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ABSTRACT
This paper describes the steps taken to create the scoring
criteria aimed at measuring the quality of maps produced by
teams participating in the RoboCup Rescue Virtual Robots
competition. Since metrics have already been developed by
a few research groups, we start by highlighting the most pop-
ular solutions to this problem, emphasizing their strengths
and weaknesses. Having put the difficulty of creating map
benchmarks into perspective, we present our map bench-
mark suite, appropriate for Urban Search and Rescue mis-
sions, along with examples taken from former competitions.

Categories and Subject Descriptors
F.2.3 [Theory of computation]: Analysis of Algorithms
and Problem Features—Tradeoffs among complexity mea-
sures

General Terms
Performance, Measurement

Keywords
Map evaluation, RoboCup, Performance Metrics

1. INTRODUCTION
One of the competitions in RoboCup is the Virtual Robot

Rescue league, where participants are called upon to deploy
teams of robots capable of locating victims and hazards in
unstructured areas. As opposed to other RoboCup compe-
titions [17, 20, 1, 11], the Virtual Robot Rescue league asks
robot teams to map unknown environments, with little a
priori information. The theme behind the league is Urban
Search and Rescue (USAR), where robots are deployed in
disaster scenarios (e.g. earthquakes, landslides) and have to
work cooperatively as unified teams while taking into ac-
count humans, whether they be victims or first responders
(e.g. firefighters, rescue teams). As such, the maps that
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are generated by the robots need to incorporate useful in-
formation that first responders can exploit, adding a new
dimension to robot mapping. Indeed, robots now have to
generate multiple maps, some of which are for their own
needs (e.g. navigation) while others are explicitly for first-
responders (e.g. victim locations with safest paths to reach
them).

The Virtual Robot Rescue League uses the Unified Sys-
tem for Automation and Robot Simulation (USARSim) [7]
to simulate disaster scenarios. The simulation is realistic
due to a community of users and developers who strive to
validate each robot, sensor, or other physical properties [6,
8, 13]. This community involvement created a remarkably
accurate simulation capable of modeling multifaceted dis-
aster environments ranging from traffic accidents to earth-
quakes and explosions, each possibly exploiting the effects
of smoke, fires, debris, water, to name a few. In addition to
the near-zero participation cost and the ability to create re-
alistic city-sized disasters, the simulation offers ground truth
data that would otherwise be difficult to gather. The large
amount of robotic platforms and sensors in USARSim trans-
lates into a challenging situation for map scoring. Indeed,
each team solves the mapping problem differently using a di-
verse set of robots and sensor configurations, resulting in a
massive mismatch between maps, from scaling to rotational
differences. This puts us in the unique position of having to
come up with a map benchmark robust enough to take into
account all of these differences along with the opportunity
of having a tremendous amount of data available.

Evidently, and despite the fact that it is still frequently
employed, a qualitative approach is fundamentally insuffi-
cient for a competition where results have to be both re-
peatable and reliable. Not wanting to develop a map bench-
mark from scratch, and optimistically hoping that a solu-
tion had already been published, we performed an extensive
case study, a part of which is shown in Section 2. Realizing
that no current solution was robust enough for the prob-
lem at hand (i.e. teams would be able to take advantage of
the metrics’ weaknesses), we developed a mapping bench-
mark suite comprised of standards and categorized metrics,
which are described in Section 3 and 4, respectively. It is
worthwhile to note that the standards were so well received
that they have subsequently been implemented as part of
the Real Robot Rescue League. We close the paper with
concluding remarks and possible future work in Section 5.
While this paper focuses on mapping, a companion paper
highlights the overall RoboCup 2009 competition [3].
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2. CASE STUDY
Map benchmarking is a relatively novel effort, and so is

robot benchmarking in general. Therefore, the amount of
formerly published scholar work is rather limited (the reader
is referred to a forthcoming special issue of the Autonomous
Robots journal on Characterizing mobile robot localization
and mapping). In this section, we quantitatively compare
some of the most popular benchmark metrics that have been
previously published. We run the metrics with two binary
occupancy grid maps, one generated by a robot and the
other being ground truth. Each grid cell can only have a
value of 1 for occupied space or a value of 0 for free space.
Please note that the discussion in this section is entirely
based on our binary map representation and that results
might be different with a probabilistic occupancy grid map.
Even though we have performed a full case study on different
environments, we only present a representative example in
Fig. 1 and Table 1 due to space constraints.

