
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A decision-theoretic approach to collaboration: Principal description methods
and efficient heuristic approximations

Oliehoek, F.A.; Visser, A.
DOI
10.1007/978-3-642-11688-9_4
Publication date
2010
Document Version
Author accepted manuscript
Published in
Interactive collaborative information systems

Link to publication

Citation for published version (APA):
Oliehoek, F. A., & Visser, A. (2010). A decision-theoretic approach to collaboration: Principal
description methods and efficient heuristic approximations. In R. Babuška, & F. C. A. Groen
(Eds.), Interactive collaborative information systems (pp. 87-124). (Studies in computational
intelligence; No. 281). Springer. https://doi.org/10.1007/978-3-642-11688-9_4

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Feb 2023

https://doi.org/10.1007/978-3-642-11688-9_4
https://dare.uva.nl/personal/pure/en/publications/a-decisiontheoretic-approach-to-collaboration-principal-description-methods-and-efficient-heuristic-approximations(72866c99-ffd0-46f2-9410-42f5d58d4bae).html
https://doi.org/10.1007/978-3-642-11688-9_4

A Decision-Theoretic Approach to
Collaboration: Principal Description Methods
and Efficient Heuristic Approximations

Frans A. Oliehoek and Arnoud Visser

Abstract. This chapter gives an overview of the state of the art in decision-theoretic
models to describe cooperation between multiple agents in a dynamic environment.
Making (near-) optimal decisions in such settings gets harder when the number of
agents grows or the uncertainty about the environment increases. It is essential to
have compact models, because otherwise just representing the decision problem
becomes intractable. Several such model descriptions and approximate solution
methods, studied in the Interactive Collaborative Information Systems project, are
presented and illustrated in the context of crisis management.

1 Introduction

Making decisions is hard. Even though we humans make thousands of decisions a
day, some decisions, especially important ones, are difficult to make. This is even
more true for decision making in complex dynamic environments. This chapter fo-
cuses on such complex decision problems and particularly on situations where there
are multiple decision makers or agents that have to cooperate.

When compared to computer systems, humans perform extremely well in mak-
ing most decisions. Still, there is a growing need for the development of intelligent
decision support systems and implementing cognitive abilities in autonomous ar-
tificial agents, because human decision making has its limitations. For instance,
human situation awareness is characterized by structural biases and humans are

Frans A. Oliehoek
Intelligent System Laboratory Amsterdam, Science Park 107, NL 1098 XG Amsterdam,
The Netherlands
e-mail: F.A.Oliehoek@uva.nl

Arnoud Visser
Intelligent System Laboratory Amsterdam, Science Park 107, NL 1098 XG Amsterdam,
The Netherlands
e-mail: A.Visser@uva.nl

R. Babuska & F.C.A. Groen (Eds.): Interactive Collaborative Information Systems, SCI 281, pp. 87–124.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

F.A.Oliehoek@uva.nl
A.Visser@uva.nl

88 F.A. Oliehoek and A. Visser

conservative estimators as compared to applying for example Bayesian statistics in
handling uncertainties [14]. As such, human decision making may be substantially
improved when assisted by intelligent decision support systems [21], providing an
important social and economic incentive to develop such systems with intelligent
behavior.

The Interactive Collaborative Information Systems (ICIS) project focuses on the
development of intelligent techniques and methods that can be applied to decision
support systems. It particularly aims to improve overall quality of information pro-
cessing and decision making under conditions of stress, risk and uncertainty. For
systems to be effective under such circumstances, several requirements must be met,
including are the capabilities to:

1. Reach a set of (predetermined) goals by influencing the environment in which
the system operates.

2. Cope with changes in the dynamic environment.
3. Support reasoning with uncertainty, reasoning with risks and reasoning under a

lack of knowledge, necessary because of the nondeterministic nature of the real
world.

The systems under concern are connected to the real world and can observe and
influence this world. Also, such systems need to make use of their experience of
previous interactions with the world. That is, such a system needs capabilities of
tackling the problem of sequential decision making, making a series of decisions
over time. This chapter is concerned with methods to realize such capabilities. In
particular, it focuses on decision-theoretic methods for dynamic planning, collabo-
ration and optimization.

Following the ICIS project, the work in this chapter is illustrated by the applica-
tion to crisis management situations. These results, however, can be used in other
domains of application that can be characterized by decision making in complex,
dynamic and nondeterministic environments.

An example of a challenging environment is the RoboCup Rescue League [40].
Inspired on the earthquake in Kobe in 1995 [75], the agent competition RoboCup
Rescue simulates an earthquake in an urban environment (see Fig. 1). In this sce-
nario, buildings collapse causes roads to get blocked and people to get trapped in
the debris, damages to gas pipes cause fires to break out all over the city and parts
of the communication infrastructure fails.

In this chaotic setting, teams of firefighters, police officers and ambulances have
to make decisions locally, based on only limited information. The objective of these
emergency response services is to minimize the casualties and structural damage. To
this end, it is important to make effective plans to deal with the situation, but this is
difficult due to the uncertainties. For instance, it is hard to estimate how fast the fire
will spread or how many firefighting units one should allocate to a particular fire site,
and how long it will take them to control the fire. Moreover, it is also important to try
to improve the situational awareness, and these two goals may compete with each
other. For instance, it may be necessary to trade off human capacity between fighting
fire at a particular site and reconnaissance. Not performing such information-gaining

A Decision-Theoretic Approach to Collaboration 89

Fig. 1 Robocup Rescue simulates an earthquake in an urban environment. This is a top view
of a city center, with gray buildings and white roads. Circles indicate agents; a black circle
for instance indicates an agent which died due to a fire or a collapse.

activities allows allocating more agents to deal with the current situation, but may
impose severe risks, e.g., a yet unknown fire source may spread out of control.

1.1 Forms of Uncertainty

The example of RoboCup Rescue illustrates how various forms of uncertainty com-
plicate effectively resolving situations. Here, we formalize these different types of
uncertainty as considered in this chapter.

The first type of uncertainty we consider is outcome uncertainty: the outcome or
effects of actions may be uncertain. In particular, we will assume that the possible
outcomes of an action are known, but that each of those outcomes is realized with
some probability. This means that the state transitions are stochastic.

In the real world an agent might not be able to determine what the state of the
environment exactly is, which means that there is state uncertainty. In such cases,
we say that the environment is partially observable. Partial observability results from
noisy and/or limited sensors. Because of sensor noise an agent can receive faulty or
inaccurate observations. When sensors are limited the agent is unable to observe the
differences between states that cannot be detected by the sensor, e.g., the presence
or absence of an object outside a laser range-finder’s field of view. When the same
sensor reading might require different action choices, this phenomenon is referred
to as perceptual aliasing.

90 F.A. Oliehoek and A. Visser

Another complicating factor is the presence of multiple agents that each make
decisions that influence the environment. Such an environment in which multiple
agents operate is called a multiagent system (MAS) [70, 72, 78, 79]. The difficulty
in MASs is that each agent can be uncertain regarding the actions of other agents.
This is obvious in MASs with self-interested agents, where agents may be unwill-
ing to share information. In a cooperative setting, the agents have the same goal and
therefore are willing to share information and coordinate their actions. Still, it is
non-trivial how such coordination should be performed. Especially when commu-
nication capabilities are limited or absent, how the agents should coordinate their
actions becomes problematic. This problem is magnified in partially observable en-
vironments: as the agents are not assumed to observe the state—each agent only
knows its own observations received and actions taken—there is no common signal
they can condition their actions on. Note that this problem is in addition to the prob-
lem of partial observability, and not instead of it; even if the agents could freely and
instantaneously communicate their individual observations, the joint observations
would not disambiguate the true state.

1.2 Decision-Theoretic Approach to MASs

Many approaches to multiagent systems share the drawback of not having a measure
of quality of the generated plans. To overcome this problem, we build upon the field
of decision theory (DT).

Decision theory describes how a decision maker, or agent, should make a decision
given its preferences over alternatives. Let us for the moment assume that an agent
has preferences over states s of the environment. If the agents’ preferences satisfy
the axioms of utility theory, they can be conveniently described by a utility function
u that maps each state to a real number u(s) [61]. This number indicates how the
agent values that state: if A is preferred to B, then u(A) > u(B).

If the agent has a model of how its actions a influence the environment, i.e. when
the probabilities Pr(s|a) are available, the agent can compute the expected utility of
each action as

u(a) ≡ E [u(s)|a] =∑
s

u(s)Pr(s|a). (1)

A rational agent should select the action that maximizes this expected utility.
Decision-theoretic planning (DTP) extends DT to sequential decision problems

and has roots in control theory and operations research. In control theory, one or
more controllers control a stochastic system with a specific output as goal. Oper-
ations research considers tasks related to scheduling, logistics and work flow and
tries to optimize the concerning systems. Many decision-theoretic planning prob-
lems can be formalized as Markov decision processes (MDPs). In the last decades,
the MDP framework has gained in popularity in the AI community as a model for
planning under uncertainty [8, 36].

The MDP is a framework for sequential decision making at predetermined points
in time, i.e., it is a discrete-time model. The extension of the MDP to continuous

A Decision-Theoretic Approach to Collaboration 91

time is called a semi Markov decision process (SMDP) [56]. Also in control theory
much research has considered continuous time settings [66]. In order to solve such
continuous time settings, however, time is discretized (again leading to a regular
MDP formulation), or special assumptions, such as linear dynamics and quadratic
costs, are required [5]. As such, most approaches to DTP for multiagent systems
have focused on extensions of the MDP, a notable exception is presented by Van der
Broek et al. [9].

MDPs can be used to formalize a discrete-time planning task of a single agent in
a stochastically changing environment, on the condition that the agent can observe
the state of the environment. The environment is observed at discrete time steps, also
referred to as stages [8]. The number of time steps the agent will interact with the
environment is called the horizon of the decision problem, and will be denoted by
h. Every time step the state changes stochastically, but the agent chooses an action
that selects a particular transition function: i.e., taking an action from a particular
state at time step t induces a probability distribution over states at time step t + 1.
The probabilities of state transitions are specified by the model. The goal of plan-
ning for such an MDP is to find a policy that is optimal with respect to the desired
behavior. This desired behavior is specified by the reward model: for each action
taken from each possible state of the environment, a reward is issued. The agent has
to maximize the expected long-term reward signal.

When the agent knows the probabilities of the state transitions, i.e., when it knows
the model, it can contemplate the expected transitions over time and compute a plan
that is most likely to reach a specific goal state, minimizes the expected costs or
maximizes the expected reward. This stands in contrast to reinforcement learning
(RL) [71], where the agent does not have a model of the environment, but has to
learn good behavior by repeatedly interacting with the environment. Reinforcement
learning can be seen as the combined task of learning the model of the environment
and planning, although in practice often it is not necessary to explicitly recover the
environment model.

In order to deal with the introduced sensor uncertainty, a partially observable
Markov decision process (POMDP) extends the MDP model by incorporating ob-
servations and their probability of occurrence conditional on the state of the envi-
ronment [39]. A POMDP, however, only considers one agent in an environment.
We consider the setting where there are multiple agents that each may influence the
state of this environment, as illustrated in Fig. 2. To incorporate the influence of
multiple agents, the models need to be adapted to consider the joint effect of the
individual actions, i.e., transition probabilities depend on joint actions and similarly
for observations.

The effects of uncertainty with respect to other agents may be mitigated through
communication. Under the stringent assumptions of instantaneous, cost- and
noise-free communication, these effects can be discarded altogether, and the prob-
lem reduces to a POMDP [57]. However, in general, these assumptions are too
strong and deciding when to communicate what becomes part of the problem.

