most systematic and perhaps most promising heterogeneous expectations

models seems to be asset price modelling. Contributions of e.g. Brock and Hommes

(1998), Lux and Marchesi (1999), LeBaron (2000), Chiarella and He (2002), Brock

et al. (2005) and Gaunersdorfer et al. (2008) demonstrate how a simple standard

asset pricing model with heterogeneous beliefs is able to lead to complex dynamics

that makes it extremely hard to predict the co-evolution of prices and forecasting

strategies in asset markets. The main framework of analysis of such asset pricing

models constitutes a financial market application of the evolutionary selection of

expectation rules, introduced by Brock and Hommes (1997) and called the adap-

tive belief system (ABS). See Hommes (2006) and LeBaron (2006) for extensive

reviews of agent-based models in finance; recent overviews stressing the empirical

and experimental validation of agent-based models are Lux (2009) and Hommes

and Wagener (2009).

An important result in asset pricing models with heterogeneous beliefs is that

non-rational traders, such as technical analysts extrapolating past price trends, may

survive evolutionary competition. These results contradict the hypothesis that ir-

rational traders will be driven out of the market by rational arbitrageurs, who

trade against them and earn higher profits and accumulate higher wealth (Fried-

man, 1953). In most asset pricing models with heterogeneous beliefs, irrational

chartists can survive because evolutionary selection is driven by short run prof-
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itability. The role of memory or time horizon in the evolutionary fitness measure

underlying strategy selection has hardly been studied in the literature however.

LeBaron (2001, 2002) are among the few papers that have addressed the role of

investor’s time horizon in learning and strategy selection in an agent-based financial

market. It has been argued that investors’ time horizon is related to whether they

believe that the world is stationary or non-stationary. In a stationary world agents

should use all available information in learning and strategy selection, while if one

views the world as constantly in a state of change, then it will be better to use

time series reaching a shorter length into the past. One of LeBaron’s main findings

is that in a world where more agents have a long-memory horizon the volatility of

asset price fluctuations is smaller. Stated differently, long-horizon investors make

the market more stable, while short-horizon investors contribute to excess volatility

and prevent asset prices to converge to the rational, fundamental benchmark.

Another contribution along these lines is Brock and Hommes (1999), who use

a simple, tractable asset pricing model with heterogeneous beliefs to investigate

the effect of memory in the fitness measure for strategy selection. In contrast

to LeBaron (2001, 2002) they find that more memory in strategy selection may

destabilize asset price dynamics.

Honkapohja and Mitra (2003) provide analytical results for dynamics of adap-

tive learning when the learning rule has finite memory. These authors focus on the

case of learning a stochastic steady state. Although their work is not done in a

heterogeneous agent setting, the results are interesting for our analysis. Their fun-

damental outcome is that the expectational stability principle, which plays a central

role in stability of adaptive learning, as discussed e.g. in Evans and Honkapohja

(2001), retains its importance in the analysis of incomplete learning, though it takes

a new form. Their main result is that expectational stability guarantees stationary

dynamics under learning with finite memory, with unbiased forecasts but higher

price volatility than under complete learning with infinite memory.

Chiarella et al. (2006) study the effect of the time horizon in technical trading
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rules upon the stability in a dynamic financial market model with fundamentalist

and chartists. The chartist demand is governed by the difference between the cur-

rent price and a (long-run) moving average. One of their main results is that an

increase of the window length of the moving average rule can destabilize an oth-

erwise stable system, leading to more complicated, even chaotic behaviour. The

analysis of the corresponding stochastic model was able to explain various mar-

ket price phenomena, including temporary bubbles, sudden market crashes, price

resistance and price switching between different levels.

The aim of our paper is thus to study the role of memory or time horizon

in evolutionary strategy selection in a simple, analytically tractable asset pricing

model with heterogeneous beliefs. We shall analyze the effects of additional memory

in the fitness measure on evolutionary adaptive systems and the consequences for

survival of technical trading strategies. By complementing the stability analysis

with local bifurcation theory (see Kuznetsov (2004) for an extensive mathematical

treatment), we will be able to analyze the effects of adding different amounts of

memory to the fitness measure on stability in a standard asset pricing model with

heterogeneous beliefs.

The outline of the paper is as follows. In Chapter 2 an adaptive belief system

is presented in its general form. In Chapter 3 an ABS with two types of agents

and costs for information gathering is examined. In Chapter 4 we investigate the

stability of the fundamental steady state in a more generalized framework without

information costs. In Chapter 5 our theoretical findings with respect to memory

are examined numerically in an example with three strategies. The final section

concludes and proofs are collected in an appendix.

2 Adaptive Belief Systems

An adaptive belief system is a standard discounted value asset pricing model de-

rived from mean-variance maximization with heterogeneous beliefs about future
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asset prices. We shall briefly recall the model as in Brock and Hommes (1998); for

a recent more detailed discussion see e.g. Hommes and Wagener (2009).

