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Abstract

Correlations and entanglement in a chain of three oscillators A,B,C with

nearest neighbour coupling is studied. Oscillators A,B and B,C are coupled

but there is no direct coupling between oscillators A,C. Examples with ini-

tial factorizable states are considered, and the time evolution is calculated. It

is shown that the dynamics of the tri-partite system creates correlations and

entanglement among the three oscillators and in particular, between oscilla-

tors A,C which are not coupled directly. We have performed photon number

selective and non-selective measurements on oscillator A and we investigated

their effects on the correlations and entanglement. It is shown that, before

the measurement, the correlations between oscillators A,C can be stronger

than the correlations of oscillators A,B. Moreover, some entanglement wit-

ness shows that oscillators A,C are entangled but the oscillators A,B might

or might not be entangled. By using quantum discord, which measures the

quantumness of correlations, it is shown that there are quantum correlations

between oscillators A,B and after the measurements in both cases of selective

and non-selective measurements, oscillators A,B and A,C become classically

correlated.
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gled state, and Ĕ indicates that the entanglement witness does

not lead to any conclusion. δ > 0 indicates non-classical cor-

relations. It is shown that after the evolution, oscillators A,C

and B,C are entangled and oscillators A,B might or might

not be entangled. Correlations between oscillators A,C are

stronger than the correlations between the oscillators A,B.

Quantum discord indicates that oscillators A,B and A,C are

non-classically correlated. . . . . . . . . . . . . . . . . . . . . 106



LIST OF FIGURES XVIII

5.21 The summary of the case of non-selective measurement for a

chain of three oscillators A,B,C. A solid arrow indicates cou-

pling, dashed arrow indicates no direct coupling, E indicates
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Chapter 1

Introduction

1.1 Motivation

Quantum correlation or entanglement was introduced by Einstein, Podolsky

and Rosen (EPR) and Schrodinger in 1935. It is the most spectacular and

counter-intuitive manifestation of quantum mechanics [7]. It describes the

way that particles such as photons, electrons or qubits correlate with each

other regardless of how far apart they are. This type of correlation provides

knowledge about the direction of the spin state of one particle, whether the

spin is up or down, and enables one to know that the spin of its pair is in the

opposite direction irrespective of how far the distance between the correlated

particles.

Entanglement is a real phenomenon [6], which has been demonstrated

repeatedly through experimentation [13, 52, 59, 74]. There is currently a

lot of discussion about entanglement. A few good examples of review are

discussed in [1, 35, 48, 75].

1
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Recently, research focusing on how to harness the potential of entangle-

ment like achieving higher levels of security in quantum cryptography [32],

faster rates of information processing in computer [62], as a resource in quan-

tum communication [9] and quantum computation. In [39, 55, 73], it has

been shown that it is possible to perform a universal quantum computation.

There are a number of measures of entanglement for a bipartite system.

These include the entanglement of formation, the entanglement of distillation

[10], the concurrence [45] and relative entropy [71, 76]. Other methods are

by using quantum mutual information, conditional entropy, and negativity.

These methods have been adopted in [4, 80].

Quantum correlations lead to various counter-intuitive results. The vio-

lation of Bell inequalities [6], sudden death of entanglement [23] and the

negative values of conditional entropies for entangled system [19, 20] are ex-

amples of this. The entanglement of more than two particles leads to a con-

tradiction with the local hidden variable model (LHVM) for non-statistical

predictions of quantum formalism have been proven by [40].

If a composite system is not entangled, normally we conclude it is sepa-

rable. However, a composite system may contain other types of non-classical

correlation, even if it is separable. The most popular measure of such corre-

lations are the quantum discord introduced by [44, 64]. Quantum discord

measures the non-classical correlations more generally than the entangle-

ment, although entanglement is vanished. It has been shown that quantum

discord is responsible for the efficiency of quantum computation in some

quantum tasks [27, 28, 56].

