
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

How to integrate databases without starting a typology war: the Typological
Database System

Dimitriadis, A.; Windhouwer, M.; Saulwick, A.; Goedemans, R.; Bíró, T.

Publication date
2009
Document Version
Author accepted manuscript
Published in
The use of databases in cross-linguistic studies

Link to publication

Citation for published version (APA):
Dimitriadis, A., Windhouwer, M., Saulwick, A., Goedemans, R., & Bíró, T. (2009). How to
integrate databases without starting a typology war: the Typological Database System. In M.
Everaert, S. Musgrave, & A. Dimitriades (Eds.), The use of databases in cross-linguistic
studies (pp. 155-208). (Empirical approaches to language typology; No. 41). Mouton de
Gruyter. http://www.let.uu.nl/~Alexis.Dimitriadis/personal/papers/TDS-chapter-
formatted2b.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/how-to-integrate-databases-without-starting-a-typology-war-the-typological-database-system(2f5e9058-b5d0-41f4-9b23-7b6eb5dbbcc1).html
http://www.let.uu.nl/~Alexis.Dimitriadis/personal/papers/TDS-chapter-formatted2b.pdf
http://www.let.uu.nl/~Alexis.Dimitriadis/personal/papers/TDS-chapter-formatted2b.pdf

 1

How to integrate databases without starting a

typology war:

The Typological Database System

Alexis Dimitriadis, Menzo Windhouwer, Adam Saulwick,

Rob Goedemans, Tamás Bíró

1 Introduction

The Typological Database System (henceforth TDS)
1
 is a web-based ser-

vice that provides integrated access to a collection of independently created

typological databases. Thus it is not an original data collection, but an inter-

face to the data contained in its component databases. The TDS web server

can be accessed at the URL http://languagelink.let.uu.nl/tds/.

The main challenges in developing the TDS were not, as one might perhaps

imagine, due to the technical problem of combining data residing in differ-

ent software platforms; in fact this only poses minor obstacles. The real

difficulties arise from (a) the very large total number of descriptive parame-

ters included in the aggregated databases, and (b) the differences in

1
 The TDS Project is being carried out by a research group of the Netherlands

Graduate School of Linguistics (LOT), with members from the University of Am-

sterdam, Leiden University, Radboud University Nijmegen, and Utrecht

University: Tamás Bíró (linguistic design and database integration), Alexis

Dimitriadis (project manager), Rob Goedemans (database integration and phonol-

ogy domain expert), Ruth Lind (intern), Adam Saulwick (ontology developer,

typologist and database integration), Eugenie Stapert (student assistant), Franca

Wesseling (student assistant), Menzo Windhouwer (software system designer and

developer). The TDS Project gratefully acknowledges the financial support of the

Netherlands Organization for Scientific Research (NWO).

Presentations of various aspects of the TDS have been given at the following con-

ferences: E-MELD 2005 (Dimitriadis et al. 2005), DISWeb 2005 (Saulwick et al.

2005), DGfS 2006 (Saulwick et al. 2006), and elsewhere. We thank the audiences

at these conferences for useful feedback and discussions which have contributed to

improving the content and presentation of this chapter. We remain responsible for

any deficiencies.

 2

structure, terminology, and theoretical assumptions among component da-

tabases. The typical typological database contains a very large number of

data fields (parameters), often several hundred, about a large number of

languages (again in the hundreds). The component databases were created

independently of each other, and reflect a focus on diverse aspects of lan-

guages, research questions, and theoretical backgrounds.

The TDS Project’s approach to data management is central to addressing

both challenges. The diversity and sheer quantity of the data make it im-

possible to deal with differences through some sort of “consensus”

representation; indeed, for reasons that will be detailed below, we consider

such a goal to be not only unattainable but flawed, with the potential to

distort the real content of the data. Instead, the TDS aims to represent the

diverse theoretical perspectives faithfully. Purely notational differences are

resolved (e.g., if different databases use the values ‘yes’ and ‘+’ to mean

the same thing, these can be converted to the single value ‘yes’); but for the

rest, the TDS focuses on presenting the contents of the component data-

bases as accurately as practicable. This means that in many cases, divergent

classifications or analyses will be presented side by side.

While the total number of database parameters is large, the TDS is not a

large-scale data integration project. Approximately a dozen databases are

integrated in the initial phase of the Project, and the eventual size of the

archive will be in the dozens rather than hundreds or thousands of data-

bases. Hence it was possible to focus on integrating the semantics and

encoding of a particular (and progressively extended) set of databases. This

is a labour-intensive process, but is justified by the richness of information

represented by the data contained in each component database. Such data

have been collected one language and one parameter at a time, often fol-

lowing laborious study of the relevant sources. The complex decision-

making process involved in creating each component database is reflected

in its presentation through the TDS.

In order to be included in the system, the data in each component database

are restructured and recoded to the extent that this is possible without loss

of information, and organized so as to produce an integrated whole with

consistent structuring conventions (as far as this is possible given the diver-

sity of the data). This permits the aggregated data to be effectively

navigated. The user interface, data structuring and integration process are

supported by an ontology of linguistic concepts developed by the Project

for this purpose.

 3

The TDS interface allows users to search for fields of interest, which are

then used for querying the data. Searching is thus a two-step process: In the

“pre-query” step, the user discovers fields relevant to topics of interest, by

using one of several search and browsing options in the TDS interface. Se-

lected fields are accumulated in a sort of shopping basket. In the second

step, the collected fields are used to construct and execute a query.

In the next two sections, we introduce the goals of the system and the chal-

lenges it confronted. Section 4 presents an overview of the TDS. Sections

5, 6 and 7 describe the system in more detail, focusing first on the knowl-

edge architecture (section 5) and then on the software implementation and

user interface. Sections 8 and 9 focus on the practicalities of database inte-

gration, as carried out by TDS members. Finally, we close with some

discussion and conclusions.

2 Goals of the system

The ubiquity of the internet, which allows data to be shared across large

distances efficiently and practically for free, has gradually brought about a

development of great importance to typologists: While collections of typo-

logical data were once considered a personal tool for the exclusive use of

the researchers who compile them, researchers are increasingly coming to

view them as resources that can, and therefore should, benefit the academic

community. A growing number of typological databases, many originally

created for personal or small-group use, are now being made publicly

available.

But the growth in the number of such databases, welcome as it is, comes

with a cost. As more and more typological databases become accessible to

users other than their creators, colleagues, and others already familiar with

them, the task of managing and using the information becomes more diffi-

cult. We can identify the following kinds of problems facing a linguist who

looks for typological information on the web:

1. Resource discovery

This is simply the step of finding a data source with information on

some topic of interest.

2. Correct and effective use

As already mentioned, databases use varying terminology, notation, or-

ganization of the data, and search commands. Even if these are

 4

documented in detail, they can be quite difficult for a new user to as-

similate and employ properly; and proper documentation is not always

available.

3. Efficiency of resource utilization

As the amount of online information grows, the time and effort in-

volved in searching databases one by one and collating the results

becomes an obstacle to their efficient utilization.

The problem of resource discovery is being addressed by language ar-

chives, which collect a large amount of linguistic resources in one place

(hopefully well-known or easy to find), and by numerous initiatives that are

developing improved methods for resource description and discovery. Gen-

erally these include enriched standards for resource description, which can

be utilized by existing or new tools.
2
 The TDS does not directly address

this problem, except by providing a (small) number of databases collected

in one place.

The TDS directly addresses the second and third tasks. The goals of the

system are (a) to provide an interface that will help users find relevant data,

and (b) to enable users to interpret the data they are presented with. The

TDS interface allows speedy combined searches over the data in its collec-

tion of typological databases, from a single user interface and using (as

much as possible) consistent terminology and encoding conventions. The

results are fully aggregated across databases, and can be displayed in a

number of formats, including (so far) two export formats, as an XML (Ex-

tensible Markup Language) document or as a single table in comma-

separated-values (CSV) format. Interpretation of the data is aided by pre-

senting documentation for each database field, supported by documentation

on any linked linguistic concepts in the TDS global ontology. Since data in

2
 Metadata-oriented initiatives include the Dublic Core Metadata Initiative (DCMI,
at http://dublincore.org/), the Open Archives Initiative (OAI, at

http://www.openarchives.org/), and the linguistics-specific initiatives of the Open

Language Archives Community (OLAC, at http://www.language-archives.org/)

and the International Standards in Language Engineering (ISLE, at

http://www.ilc.cnr.it/EAGLES/isle/). A different approach to resource discovery,

based not on metadata but on sophisticated pattern matching, is followed by the

Online Database of Interlinear Text (ODIN, at http://www.csufresno.edu/odin/;

Lewis 2006).

 5

the TDS is often separated from its original context, in all cases the inter-

face must present the provenance of the data along with its database-

specific description; this allows users to properly evaluate the information

retrieved.

3 The problem

In creating a single data resource from the collection of typological data-

bases, the TDS Project needed to address the various kinds of differences

among them. These can be of several kinds:

1. Different types of content

So-called “analytical” typological databases consist of logical variables

describing each language as a whole; for example, “language X

has/does not have subject-verb agreement.” Other databases contain

example sentences with detailed annotations (“sentence databases”), or

a combination of both types of information. The Project attempts to in-

tegrate different types of content so that, for example, a single query

can search both examples and logical variables for relevant informa-

tion.
3

2. Different theoretical commitments

There exists, of course, no universally accepted and descriptively ex-

haustive linguistic theory. Thus, the information in each database

reflects the analytical and theoretical commitments of its creators. For

example, the notions Subject and Object are used in several different

ways by linguists, and there are alternative ways of expressing struc-

tural relationships, e.g., the S/A/P/R categorization as recently applied

in Haspelmath (2005).
4
 Conversions between theories, it turns out, can-

not be automated with reliability; and database creators do not want

their theoretical commitments to be misrepresented. Hence the TDS

places a high priority on preserving and presenting to the user the

framework of database-specific assumptions needed to properly inter-

pret the data extracted from a component database. Such information

will allow knowledgeable users to recognize both the descriptive con-

3
 The system includes both kinds of data, but such cross-type searches are only

partially supported at this time.

4
 This example is discussed in more detail in the following section.

 6

tent and the theoretical commitments of a statement, regardless of

whether it matches their own theoretical orientation. It can be benefi-

cial for users to view information even if it is not expressed in terms of

their own theoretical framework. For example, information about prop-

erties of “subjects” can be useful even to those who do not believe that

this is a typologically sound notion.

3. Constructed for different purposes

The focus and detail of coverage of individual databases vary depend-

ing on the creators’ own research interests, even where there are no

theoretical disparities (or no significant ones). Such variability can lead

to significant differences in the structure, content, and degree of detail

in conceptually similar data.

4. Different notational conventions

In many cases the different databases use equivalent, or near-

equivalent, ways of describing data. An obvious example is the use of

different glossing labels for broadly accepted linguistic categories, such

as “p” or “pl” for Plural. It is generally easy to reconcile purely nota-

tional differences, but the databases can also differ in the details of how

such concepts are defined and applied. It is thus necessary to distin-

guish notational variation from theoretically important differences, and

to resolve differences with respect to the former but not the latter.

5. Different design choices

There are a myriad of ways to organize a body of information into a da-

tabase, and the component databases therefore differ markedly in their

structure. As this source of variation is compensated for, it becomes

easier to address the more troublesome types already discussed. Con-

sistent design choices also make it easier for the end user to gain an

understanding of the data, compared to dealing with multiple conven-

tions that must each be learned separately.

6. Different software

The TDS component databases were developed with, or for, a variety

of database management systems (DBMSs) that currently include Mi-

crosoft SQL Server, MySQL, Microsoft Access, Excel, 4
th
 Dimension,

and custom-made database software. Their origins in different software

environments (operating systems, fonts, storage formats, etc.) introduce

additional complications. The TDS uses a plug-in architecture to im-

 7

port data from this plethora of formats; fortunately, it has been possible

to find interface modules or exchange formats for each database in-

cluded. Occasional relatively small problems (such as font-encoding

glitches) can require manual intervention in the form of ad hoc fine-

tuning scripts, but these are quickly resolved and only need to be ad-

dressed once per database. In practice, dealing with this kind of

variation does not pose great difficulty.

These sources of variation must be dealt with in different ways. The TDS

approach distinguishes between variation in structure or encoding, which is

judged to be a design choice of no inherent linguistic significance, and

variation in the choice of linguistic terms and (especially) categories and

distinctions. Broadly, we can speak of differences in encoding and differ-

ences in meaning (semantics). While the metadata initiatives mentioned

earlier might one day lead to more uniformity in structure and encoding

among databases, they will have no effect on the divergence of theoretical

viewpoints and research traditions that constitutes the most intractable

source of heterogeneity. These diverse viewpoints are not only dearly held

by their practitioners: They are the subject matter and outcome of linguistic

analysis, and cannot (indeed, should not) be replaced by any uniform,

agreed-upon framework.