92 F.A. Oliehoek and A. Visser

Fig. 2 A schematic representation of multiple agents in a dynamic environment. The state is
influence by the combined actions of all agents.

There are two perspectives on MASs. One option is to consider each agent sep-
arately, and have each such agent maintain an explicit model of the other agents,
we refer to this as the subjective perspective of a MAS. This is the approach as
chosen in the recursive modeling method (RMM) [29] and the Interactive POMDP
(I-POMDP) framework [28]. On the other hand, the decentralized partially observ-
able Markov decision process (Dec-POMDP) [4] is a generalization to multiple
agents of a POMDP and can be used to model a team of cooperative agents that
are situated in a stochastic, partially observable environment. It presents an objec-
tive perspective of the MAS, in which we try to find plans for all agents at the
same time.

Some other models that we do not consider in details stem from game theory. In
particular, extensive games [52] can model problems of sequential decision making
in uncertain environment. However, the game trees needed to model complex envi-
ronments are extremely large. The more recently introduced MAIDs [44] and NIDs
[25] can be more compact than extensive games, but this is especially the case with
respect to the structure of the variables of influence, not with respect to decisions
made over multiple stages.

1.3 Overview

This chapter gives an overview of some different decision-theoretic models for mul-
tiagent planning. First, in Section 2 we treat objective models, in particular the Dec-
POMDP. Next, Section 3 presents the interactive POMDP, the most well-known
subjective model. As illustrated in Section 4, there still is a gap between the state of
the art in DTP and many real-world applications. Our research tries to close this gap
from two sides. On the one hand, we try to scale up the problems decision-theoretic
methods can handle as explained in the remainder of Section 4. On the other hand,
Section 5 shows how we employ efficient heuristic methods to large realistic tasks.
Finally, Section 6 concludes.

A Decision-Theoretic Approach to Collaboration 93

2 The Objective Approach: Dec-POMDPs

This section introduces the objective approach to planning for MASs. In particular it
focuses on the decentralized POMDP [4], which is a model for objective sequential
decision making for a team of cooperative agents. It is roughly equivalent to the
multiagent team decision problem (MTDP) [57].

2.1 Decentralized POMDPs

Here, we formally define the Dec-POMDP model and its components.

Definition 1. A decentralized partially observable Markov decision process (Dec-
POMDP) is defined as a tuple

〈
n,S,A,PT ,R,O,PO,h,b0

〉
where:

• n is the number of agents.
• S is a finite set of states.
• A is the set of joint actions.
• PT is the transition function.
• R is the immediate reward function.
• O is the set of joint observations.
• PO is the observation function.
• h is the horizon of the problem.
• b0 ∈P(S) is the initial state distribution at time t = 0.1

The Dec-POMDP model extends single-agent (PO)MDP models by considering
joint actions and observations. In particular, A = ×iAi is the set of joint actions.
Here, Ai is the set of actions available to agent i which can be different for each
agent. Every time step, one joint action a = 〈a1,...,an〉 is taken. In a Dec-POMDP,
agents only know their own individual action; they do not observe each other’s ac-
tions. Similar to the set of joint actions, O = ×iOi is the set of joint observations,
where Oi is a set of observations available to agent i. Every time step the envi-
ronment emits one joint observation o = 〈o1,...,on〉, from which each agent i only
observes its own component oi, as illustrated in Fig. 3.

Actions and observations are the interface between the agents and their envi-
ronment. The Dec-POMDP framework describes this environment by its states and
transitions. A Dec-POMDP specifies an environment model simply as the set of
possible states S =

{
s1,...,s|S|

}
together with the probabilities of state transitions. In

particular, the transition from some state to another depends stochastically on the
past states and actions. This probabilistic dependence models outcome uncertainty:
the fact that the outcome of an action cannot be predicted with full certainty as
discussed in Section 1.1.

An important characteristic of Dec-POMDPs is that the states possess the Markov
property. That is, the probability of a particular next state depends on the current
state and joint action, but not on the whole history:

1 P(·) denotes the set of probability distributions over (·).

94 F.A. Oliehoek and A. Visser

actions

observations

states s0 s1 sh−1

o0 o1 oh−1

o0
1

o0
n

o1
1

o1
n

oh−1
1

oh−1
n

a0 a1

.

.

.
.
.
.

.

.

.
. . .

. . .

. . .

a0
1

a0
n

a1
1

a1
n

ah−1
1

ah−1
n

ah−2 ah−1

t 0 1 h−1

Fig. 3 An illustration of the dynamics of a Dec-POMDP. At every stage the environment is
in a particular state. This state emits a joint observation, of which each agent observes its
individual observation. Then each agent selects an action forming the joint action.

Pr(st+1|st ,at ,st−1,at−1,...,s0,a0) = Pr(st+1|st ,at). (2)

Also, we will assume that the transition probabilities are stationary, meaning that
they are independent of the stage t.

In a way similar to how the transition model PT describes the stochastic influence
of actions on the environment, the observation model describes how the state of
the environment is perceived by the agents. Formally, PO is a mapping from joint
actions and successor states to probability distributions over joint observations: PO :
A×S→P(O), i.e., it specifies

Pr(ot |at−1,st). (3)

The Dec-POMDP is truly decentralized in the sense that during execution the
agents are assumed to act based on their individual observations only and no ad-
ditional communication is assumed. This does not mean that Dec-POMDPs cannot
handle communication: communication can be modeled implicitly through the reg-
ular actions and observations as will be illustrated in Section 4.1.

The reward function R : S×A→ R is used to specify the goal of the agents. In
particular, a desirable sequence of joint actions should correspond to a high ‘long-
term’ reward, formalized as the return.

Definition 2. Let the return or cumulative reward of a Dec-POMDP be defined as
total of the rewards received during an execution:

A Decision-Theoretic Approach to Collaboration 95

h

∑
t=0

R(st ,at) (4)

where R(st ,at) is the reward received at time step t.

We consider as optimality criterion the expected cumulative reward, where the ex-
pectation refers to the expectation over sequences of states and executed joint ac-
tions. The planning problem is to find a tuple of policies, called a joint policy that
maximizes the expected cumulative reward.

Note that, in contrast to reinforcement learning settings [71], in a Dec-POMDP,
the agents are assumed not to observe the immediate rewards. Observing the imme-
diate rewards could convey information regarding the true state which is not present
in the received observations. This is undesirable as all information available to the
agents should be modeled in the observations. When planning for Dec-POMDPs the
only thing that matters is the expectation of the cumulative future reward, not the
actual reward obtained.

The assumption in this text is that planning takes place in an off-line phase, af-
ter which the plans are executed in the on-line phase. In the decentralized setting,
however, this statement can use some clarification. The on-line execution phase is
completely decentralized: each agent only knows the joint policy as found in the
planning phase and its individual history of actions and observations. The planning
phase, however, is centralized: a single centralized computer computes a joint plan
and consequently distributes these plans to the agents, who then merely execute the
plans on-line.

Example 1 (The FIREFIGHTING problem). As an example, we consider a benchmark
problem in which a team of n fire fighters have to extinguish fires in a row of NH

houses. Each house H is characterized by an integer parameter f lH , or fire level. It
indicates to what degree a house is burning, and it can have n f different values, 0 ≤
f lH < n f . Its minimum value is 0, indicating the house is not burning.

At every time step, the agents receive a reward of − f lH for each house and each
agent can choose to move to any of the houses to fight fires at that location. That is,
each agent has actions H1 . . .HNH If a house is burning (f lH > 0) and no fire fighting
agent is present, its fire level will increase by one point with probability 0.8 if any of
its neighboring houses are burning, and with probability 0.4 if none of its neighbors
are on fire. A house that is not burning can only catch fire with probability 0.8 if one
of its neighbors is on fire. When two agents are in the same house, they will extinguish
any present fire completely, setting the house’s fire level to 0. A single agent present
at a house will lower the fire level by one point with probability 1 if no neighbors
are burning, and with probability 0.6 otherwise. Each agent can only observe whether
there are flames (F) or not (N) at its location. Flames are observed with probability
0.2 if f lH = 0, with probability 0.5 if f lH = 1, and with probability 0.8 otherwise.
Initially, the agents start outside any of the houses, and the fire level f lH of each house
is drawn from a uniform distribution.

In case there is only one agent, the Dec-POMDP reduces to a standard POMDP.
In a POMDP, the agent still cannot observe the state, so it is not possible to specify

96 F.A. Oliehoek and A. Visser

a policy as a mapping from states to actions as is done in an MDP. However, it turns
out that maintaining a probability distribution over states, called belief, b ∈P(S),
is a sufficient statistic:

∀st bt(st) ≡ Pr(st |ot ,at−1,ot−1, . . . ,a0,o0). (5)

As a result, a single agent in a partially observable environment can specify its policy
as a series of mappings from the set of beliefs to actions.

Unfortunately, in the general Dec-POMDP case no such simplifications are pos-
sible. Even though the transition and observation model can be used to compute a
joint belief, this computation requires knowledge of the joint actions and observa-
tions. During execution, the agents have no access to this information and thus can
not compute such a joint belief.

2.2 Histories and Policies

The goal of planning in a Dec-POMDP is to find a (near-) optimal tuple of policies,
and these policies specify for each agent how to act in a specific situation. A Dec-
POMDP specifies h time steps or stages t = 0,...,h−1. At each of these stages, there
is a state st , joint observation ot and joint action at . Therefore, when the agents have
to select their k-th actions (at t = k−1), the history has the following form:(

s0,o0,a0,s1,o1,a1,...,sk−1,ok−1
)

. (6)

Here s0 is the initial state, drawn according to the initial state distribution b0. The
initial joint observation o0 is assumed to be the empty joint observation: o0 = o /0.

From this history of the process, the states remain unobserved and agent i can
only observe its own actions and observations. Therefore, an agent will have to
base its decision regarding which action to select on the sequence of actions and
observations observed up to that point.

Definition 3. We define the action-observation history (AOH) for agent i, �θi, as the
sequence of actions taken by and observations received by agent i. At a specific time
step t, this is

�θ t
i =

(
o0

i ,a
0
i ,o

1
i . . . ,at−1

i ,ot
i

)
. (7)

The joint action-observation history, �θθθ , is the action-observation history for all
agents: �θθθ t = 〈�θ t

1 , . . . ,�θ t
n〉. Agent is set of possible AOHs at time t is �Θt

i and the
set of all its AOHs is �Θi = ∪h−1

t=0
�Θt

i .
2 Finally, the set of all possible joint AOHs is

given by �Θ =∪h−1
t=0 (�Θt

1× ...×�Θt
n). At t = 0, the action-observation history is empty,

denoted by �θθθ 0 =�θθθ /0.

2 In a particular Dec-POMDP, it may be the case that not all of these histories can actually
be realized, because of the probabilities specified by the transition and observation model.

A Decision-Theoretic Approach to Collaboration 97

Definition 4. The observation history (OH) for agent i, �oi, is the sequence of obser-
vations an agent has received. At a specific time step t, this is

�ot
i =

(
o0

i ,o
1
i , . . . ,o

t
i

)
. (8)

The joint observation history,�o, is the OH for all agents:�o t = 〈�ot
1, . . . ,�o

t
n〉. Similar

to the notation for AOHs, the set of OHs for agent i at time t is denoted �Ot
i . We also

use �Oi and �O and the empty observation history is denoted�o /0.

Definition 5. The action history (AH) for agent i, �ai, is the sequence of actions an
agent has performed. At a specific time step t, we write

�at
i =

(
a0

i ,a
1
i , . . . ,a

t−1
i

)
. (9)

Notation for joint action histories and sets are analogous to those for observation
histories. Finally we note that, clearly, a (joint) action-observation history consists
of a (joint) action- and a (joint) observation history:�θθθ t = 〈�o t ,�a t〉.