In our research work, we investigate a chain of three oscillators A,B,C
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with nearest neighbour coupling. Oscillators A,B and oscillators B,C are

coupled. There is no direct coupling between oscillators A,C. In the initial

state we consider a tri-partite with factorizable state. At time t, we evolved

the state.

In this thesis, we also investigate the effects of measurement to the corre-

lations and entanglement. Finally, we have studied quantum discord for the

oscillators especially between A,B and A,C.

Objectives of the thesis:

1. To study how the dynamics creates correlations and entanglement be-

tween the three oscillators, and in particular, between A,C which are

not coupled directly. The emphasis of our work is placed on counter-

intuitive results.

2. To study the effects of quantum measurement to the entropy, correla-

tion and entanglement between the three oscillators.

3. To study quantumness of correlations and quantum discord.

1.2 Outline of the thesis

This thesis is divided into six chapters. The first chapter briefly gives an

overall picture of the thesis. The second chapter is about quantum harmonic

oscillators and continues with the basic formalism of quantum mechanics

that will be used in forthcoming chapter. Definition and some examples of

bi-partite and multi-partite entanglement are also discussed in this chapter.
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We also introduce an entanglement measures that we consider to witness the

entanglement in the quantum systems.

Chapter 3 discusses the generalized concept of quantum measurement

and then focuses on von Neumann measurement. We also discuss briefly

about the positive operator-valued measure (POVM). Here we study two

approaches of measurement called selective and non-selective measurement.

Selective measurement means we instantaneously inform or relay the outcome

or result classically to the other parties. Non-selective measurement means

we have known the measurement has been made, but the outcome is not

known. Section measurements and entropy give some background about

the effects of measurements to entropy, correlation and entanglement. We

added in this chapter, quantum discord, a measure of the quantumness of

correlations.

In chapter 4, we have studied a chain of three oscillators A,B,C with

nearest neighbour coupling. We introduce three different coupling cases of

Hamiltonian where oscillators A,B and B,C are coupled, but there is no

direct coupling between oscillator A and C. We started with strong coupling

between oscillators A,B and B,C. Next, in case 2, we considered strong cou-

pling between oscillators B,C and weak coupling between oscillators A,B.

In the third case, there is weak coupling between oscillators A,B and B,C.

Numerical results for correlations and entanglement for all cases are pre-

sented. It shows counter-intuitive results in correlation and entanglement,

particularly in oscillators A,C which is not coupling.

Chapter 5, we continue our study with the same example and Hamilto-

nian system. We performed two types of measurements on A at ωAt = 3.
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These are referred as selective and non-selective measurements. Comparative

results are presented for entropy, correlations and entanglement in the case

of without measurement, selective and non-selective measurement. Finally,

we have presented the quantum discord of oscillators A,B and A,C for all

cases of measurement.

Lastly, in chapter 6, we discussed our main conclusion and some ideas for

further work.



Chapter 2

Quantum systems

In this chapter, we start with quantum harmonic oscillator. We define the

Hamiltonian for the quantum harmonic oscillator in Dirac representation.

Briefly, we discuss the displacement operator and coherent state. Next, we

discuss briefly a few basic formalism of quantum mechanics which we will use

in the forthcoming chapter. Entanglement of bi-partite and multi-partite are

defined, and a few examples are given. Lastly, we introduce von Neumann

entropy to use as a tool to measure entanglement by using conditional entropy

and quantum mutual information. Before that, we explain Shannon entropy,

a classical information theory as an analogy to the von Neumann entropy.

We also describe negativity as an entanglement witness.