The first set of four metrics, namely the Map Score [14],
Overall Error [5], Normalized Map Score [16], and Occu-
pied Map Score [16], represents an approach requiring pixel-
to-pixel comparisons between the ground truth and robot-
generated maps. The Map Score metric counts the number
of ground truth and robot map pixels that are the same. As
such, a perfect score would be obtained when the Map Score
metric equals the number of pixels in the map. The Overall
Error metric counts the number of ground truth and robot
map pixels that are different, where a perfect score would
be zero. The Map Score metric measures accuracy whereas
the Overall Error metric measures error and that adding
both metrics together will equal the total number of pixels.
The two aforementioned metrics are utilized over all the pix-
els, regardless of what they represent (i.e. occupied or free
space). Consequently, the two metrics are biased towards
maps with large regions of correct free space, as shown in
Fig. 1 and Table 1. From the table, Team A and Team
E have the best scores and, looking at the figure, the bias
is clear: the two maps with the smallest amount of discov-
ered walls receive a higher score. Research groups have at-
tempted to remove this bias by introducing the Normalized
Map Score and Occupied Map Score metrics. They work
the same way as the Overall Error metric (i.e. looking for
pixel mismatches) but are only run on the occupied space
of the maps. The Normalized Map Score runs on the occu-
pied space of the ground truth map whereas the Occupied
Map Score runs on the occupied space of the robot-generated
map. Unfortunately, these metrics only move the bias, which
is now dependent on the occupied space. Using the Normal-
ized Score metric, the robot maps that have thick walls do
better, as shown by Team C and Team E, since they do a
better job in replicating the wall thickness of the ground
truth map. In contrast, Team A and Team B do better with
the Occupied Map Score metric, due to their thin walls that
allow for a greater margin of error when compared to the
thicker ground truth walls.

Another interesting pixel-to-pixel approach is presented
through the Picture-Distance function [4]. In this metric,
the score represents the Manhattan-distance between an oc-
cupied pixel in the ground truth map and the closest oc-
cupied pixel in the robot-generated map. The process is
repeated over all the occupied pixels of 1) the ground truth
map and 2) the robot-generated maps. Finally, the result
is normalized by dividing it by the total number of pixels

considered. The Picture-Distance function is a measure of
map error and, as such, the best possible score is zero. A
look at Fig. 1 and Table 1 quickly shows that the two teams
who have explored the most, Team C and Team D, do bet-
ter with this metric. From both the method used and the
experiment performed, it is clear that the method is also
biased, towards exploration (i.e. wall discovery).

Moving away from the bias of pixel-to-pixel comparisons
brings us to correlation coefficients, a comparison measures
valued between -1 and 1, with -1, 0, and 1 representing per-
fect inverse correlation, no correlation, and perfect correla-
tion, respectively. The Baron’s Cross Correlation coefficient
[16] attempts to correlate two images by using the ground
truth and robot-generated pixels’ mean and standard devi-
ation. Since averages are used, and the pixel’s values can
only be 0 or 1, the Baron’s coefficient rewards robot maps
that have a similar number of occupied and free pixels to
the ground truth. Consequently, the coefficient is influenced
both by wall thickness and exploration, as can be seen in Fig.
1 and Table 1 where Team C and Team E have the highest
scores. The Pearson’s Correlation coefficient [12] evaluates
the occupied space of the map as a spatial function, trying
to linearly describe one map from the other. The Pearson’s
coefficient requires an approximately similar point distribu-
tion between the two map. This drawback is evidenced by
the results for Team A and Team E, where, even though
both maps are very similar they have extremely different
Pearson’s coefficients. It is worthwhile to note that both
correlation coefficients can be unpredictable, as shown by
the scores of Team A and Team B.