The action-observation history of an agent specifies all the information the agent
has when it has to decide upon an action. For the moment we assume that an individ-
ual policy πi for agent i is a deterministic mapping from action-observation histories
to actions. However, the number of such histories grows exponentially with the hori-
zon of the problem: e.g., at the last time step h− 1, there are (|Ai| |Oi|)h−1 action-
observation histories for agent i. The number of policies for agent i is exponential
in this number, and thus doubly exponential in the horizon h.

It is possible to reduce the number of policies under consideration by realizing
that a lot of policies specify the same behavior. This is illustrated by the left side of
Fig. 4, which clearly shows that under a deterministic policy only a subset of possi-
ble action-observation histories are reached. Policies that only differ with respect to
an action-observation history that is not reached in the first place, manifest the same
behavior. The consequence is that to specify a deterministic policy, the observation
history suffices: when an agent takes its action deterministically, he will be able to
infer what action he took from only the observation history as illustrated by the right
side of Fig. 4.

Definition 6. A pure or deterministic policy, πi, for agent i in a Dec-POMDP is a
mapping from observation histories to actions, πi : �Oi→ Ai. The set of pure policies
of agent i is denoted Πi.

Note that also for pure policies we write πi(�θi). In this case we mean the action
that πi specifies for the observation history contained in �θi. We use π = 〈π1,...,πn〉
to denote a joint policy Also we use π �=i = 〈π1, . . . ,πi−1,πi+1, . . . ,πn〉, to denote a
profile of policies for all agents but i.

Apart from pure policies, it is also possible to have the agents execute random-
ized policies, i.e., policies that do not always specify the same action for the same
situation, but in which there is an element of chance that decides which action is
performed. We will not consider such policies here, since in a Dec-POMDP, there
always is an optimal pure joint policy [48].

98 F.A. Oliehoek and A. Visser

H1
H1

H1

H1

H1

H2H2

H2

H2

H2H2

H2

H3
H3

H3

H3

F

FF

FN

NN

N

act.-obs. history

Fig. 4 Left: a tree of action-observation histories �θi for one of the agents in the 〈NH = 3,n f =
3〉 FIREFIGHTING problem. An arbitrary deterministic policy πi is highlighted. Clearly
shown is that πi only reaches a subset of histories �θi. (�θi that are not reached are not fur-
ther expanded.) Right: The same policy can be shown in a simplified policy tree.

A common way to represent the temporal structure in a policy is to split it in
decision rules δi that specify the policy for each stage. An individual policy is then
represented as a sequence of decision rules πi = (δ 0

i , . . . ,δ h−1
i). In the case of a

deterministic policy, the form of the decision rule for stage t is a mapping from
length-t observation histories to actions δ t

i : �Ot
i → Ai. A joint decision rule δ t =

〈δ t
1, . . . ,δ

t
n〉 specifies a decision rule for each agent.

We will also consider policies that are partially specified with respect to time.
Formally, ϕt = (δ 0, . . . ,δ t−1) denotes the past joint policy at stage t, which is a
partial joint policy π specified for stages 0,...,t−1.

Clearly, policies differ in how much reward they can expect to accumulate. We
consider the expected cumulative reward of a joint policy, also referred to as its
value.

Definition 7. The value V (π) of a joint policy π is defined as

V (π) ≡ E
[h−1

∑
t=0

R(st ,at)
∣∣∣π ,b0

]
, (10)

where the expectation is over states and observations.

In particular, we can calculate this expectation recursively using

Vt
π(s

t ,�o t) = R
(
st ,π(�o t)

)
+ ∑

st+1∈S
∑

ot+1∈O

Pr(st+1,ot+1|st ,π(�o t))V t+1
π (st+1,�o t+1).

(11)
The value of joint policy π is then given by

V (π) = ∑
s0∈S

Vπ(s0,�θθθ /0)b0(s0). (12)

A Decision-Theoretic Approach to Collaboration 99

Example 2 (Optimal policies for the FIREFIGHTING problem). As an example, Fig. 5
shows an optimal joint policy for horizon 3 of the 〈NH = 3,n f = 3〉 FIREFIGHTING

problem. One agent initially moves to the middle house to fight fires there, which helps
prevent fire from spreading to its two neighbors. The other agent moves to house 3, and
stays there if it observes fire, and moves to house 1 if it does not observe flames. As
well as being optimal, such a joint policy makes sense intuitively speaking.

no observation→ go house 3
flames→ go house 3
no flames→ go house 1
flames,flames→ go house 1
flames,no flames→ go house 1
no flames,flames→ go house 2
no flames,no flames→ go house 2

no observation→ go house 2
flames→ go house 2
no flames→ go house 2
flames,flames→ go house 1
flames,no flames→ go house 1
no flames,flames→ go house 1
no flames,no flames→ go house 1

Fig. 5 An optimal joint policy for FIREFIGHTING 〈NH = 3,n f = 3〉, horizon 3. On the left
the policy for the first agent, on the right the second agent’s policy.

2.3 Solving Dec-POMDPs

The fact that the number of pure joint policies is doubly exponential in the horizon h
provides some intuition about how hard the problem is. This intuition is supported
by the result that the problem of finding the optimal solution for a finite-horizon
Dec-POMDP with n ≥ 2 is NEXP-complete [4]. Moreover, Dec-POMDPs can-
not be approximated efficiently: even finding an ε-approximate solution is NEXP-
hard [59]. Also, the problem of solving over an infinite horizon is undecidable,
which is a direct result of the undecidability of (single-agent) POMDPs over an
infinite horizon [45].

In the rest of this section, we provide background on the two main approaches of
solving finite-horizon Dec-POMDPs: the forward view and the backward view. For
a more complete overview of finite-horizon solution methods we refer to [48] and
for an overview including infinite-horizon approaches to [64].

2.3.1 The Forward View: Heuristic Search

The forward view of Dec-POMDPs is given by the combination of multiagent A∗
[73] and the method proposed by Emery-Montemerlo [22] and the works derived
from those methods. In particular, both approaches can be unified in a generalization
of MAA∗, creating a new view that may be called the forward perspective to solving
Dec-POMDPs [48].

Multiagent A∗ (MAA∗)

Szer et al. introduced a heuristically guided policy search method called multiagent
A∗ (MAA∗) [73]. It performs a guided A∗-like search over partially specified joint

100 F.A. Oliehoek and A. Visser

policies, pruning joint policies that are guaranteed to be worse than the best (fully
specified) joint policy found so far by an admissible heuristic.

In particular MAA∗ considers joint policies that are partially specified with re-
spect to time: a partial joint policy ϕt = (δ 0,δ 1, . . . ,δ t−1) specifies the joint decision
rules for the first t stages. For such a partial joint policy ϕt a heuristic value V̂ (ϕt)
is calculated by taking V 0...t−1(ϕt), the actual expected reward ϕt achieves over the
first t stages, and adding V̂ t...h−1, a heuristic value for the remaining h− t stages.
Clearly, when V̂ t...h−1 is an admissible heuristic—a guaranteed overestimation—so
is V̂ (ϕt).

MAA∗ starts by placing the completely unspecified joint policy ϕ0 in an open list.
Then, it proceeds by selecting partial joint policies ϕt = (δ 0,δ 1, . . . ,δ t−1) from the
list and ‘expanding’ them: generating all ϕt+1 = (δ 0,δ 1, . . . ,δ t−1,δ t) by appending
all possible joint decision rules δ t for next time step (t). The left side of Fig. 6 illus-
trates the expansion process. After expansion, all created children are heuristically
evaluated and placed in the open list. Any partial joint policies ϕt+1 with V̂ (ϕt+1)
less than the expected value V (π) of some earlier found (fully specified) joint policy
π , can be pruned. The search ends when the list becomes empty, at which point an
optimal fully specified joint policy has been found.

a

a

a

a

a

a

ā

ā āā

ā

ā āā

oo

o

oo

o

ōō

ō

ōō

ō

Fig. 6 Difference between policy construction in MAA∗ (left) and dynamic programming
(right) for an agent with actions a,ā and observations o,ō. The dashed components are newly
generated, dotted components result from the previous iteration. MAA∗ ‘expands’ a partial
policy from the leaves, while dynamic programming backs up a set of ‘sub-tree policies’
forming new ones.

Dec-POMDPs as series of Bayesian games

The MAA∗ algorithm can be generalized by interpreting a Dec-POMDP as a series
of Bayesian games. A Bayesian game (BG) [52] is an extension of a normal form
game in which the agents can hold some private information which is expressed
by their type. BGs can be used to approximate Dec-POMDPs [22]. In this method,
agents construct and solve a BG for each stage of the process in an on-line fashion.
Such modeling is exact when using an optimal payoff function for the BGs [48].
Modeling Dec-POMDPs through BGs is appealing because it decomposes the re-
cursive Dec-POMDP problem into a conceptually simpler problem for each stage.

A Decision-Theoretic Approach to Collaboration 101

It allows for efficient approximations, since local optima for BGs can be computed
efficiently using solution methods from game theory. Also, it opens a new branch
of related work and techniques that may be used, some of which are discussed in
Section 4.

The crucial difficulty in making a decision at some stage t in a Dec-POMDP
is that the agents lack a common signal on which to condition their actions and
must rely instead on their individual (action-)observation histories. Given b0 and
ϕt , the joint policy followed for stages 0 . . .t− 1, this situation can be modeled as
a BG with identical payoffs. Such a game BG(b0,ϕt) consists of the set of agents
{1 . . .n}, their joint actions A, the set of their joint types Θ, a probability distribution
over these joint types Pr(·) and a payoff function u that maps a joint type and action
to a real number u(θθθ ,a). A joint type θθθ ∈ Θ specifies a type for each agent θθθ =
〈θ1, . . . ,θn〉. Since the type of an agent represents the private information it holds,
types are AOHs θi ≡ �θ t

i and joint types correspond to joint AOHs θθθ ≡ �θθθ t . Given
ϕt and b0, the probability distribution over joint AOHs is welldefined and the payoff
function is given by u(θθθ ,a) ≡ Q∗(�θθθ t ,a), the optimal Q-value function of the Dec-
POMDP. Although Q∗ is intractable to compute, heuristic Q-value functions Q̂ can
be computed, for instance using the underlying MDP’s value function.

We can solve such a BG by computing the expected heuristic value V̂ for all joint
BG-policies βββ t = 〈β1, . . . ,βn〉, where an individual BG-policy maps types to actions
βi(�θ t

i) = at
i. This valuation is given by

V̂ (βββ t) =∑
�θθθ t

Pr(�θθθ t |ϕt ,b0)Q̂(�θθθ t ,βββ t(�θθθ t)), (13)

where βββ t(�θθθ t) = 〈βi(�θ t
i)〉i=1...n denotes the joint action that results from application

of the individual BG-policies to the individual AOHs �θ t
i specified by �θθθ t . The so-

lution βββ t,∗ is the joint BG-policy with the highest expected value. Note that if ϕt

is deterministic, the probability of �θθθ t = 〈�a t ,�o t〉 is non-zero for only one�a t per�o t

(�a t can be reconstructed from�o t ,ϕt). Therefore, in effect the BG-policies reduce to
decision rules: mappings from observation histories to actions βi(�ot

i) = at
i.