6
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2.1 The quantum harmonic oscillator

The Hamiltonian for the quantum harmonic oscillator in one dimension is ex-

pressed as a total of operators corresponding to the kinetic (T ) and potential

energies (V ) of a system in the form [14]

H = T + V (2.1)

The potential operator is defined as

V =
1

2
kx2 (2.2)

where k = mω2 withm as a mass of a particle, ω is the angular frequency and

x is the position operator. The operator T corresponding to kinetic energy

is defined as

T =
p2

2m
(2.3)

where p is the momentum operator. Therefore, the Hamiltonian for the

quantum harmonic oscillator in one dimension can be re-expressed as [14, 41]

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (2.4)

where x̂ = x is the position operator and p̂ is the momentum operator given

by

p̂ = −i~ ∂
∂x

(2.5)

In order to find the energy levels, we must solve the time-independent



2.1 The quantum harmonic oscillator 8

Schrödinger equation

Ĥψ(x) = Eψ(x)

− ~2

2m

∂2ψ(x)

∂x2
+

1

2
mω2x2ψ(x) = Eψ(x) (2.6)

The solution of this equation (Eq.(2.6)) by using a spectral method is

ψn(x) =

√
1

2nn!
(
mω

π~
)
1
4 e−

mωx2

2~ Hn(

√
mω

~
x) (2.7)

where n is a non-negative integer, Hn are the Hermite polynomials

Hn(x) = (−1)nex2 dn

dxn
(e−x2

) (2.8)

Hence, the corresponding energy levels are

En = ~ω(n+
1

2
) (2.9)

Based on Eq.(2.9), the lowest energy is not zero but E0 =
~ω
2
, which is called

ground state energy.

By using, raising (a†) and lowering (a) operator or Dirac representation,

the Hamiltonian of harmonic oscillator (Eq.(2.4))can be written as [14, 41]

Ĥ = ~ω(a†a+
1

2
) (2.10)
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where a and a† are defined as

a =

√
mω

2~
(x̂+

ip̂

mω
) (2.11)

a† =

√
mω

2~
(x̂− ip̂

mω
) (2.12)

The properties of operator a and a† are [14, 33, 36]

a|ψn⟩ =
√
n|ψn−1⟩ (2.13)

a†|ψn⟩ =
√
n+ 1|ψn+1⟩ (2.14)

Concerning Eq.(2.13), the operator a, lowers the state |ψn⟩ to |ψn−1⟩, so with

this situation, the operator is called annihilation or lowering operator. The

operator a†( Eq.(2.14)) raises the state |ψn⟩ to |ψn+1⟩, so it is called creation

or raising operator. The vacuum state |0⟩ is defined as

a|0⟩ = 0 (2.15)

Note that to prove Eq.(2.10), we consider

a+ a† =

√
2mω

~
x (2.16)



2.1 The quantum harmonic oscillator 10

So, the position operator can be written as

x =

√
~

2mω
(a+ a†) (2.17)

The Hamiltonian contains the square of x. Squaring Eq.(2.17), we find

x2 =
~

2mω
(a+ a†)2

=
~

2mω
(a2 + aa† + a†a+ (a†)2) (2.18)

Now, we consider

a− a† = ip

√
2

mω~
(2.19)

So, the momentum operator in terms of a and a†

p = −i
√
mω~
2

(a− a†) (2.20)

Squaring Eq.(2.20) and divide by 2m

p2

2m
=
−mω~(a− a†)2

4m

=
−~mω
4m

[a2 − aa† − a†a+ (a†)2] (2.21)

Now insert Eq.(2.18) and Eq.(2.21) to Eq.(2.4)

H =
−~mω
4m

[a2 − aa† − a†a+ (a†)2] +
mω2

2

~
2mω

[a2 + aa† + a†a+ (a†)2]

=
−~ω
4

[a2 − aa† − a†a+ (a†)2] +
~ω
4
[a2 + aa† + a†a+ (a†)2]

=
~ω
4
[−a2 + aa† + a†a− (a†)2 + a2 + aa† + a†a+ (a†)2]
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=
~ω
2
(aa† + a†a) (2.22)

Since the commutation relation

[a, a†] = aa† − a†a = 1 (2.23)

Based on Eq.(2.23), we can write

aa† = 1 + a†a (2.24)

As a result, insert Eq.(2.24) to Eq.(2.22), we have

H =
~ω
2
(1 + a†a+ a†a)

=
~ω
2
[1 + 2a†a]

= ~ω(a†a+
1

2
)

Therefore, it is proven that the Hamiltonian of quantum harmonic oscillator

in one dimension in Dirac representation.

