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Does eductive stability imply evolutionary stability?

Cars Hommes and Florian Wagener

September 8, 2009

Abstract

This note presents a simple example of a model in which the unique rational expectations
(RE) steady state equilibrium is eductively stable in the sense of Guesnerie (2002), but
where evolutionary learning, as introduced in Brock and Hommes (1997), does not nec-
essarily converge to the RE steady state price. The example is a Muthian cobweb model
where producers have heterogeneous expectations and select forecasting strategies based
upon recent realized profits. By means of a simple three types example we show that a
locally stable RE fundamental steady state may co-exists with a locally stable two–cycle.
We also study the Muthian model with a large number of different producer types, and
investigate conditions under which an evolutionary adaptive learning process based upon
recent realized profits enforces global convergence to the stable RE steady state and when
persistent periodic price fluctuations can arise.
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1 Introduction

In a recent paper, Robert Guesnerie presented a unified methodology to investigate expectational
coordination. In particular, he discusses the concept of strong rationality of equilibria and how
common knowledge (CK) may enforce expectational coordination on such equilibria. He argues
that if a rational expectations (RE) equilibrium E∗ is not locally strongly rational (LSR), after
a small perturbation the equilibrium cannot be self-enforcing. We quote (Guesnerie, 2002, pp.
446-447):

... the assertion: “it is CK that the equilibrium is exactly E∗” is always consis-
tent. But a small “hesitation” or “perturbation” may transform the assertion into:
“it is CK that the actual state is very close to (in a small neighbourhood of) E∗.”
Whenever the considered equilibrium is not LSR, the just made “trembling asser-
tion” cannot be self enforcing, whatever the associated “tremble” neighbourhood
– at least if it is of nonempty interior. In a sense, the assertion is inconsistent. On
theoretical grounds, such an inconsistency seems to be a particularly undesirable
property of an equilibrium prediction claiming to be grounded in “rationality”.

Guesnerie (1993), following the game theoretical terminology of Binmore (1987), called this
type of reasoning an eductive justification of RE. Strong rationality or eductive stability may be
seen as a necessary condition for an equilibrium to qualify as “rational”.

An important related question is whether evolutive learning processes based upon past observa-
tions and past experience necessarily converge to a RE equilibrium. Guesnerie (2002) presents
results that, for a certain class of models, eductive stability of a steady state RE implies that
(Guesnerie, 2002, p. 473):

“reasonable” adaptive learning processes are asymptotically stable.

This class of learning processes includes for example frequently used adaptive learning schemes
such as ordinary least squares (OLS) learning. See Evans and Honkapohja (2001) for a re-
cent and extensive treatment of adaptive learning in economics; see also Milgrom and Roberts
(1990), who made a general case for the correspondence between eductive stability and evolu-
tive stability when learning has the “best response” property.

In this note, we address the following question: does eductive stability always imply evolu-
tive stability? In fact, we show by means of simple examples that the answer is negative and
that eductive stability is not a sufficient condition for adaptive learning processes to converge.
In particular, we show that in a Muthian cobweb model which is eductively globally stable,
the evolutionary learning processes, as proposed by Brock and Hommes (1997), need not con-
verge to the RE steady state. In these adaptive evolutionary systems, the common knowledge
of rationality ad infinitum assumption is not satisfied. Instead, agents are boundedly rational
and choose simple strategies according to their performance in the recent past, as measured by
realized profits.
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All our examples are Muthian cobweb models as discussed by Guesnerie (2002); see Hommes
(2009) for a recent overview of adaptive learning in the cobweb setting. Our first and simplest
example of a RE steady state which is eductively stable but not evolutionary stable occurs
when producers can choose between three strategies: optimistic, fundamentalist and pessimistic.
Optimists predict prices to be at a certain level above their steady state value, pessimists predict
them to be at another level below the steady state, whereas fundamentalists predict exactly the
steady state value. Producers choose the forecasting strategy adaptively, according to its past
realized profits.

Although this example is eductively stable in the sense of Guesnerie, the adaptive evolutionary
learning process of Brock and Hommes may lock into a stable two–cycle. The intuition be-
hind this example is quite simple. When the price is above its steady state value and optimists
dominate the market, next period’s realized market price will be below the steady state value.
Pessimists will have earned higher profits than optimists. If the initial price is far enough away
from the steady state, pessimists’ earnings will be higher even than earnings of fundamentalists.
In the adaptive evolutionary model, most producers will then switch to the pessimistic strategy,
causing the next realized market price to be above the steady state value, with optimists earning
highest profits, and the story repeats. When the intensity of choice for strategy selection is high,
that is, when producers are sensitive to small differences in evolutionary fitness, the majority of
traders switches quickly between optimistic and pessimistic beliefs, and prices will lock into a
stable two–cycle at some positive distance from the fundamental steady state.

Notice that in this three type evolutionary model the fundamental steady state may be locally
stable: with an initial price close enough to the fundamental, fundamentalists earn higher prof-
its than optimists and pessimists. More producers will switch to the fundamentalists’ strategy,
enforcing prices to converge to the (locally stable) steady state. This implies that, although the
model is globally eductively stable, the evolutionary system allows for two different long run
outcomes: a steady state or a two–cycle.

In this example, eductive stability fails to ensure evolutionary stability of the system because
of the following: though the strategies of both optimists and pessimists are non–rational in
terms of common knowledge rationality, they represent the best available choice of the agents.
It therefore seems to be the case that the number and distribution of available strategies is
important; this leads to the question whether the co–existence of different stable evolutions
is robust when the number of strategy types increases. For example, in the three type case
discussed above adding more types might cause the amplitude of the two–cycle to become
smaller, or even cause the two–cycle to disappear.

Brock, Hommes, and Wagener (2005) recently introduced the notion of large type limit (LTL)
to study evolutionary heterogeneous market systems with many different strategy types drawn
from a certain initial distribution at the start of the economy. Compare also the section on large
type limits in the survey Hommes and Wagener (2009). In Anuvrief et al. (2008) the notion of
large type limit is applied to a macroeconomic interest rate model.