Generalized MAA∗

The modeling of a stage of a Dec-POMDP as a BG as outlined above can be ap-
plied in a heuristic policy search scheme called Generalized MAA∗ (GMAA∗) [48],
which generalizes MAA∗ and the BG-method of [22]. Algorithm 3 shows GMAA∗,
which maintains an open list P of partial joint policies ϕt and their heuristic val-
ues V̂ (ϕt). Every iteration the highest ranked ϕt is selected and expanded, i.e., the
Bayesian game BG(ϕt ,b0) is constructed and all joint BG-policies βββ t are evalu-
ated. Consequently, these joint BG-policies are used to construct a new set of partial
policies

ΦNext := {ϕt+1 = (ϕt ,βββ t)} (14)

102 F.A. Oliehoek and A. Visser

Algorithm 3 GMAA∗

1: v�←−∞
2: P←{ϕ0 = ()}
3: repeat
4: ϕ t ← SelectHighestRankedPartialJPol(P)
5: Φnew← ConstructAndSolveBG(ϕ t ,b0)
6: if Φnew contains full policies Πnew ⊆Φnew then
7: π ′ ← argmaxπ∈Πnew

V (π)
8: if V (π ′) > v� then
9: v�←V (π ′) {found new lower bound}

10: π�← π ′
11: P←{ϕ ∈ P | V̂ (ϕ) > v�}{prune P}
12: end if
13: Φnew←Φnew \Πnew {remove full policies}
14: end if
15: P← (P\ϕ t)∪{ϕ ∈Φnew | V̂ (ϕ) > v�} {remove processed/add new partial policies}
16: until P is empty

and their heuristic values. When the heuristic values are an upper bound to the true
values, any lower bounds v� (i.e., full joint policies) that are found can be used to
prune P. When P becomes empty, the optimal policy has been found.

GMAA∗ as outlined here is MAA∗ reformulated to work on BGs. The BG-
method of [22] is similar, but does not backtrack, i.e., rather than constructing all
new partial policies ∀βββ t ϕt+1 = (ϕt ,βββ t) only the best-ranked partial policy (ϕt ,βββ t,∗)
is constructed and the open list P will never contain more than 1 partial policy. A
generalization k-GMAA∗ constructs the k best-ranked partial policies, allowing to
trade off computation time and solution quality.

2.3.2 The Backward View: Dynamic Programming

GMAA∗ incrementally builds policies from the first stage t = 0 to the last t = h−1.
Dynamic programming (DP) for Dec-POMDPs [37] constructs policies the other
way around: starting with a set of ‘1-step policies’ (actions) that can be executed at
the last stage, they construct a set of 2-step policies to be executed at h−2, etc.

It should be stressed that the policies maintained are quite different from those
used by GMAA∗. In particular, a partial policy in GMAA∗ has the form ϕt =
(δ 0,δ 1, . . . ,δ t−1). The policies maintained by DP do not have such a correspon-
dence to decision rules. We define the time-to-go τ at stage t as

τ = h− t. (15)

Now qτ=k
i denotes a k-steps-to-go sub-tree policy for agent i. That is, qτ=k

i is a
policy tree that has the same form as a full policy for the horizon-k problem.
Within the original horizon-h problem qτ=k

i is a candidate for execution starting
at stage t = h−k. The set of k-steps-to-go sub-tree policies maintained for agent i is

A Decision-Theoretic Approach to Collaboration 103

denoted Qτ=k
i . Dynamic programming for Dec-POMDPs is based on backup oper-

ations: constructing Qτ=k+1
i from Qτ=k

i . For instance, the right side of Fig. 6 shows
how qτ=3

i , a 3-steps-to-go sub-tree policy, is constructed from two qτ=2
i ∈ Qτ=2

i .
Also illustrated is the difference between this process and MAA∗ expansion (on the
left side).

Dynamic programming consecutively constructs Qτ=1
i ,Qτ=2

i , . . . ,Qτ=h
i for all

agents i. However, the size of the set Qτ=k+1
i is given by

|Qτ=k+1
i |= |Ai| |Qτ=k

i ||Oi|, (16)

and as a result the sizes of the maintained sets grow doubly exponential with k. To
counter this source of intractability, Hansen et al. [37] propose to eliminate dom-
inated sub-tree policies. The expected reward of a particular sub-tree policy qτ=k

i
depends on the probability over states when qτ=k

i is started (at stage t = h− k) as
well as the probability with which the other agents j �= i select their sub-tree policies
qτ=k

j ∈ Qτ=k
j . If we let qτ=k

�=i denote a sub-tree profile for all agents but i, and Qτ=k
�=i

the set of such profiles, we can say that qτ=k
i is dominated if it is not maximizing at

any point in the multiagent belief space: the simplex over S×Qτ=k
�=i . Hansen et al.

test for dominance over the entire multiagent belief space by linear programming.
Removal of a dominated sub-tree policy qτ=k

i of an agent i may cause a sub-tree
policy qτ=k

j of an other agent j to become dominated. Therefore, they propose to it-
erate over agents until no further pruning is possible, a procedure known as iterated
elimination of dominated policies [52].

Finally, when the last backup step is completed the optimal policy can be found
by evaluating all joint policies π ∈ Qτ=h

1 ×·· ·×Qτ=h
n for the initial belief b0.

2.4 Special Cases and Generalization

Because of the negative complexity results for Dec-POMDPs, much research has
focused on special cases of Dec-POMDPs. This section reviews some of these. For a
more comprehensive overview of special cases, the reader is referred to [32, 57, 64].

2.4.1 Factored Dec-POMDPs

A factored Dec-POMDP has a state space S = X1× . . .×X|X | that is spanned by
X =

{
X1, . . . ,X|X |

}
a set of state variables, or factors. A state corresponds to an as-

signment of values for all factors s =
〈
x1, . . . ,x|X |

〉
. In a factored Dec-POMDP, the

transition and observation model can be compactly represented by exploiting condi-
tional independence between variables. In particular, the transition and observation
model can be represented by a dynamic Bayesian network (DBN) [8].

Even though factored Dec-POMDPs can be represented more compactly, solving
them is still hard. However, by adding additional assumptions to the factored Dec-
POMDP model, more efficient solutions are sometimes possible [2, 32, 64].

104 F.A. Oliehoek and A. Visser

2.4.2 Degrees of Observability

The literature has identified different categories of observability [32, 57]. When the
observation function is such that the individual observation for each of the agents
will always uniquely identify the true state, the problem is considered fully- or in-
dividually observable. In such a case, a Dec-POMDP effectively reduces to a multi-
agent Markov decision process (MMDP) [7].

In this setting a (joint) action can be selected based on the state without consid-
ering the history, because the state is Markovian. Moreover, because each agent
can observe the state, there is an effective way to coordinate. One can think of
the situation as a regular MDP with a ‘puppeteer’ agent that selects joint actions.
For this ‘underlying MDP’ an optimal solution π∗ can be found efficiently (P-
complete [53]) with standard dynamic programming techniques [56]. Such a so-
lution π∗ = (δ 0, . . . ,δ h−1) specifies a mapping from states to joint actions for each
stage ∀t δ t : S→ A and can be split into individual policies πi =

(
δ 0

i , . . . ,δ h−1
i

)
with

∀t δ t
i : S→ Ai for all agents.

The other extreme is when the problem is non-observable, meaning that none of
the agents observes any useful information. This is modeled by the fact that agents
always receive a null-observation, ∀i Oi = {oi, /0}. Under non-observability agents
can only employ an open-loop plan. A result of this is that non-observable setting is
easier from a complexity point of view (NP-complete [57]).

Between these two extremes, there are partially observable problems. One more
special case has been identified, namely, the case where not the individual, but the
joint observation identifies the true state. This case is referred to as jointly- or col-
lectively observable.

Definition 8. A jointly observable Dec-POMDP is referred to as a Dec-MDP.

Even though all observation together identify the state in a Dec-MDP, each agent
still has a partial view. As such Dec-MDPs are a non-trivial sub-class of Dec-
POMDPs for which the NEXP-completeness result holds [3].

2.4.3 Explicit Communication

The Dec-POMDP model does not explicitly define communication. Of course, it
is possible to include communication actions and observations in the regular set
of actions and observations, so a Dec-POMDP can handle communication implic-
itly. The Dec-POMDP, however, has been extended to incorporate explicitly com-
munication actions and observations. The resulting model the Dec-POMDP-Com
[31, 32] additionally includes a set of messages Σ that can be sent by each agent
and a cost function CΣ that specifies the cost of sending each message. The MTDP
has a similar extension, called the Com-MTDP [57], which is equivalent to the
Dec-POMDP-Com.

Although the Dec-POMDP-Com model itself could allow different communica-
tion models, studies so far have considered noise-free instantaneous broadcast com-
munication. That is, at a stage in the process each agent broadcasts its message and
receives the messages sent by all other agents instantaneously and without errors.

A Decision-Theoretic Approach to Collaboration 105

In the most general case, the goal in a Dec-POMDP-Com is to

“find a joint policy that maximizes the expected total reward over the finite horizon.
Solving for this policy embeds the optimal meaning of the messages chosen to be
communicated” — Goldman and Zilberstein [31]

That is, in this perspective the semantics of the communication actions become part
of the optimization problem. This problem is considered in [31, 67, 80].

One can also consider the case where messages have fixed semantics. In such
a case the agents need a mechanism to process these semantics (i.e., to allow the
messages to affect their beliefs). For instance, when the agents share their local
observations, each agent maintains a joint belief and performs an update of this joint
belief, rather than maintaining the list of observations. It was shown that under cost-
free communication, a joint communication policy that shares the local observation
at each stage is optimal [57].

Models with explicit communication seem more general than the models without,
but (in the absence of special mechanisms to interpret the messages) it is possible to
transform the former to the latter. That is, a Dec-POMDP-Com can be transformed
to a Dec-POMDP [32, 64].

2.4.4 Generalization: Partially Observable Stochastic Games (POSGs)

The generalization of the Dec-POMDP is the partially observable stochastic game
(POSG). It has the same components as a Dec-POMDP, except that it specifies not
a single reward function, but a collection of reward functions, one for each agent.
This means that a POSG assumes self-interested agents that each want to maximize
their individual expected cumulative reward.

The consequence of this is that there is no longer an optimal joint policy, simply
because ‘optimality’ no longer defined. Rather the joint policy to suggest should
be a (Bayesian) Nash Equilibrium, and preferably a Pareto optimal NE. However,
there is no clear way to identify the ‘best’ one. Moreover, such a Pareto optimal NE
is only guaranteed to exist in randomized policies (for a finite POSG), which means
that it is no longer possible to perform brute-force policy evaluation. Also search
methods based on alternating maximization are no longer guaranteed to converge
for POSGs.

3 The Subjective Approach

The Dec-POMDP presents an objective perspective in which the goal is to find a
plan, a (near-) optimal joint policy, for all agents simultaneously. In the subjective
perspective, we reason for one particular protagonist agent. That is, this agent tries
to take the best actions by predicting the other agents in the environment.

This perspective has been computationally formalized in the recursive modeling
method (RMM) [29, 30]. The limitation of the RMM framework, however, is that
the agents interact in the setting of repeated strategic games, and such games do not
take into account the environment, or observations of agents. As such it is difficult

106 F.A. Oliehoek and A. Visser

to model many realistic settings, where agents have different information regarding
the environment.

The interactive POMDP (I-POMDP) is a different framework that overcomes
these limitations [28]. It is closely related to the POMDP in how it models the en-
vironment. The I-POMDP focuses on the decision making process of a single self-
interested agent, situated in an environment with other agents. Gradually, dependent
on the so-called strategy level, the influence of other agents is incorporated into
the decisions of the protagonistic agent. Because of this, the framework also admits
non-cooperative and competitive MASs.