2.1 The asset pricing model

Agents can either invest in a risk free asset or in a risky asset. The risk free asset

is in infinite elastic supply and pays a fixed rate of return r; the risky asset is in

fixed supply zs and pays uncertain dividend. Let pt be the price per share of the

risky asset at time t, yt the stochastic dividend process of the risky asset and zt be

the number of shares of risky assets purchased at date t. Then wealth dynamics is

given by

Wt+1 = (1 + r)Wt + (pt+1 + yt+1 − (1 + r)pt) zt. (2.1)

There are H different types of trading strategies. Let Eht and Vht denote forecasts

of trader type h, with h = 1, ..., H, about conditional expectation and conditional

variance, which is based on a publicly available information set of past prices and

past dividends. Demand zh,t of a trader of type h for the risky asset is derived from

myopic mean-variance maximization, i.e.

max
zt

{
Eht [Wt+1]−

a

2
Vht [Wt+1]

}
, (2.2)

where a is the risk aversion parameter. Then the demand zh,t is given by

zh,t =
Eh,t[pt+1 + yt+1 − (1 + r)pt]

aVh,t[pt+1 + yt+1 − (1 + r)pt]
. (2.3)

Let zs denote the supply of outside risky shares per investor, assumed to be con-

stant, and let nh,t denote the fraction of type h at date t. Then equality of the
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demand and the supply in the market equilibrium implies

H∑
h=1

nht
Eh,t[pt+1 + yt+1 − (1 + r)pt]

aVh,t[pt+1 + yt+1 − (1 + r)pt]
= zs. (2.4)

We shall assume the conditional variance Vh,t = σ2 to be constant and equal for all

types1, thus the equilibrium pricing equation is given by

(1 + r)pt =
H∑

h=1

nh,tEh,t[pt+1 + yt+1]− aσ2zs. (2.5)

As in Brock and Hommes (1998) we focus on the case of zero outside supply,

i.e. zs = 0. It is well known that, if all agents are rational, the asset price is given

by the discounted sum of expected future dividends

p∗t =
∞∑

k=1

Et[yt+k]

(1 + r)k
. (2.6)

The price p∗t is called the fundamental price. The properties of p∗t depend upon

the stochastic dividend process yt. We focus on the case of IID dividend process yt

with constant mean ȳ, for which the fundamental price is constant and given by

p∗ =
∞∑

k=1

ȳ

(1 + r)k
=

ȳ

r
. (2.7)

It will be convenient to work with the deviation from the fundamental price

xt = pt − p∗. (2.8)

Beliefs of type h satisfy the following assumptions

[B1] Vh,t[pt+1 + yt+1 − (1 + r)pt] = σ2,

[B2] Eh,t[yt+1] = Et[yt+1] = ȳ,

1Gaunersdorfer (2000) investigates the case with time varying beliefs about variances and
shows that the asset price dynamics are quite similar. Chiarella and He (2002, 2003) investigate
the model with heterogeneous risk aversion coefficients.
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[B3] Eh,t[pt+1] = Et[p
∗
t+1] + fh(xt−1, ..., xt−L) = p∗ + fh(xt−1, ..., xt−L).

Assumption [B1] says that beliefs about conditional variance are equal and constant

for all types. According to assumption [B2] expectations about future dividends

yt+1 are the same and correct for all trader types. According to assumption [B3],

traders of type h believe that in a heterogeneous world the price may deviate from

its fundamental value p∗t by some function fh = fh(xt−1, ..., xt−L) of past deviations.

The function fh represents agent type h’s view of the world.

Brock and Hommes (1998) investigated evolutionary competition between sim-

ple linear forecasting rules with only one lag

fh,t = ghxt−1 + bh, (2.9)

where gh is the trend and bh is the bias of trader type h. If bh = 0 we call an

agent h a pure trend chaser if gh > 0 and a contrarian if gh < 0. In the special

case gh = 0 and bh = 0 trader of type h is a fundamentalist, believing that price

returns to its fundamental value.

An important and convenient consequence of the assumptions [B1]-[B3] is that

the heterogeneous agent market equilibrium (2.5) can be reformulated in devia-

tions from the fundamental price. The fact that the fundamental price satisfies

(1 + r)p∗ = Et[pt+1 + yt+1] yields the equilibrium equation in deviations from the

fundamental value

(1 + r)xt =
H∑

h=1

nh,tfh,t. (2.10)

2.2 Evolutionary fitness with memory

The evolutionary part of the model describes how beliefs are updated, i.e. how the

fractions nh,t of trader types in the market evolve over time. Fractions are updated

according to an evolutionary fitness measure Uh,t. The fractions of agents choosing
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strategy h are given by the multi-nomial logit probabilities

nh,t =
exp(βUh,t−1)∑H

h=1 exp(βUh,t−1)
. (2.11)

The intensity of choice parameter β ≥ 0 measures how sensitive the traders are to

selecting the optimal prediction strategy. The extreme case β = 0 corresponds to

the case where agents do not switch and all fractions are fixed and equal 1/H. The

other extreme case β = ∞ corresponds to the case where all traders immediately

switch to the optimal strategy. An increase in the intensity of choice β represents

an increase in the degree of rationality with respect to evolutionary selection of

trading strategies. One of the main results of Brock and Hommes (1998) is that a

rational route to randomness occurs, that is, as the intensity of choice increases the

fundamental steady state becomes unstable and a bifurcation route to complicated,

chaotic asset price fluctuations arises. The key question to be addressed in this

paper is whether more memory is stabilizing or destabilizing. In particular, we are

interested in the question how memory in the fitness measure affects the primary

bifurcation towards instability and how it affects the rational route to randomness.