In this note, the LTL–framework will be applied to the Muthian cobweb model to study how the
number of strategy types influences the global stability of the rational expectations equilibrium.

2



It turns out that decisive roles are played by the initial distribution of strategies as well as the
intensity of choice.

More precisely, we show that two conditions have to be met. The first of these conditions re-
quires the set of admissible strategies to be an open interval, and the initial density of strategy
types to be strictly positive on the set of admissible strategies. The second requirement is that
the intensity of choice to switch strategies is sufficiently large. Under these conditions, an evo-
lutionary Muthian model with many producer types is likely to be globally stable, and eductive
stability implies evolutive stability. However, we also show that if either of these conditions is
violated, then there may be stable two–cycles coexisting with the stable rational expectations
equilibrium.

This note is organised as follows. Section 2 recalls the concept of strong rationality or eductive
stability as discussed in Guesnerie (2002). Section 3 presents the Muthian cobweb model with
heterogeneous beliefs and evolutionary learning. In section 4 an example with three strategies is
analysed and a numerical example with five strategies is presented. Evolutionary systems with
many different strategies are studied in section 5, and sufficient conditions for global evolutive
stability as well as examples with co-existing stable two–cycles are given. Section 6 concludes
and all proofs are contained in the appendix.

2 Eductive stability

Guesnerie (2002) summarises the principles of his approach to expectational coordination as
follows:

1. pick a rational expectations equilibrium and call it E∗;

2. introduce a Common Knowledge (CK) restriction that places an exogenous bound on the
state space and that describes restricted, but CK, beliefs of the agents on the possible
states of the system;

3. analyse the consequences of the combination of the CK assumption and the CK restriction
on the states of the system.

In his paper, he illustrates this methodology with a simple Muthian cobweb model. Since our
subsequent analysis is based on this model, we briefly sketch it.

Economic agents are farmers producing a certain crop. Based on his expectation E(p, i) of
the price p for next period’s crop, farmer i chooses a supply level S(p, i) that maximises his
expected profit. The aggregate supply S(p) of the economy is then given by

∫
S(p, i) di; the

corresponding aggregate consumer demand is denoted D(p). As usual, we will assume that D
is decreasing and S is increasing.
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In the absence of noise there is a unique rational expectations price E∗, which is equal to the
perfect foresight equilibrium price p∗, and which satisfies∫

S(p∗, i) di = S(p∗) = D(p∗).

It is assumed to be common knowledge amongst the farmers that the price of the crop (which is
here the state variable) has to take values in a neighbourhood V (E∗) = [E∗ − ε, E∗ + ε] of the
rational expectations equilibrium. Note that ε > 0 is not assumed to be small.

Farmer i expects that next period’s price will be in V (E∗). Moreover, he assumes that the other
farmers have the same expectation; he infers that each of them will play a best response S(p, j)
to some price p in V (E∗). The aggregate supply will then be within [S(p∗− ε),S(p∗ + ε)], and
knowing the demand function, he obtains a set

Γ(V (E∗)) =
[
D−1(S(p∗ + ε)),D−1(S(p∗ − ε))

]
of possible prices. If Γ(V (E∗)) is strictly contained in V (E∗) this reasoning can be iterated, on
the assumption that all other farmers reason in the same manner. Using in this way the knowl-
edge of rationality, the knowledge of the knowledge of rationality and so on, farmer i constructs
smaller and smaller intervals Γn(V (E∗)) of possible prices. If these intervals converge to E∗,
then the rational expectations equilibrium E∗ is called strongly rational or eductively stable
with respect to the restriction V (E∗).

Guesnerie (2002) shows that for the Muthian farmer model the rational expectations equilib-
rium p∗ is (locally) eductively stable if the familiar cobweb stability condition S ′(p∗)/D′(p∗) >
−1 is satisfied. If in addition demand and supply are linear, say S(p) = sp and D(p) = A− dp,
with (0 <)s/d < 1, then p∗ is even globally eductively stable.

3 The Muth model with evolutionary learning

In this section we recall the Muth farmer model with heterogeneous beliefs and evolutionary
learning, as introduced in Brock and Hommes (1997).

Producers are expected profit maximisers; they solve

Maxq Π = Maxq
(
peq − c(q)

)
, (1)

where pe is the expected price and c(q) are costs from producing quantity q. Assuming a
quadratic cost function c(q) = q2/(2s), the first order condition Π′ = 0 yields the linear supply
curve

S(pe) = spe. (2)

Consumer demand is assumed to be linearly decreasing in the market price, that is

D(p) = A− dp. (3)
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The rational expectations steady state price p∗, for which demand equals supply, is given by

p∗ =
A

s+ d
. (4)

We will refer to p∗ as the fundamental price.

Producers can choose from H different forecasting rules. Let nht denote the fraction of produc-
ers using rule h at date t; this rule gives the forecast peht for pt. Note that every forecast rule is
equivalent to a production strategy. Heterogeneous market equilibrium is given by

D(pt) =
H∑
h=1

nhtS(peht). (5)

The market equilibrium equation (5) represents the first part of the model. We now turn to
the evolutionary part of the model describing how the fractions of the different producer types
change over time. The basic idea of evolution is that fractions are updated according to past
performance, given by realized profits in the recent past. In period t, producer type h realises
the net profit

πht = ptS(peht)− c(S(peht)) = ptsp
e
ht −

s2(peht)
2

2s

=
s

2
peht(2pt − peht).

(6)

A natural choice for the fitness or performance measure is a weighted sum of realized profits

Uht = πht + wUh,t−1, (7)

where the weight parameterwmeasures the memory strength. According to this fitness measure,
realized profits further in the past contribute with exponentially declining weights. In the case
of infinite memory, w = 1, fitness equals accumulated wealth. In this note, to keep the model
tractable, we focus on the other extreme case w = 0, with fitness equal to the most recently
realized net profit.