If we define N = a†a and operating it on the state |ψn⟩, it becomes [33, 36]

N |ψn⟩ = a†a|ψn⟩

= a†
√
n|ψn−1⟩

=
√
n(a†|ψn−1⟩)

= n|ψn⟩



2.1 The quantum harmonic oscillator 12

Hence,

N |ψn⟩ = n|ψn⟩ (2.25)

The N = a†a is called the number operator. Number operator is very impor-

tant in the quantum theories of radiation and solids. In the quantum theory

of radiation, N gives the number of photons in the radiation field. The cre-

ation operator “creates” a photon by increasing the number of photons in the

field by one, and conversely the annihilation operator “annihilates” a photon

by decreasing the number of photons in the field by one.

Now, for the D = 1, 2, . . . , d dimensional of quantum harmonic oscillator,

we label the position x and momentum p as x1, x2, . . . , xd and p1, p2, . . . , pd

correspondingly. Therefore, the Hamiltonian for the quantum harmonic os-

cillator in D dimension in x and p terms is:

H =
d∑

i=1

(
p2i
2m

+
1

2
mω2x2i ) (2.26)

In terms of Dirac representation, the given annihilation and creation op-

erators in D dimension are

ai =

√
mω

2~
(xi +

i

mω
pi) (2.27)

a†i =

√
mω

2~
(xi −

i

mω
pi) (2.28)

The Hamiltonian for the quantum harmonic oscillator in D dimension can

be written as:
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H = ~ω
d∑

i=1

(a†iai +
1

2
) (2.29)

For once there is considered to exist an interaction between two or more

oscillators in the systems. This interaction is called coupling. Coupling

constant is used to measure the strength of the interaction between two

oscillators. This interaction forms a linear chain in one dimension, or a

regular lattice in two or more dimensions. The Hamiltonian of the total

system is

H =
d∑

i=1

p2i
2m

+
1

2
mω2

∑
ij(nn)

(xi − xj)2 (2.30)

The potential energy is summed over “nearest-neighbour” pairs.

Another factor that needs consideration is resonance frequency of the

system. The strength of the interaction between two oscillators depends on

the resonance frequency. An oscillator of a system at its natural frequency

of vibration will give strong coupling between the oscillators.

2.1.1 Displacement operator

The displacement operator in the x−p phase space of the harmonic oscillator

is defined as [54, 67, 78]

D(z) = eza
†−z∗a (2.31)

where z is a complex number and can be written in terms of x and p as

z =
x+ ip√

2
(2.32)
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The displacement operator can be re-expressed in terms of the position and

momentum operators x̂, p̂ as

D(x, p) = eipx̂−ixp̂ (2.33)

Moreover, it can be proved [12, 54, 67, 78] that the product of two

displacement operators is given by

D(z1)D(z2) = D(z1 + z2)e
1
2
(z1z∗2−z∗1z2)

= D(z2)D(z1)e
z1z∗2−z∗1z2 (2.34)

2.1.2 Coherent state

The coherent states were introduced by Glauber [38]. Mathematically, they

are defined as the eigenstates of the annihilation operator

a|z⟩ = z|z⟩ (2.35)

where |z⟩ is a coherent state, and z is a complex number.

Further, the coherent states of the oscillator can be written as

|z⟩ = e−
1
2
|z|2

∞∑
n=0

an√
n!
|n⟩

= e−
|z|2
2 eza

† |0⟩

= e−
|z|2
2 eza

†
e−z∗a|0⟩ (2.36)
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Using the relation of Campbell-Baker-Hausdorff operator theorem in [58]

eza
†−z∗a = e−

|z|2
2 eza

†
e−z∗a = D(z) (2.37)

where D(z) is a displacement operator, Eq.(2.36) can be written as

|z⟩ = D(z)|0⟩ (2.38)

where |0⟩ is the ground state. Eq.(2.38) shows that the coherent state is a

displaced vacuum state in the phase space.