During the early stages of the Project, consultation with the community of

database creators and prospective users established that preservation of the

specific claims made by the creators of the component databases is of the

utmost importance. Full harmonization of the collected data into a common

form would lead to unacceptable distortion in the accuracy or precision of

the data. Conversely, a multiplicity of alternative models and classification

schemes for data originating in different databases is acceptable, as long as

the model applicable in each case is made explicit.

Accordingly, the TDS approach is as follows: encoding differences are

compensated for wherever possible, by transforming the source data to ad-

here to, or at least be relatable to, a uniform design (“object model”).

Semantic divergences are maintained, and are made explicit by suitable

documentation and careful construction of relationships between various

levels of metadata.

We should point out here that the Project takes a neutral standpoint towards

the data in the component databases; that is, we do not consider it the job of

the Project to check and correct the data in the component databases, or to

 8

make value judgments on the analyses they express. The developers of the

component databases have devoted much time and effort to collecting in-

formation in their databases; in database terms, the component databases

represent high-value information reservoirs, created through considerable

human effort and utilizing extensive domain expertise. In short, each com-

ponent database represents an extremely valuable resource. The Project

must ensure that the contents of the component databases are accurately

imported and presented in the TDS, but it is not responsible for the accu-

racy of those contents themselves. To do otherwise would be impossible,

since the TDS could not assume responsibility for the accuracy of the data

without undertaking to resolve the empirical and theoretical differences

between its component databases. As long as the provenance of informa-

tion provided by the TDS is explicit, end users will be able to assess its

suitability and reliability for themselves.

3.1 The notion Subject: a mini case study

To better illustrate the integration process across databases, we will con-

sider a simple case involving a single descriptive parameter. Consider a

query such as “which languages have subject-verb agreement.” Two of the

component databases contain information on “subjects.” One database, the

Typological Database Nijmegen (henceforth TDN),
5
 contains a single boo-

lean variable answering exactly this question; another database, the Person

Agreement Database (henceforth PAD), includes a block of variables giv-

ing more information about subject-verb agreement, for languages in which

this exists. A complicating factor is that the notion subject is not a primitive

in the PAD. Instead, the PAD relies on a common alternative, the four-way

classification of grammatical functions as sole argument of an intransitive

verb (S), and agent-like (A), patient-like (P), and recipient-like (R) argu-

ments of a transitive verb.
6

How can this classification be used to get information on subject-verb

agreement? We must define a query in terms of the available categories.

5
 See section 4 for descriptions of the component databases.

6
 The introduction of a category S distinct from A and P is found in Dixon (1972)

and Comrie (1978). A recent adaptation of the system can be found in Haspelmath

(2005). For discussion of the problems associated with subject as a cross-linguistic

category, see Comrie (1989: ch. 5).

 9

The common notion subject is itself interpreted in different ways within the

linguistic community, but in principle it would be expected to be co-

extensive with the union of the categories S and A.
7
 The most useful strat-

egy, then, is to search for data on S and A controllers. However, there are

enough differences in principle and in practice between theories (and be-

tween the practice of individual researchers), that an implicit mapping of S

and A values to the value Subject could lead to erroneous information being

reported (for example, if an A by someone’s definition is not a Subject by

someone else’s). Therefore this decision is best left to the user.

Let us now consider the reverse situation: A linguist who subscribes to the

four-way classification of grammatical roles wants to query for languages

which have agreement with A (the agent-like argument). Since one of the

component databases does provide this information, the TDS should make

it available. But the information in TDN cannot answer this question di-

rectly, since TDN does not distinguish between transitive and intransitive

subjects. Does that mean that the information in TDN is of no interest in

this case? Only the user can answer this; information about the category

Subject might be useful, although inexact, or it might be irrelevant to the

user’s needs.

The TDS interface respects these considerations. A user who searches for

the term “subject” during the pre-query stage is presented with a list of da-

7
 There is considerable disagreement among linguists as to what constitutes a sub-

ject, and little of it can be resolved by adopting the S/A/P/R system. For example,

consider an experiencer predicate like Spanish me gustas tu ‘I like you’, which

assigns dative to the experiencer and nominative to the stimulus. Does this predi-

cate have a “dative subject,” as suggested by the thematic relationships and the

word order, or should the title “subject” be applied to the nominative-marked

stimulus, which also controls “subject agreement” on the verb? Should the answer

be the same in all languages with a similar construction? The issue depends on

one’s underlying principles, definitions, and the desired abstractness of analysis,

and is amplified when one considers languages with fewer morphosyntactic clues,

or with less well-understood grammars. Adoption of the S/A/P/R system allows

ergative languages to be coherently discussed but does not resolve such questions,

since one must still determine what is or is not “agent-like,” etc.

Fortunately, these issues tend to have little impact on the determination of analyti-

cal properties of a language, such as pro-drop or basic word order; these generally

depend on the typical or prevailing configurations, for which there is less dis-

agreement on identifying the “subject” (or A).

 10

tabase fields that includes the relevant fields from both databases (this hap-

pens even though the documentation directly associated with the PAD

fields does not use the word “subject”). The user can assess the relevance

of each field for his or her purposes. Presented with the available options, a

user interested only in agreement with A might decide to rely exclusively

on PAD or to additionally look up information on subject agreement in

TDN, later refining it by consulting other information on individual lan-

guages.

There is another reason to be conservative in transforming data from one

descriptive framework into another: the creators of PAD have made a de-

liberate choice not to rely on the category Subject, which they consider

problematic and inadequate; they might not be keen to endorse a statement

to the effect that “according to the PAD, language X has subject-verb

agreement,” since the PAD does not directly make any statements about the

category Subject. In reporting the contents of its component databases, the

TDS must be careful to do so accurately.
8

Note finally that these issues were illustrated by reference to a very simple

example involving a single descriptive parameter. The problem becomes

even less tractable when numerous data fields are used to describe aspects

of a phenomenon, or when more than one linguistic concept is involved.

For example, the Typological Database Amsterdam (henceforth TDA) da-

tabase encodes subject-predicate order in terms of the following

parameters:

1. Basic word order of the clause

2. Whether the order is fixed or variable

3. Whether non-canonical order is morphologically marked

The basic word order is not expressed in the traditional terms of subject,

verb and object position (e.g., SVO or SOV), but in terms of the position of

the predicate: Predicate-initial, -medial or -final, with the option of having

8
An accurate report is not necessarily verbatim, however; the issue here is the use

of disputed terms or categories. It is sometimes necessary to develop descriptions

where none exist, or to expand, in consultation with database developers, on de-

scriptions in the original documentation so that they are interpretable when

removed from their original context. We take care that the resulting statements do

not violate the theoretical commitments of the database they describe.

 11

multiple orders in a language (cf. Hengeveld et al. 2004). Because multiple

orders are allowed, the approach contrasts with a system that identifies one

basic word order, and perhaps identifies a secondary order on the basis of

particular criteria. Note that the question of one versus many basic orders is

independent of, and more complicated to resolve than, the choice between

the traditional “constituent-based” and predicate-based order. Neither sys-

tem can be converted to the other without loss of information (or the

manual addition of information not already in the database).

4 The Typological Database System

The TDS Project began with the goal of unifying a number of typological

databases, originally all by Dutch linguists.
9
 The Project’s early attention to

terminological and conceptual differences has evolved into the present fo-

cus on developing a software system whose architecture is fundamentally

based on the principles of data integration described here. Monachesi et al.

(2002) present an early vision of the system.

It has always been the intention to include a moderate number of databases,

whose integration into the system would require specialist expertise. At

present the following databases are searchable through the TDS interface,

and a few others are being prepared for integration.

1. The Anaphora Typology database project (Utrecht University) is sur-
veying the binding properties of reflexives and reciprocals, referred to

collectively as “local coreference strategies.” This database is focused

on reflexives, although some information is also provided on pronouns

and reciprocals. It contains glossed example sentences (grammatical or

ungrammatical) in a variety of syntactic configurations. A limited

number of languages are examined in detail. Only a few languages and

properties are currently included in the TDS. Developers: Alexis

Dimitriadis, Martin Everaert, Eric Reuland, Tanya Reinhart; Utrecht

institute of Linguistics OTS.

9
 The early participants in the Project included Paola Monachesi, Anne-Marie

Mineur and Manuela Pinto, as well as several of the participants named in foot-

note 1. The developers of the initial group of component databases played an

important role in defining the goals of the system, and identifying problems and

areas of concern.

 12

2. The Person Agreement Database (PAD) contains analytical (lan-

guage-level) data for over 400 languages, on person agreement and

some related areas such as word order. The information is coded in

terms of over 250 variables. For a subset of these, citations to relevant

pages in reference grammars are given. Developers: Anna Siewierska,

Lancaster University; Dik Bakker, University of Amsterdam.

3. Smith's Phoneme INventories (SPIN) is a collection of phoneme in-

ventories and lexical tones in 111 languages based on published works.

Developer: Norval Smith, University of Amsterdam. Digitized by the

TDS Project.

4. The Stress Typology Database (StressTyp) contains information on
the metrical systems (stress systems) of 510 languages, based on

grammars and theoretical works. Notions covered include rule-based

stress, lexical stress, extrametricality, foot types, etc. Developers: Rob

Goedemans, Leiden University; Harry van der Hulst, University of

Connecticut. See Goedemans and Van der Hulst (this volume).

5. The Syllable Typology Database (SylTyp) contains information on
syllable structures. Restrictions and rules concerning possible syllabic

structures are provided, as well as information pertaining to the content

of these structures. Developers: Harry van der Hulst, University of

Connecticut; Rob Goedemans, Leiden University.

6. The Typological Database Amsterdam (TDA) focuses on basic word

order and constituent order systems. Information classifying the parts-

of-speech system of the included languages is also provided. Devel-

oper: Kees Hengeveld, University of Amsterdam.

7. The Typological Database Nijmegen (TDN) contains analytical (lan-

guage-level) information on a variety of topics, including: basic word

order, intransitive predication, case marking, temporal sequencing,

relative clause information, comparatives, possessive constructions,

verbal morphology, tense/aspect, noun phrase coordination, manner

adverb encoding, verbal derivation. The number of languages varies

from topic to topic, with a minimum of 140 for all topics, and a maxi-

mum of 410 for some. Developer: Leon Stassen, Radboud University

Nijmegen.

8. The Typological Database of Intensifiers and Reflexives (TDIR)
provides information on intensifiers and reflexives as well as on some

related domains of grammar such as the middle voice and scalar focus

 13

particles. Its focus is on accurate language description and documenta-

tion (“grammar fragments”). The data have been obtained from both

native speaker consultation (primary data) and literature on the relevant

topics and languages (secondary data). For secondary data, sources and

references are generally indicated. The database contains information

on more than a hundred languages, including approximately 600 exam-

ples. The sample is not balanced genetically or areally. Developers:

Volker Gast, Daniel Hole, Ekkehard König, Peter Siemund, Stephen

Töpper; Free University of Berlin. See Gast (this volume).

9. The UCLA Phonological Segment Inventory Database (UPSID) is a

collection of phoneme inventories for 451 languages. Features such as

manner, place, length, phonation type and secondary articulation are

included. Developer: Ian Maddieson, UCLA.

10. The Graz Database on Reduplication provides data on reduplication

in the world's languages. The collected examples are described phonol-

ogically, morphologically and semantically, together with information

on productivity and diachrony. Developer: Bernhard Hurch, University

of Graz, Austria. See Hurch and Mattes (this volume).

11. The World Color Survey elucidates the relationship between color

categories and basic color terms. The summary tables included in the

TDS have originally appeared in the World Atlas of Language Struc-

tures. Developers: Paul Kay, Luisa Maffi; University of California at

Berkeley.

In addition, the TDS includes a number of supporting data resources that

are not themselves considered linguistic databases. These include the table

of languages and three-letter codes defined by ISO standard 639-3,
10
 a table

of genetic affiliations for each language as assigned by the Ethnologue di-

rectory (used by permission), and two collections of geographic locations

(GIS coordinates) for several hundred languages: One originally compiled

by Matthew Dryer and updated for use in the World Atlas of Language

Structures (see Haspelmath, this volume), and another, limited to African

languages, compiled by Guillaume Segerer. Both are used by the kind per-

mission of their creators. The Universal Phoneme Position Chart (described

10
 The ISO 639-3 codes are the successor to the “SIL codes” used in the past by

Ethnologue (http://www.ethnologue.org/). SIL is the registration authority for the

new ISO codes, and provides an access point at http://www.sil.org/iso639-3/.

 14

in Section 8.2) is based on data contained in the UPSID database, but in-

volves significant additional processing by the TDS; it can be seen as an

additional information source.

Together, the component databases of the TDS contribute more than twelve

hundred database fields (attributes), with varying amounts of information

on almost one thousand languages.