3.1 Interactive POMDPs

When planning from the perspective of a protagonist agent in a POMDP-like en-
vironment that includes other agents, an obvious first approach is to simply ignore
the other agents. The problem with this approach is that the result of its action and
observations are influenced by other agents.

It is possible to treat this influence as noise, but that this approach has two main
drawbacks: first, this approximation decreases the value of the optimal policy. Sec-
ond, as these approximations are incorporated in the transition- and observation
model, they are the same for each time-step. During execution, however, the other
agent’s policy might be non-stationary, thus the probability of another agent per-
forming some action might depend on the timestep. This non-stationarity is actually
guaranteed to take place when the other agent learns of its experience, and especially
when it tries to learn and predict the behavior of the protagonist agent.

Therefore, instead of approximating other agents’ influence through noise, Gmy-
trasiewicz and Doshi [28] propose to predict the behavior of other agents. To do this,
they maintain an interactive belief over worldstates and models of other agents. A
model mi for an agent i from the set of possible models Mi describes the internal
state and probabilities of future actions of agent i.

Definition 9. Formally, each model mi ∈ Mi for agent i is defined as a triple mi =
〈�oi,πi,POi〉, where�oi is the history of observations of agent i, πi is the policy (referred
to as ‘function’) of agent i and POi is agent i’s observation function.

Furthermore, Gmytrasiewicz and Doshi divide the set of models into two classes:
sub-intentional and intentional models. The former being simpler, the latter being
more complex by attributing beliefs, preferences and rationality to the agent. The
intentional model that is considered in I-POMDPs is an agent’s type:

Definition 10. A type θi of an agent i that participates in a ‘POMDP-like’ environ-
ment is a tuple

〈
bi,θ̂i

〉
, where bi ∈P(S) is the belief over states of agent i and

θ̂i = 〈Ai,PTi ,Ri,Oi,POi ,OCi〉 is called agent i’s frame. This frame in turn consists of
Ai,PTi ,Ri,Oi,POi the actions, transition- and reward function, observations and ob-
servation function for agent i, and OCi, the optimality criterion of agent i: usually
the cumulative (discounted) reward. A type is an element of the space of intentional
models: θi ∈Mintentional

i .

A Decision-Theoretic Approach to Collaboration 107

Given these definitions, we can give the definition of an I-POMDP as follows:

Definition 11. Formally, an interactive-POMDP (I-POMDP) of agent i is a tuple
〈ISi,A,PTi ,Ri,Oi,POi〉, where:

• ISi is the set of interactive states, defined as ISi ≡ S× (× j �=iMj).
• A is the set of joint actions.
• PTi ,Ri,Oi,POi are the transition- and reward function, observations and observa-

tion function for agent i. These are defined over joint actions, i.e. P(s′|s,a) and
R(s,a), but over individual observations, i.e. P(oi|a,s′).

An I-POMDP is a POMDP defined over interactive states, which include models
of the other agents. This means that an interactive state fully specifies the future
behavior of the other agents. As such, it is possible to transform the POMDP belief
update to the I-POMDP setting [28]. Since it is rather complex, we do not repeat
this transformed belief update here, but just mention that to predict the actions of
the other agents, it uses probabilities ∀ j P(a j|θ j) given by the model m j.

When considering intentional models (types), the formal definition of I-POMDPs
as above leads to an infinite hierarchy of beliefs, because an I-POMDP for agent i
defines its belief over models and thus types of other agents, which in turn define
a belief over the type of agent i, etc. To overcome this problem one can define
finitely nested I-POMDPs [28]. Here, a 0-th level belief for agent i, bi,0, is a belief
over world-states S. An k-th level belief bi,k is defined over world-states and models
consisting of types that admit beliefs of (up to) level k− 1. The actual number of
levels that the finitely nested I-POMDP admits is called the strategy level.

Example 3 (The FIREFIGHTING problem as an I-POMDP). Here we illustrate how the
FIREFIGHTING problem may be represented as a finitely nested I-POMDP. To ease the
following discussion we assume that there are two agents: i and j.

Suppose we define two sub-intentional models for agent j: one model mH1 specifies
that agent j will always perform action H1, the other mrand assumes that agent j will
act random; i.e.,will select its actions with uniform probability. Together these models
form the set Mj,0 of 0th-level models3 of agent j and this set can be used to construct
a 1st-level I-POMDP model for agent i. In this I-POMDP IPi,1,

• the interactive state space ISi,1 = S×Mj,0 is the product of the set of world states
S, which is defined in the same way as in the Dec-POMDP case (i.e., the state
specifies the fire levels of each of the houses), and the possible models,

• the set of joint actions is equal to the Dec-POMDP case: it is the cross product of
the sets of individual actions {H1 . . .HNH},

• the transition, observation and reward function are also defined in the same way
as in the Dec-POMDP case.

Because each of the possible models m ∈Mj,0 fully specifies the behavior of agent
j, i.e., it specifies Pr(a j|m), the interactive state possesses the Markov property and
IPi,1 can be solved.

3 Clearly, this is a very simple example. A more realistic scenario might include more sub-
intentional models.

108 F.A. Oliehoek and A. Visser

Now in turn IPi,1 can be interpreted as a model for agent i. In particular, given an
interactive belief for bi,1 ∈ ISi,1 the behavior of agent i is completely specified. This
means that we can use it as a model mi,1 = 〈bi,1, IPi,1〉 for agent i in the interactive 2nd
level state space IS j,2 = S×Mi,1 for agent j, etc.

A final note in this example is that by updating the belief over interactive states in
the belief update not only the belief over states is updated, but also the belief over the
models of the other agent. For instance, consider a FIREFIGHTING problem where the
observation spaces are augmented to include the observation of the other agent if they
happen to fight fire at the same house. In this case, when agent i observes agent j at a
house different than house 1, it learns that the model mH1 is incorrect and will update
its beliefs to reflect this, thereby improving future predictions of agent j.

A graphical model formulation of I-POMDPs called interactive dynamic influ-
ence diagram (I-DID) has also been proposed [20]. This model allows for a more
compact representation of sequential decision problems by making explicit the
structure of state variables and their influences. Like the I-POMDP itself, it gives
a subjective view from a particular agent.

Such a subjective approach is very appropriate for systems with self-interested
agents, but can also be applied to cooperative agents. The subjective perspective
also allows for flexibility, for instance in systems where agents may come and go.
Also, the subjective approach can be used to allow efficient approximations, such as
demonstrated in Section 5.2.

3.2 Solving I-POMDPs

As mentioned in Section 3.1, an I-POMDP actually considers reasoning from one
agent’s perspective, which is why it is very similar to single agent planning.

For a finitely nested I-POMDP, the reasoning the agent performs in fact is of the
form “what would the other agents do if they think that I think that...”. A finitely
nested I-POMDP can be solved bottom up [28]: An I-POMDP of strategic level 0
for agent i is a regular POMDP that can be solved. This gives a level 0 policy. Now,
assuming that agent i can only have certain particular beliefs (over states, since it
is a level-0 model), this induces a probability distribution over actions, which can
be used in the level 1 I-POMDP of agent j, effectively transforming the latter to a
POMDP as well. The solution (a level 1 I-POMDP policy π j) can then be used for
the level 2 I-POMDP for the agent i, etc.

The problem in the above procedure lies in the assumption that the modeled
agent’s belief must be a member of some particular finite set of beliefs, instead
of the infinite set of beliefs. Even though one can argue that both agents have the
same initial belief b0 and that therefore the number of (0-th level) beliefs over states
is finite, the number of possible models of other agents is infinite. Effectively this
means that an arbitrary discretization of the interactive belief space has to be made.
To overcome this problem, it is possible to group models in behavioral equivalence
classes [60]. This induces a partition of the infinite interactive state space and thus
leads to a finite representation of the interactive state space that allows for exact
solutions.

A Decision-Theoretic Approach to Collaboration 109

3.3 The Complexity of Solving I-POMDPs

For finitely nested I-POMDPs, similar results hold as for POMDPs: value iteration
is guaranteed to converge and the value function is piecewise linear and convex [28].
The authors also state that solving a finitely nested I-POMDP of strategy level l is
PSPACE-hard, because it is equivalent to solving O(Ml) POMDPs, assuming that
the number of models considered at each level is bounded by a number M. However,
the space of models considered can be very large or even infinite. Moreover, when
updating the belief of another agent’s model, we have to consider what observations
the other agent may have received and introduce a new resulting model for each of
them. This means that the number of considered models grows exponentially with
the planning horizon.

4 Application of Decision-Theoretic Models and the Need to
Scale up

In this section, we give an example of the application of decision-theoretic mod-
els to a realistic crisis management task, namely, RoboCup Rescue. The resulting
model is huge and current methods are still far away from solving such a model. We
argue that this is typical for the application of decision-theoretic tools to real-world
problems and that it motivates the search for methods that scale better.

Consequently, we address some different methodologies that contribute to real-
izing better scaling for MASs under outcome and state uncertainty. Most of these
methods have been proposed for Dec-POMDPs. Most work on I-POMDPs has fo-
cused on making the I-POMDP belief update more tractable [17, 18], clustering
models [60, 81], or extending single-agent POMDP techniques [19].

4.1 An Example: RoboCup Rescue as a Dec-POMDP

Here, we present an example that shows how firefighting in RoboCup Rescue can
be modeled as a factored Dec-POMDP and that the resulting model is intractable.4

It would also be possible to model it as an I-POMDP, but similar scaling problems
would result.

4.1.1 State Description

Here, we describe a formal model of the state space for the task of fire fighting in
RoboCup Rescue. It is based on the dynamic factors in the RoboCup Rescue world,
restricted to the factors relevant for firefighting. Static factors, i.e. factors that do
not change throughout the simulation, will not have to be incorporated in the state
space. In RoboCup Rescue, the world is given by a map, consisting of buildings,

4 This is a simplified summary of the description in [50].

110 F.A. Oliehoek and A. Visser

roads and nodes, which act as the glue between roads and buildings. A typical map
consists of approximately 1000 buildings and the same number of roads and nodes.

This world is populated by civilians, rescue agents (platoons) and the immobile
rescue centers. The rescue agents (both mobile and center agents) can in turn be
divided into fire, police and ambulance agents. The center agents function as com-
munication centers. We only consider (about 15) mobile firefighting agents here.

The mobile agents can be located on roads, nodes or in buildings. So the number
of valid positions on a map is the sum of these elements (i.e., typically around 3000).
Also these mobile agents have a particular health, expressed in health points (HPs).
Fire-brigade agents have a particular amount of water left.

The earthquake that takes place at the beginning of the simulation has a large
effect on the state: buildings collapse and catch fire, these collapses can cause roads
to get blocked (in either direction) and civilians to get trapped in debris. Starting
from this initial state, fires will spread if left unattended. The fire simulator is based
on heat energy as primary concept. Fire propagation’s main component is heat ra-
diation, which is simulated by dividing the open (non-building) area of the map in
(approx. 20000) cells for which the air temperature is computed. Other factors that
determine the spread of fire are properties of buildings. The dynamic factors are
the heat of a building, whether it is burning, how much fuel is left and how much
water is put in by extinguish actions. Static properties like the size and composition
of a particular building (wood, steel or reinforced concrete) and how close it is to
surrounding buildings also influence the spreading of fire. However, because these
properties are static, they do not need to be incorporated in the state description. In-
stead the probability of a particular building i catching fire given that a neighboring
building j is on fire is modeled through the transition model.

Table 1 summarizes the state factors. Note that, as this example focuses on the
firefighting aspect, certain factors (e.g. the position, health and other properties of
other agents) are ignored.