The fractions nht of belief types are updated according to a discrete choice model:

nht = exp(βUh,t−1) / Zt−1, (8)

where Zt−1 =
∑

exp(βUh,t−1) is a normalisation factor. This evolutionary mechanism for
prediction rules has been proposed by Brock and Hommes (1997). It can be derived from a
random utility model, where the fitness of all strategies is publically known, but subject to noise
or error. If the noise terms are IID across agents and across types and drawn from a double
exponential distribution, as the number of agents tends to infinity, the probability of selecting
strategy h converges to the discrete choice fraction nht. The parameter β is called the intensity
of choice. It is inversely proportional to the noise level and (1/β) is sometimes referred to as the
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propensity to err. In the extreme case β = 0, corresponding to noise of infinite variance, agents
do not switch strategies at all and all fractions are fixed and equal to 1/H . The other extreme
case β =∞ corresponds to the case of no noise, where agents do not make errors and all agents
use the best predictor each period. Of course, in this evolutionary setting the ‘best’ predictor
may change over time.

The beliefs of the producers are assumed to be of the following simple form:

peht = p∗ + bh, (9)

where bh does not depend on t or on past realised prices. The forecasting rule (9) represents
type h’s “model of the market”: it indicates strategy type h belief how prices will deviate from
the fundamental price; this fundamental is not necessarily known to the agents, but (9) is just
a mathematically convenient way to represent type h’s belief. Types with positive bias bh are
called optimistic, those with negative bias pessimistic.

We rewrite the model in terms of the deviation xt from the fundamental price, that is,

xt = pt − p∗. (10)

In terms of deviations, the market equilibrium equation (5) takes the form

xt = −s
d

H∑
h=1

nhtbh. (11)

The evolutionary fitness measure Uht = πht can also be written in deviations form. Indeed,
observe that the discrete choice fractions nht are independent of the profit level, that is, they
remain the same when subtracting the same term from all profits πht. In particular, subtracting
the profit πRt = (s/2)p2

t that would be earned by a rational agent, that is an agent with perfect
foresight, yields

πht − πRt =
s

2
peht(2pt − peht)−

s

2
p2
t = −s

2
(pt − peht)2

= −s
2

(xt − bh)2.
(12)

Hence, for this model fitness as measured by the most recent realized profits is equal to negative
squared forecast errors, up to a common factor. The discrete choice probabilities based upon
last period’s realized profit reduce to

nht =
exp(βUh,t−1)

Zt−1

=
exp(−βs

2
(xt−1 − bh)2)

Zt−1

, (13)

where as before Zt−1 =
∑H

h=1 exp(−βs
2

(xt−1 − bh)
2) is a normalisation factor. The Muthian

model with evolutionary learning and H competing forecasting rules fh = p∗ + bh, written in
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deviations from the RE fundamental price, is thus given by (11) and (13). Substituting (13) into
(11) yields

xt = −s
d

H∑
h=1

nhtbh = −s
d

∑H
h=1 bh exp(−βs

2
(xt−1 − bh)2)∑H

h=1 exp(−βs
2

(xt−1 − bh)2)
= gH(xt−1). (14)

The evolutionary dynamics with H belief types bh is thus described by a one-dimensional map
gH . This dynamics depends upon the number of types H , the initial distribution of types bh,
the market (in)stability ratio s/d and the intensity of choice β, measuring the sensitivity to
differences in evolutionary fitness.

4 Examples with few belief types

Brock and Hommes (1997) considered a Muthian cobweb model where producers could choose
between a cheap, simple forecasting rule and a more sophisticated but costly forecasting rule.
In particular, they considered a two type example where producers either use a freely available
naive forecasting rule or the rational expectations forecasting rule at positive per period informa-
tion costs. They showed that if the cobweb dynamics are unstable under naive expectations, then
increasing the intensity of choice also destabilises the evolutionary learning model, and chaotic
price fluctuations may arise with producers switching between the simple, cheap, destabilising
naive forecasting strategy and the sophisticated, costly and stabilising rational strategy. How-
ever, if the Muthian model is stable under the naive rule, evolutionary learning enforces prices
to convergence to the RE fundamental price. Hence, if the Muthian model is eductively stable in
the sense of Guesnerie, the Brock and Hommes (1997) two type example of naive expectations
versus costly rational expectations will be (globally) stable under evolutionary learning.

From now on we restrict our attention to the case that the Muthian model is stable under naive
expectations, that is, the case that the slopes of demand and supply satisfy the familiar ‘cobweb
theorem’ (Ezekiel, 1938):

(0 <)
s

d
< 1. (15)

Under this assumption the Muthian model is eductively stable in the sense of Guesnerie (2002).
In this section, we show that for three producer types evolutionary learning does not always
converge to the RE fundamental steady state price, but may “lock into” a stable two-cycle.

Let b > 0 be a given positive bias. Producers can choose from three different forecasting rules:

pe1t = p∗, (16)
pe2t = p∗ + b, (17)
pe3t = p∗ − b. (18)

Type 1 are fundamentalists, believing that prices will always be at their fundamental value (or
equivalently, expected deviations xeht from the fundamental will always be zero). Type 2 are
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optimists, expecting that the price of the good will always be above the fundamental price,
whereas type 3 agents are pessimists, always expecting prices below the fundamental price.
Notice that this example is symmetric in the sense that the optimistic and the pessimistic strategy
are exactly balanced around the fundamental price, but this is not essential in what follows. We
have the following:

Theorem A. Let
1

2
<
s

d
< 1. The Muthian model with evolutionary learning given by (11) and

(13), with three producer types given by (16-18) has the following properties:

(i) for all β > 0, the fundamental steady state is the unique steady state and it is locally
stable;

(ii) for β sufficiently large, there exists a locally stable two–cycle;

(iii) for β = ∞ the locally stable two–cycle is given by {x1, x2} = {−bs/d,+bs/d}, with
corresponding fractions of optimists and pessimists switching from 0 to 1 along the two–
cycle.