4.1 System Architecture

Figure 1 gives a global overview of the TDS architecture. Data are im-
ported from the component databases (at the bottom of the diagram), and

the user interacts with the system through its web interface (at the top). The

core of the system is the metadata, which contain all TDS knowledge about

the component databases and the linguistic domain. The knowledge base

consists of various specifications which are linked to each other: a set of

T
D

S
 W

o
rk

b
e
n
c
h

Importing

Transforming

Merging

Enriching

TDS data

Querying

Navigating and searching

Reasoning

p
re

-p
ro

c
e
s
s
in

g
re

a
l-
ti
m

e

Global

domain

ontology

Local

database

ontologies

metadata

component databases

D
T
L
 e

n
g
in

e

Web interface

Figure 1 Overview of the TDS architecture.

 15

database-specific ontologies, one global linguistic ontology and (currently)

two topic taxonomies. Maintenance of the knowledge base is supported by

the TDS Workbench (right) and other custom-built or general-purpose

tools, including an ontology editor.

The functions of the TDS are divided into two core processes: Loading and

integration of the data from the component databases, and querying the data

in response to user requests.

The first core process, integration of the data from the component data-

bases, is implemented as a pre-processing step that is executed whenever

the contents of the TDS change. For example, if a new database is added,

or an updated version of an existing component database is received from

its developers, or changes are made to existing metadata. Data integration

involves the following steps: importing, transforming, merging and (possi-

bly) enriching.
11
 The process is completely controlled by database-specific

specifications written in the Data Transformation Language (DTL),
12
 a de-

clarative description language developed by the TDS Project for this

purpose (see section 5.2). The DTL specifications tell the data integration

engine about the implementation details of each component database, e.g.,

which DBMS is used, where the database is located, and which encoding is

used. Using this information, the engine selects the proper plug-in to load

the data from the component database. Once data are loaded, they undergo

a transformation process. The transformation rules are also part of the DTL

specification and define the unification of different notations and structures,

to the extent that this is possible without compromising the semantics of the

component database. Special care is taken in the harmonization of key val-

ues, e.g., language and phoneme codes. This is necessary in order to

recognize when different databases describe the same object (language,

phoneme, etc.) Once the keys are properly harmonized, the next step is to

merge all the data about one object, e.g., a specific language, from the vari-

ous component databases. Next, cross-database data enrichment can take

11
 Although the data integration process is described in this section as sequential,

implementation-wise the steps are interleaved, e.g., local database enrichments

happen together with the data transformation.

12
 Important TDS terms and acronyms are collected in a glossary at the end of this

paper.

 16

place.
13
 The end result of interpreting the specifications in the DTL scripts

is a unified data collection, the TDS data.

Management of the DTL scripts and other TDS metadata is facilitated by

the TDS Workbench, which provides various checks on the consistency of

the metadata network; for example, it detects invalid links between the

various specifications, and invalid links and structures within the global

ontology.

The second core process of the TDS is support for end-user queries over

this data collection. The query process is steered by a web interface, which

helps the user build and execute queries in two stages. At the first stage, the

pre-query, the user interacts mainly with the metadata. By navigating

through the network of metadata elements and/or doing full-text searches

on their content, the user can identify fields of interest and collect them into

the query basket. In this pre-query step, the system conducts “smart

searches” that exploit the sense relationships encoded in the metadata (es-

pecially the ontology and DTL schema). Search terms, for example, use the

vocabulary of a user’s theoretical framework. By locating these terms in the

semantic network, the system can suggest fields to the user which are

linked to semantically close terms, even if they are drawn from an alternate

theoretical framework. For example, the search term “predicate medial”

partially matches the ontology Concept
14
 PredicateMedialWordOrder,

which is part of the Hengeveld et al. (2004) classification of constituent

orders (see section 3.1). The ontology provides links to the related Con-

cepts OVS and SVO, even though these categories only occur in the

alternative, three-part classification of constituent order systems. The TDS

can now also suggest fields related to the concepts OVS and SVO, although

they will have a lower ranking in the search results than fields directly re-

lated to the Concept PredicateMedialWordOrder.

Once the user is satisfied with the collection of fields, the query proper is

defined by specifying selection and projection criteria, i.e., which records

13
 At time of writing, the TDS supports local database enrichment (new computed

fields for a database, with possible reference to global TDS data), but no cross-

database enrichment (i.e., enrichment that utilizes merged data from multiple com-

ponent databases).

14
 We use the term Concept, with a capital C, to refer to an entry in the global lin-

guistic ontology, representing a linguistic concept. (See section 5).

 17

to retrieve (by matching the selection criteria) and which fields of these

records to display (“project”). The query can now be executed by the sys-

tem, and the retrieved subset of the TDS data is presented to the user. Once

more the metadata assists the user in interpreting the results. The user can

then initiate a fresh query, or modify the current query and resubmit it.
15

5 Knowledge architecture

A key feature of the TDS is its focus on safeguarding the semantic integrity

of the integrated data. The TDS Project considers it crucial that the knowl-

edge residing in component databases should be faithfully preserved during

the integration process. To support diversity in the theoretical perspectives

of component databases, the TDS utilizes a “hybrid,” or two-level, model

of the semantic domain (Stuckenschmidt and Van Harmelen 2005). In the

hybrid TDS model, there are two main levels where knowledge is stored:

the global ontology of broad linguistic concepts (henceforth TDS-GO) and

the local ontologies of the individual component databases, encapsulated in

the DTL schema.

15
 The query interface is described in more detail in section 7.

Database developer(s)

TDS Knowledge engineer(s)

Topic taxonomiesGlobal linguistic ontologyLocal database ontologiesDatabase schemata

Domain expert(s)

collaboration

Figure 2 TDS knowledge architecture with knowledge representation roles.

 18

The global level provides ontology entries, or Concepts, which describe

general unifying linguistic concepts. The local level includes pointers to

these general Concepts, and contains database-specific definitions. The

global ontology thus introduces common ground, which enables the possi-

bility of significant cross-database queries, whereas the local ontology is

the store of the database-specific knowledge. This model, depicted in

Figure 2, forms the core of the TDS knowledge integration.

Each component database is associated with its own local ontology. The

local ontology is specified using the DTL, and defines local Notions, or

entries in the local ontology, by reference to the tables and attributes in the

schema of the corresponding component database (typically a relational

database). In general, each database attribute (field) is imported and ex-

pressed as a Notion; but the DTL also supports powerful means of

restructuring, combining, or even splitting up attributes when necessary,

and hence the mapping of attributes to Notions is not always one to one. In

the DTL specification, a Notion is described through metadata in the form

of short labels, more detailed descriptions, and links to the global ontology.

Topic taxonomies provide domain-specific hierarchies as quick entry points

into the global linguistic ontology. The system supports multiple alternative

taxonomies, so that a linguistic domain can have its own, dedicated search

template.
16

5.1 Database schemata and metadata

The eleven databases currently comprising the TDS exemplify a range of

approaches to data modeling. Several of them have properly normalized, or

even over-normalized database schemas, while others are completely un-

normalized:
17
 they consist of a single large table, store multiple pieces of

information in one attribute value, etc. Some databases are sparsely filled

with data, and could be considered semi-structured, while others are highly

16
 Alternative taxonomies are not extensively used at this time. Only two taxono-

mies, a general linguistics-oriented one and a taxonomy exposing the organization

of the TDS global ontology, are included in the interface. A third, taxonomy-like

view (“view by datatype”) exposes the native hierarchical organization of the TDS

data.

17
 A database is said to be “normalized” if its table structure meets certain technical

criteria (see Date 2004).

 19

structured and densely filled. Implementation details of the DBMS used for

the component database (either currently or in the past), or the needs of the

user interface, are also sometimes apparent in the data. For example, pro-

prietary font encodings are used for IPA characters, and the data structure

and values of one database transparently reflect its original status as a data-

set for the statistical package SPSS. The DTL transformation rules can

address such quirks. To make the imported data useful, however, the in-

tended semantics associated with the encoding needs to be made explicit.

As mentioned, most of these databases were created for personal or small-

group use and so very limited interpretive metadata is generally available.

Even when this exists, it is usually not precise enough for the requirements

of the TDS, where a data field may be presented out of its original context

of forms or related fields.

In the metadata development process, the interpretive/analytical intentions

of the database creator may be discerned by examining the original user

interfaces (where these exist), but typically, repeated and sometimes exten-

sive interaction with the database developer(s) is required in order to

accurately represent their intention in the local ontology. These analyses

form the core of the knowledge component and represent the semantic

characterization of the component databases, and by extension the linguis-

tic knowledge in the TDS.

Once a component database has been adequately described in the DTL, the

specification is used to drive the importation of data from the component

database into the aggregated TDS data. This is a fully automated process

that can be repeated whenever the contents of a component database

change. Manual intervention is only required if new fields are added to the

database (which will need to be described in the DTL schema), or if

changes are made to the naming or definition of database fields or potential

values. Simple addition of more data by the creators of the database, or

correction of errors (or other modifications) in existing data, do not require

attention by the TDS developers if the database design remains the same.

5.2 Local database ontologies and the Data
Transformation Language

The local ontologies should capture theory-specific knowledge. As its name

reveals, the Data Transformation Language (DTL) started out as a declara-

tive specification of transformation rules to overcome notational and

structural differences. But since the description of the resulting data schema

 20

is part of this specification, the language was extended with constructions

that enrich the schema with metadata. Notions are the basic building blocks

of a DTL specification. They can express a database-specific theoretical

construct, an individual field from a database (or a constructed field), or a

group of other Notions. The following kinds of metadata can be attached to

each Notion:

1. a short label, preferably about five words long

2. a short description

3. one or more links to Concepts in the global ontology; these
links can be labeled with a type, to indicate different kinds of

relationships

4. one or more links to other DTL Notions

5. a semantic data type18

Notions can be nested and thus form a hierarchy, or rather several hierar-

chies with distinct roots. Each hierarchy is subdivided into smaller

semantically coherent sub-hierarchies. Such a sub-hierarchy forms a local

semantic context; Notions should always be shown within their context, or

at least the context should be available to the user to allow the proper inter-

pretation (and disambiguation) of displayed data from other Notions in

locally nested hierarchies, potentially with the same name. For example, it

is clear that the Notion name in the context of the Notion author represents

an author’s name (rather than a language name). A powerful aspect of this

is that it allows a descendant Notion to inherit some of the sense properties,

e.g., the links to Concepts, from its parent and ancestor Notions. This, in

turn, prevents local overspecification.

18
 The DTL supports two basic types: enumerations and free text. Subtypes of these

types, associated with particular semantics, can be declared and attached to No-

tions. Their main use is to influence the rendering of Notion values in the user

interface. For example, the TDS specification declares a special data type for pho-

nemes, which allows them to be rendered in their proper place in the Universal

Phoneme Positioning Chart (UPPC).

 21

Example 1 shows an excerpt from a DTL sub-hierarchy for Locational

Predicates. The keywords TOP NOTION indicate the start of a sense con-

text. The Notion tdn:locationalPredicates has a label, a description and a

link to one Concept in the global ontology, locationalPredicate. The nested

Notion tdn:ZeroEncoding also contains a link to one Concept, condition-

sOnEncoding, but will also inherit the link to the Concept

locationalPredicate from its parent. The same example also shows the link

from the DTL specification to fields in the database schema: the Notion

tdn:v168_Zero_plus_locative_prepositional_phrase takes its value from

the TDN database field labeled ‘v168’.

Although each database contains specific, and perhaps unique, Notions,

some parts of its DTL hierarchy will overlap with the DTL Notions of other

databases. To express such relationships, the DTL supports scopes. Each

database has its own scope, where it creates its own Notions. Example 1

shows a part of the tdn scope, the scope of the Typological Database Ni-

jmegen. Like Notions, scopes form a hierarchy and inherit Notions declared

in parent scopes. While the leaves in this hierarchy are formed by database

scopes, the root is formed by a “warehouse”
19
 scope, the tds scope. Com-

19
 The term warehouse refers to data warehousing, a computer science discipline

1. TOP NOTION tdn:locationalPredicates

2. LABEL "Locational predicates"

3. DESCRIPTION "Information concerning locational predicates, including form of,

4. and conditions on, construction, and form of the negation."

5. LINK TO CONCEPT locationalPredicate
6. GROUPS {

7. NOTION tdn:ZeroEncoding

8. LABEL "Locational predicate is zero“

9. LINK TO CONCEPT conditionsOnEncoding

10. GROUPS {

11. NOTION tdn:v168_Zero_plus_locative_prepositional_phrase

12. LABEL "Locational predicate is zero + locative prepositional phrase"

13. DESCRIPTION "The locational predicate is expressed without the use of

14. an overt verb, but has a locative prepositional phrase."

15. VALUE IS FIELD v168

16. GROUPS WHEN "yes" {

17. NOTION tdn:v169_Zero_for_present_only

18. VALUE IS FIELD v169;

19. NOTION tdn:v170_Zero_in_positive_sentences_only

20. VALUE IS FIELD v170;

21. }

22. }

23. }

Example 1 An excerpt of the DTL Notion hierarchy for the TDN database.

 22

mon Notions and structures such as tds:Language and tds:languageIdentifi-

cation are declared in this scope, as shown in Example 2.