A natural candidate for evolutionary fitness is a weighted average of current

realized profits πht and last period fitness Uh,t−1

Uh,t = γπh,t + wUh,t−1

= γ

[
(pt + yt −Rpt−1)

Eh,t−1[pt + yt −Rpt−1]

aσ2
− Ch

]
+ wUh,t−1, (2.12)

where R = 1 + r, Ch ≥ 0 is an average per period cost of obtaining forecasting

strategy h, and w ∈ [0, 1) is a memory parameter measuring how quickly past

realized fitness is discounted for strategy selection. The parameter γ in (2.12) has

been introduced to distinguish between two important cases in the literature. Brock

and Hommes (1998) proposed the case γ = 1, implying that the weights given to

past profits decline exponentially, more precisely realized profits k−periods ago get
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weight wk; Brock and Hommes (1998) however, as well as almost all subsequent

literature, focus the analysis on the case without memory, i.e., w = 0, with fitness

equal to current realized profit2. An advantage of this case γ = 1 is that w = 1

corresponds to the benchmark where fitness equals the accumulated excess profit

of the risky asset over the risk free asset3. A disadvantage however is that for γ = 1

the weights are not normalized, but rather sum up to 1/(1− w). The second case

studied in the literature assumes γ = 1 − w, corresponding to the case where the

weights are normalized to 1. Note that for w = 1/T and γ = 1 − 1/T , this case

reduces to a T−period average (see e.g. LeBaron (2001) and Diks and van der

Weide (2005)). We will refer to the case γ = 1 as cumulative fitness and to the

case γ = 1− w as normalized fitness4. An important difference between these two

cases is the fact that in the case with cumulative fitness, the current realized profits

πht (getting weight 1) always get more weight than past fitness Uh,t−1 (which gets

weight (0 ≤ w ≤ 1), regardless of the memory level w. In contrast, in the case with

normalized fitness high memory (w > 0.5) gives more weight (w) to past fitness

Uh,t−1 than to current profits πht (which gets weight 1 − w). Notice that the two

different fitness measures lead to the same distribution of the relative weights over

past profits. Stated differently, the relative contribution of current profits to overall

fitness is the same for both fitness measures. The difference between the fitness

measures however lies in the direct, absolute effect of current realized profits on

strategy selection. In the case of normalized fitness, the absolute weight given to

current realized profit (1 − w) vanishes as memory w approaches 1. In contrast,

in the case of cumulative fitness, the direct, absolute effect of current realized

profits on strategy selection remains non-neglible as memory w approaches 1. As

2It is interesting to note that Anufriev and Hommes (2009) fit an evolutionary selection model
to data from laboratory experiments and use a memory parameter w = 0.7.

3There is a large related literature on wealth-driven selection models with heterogeneous in-
vestors, with fractions of each type determined by relative wealth. See e.g. Anufriev (2008) and
Anufriev and Bottazzi (2006) for some recent contributions and Chiarella et al. (2009) and Hens
and Schenk-Hoppé (2009) for extensive up to date reviews.

4This terminology is similar to that used in the experience-weighted attraction (EWA) learning
in games literature (e.g. Camerer and Ho (1999) and Camerer (2003)), where a parameter moves
from 0 to 1 between the extremes of cumulative and average reinforcement.
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we will see, these differences will lead to different stability results for evolutionary

selection5.

Fitness (2.12) can be rewritten in deviations from the fundamental as

Uh,t = γ

[
(xt −Rxt−1 + δt)

(
ghxt−3 + bh −Rxt−1

aσ2

)
− Ch

]
+ wUh,t−1, (2.13)

where δt = p∗t + yt − Et−1[p
∗
t + yt] is a martingale difference sequence, which

represents intrinsic uncertainty about economic fundamentals. The Adaptive Belief

System (ABS) with linear forecasting rules, in deviations from the fundamental, is

given as

(1 + r)xt =
H∑

h=1

nh,t (gixt−1 + bi) + εt, (2.14)

nh,t =
exp(βUh,t−1)

H∑
h=1

exp(βUh,t−1)

, (2.15)

Uh,t = γ

[
(xt −Rxt−1 + δt)

(
ghxt−3 + bh −Rxt−1

aσ2

)
− Ch

]
+ wUh,t−1,

(2.16)

where an additional noise term εt, e.g. representing a small fraction of noise traders,

has been added to the pricing equation and will be used in some stochastic simula-

tions below. A special case, the deterministic skeleton, arises when all noise terms

are set to zero. In order to understand the properties of the general stochastic

model it is important to understand the properties of the deterministic skeleton.

