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Proteins are involved in the regulation of many cellular processes. Therefore, cells 

need to regulate their protein levels carefully for cellular homeostasis. Protein levels 

are determined by the balance between protein synthesis and degradation. For correct 

function of newly-synthesized proteins, they have to be correctly folded, modified and 

assembled. These processes are assisted by molecular chaperones that stabilize non-

native conformations, thereby preventing aggregation of non-native proteins. However, 

a considerable amount of newly-synthesized proteins is defective and therefore quickly 

degraded. Two pathways have evolved that can degrade intracellular proteins, the  

ubiquitin-proteasome system (UPS) and autophagy. The majority of intracellular 

proteins are degraded via the UPS, where selective poly-ubiquitination serves as a signal 

for proteasomal degradation. Proteasomes cleave proteins into peptides, which are 

recycled into amino acids by aminopeptidases acting downstream of the proteasome. 

Autophagy is the lysosome-dependent degradation of mainly long-lived cytoplasmic 

proteins, protein complexes and cell organelles. Despite the involvement of these path-

ways in protein quality control, various neurodegenerative diseases are hallmarked by the 

accumulation and aggregation of proteins leading to neuronal loss. These neurodegenerative 

diseases include Alzheimer’s disease, Parkinson’s disease and various polyglutamine (PolyQ) 

disorders such as Huntington’s disease (Goldberg, 2003; Li et al., 2008; Rubinsztein, 2006). 

In the present thesis, we focus on Alzheimer’s disease and polyQ disorders. These disor-

ders are initiated by the accumulation of protein fragments instead of full-length proteins. 

Alzheimer’s disease is the most common form of dementia and is hallmarked by extracellular 

senile plaques and intracellular neurofibrillary tangles in post-mortem brains of Alzheimer’s 

disease patients. Alzheimer’s disease is initiated by the aggregation-prone amyloid-β (Aβ) 

peptide, which is generated by sequential cleavage of the amyloid precursor protein. 

Extracellular plaques composed of Aβ peptides were considered to initiate toxicity, but 

evidence is accumulating that oligomeric intermediates of intracellular Aβ are associated with 

the early stages in the pathogenesis of Alzheimer’s disease (LaFerla et al., 2007; Selkoe, 2004). 

PolyQ disorders are a group of nine dominantly inherited, slowly progressive neurode-

generative disorders. These disorders are caused by an expansion of the polyQ tract over 40 

glutamines within the disease-related protein. The length of the polyQ tract is inversely related 

with the onset of disease, which becomes manifest around midlife (Orr and Zoghbi, 2007). 

Aggregates in brains of patients and mice suffering from various polyQ disorders mainly contain 

proteolytic fragments of the polyQ-expanded protein that includes the polyQ tract (Butler et 

al., 1998; DiFiglia et al., 1997; Schilling et al., 1999). These fragments containing the expanded 

polyQ tract are more aggregation-prone and more toxic than their full-length analogues 

(Cooper et al., 1998; Ellerby et al., 1999; Gafni et al., 2004; Haacke et al., 2006; Mangiarini et 

al., 1996; Schilling et al., 1999; Young et al., 2007). These data resulted in the toxic fragment 

hypothesis which states that proteolytic fragments initiate aggregation and cause toxicity. This 

is similar to Alzheimer’s disease where fragments initiate aggregation and toxicity.

The protein quality control system declines with age, even in the absence of disease 

(Morimoto and Cuervo, 2009). Therefore, aggregation-prone proteins, such as Aβ peptides and 

expanded polyQ protein fragments may become less efficiently cleared with increasing age 
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leading to their accumulation and subsequent aggregation. This may also explain why neurode-

generative disorders are late-onset disorders. So far, the majority of studies have been focused 

on the prevention of the generation of these toxic fragments (Gafni et al., 2004; Selkoe and 

Wolfe, 2007; Wellington et al., 2000). However, we aim to study the behavior of aggregation-

prone protein fragments in living cells and to stimulate their clearance via the UPS, peptidases 

and autophagy, as well as the assistance by chaperones. 
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The UPS can degrade most proteins efficiently into peptides, but little is known about 

the way cells deal with peptides that show resistance to degradation by downstream 

aminopeptidases. In chapter 2, we designed a fluorescent peptidase-resistant peptide. 

We introduced this peptide into living cells via micro-injection and analyzed whether 

cells have alternative mechanisms to cope with these peptides. 

Proteasomes are able to degrade polyQ-containing proteins, but fail to cleave within 

expanded polyQ tracts. As a result, polyQ peptides are released into the cytoplasm. 

In chapter 3, we mimic this proteasomal release of polyQ peptides in living cells and 

examine whether these polyQ peptides are resistant to degradation by cytoplasmic proteases. 

We show here that expanded polyQ peptides accumulate and are sufficient to induce aggrega-

tion and toxicity. Therefore, we focus in chapter 4 on prevention of aggregation and enhancing 

clearance of these expanded polyQ peptides by overexpression of various chaperones. In 

chapter 5, we study the dynamics of polyQ peptides in more detail and compare polyQ peptides 

with larger polyQ-expanded huntingtin fragments by studying their interactions with various 

components that are sequestered in aggregates. In chapter 6, we focus on the aggregation-

prone Aβ peptide causing Alzheimer’s disease and study whether cytoplasmic Aβ peptides are 

peptidase-resistant or become efficiently degraded. 

Finally, we review and discuss in chapter 7 how aggregation and cytotoxicity of intracel-

lular toxic fragments can be prevented, focusing on the UPS and autophagy as degradation  

machineries and on assisting chaperones.  
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