Between the warehouse scope and the database scopes there can be do-

main-specific scopes, which declare domain-specific Notions. For example,

there is a scope for the linguistic domain on phonetics. Together, the upper

scopes define a skeleton hierarchy, or hierarchies, of Notions. The lowest

database scopes then localize these declared Notions by associating them

with database fields and database-specific transformation rules, and further

extend the structure with database-specific Notions. Example 3 shows the

reuse of Notion structures from the tds warehouse scope in the stressTyp

database scope, and shows how database-specific Notions are embedded in

this structure. The local, database-specific ontologies are thus aligned in

their structure, which allows the TDS to integrate the data loaded from the

component databases while maintaining (large) data islands of theory-

specific information.

which focuses on the management of integrated views of multiple (heterogeneous)

databases.

1. WAREHOUSE tds {

2. DECLARE NAME "Typological Database System";

3. …

4. DECLARE ROOT NOTION tds:Language

5. DESCRIPTION "All linguistic and non-linguistic information about a

6. particular language."

7. GROUPS {

8. TOP NOTION tds:LangIdentification

9. LABEL "Language identification"

10. DESCRIPTION "Information concerning the identification and identity

11. of a language: Name, georgaphical area where it is spoken,

12. etc. Properties that are not part of the synchronous

13. description of its system."

14. LINK TO CONCEPT languageInformation

15. GROUPS {

16. NOTION tds:Name

17. LABEL "Language name"

18. LINK TO CONCEPT language

19. TYPE IS TEXT;

20. … }

21. … }

22. …}

Example 2 An excerpt from the DTL Notion declarations showing the warehouse

scope tds.

 23

The relational database model, which underlies the design of most of the

component databases, uses a separate database table for each entity type, or

type of object being described (e.g., language, book, sentence). The TDS

equivalent is a so-called Root Notion; each Root Notion represents the root

of a separate hierarchy of Notions, and includes all properties of the object

being described. There is a very limited number of such hierarchies. At

present, the TDS contains five: for languages, potential phonemes, example

sentences, glosses and bibliographical references. Instantiations of these

Root Notions (for example, a particular language and a particular book) can

be related to each other through foreign key relationships, and can be in a

many-to-many or one-to-many relation.

1. DATABASE stressTyp {

2. DECLARE NAME "Stress Typology Database";

3. …

4. ROOT NOTION tds:Language

5. KEY IS LOOKUP(MAP code(FIELD Eth15,FIELD Dialect-name,FIELD Name))

6. GROUPS {

7. TOP NOTION tds:LangIdentification

8. GROUPS {

9. NOTION tds:Name

10. VALUE IS FIELD Name;

11. … }

12. TOP NOTION tds:Phenomena

13. GROUPS {

14. TOP NOTION tds:Phonology

15. GROUPS {

16. NOTION tds:MetricalPhonology

17. GROUPS {

18. TOP NOTION stressTyp:generalStressAssignment

19. LABEL "General stress assignment properties and parameters"

20. DESCRIPTION "A collection of general parameters and

21. properties describing stress placement

22. patterns."

23. LINK TO CONCEPT stressPlacementProperty

24. GROUPS {

25. TOP NOTION tds:stressRulesDescription

26. VALUE IS FIELD Quotation;

27. … }

28. … }

29. … }

30. … }

31. … }

32. …}

Example 3 DTL Notion hierarchy with Notion localization.

 24

The relational database model does not support hierarchical grouping of the

database fields (attributes) in a database. While a table’s attributes may be

conceptually organized into groups and subgroups with related content, this

is not expressed in the design of the database.
20
 But the data model of the

TDS is hierarchically organized, thereby allowing groupings of data fields

to be directly expressed as hierarchies of Notions. This model also supports

multiple values for a data field without needing a separate table/hierarchy,

as would be necessary in a relational database. This has made it possible to

replace various component database tables and special data fields, whose

only purpose was to accommodate multiple values, with a single TDS No-

tion that can simply be instantiated multiple times for a single record (e.g.,

multiple constituent orders for a single language).

5.3 The global linguistic ontology

As stated in section 2, the primary task of the global ontology of linguistic

concepts (TDS-GO for short) is to facilitate integration of diverse typologi-

cal databases containing information on (the analysis of) linguistic facts. To

do this, the TDS-GO specifies the domain vocabulary by defining Concepts

with descriptions of various linguistic terms and concepts (including infor-

mation on the logical structure of complex concepts). These descriptions

are intended to be descriptive and explanatory of linguistic concepts, but

neither exhaustive nor theory-neutral. They are designed to define the Con-

cepts which express and unify local ontology Notions.

The TDS-GO is not meant to include a comprehensive compendium of

linguistic concepts; We adopt the bottom-up principle of ontology devel-

opment (see section 5.3.1), and the TDS-GO only includes information that

is relevant, directly or indirectly, to the component databases comprising

the TDS.
21
 Some parts of the TDS-GO contain highly detailed and hierar-

20
 Some component databases achieve a limited grouping effect by creating a sepa-

rate table for each group of related attributes; this is unnecessary from the

relational perspective.

21
 The TDS-GO is not aligned with GOLD, the General Ontology for Linguistic

Description (www.linguistics-ontology.org). GOLD is targeted to concepts related

to morphosyntactic annotation, and therefore does not cover many of the topics

needed for the TDS global ontology. In addition, GOLD was still evolving at the

time the TDS ontology was developed; consequently, the TDS-GO was developed

independently of GOLD, rather than as an extension of it. We plan to align the

 25

chically deep Concepts, representing a range of linguistic phenomena in

phonology, morphology, syntax, semantics and pragmatics, from a syn-

chronic or diachronic perspective, with particular focus on the following

areas: grammatical agreement, parts of speech, word and constituent order,

stress placement, predication, phonemic and phonological properties, se-

mantic categories, relational categories (such as case, grammatical

alignment, valencies, event types and modification), speech styles, syntac-

tic categories, paradigmatic and systemic groupings, as well as geographic

location and genealogical classification. Three such examples of TDS-GO

class hierarchies (where “→” represents the is-a relation) are:

1. TDS-GO ontology → linguistic property → phonetic or phono-
logical property → syllable structure property → onset feature

→ obligatory onset

2. TDS-GO ontology → linguistic property → phonetic or phono-
logical property → suprasegmental property → stress placement

→ main stress placement → variable stress placement systems

→ non-lexical stress placement → edge placement → right word

edge stress placement → antepenultimate if heavy, else penulti-

mate if heavy, else antepenultimate.

3. TDS-GO ontology → linguistic property → linguistic functions
property → marker function → agreement marker function →

agreement marker for core arguments → subject agreement

marker.

The global ontology organizes the relevant linguistic Concepts into a co-

herent formal network of classes and relations. Where information in more

than one database relates to the same topic, it is the task of the ontology to

establish a valid conceptual structure that will enable the integration of di-

verse conceptualizations. Where multiple senses occur, the TDS-GO also

needs to maintain and present coherently the sense differences of compo-

nent databases. Thus the TDS-GO takes a neutral standpoint towards the

analyses represented by the component databases of the TDS. That is, we

do not consider it the job of the TDS Project to choose between alternative

analyses, but rather to provide access to information through cross-database

querying. Therefore the goal of the TDS-GO is not to provide one system

TDS-GO with GOLD to the extent that this is feasible, by defining correspon-

dences and removing any gratuitous incompatibilities.

 26

of linguistic concepts that is adopted as canonical, but rather to express the

systems of all the perspectives represented in the TDS. We therefore de-

scribe the TDS-GO as an inclusive ontology of linguistic concepts.

The TDS-GO is built using one of the industry-standard languages, Web

Ontology Language (OWL). The choice of OWL was motivated by (among

other things) the requirement for extensibility, ease of integration with

other components of our XML-based system, web-based user interface

querying and the availability of development tools.

5.3.1 Conceptual principles underlying ontology
development

The TDS-GO is based on a set of underlying principles which govern the

process of establishing Concepts and their relationships. As discussed in

Saulwick et al. (2005), our methodology follows current recommendations

for ontology building (Gruber 1993; Gómez-Pérez et al. 2004), namely:

clarity, coherence, extendibility [sic], minimal encoding bias, minimal on-

tological commitment, representation of disjoint and exhaustive knowledge,

minimization of syntactic difference in encoding and standardization in

naming conventions. Important features of ontology-driven integration are

the use of shared vocabulary in a coherent and consistent manner (Gruber

and Olsen 1994) and where possible the standardization of naming conven-

tions. In the following paragraphs we will discuss the conceptual principles

guiding TDS ontology development.

A bottom-up approach

A fundamental design principle of the TDS-GO concerns the basis for the

postulation and establishment of Concepts (i.e., classes, properties or indi-

viduals). It is a design and methodological principle of the TDS that

ontological Concepts are only established on the basis of information exist-

ing in component databases, thereby constraining the global ontology to a

range of relevant areas. This is motivated by the desire to ground the ontol-

ogy in empirical data-based theory, and thus it acts as a limiting device on

otherwise unconstrained ontology growth. However, a Concept may be

established for which there is no database mapping, if it is syntagmatically

or paradigmatically relevant. For instance, at one point the TDS-GO Con-

cept Transitive Object (the second argument of a transitive verb) was not

linked to any database fields, but it was included in the ontology alongside

the Concepts Intransitive Argument (the sole argument of an intransitive

 27

verb) and Monotransitive Argument (the first argument of a transitive

verb), which did relate to data in component databases. In other words, a

Concept may be established if it fills a paradigmatic or syntagmatic gap in

the network thematic domain. Later, this Concept was linked to new data-

base fields; in this way, its prior addition to the ontology as part of a

paradigm facilitated the integration and linking of new data in a globally

consistent way.

Prototypes

As is well known from prototype theory (Rosch and Lloyd 1978; Taylor

1989; Varela et al. 1991), an entity included in a category (also a class of

entities subsumed by a superordinate category) may have more or fewer of

the features/attributes associated with that category, depending on whether

it represents a more or less prototypical exponent of the category. The

TDS-GO adopts a prototype approach to the classification of linguistic

categories. For instance, the class Free Pronoun subsumes the classes Car-

dinal Pronoun, Demonstrative Pronoun, Emphatic Pronoun, Personal

Pronoun, Possessive Pronoun, Reflexive Pronoun, and Weak Form Of Per-

son Marker. Subsumption represents the standardly used “is-a (kind of)”

relation, where the subordinate entities represent specializations of the cate-

gory. It is clear that the entities Cardinal, Demonstrative, Emphatic,

Personal and Possessive Pronouns are each a special type of the superordi-

nate class free pronoun. That is, each of these classes has at least one

additional feature that is the basis for its specialization. We could label

each of these features, respectively, as +value cardinal, +value demonstra-

tive, +value emphatic and so on. In terms of classification, one could argue

that the class Weak Form Of Person Marker is an invalid specialization of

the class Free Pronoun because it is not necessarily free or unbound. Its

exponents may be free, cliticized or bound depending on the language.

Thus in the strictest sense the class Weak Form Of Person Marker is not a

specialization of the Free Pronoun. However, adopting a prototype analysis

allows for a subordinate class (in this case Weak Form Of Person Marker)

to have features in apparent conflict with the superordinate class if certain

core features of the specialized class are consonant with the superordinate

category. In this case we could describe some of these as: “deictic marker

referencing person referents.”
22
 By permitting the kind of prototype classi-

22
 The degree to which a weak form is able to encode referential specificity is not

at issue here; see Siewierska (2004: 9, 124ff).

 28

fication presented here, a richer and thus more fine-grained network of as-

sociations between categories is provided. This results in the possibility of

more extensive cross-data mappings and thus facilitates more effective re-

source discovery.

Theory-neutral perspective

Each of the component databases reflects the theoretical stance of its crea-

tor in a myriad of choices, both in the way linguistic phenomena are

conceptualized and in the terminology used to describe them. When diverse

databases provide information about the same topic or use the same term,

there is the potential for mismatch. As already mentioned, the TDS-GO is

an inclusive ontology of linguistic concepts: it provides a common vocabu-

lary that serves as a non-prescriptive basis for the integration of database-

specific categories. The TDS-GO is by design maximally compatible with

different conceptualizations of linguistic phenomena. It includes crucial

concepts but attempts to refrain from incorporating details peculiar to a

particular theoretical orientation. This does not mean that the ontology it-

self consists of Concepts that are “a-theoretic.” Indeed we hold that such a

pursuit is unattainable for the simple reason that all terms bear the hall-

marks of their particular theoretical orientation. Rather, the global ontology

is inclusive in the sense that it can accommodate the variety and richness of

individual theoretical orientations with all their idiosyncrasies. Where ap-

propriate, variant and potentially conflicting orientations or

conceptualizations are included in the global ontology and are unified un-

der broader categories.

The decision whether to include a concept in the global ontology is de-

pendent on how widely accepted a linguistic category is, within or across

(conflicting) linguistic theories. A linguistic category that is not included in

the global ontology is treated as a concept in a local ontology: it is repre-

sented as a DTL Notion (Saulwick et al. 2005).