The formal proof of the theorem is given in the appendix. Its underlying ideas are however very
simple and the main intuition was already given in the introduction. Consider the case where the
intensity of choice β =∞ first. Equation (13) then implies that the fraction h dominates, that is,
that nht = 1, if xt−1 is closest to the belief bh. To be concrete, let us say that optimists dominate.
The price dynamic equation (11) then implies that the next deviation xt is equal to −(s/d)bh;
now, if s/d > 1/2, then xt is closest to −bh, that is the type at the other extreme, in this case
the pessimists, will dominate and the two-cycle starts evolving. This demonstrates point (iii) of
the theorem. As “having a locally stable two-cycle” is a persistent dynamical property under
small regular perturbations, point (ii) of the theorem states merely that changing β from infinity
to a very large value amounts to performing a small regular perturbation. When the intensity
of choice β is large, we thus obtain a locally stable 2-cycle with the market switching between
states where the optimists respectively the pessimists dominate the market.

A similar result holds for evolutionary systems with more than three belief types; these can be
chosen in such a way that multiple stable two–cycles co-exist. Figure 1 illustrates this for an
evolutionary Muthian model with five belief types bh ∈ {−2,−1, 0,+1,+2}, where bh is the
belief concerning the deviation from the fundamental steady state as before. In this example, for
small intensity of choice, 0 < β < β1 ≈ 5 the fundamental steady state is globally stable (Figure
1, left plot). As β increases two stable two–cycles are created by saddle-node bifurcations, the
first for β = β1 ≈ 5 and the second one for β = β2 ≈ 7 (Figure 1, right plot). For β > β2 two
(locally) stable two–cycles co-exist with the locally stable fundamental steady states, separated
by two unstable two–cycles (Figure 1, middle plot). Obviously, since a stable steady state and a
stable two–cycle are structurally stable, the results also hold for slightly asymmetric cases.
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Figure 1: Dynamics of a Muthian cobweb model under evolutionary dynamics with five strat-
egy types. Shown is the graph of the second iterate g(g(xt−1)); intersections (other than at the
origin) of this graph with the diagonal are period-2 cycles. Left: low intensity of choice; mid-
dle: high intensity of choice. The rightmost graph shows the (β, x)–bifurcation diagram: solid
curves indicate branches of stable 2-cycles, dashed curves unstable 2-cycles.

5 Evolutionary dynamics with many belief types

In the previous section we have seen that, in general, for the Muthian model global eductive
stability does not imply evolutionary stability. In the simple three type evolutionary learning
example considered, price fluctuations may settle down to a stable two–cycle with supplier types
switching between optimistic and pessimistic strategies. As indicated in the introduction, this
behaviour might be the consequence of the fact that there are not “enough” strategies available.

In this section we therefore analyse evolutionary dynamics in the Muthian model with many
strategy types. Recall that the evolutionary dynamics with H belief types bh is given by (14).
We assume that at the beginning of the market, at date 0, a large number H stochastic belief
parameters b = bh ∈ R are drawn from a common initial distribution with density function ϕ(b).
Thereafter these H beliefs compete against each other according to the evolutionary dynamics
specified in (14).

Evolutionary systems with many different belief types are difficult to handle analytically. Brock,
Hommes, and Wagener (2005) have recently introduced the notion of large type limit (LTL) to
approximate evolutionary systems with many belief types; see also Diks and van der Weide
(2005) for a related approach. The LTL of the Muth model can be derived as follows. Divide
both numerator and denominator of (14) by H to obtain

xt = −s
d
gH(xt) =

(
−s
d

) 1

H

H∑
h=1

bh e−
βs
2

(xt−1−bh)2

1

H

H∑
h=1

e−
βs
2

(xt−1−bh)2

. (19)

The LTL is obtained by replacing sample averages by sample means in both the numerator and
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the denominator, yielding

xt = g(xt−1) =
(
−s
d

) ∫ b e−
βs
2

(xt−1−b)2ϕ(b) db∫
e−

βs
2

(xt−1−b)2ϕ(b) db
. (20)

Applying a uniform law of large numbers, Brock, Hommes, and Wagener (2005) have shown
that if the number of strategies H is sufficiently large, the LTL dynamical system is a good
approximation of the evolutionary dynamical system with H belief types. More precisely, they
proved that as the number of strategies H tends to infinity, the H-type map gH (given by (14))
and its derivatives converge almost surely to the LTL-map g (given by (20)) and its derivatives,
respectively. An important corollary of the LTL-theorem is that all generic and persistent dy-
namical properties (such as steady states, periodic cycles, local stability of steady states and
periodic points, bifurcations, and even chaos and strange attractors) of the LTL also occur with
probability arbitrarily close to one in the system with H belief types if the number of types H is
sufficiently large. The evolutionary dynamics with many trader types can thus be studied using
the LTL-dynamics (20).

The next lemma describes the LTL map g for large intensity of choice. To announce this lemma,
introduce the function

hβ(x) =

∫
b e−

βs
2

(x−b)2ϕ(b) db∫
e−

βs
2

(x−b)2ϕ(b) db
.

Lemma 1. Let J be the interior of the support of the distribution ϕ from which the belief
parameters bh are drawn at date 0, that is, J = int{b |ϕ(b) ≥ 0}.

For all x ∈ J :
lim
β→∞

hβ(x) = x and lim
β→∞

h′β(x) = 1,

uniformly on all compact subsets K of J .

This lemma implies that, in the interior of the support of the distribution ϕ from which the belief
parameters bh are drawn, the LTL-map g(x) = − s

d
hβ(x) approaches a linear map as β becomes

large, while its derivative approaches the constant function −s/d. The following theorem is an
immediate consequence of this lemma:

Theorem B. (Global stability of evolutionary systems with many trader types.)
For any strictly positive initial distribution of beliefs ϕ and for β sufficiently large, if 0 < s/d <
1 the LTL-dynamics (20) are globally stable. If s/d > 1, all orbits of (20), except the steady
state, exhibit unbounded oscillations.