5The difference between cumulative fitness versus normalized fitness as expressed through the
weighting coefficients γ = 1 versus γ = 1 − w is related to the more general issue of whether
one should use a normalization of the fitness measure Uh,t. An advantage of normalization is
that one can compare the magnitude of the intensity of choice parameter across different fitness
measures and market settings. In general it is not clear however, how exactly a fitness measure
should be normalized, especially when the fitness (such as realized profits) may attain (arbitrarily
large) positive as well as negative values. The normalization itself may affect e.g. the primary
bifurcation towards instability. The cases γ = 1 and γ = 1 − w of the fitness measure in (2.12)
may be seen as two simple parameterizations of a cumulative and a normalized fitness measure.
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3 Two types of agents and information costs

Consider an Adaptive Belief System (ABS) with two types of traders and the

following forecasting rules

 f1,t = g1xt−1, 0 ≤ g1 < 1,

f2,t = g2xt−1, 1 < g2.
(3.1)

Type 1 believes in mean reversion, that the price will converge to its fundamen-

tal value. In the special case g1 = 0, type 1 becomes a pure fundamentalists, as

in Brock and Hommes (1998). In contrast, type 2 believes that any price devi-

ation from the fundamental will increase6. The dynamics in deviations from the

fundamental is described by the following system

Rxt = n1,tg1xt−1 + n2,tg2xt−1, (3.2)

nh,t =
exp (βUh,t−1)∑2

h=1 exp (βUh,t−1)
, (3.3)

Uh,t−1 = γ

[
(xt−1 −Rxt−2)

(
ghxt−3 −Rxt−2

d

)
− Ch

]
+ wUh,t−2, (3.4)

where C2 = 0, but C1 = C > 0 is the information gathering costs for fundamen-

talists that agents of type 1 must pay per period. These costs reflect the effort

investors incur to collect information about economic fundamentals7.

6Boswijk et al. (2007) estimated this ABS with two types of investors using yearly S&P 500
data and found coefficients of g1 ≈ 0.8 and g2 ≈ 1.15, thus suggesting behavioral heterogeneity.

7In our formulation of the model in deviations from the fundamental it may seem that both
predictors make use of knowledge of the fundamental. However, this example is equivalent to the
case where type 1 has a mean reversion forecast towards a known fundamental, while type 2 uses
a linear forecast, with trend parameter g2 > R, not related to the fundamental.
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We can rewrite the system above as a five-dimensional map



xt−1

xt−2

xt−3

U1,t−2

U2,t−2


7→



1
R
(n1,tg1 + n2,tg2)xt−1

xt−1

xt−2

γπ1,t−1 + wU1,t−2

γπ2,t−1 + wU2,t−2


. (3.5)

The following theorem describes the results concerning existence and stability of

the steady states (see Appendix A for the proof).

Theorem 3.1. (Existence and stability of the steady states) Let us denote

the fundamental steady state as xf = 0, and non-fundamental steady states as

x+ = x∗ > 0 and x− = −x∗ < 0, where

x∗ =

√√√√C − 1−w
γβ

log(R−g1

g2−R
)

(R− 1)g2−g1

aσ2

. (3.6)

Let

β∗ =
1− w

Cγ
log

R− g1

g2 −R
. (3.7)

Then three cases are possible:

(i) 1 < g2 < R: the fundamental steady state xf is the unique steady state and

it is globally stable;

(ii) R ≤ g2 < 2R− g1, the system displays a pitchfork bifurcation at β = β∗ such

that

– for 0 < β < β∗ xf is unique and stable;

– for β > β∗ there are three steady states: xf , x+ and x−; the fundamental

steady state xf is unstable;
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(iii) g2 ≥ 2R − g1: there are always three steady states: xf , x+ and x−; the

fundamental steady state xf is unstable.

When the trend chasers extrapolate only weakly, i.e. 1 < g2 < R, the funda-

mental steady state xf = 0 is globally stable. If C = 0 then the two types of agents

are equally represented in the market, i.e. n1 = n2 = 1/2 for any value of β, because

the difference in fitnesses U2 − U1 = 0 at x = 0. If agents on average extrapolate

very strongly, i.e. (g1 + g2)/2 > R, the fundamental steady state is unstable and

there are always two additional non-fundamental steady states x = x+ > 0 and

x = x− < 0, even when there are no information costs. The case with strongly

extrapolating trend chasers, i.e. R < g2 < 2R− g1, is the most interesting. If there

are no information costs, C = 0, the fundamental steady state is stable for all

values of β and agents are equally distributed over the two types due to equality of

profits. But when C > 0 the fundamental steady state is stable only if the agents

are not too sensitive to switch the prediction strategy, i.e. for β < β∗. As the

intensity of choice increases (β > β∗) most of the agents switch to use the cheap

prediction rule, because if the price is in a small neighborhood of its fundamental

value then due to information costs the first type of agents have lower profits and

for large β a majority of agents switches to the trend extrapolating strategy.

It can be seen immediately from expressions (3.6) and (3.7) how memory affects

the primary bifurcation of the system. In the case with normalized fitness (γ =

1− w) memory does not affect the stability. However, in the case of accumulated

profits (γ = 1) and information gathering costs for fundamentalists, memory indeed

affects the stability and in fact it destabilizes the system, i.e. with more memory

the primary bifurcation occurs earlier.
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3.1 Simulation 2 type example

As a typical example consider an ABS with the following two prediction rules

f1,t = 0.5xt−1, (3.8)

f2,t = 1.2xt−1. (3.9)

Traders of the first type believe that the next period deviation of the price from

the fundamental will be two times less than in the current period, whereas traders

of the second type predict an increase in deviation of the price from fundamental.