In this way, the ontology strives to achieve a variation on the principle of

Gruber’s (1993) minimal ontological commitment, namely minimal orien-

tation commitment. This is the inclusion of diverse theoretical orientations,

without ascribing to any one a favoured status.

An example of “ontological unification” (Saulwick et al. 2005) is the case

of the variant Concepts Basic Word Order and Predicate-Based Word Or-

der. In the TDS-GO these are unified under the supercategory Core

Constituent Word Order. We call this semantic unification; not an ironing

 29

out or watering down of theoretical orientation, but the establishment of an

inclusive superconcept for the purposes of information integration. A query

over any one of these Concepts allows the end-user access to the others. In

adherence to the principle of clarity (Gómez-Pérez et al. 2004), the TDS

will ensure that the intention behind each database contributor’s use of ter-

minology is faithfully represented in the local ontologies of the DTL.

5.3.2 Linguistic Concepts

The TDS-GO models a variety of linguistic objects, relationships and other

linguistics-related ideas. Ontology Concepts are labeled and described with

a short explanation, and possibly references to a bibliography. The TDS-

GO thus also serves as a guide to interpreting the terminology of compo-

nent databases.

In this section we only give a high-level overview of the ontology design.

The reader is referred to Saulwick et al. (2005) and Dimitriadis et al. (2005)

for more details on the structure and implementation of the TDS-GO.

5.3.2.1 Types of linguistic Concepts

We distinguish between the following major types of linguistic Concepts:

1. Linguistic objects

These can be thought of as existing in themselves. They include Con-

cepts such as Sentence, Morpheme and Phonological Segment, as well

as classes representing Language and various groups of languages.

2. Linguistic properties

These are (linguistically salient) properties predicated of a linguistic

object. For example, Basic Word Order is a property of Languages,

while Referential is a property of certain words or syntactic constitu-

ents. In this terminology, properties do not relate one linguistic object

to another but can be thought of as one-place predicates. They are gen-

erally associated with a set of possible values; for some the values are

‘True’/‘False’ or ‘Present’/‘Absent’, while for others it may be one of

several possibilities with linguistic meaning such as a paradigm, as

with the property Case which can have the values Accusative/ Er-

gative/Dative, etc.

 30

3. Linguistic relations

These model a phenomenon involving two or more linguistic objects or

properties. For example, following Corbett (1998:191), Agreement is

modelled as a relationship involving a controller (‘the element which

determines agreement’), a target (‘[t]he element whose form is deter-

mined by agreement’), a domain (‘[t]he syntactic environment in which

agreement occurs’), and agreement features (‘in what respect there is

agreement’). The participants in a relation play distinguished roles,

whose names may be particular to each relation: for Agreement, the

roles are controller, target, etc. Complex phenomena that are not ex-

plicitly relational are also treated in terms of roles: for example, Stress

Assignment can be described as involving a Method (algorithm) that

makes reference to types of feet, edge-sensitivity, extrametrical mate-

rial, etc.

5.3.2.2 Relationships between linguistic Concepts

Entities in the ontology are organized according to the following major

relationship types:

1. Subsumption

Some linguistic Concepts are specializations of others. For instance,

‘grammatical case’ is subsumed by the more general Concept ‘case’.

2. Loose synonymy

This designates variant linguistic terminology used to refer to the same

phenomenon. When two phrases denote the same conceptualization of

a phenomenon, it is useful to link them in order to provide a means of

searching using different vocabulary than that used for naming the on-

tology Concepts. (Loose) synonymy between two phrases is currently

implemented as an annotation on the class (essentially, a data property

that gets a value for the entire class). The Concept Agreement Marker

is for example annotated with the alias Person Inflection.

3. Related phenomena

This identifies variant linguistic terminology used to refer to similar or

related phenomena. For instance, the Concept Basic Word Order has

this relationship to Predicate-Based Word Order. Although the two

phrases denote somewhat different conceptualizations of phenomena, it

is useful to link them in order to provide a means of unified searching

 31

across both component databases in which the terms occur. As neither

of the current standard annotations owl:sameAs and

owl:equivalentClass (Bechhofer et al. 2004) captures our required se-

mantic correspondence, we use our own annotation, tds:equatesWith, to

equate two related Concepts.

4. Meronymy

This stipulates part–whole relations.
23
 Some linguistic concepts are

modelled in a strict hierarchical structure. For example, mora > sylla-

ble > foot > ... form a meronymic hierarchy. Note that their

relationship to each other cannot be expressed through subsumption; a

syllable, for example, is not a kind of foot, but part of one. Certain lin-

guistic hierarchies are organized so that units of one type are a direct

part of the next higher unit, e.g., in the “prosodic hierarchy” (Nespor

and Vogel 1986), which is a hierarchy of utterance constituents from a

prosodic perspective in which “[e]very prosodic category in the hierar-

chy has as its head an element of the next-lower level category” (Kager

1999:146). The direct-part-of relation is a specialization of the general

part–whole relation.
24
 We encode part-whole relationships via a mero-

nymic predicate, isDirectPartOf (and its transitive closure, isPartOf).

This relation is asserted between pairs of classes, and serves to organize

them into meronymic hierarchies.

5. Determination

We use this appellation when a linguistic property is defined in terms

of one or more other linguistic properties. For example, if a heavy syl-

lable is defined as a syllable with a long vowel or a coda, then both of

these are determinants of the property Syllable Weight (even though the

23
 A variety of meronymic relationships may be required. For instance, Story

(1993) based on Landis et al. (1987); Winston et al. (1987) and Chaffin et al.

(1988) lists seven types of meronymic relations: component–object, member–

collection, portion–mass, stuff–object, phase–activity, place–area and feature–

event.

24
 Our implementation follows the current W3C recommendation, which calls for

expressing meronymic relationships in terms of a direct part relation when “what is

needed is not a list of all parts but rather a list of the next level breakdown of parts,

the ‘direct parts’ of a given entity” (Rector and Welty 2005).

 32

presence of only one is enough to make a syllable heavy).
25
 The deter-

minant relation is a logical (not linguistic) relationship between

linguistic properties or relations.

6. Form-function relationship

Here “function” is used in a specific sense. It refers to the linguistic

function served by some linguistic entity. This relationship associates

entities of the type linguistic object with linguistic properties express-

ing their possible linguistic function. For example, the Concept

Agreement Marker is a possible function of Affix. A form-function rela-

tionship is a (type of) linguistic relation, and it is implemented

accordingly (i.e., as an OWL Class with roles expressed as OWL Prop-

erties).

5.4 Topic taxonomies

The global ontology as described has a formal structure, which is needed to

enable “smart search” facilities. However, this does not make it a natural

entry point to the data collection for end-users. The placement of Concepts

in the global ontology, while formally correct, will not always be intuitive.

To minimize possible confusion, the global ontology is currently largely

invisible in the TDS user interface.
26
 Its primary function is in the back end

of the system, where it facilitates the coherent unification and integration of

diverse linguistic concepts.

The process of local and global ontology creation results in fixed Notion

and Concept hierarchies, each of which reflects one of many possible or-

ganizations of the (meta)data. By introducing topic taxonomies we allow

multiple organizations of metadata for different types of uses. A topic tax-

onomy is a relatively small list of domain-specific terms organized into a

loose hierarchy. They are designed to capture the perspective of different

25
 Determination only holds when the definition of a concept involves aspects of

another. It should not be confused with empirically based implicational relation-

ships. In the latter case we have two concepts which are independently defined,

and the implicational relationship is an empirical (contingent) fact rather than part

of their meaning.

26
 Concept definitions are shown to the end user when they (partially) match a full

text search, or in relationship to a Notion, allowing the user to fine-tune the search

or disambiguate the meaning of the Notion.

 33

sub-domains of the linguistic space. The data of component databases is not

directly associated to topics in the taxonomies, for the reason that as the

collection of component databases grows over time, it would be impractical

to maintain links to multiple topic taxonomies. Instead, the global ontology

serves as a common frame of reference at the nexus between metadata and

topic taxonomy. Topics in the taxonomies and Notions in the component

databases are both linked to Concepts in the global ontology, allowing tax-

onomy topics to be indirectly related to database fields. (The indirectness of

the link is not apparent to the users, who only see a list of fields and group-

ing Notions associated with each taxonomy topic).

The default taxonomy provides a complete overview of topics currently

covered by the component databases. Its initial structure was based on the

table of contents of Thomas Edward Payne’s book Describing Morphosyn-

tax: a guide for field linguists, but has been extended with more topics to

cover the entire domain of topics in the TDS. In this taxonomy the topic

“Complement clauses,” a daughter of the topic “Clause combinations, co-

ordination,” is linked to the Concept “Syntactic complement” in the global

ontology. This Concept has direct relationships with nine Notions in the

DTL specifications, e.g., the Notions tdn:Form_of_the_complements and

tdn:ComplementOfCopula. When we take the semantic context of these

Notions into account, the topic “Complement clauses” is directly or indi-

rectly related to 63 Notions. The Notions that are directly related will be

ranked highest when presented to the user.

No domain-specific taxonomies have been created to date, but it is envis-

aged that some may be created in the future, e.g., one limited to the domain

of phonology.

6 TDS implementation

The TDS architecture shown in Figure 1 is close to a semantic web appli-
cation, although it is an application-specific web.

27
 This made it possible

for some core technologies used in the metadata network to follow W3C

recommendations or working drafts. Topic taxonomies make use of the

27
 The TDS web interface is of course part of the World Wide Web, and some de-

scriptions of Notions, Concepts and topics refer to web pages on other sites.

However, the semantic knowledge base isn’t open and thus is not part of the se-

mantic web as envisioned by W3C.

 34

SKOS vocabulary, and the global ontology is defined in OWL. A benefit of

using these standards is that externally developed tools are available to aid

in managing the corresponding components, e.g., the TDS-GO is edited

with the Protégé ontology editor with a plug-in for OWL.

The DTL was developed in-house, as no suitable specification language or

toolkit was found. Early versions of the TDS used XSLT as the transforma-

tion language, with the result that creating specifications required extensive

knowledge of the low level implementation details of the TDS. The DTL

was designed with the goal of allowing the knowledge engineer, a linguist,

to create such specifications. In addition, it supports the addition of en-

riched metadata about the database semantics. The DTL is a declarative

domain-specific language for transformation rules, which can be annotated

with metadata that express the semantics of the resulting data (schema).

The DTL Engine, the interpreter that carries out the database integration

according to the DTL specifications, is implemented in Java.

One of the first products of the TDS implementation phase was a tool to

import data from various database formats, called TDS Localize. This tool

is implemented in C, and uses a plug-in architecture to allow the dynamic

addition of loaders for new DBMSs. The current set of plug-ins provides

access to databases using the following interfaces: ODBC (e.g., MySQL,

Microsoft SQL server), ODBTP (e.g., Microsoft Access) and CSV exports

(e.g., SPSS, Mircrosoft Excel). The DTL engine relies on this tool to im-

port most of the databases. By now some C plug-ins (e.g., for CSV and

XML files) have been replaced by Java equivalents, which are loaded di-

rectly by the DTL engine; but TDS Localize is still needed because C

libraries are still the only way to access some major DBMSs (e.g., Micro-

soft Access is only accessible via ODBTP).
28

The result of the import, transform, merge and enrich process, as imple-

mented in the DTL engine and specified by a set of database specific DTL

specifications, is a large XML document containing the instantiated, and

interlinked, Notion hierarchies. XML is well suited for this kind of semi-

structured data, (semi-structured because the resulting data structures may

overlap only partially, allowing very sparsely filled data structures). The

28
 A complete switch to Java would allow the complete TDS framework to be de-

ployed on any platform that Java runs on. TDS Localize is currently the only tool

that binds the TDS to the UNIX family of operating systems.

 35

use of XML also enables us to draw on the wealth of technology standards

and tools which have been produced since its birth out of SGML in 1998,

e.g., XSLT and XQuery.

The TDS web interface uses two additional modules. The front end is pow-

ered by Backbase (http://www.backbase.com/), a Rich Internet Application

(RIA) library, which uses JavaScript to extend the browser with a set of

sophisticated GUI widgets allowing the creation of web applications which

resemble desktop applications in functionality. The server back-end uses

the 1060 NetKernel application server (http://www.1060.org/), which in-

corporates a very rich set of tools to handle XML. The most prominent tool

is Saxon (http://www.saxonica.com), the leading open source XSLT and

XQuery engine.
29
 This engine is used to execute the queries and to style the

query interface and results.

7 The user interface

The TDS webserver must provide the functionality of a specialized interac-

tive application while running on an ordinary web browser. This is

accomplished with the help of Backbase, a sophisticated library of

JavaScript routines that extend the web browser’s built-in capabilities.

JavaScript is executed by the user’s web browser, which must therefore be

of sufficiently recent vintage, and must have JavaScript enabled. The

Backbase library provides user-interface enhancements such as pop-up

29
 Saxon is not the ideal tool for the purposes of the TDS. At the start of the TDS

implementation phase, Saxon was the only reasonably up-to-date XQuery proces-

sor. However, Saxon is document-oriented, which means that in principle it has to

reread the source XML document, the TDS data, for each query. The 1060 Net-

Kernel helps by caching the parsed XML document, but the resource consumption

is still quite high as the document has to be fully loaded into memory (which takes

on average 5 times the size of the document on disc!)