Theorem B is a statement about stability of the LTL-system, but immediate consequences
for evolutionary systems with H trader types when H is large are obtained, by applying the
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LTL theorem of Brock, Hommes, and Wagener (2005). Let us discuss the implications of the
case 0 < s/d < 1: if there are sufficiently many strategies (i.e. H is large), the probability of
finding a strategy in any open interval is positive (i.e. ϕ(b) > 0), and the intensity of choice β
to switch strategies is large enough, then the fundamental steady state is globally stable with a
probability that goes to 1 as H increases over all bounds. In that case, eductive stability implies
global stability in a heterogeneous market with evolutionary learning.

Recall that the Muthian model is eductively stable if and only if 0 < s/d < 1. Theorem B
therefore essentially states that, if all types occur with positive probability (i.e. ϕ(b) > 0, for
all b) and if agents are highly sensitive to differences in evolutionary fitness (i.e. if β is large)
eductive stability and evolutionary stability are equivalent. Since the intensity of choice β is
inversely related to the propensity to err, we can also reformulate this as follows. If all types
occur with positive probability (i.e. ϕ(b) > 0, for all b) and if agents only make small errors in
evaluating evolutionary fitness, eductive stability and evolutionary stability are equivalent.

Many trader types examples with two–cycles

Our final theorem shows that both conditions in theorem B (i.e. ϕ(b) > 0 for all b and β suffi-
ciently large) are necessary conditions for equivalence of eductive and evolutionary stability.

Theorem C

1. There is an initial distribution of beliefs ϕ such that for all β sufficiently large, the LTL-
dynamics (20) have a locally stable 2-cycle.

2. For any given value of β > 0, and for any s and d such that s/d < 1 is sufficiently close
to 1, there exists a strictly positive distribution of beliefs ϕ such that the dynamics (20)
have a locally stable 2-cycle.

Theorem C describes examples of LTL systems with at least one locally stable two–cycle. This
implies that, even though the Muthian model is eductively stable (i.e. s/d < 1), there are evolu-
tionary systems with many trader types where a locally stable two–cycle occurs with probability
arbitrarily close to 1. The two subcases of Theorem C are illustrated in figure 2. Theorem C1
shows that if there are intervals of “unavailable” strategies, that is, if the distribution function
ϕ(b) is zero on certain intervals, global stability of the fundamental steady state may fail, even
when the intensity of choice is arbitrarily large. Theorem C2 asserts that for any fixed given
value of β (large enough) there is an initial distribution of strategies with everywhere positive
density such that there are many coexisting stable two–cycles; again global stability of the fun-
damental steady state fails in this case. Having everywhere positive distributions is therefore in
itself not sufficient for global stability when β is large but finite1.

1Note that the result in Theorem C2 implies that the density function ϕ = ϕβ depends on the parameter β,
as can also be seen from the proof. From theorem B we infer the existence of β′ � β such that the system with
strictly positive density ϕβ and intensity of choice β′ has a globally stable fundamental state.
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Figure 2: Illustrations to theorem C.

6 Concluding Remarks

If a RE steady state is not eductively stable in the sense of Guesnerie (2002), expectational co-
ordination on this RE steady state seems unlikely, since the belief in a small deviation from the
steady state may trigger an even larger realized deviation. Eductive stability can thus be seen
as a necessary condition for expectational coordination. In this note we have shown that global
eductive stability however is not a sufficient condition for evolutionary learning to enforce con-
vergence to the RE steady state. We have presented simple examples of Muthian cobweb models
with heterogeneous beliefs where the RE fundamental steady state is globally eductively stable
in the sense of Guesnerie (2002), but evolutionary learning in the sense of Brock and Hommes
(1997) does not enforce convergence to the unique RE steady state. In particular, we have pre-
sented examples of evolutionary systems with three or five belief types which can lock into a
stable two-cycle, co-existing with the stable steady state, with up an down price fluctuations and
the majority of agents switching between optimistic and pessimistic strategies.

An important issue related to the stability of an evolutionary system is the number of belief
types. As shown in this note, if the number of belief types is small, “evolutionary cycles” can
occur with the majority of traders switching constantly from one biased belief to another. An in-
crease in the number of types, e.g. by “invasion” of new types, may destroy these “evolutionary
cycles” however, and can possibly enforce converge to a stable RE steady state. In particular,
we have shown that if the initial distribution function of beliefs is strictly positive and the in-
tensity of choice to switch strategies is large enough, an evolutionary system with many trader
types is likely to be globally stable. In that case eductive stability and evolutionary stability co-
incide. Both conditions are necessary, that is, if the initial distribution of strategies is not strictly
positive everywhere and/or if the intensity of choice is finite (so that agents are only bound-
edly rational and make errors) for a globally eductive stable Muthian model the corresponding
evolutionary system with many trader types may lock into a locally stable two–cycle.

The study of the stability of evolutionary systems with many trader types in various market

12



settings and with more complicated strategies remains an important topic for future work.

Appendix: Proofs of the theorems

Proof of Theorem A.

We follow a strategy of proof similar to Brock and Hommes (1998), section 4.2, lemma 8, for
the asset pricing model with H purely biased beliefs bh. When there is no memory in the fitness
measure, that is when w = 0, the fraction nht of type h is given by

nht =
exp(βUh,t−1)

Zt−1

=
exp(−βs

2
(xt−1 − bh)2)

Zt−1

, (21)

where Zt−1 is a normalisation factor. Since the fractions nht are independent of the fitness level,
we may add the common term (βs/2)x2

t−1 to all Uh,t−1 to obtain

nht =
exp(−βs

2
(−2xt−1bh + b2h))

Zt−1

, (22)

where the normalisation factor has been redefined as

Zt−1 =
H∑
h=1

exp(−βs
2

(−2xt−1bh + b2h)).

