
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Amsterdam CineGrid Exchange: A distributed high-quality digital media solution

Knopper, S.; Koning, R.; Roodhart, J.; Grosso, P.; de Laat, C.

Publication date
2009
Document Version
Final published version

Link to publication

Citation for published version (APA):
Knopper, S., Koning, R., Roodhart, J., Grosso, P., & de Laat, C. (2009). Amsterdam CineGrid
Exchange: A distributed high-quality digital media solution. (SNE technical report; No. SNE-
UVA-2009-1). Fac. Natuurwetenschappen Wiskunde en Informatica.
http://staff.science.uva.nl/~grosso/Publications/AmsCineGridExchange.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Feb 2023

https://dare.uva.nl/personal/pure/en/publications/amsterdam-cinegrid-exchange-a-distributed-highquality-digital-media-solution(65ee34a6-22bf-411a-ba1e-ff3a11574ca9).html
http://staff.science.uva.nl/~grosso/Publications/AmsCineGridExchange.pdf


Universiteit van Amsterdam System and Network Engineering

Amsterdam CineGrid Exchange
A distributed high-quality digital media solution

Sander Knopper,
Ralph Koning, Jeroen Roodhart, Paola Grosso and Cees de Laat

July 30, 2009

Abstract
The SNE group is an active participant in the CineGrid
initiative. We built the first integrated CineGrid portal.
In this report we describe the rationale behind the archi-
tecture of our solution. We provide a component-wise
description of design and functionality.

SNE technical report SNE-UVA-2009-01
http://www.science.uva.nl/research/sne/reports/



1 Introduction

CineGrid[1] is an organization focused on the distribution of very-high-
quality digital media over photonic networks. It does this by stimulating
research, development and demonstrations within its community. This com-
munity consists of researchers in the academic world but also some compa-
nies such as film studios.

The very-high-quality digital media we’re currently working with is the 4k
standard. 4K offers a resolution of 4096 by 2160 pixels. Table 1 provides an
summary of the characteristics of various media formats.

Format X Y Rate Color Frame Frame
(fps) (bits/px) (px) (MB)

720p HD 1280 720 60 24 921600 2.8
1080p HD 1920 1080 30 24 2073600 6.2
2k 2048 1080 24 / 48 36 2211840 10
SHD 3840 2160 30 24 8294400 25
4k 4096 2160 24 36 8847360 40

Table 1: Overview of current media formats

Compared to the 1080p HD standard, which is nowadays quite common for
home cinema systems, the resolution of 4k is 4 times larger.

Format Flow Stream
(MB/s) (Gbit/s)

720p HD 170 1.3
1080p HD 190 1.5

2k 240 / 480 1.9 / 3.8
SHD 750 6.0
4k 960 7.6

Table 2: Network requirements of the various media formats

Table 2 reports the network requirements for transport of each of these
formats. 4K results in a bandwidth of 7.6 Gbit/s (compared to 1.5 Gbit/s
for 1080p); this requires a quite advanced network infrastructure.

2 The CineGrid Exchange

The CineGrid Exchange is the central distribution point in the CineGrid
collaboration. The world-wide version is under development. When com-

2



pleted, it will provide a distributed storage system for digital video content
across the world.

The Exchange relies on the existence of metadata associated with the con-
tent. These metadata would include the author, title of the video for in-
stance, but also some more technical information like resolution, color depth,
etc. This information allows the system to automatically place the video
into the storage system and make arrangements for the video to pop up in
the user interface. It is possible to store the video in different formats (in
terms of resolution and encoding for instance) and on different sites. In the
end, a CineGrid user is not aware of the distributed nature of the storage.
He would just be browsing on a website searching for content of his liking
and - provided that he has the technical means to receive the stream- start
displaying the content on his screen.

A major technical requirements for the Exchange is extensibility. For ex-
ample, different encodings require different media players; mechanisms that
allow to add new types of players related to new encodings seamlessly are a
must. The playback functionality has to be fully pluggable. The same holds
for the storage back-end, so also this part of the system is fully pluggable.

3 Architecture

There are 3 distinct subsystems in the prototype system we’ve developed:

• the web portal

• the metadata server

• the stream server

Fig.1 shows the overall architecture of our Exchange. A metadata and
stream server form a pair within a single streaming server. We can have
multiple sites where digital content is publicly available, but there’s only a
need for a single web portal. The web portal retrieves its data from the
metadata servers at the different sites and when playback is requested, it
notifies the corresponding streaming server.

The global workflow is as follow:

1. a user browses the portal. The portal contains information about all
the available content. The portal has access to a database filled with
information it gets from the metadata server.

2. the user selects a movie and decides he wants to display it.