Since XQuery gained W3C recommendation status, more and more standards-

compliant XML database engines are becoming available, and could replace

Saxon. An XML database engine would, among other optimizations, take care of

loading only XML document “hot spots” into memory; hence it is expected that

resource consumption will be more modest, and response times will drop to a frac-

tion of current levels. At the time of writing, however, the TDS implementation

still uses Saxon as the XQuery engine, and has not been ported to an XML data-

base engine.

 36

messages, “tabbed” sub-pages, and a rich system of windows and menus,

all managed within the browser window. The library makes it possible for

many interactive operations to be performed locally on the user’s computer,

avoiding a time-consuming request to the TDS webserver at each step.
30

The opening page of the TDS server provides the starting points for using

the system, as well as links to the expected information and support pages.

This includes documentation about the Project, a tutorial walk-through that

introduces new users to the basics of using the system, descriptions of the

databases included, and technical features and limitations of the TDS

server.

As mentioned in section 4.1, querying the TDS is a two-step process: The

pre-query involves selecting database fields of interest and adding them to

the query basket. The user then opens the query basket and specifies query

options and search terms for the actual query. The query can then be sub-

mitted to the server, and the results are returned and displayed.

The goal of the pre-query stage is to find database fields whose contents are

relevant to the user’s goals. The TDS provides ways to search or browse

through the descriptions of fields. In the Search tab, the user types search

terms in a form and is shown a list of database fields with matching meta-

data. Suppose, for example, that a user wants to look up whether Swahili is

listed as a null-subject language. They can look for relevant database fields

by typing “null subject” in the search field of the Search tab, which will

reveal (alongside a large number of other partial matches) a field named

pro-drop. The documentation displayed with this field indicates that it

comes from the TDN database, and that it is indeed relevant to the task at

hand. It should be noted that the search terms are not only matched against

the text of the field names and descriptions, but also against the possible

values of each field and the global ontology Concepts to which the field

and values are linked. (Matching Concepts are also shown in the list of

30
 The extra functionality comes at some cost. “Rich internet application” libraries

are still relatively unstable technology, due especially to browser inter-

compatibility limitations, and place heavy processing demands on the user’s

browser. The TDS server is only compatible with relatively recent, full-featured

versions of Internet Explorer and Firefox; the TDS interface takes 10-20 seconds to

start up, or even more on slow computers, because of the complexity of the

JavaScript library; and the TDS interface is poorly integrated with the browser’s

Back button (it is recommended that its use should be avoided).

 37

results). In this way the global ontology of linguistic Concepts, and the

links between them, serve as a system of structured keywords that guide

searches. For example, the database field pro-drop is linked to the Concept

NullSubject. Searching for “null subject” will match the field pro-drop via

this indirect link, even though the term does not appear in the field’s de-

scription. Once a field of interest is found, a user may add it to the “query

basket,” a sort of shopping cart for database fields.

As an alternative to typing in search terms, a user can browse the hierarchy

of topics and data fields in the TDS (i.e., the taxonomy topics and local

ontology Notions). The TDS interface provides several alternative hierar-

chies for navigation. The “view by datatype” tab matches the hierarchy of

entities and thematic groupings in the TDS data. At the top of the hierarchy

are the objects described: a language treated as a whole, a unit of text (usu-

ally a glossed sentence with additional annotations), or an external entity

that exists independently of any particular language, such as bibliographic

sources or the universal phoneme inventory.
31

Most component databases of the TDS consist of “analytical” parameters,

which describe a language as a whole. Hence, most information is found

under the heading Language. This contains language identification infor-

mation (name, ISO code, location and genetic affiliation), and a large group

of properties labeled Linguistic Phenomena, which is where information

about linguistic systems and properties is concentrated. Users of the TDS

will most often search under this node.

The second view through which the user can browse for data fields is or-

ganized by topic. Here the linguistic topics covered by the component

databases of the TDS have been organized into a shallow hierarchy, or tax-

onomy. It is the “table of contents” of the TDS, much as the table of

contents of a linguistics textbook provides an overview of the topics it ad-

dresses.
32
 Because the description of a database field often involves

reference to several linguistic Concepts, a database field may appear under

several topics in the hierarchy. The TDS currently provides two different

topic taxonomies; it is planned that additional taxonomies may be added,

31
 In a relational database, each of these would correspond to a separate table. The

TDS equivalent is a so-called Root Notion.

32
 The topic hierarchy is in fact modelled on the table of contents of Payne (1997),

with the necessary adaptations.

 38

customized to particular kinds of uses or subfields of linguistics (e.g., for

phonology-related topics).

Once the user has added some fields to the query basket, they can proceed

to the second stage of the search procedure, the formulation of the query

itself. The query basket is viewed in a separate window, which lists each

collected field or group along with its description and controls for defining

the search query. To this end, the user must decide on (i) what selection

criteria to specify (e.g., “the field pro-drop must have the value True”), and

(ii) which fields to display in the results.
33
 If one wants to know the names

and language families of languages that have pro-drop, they would specify

“pro-drop = True” as the selection criterion and include Language name

and Genetic affiliation for the fields to display.

Only fields in the query basket can be used for this process. If the user

wants additional fields, they must resume the pre-query process and add the

required fields to the basket.

The method of specifying selection criteria depends on the type of the data

field. For fields with “enumerated” values, which come from a fixed set of

choices, the query window displays a control that allows for the selection

of one or more desired values. For text fields, users can enter text to search

for, with a choice between exact and partial (substring) match. For exam-

ple, one can search for all phonetic segments whose description includes

the words unrounded vowel. Text fields, and searches, may use any Uni-

code character.
34

33
 It is possible to specify selection criteria for a field but suppress its display; for

example, if one only selects languages that have pro-drop, there is no need to see

the value “pro-drop = True” for each language shown. If multiple values can match

the selection criteria (e.g., “Basic Word Order = SVO or VSO”), it is of course

necessary to display the relevant field if its value is of interest.

34
 A small icon provides a shortcut to the TDS IPA Console, an external applica-

tion that can be used to paste special characters (especially IPA characters) into

form fields. The TDS IPA Console is a java application developed as a stand-alone

tool by the TDS Project. It was developed to simplify the entry of IPA characters in

phonological query fields, but it can be used with any other program that can im-

port (paste) text from the system clipboard: text editors, spreadsheets, web

browsers, etc. The Console comes with a large number of predefined buttons for

entering IPA characters, arranged on several tabs in the familiar IPA table layout;

 39

Once the query has been defined in this fashion, it can be submitted to the

system. The result appears in a new window. (Multiple query views can be

open simultaneously, and each is automatically assigned a number. They

remain open when the query is submitted and can be resumed, modified

and resubmitted.
35
)

The results are displayed in table format by default, but the TDS supports

several alternatives. At the top of the results window is a link (labeled re-

sult settings) that allows switching between display modes. The “report”

format displays each field and value on a separate row, and is useful when

very many data fields have been selected for display, or with long text

fields. The “summary” style presents counts for the different values (e.g.,

number of languages in the TDS listed as having each word order), and

constitutes the only kind of data statistics currently provided by the TDS.

There are also two export formats, XML and comma-separated values

(CSV); these are useful for exporting the results to another database appli-

cation or spreadsheet.

The TDS system, as can be seen from the presentation of its features, is

oriented towards discovering and viewing data in the component databases.

Because of the mixed nature of its content, the set of languages found in the

TDS do not constitute an areally or genetically balanced sample. While

balanced sub-samples can be defined among the great number of languages

present in the aggregated TDS data, such collections will not have values

for all possible typological parameters (database fields); thus, a balanced

sample can only be defined on a per-query basis, or for one component

database at a time. This feature is not currently supported by the TDS; be-

cause of the additional uncertainties involved in aggregating diverse

databases, we advise against attributing statistical significance to the results

retrieved from the system.

users can define additional keys bound to any Unicode character (which can be

selected from a list or specified by its “Unicode number”).

35
 At the time of writing, support for modifying a query window is limited. Selec-

tion and projection criteria can be changed, but new fields cannot be added to an

open query view window. Instead, new fields must be added to the query basket

and a new query window must then be opened.

 40

8 Working with metadata

The TDS framework for data integration allows a lot of flexibility in carry-

ing out the integration process. Just how this should be done depends on the

particular database being integrated, on the general principles that the TDS

team has adopted, and not infrequently on the subtleties of relevant linguis-

tic theory.

For each database included in the TDS system, a DTL schema is written

that defines the transformation of the source data into the unified data

schema of the TDS. After a careful examination of the original database,

and usually following some discussion with the database creators, members

of the TDS team create an initial schema file that imports the data from the

database into “field Notions,” i.e., nodes in the DTL hierarchy representing

a database field, essentially with no changes. (As already described, the

DTL schema includes a reference to a plug-in that establishes access to the

database). The TDS knowledge engineer then embarks on reorganizing the

data fields of the component database so that they match the hierarchy and

encoding conventions of the TDS system, and on entering documentation

for all Notions in the resulting schema.

The simplest kind of alteration (conceptually at least) is the recoding of

values for common types. For example, Boolean (true/false) fields are rep-

resented with the standard values “True” and “False” in the TDS. If a field

uses the values “+” and “-”, “yes” and “no”, or “1” and “0”, these will be

mapped to the TDS standard.

Another kind of recoding involves various kinds of cleaning up the values

found in a database. Component databases often use text fields for parame-

ters that logically allow only a restricted set of values (true/false

parameters, word orders such as “SVO”, “SOV”, etc.). This opens the door

to inadvertent misspellings, typos or other irregularities in the content of

such fields, which must be resolved if they are to be correctly matched to

query selection conditions. DTL specifications often include ad hoc rules to

address such problems.

Sometimes the database creators append comments to the logical value of

the field, most frequently question marks or other annotations indicating

uncertainty about the correctness of the value. Such annotations constitute

important information for the end user; they are separated from the value

itself and recorded as an “uncertainty marker,” which is automatically dis-

played whenever the associated value is displayed in the results of some

 41

query. (Cf. section 9 for further discussion of uncertainty annotations).

Other fields are combined or split up to yield more consistently organized

Notions. A database will sometimes use a different data field for each pos-

sible value of a linguistic property; e.g., one field for the basic word order

SVO, another field for SOV, etc. Such decomposition into “characters” has

its uses, but it does not meet the design guidelines of the TDS; logical

fields are reconstituted, so to speak, by mapping groups of such database

fields into a single Notion.

In some cases, a new Notion is computed in more elaborate ways from one

or more database fields. The field Notion “pro-drop” (whether a language

allows main clauses lacking an overt subject) is computed from its logical

complement, a field in the TDN database that records whether a language

always requires overt subjects in main clauses. A more complicated exam-

ple, involving the computation of the property Trochaic language from a

combination of other properties, is described in the next section.

A major part of harmonization is the assignment of Notions to the proper

place in the TDS hierarchy. Database fields whose semantics are suffi-

ciently similar to those of other databases (e.g., language name) are

mapped to Notions with global scope. Such Notions are typically already

defined elsewhere, in the master DTL specification; the schema for the

component database instantiates them with data from the database. (If a

Notion belongs in the global scope but is not already defined, it can be

added to the master DTL schema at this point). Most Notions, however, are

defined in a way that is specific to their database of origin and will receive

local scope. They are grouped and organized hierarchically to represent the

conceptual relations between the various fields in the database. Hierarchies

of local Notions are embedded in the shared hierarchy; for example, the

master DTL file defines the Notion tds:Phenomena (containing all linguis-

tic phenomena) and a daughter called tds:BasicWordOrder, representing all

information on word order from all databases. Databases containing word

order information will define Notions with local scope within this subhier-

archy, as appropriate. If some Notions defined with local scope are later

found to be shared by several databases, they can be transferred to global

scope so that they can be shared as needed.

In addition to situating and instantiating field Notions properly, the TDS

knowledge specialists must look after their descriptive metadata. These

consist of descriptive documentation entered directly into the DTL and

associated with Notions at any grouping level, and of links to Concepts in

 42

the global ontology. Appropriate links facilitate discovery of these Notions

through the search interface, and bridge the gap between database-specific

(local) semantics and global semantics.

Finally, an important part of the data import process is the harmonization of

key values. Almost all typological data describes individual languages;

merging data from different databases relies on knowing which language is

being described. The TDS accomplishes this by basing the primary key for

each language on its ISO code (SIL code). Ideally a component database

will provide ISO codes for every included language; in practice there are

plenty of omissions, differences between versions of the Ethnologue, and

other complications that are resolved by the knowledge engineers on a case

by case basis.

Similar problems arose in the harmonization of phoneme inventories; this

case is described below (section 8.2). First, we turn to a simple example of

constructing a TDS Notion that does not correspond to a single database

field.