The average number of photons ⟨n⟩ in the coherent state is

⟨n⟩ = ⟨z|n|z⟩ = |z|2 (2.39)

The important features of the coherent state are the position and mo-

mentum uncertainties are equal and kept in their minimum values

∆x = ∆p =
1√
2
; ∆x∆p =

1

2
(2.40)

and another important property is the resolution of the identity

1

π

∫
|z⟩⟨z|d2z = 1 (2.41)
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2.2 Basic formalism

In this section, we introduce and discuss the basic formalism of quantum

mechanics such as density operator, reduced density operator or partial

trace [53] and time evolution [14]. Most of the subject discussed in this

section can be found in [62].

2.2.1 Density operator

The density operator or density matrix is an alternate formulation in quan-

tum mechanics besides using state vectors (|ψ⟩). This formulation is mathe-

matically equivalent to the state vector approach. The density operator for

the system is defined by

ρ =
∑
i

pi|ψi⟩⟨ψi|; 0 ≤ pi ≤ 1;
∑
i

pi = 1 (2.42)

where |ψi⟩ is a quantum state with respective probabilities pi. If we know

exactly |ψi⟩, where a single pi = 1, all others are zero. This is called pure

state and the density operator can be written as

ρ = |ψ⟩⟨ψ| (2.43)

Otherwise, ρ is in a mixed state. For ρ in a mixed state, a collection of a

different pure state with all the probability is given.

The following are the properties of the density operator [61, 62]

• the density operator is Hermitian, ρ = ρ†.
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• the trace of any density matrix is equal to one, Tr(ρ) = 1.

• for a pure state, since ρ2 = ρ, Tr(ρ2) = 1.

• for a mixed state, Tr(ρ2) < 1.

• the eigenvalues of a density operator satisfy 0 ≤ λi ≤ 1.

• the expectation value of an operator A can be calculated using

< A >= Tr(ρA).

A state is called a completely mixed state when the probability of each

state is equal to all others. For example

ρ =
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| (2.44)

is a completely mixed state with a 50% probability of finding the system in

the state |0⟩ or |1⟩.

2.2.2 Reduced density operator

One of the most important tools in the density operator is to describe the

state of a composite system by using a reduced density operator. Consider

a bi-partite system

|ψ⟩AB ∈ HA ⊗HB (2.45)

The mathematical operation to compute reduced density operator is the par-

tial trace. Partial trace for the first system denoted by ρA is defined as

ρA = TrB(ρAB) (2.46)
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where TrB is the partial trace over the subsystem B. TrB is defined as

TrB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) ≡ |a1⟩⟨a2|Tr(|b1⟩⟨b2|) (2.47)

where |a1⟩ and |a2⟩ are any two vectors in the state space of A, |b1⟩ and |b2⟩

are any two vectors in the state space of B. Since

Tr(|b1⟩⟨b2|) = Tr(|b2⟩⟨b1|) = ⟨b2|b1⟩ (2.48)

Therefore,

TrB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) ≡ |a1⟩⟨a2|⟨b2|b1⟩ (2.49)

This approach is the same for the partial trace for the second system, ρB

ρB = TrA(ρAB)

= TrA(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|)

= ⟨a2|a1⟩|b1⟩⟨b2| (2.50)

Reduced density operator can be computed for the composite systems

consisting of more than two systems in an analogous way. For tri-partite

system, the reduced density operator can be computed by

ρAB = TrC(ρABC) (2.51)

ρAC = TrB(ρABC) (2.52)

ρBC = TrA(ρABC) (2.53)

ρA = TrBC(ρABC) (2.54)
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ρB = TrAC(ρABC) (2.55)

ρC = TrAB(ρABC) (2.56)

Generally, the reduced density operator for tri-partite system is

ρij = Trk(ρijk); ρi = Trjk(ρijk); i, j, k = A,B,C (2.57)

2.2.3 Time evolution of the system

In this section, we discussed the dynamics of the quantum system - how the

quantum state evolves in time. Here we introduce a postulate called postulate

1, describe the evolution of the quantum system [62].