Figure 1: Example set of maps used for the Case
Study, the results of which are in Table 1. The first
image is the ground truth with the remaining images
being, from left to right and up to down, Team A,
Team B, Team C, Team D, and Team E, respectively.

3. MAP REPRESENTATION STANDARDS
One of the principal obstacles impeding the development

of a consistent map benchmark comes from the lack of stan-
dards between the large amount of mapping algorithms that
have been developed, through the years, by various research
groups. Indeed, each algorithm works differently, from the
way they represent maps (e.g. occupancy grids, topological,
feature-based, etc...) to the different scales and rotations
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Metric Team
A

Team
B

Team
C

Team
D

Team
E

Map Score
[14]

586779 586192 585049 585297 586815

Overall
Error [5]

56577 57164 58307 58059 56541

Normalized
Map Score

[16]

56065 55785 55227 55363 54367

Occupied
Map Score

[16]

512 1379 3080 2696 2174

Baron’s
Correlation

[16]

-0.005 0.017 0.036 0.032 0.098

Pearson’s
Correlation

[12]

0.298 -0.060 0.479 0.295 0.591

Picture-
Distance

[4]

210.09 254.37 129.89 189.44 221.61

Table 1: Metrics comparison for the maps shown in
Fig. 1. The seven rows represent each metric taken
from different publications. The bold font shows the
two best results for a specific metric.

that they may encompass. Having to rank maps generated
by many different robotics groups and, as a consequence,
facing the same map representation problems, we have im-
posed two mapping standards on participants, the GeoTIFF
[19] image format and the MIF [9] vector format. We have
found, over the years, that participants embrace them, pri-
marily for their ease-of-use, while giving the administrators
powerful tools to generate a fair mapping benchmark.

3.1 GeoTIFF Image Format
The GeoTIFF image format embeds geographical infor-

mation as an integral part of the map. The power of Geo-
TIFF lies in its ease of use, open standard, and layering
capabilitites. Indeed, it is very simple to geo-reference any
map, by providing an additional file comprised of six param-
eters, namely the X and Y positions of the upper-left pixel,
the scale of a pixel in the X and Y directions, the rota-
tion, and the skew. These six parameters take into account
any potential differences in scale, translation, and rotation
between maps. GeoTIFF is an open standard, a fact that
translates into a plethora of open tools that work across
different platforms and programming languages. Last but
not least, it is very easy to embed multiple layers on top
of the original map, a powerful way to display varied in-
formation on the maps. Evidently, from a map benchmark
standpoint, the GeoTIFF image format allows every map,
including ground truth, to be overlaid on top of each other,
as shown in Fig. 2; making it straightforward to evaluate
the maps either quantitatively or qualitatively.

3.2 MIF Vector Format
The MIF vector format is similar to the GeoTIFF for-

mat in that it possesses the same qualities of allowing geo-
referencing, remaining easy to use, being an open standard,
and working well with layers. The difference between the

Figure 2: Examples of two robot-generated maps
(black) overlaid on top of the ground truth map
(gray) for an indoor environment.

two, however, lies in what can be represented. Whereas Geo-
TIFF represents images, MIF works with geometric primi-
tives (e.g. points, lines, polygons) that can have an arbi-
trary number of attributes. The MIF vector format can be
best exploited to display topological or feature-based maps,
where labeled nodes or features can give high-level informa-
tion or particular landmarks of interest to first responders.
Fig. 31 shows some examples of what can be achieved with
a MIF vector file.

Figure 3: Four examples of MIF vector files, overlaid
on top of the robot-generated map. The upper-left
picture shows points representing victims’ location
labeled with various information about each victim.
The upper-right picture shows line segments high-
lighting the best path to reach each victim, labeled
with the victim’s information and path’s length.
The lower pictures display regions of interests, in-
cluding a street (left) and a house (right).