8.1 Finding “trochaic languages”

Stresstyp contains information on the foot type that is used in the derivation

of stress systems in various places. Feet are used to derive the locations of

primary and secondary stress (the separation being motivated by arguments

not discussed here, but see Goedemans and Van der Hulst, this volume). As

is well known, feet come in two flavours, iambic (right headed) and tro-

chaic (left headed). In the view of StressTyp, a language is said to be a

trochaic language if any of the following is true:

1. the default foot used to place stress in the primary stress domain (in
every case in quantity-insensitive languages, and in case both syl-

lables are light in the quantity-sensitive languages) is trochaic.

2. The foot used to derive the location of rhythm beats (secondary
stress) is trochaic.

3. Both iambic and trochaic feet are used in the derivation of rhythm.

StressTyp does not directly record whether a language is trochaic, but the

property is easily calculated. To find a list of languages with these parame-

ters from within the StressTyp database, we need to execute the SQL query

shown in Example 4.

 43

1. SELECT Name

2. FROM Stress

3. WHERE Rhythm_Type="trochaic“

4. OR Rhythm_Type="both“

5. OR Stress_l_l="trochaic";

Example 4 Trochaic feet SQL query

For the TDS, it was decided that this property should be directly searchable

in the system. Accordingly, a local Notion was defined, and its value is

computed from the relevant StressTyp fields as appropriate (Example 5).

The result is an ordinary field Notion that can be used in queries like any

other field. A query for trochaic languages returns a list of 160 matching

languages.

1. NOTION stressTyp:trochaicFeet

2. LABEL "Trochaic language"

3. DESCRIPTION "Trochaic feet are used in the analysis of the stress pattern

4. observed in this language"

5. LINK TO CONCEPT trochaicProperty

6. IS (

7. FIELD Rhythm_Type="both“

8. OR FIELD Rhythm_Type="trochaic“

9. OR FIELD Stress_l_l="trochaic“

10.);

Example 5 Trochaic feet DTL Notion

8.2 Harmonizing phoneme inventories

The core source of information on phoneme inventories in the TDS is Ian

Maddieson’s UCLA Phonological Segment Inventory Database, or UPSID

(Maddieson 1984; Ladefoged and Maddieson 1996). This database contains

a set of 920 segments, from which individual languages select a subset to

form their specific phoneme inventory. The segments in the original

UPSID database are represented in a highly idiosyncratic, SAMPA-like

encoding. This means that the identity of a certain segment is not transpar-

ent to users unless they are thoroughly versed in the UPSID encoding

system.

The TDS Project has adopted the international standard IPA representations

for phoneme representation. This was not possible when UPSID was origi-

nally created, but is relatively simple nowadays, since there are Unicode

fonts in common use that contain the (majority of) necessary IPA charac-

 44

ters. Therefore, the first stage of the harmonization of UPSID was to trans-

literate the 920 SAMPA-encoded segments into IPA.

This achieved the dual purpose of upgrading to the more user-friendly and

standard IPA, and enabling integration of UPSID with other databases con-

taining information about phonemes. Thus a searchable list was created,

encoded in Unicode IPA, together with a phonetic description of their ar-

ticulatory and/or acoustic properties. This list is a reasonably

comprehensive (but certainly incomplete) collection of the possible pho-

nemes in human language, and might be of some interest in itself. But the

main motivation in creating it was to support IPA notation in querying and

displaying the phoneme inventories of individual languages, or groups of

languages.

Representing the results of such queries on screen in a user-friendly fashion

also proved to be a challenge. A long list of consonants and vowels is much

less informative than a neat table, comparable to those found in grammars

and IPA charts, where consonants and vowels are ordered according to

their place and manner of articulation. This information is available in

UPSID, along with all other segmental features. In order to be able to rep-

resent phoneme inventories on screen, we created the Universal Phoneme

Position Chart (UPPC).

 Bilabial Labiodental Dental

 Voiceless Voiced Voiceless Voiced Voiceless Voiced

Plosive p b b� t� d�

Plosive,

aspirated p� t��

Plosive,

preaspirated �p

Plosive,

palatalized p� b� t�� d��

Plosive,

labialized p	 b	

 Table 1 The initial five rows and six columns of the Universal Phoneme Position

Chart

 45

For consonants, the UPPC is in essence a single table of 30 columns and

171 rows, in which all segments are represented according to their manner

and place attributes. The treatment of vowels is similar. The large number

of rows results from the extensive number of secondary articulations that

are potentially distinctive in individual languages. An excerpt from the up-

per-left corner of the UPPC is presented in Table 1.

With the aid of the UPPC, TDS query results involving phonemic inventory

data can be presented on screen in table format. To generate an inventory of

a single language, empty columns and rows are automatically removed,

resulting in a table of manageable proportions. As an extra feature, we have

added the possibility to render tables from queries over multiple languages.

Such queries result in aggregated “phoneme inventories” presenting the

phonemes of all languages in the query. This is supplemented by numbers

indicating their frequency, with coloured backgrounds to reveal “hot spots”

of common or very common phonemes.

8.3 Expanding the coverage

Starting with UPSID’s extensive segment pool, we hoped to be able to in-

corporate other databases containing information on segment inventories

relatively easily. The IPA representations, which are created from templates

with fixed orders for multiple co-articulation modifiers to the central sym-

bol, act as the database keys to which we can link phonemes from other

databases. Our expectation was that UPPC would require little supplemen-

tation, beyond the 920 values from UPSID, to support other databases with

phonemic information. But our experience with the incorporation of the

SPIN database proved otherwise.

SPIN contains phoneme inventories for 110 languages. It is unique among

the TDS databases in that it did not enter the Project as an electronic data-

base; the data was available to us only on handwritten index cards, and was

digitized by TDS participants.
36
 Unicode IPA characters were used

throughout, to ensure compatibility with the UPPC and the rest of the TDS.

Once the data was imported, we matched the complete set of phonemes

from SPIN to the 920 potential phonemes in the UPPC, expecting to have

to iron out only a moderate amount of human errors. Unfortunately, the

36
 The data were entered in Excel worksheets and imported into the TDS using a

custom conversion script.

 46

“ironing” required proved to be quite substantial. There were 418 discrep-

ancies between SPIN and the UPPC, attributable to six types of

mismatches:

1. Homographic errors: incorrect symbols

A unique phoneme should be represented by a unique Unicode character,

but in practice this is not always the case. Especially when differences be-

tween characters are not clearly visible in certain fonts, errors are easily

made when entering data. When using a font in which /g/ looks exactly like

/
/, for instance, the former may be selected to represent the voiced velar
plosive although the latter, a character with a different Unicode number, is

the official IPA symbol. Errors of this type are easily corrected through

visual inspection of the mismatches.

2. Variant grapheme mismatches

In some cases two official notations for the same phoneme exist, as with

the case of velarization, which can be represented by either d� or d� for the
voiced alveolar plosive. If two databases happen to choose different op-

tions, we get a mismatch that is not apparent but will lead to incorrect

behaviour in queries, since the same phoneme is intended. We resolve this

type of mismatch by permitting either grapheme as a valid representation of

the phoneme and introducing a relationship which equates the two possible

representations in the data representation language. Note that when more

than one linguist fills a database, one may even get database-internal incon-

sistencies of this type, in which identical co-articulations for two different

phonemes are represented differently.

3. Notational mismatches

Notation differences in older sources, or sources with different notational

conventions. This type is similar to the previous one. Labialized segments,

for instance, are normally represented with superscript /
w
/. In some sources

one may find a convention in which labialization is represented by a normal

/w/. We can only correct this by looking at the source from which the in-

ventory was taken to determine exactly what articulation was originally

intended. If that information is available, we can represent the phoneme

using the current IPA notation. Some times, however, an uncommon pho-

neme is intentionally represented using non-standard orthography; care

 47

must be taken here not to equate such phonemes to a common phoneme

that is already present in the UPPC.

4. Grapheme order mismatches

Multiple co-articulations may be represented in different order. A labial-

ized, aspirated /k/ can be represented as /k
wh
/ or /k

hw
/. There are

conventions, however, for the concatenation of diacritics, and we adhere to

these, e.g., using /k
wh
/ and revising alternate representations.

5. Diacritic order mismatches

Similar, thought not visibly so, are those phonemes written with multiple

diacritics whose sequence is unordered. One diacritic may be placed above

the segment, for instance, and one below it. These may be entered in either

order. The result will be the same graphically, but the sequence of Unicode

characters is different. This problem is easily solved by normalizing the

Unicode representations,
37
 or by visually examining the entries and manu-

ally imposing a fixed ordering scheme.

6. Input errors

Simple input errors are easily introduced. For instance, an extra diacritic

may have unintentionally been typed after some segment. This may be

poorly visible or invisible on the screen, but will lead to a different Unicode

representation than the one intended. Moreover, diacritics may have been

chosen that are simply incorrect, or errors may have been introduced when

working from not very legible (especially handwritten) originals. These

errors are usually easy to fix after reference to the original database.

After we corrected the mismatches of these types, we were left with 190

segments that are new and quite a few that needed checking in the original

grammars. For a few languages, we consulted the original reference gram-

mar and established that an unmatched segment should in fact be replaced

by one already in the UPPC. The number of remaining new segments

seems rather high to us, but since the purpose of the TDS is to integrate

existing databases rather than to create new resources, we do not put further

effort in resolving the differences between the datasets. We simply expand

37
 The Unicode standard defines several normalized forms, which include a ca-

nonical order for diacritics. Unicode-enabled software libraries provide functions

that normalize Unicode strings.

 48

the pool of possible segments with those phonemes from SPIN that were

not eliminated during the procedure described above.

9 Guidelines for typological databases

During the process of importing the eleven databases currently in the TDS,

several recurring problems were recognized in the metadata and data clean-

ing process. This section contains some guidelines for developers of

typological databases which would improve their reusability, both as stand-

alone resources and through incorporation into the TDS or a similar system.

1. Good database design

Choosing the appropriate relational design for a database (that is, the struc-

ture of tables and relationships that make up the database) can make a big

difference to its usability, as well as to the ease of reusing its contents in the

TDS or any other system. A properly designed database is easy to enter

data into and extract information from; it is also easier to modify as one’s

research design evolves. We recommend making the effort to choose a

suitable design, by finding and consulting knowledgeable colleagues if

necessary, at the initial stages of constructing a new database.
38
 Starting

with the right design has such immediate and noticeable benefits for the

database creators that its usefulness for eventual data integration is almost

incidental.

2. Documenting assumptions and procedures

Typological databases have a long lifespan. Most of the databases currently

incorporated in the TDS have existed for over a decade, even decades. Dur-

ing such long periods of time it is easy for the assumptions and procedures

employed when defining fields and adding languages to the database to be

38
 The simplest typological databases consist of a single large table, with one re-

cord (row) per language and one column for each property being described. If a

phenomenon could be described multiple times per language (e.g., information

about each focus marker or syllable structure that occurs), these ought to occupy a

separate table in a many-to-one relationship to the language table. Also examples,

bibliographic citations, etc., should generally be in separate tables. The needs of

each database differ, so the right design depends on the information being collected

and the needs of the project. For an introduction to database design for linguistics,

see Dimitriadis and Musgrave (this volume).

 49

lost. Sometimes this may lead to inconsistencies. By documenting the data-

base it becomes possible to refresh the project’s collective memory, to keep

data clean and consistent, and also to provide rich metadata if the database

is eventually made public or is reused, for example by incorporating into

the TDS. Some database systems provide a way to store documentation of

the database’s fields, but such support is typically very limited. It is often

more convenient to maintain documentation in a separate document, or in a

special table within the database (special effort must be made to keep these

up to date, however).

3. Citations to the sources of information

Some typological databases, especially older ones, do not include biblio-

graphic or other source information. Such information is essential for error-

checking or further research into the information given in the database;

even in cases where there is only one well-known reference grammar for a

given language, in which case one might consider a citation of it to be re-

dundant, this fact is only known to people who are already involved in

study of this language. At a minimum, a typological database should list the

source, or sources, of information for each language. Such information only

needs to be entered once per source, and can be re-used for future research

involving the language. Sources should be given in a separate table, allow-

ing the same source to be easily referenced for multiple languages, or other

records, where appropriate (and perhaps to be copied to a new database).

Ideally, each group of information in the database would include a separate

citation, consisting of a source plus the relevant page numbers; but this may

be impractical if it will result in a very large number of citation fields. Sim-

ply listing sources for each language in the database is an extremely useful

and workable compromise.

4. Key values

Record keys identify each record to the database. We recommend that you

look for standards to take your key values from. Even if your database in-

ternally uses numeric keys or other ad hoc values, providing standard

identifiers makes it easy to detect inadvertent duplications and is essential

for the reusability (i.e., continued life) of the data. In the case of languages,

which are always the core entity in a typological database, the standard to

use is the most current ISO 639-3 specification (http://www.sil.org/iso639-

3/), which contains unique language codes for living and extinct languages.

The ISO 639-3 codes are the successor to the “SIL codes” used in the past

 50

by the Ethnologue language directory. It can be difficult to fill in this in-

formation after the fact; often, the ISO code corresponding to a language

cannot be determined without referring to the original reference grammar.