Postulate 1

The evolution of a closed quantum system is described by a unitary transfor-

mation. That is, the state |ψ⟩ of the system at time t1 is related to the state

|ψ′⟩ of the system at time t2 by a unitary operator U which depends only on

the times t1 and t2,

|ψ′⟩ = U |ψ⟩ (2.58)

This postulate explains how quantum states of a closed quantum system are

related when they evolve in time. A matrix U are unitary if UU † = U †U = I

where I is a identity matrix.

Further, postulate 2 refined the postulate 1, which describes the evolution

of a quantum system in continuous time.
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Postulate 2

The time evolution of the state of a closed quantum system is described by

the Schrödinger equation as

i~
d|ψ⟩
dt

= H|ψ⟩ (2.59)

where ~ is a Planck’s constant, H is a fixed Hermitian operator known as

the Hamiltonian of the closed system.

The solution to the Schrödinger equation, Eq.(2.59) is [14]

i~
∂ψ(t)

∂t
= Hψ(t)

∂ψ(t)

ψ(t)
=

H∂t

i~∫ t2

t1

∂ψ(t)

ψ(t)
=
−i
~
H

∫ t2

t1

∂t

ln
ψ(t2)

ψ(t1)
=
−i
~
H(t2 − t1)

ψ(t2) = e
−i
~ H(t2−t1)ψ(t1) (2.60)

If we set ~ = 1, t2 = t and t1 = 0, Eq.(2.60) becomes

|ψ(t)⟩ = e−iHt|ψ(0)⟩ (2.61)

Referring to postulate 1, U is a unitary operator. We define

U(t) = e−iHt (2.62)
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As we have known from Eq.(2.42), the density operator ρ = |ψ⟩⟨ψ| then

ρ = e−iHt|ψ(0)⟩⟨ψ(0)|eiHt (2.63)

= e−iHtρ(0)eiHt (2.64)

= U(t)ρ(0)U †(t) (2.65)

2.3 Entanglement

Entanglement was a mystery phenomenon in the early stage. However, with

the advent of quantum information theory, it has become an important re-

source for quantum information processing. Extensive research has been

undertaken on various aspects of this subject. A few applications of entan-

glement like quantum cryptography [32, 51], quantum teleportation [9] and

superdense coding [11].

In this section, we give mathematical formulation and physical meaning

of entanglement for bi-partite and tri-partite system. To make it clear, we

present examples for every definition.

2.3.1 Bi-partite entanglement

Assume that we have two physical systems A and B with the first system

in a state |ψ⟩A ∈ HA and the second in a state |ψ⟩B ∈ HB. HA and HB

in a Hilbert space. The Hilbert space of a bi-partite system consisting of

subsystem HA and HB denoted by the tensor product

HAB = HA ⊗HB (2.66)
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Therefore, bi-partite system in a state |ψ⟩AB is defined as

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B (2.67)

The pure states which can be represented in this form (Eq.(2.67)) are called

factorizable states or product states. Otherwise, a pure state is entangled

[3]. Physically, the product state means the state uncorrelated [35].

Here is an example of pure factorizable state

|ψ⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |0⟩A ⊗ |1⟩B)

=
1√
2
[|0⟩A ⊗ (|0⟩B + |1⟩B)] (2.68)

Hence, upon measuring the first subsystem, giving us 100% state |0⟩A. The

state of the second subsystem becomes

1√
2
|0⟩B +

1√
2
|1⟩B (2.69)

giving us an equal probability for a |0⟩B and |1⟩B [7, 70]. It seems there is

no correlation between the two subsystem.