If w = 0, past fitnesses Uh,t−1, and consequently the fractions nht, only depend on xt−1. Then
equation (11) implies that the deviation xt from the fundamental price depends only on xt−1, as
it is of the form

xt = −s
d

H∑
h=1

nhtbh = g(xt−1). (23)
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We claim that the one-dimensional map g is decreasing. Writing ey = exp(−βs
2

(−2xt−1bh +
b2h)), the derivative g′ is given by

g′(xt−1) = −s
d

H∑
h=1

bh
dnht
dxt−1

= −s
d

H∑
h=1

{bh
Zt−1e

y · βsbh − ey · (
∑

h e
yβsbh)

Z2
t−1

}

= −βs
2

d

H∑
h=1

{bh
ey · bh − nht(

∑
h e

ybh)

Zt−1

}

= −βs
2

d

H∑
h=1

{nhtb2h − nhtbh(
∑
h

nhtbh)}

= −βs
2

d
[
H∑
h=1

nhtb
2
h − (

H∑
h=1

nhtbh)(
∑
h

nhtbh)]

= −βs
2

d
[< b2h > − < bh >

2] < 0,

(24)

where < bh >=
∑

h nhtbh and < b2h >=
∑

h nhtb
2
h are averages. The last inequality follows

because the last term between square brackets can be interpreted as the variance of a stochastic
process bt, taking values bh with probability nht. We conclude that the map g is decreasing;
hence the system (23) has a unique steady state.

If the beliefs are exactly balanced, that is if for each belief bh its opposite belief −bh is also
present in the market, then the unique steady state x∗ coincides with the fundamental: x∗ = 0.

We now restrict our attention to the system with three belief types (16-18). It has exactly bal-
anced beliefs, and hence the fundamental steady state is the unique steady state.

To investigate the stability of the steady state, observe that the steady state fractions are given
by

n∗1 =
1

1 + 2 exp(−βs
2
b2)

, n∗2 = n∗3 =
exp(−βs

2
b2)

1 + 2 exp(−βs
2
b2)

.

The local stability of the fundamental steady state is governed by g′(0). Applying (24) yields
that

g′(0) = −βs
2

d
2b2

exp(−βs
2
b2)

1 + 2 exp(−βs
2
b2)

= −2s

d
h(z),

where z = βsb2/2 and h(z) = 2z e−z/(1 + 2 e−z). A straightforward computation shows that
h(z) = p(z)n(z), where p(z) > 0 for all z and n(z) = 1 − z + 2 e−z. Taylor’s expansion
yields e−1/2 ≤ 1− 1/2 + 1/8 = 5/8, and hence

n

(
3

2

)
= 1− 3

2
+ 2 e−3/2 ≤ 125

256
− 1

2
< 0.
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As n(1) = 2/e > 0 and as n(z) is continuous and strictly decreasing, it has a unique zero zm in
the interval (1, 3/2), and the function h takes its global maximum at this point. We have h(zm) =
zm − 1 < 1/2. Since 1/2 < s/d < 1 by assumption, it follows that −1 < g′(0)(< 0), implying
local stability of the steady state x∗ = 0. This proves assertion (i) of theorem A.

Now turn to assertion (ii), the existence of a stable two–cycle for sufficiently large β. Let s/d−
1/2 = ε; by assumption ε > 0. Moreover, let δ = b

2
ε and let U = {x |x ≥ b/2 + δ}. Then

for β > 0 large enough, and x ∈ U ,

g(x) = −s
d

∑
nhtbh = −s

d

b− b e−2βsbx

1 + e−
βs
2
b(2x−b) + e−2βsbx

< −bs
d

1 + ε

1 + 2ε
= −b

(
1

2
+ ε

)
1 + ε

1 + 2ε
= − b

2
(1 + ε) = − b

2
− δ

uniformly in x. Since g is monotonous, this implies that g(U) ⊂ −U and g2(U) = g(g(U)) ⊂
U . Since g2 monotonically increasing and bounded, all points in U converge to a fixed point
of g2 in U . Since the only fixed point of g is the origin, the fixed points of g2 are two–cycles.

In the special case β = +∞, the system reads as

g(x) =


bs/d x < −1

2
b,

0 if −1
2
b < x < 1

2
b,

−bs/d 1
2
b < x.

It can be verified directly that that the system has a locally stable two–cycle {x1, x2} =
{−bs/d, bs/d}, with corresponding fractions of optimists (and pessimists) switching from 0
to 1 along the two–cycle. This proves (iii) and completes the proof of the proposition.

Proof of Lemma 1 and Theorem B

Let ϕ(b) be a fixed continuous density function, that is, let ϕ(b) ≥ 0 for all b,
∫
ϕ db = 1.

Introduce the probability density function

ψx,β,s(b) =
e−

βs
2

(x−b)2ϕ(b)

Z
,

where Z is such that
∫
ψx,β,s(b) db = 1. Let

h(x) =

∫
bψx,β,s(b) db.

Let J be the interior of the support of ϕ, that is, J = int{b |ϕ(b) ≥ 0}. We will show that

Lemma 1 For all x ∈ J:

lim
β→∞

h(x) = x and lim
β→∞

h′(x) = 1,

uniformly on all compact subsets K of J .
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The LTL-map g in (20) satisfies g(x) = −(s/d)h(x), and Lemma 1 is thus equivalent to the
lemma in section 5. Hence, if J = R and 0 < s/d < 1, then for every compact interval K
enclosing 0, there is a β0 > 0 such that all points in K tends to the globally stable fixed point 0
under iteration of g. If J = R and s/d > 1, then the lemma implies that g has an unstable fixed
point 0 and all other solutions exhibit unbounded oscillations. Therefore the lemma implies the
statements of theorem B.

We proceed to prove the lemma. We shall first show that as β →∞, the expectation Eψb = h(x)
tends to x.

By the coordinate transformation b = x+ y/
√
βs, we find that

d(x) = Eψb− x =

∫
(b− x) e−

βs
2

(b−x)2ϕ(b) db∫
e−

βs
2

(b−x)2ϕ(b) db
=

1√
βs

∫
y e−y

2/2ϕ
(
x+ y/

√
βs
)

dy∫
e−y

2/2ϕ
(
x+ y/

√
βs
)

dy
.