It follows from Theorem 3.1 that the fundamental steady state xf = 0 is unique

and stable for β ∈ (0, β∗), with β∗(w) = 1.79(1 − w)/γ. When the parameter β

passes the critical value β∗, the fundamental steady state looses stability due to a

pitchfork bifurcation and two new stable equilibria of the price dynamics appear.

Next consider the cases with two different specifications of the fitness measure:

cumulative and normalized fitness.

Cumulative fitness (γ = 1). In the case with accumulated profits, i.e. when γ =

1, the pitchfork bifurcation curve is given by β∗(w) = 1.79(1−w), which is declining

with respect to the memory parameter. It means that memory destabilizes the price

dynamics: the larger w the earlier the primary bifurcation occurs.

Fig. 1 illustrates the dynamics without memory (w = 0, left panel) and with

memory (w = 0.5, right panel). In both cases a rational route to randomness, that

is, a bifurcation route to complicated dynamics as the intensity of choice increases,

occurs. Notice that, with memory in the fitness measure, the temporary bubbles

and crashes in the price series occur less frequently, but when they occur they last

longer with much larger deviations from the fundamental benchmark.

Normalized fitness (γ = 1−w). In the case with normalized fitness, i.e. when

γ = 1−w, the pitchfork bifurcation curve is given by β∗(w) = 1.79. Hence, memory

14
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Figure 1: The case of two types of prediction rules and accumulated profits (γ = 1).
The left column corresponds to w = 0, the right column corresponds to w = 0.5. Upper
figures display bifurcation diagrams with respect to β. Time series of the price deviation
are represented by the middle figures (without noise) and the lower figures (with noise).
Belief parameters are: g1 = 0.5 and g2 = 1.2; the other parameters are: β = 4, R = 1.1,
C = 1 and d = 1.

does not affect the stability of the fundamental steady state. Fig. 2 illustrates

the dynamics without memory (w = 0, left panel) and with memory (w = 0.8,

right panel). Although less pronounced, memory has a similar effect on price

fluctuations: with memory in the fitness measure, the temporary bubbles and

15



crashes in the price series occur less frequently, but once started bubbles last longer

with larger swings away from the fundamental benchmark.
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Figure 2: The normalized fitness measure case (γ = 1 − w): time series of the price
deviation from its fundamental value for different levels of the memory. Belief parameters
are: g1 = 0.5 and g2 = 1.2; the other parameters are: β = 4, R = 1.1, C = 1 and d = 1.
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4 Stability in a more general framework

Brock and Hommes (1998) stressed the importance of simple forecasting rules,

because it is unlikely that enough traders will coordinate on a complicated rule for it

to have an impact in real markets. The learning to forecast laboratory experiments

of Hommes et al. (2005) also show that simple, linear forecasting rules with only a

few lags describe individual forecasting behavior surprisingly well. In this section,

we investigate the role of memory in an ABS with an arbitrary number H of linear

forecasting rules with one lag, i.e.

fi,t = gixt−1 + bi, gi, bi ∈ R, i = 1, . . . , H. (4.1)

The co-evolution prices and beliefs is described by the following difference equation

Rxt =
H∑

h=1

nh,t (ghxt−1 + bh) , (4.2)

nh,t =
exp (βUh,t−1)∑H

h=1 exp (βUh,t−1)
, (4.3)

Uh,t−1 = γ

[
(xt−1 −Rxt−2)

(
ghxt−3 + bh −Rxt−2

d

)]
+ wUh,t−2

= γπh,t + wUh,t−2. (4.4)

with d = aσ2. Equation (4.2) can be rewritten as a (H+3)-dimensional map



xt−1

xt−2

xt−3

U1,t−2

· · ·

UH,t−2


7→



1
R

∑H
h=1 nh,t(ghxt−1 + bh)

xt−1

xt−2

γπ1,t−1 + wU1,t−2

· · ·

γπH,t−1 + wUH,t−2


. (4.5)

The following theorem describes the results concerning existence and stability

of the fundamental steady state (see Appendix B for the proof).
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Theorem 4.1. (Existence and stability of the fundamental steady state)

Assume that

1. The average bias equals zero, i.e.,
∑H

i=1 bi = 0;

2. There is at least one non-zero bias, i.e. V = 1
H

∑H
i=1 b2

i > 0;

3. The mean trend is not too strong, i.e. |ḡ| = | 1
H

∑H
i=1 gi| < R.

Then the fundamental price xf = 0 is a steady state of (4.5). The fundamental

steady state is stable for 0 ≤ β < βNS, where

βNS =
aσ2(R− ḡw)

RV γ
> 0. (4.6)

At the value β = βNS the steady state loses stability due to a Neimark-Sacker

bifurcation. For β > βNS the fundamental steady state is unstable8.

The assumptions that the average bias is zero seems reasonable, as there is no

a priori reason why the average bias would be negative or positive9. The other two

assumptions, that there is at least one non-zero bias and that the average trend over

all rules is not too strong, also seem plausible. The theorem says that, under these

assumptions, the dynamic behavior of the price of the risky asset is independent

of the number of agent’s strategies, but rather depends on the mean value ḡ of the

trend extrapolating coefficients gh and the spread V of the biases bh. The larger the

absolute average trend |ḡ|, the lower βNS and the earlier the primary bifurcation

occurs; if the trend chasers on average extrapolate more heavily away from the

fundamentals, the system destabilizes faster. Similarly, the greater the variance V

in biases, the lower βNS and the bifurcation again occurs earlier; if there is more

variability among biased traders, the price dynamics becomes unstable earlier. Note

8Note that in the special case V = 0 all biases equal zero, and if |ḡ| < R the fundamental
steady state is stable for all values of β and w.