4. MAP BENCHMARK
It is clear from the Case Study that no published algo-

rithm is adequate on its own or as part of a map bench-
marking suite. They each have some sort of bias and cannot
solve the problem of error propagation, the toughest chal-
lenge when evaluating maps, where similar mapping errors
can affect maps differently depending on when the error oc-
curred. For example, an orientation error at the beginning
of a mission will result in a map that is wrong through the
rest of the mission, whereas the same orientation error at
the end of the mission will affect a much smaller portion of

1The text in the figures is provided to give the readers an
idea of the amount of information that can be included as
part of the MIF formats. It does not need to be read.
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the map. It is our belief that the maps should be equally
deserving, provided that everything else is equal. Addition-
ally, a map is application-specific and, in our case, both the
USAR scenario and the first responders have to be consid-
ered as part of the map benchmark. As such, we devised a
categorized benchmark comprised of Metric Quality, Skele-
ton Quality, Attribution, Grouping, Utility, and Creativity.
Each category possesses a weight, the combination of which
can be used to steer the competition towards one or more
research agendas.

4.1 Metric Quality
The Metric Quality tries to solve the same problem that

was studied in the Case Study: the comparison of the robot-
generated occupancy grid map to ground truth, from an
accuracy standpoint. In order to bypass the aforementioned
problem of error propagation, we further divide the Metric
Quality into Global and Local Quality. The Global Quality
is a measure of the number and severity of mapping errors
whereas the Local Quality is a measure of accuracy between
these mapping errors. Using Fig. 4 as an example, one can
see that both robot-generated maps are similar in terms of
Global Quality, each having a small error with the lower
hallway. The right map, however, is worst in terms of Local
Quality, since it is missing some walls in the center of the
map.

Figure 4: Example for the Metric Quality evalua-
tion, where the upper map is ground truth and the
lower-left and lower-right maps are different robot-
generated maps.

4.2 Skeleton Quality
The Skeleton Quality evaluates a topological map rather

than an occupancy grid map, which can be more useful to
first responders. A first responder should be able to follow
a skeleton map to reach a chosen point. In this case, the
quality is determined from the number of false positives and
false negatives. A false positive occurs when a node cannot
be accessed whereas a false negative takes place when a clear
topological location is available but has not been included in
the skeleton map. Fig. 5 shows examples of skeleton maps
with similar qualities. The first map has a lot of false posi-
tives in the lower and right sections of the map, where topo-
logical locations have been identified in unexplored space.
The second map contains both false positives, where a topo-
logical node is inside a wall, and false negatives, along the
left side of the hallway.

Figure 5: Example for the Skeleton Quality evalua-
tion, with two different robot-generated maps.

4.3 Attribution
The Attribution section of our mapping benchmark aims

to reward teams that can successfully deliver a feature-based
map with valuable information for first responders. The type
of information that can be embedded into the map is fairly
open, even though most teams deliver feature-based maps
indicating victim locations and information, best paths to
reach victims, robot paths, and important landmarks. The
Attribution is scored based on the amount and accuracy of
the data. As an example, Fig. 6 shows two maps, each pro-
viding victim locations and best paths to reach them. Both
maps provide accurate victim locations but the left one offers
a lot more information about the victim, ranging from the
sex, the condition, the priority given to get rescued, the ease
of accessibility, etc... Similarly, both maps provide paths to
reach the victims but the paths of the left map are inaccu-
rate, going through a section of unexplored space. Based on
this example, the right map would get a better score.

Figure 6: Example for the Attribution metric for
two different-robot generated maps. The left and
right columns each represent a different robot-
generated map. The first row shows the victims’
attribution while the second row shows the victim
paths’ attribution.
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4.4 Grouping
The Grouping metric is very similar to the Attribution in

that it is, essentially, a feature-based map aimed at helping
first-responders better navigate the environment. It differs
in that instead of being point-based, it groups and labels
regions of space. Grouping stems from the fact that a section
of occupied pixels represents particular landmarks that can
be labeled. Fig. 7 offers a contrasting example, where the
left map is comprised of a single group labeled ”Hazard”
and the right map contains many different groups labeled as
”House”, ”Street”, ”Vehicle”, among others. Once again, the
metric is scored based on the amount and accuracy of the
information provided and, in this example, the right map
would receive a better score than the first one.