3



Figure 1: Architectural overview of the Amsterdam CineGrid Exchange

3. the portal communicates with the stream server which will then take
care of streaming the content from disk to the display.

In the following sections we give a more detailed overview of the three com-
ponents.

3.1 Streaming server

The streaming server manages the streaming of content to the display chosen
by the user. It supports multiple media players and a queueing algorithm
to make sure different media request do not interfere with each other.

Its functionalities are easily accessible by XML-RPC. It provides all the
standard functions expected from a streaming server: it can start playing
content, it allows to skip to another movie, it can stop playing the current
movie and provide the status. This is accomplished by the use of threads.

The whole server is built around the scheduler, which schedules playback for
the destinations (displays) available and holds queues. It periodically checks
for movies that are finished playing and then frees that object and puts
another movie in its place after which it will start that movie. The algorithm
behind the scheduler is quite simple, but can easily be changed. It holds

4



an array of queues indexed by destination, so each destination (display) has
its own queue. Within this queue are the player objects, these are objects
already holding all the information needed to start playing the movie when
the scheduler asks them to. When a new movie is being added, the scheduler
checks the destination and looks if there’s already a queue available for it. If
there is, it simply puts the movie at the end of the queue, otherwise it creates
a new queue for this destination and puts the movie in it while immediately
giving it a signal to start playing. A periodic check loops through all the
queues looking for movies that have stopped playing, while also cleaning up
any empty queues.

When the scheduler starts playback for a specific player object, a new thread
starts. This thread sets some initial variables, usually the parameters for the
media player program, and after that it forks itself. In the forked process it
starts the right media player with the correct parameters. At this point the
media player takes care of actually displaying the content and the thread
will exit eventually. The original process (before the fork) will simply wait
for the new forked proces to finish, after which it will set the internal state
to “finished playing” which will be noticed by the next periodic check of the
scheduler.

Player objects are actually derived classes from the abstract player class.
Each derived class is written to work with a single media player. Currently
there is a class that works with SAGE[2] (a system used to stream content
to tiled displays) and one that works with VLC. Adding support for new
media players is relatively easy, simply create a new class derived from the
abstract player class and fill in the required methods to properly call the
media player executable.

3.2 Metadata server

The metadata server’s main goal is to gather all the available information
about the content and save it as if it were a database. A very simple one
though, as you can’t execute complex queries on it, but you can request all
the available information.

It consists of 4 main components:

• XML-RPC server, which communicates with the outer world

• metadata database, which holds all data about the content

• metadata consumer, which converts available metadata to an internal
format

• file system watcher, which keeps track of file changes

5



The XML-RPC server main functionality is to send the complete database
to other parties. Beside that, it can also be used to retrieve the date of the
last update, so another party can figure out whether they need to update
or not.

The metadata database is just a thread-safe container for single metadata
objects. Basically it’s a large array with some added functionality to make
sure operations from the XML-RPC server and the file system watcher don’t
cause data inconsistencies. This is important, since each of them runs in its
own thread.

The interface of the metadata consumer is described in an abstract class, this
allows for multiple methods of harvesting metadata. Currently there’s only
one implementation, which is a regular file system based one. In simply reads
XML files of a mounted file system and converts the data to the internal
representation that will be put into the database.

The file system watcher is an optional but quite useful component. It only
works in combination with the file system metadata consumer described
above. It watches the file system where the content is placed for modifica-
tions. This could be when a new file has been created, an existing file has
been modified or a file has been deleted. If such a modification occurs, the
file system watcher notifies the metadata consumer to re-read the metadata
thus effectively updating the database. The file system watcher also has an
abstract interface, currently only an inotify implementation exists for use
under GNU/Linux, new implementations are relatively easy to write.

3.3 Web portal

The web portal is the only component the user sees and works with directly.
It periodically checks for any updates the metadata servers might have, it
then fetches all the metadata from that server and does this for all associ-
ated servers. It will then put all information into a local SQL database for
fast lookup and support for complex queries, mostly required by the search
functionality.

When a user enters the portal it sees the recently added movies along with
a search field on top of the page. The user can search for specific keywords
in the title of the movie for example, but also filter the output by author or
video format.

After choosing a movie, a new page shows all the information about the
movie and most importantly, all the formats the movie is available in. For-
mats are a combination of resolution and encoding, this lets low-bandwidth
users also make use of the system for example. When the preferred format is

6



known, a page where the destination can be supplied shows. At the moment
this is a combo box filled with pre-defined values by the administrator. In
other words, filled with known displays.

The final step consists of the portal looking up the corresponding streaming
server of the movie after which it will send an XML-RPC request to start
playback or at least put it in a queue. The user sees a confirmation of what
happened.