4.1.2 Actions

The actions for an agent i in RoboCup Rescue can be divided into domain level
actions Ad

i and communication actions Ac
i . A mobile agent can perform both a do-

main level action as communication within one timestep (e.g. a fire-brigade agent
can move/extinguish and communicate). This means that the set of actions Ai for a
mobile agent i is the Cartesian product of all domain level and communication ac-
tions Ai = Ad

i ×Ac
i . In this section, we will discuss the domain level actions. Section

4.1.4 will deal with communication actions.
All mobile agents can perform the move action. The argument of this move ac-

tion is a path along which the agent should move. Clearly, the move actions are
dependent on the current position of the agent. Also, there is a maximum distance
that an agent can travel in one timestep (333m). This means that two paths that
deviate only after this point lead to the same action. Fire-brigades have two special-
ized actions: extinguish and refill. The extinguish action specifies a building and
the amount of water (in liters) to direct to that building.The refill action restores the

A Decision-Theoretic Approach to Collaboration 111

Table 1 State variables or factors for a particular RoboCup Rescue world

factor values

for all fire agents in the world (±15)

current position valid positions
health 0–9999HPs
amount of water 0–15000l

for all roads (±1000)

blocked? (2 directions) blocked/free

for all buildings (±1000)

heat energy 0–106 GJ
state (not) burning
fuel left percent(%)
amount of water 0–150000l

for all air cells (±20000)

temperature 20-10000◦C

water supply of the brigade and can only be performed at ‘refuges’; these are special
buildings where agents can find shelter.

4.1.3 Observations

As with actions we specify the set of observations for agent i as the Cartesian prod-
uct of domain and communication observations Oi = Od

i ×Oc
i . Here we treat the

domain observations, communication observations are treated in section 4.1.4.
At each timestep, only objects within a range of 10 m are seen, except for fiercely

burning buildings, which can be observed from a larger distance. When an agent
executed a move action, only observations of the new position are received (i.e.
no observations are made ‘en route’). On average 4–6 static objects (building and
roads) can be visually observed during a timestep [54].

Observing an object means that the agent receives the object ID, its type and
properties. For a road this property is whether or not it is blocked (in both ways),
for a building, the so-called fieriness, is observed. This fieriness factor is a direct
function of the amount of fuel and water left in the building and determines the part
of the area counted as damaged.

4.1.4 Communication

Communication consists of both an action (by the sender) and an observation (for
the receiver). In RoboCup Rescue there are two forms of communication actions:
say and tell. The say messages are directly transferred (i.e., shouted), the latter
transmitted by radio. Both types of communication are broadcast: say messages can
be picked up by agents of all types within 30 m, tell messages can be received by
all agents of the same type regardless of the distance. The restrictions that are posed

112 F.A. Oliehoek and A. Visser

on communication vary per competition. We assume that platoon agents can send
4 tell messages and one say message and that all agents can receive all messages.
Restrictions on the number of received messages can also be incorporated [50].

In a Dec-POMDP, we can model communication by introducing communication
actions and observations. The basic idea is that for each joint communication action
ac one joint communication observation oc can be introduced that for each agent
contains the messages sent by the other agents. Restrictions with respect to com-
munication distance can be modeled by making communication dependent on the
(next) state s′. That is, it is possible to specify a communication model of the form
Pr(oc|ac,s′).

The complete observation model is then given as the product of this communica-
tion model and the regular, domain observation model:

Pr(〈od ,oc〉|〈ad ,ac〉,s′) = Pr(oc|ac,s′) ·Pr(od |ad ,s′). (17)

In a pure planning framework, messages have no a priori semantics. Instead the
planning process should embed the ‘optimal meaning’ in each communication ac-
tion as explained in Section 2.4.3 In RoboCup Rescue all messages are 256 bytes.
When an agent can send 4 tell and 1 say message, it has 8 ·256 ·5 = 10240 bits to
encode its communication action and thus that |Ac

i | = 210240. This means that the
number of joint communication actions |Ac|= 210240n. Clearly this way of treating
communication is intractable.

4.1.5 Transition, Observation and Reward Model

The transition model of a factored Dec-POMDP can be compactly described by a
two-stage DBN. Because the state description is the same as used by the simulator
components, these structures and probabilities for this DBN can be found by ana-
lyzing the code of the simulation system. For the (domain) observation model we
can make a similar argument.

The reward function is easily derived from the scoring function. A typical scoring
function is

Score(s) = (P+ S/S0) ·
√

B/B0, (18)

where P is the number of living agents, S0 is the total sum of health points (HPs) at
start of the simulation, S is the remaining sum of HPs, B0 is the total area of houses
and B is the area of houses that remained undamaged.

This gives us the reward function of the Dec-POMDP in the following way:

R(s,a,s′) = R(s,s′) = Score(s′)−Score(s). (19)

The horizon is finite in the RoboCup Rescue competition (300 time-steps). How-
ever, in the real-life setting we will typically want to plan for a varying horizon (until
all fire is extinguished and all trapped people are either rescued or dead). This can
be accomplished by treating the problem as one of infinite horizons.

A Decision-Theoretic Approach to Collaboration 113

4.1.6 Complexity

Here, we will give a brief argument of the complexity of the Dec-POMDP represen-
tation. By ignoring some factors of the statespace, we effectively performed a first
abstraction to reduce the state space. However, the state space as presented in Table
1 is still huge. When there are n = 15 fire-brigade agents and 3000 valid positions
this already leads to 300015 different configurations. When considering only the first
four factors, we already get a state space of

|nr_pos|15 · |HPs|15 · |water|15 ·2|2·nr_roads| =
300015 ·1000015 ·1500015 ·22000 ≈

1052 ·1060 ·1062 ·10602 = 10776

and this is not even including the state of each of the 1000 buildings. We already saw
that the number of joint communication actions is prohibitively large and the same
holds for domain actions and observations. Therefore, this is clearly an intractable
problem.

In the above, we modeled RoboCup Rescue as a Dec-POMDP and concluded
that the resulting model is intractable to solve. Even though this is just an example,
it is exemplary for the current state of affairs: when modeling a realistic problem
using decision-theoretic tools, the result is typically an intractable problem. On the
one hand, this motivates the need for decision-theoretic methods that scale better.
On the other hand, some research tries to directly find heuristic solutions that per-
form well, thereby trying to closer the gap between principled solutions and real-
life applications from both sides. In Section 5, we will provide some examples of
our work in the latter category. The rest of this section focuses on ways to scale
up decision-theoretic approaches. In particular, we give an overview of hierarchi-
cal decompositions, exploiting independence between agents and compressions of
policies. We focus on aspects of MASs, but stress that scaling up methods for single-
agent (PO)MDPs is still a very important area of research [36].

4.2 Aggregation and Hierarchical Decompositions

Some common sense reveals that the intractability of the flat description of the pre-
vious section is no surprise: In the real world, a fireman who is extinguishing some
building typically will not care about properties of a building beyond the zone of
potential fire spreading. Nor will he consider what the exact position of a colleague
at the other side of town is. Effectively, in order for a firefighter to perform his job
he needs to focus on those state variables that are relevant for his current task. States
that do not differ on relevant variables can be grouped or aggregated. In such a way
state aggregations reduce the size of the state space [15, 24, 27, 55].

Aggregation is closely related to hierarchical methods [1, 16, 68]. That is, these
above insights may be used to provide a hierarchical decomposition of tasks, bring-
ing leverage to the decision process, by constraining the number of possible poli-
cies. An example how such a decomposition might look for the RoboCup Rescue

114 F.A. Oliehoek and A. Visser

Dec-POMDP is given in [50]: At the lowest level each group of burning buildings
(fire zone) may be considered separately, coordination between different fire zones
is performed at a higher district level and the highest level considers the entire city.
So far, most other hierarchical approaches have focussed on single-agent and fully
observable settings, typically using the framework of SMDPs. An important direc-
tion of future research is the examination of more principled hierarchical methods
for partially observable MASs.

4.3 Modeling and Exploiting Independence between Agents

In a complex MAS, not all agents may need to consider each other’s actions. A hi-
erarchical decomposition may make this assumption explicit by having some agents
participate in different parts of the decomposition (e.g. different fire zones in the
example above). On a smaller scale, however, there may also be independence be-
tween agents. For instance consider a slightly modified version of FIREFIGHTING,
called FIREFIGHTINGGRAPH, illustrated in Fig. 7. This version of the problem re-
stricts each agent to only go to any of two fixed houses that are assigned to it. In
such a setting it is conceivable that agent 1 only has to directly coordinate with agent
2, but not with agent 3.

In the last decade, much research has been devoted to exploiting such indepen-
dence between agents. However, many of these approaches make very restrictive
assumptions. For instance, models with more assumptions on observability and/or
communication have been considered [35, 42]. These approaches try to exploit in-
dependence between agents, but they either require the agents to observe the state
of the system (as in a multiagent MDP) or to observe a subset of state variables
(as in a factored Dec-MDP) and communicate at every stage. For the particular
case of transition and observation independent Dec-POMDPs [2], it has been sug-
gested to exploit independence [47, 76]. However, the assumption of transition and

Fig. 7 An illustration of the FIREFIGHTINGGRAPH problem. Each agent is restricted to go
fight fire at the houses on its left and right sides.

A Decision-Theoretic Approach to Collaboration 115

observation independence (TOI) severely limits the applicability of these models.
In particular, TOI implies that the agents have disjoint sets of individual states
and observations, and that one agent cannot influence the state transition or the
observation of another agent. In practice, this means that many interesting tasks,
such as two robots carrying an object, cannot be modeled.

A more general analysis of locality of interaction in factored Dec-POMDPs
shows that the last stage in the process contains the highest degree of independence
but, when moving back in time (towards the initial stage t = 0), the scope of de-
pendence grows [49]. Still, the authors are able to exploit independence between
agents in the optimal solution of factored Dec-POMDPs, because most of the in-
dependence is located where it is most needed: the overwhelming majority of the
computational effort of solving a Dec-POMDP is spent in the last stage [73]. The
method of [49] is an extension of GMAA∗, which replaces the BGs by collaborative
graphical BGs (CGBGs), which are less computationally expensive to solve in later
stages where independence is high. Even though they can only exploit independence
in the last stage to guarantee optimality (GMAA∗ needs to return all partial policies
for intermediate stages to guarantee optimality), an experimental evaluation shows
a speedup of two orders of magnitude.

4.4 Compression of the Considered Policy Space

A third category of techniques to facilitate better scaling tries to compress directly
the space of policies that is considered. The first example of this type of approach is
presented in [22] that proposes to prune low-probability joint types (i.e., joint action-
observation histories with a low probability) from the BGs constructed for each
stage. Subsequently, the smaller BGs are easier to solve, since there are a lot less
joint BG-policies (i.e., decision rules for the stage for which the BG is constructed)
to consider. As such, the search space of joint policies is effectively trimmed by
pruning in the space of histories. This approach is refined by clustering histories
with similar (heuristic) payoff profiles, rather than pruning [23].

Even though these pruning and clustering techniques proved to be quite effec-
tive, they are a form of lossy compression of the BG and no quality guarantees are
available. Recently, a criterion has been identified that guarantees that two individ-
ual histories have the same optimal value, allowing lossless clustering and therefore
faster optimal solutions of Dec-POMDPs [51]. The authors experimentally demon-
strate that in several well-known test problems, the proposed method allows for the
optimal solution of significantly longer horizons.