Let M = supb∈R ϕ(b). Since ϕ is continuous and ϕ(x) > 0, there are δ > 0, 0 < ε < ϕ(x)/2
such that |ϕ(b)− ϕ(x)| < ε for all b ∈ (x− δ, x+ δ). Set A = δ

√
βs. Then

|d(x)| ≤ 1√
βs

M

ϕ(x)− ε

∫
|y| e−y2/2 dy∫ A

A

e−y
2/2 dy

→ 0 as β →∞;

note that the convergence is uniform if x is restricted to a compact subset K of R. This implies
the first part of the lemma.

The derivative of h is obtained by differentiating under the integral (compare equation (24)):

h′(x) = βs

∫
b(b− x)ψ db− βs

∫
bψ db ·

∫
(b− x)ψ db

= βs

∫
b2ψ db− βs

(∫
bψ db

)2

= βsVarψb = βsVarψ(b− x).

Here Varψb is the variance of a stochastic variable b distributed according to the probability
distribution ψ. The last equality holds since b and b− x have the same variance.

The derivative h′(x) can be estimated by

h′(x) = βsEψ(b− x)2 − βs( Eψ(b− x))2 = βsVarψ(b− x).

As above, we have that

h′(x) =

∫
y2 e−y

2/2ϕ
(
x+ y/

√
βs
)

dy∫
e−y

2/2ϕ
(
x+ y/

√
βs
)

dy
−


∫
y e−y

2/2ϕ
(
x+ y/

√
βs
)

dy∫
e−y

2/2ϕ
(
x+ y/

√
βs
)

dy


2

.
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Let A,M, δ, ε > 0 be as above. Then

h′(x) ≤ ϕ(x) + ε

ϕ(x)− ε

∫ A

−A
y2 e−y

2/2 dy +M/ε

(∫ −A
−∞

+

∫ ∞
A

e−y
2/2 dy

)
∫ A

−A
e−y

2/2 dy

Fix α > 0 arbitrarily; then there exists β1 such that if β > β1, it follows that

h′(x) ≤ ϕ(x) + ε

ϕ(x)− ε
(1 + α).

Likewise, for α > 0 there exists β2 > 0 such that for β > β2:

h′(x) ≥ ϕ(x)− ε
ϕ(x) + ε

∫ A

−A
y2 e−y

2/2 dy − (M/ε)

∫
[−A,A]c

e−y
2/2 dy∫

e−y
2/2 dy

−


ε

∫ A

−A
|y| e−y2/2 dy +M

∫
[−A,A]c

|y| e−y2/2 dy

(ϕ(x)− ε)
∫ A

−A
e−y

2/2 dy


2

≥ ϕ(x)− ε
ϕ(x) + ε

(1− α)− Cε2,

where C does only depend on β2. Since α and ε were arbitrary, it follows that

h′(x)→ 1

as β → ∞. Note that, as before, the convergence is uniform if x is restricted to a compact
subset K of R. This implies the second part of the lemma, and completes the proof of theorem
B.

Proof of theorem C.

Proof of C1. Let 0 < δ < 1/8 be a positive constant; and let D1, D2 and D3 be intervals

D1 = [−1− δ,−1 + δ], D2 = [−δ, δ], D3 = [1− δ, 1 + δ].

Moreover, let D = D1 ∪D2 ∪D3. Densities ϕ and ψ are defined as follows:

ϕ(b) =

{
(6δ)−1 if t ∈ D
0 otherwise,

ψ(b) = e−
βs
2

(b−x)2ϕ(b)/Z,

17



where the normalisation factor Z is determined by
∫
D
ψ(b) db = 1. As in the proof of Theo-

rem B, a function h(x) is introduced by setting h(x) = −(d/s)g(x). Recall that

h(x) = Eψb and h′(x) = βsVarψb.

The relevant properties of h are given in the following lemma.

Lemma 2 Take x in the compact interval K = [1
2

+ δ, 1 − 2δ]. Then for every ε > 0 there is
a β0 > 0, such that for β > β0 we have that

|h(x)− (1− δ)| < ε and h′(x) < ε, (25)

uniformly in x.

Assuming the truth of the lemma, the theorem is proved as follows. Let s and d be fixed, such
that

1
2

+ δ

1− 2δ
<
s

d
< 1− 2δ.

Choose ε = δ. If β > β0, with β0 obtained from the lemma, it follows for all x ∈ K that

−(1− 2δ) < g(x) < −
(

1

2
+ δ

)
.

As g is continuous, by construction of K there is a point x∗ ∈ K such that g(x∗) = −x∗;
symmetry of g yields consequently g(g(x∗)) = x∗, so that x∗ is a period 2 point.

Moreover, we have for x ∈ K that

0 ≥ g′(x) =
(
−s
d

)
h′(x) > −s

d
δ > −δ > −1.

We conclude that the period–2 point x∗ is attracting.

Proof of the lemma. Introduce `j and uj as the respective lower and upper endpoints of the
interval Dj . By partial integration, we obtain

h(x) =
1

Z

∑
j

∫ uj

`j

b e−
βs
2

(b−x)2 dbx− 1

Zβs

∑
j

e−
βs
2

(b−x)2
∣∣∣uj
`j

(26)

In order to obtain information on Z, the following well–known asymptotic expansion (see for
instance Polya and Szegö, 1970) is used:

e
1
2
a2

∫ ∞
a

e−
1
2
b2 db =

1

a
− 1

a3
+O

(
1

a5

)
as a→∞ (27)

As usual the notation f(x) = O(g(x)) is taken to mean that there is a constant C > 0 such
that |f(x)| ≤ Cg(x).
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Recall that Z =
∑
j

∫ uj

`j

exp(−(βs/2)(b−x)2) db. If cj denotes the element of Dj closest to x,

then the expansion (27) yields for x in the complement of D:

Z =
∑
j

(
1

βs|x− cj|
− 1

(βs)2|x− cj|3
+O

(
(βs)−3

))
e−

βs
2

(x−cj)2 (28)

Let x be restricted to the open interval I = (1
2

+ δ, 1− δ), then the point in D closest to x is `3,
and any point y in D1 ∪D2 satisfies |y − x| ≥ |`3 − x| + 2δ. To simplify the expansion of Z,
we multiply equation (28) by exp(βs(x− `3)2/2), and we note that the other exponentials can
be bounded from above by exp(−βsδ). This yields

Z =

(
1

βs|x− `3|
− 1

(βs)2|x− `3|3
+O

(
(βs)−3

))
e−

βs
2

(x−`3)2 .