4 About languages, libraries and frameworks

The metadata and streaming server are completely written in C++, making
extensive use of the C++ STL for strings, arrays, queues etc. Both pro-
grams come with an autotools-based build system, providing compile-time
detection of available libraries. Such as inotify for example.

The SAGE[2] library is used by bvmplayer, a media player to display un-
compressed or DXT encoded content.

VLC[3] is a media player, used to display content in all other encodings.

xmlrpc-c is an XML-RPC library for C/C++ which is heavily used in both
the metadata and streaming server.

Django[5] is a Python-based web framework which we’ve used for the web
portal.

7



5 Demonstrations

The preliminary version of this architecture has also been used at Nortel
Networks Advanced Technology Summit (ATS) and SuperComputing 2008
(SC08)[6]. The preliminary version consisted of a very early implementation
of the streaming server and no metadata server. The metadata had to be
entered manually through the admin interface into the SQL database.

At ATS the focus of the demo was to demonstrate streaming very high
quality video content using Provider Backbone Transport (PBT)[10] over a
transatlantic link from our servers in Amsterdam to a display in Ottawa to
test the Quality of Service properties of PBT. We used the Web portal to
initiate the video streams and to select the proper display. We got some
good results from this.

A week later at SuperComputing 2008 (SC08)[6] the same version of the
portal was used as a part of a HPDMnet[12] demo. It involved streaming
high quality content from our servers in Amsterdam to a display at the
CANARIE[11] booth at SC08. The portal seemed to work very well, however
there seemed to be networking problems resulting in major packet loss which
could not be resolved during the event.

The architecture in its current form has been demonstrated at the Visual-
ization Symposium in june 2009[13]. This included the metadata server, the
new streaming server and an updated version of the web portal. During
this demo people could select the video they wanted to see from the portal
and stream it to the tiled panel display next to it. This worked very well
and there were positive responses on the general look en feel, however when
starting a stream people got confused selecting the proper streaming source
and destination display. This is was because not all the streaming and dis-
play nodes in the list were functional at the time and you also had to be
aware of the capabilities of the nodes, therefore this has to be improved or
preferably automated in the future.

A poster has also been made about the architecture in its current form. This
poster was demonstrated during the poster sessions of the Terena Network-
ing Conference 2009[14].

6 Conclusion and future work

Although there’s still quite a lot to be done, the overall foundations that this
architecture provides lead to a usable digital content exchange. No matter
what direction the CineGrid collaboration decides to go, the architecture

8



is relatively easy to extend and modify to adhere to new standards and
procedures.

Some of the improvements that could be implemented in the future include:

• Persistent database. The metadata server holds the metadata database
in-memory currently. This is fast, but could lead to difficulties with
large databases.

• Incremental updates. It would be nice if a client can ask for updates
in the metadata database since the last update or a specific date.
Currently, the metadata server always sends the entire database.

• iRODS integration. iRODS is the Integrated Rule-Oriented Data Sys-
tem [7]. It will manage the storage in the distributed Exchange. The
integration with iRODS regards metadata as well as playback.

• Use of NDL. NDL [8] the Network Description Language - is a series of
RDF schema that allow better usage of the network,and in particular
of circuit switched photonic networks, as the ones used in CineGrid.
NDL can be used to determine available bandwith so the scheduler
can schedule better.

• Security. XML-RPC connections aren’t restricted in any way cur-
rently, implement some sort of security system possibly also using
iRODS.

References

[1] CineGrid
http://www.cinegrid.org

[2] Scalable Adaptive Graphics Environment
http://www.evl.uic.edu/cavern/sage/index.php

[3] VLC, the cross-platform open-source multimedia framework, player and
server
http://www.videolan.org/vlc/

[4] XML-RPC for C and C++, a lightweight RPC library based on XML
and HTTP
http://xmlrpc-c.sourceforge.net/

[5] Django, The Web framework for perfectionists with deadlines
http://www.djangoproject.com/

[6] SuperComputing 2008
http://sc08.supercomputing.org/

9



[7] iRODS, the Integrated Rule-Oriented Data System
http://www.irods.org

[8] The Network Description Language http://www.science.uva.nl/research/sne/ndl

[9] Nortel Networks http://www.nortel.com/

[10] Provider Backbone Transport http://www.nortel.com/pbt

[11] CANARIE http://www.canarie.ca/

[12] HPDMnet http://www.hpdmnet.net/

[13] Mini-symposium: Networked Visualization for e-Science
http://staff.science.uva.nl/ delaat/symp-2009-06-19/

[14] Terena Networking Conference 2009 http://tnc2009.terena.org/

10