In the backward view of solving Dec-POMDPs similar techniques have been
employed. Probably the most successful method here is memory-bounded dynamic
programming (MBDP) [63]. Rather than pruning dominated sub-tree policies qτ=k

i ,
MBDP prunes all sub-tree policies except a few in each iteration. More specifically,
for each agent m sub-tree policies that perform well on a set of heuristically sampled
multiagent belief points are retained. Effectively this means that at every iteration
the search space of policies is trimmed to a fixed size. As a result, MBDP has only

116 F.A. Oliehoek and A. Visser

linear space and time complexity with respect to the horizon. The MBDP algorithm
still depends on the exhaustive generation of the sets Qτ=k+1

i which now contain
|Ai|m|Oi| sub-tree policies. Moreover, in each iteration all

(|A∗|m|O∗|)n
joint sub-tree

policies have to be evaluated for each of the sampled belief points. To counter this
growth, an extension is proposed that limits the considered observations during the
backup step to the maxObs most likely observations [62]. MBDP with observation
compression (MBDP-OC) [10] improves upon this by not pruning low-probability
observations, but rather clustering observations in a manner that minimizes the ex-
pected loss.

MBDP-OC is able to bound the error introduced relative to MBDP without obser-
vation compression. The error introduced by MBDP itself, however, is unbounded.
Recently, an optimal algorithm based on DP that performs a lossless compression
of the sub-tree policies was introduced [6]. The idea is that sub-tree policies are
represented in a smaller more compact form, similar to sequence form [43] and es-
pecially the so-called tests from the work on predictive state representations [65].
Policy compression results in significant improvement in performance compared to
regular DP for Dec-POMDPs.

5 Efficient Heuristic Approaches for Teams of Agents

The decision-theoretic models covered in this chapter have some desirable prop-
erties. They are well defined and allow for quantitative comparisons of solutions.
Unfortunately, the solution methods scale poorly. The previous section described
some techniques that can improve scalability. Even though this is a step in the right
direction, pure decision-theoretic solutions are still impractical for most real-world
settings.

Our strategy has been to tackle the gap between decision-theory and real-world
applications from two sides. This section describes work that approaches it from the
application side using efficient heuristic methods. First, we describe a body of work
that employs a limited form of decision-theoretic reasoning to allocate heuristically
defined roles using variants of the Dec-POMDP. Second, we describe how a heuris-
tic variant of the subjective approach to decision theory can be employed for the
task of exploration in emergency sites.

5.1 Allocating Pre-specified Roles Sensibly

Over the last decades, many heuristic approaches to multiagent systems have
been proposed and employed with considerable success in (near-) real-life settings
[38, 58, 69, 74]. Of these approaches, many are based on the belief-desire-intention
(BDI) paradigm [26] and extensions for MASs [11–13, 33, 34]. In such ‘BDI teams’
agents reason over their beliefs, desires and intentions and that of the team to select
a plan, or role from a library of pre-compiled plans.

These heuristic approaches have been able to scale to larger problems than the
decision-theoretic approaches treated in earlier sections. Still, the latter have some

A Decision-Theoretic Approach to Collaboration 117

desirable properties. As such, some research has tried to integrate DTP within these
BDI-teams to improve performance, by applying it to substitute only a part of the
reasoning. In particular, the task of role allocation has been considered.

For instance, decision-theoretic reasoning has been applied to assign roles to
agents in the context of the RoboCup Soccer simulation league [41]. Their approach
is based on using coordination graphs to indicate which agents should coordinate
when select a role. Nair and Tambe [46] consider role allocation for TOP plans [58].
They define the role-based multiagent team decision problem (RMTDP) which is an
extension of the Dec-POMDP to include role taking and role executing actions. The
RMTDP is constructed and solved more efficiently by exploiting properties of the
TOP plan. For instance, the features tested in the TOP plan correspond to the set of
states S of the RMTDP. More important, the organization hierarchy of the TOP plan
is used to calculate upper bounds for the expected reward when a role is chosen.
This upper bound is used to prune less attractive role allocations. For this algorithm,
experimental results on a simplified RoboCup Rescue scenario are presented.

5.2 Frontier Selection in Exploration

Multi-robot exploration is a challenging application area in which multiple robots
have to explore an area as efficiently as possible. An instance of this problem can be
found in the RoboCup Rescue League: inside the Virtual Robot competition multi-
ple robots have to coordinate their actions to explore jointly an as large as possible
area after a disaster. At the beginning, the robots have no knowledge of the envi-
ronment, but by driving around and observing, it can be explored. Exploration can
be formally defined as the task to maximize the knowledge about the environment.
When the environment is modeled with an occupancy grid map, the exploration
problem is the problem of maximizing the cumulative information of each grid cell.

One of the difficulties in multi-robot exploration is that information about the en-
vironment is distributed; each robot has a partial and incomplete view represented
by the occupancy grid map it individually retains. Most of the knowledge about
the environment is directly derived from the sensors of the robot, only occasionally
augmented with some additional (older) observations from the other robots when
they are relayed over a multi-hop communication network. However, communica-
tion may not be available at all times. Also, for a setting like this it is infeasible to
pre-compute a plan describing what to do in all possible settings, since this would
entail finding an exploration plan for every possible world. For these reasons, a sub-
jective approach as outlined in Section 3 is more suitable for this type of problems.

In particular, the exploration problem as introduced can be formalized as an
I-POMDP. In this representation, each robot maintains its private occupancy grid
map. The full state vector contains both sp the true state of the physical environ-
ment (which includes the agent positions) as well as si the maintained grid of each
agent i. Domain-level actions of robots typically consist of low-level actuations.
However, in this setting it is possible to use a higher abstraction level by defin-
ing ‘exploration frontiers’. Such frontiers are the boundaries between explored and

118 F.A. Oliehoek and A. Visser

unexplored areas as specified by each individual occupancy grid. Action ai j of
agent i dictates that it goes to frontier f j, the j-th frontier specified by its grid.
Selecting a frontier means a decision on the action to take. Given sp the state of the
physical environment and the actions selected by the agents, a new physical state
s′p results stochastically. Each agent makes a local observation of this new state s′p
which allows them to update (their belief of) their individual maps s′i, as well as
their beliefs over the maps maintained by other agents. Any received communica-
tion may be incorporated in these beliefupdates. The reward function can be defined
as the difference in cumulative information between two states s and s′.

The above defines all necessary components for an I-POMDP, except the inten-
tional models. A sensible level-0 sub-intentional model for an agent is to go to the
nearest frontier on its map mnear. We do not define alternative sub-intentional mod-
els, so Mj,0 = {mnear} for each agent j. As before, the interactive states of a level-1
I-POMDP for agent i can now be defined as ISi,1 = S×Mj,0. Here, a s ∈ S is a full
state (specifies the physical states and the grid of each agent). Each interactive belief
of such an agent i fully specifies its behavior and therefore serves as a model for a
level-2 I-POMDP for agent j, etc.

In theory, for each agent i we could build such an I-POMDP model and the result-
ing behavior should be coordinated. Of course, such an I-POMDP representation is
intractable; the number of interactive states even for an I-POMDP of level 1 is given
by product of the number of physical states sp (i.e., possible worlds) and the num-
ber of possible maps the other agent. Still the I-POMDP formulation as presented
can serve as a guideline for efficient heuristic subjective methods. In particular, the
number of interactive states can be greatly reduced by simply dropping the maps of
other agents j from the state description for an I-POMDP of agent i. A side effect
is that the sub-intentional model of an agent j is no longer welldefined: it specifies
to go to the nearest frontier according to agent j’s grid map, but the state no longer
includes this map of agent j. Therefore, agent i assumes that agent j has the same
map as itself. This approximation may work well, because the agents that need to
coordinate closely are those that are physically near, which in turn means that they
are likely to have similar maps.

A second issue is the infinite number of physical worlds that the robots could
explore. At the end, the reasoning over hidden world states performed in an (in-
teractive) POMDP has as its goal to derive expected future reward values for each
action, which can then be used to select the best action. Now the idea is to more di-
rectly use a heuristic function to valuate each of the possible individual actions. The
heuristic which used is based on the physical properties of the observation process.
The difference between explored and unexplored areas is a gradual one. Some ob-
servations beyond the frontiers are already available, which can be used the estimate
the future reward [77]. In particular, we use an estimate of the information gained
by each possible individual action by looking at the area visible beyond the frontier.

By predicting the other agents’ actions (by assuming that they go to the fron-
tier nearest to them) each individual action ai leads to a joint action. This joint
action leads to an expected increase in information, by adding up the size of the
areas beyond those frontiers. Such an approximation may work well, because in a

A Decision-Theoretic Approach to Collaboration 119

(a) Map generated by one
robot

(b) Map generated by an-
other robot

(c) combined Map

Fig. 8 Map resulting from an autonomous exploration in the RoboCup Rescue 2006 Compe-
tition

exploration setting, each non-explored world typically is equally likely, i.e., there
typically is no good Bayesian prior that gives a better estimate of the value of each
action than the sparse observations beyond the frontier.

Note that assuming the other agents go to the nearest frontier may result in misco-
ordination since in fact they will employ similar reasoning. To reduce the probability
of such miscoordinations, prediction of the other agents is enhanced by assuming
that the other agents also trade off information gain and travel cost. Frontiers are
allocated to robots in order, where the combination which has the highest estimated
information gain / travel cost balance is selected first.

The result is a heuristic exploration method inspired by the I-POMDP formula-
tion given above. Experimental evaluations demonstrate that the method results in
coordinated behavior where each robot explores a different part of the environment.
An example of such cooperation is given in Fig. 8, where the exploration effort of
two robots is indicated with their individual maps and the shared map. Gray areas
indicate fully explored areas, and white areas indicate to be explored areas. The
boundaries between white and gray areas are the frontiers. It is clear that the overlap
in the exploration effort of both robots is small.

6 Conclusions

In this chapter, an overview is given of a number of decision-theoretic tools and
models to allow reasoning with uncertainty, reasoning with risks and reasoning un-
der a lack of knowledge. The decentralized POMDP framework is described as a
model for objective sequential decision making for a team of cooperative agents and

120 F.A. Oliehoek and A. Visser

compared with an alternative subjective approach; interactive POMDP. For both
models we described solution methods and the known complexity results.

We also modeled a more realistic task as a Dec-POMDP and illustrated that the
resulting model is prohibitively large. Therefore, we argue that there still is a big gap
between decision-theoretic methods and real-life applications. In our opinion, this
gap should be closed from both sides: by scaling up principled solutions and identi-
fying efficient heuristics. In the former category we discussed some techniques that
may allow for the solution of larger Dec-POMDPs. In the latter, we gave an example
of how Dec-POMDPs can be applied to tackle a smaller part of the problem (role
assignment), and a heuristic approach for the task of exploration. Since the approach
to exploration takes a subjective perspective, it can be interpreted as an approxima-
tion to an I-POMDP. Future work should investigate whether such approximations
are possible for a broader class of partially observable multiagent problems.

Acknowledgements. We wish to thank our colleagues: Julian de Hoog, Julian Kooij,
Matthijs Spaan, Nikos Vlassis and Shimon Whiteson.