9If the average bias is non-zero and close to 0, the fundamental price is not a steady state but
the system has a steady state close to the fundamental. In that case, a stability analysis becomes
much more cumbersome however.
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that for the special case ḡ = 0 and γ = 1, memory does not affect the stability of

the fundamental steady state, since βNS = aσ2/V (cf. Brock and Hommes, 1998).

Role of the parameter γ. In the case γ = 1, i.e. in the case of cumulative

fitness, the Neimark-Sacker bifurcation curve (4.6) becomes a straight line

βNS =
aσ2

V

(
1− ḡ

R
w

)
, (4.7)

as illustrated in Figure 3 (left panel). The slope of the line depends on the sign of

ḡ. If agents on average extrapolate positively, then the line is decreasing and the

bifurcation w.r.t. β comes earlier with more memory. The intuition is that positive

trend extrapolation reinforces market movements away from the fundamentals and

the system destabilizes faster. On the other hand, if agents on average are contrar-

ians extrapolating negatively, then (4.7) is an increasing line and the bifurcation

w.r.t. β comes later with more memory. Here the intuition is that contrarian be-

havior counter-balances market movements away from the fundamentals and the

system destabilizes slower.
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Figure 3: Neimark-Sacker bifurcation curves βNS in (4.6) for different values of the
parameters γ and ḡ: dotted lines correspond to the case ḡ > 0, while solid lines correspond
to the case ḡ < 0. For the case with γ = 1 (left panel) the bifurcation curves are straight
lines, whereas for γ = 1 − w (right panel) they are hyperbolas. In the case γ = 1 (left
panel) and ḡ > 0 memory has a destabilizing effect on the dynamics, i.e. the bifurcation
w.r.t. β comes earlier. In contrast, in the case γ = 1 − w (right panel) more memory
always has a stabilizing effect.

In the case with normalized fitness, γ = 1 − w, memory is always stabilizing.
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The Neimark-Sacker bifurcation curve (4.6) becomes a hyperbola for both positive

and negative values of ḡ (see Figure 3, right panel):

βNS =
aσ2(R− ḡw)

RV (1− w)
. (4.8)

A higher memory strength means more weight on cumulative past fitness and less

weight on current realized profits. Hence, by increasing the level of memory in

the system the contemporaneous destabilizing trend extrapolation is not power-

ful enough any more to prevail, irrespective of the direction of the average trend

extrapolation ḡ, and the system stabilizes.

5 Numerical simulation of a 3-type example

In this section we discuss a simple, but typical ABS with three types of traders

in order to illustrate the differences in impact of the memory strength on the

stability of the fundamental price in the two cases of cumulative fitness (γ = 1)

and normalized fitness (γ = 1− w).

Consider the ABS with the following three types of prediction rules

f1,t = 0, (5.1)

f2,t = 1.2xt−1 − 0.2, (5.2)

f3,t = 0.9xt−1 + 0.2. (5.3)

The second and the third types are symmetrically opposite biased positive trend

extrapolators, the first type are fundamentalists. The remaining parameters are

fixed at: R = 1.1, aσ2 = 1. Since ḡ = 0.7 < R, V = 0.08/3 6= 0 and biases sum up

to zero, according to Theorem 4.1, the fundamental steady state looses stability in

a Neimark-Sacker bifurcation at β = βNS,

βNS =
37.5− 23.9w

γ
. (5.4)
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The case γ = 1. In the case with cumulative fitness, i.e. when γ = 1, the

Neimark-Sacker bifurcation curve is a declining straight line:

βNS = 37.5− 23.9w. (5.5)
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Figure 4: Neimark-Sacker bifurcation curve (left panel) and bifurcation diagram with
respect to the memory parameter w (right panel) for the model with three types of
agents and fitness given by accumulated profits, i.e. γ = 1. Belief parameters are:
g1 = 0, b1 = 0; g2 = 1.1, b2 = −0.2; and g3 = 0.9, b3 = 0.2; other parameters are:
R = 1.1, aσ2 = 1 and β = 25 (for the right panel). The Neimark-Sacker bifurcation curve
divides the (w, β)−plane into two regions; for the parameter values in the upper region
the fundamental steady state is unstable, while for the parameter values in the lower
region it is stable.

As can be seen from Figure 4, in this case memory destabilizes the price dynamics;

with higher memory strength the bifurcation occurs earlier, i.e. for smaller values

of β. Since both non-fundamentalist agents extrapolate positively, and thus the

average trend extrapolation is also positive, in accordance with our findings from

Section 4, the extrapolation of trend reinforces markets movements away from the

fundamentals and the bifurcation line is thus decreasing. In addition, it can be ob-

served in the bifurcation diagram of Figure 4 (right panel) how, for a fixed β-value,

the fundamental steady state becomes unstable and complicated, chaotic price

movements arise as the memory parameter w increases. Figure 4 (right panel) also

illustrates that the amplitude of price fluctuation increases as memory increases,

in accordance with our earlier finding that bubbles last longer with more memory.