The TDS is replete with data about languages whose identity (i.e., ISO

code) could not be determined with certainty by the TDS analysts. ISO

codes should always be determined (and recorded) when data entry for a

language commences. The introductory section of most reference gram-

mars provides sufficient information to identify the language in the

Ethnologue.

What if the language variety being described is a dialect that differs in sig-

nificant respects from the standard, or canonical variety, of the language

listed in the ISO 639-3 directory? In this case the ISO code for the language

should be provided, but the record must be distinguished from one that

would describe the standard variety. This must include the assignment of a

special key for the dialect; again, we recommend adhering to a systematic

means of identification if possible. The Ethnologue contains additional

information on language families and dialects which can be used to stan-

dardize keys. Only fall back on an internal key when a standard one cannot

be found, since lack of a database-independent key will greatly complicate

the integration of data for that specific language with data from other data-

bases.
39
 Non-standardized keys should be clearly distinguished from ISO

codes or other standard keys (e.g., by beginning with a prefix such as dia-

lect-).

5. Comments

Many databases contain a field with arbitrary notes or comments for any

aspect of the record. Such general-purpose fields are difficult for the TDS

to handle, since data is extracted and presented one field at a time. It is far

better to have separate comment fields for each value or group of values

that requires them (this is also more effective for the original database). At

the least, a comment should name the data fields that it is relevant to.

39
 If the ISO codes are used as the primary key for a record, internal codes are nec-

essary to avoid null keys; but if the ISO codes are given in a non-key field, only

valid ISO codes should be provided; a three-letter code that is not part of some

standard is worse than useless, since it might be misinterpreted during a future data

integration.

 51

Another common practice is to use “a comments field” for any information

that the database creators decided to collect after the database was already

designed, or that they cannot decide how to encode. Such practices are

sometimes unavoidable, especially if information must be collected before

a decision on its encoding can be made; but they should be replaced as soon

as possible by dedicated fields. A comments field is only useable by hu-

mans inspecting the record, and cannot be properly utilized in database

queries.

6. NULL values

NULL values are controversial in the database community because their

semantics are not well-defined (cf. Date 2004: ch. 19). What does a NULL

mean? Is the field irrelevant in this record? Should the NULL be inter-

preted as some default value for the field? Has a value simply not been

entered yet? Or did the analyst try to determine the correct value but could

not, because the source grammar does not cover the subject, or perhaps

because complexities in the language under study make an answer impossi-

ble? We recommend that you choose specific values for each of these

circumstances (as applicable), make them as explicit as possible, and ex-

plain their meaning in more detail in the database documentation. For

example, NULL should mean not yet looked at, irrelevant can mean that

the question does not apply, another value can mean “looked at but could

not find the proper value.” This will facilitate further data entry in the data-

base, and will allow the TDS to provide this information to the end user.

7. Uncertainty

Values cannot always be assigned with complete certainty. Uncertain val-

ues are better than nothing, but it is good practice to make the uncertainty

explicit. A common stratagem is to append a question mark to the value, or

to put it between brackets. Sometimes comments are also added to the

value. But this is a poor strategy from the perspective of database design,

since the variant codes look like completely different values to the DBMS

(for example, “X” and “X?”), and since it requires that the values be de-

clared as text fields (rather than boolean or other enumerated types). A

better strategy would be to have a separate field encoding the degree of

certainty, but this might be impractical if it would need to be replicated for

very many data fields. For the purposes of importing a database into the

TDS, a simple and consistent means of marking uncertainty works best

(e.g., by appending a question mark). The TDS can split up such construc-

 52

tions into the value proper and the uncertainty value. Elaborate embedded

notation for values is difficult and error-prone for database contributors to

enter, and for the TDS to parse. In any event, it is important that any nota-

tional conventions be clearly documented.

10 Conclusions

The TDS approach to data integration is based on the principle that seman-

tic integration of complex typological data from different sources is both

impossible and undesirable. Impossible because the different typological

data collections differ in subtle and complex ways; and undesirable because

many such differences are inextricably linked to particular theoretical con-

ceptualizations, which are the goal and end-result of typological research

itself. Accordingly, the TDS data management schema is designed to ac-

commodate, side by side, alternative ways of organizing and describing a

semantic domain. This approach does not preclude full semantic unification

where it is possible (for example, where the differences are primarily nota-

tional), but it allows data integration to be carried out without it. Instead of

focusing on unification, primacy is given to preserving the explicit and

implicit knowledge in the component databases, notably through the addi-

tion of detailed interpretive metadata in consultation with the creators of

the component databases.

The databases currently included in the TDS represent a wealth of painstak-

ingly collected typological information. The TDS allows for the first time

their diverse contents to be examined side by side, and to be interpreted

with the aid of descriptive documentation solicited and organized by the

Project members. Its export-oriented output formats allow data to be trans-

ferred to external applications.

Internally, the “hybrid” approach to knowledge representation provides a

global ontology of unifying linguistic Concepts (which still accommodate

multiple theoretical perspectives), plus multiple local ontologies relating

database fields to global Concepts, and to each other. Since the contents of

each database are only related to the global ontology, this structure ensures

that the Project can grow in scale without management becoming impracti-

cal (as it would if each new database needed to be related to all of the

existing ones), and that sufficient breadth and depth of coverage is avail-

able to support querying.

 53

The TDS does not assume responsibility for the correctness of the data in-

cluded in its component databases, but for reporting it faithfully. The

degree of confidence that users will place in the system will depend on the

ability of the TDS to accurately reflect the analyses in the component data-

bases. The provenance of all information is made visible at every stage of

user interaction (searching, query construction and results display), allow-

ing users to assess for themselves the reliability of the information and the

theoretical perspective and assumptions it rests on. The result, we hope, is a

system suitable for a research community increasingly interested in tools

that will support empirically grounded linguistic typology, whose findings

can be verified and reproduced.

TDS glossary

Concept When capitalized: An entry in the TDS Global Ontology (TDS-

GO).

DTL Data Transformation Language. A domain-specific language

created by the TDS Project. Provides a high-level declarative no-

tation for transformation rules and metadata annotations that

express the semantics of the resulting data.

ISO code A unique three-letter code identifying a language according to the

ISO 639-3 standard. A successor to the three-letter “SIL codes”

used in the Ethnologue directory.

Metadata Information about the format or meaning of a data field or collec-

tion of fields, intended to aid people or computers in its

interpretation.

Notion When capitalized: A node in the integrated data hierarchy of the

TDS, representing a database field, a localized linguistic term or

value, or a group of Notions.

Ontology A formal representation of a set of concepts within a domain, and

of the relationships between those concepts.

OWL Web Ontology Language. A knowledge-representation language

for ontologies.

Root Notion The root (top-level node) of a tree in the TDS data hierarchy.

 54

TDS-GO The TDS Global Ontology of linguistic concepts.

Top Notion A Notion that forms the root (top-level node) of a coherent se-

mantic context.

UPPC The Universal Phoneme Position Chart, a table of possible pho-

nological segments organized for viewer-friendly presentation.

References

Bechhofer, Sean, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider and Lynn Andrea Stein

 2004 OWL Web Ontology Language Reference. vol. 2005. World Wide Web

Consortium. http://www.w3.org/TR/owl-ref/.

Chaffin, R, D. J Herrmann and M Winston

 1988 An empirical taxonomy of part-whole relations: Effects of part-whole

type on relation identification. Language and Cognitive Processes

3(1):17-48.

Comrie, Bernhard

 1978 Ergativity. In Syntactic Typology: Studies in the phenomenology of lan-

guage, edited by Winfred P. Lehmann. University of Texas Press,

Austin.

 1989 Language Universals and Linguistic Typology. 2 ed. Blackwell, Oxford.

Corbett, Greville G.

 1998 Morphology and Agreement. In The Handbook of Morphology, edited

by Andrew Spencer and Arnold M. Zwicky, pp. 191-205. Blackwell,

Oxford, UK; Malden, Mass.

Date, C.J.

 2004 An Introduction to Database Systems. 8th ed. Addison-Wesley.

Dimitriadis, Alexis, Adam Saulwick and Menzo Windhouwer

 2005 Semantic relations in ontology mediated linguistic data integration. In E-

MELD Workshop on Morphosyntactic Annotation and Terminology:

Linguistic Ontologies and Data Categories for Linguistic Resources (E-

MELD 2005), Cambridge, Massachusetts.

Dixon, Robert M. W.

 1972 The Dyirbal language of North Queensland. Cambridge Studies in Lin-

guistics 9. Cambridge University Press, London.

 55

Gómez-Pérez, Asunción, Mariano Fernández-López and Oscar Corcho

 2004 Ontological Engineering. Advanced Information and Knowledge Proc-

essing. Springer, London.

Gruber, Thomas R.

 1993 Toward principles for the design of ontologies used for knowledge shar-

ing. In International Workshop on Formal Ontology in Conceptual

Analysis and Knowledge Representation, edited by N Guarino and R

Poli. Kluwer Academic Publishers, Deventer.

Gruber, Thomas R. and G. Olsen

 1994 An ontology for Engineering Mathematics. Paper presented at the

Fourth International Conference on Principles of Knowledge Represen-

tation and Reasoning, Bonn, Germany.

Haspelmath, Martin

 2005 Argument marking in ditransitive alignment types. Linguistic Discovery

3(1).

Hengeveld, Kees, Jan Rijkhoff and Anna Siewierska

 2004 Parts-of-speech systems and word order. Journal of Linguistics

40(3):527-570.

Kager, René

 1999 Optimality theory. Cambridge textbooks in linguistics. Cambridge Uni-

versity Press, Cambridge, U.K.; New York.

Ladefoged, Peter and Ian Maddieson

 1996 The Sounds of the World's Languages. Blackwell Publishing Limited,

Oxford, OX, UK ; Cambridge, Mass., USA.

Landis, T. Y., D. J. Herrmann and R. Chaffin

 1987 Development differences in the comprehension of semantic relations.

Zeitschrift für Psychologie 195(2):129-139.

Lewis, William D.

 2006 ODIN: A Model for Adapting and Enriching Legacy Infrastructure. In

Second IEEE International Conference on e-Science and Grid Comput-

ing (e-Science'06).

Maddieson, Ian

 1984 Patterns of sounds. Cambridge Studies in Speech Science and Commu-

nication. Cambridge University Press, Cambridge.

 56

Monachesi, Paola, Alexis Dimitriadis, Rob Goedemans, Anne-Marie Mineur and

Manuela Pinto.

 2002 A Unified System for Accessing Typological Databases. In Proceedings

of the Third International Conference on Language Resources and

Evaluation (LREC 3), Las Palmas, Canary Islands, Spain. Paris: ELRA.

Nespor, Marina and Irene Vogel

 1986 Prosodic Phonology. Studies in Generative Grammar. Foris, Dordrecht,

Holland/Riverton, USA.

Payne, Thomas Edward

 1997 Describing morphosyntax: a guide for field linguists. Cambridge Uni-

versity Press, Cambridge, U.K.; New York, NY.

Rector, Alan and Chris Welty

 2005 Simple part-whole relations in OWL Ontologies. W3C Editor's Draft 24

Mar 2005 ed. vol. 2005. World Wide Web Consortium.

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/.

Rosch, Eleanor and Barbara B. Lloyd

 1978 Cognition and categorization. L. Erlbaum Associates distributed by

Halsted Press, Hillsdale, N.J. New York.

Saulwick, Adam, Rob Goedemans, Alexis Dimitriadis and Menzo Windhouwer

 2006 Architecture and procedures for the integration of linguistic databases in

the TDS. In 28. DGfS, AG 6 - Language Archives: Standards, Creation

and Access.

Saulwick, Adam, Menzo Windhouwer, Alexis Dimitriadis and Rob Goedemans

 2005 Distributed tasking in ontology mediated integration of typological da-

tabases for linguistic research. In International Workshop on Data

Integration and the Semantic Web (DISWeb'05), edited by J. Castro and

E. Teniente, pp. 13. vol. Proceedings of the CAiSE'05 Workshops.

Springer, Porto.

Siewierska, Anna

 2004 Person. Cambridge textbooks in linguistics. Cambridge University

Press, New York.

Storey, Veda C.

 1993 Understanding Semantic Relationships. VLDB Journal 2:455-488.

Stuckenschmidt, Heiner and Frank van Harmelen

 57

 2005 Information Sharing on the Semantic Web. Advanced Information and

Knowledge Processing. Springer, Berlin.

Taylor, John R.

 1989 Linguistic categorization: prototypes in linguistic theory. Clarendon

Press; Oxford University Press, Oxford [England], New York.

Varela, Francisco J., Evan Thompson and Eleanor Rosch

 1991 The embodied mind : cognitive science and human experience. MIT

Press, Cambridge, Mass.

Winston, M. E., R. Chaffin and D. J. Herrmann

 1987 A taxonomy of part-whole relations. Cognitive Science 11(4):417-444.