Figure 7: Grouping example with two different
robot-generated maps.

4.5 Utility
The map Utility takes a look at the overall information

provided by the teams. In other words, the map Utility
aims at answering the question of how useful are all the
layers to a first responder. This metric regroups the other
metrics together but looks at a larger scope, where teams
have to balance the amount of information they provide with
the way it would look on the screen. As more and more
information is given, it is harder to display it neatly while
still making it easy to understand. The clever use of layers
greatly affects the utility of a given map.

4.6 Creativity
For the purpose of the competition, we have added an un-

orthodox metric that rewards teams for creative new ways of
representing valuable information to first responders. Teams
are given bonus points for innovative map layers that could
help first-responders better do their jobs. In the past, a
team came up with the geo-referencing of victims’ pictures,
a layer that was quickly adopted by the rest of teams in
later competitions. More recently, a team showed the best
communication coverage attained while navigating the en-
vironment so that first-responders could replicate it should
they need to establish a communication network. An exam-
ple is shown in Fig. 8.

5. CONCLUSIONS
We have presented the necessary steps to come up with a

fair map benchmarking suite capable of scoring maps pro-
duced by USAR robots working in close cooperation with
first responders. We strongly believe in committing to easily-
adoptable, yet powerful, open standards such as GeoTIFF
that take little additional work from programmers while pro-
viding great benefits. Similarly, we value open-source de-
velopment by requiring teams to provide public access to

Figure 8: Example of a successful Creativity metric,
displaying a communication network. Each trans-
mitter is shown as a point with the lines showing
the connections between each link. The point in the
left represents the base station.

their software and encouraging participants to share and
reuse code and ideas. In that sense, the competition can be
viewed more as an open workshop where teams are equally
looking to learn as they are to win. From a benchmarking
standpoint, the open-source phenomenon brings an inter-
esting component, where algorithmic progress can easily be
measured from year to year due to the fact that the soft-
ware is both available and archived. We hope that the com-
munity would follow in our footsteps and make algorithms
and data sets public, so that benchmarks can be accepted
and evaluated by an entire community rather than a rel-
atively small research group. Two projects going in that
direction are OpenSLAM [15] and Radish [18]. OpenSLAM
provides open-source SLAM algorithms and Radish offers
laser range finder data sets. While we praise both initia-
tives, they are not as extensively used as they should and
are missing benchmark tools that would be used to evaluate
the quality of the SLAM algorithms (from a localization or
a mapping standpoint) for specific applications.

Throughout the years, we have devoted our map bench-
marking endeavors to planar occupancy grid maps com-
prised of certainty values (i.e. either 0 for free space or
1 for occupied space). While this restriction has been rea-
sonable over the last few years, mainly due to the popular-
ity of occupancy grid maps, a surge of newly fashionable
robotic platforms ranging from underwater robots to un-
manned air vehicles coupled with highly three-dimensional
terrain is slowly making two-dimensional occupancy grid
maps inadequate. Indeed, teams have already started to
explore three-dimensional mapping algorithms [10]. Evi-
dently, the switch from two to three dimensional mapping
is not straightforward in terms of map benchmarking and
offers an interesting research avenue for future work. Fur-
thermore, it is important to note that three-dimensional
mapping does not have a map representation that is well
recognized throughout the robotics community and that oc-
cupancy grids do not offer an easy transfer from two to three
dimensions due to the increase of space and time complex-
ities. We contend that more work needs to be achieved to
come up with a community-accepted standard representa-
tion for three-dimensional maps.

All things considered, a general ”all-purpose” mapping
benchmark is still far from being developed due to the afore-
mentioned problems of map representation, algorithmic dif-
ferences, lack of open-source data or algorithms, and ap-
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plication dependability. We are convinced that mapping
benchmarks need to be tied to the application at hand and,
as such, do not see a generalized map benchmark in the
near-future. It is rewarding to see, however, that there is an
increase in awareness as to the importance of the problem
and hope that this paper will help steer map benchmarking
towards the right direction.
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