21



The case γ = 1 − w. In the case with normalized fitness, i.e. when γ = 1 − w,

the Neimark-Sacker bifurcation curve (5.4) becomes a hyperbola:

βNS =
37.5− 23.9w

1− w
. (5.6)

As can be seen from Figure 5 (left panel), more memory now stabilizes the price
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Figure 5: Neimark-Sacker bifurcation curve (left) and bifurcation diagram with respect
to the memory (right) for the model with three types of agents’ strategies and normalized
fitness measure, i.e. γ = 1−w. Belief parameters are: g1 = 0, b1 = 0; g2 = 1.1, b2 = −0.2;
and g3 = 0.9, b3 = 0.2; other parameters are: R = 1.1, d = 1 and β = 70 (for the right
figure). The Neimark-Sacker bifurcation curve divides the (w, β)−plane into two regions;
for the parameter values in the upper region the fundamental steady state is unstable,
while for the parameter values in the lower region it is stable.

dynamics; an increase in the memory strength makes the bifurcation occur later,

i.e. for larger values of β. Even when the traders are on average positive trend

extrapolators (with some bias), if the weight on cumulative past fitness (the mem-

ory strength w) is high enough compared to the weight on current realized profits

(γ = 1 − w), the dynamics is stable. Indeed it can be observed in the bifurcation

diagram in Figure 5 (right panel) that, for a given β, the dynamics stabilizes from

chaotic movements (interspersed with stable cycles) for low values of the memory

parameter w to a stable fundamental steady state when memory w is sufficiently

large.
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6 Conclusion

We have investigated how memory affects the stability of evolutionary selection

dynamics in a simple, analytically tractable asset pricing model with heterogeneous

beliefs. By complementing the stability analysis with local bifurcation theory, we

were able to analyze the effects of adding different amounts of memory to the

fitness measure on the stability of the fundamental steady state. Whether memory

is stabilizing or destabilizing depends in general on three key factors: (1) whether

we have a fitness measure of cumulative profits or a normalized fitness measure;

(2) the ecology of forecasting rules, in particular the average strength of trend

extrapolation and the spread in biased forecasts, and (3) whether or not costs for

information gathering of economic fundamentals have to be incurred.

When there are costs for gathering fundamental information, more memory in

the fitness measure does not stabilize the dynamics. In the case with normalized

fitness, due to the information gathering costs, memory has no effect on stability;

in the case of cumulative fitness, when there are information gathering costs for

fundamentalists, more memory is destabilizing.

We have also studied the model with an arbitrary number of linear forecasting

rules with one lag and no costs for information gathering. The stability depends

critically on the ecology of forecasting rules. In particular, the system may become

unstable more easily when the average trend parameter and or the variability of bi-

ased forecasts become larger. How memory affects the stability of the fundamental

steady state depends again on whether we have cumulative fitness or normalized

profits. In the case of cumulative fitness, the effect of memory on the stability fur-

ther depends on the direction of average trend extrapolation. If agents on average

are contrarians, extrapolating negatively, more memory stabilizes the system; if on

the other hand agents on average extrapolate positively, memory destabilizes the

system. In contrast, in the case with a normalized fitness measure more memory

is always stabilizing.
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Our theoretical results show that the stability of evolutionary selection depends

critically on behavioral assumptions of how exactly agents switch between different

strategies. In particular, it is critical how much weight agents put on recent realized

profits compared to past accumulated profits. The more weight they put on the

most recent observation, the more easily the system may destabilize. Future re-

search with laboratory experiments with human subjects may shed light on which

behavioral assumptions fit individual behavior in strategy selection more closely

and, in particular, how much weight individuals put on most recent observations.

A Proof of Theorem 3.1

The steady states of the map (3.5) satisfy the following equation

Rx = x

(
g1

1 + exp(β∆)
+

g2

1 + exp(−β∆)

)
(A.1)

where ∆ =
γ

1− w

[
(1−R)

(
g2 − g1

d

)
x2 + C

]
.

It is easy to see that the fundamental steady state xf = 0 always exists. The

other (non-fundamental) steady state is a solution of the equation

exp

[
β

γ

1− w

(
(1−R)

g2 − g1

d
x2 + C

)]
=

R− g1

g2 −R
. (A.2)

Note that if (R − g1)/(g2 − R) ≤ 0 there are no solutions for this equation. If we

take into account that g1 < 1 then we can conclude that for 1 < g2 < R the map

(3.2)-(3.4) is contracting and has a unique globally stable steady state xf = 0.

Assume now that g2 > R, then we can obtain non-fundamental steady states

from the equation

x2 =
C − 1−w

βγ
ln R−g1

g2−R

(R− 1)g2−g1

d

, (A.3)

which has solutions x = ±x∗, when its right hand side is positive. It is satisfied for
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β > β∗ in (3.7) if R ≤ g2 < 2R − g1, and for any positive β if g2 ≥ 2R − g1. Now

the statements about existence of equilibria in (i), (ii) and (iii) are proved.