References

1. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems: Theory and applications 13, 343–379 (2003)

2. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Solving transition independent
decentralized Markov decision processes. Journal of Artificial Intelligence Research 22,
423–455 (2004)

3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentral-
ized control of Markov decision processes. Mathematics of Operations Research 27(4),
819–840 (2002)

4. Bernstein, D.S., Zilberstein, S., Immerman, N.: The complexity of decentralized control
of Markov decision processes. In: Proc. of Uncertainty in Artificial Intelligence, pp. 32–
37 (2000)

5. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. I. Athena
Scientific, Belmont (2005)

6. Boularias, A., Chaib-draa, B.: Exact dynamic programming for decentralized POMDPs
with lossless policy compression. In: Proc. of the International Conference on Auto-
mated Planning and Scheduling (2008)

7. Boutilier, C.: Planning, learning and coordination in multiagent decision processes. In:
Proc. of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, pp.
195–210 (1996)

8. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research 11, 1–94 (1999)

9. van den Broek, B., Wiegerinck, W., Kappen, B.: Graphical models inference in optimal
control of stochastic multi-agent systems. Journal of Artificial Intelligence Research 32,
95–122 (2008)

10. Carlin, A., Zilberstein, S.: Value-based observation compression for DEC-POMDPs. In:
Proc. of the International Joint Conference on Autonomous Agents and Multi Agent
Systems, pp. 501–508 (2008)

A Decision-Theoretic Approach to Collaboration 121

11. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelli-
gence 42(3), 213–261 (1990)

12. Cohen, P.R., Levesque, H.J.: Confirmations and joint action. In: Proc. of the Interna-
tional Joint Conference on Artificial Intelligence, pp. 951–957. Morgan Kaufmann, San
Francisco (1991)

13. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25(4) (1991)
14. Dawes, R.M.: Rational Choice in an Uncertain World. Hartcourt Brace Jovanovich

(1988)
15. Dean, T., Givan, R.: Model minimization in Markov decision processes. In: Proc. of the

National Conference on Artificial Intelligence, pp. 106–111 (1997)
16. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function

decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)
17. Doshi, P.: Approximate state estimation in multiagent settings with continuous or large

discrete state spaces. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, p. 13 (2007)

18. Doshi, P., Gmytrasiewicz, P.J.: A particle filtering based approach to approximating in-
teractive POMDPs. In: Proc. of the National Conference on Artificial Intelligence, pp.
969–974 (2005)

19. Doshi, P., Perez, D.: Generalized point based value iteration for interactive POMDPs.
In: Proc. of the National Conference on Artificial Intelligence, pp. 63–68 (2008)

20. Doshi, P., Zeng, Y., Chen, Q.: Graphical models for interactive POMDPs: representations
and solutions. Autonomous Agents and Multi-Agent Systems 18(3), 376–416 (2008)

21. Druzdzel, M.J., Flynn, R.R.: Decision Support Systems. In: Encyclopedia of Library and
Information Science. The Taylor & Francis, Inc., New York (2003)

22. Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S.: Approximate solutions for
partially observable stochastic games with common payoffs. In: Proc. of the Interna-
tional Joint Conference on Autonomous Agents and Multi Agent Systems, pp. 136–143
(2004)

23. Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S.: Game theoretic control for
robot teams. In: Proc. of the IEEE International Conference on Robotics and Automa-
tion, pp. 1175–1181 (2005)

24. Feng, Z., Hansen, E.: An approach to state aggregation for POMDPs. In: AAAI 2004
Workshop on Learning and Planning in Markov Processes – Advances and Challenges,
pp. 7–12 (2004)

25. Gal, Y., Pfeffer, A.: Networks of influence diagrams: A formalism for representing
agents’ beliefs and decision-making processes. Journal of Artificial Intelligence Re-
search 33, 109–147 (2008)

26. Georgeff, M.P., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998.
LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

27. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence 147(1-2), 163–223 (2003)

28. Gmytrasiewicz, P.J., Doshi, P.: A framework for sequential planning in multi-agent set-
tings. Journal of Artificial Intelligence Research 24, 49–79 (2005)

29. Gmytrasiewicz, P.J., Durfee, E.H.: A rigorous, operational formalization of recursive
modeling. In: Proc. of the International Conference on Multiagent Systems, pp. 125–
132 (1995)

30. Gmytrasiewicz, P.J., Noh, S., Kellogg, T.: Bayesian update of recursive agent models.
User Modeling and User-Adapted Interaction 8(1-2), 49–69 (1998)

122 F.A. Oliehoek and A. Visser

31. Goldman, C.V., Zilberstein, S.: Optimizing information exchange in cooperative multi-
agent systems. In: Proc. of the International Joint Conference on Autonomous Agents
and Multi Agent Systems, pp. 137–144 (2003)

32. Goldman, C.V., Zilberstein, S.: Decentralized control of cooperative systems: Catego-
rization and complexity analysis. Journal of Artificial Intelligence Research 22, 143–174
(2004)

33. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial Intelli-
gence 86(2), 269–357 (1996)

34. Grosz, B.J., Sidner, C.: Plans for discourse. In: Intentions in Communication. MIT Press,
Cambridge (1990)

35. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: Advances
in Neural Information Processing Systems, vol. 14, pp. 1523–1530 (2002)

36. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Research 19, 399–468 (2003)

37. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially ob-
servable stochastic games. In: Proc. of the National Conference on Artificial Intelligence,
pp. 709–715 (2004)

38. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent sys-
tems using joint intentions. Artificial Intelligence 75(2), 195–240 (1995)

39. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

40. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjoh, A., Shimada,
S.: RoboCup rescue: Search and rescue in large-scale disasters as a domain for au-
tonomous agents research. In: Proc. of the International Conference on Systems, Man
and Cybernetics, pp. 739–743 (1999)

41. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Non-communicative multi-robot coordination in
dynamic environments. Robotics and Autonomous Systems 50(2-3), 99–114 (2005)

42. Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff prop-
agation. Journal of Machine Learning Research 7, 1789–1828 (2006)

43. Koller, D., Megiddo, N., von Stengel, B.: Fast algorithms for finding randomized strate-
gies in game trees. In: Proc. of the 26th ACM Symposium on Theory of Computing, pp.
750–759 (1994)

44. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving
games. Games and Economic Behavior 45(1), 181–221 (2003)

45. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision problems. In: Proc. of the National
Conference on Artificial Intelligence, pp. 541–548 (1999)

46. Nair, R., Tambe, M.: Hybrid BDI-POMDP framework for multiagent teaming. Journal
of Artificial Intelligence Research 23, 367–420 (2005)

47. Nair, R., Varakantham, P., Tambe, M., Yokoo, M.: Networked distributed POMDPs: A
synthesis of distributed constraint optimization and POMDPs. In: Proc. of the National
Conference on Artificial Intelligence, pp. 133–139 (2005)

48. Oliehoek, F.A., Spaan, M.T.J., Vlassis, N.: Optimal and approximate Q-value func-
tions for decentralized POMDPs. Journal of Artificial Intelligence Research 32, 289–353
(2008)

49. Oliehoek, F.A., Spaan, M.T.J., Whiteson, S., Vlassis, N.: Exploiting locality of interac-
tion in factored POMDPs. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, December 2008, pp. 517–524 (2008)

A Decision-Theoretic Approach to Collaboration 123

50. Oliehoek, F.A., Visser, A.: A hierarchical model for decentralized fighting of large scale
urban fires. In: Proc. of the AAMAS 2006 Workshop on Hierarchical Autonomous
Agents and Multi-Agent Systems (H-AAMAS), pp. 14–21 (2006)

51. Oliehoek, F.A., Whiteson, S., Spaan, M.T.J.: Lossless clustering of histories in decentral-
ized POMDPs. In: Proc. of the International Joint Conference on Autonomous Agents
and Multi Agent Systems, pp. 577–584 (2009)

52. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge
(1994)

53. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Mathematics of Operations Research 12(3), 441–451 (1987)

54. Post, S., Fassaert, M.: A communication and coordination model for ‘RoboCupRescue’
agents. Master’s thesis, University of Amsterdam (2004)

55. Poupart, P.: Exploiting structure to efficiently solve large scale partially observable
Markov decision processes. Ph.D. thesis, Department of Computer Science, University
of Toronto (2005)

56. Puterman, M.L.: Markov Decision Processes—Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., Chichester (1994)

57. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision problem: An-
alyzing teamwork theories and models. Journal of Artificial Intelligence Research 16,
389–423 (2002)

58. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous
software agents and humans. Autonomous Agents and Multi-Agent Systems 7(1-2), 71–
100 (2003)

59. Rabinovich, Z., Goldman, C.V., Rosenschein, J.S.: The complexity of multiagent sys-
tems: the price of silence. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pp. 1102–1103 (2003)

60. Rathnasabapathy, B., Doshi, P., Gmytrasiewicz, P.: Exact solutions of interactive
POMDPs using behavioral equivalence. In: Proc. of the International Joint Conference
on Autonomous Agents and Multi Agent Systems, pp. 1025–1032 (2006)

61. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson
Education, London (2003)

62. Seuken, S., Zilberstein, S.: Improved memory-bounded dynamic programming for de-
centralized POMDPs. In: Proc. of Uncertainty in Artificial Intelligence (2007)

63. Seuken, S., Zilberstein, S.: Memory-bounded dynamic programming for DEC-
POMDPs. In: Proc. of the International Joint Conference on Artificial Intelligence, pp.
2009–2015 (2007)

64. Seuken, S., Zilberstein, S.: Formal models and algorithms for decentralized decision
making under uncertainty. Autonomous Agents and Multi-Agent Systems 17(2), 190–
250 (2008)

65. Singh, S., James, M.R., Rudary, M.R.: Predictive state representations: a new theory
for modeling dynamical systems. In: Proc. of Uncertainty in Artificial Intelligence, pp.
512–519 (2004)

66. Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems,
2nd edn. Textbooks in Applied Mathematics. Springer, New York (1998)

67. Spaan, M.T.J., Gordon, G.J., Vlassis, N.: Decentralized planning under uncertainty for
teams of communicating agents. In: Proc. of the International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, pp. 249–256 (2006)

68. Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer. MIT Press, Cambridge (2000)

124 F.A. Oliehoek and A. Visser

69. Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork. Artificial Intelligence 110(2), 241–273
(1999)

70. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning perspec-
tive. Autonomous Robots 8(3), 345–383 (2000)

71. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press,
Cambridge (1998)

72. Sycara, K.P.: Multiagent systems. AI Magazine 19(2), 79–92 (1998)
73. Szer, D., Charpillet, F., Zilberstein, S.: MAA*: A heuristic search algorithm for solving

decentralized POMDPs. In: Proc. of Uncertainty in Artificial Intelligence, pp. 576–583
(2005)

74. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7,
83–124 (1997)

75. Tierney, K.J., Goltz, J.D.: Emergency response: Lessons learned from the kobe earth-
quake. Tech. rep., Disaster Research Center (1997), http://dspace.udel.edu:
8080/dspace/handle/19716/202

76. Varakantham, P., Marecki, J., Yabu, Y., Tambe, M., Yokoo, M.: Letting loose a SPIDER
on a network of POMDPs: Generating quality guaranteed policies. In: Proc. of the
International Joint Conference on Autonomous Agents and Multi Agent Systems (2007)

77. Visser, A., Xingrui-Ji, van Ittersum, M., González Jaime, L.A., Stancu, L.A.: Beyond
frontier exploration. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup
2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001, pp. 113–123. Springer,
Heidelberg (2008)

78. Vlassis, N.: A Concise Introduction to Multiagent Systems and Distributed Artificial
Intelligence. In: Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, San Francisco (2007)

79. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, Chichester (2002)
80. Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multi-agent coopera-

tion: Model and experiments. In: Proc. of the International Conference on Autonomous
Agents (2001)

81. Zeng, Y., Doshi, P., Chen, Q.: Approximate solutions of interactive dynamic influence
diagrams using model clustering. In: Proc. of the National Conference on Artificial In-
telligence, pp. 782–787 (2007)

http://dspace.udel.edu:8080/dspace/handle/19716/202
http://dspace.udel.edu:8080/dspace/handle/19716/202