Substitution in equation (26), and recalling that |x− `3| = `3 − x, yields

h(x) = `3 +
1

βs(`3 − x)
+O

(
(βs)−2

)
for x ∈ I . Now the first half of (25) follows.

Recall that h′(x) = βsVarψT . We have

Varψb = −h(x)2 +
1

Z

∑
j

∫ uj

`j

b2 e−
βs
2

(b−x)2 db

= −h(x)2 +
1

Z

∑
j

∫ uj

`j

1

βs

(
b · βs(b− x) + x · βs(b− x) + βsx2

)
e−

βs
2

(b−x)2 db

= −h(x)2 + x2 +
1

βs
− 1

Zβs

∑
j

(b+ x) e−
βs
2

(b−x)2
∣∣∣uj
`j
.

Using the same kind of asymptotic arguments as before, this expression can be expanded to

Varψb = −h(x)2 + x2 +
1

βs
+
`3 + x

Zβs
e−

βs
2

(`3−x)2 +O
(
(βs)−2

)
= −h(x)2 + x2 +

1

βs
+ (`3 + x)(`3 − x)

(
1 +

1

βs(`3 − x)2

)
+O

(
(βs)−2

)
= O

(
(βs)−2

)
.

Hence

h′(x) = βsVarψb = O
(

1

βs

)
.

The second half of (25) follows; this concludes the proof of the lemma.
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Proof of C2. The previous result shows that there exist LTL systems which have for some
fixed β > 0 the same behaviour as an evolutionary system with finitely many, n, types. However,
in constructing this example, the underlying type distribution had compact support. To construct
an example of an LTL support of the type distribution equal R having a stable two–cycle, the
distribution necessarily has to depend on β because of theorem B.

Take for instance the following 2n+ 1-modal distribution:

ϕ(b) =
1

2n+ 1

n∑
h=−n

1√
2πσh

e
− (b−bh)2

2σ2
h .

We make a couple of specifications. First, the bh are assumed to be distributed symmetrically
around 0: b−h = −bh. Moreover, they are assumed to be arranged as follows:

bh = 4hb1, if h > 0.

Finally, all σh are taken equal to σh =
√

2/βs.

The LTL can be computed in this case. It reads as:

xt = g(xt−1) =
(
−s
d

)(1

2
xt−1 +

1

2

∑n
h=−n e−

βs
4

(bh−xt−1)2bh∑n
h=−n e−

βs
4

(bh−xt−1)2

)
.

Note that g(x) is an odd function.

Fix i > 0: then bi ≥ 0 (the case bi < 0 necessitates only minor modifications of the following).
We may write

xt = g(xt−1) =
(
−s
d

)(1

2
(xt−1 + bi) + r

)
,

with

r =
1

2

∑n
h=−n e−

βs
4

(bh−xt−1)2(bh − bi)∑n
h=−n e−

βs
4

(bh−xt−1)2
.

Let δ and ∆ denote, respectively,

δ = min
h6=i
|bh − bi|, and ∆ = max

h6=i
|bh − bi|.

Let U denote the open interval U = (bi − δ/3, bi + δ/3).

We claim that if 6
7
< s/d ≤ 1 then for β sufficiently large there is a point x∗ ∈ U such that

g(x∗) = −x∗. (29)

It then follows by the oddness of g,

g(g(x∗)) = g(−x∗) = −g(x∗) = x∗,
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that is, the point x∗ is a periodic point of period 2. The claim is first shown for

g0(x) =
(
−s
d

)(1

2
x+

1

2
bi

)
;

afterwards it is extended to g = g0 + r by a perturbation argument.

Note that the equation g0(x) = −x has solution

x0 =
s/d

2− s/d
bi.

Hence, since 6
7
< s/d ≤ 1, it follows that 3

4
bi < x0 ≤ bi, and consequently that

|x0 − bi| <
1

4
bi ≤

δ

3
.

where we used that bi−1 = 1
4
bi. The inequality implies that x0 ∈ U .

To apply a perturbation argument to equation (29), the magnitudes |r(x)| and |r′(x)| have to be
estimated. First

sup
x∈U
|r(x)| ≤ 1

2

∑n
h=−n e−

βs
4

(bh−x)2|bh − bi|∑n
h=−n e−

βs
4

(bh−x)2
≤ 2n∆

2

e−
βs
4

4δ2

9

e−
βs
4
δ2

9

≤ n∆ e−
βs
12
δ2 .

The derivative |r′(x)| is estimated along the same lines; a little computation yields that

sup
x∈U
|r′(x)| ≤ 2n2∆2βs e−

βs
12
δ2 .

Hence, by choosing β sufficiently large, both |r(x)| and |r′(x)| can be made arbitrarily small,
uniformly in x.

By the intermediate value theorem, it follows that if β is sufficiently large, equation (29) has a
solution x∗ in U . Taking β even larger if necessary, it follows that −1 < f ′ < 0 in U . Hence
the solution x∗ of equation (29) is unique in U . As in the proof of B2, it follows that x∗ is an
attracting period two cycle.

Hence, we constructed an LTL system with n attracting periodic 2–cycles, together with an
attracting fixed point at 0.

Note that as these cycles are hyperbolic, the distribution ϕ might be perturbed slightly to a
distribution that is not symmetric around b = 0, while all the 2–cycles persist. The existence of
multiple periodic 2–cycles is an ‘open’ property, enjoyed by an open set of systems (open with
respect to some specific function topology).
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