In order to explore the stability of the fundamental steady state we need to

compute eigenvalues of the Jacobian matrix

J(xf ) =



g1+g2 exp( Cβγ
1−w

)

(1+exp( Cβγ
1−w

))R
0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 w 0

0 0 0 0 w


. (A.4)

The characteristic equation is given by

(w − λ)2λ2

(
g1 exp

(
−Cγβ

1− w

)
+ g2 −Rλ

(
1 + exp

(
−Cγβ

1− w

)))
(A.5)

and thus

λ1,2 = 0, λ3,4 = w, λ5 =

g1 exp

(
−Cγβ

1− w

)
+ g2

R

(
1 + exp

(
−Cγβ

1− w

)) > 0. (A.6)

Note that all eigenvalues are real and non-negative, so the only bifurcation that

may occur is a pitchfork bifurcation, which happens if

λ5 = 1 ⇔ β = β∗. (A.7)

This means that if g2 ∈ [R, 2R − g1) for β ∈ (0, β∗) there exists a unique stable

fundamental steady state, and at the critical parameter value β = β∗ two non-

fundamental steady states occur due to a pitchfork bifurcation.
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B Proof of Theorem 4.1

Note that at the fundamental steady state all fitnesses are equal to zero, i.e. U∗
h = 0

for h = 1, .., H, which implies that all fraction are equal, n∗h = 1/H. Therefore the

steady state price satisfies the following equation

Rx∗ =
1

H

H∑
h=1

(ghx
∗ + bh) (B.1)

and thus

x∗ (R− ḡ) =
1

H

H∑
h=1

bh. (B.2)

It is clear that the fundamental steady state exists if and only if
∑H

h=1 bh = 0.

The Jacobian of (4.5) computed at the fundamental steady state is given by



dḡ+V γβ
d

−V γβ
d

0 J1,1 · · · J1,H

1 0 0 0 · · · 0

0 1 0 0 · · · 0

b1γ
d

− b1Rγ
d

0 w 0 · · · 0

b2γ
d

− b2Rγ
d

0 0 w 0 · · · 0

...
. . .

bHγ
d

− bHRγ
d

0 0 · · · 0 w


where d = aσ2 and

J1,s = −bswβ

HR
, s = 1, . . . , H.

The characteristic equation for the fundamental steady state is given by

λ2(w − λ)H−1
[
dwḡ + RβV γ + (−d(ḡ + Rw)− βV γ)λ + dRλ2

]︸ ︷︷ ︸
p(λ)

= 0. (B.3)

The characteristic equation (B.3) has H+3 roots, where H+1 of them are inside
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the unit circle; λ3 = λ4 = 0 and λ5 = . . . = λH+3 = w < 1, while the other two are

roots of the polynomial p(λ) and thus they determine stability of the steady state.

If p(λ) has at least one root outside of the unit circle, the steady state is unstable.

We denote roots of p(λ) as λ1 and λ2.

Let us now explore three cases when one or two roots of p(λ) are crossing a unit

circle:

1. λ1 = 1, pitchfork bifurcation,

p(1) = 9d(R− ḡ)(1− w) + 9V (R− 1)γβ.

If V = 0 then p(1) > 0 for w ∈ [0, 1) and |ḡ| < R. If V > 0 then

p(1) = 0 ⇔ β =
d(1− w)(ḡ −R)

V (R− 1)γ
< 0 for ḡ < R, (B.4)

which means that this type of bifurcation cannot occur in the system.

2. λ1 = −1, period doubling bifurcation,

p(−1) = 9d(R + ḡ)(1 + w) + 9V (R + 1)γβ.

If V = 0 then p(−1) > 0 for w ∈ [0, 1) and |ḡ| < R. If V > 0 then

p(−1) = 0 ⇔ β = βPD = − 4(ḡ + R)(1 + w)

V (1 + R)(1− w)
< 0,

which means that this type of bifurcation can not occur in the system either.

3. λ1,2 = µ1 ± µ2i, where µ2 > 0 and µ2
1 + µ2

2 = 1, Neimark-Sacker bifurcation.

Using Vieta’s Formula we get

µ2
1 + µ2

2 = λ1λ2 =
dḡw + RV βγ

dR
= 1. (B.5)

If V = 0, the equation (B.5) does not have solutions for w ∈ [0, 1) and
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|ḡ| < R. Therefore all eigenvalues corresponding to the fundamental steady

state are inside the unit circle and thus the steady state is stable for w ∈ [0, 1)

and β ≥ 0.

If V > 0, we obtain from (B.5) the equation of the Neimark-Sacker bifurcation

curve

βNS =
d(R− wḡ)

RV γ
. (B.6)

We have to make sure that µ2 6= 0 or equally µ2
2 > 0. Since µ2

1 + µ2
2 = 1 the

latter inequality holds if µ2
1 < 1. Using again the Vieta’s Formula we have

µ1 =
λ1 + λ2

2
=

d(ḡ + Rw) + βV γ

2dR
> 0.

To make sure that µ2
1 < 1 we need to check the inequality

d(ḡ + Rw) + V βγ

2dR
< 1.

Together with (B.6) it implies

w(R2 − ḡ) < R(2R− 1− ḡ), (B.7)

which is satisfied for |ḡ| < R and any value of w ∈ [0, 1).

Our analysis shows that the Neimark-Sacker bifurcation is the only bifurcation that

occurs in the system. It happens for β = βNS as in (B.6) and leads to a loss of

stability of the fundamental steady state.
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