Examples for pure entangled states are the Bell states [16]

|ϕ±⟩ =
1√
2
(|0⟩A ⊗ |0⟩B ± |1⟩A ⊗ |1⟩B) (2.70)

|ψ±⟩ =
1√
2
(|0⟩A ⊗ |1⟩B ± |1⟩A ⊗ |0⟩B) (2.71)
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If we consider the entangled state [70]

|ψ⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) (2.72)

Measuring the first subsystem gives us 50% of state |0⟩A and 50% of the state

|1⟩A. The second subsystem is always the same as the first, i.e. we get two

subsystem values for the price of one measurement. This shows, there exists

a correlation between two subsystems.

Now, consider two density matrix ρ1 and ρ2, their convex combination

ρ = αρ1 + (1− α)ρ2 (2.73)

with α ∈ [0, 1]. Assume pi ≥ 0 with
∑

i pi = 1 then the convex combination∑
piρi of some states is also a state. We call coefficients pi ≥ 0 with property∑
i pi = 1 as convex weight [35].

A mixed state is called separable if and only if it can be written as [81]

ρ =
∑
i

piρ
A
i ⊗ ρBi (2.74)

The state is called separable if there are convex weight pi and product states

ρAi ⊗ρBi as Eq.(2.74) holds. Otherwise, the state is called entangled [3, 35, 48].

In fact, any density matrix that is “close enough” to the identity is separable

[86].

Physically, this definition can be interpreted in three scenarios. First, a

product state is an uncorrelated state, with A and B each considered as a

separate state. In the case of non-product states, there are two scenarios
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of correlations. Separable states are classically correlated. This means that

the production of a separable state is only necessary by local operations

and classical communication (LOCC). Otherwise, the state is entangled, the

correlations do not originate from a classical procedure.

An example for a mixed separable state which is an uncorrelated state is

[16]

ρ =
1

2
(|00⟩⟨00|+ |11⟩⟨11|) (2.75)

A Werner state [16]

ρ = (1− p)1
4
I+ p|ϕ+⟩⟨ϕ+| (2.76)

where I is an identity matrix and given |ϕ+⟩ = 1√
2
(|00⟩ + |11⟩). This state

(Eq.(2.76)) is an example for a mixed separable state with classical correla-

tions if p < 1
3
and mixed entangled state for 1

3
< p ≤ 1.

2.3.2 Multi-partite entanglement

In this section, we discuss classification of entanglement for more than two

parties. We limit our discussion to tri-partite quantum state with an assump-

tion we can generally generate for the case of multi-partite entanglement.

We start our discussion with pure tri-partite states. We can divide our

separability or entanglement classification in three cases. First, fully separa-

ble state which can be written as [35, 48]

|ψfs⟩ABC = |ψ⟩A ⊗ |ψ⟩B ⊗ |ψ⟩C (2.77)
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Second, bi-separable states where two of the three quantum states are

grouped together as one party. The bi-separable states can be written as a

product state in the bi-partite system. In this case, we have three possibilities

of grouping two quantum states [35, 48]

|ψbs⟩ABC = |ψ⟩A ⊗ |ϕ⟩BC (2.78)

|ψbs⟩ABC = |ψ⟩B ⊗ |ϕ⟩AC (2.79)

|ψbs⟩ABC = |ψ⟩C ⊗ |ϕ⟩AB (2.80)

where ϕ represent two party states which might be entangled.

Third, a pure state called a genuine tri-partite entangled. Two exam-

ples of genuine tri-partite entangled are called Greenberger-Horne-Zeilinger

(GHZ) state [40]

|ψ⟩ABC =
1√
2
(|000⟩+ |111⟩) (2.81)

and the so-called W state [29]

|ψ⟩ABC =
1√
3
(|100⟩+ |010⟩+ |001⟩) (2.82)

Physically, only in genuine tri-partite is an entangled state, all three parties

interact. However, this is not the case in fully separable or bi-separable

states.

In the case of mixed states, the classification of separability or entan-

glement is also the same as pure tri-partite states where three cases are

considered, fully separable, bi-separable and fully entangled. The definition

for classification of mixed states similar with bi-partite entanglement, i.e. by
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a convex combination [2, 35]. In the case of fully separable, a mixed state

ρABC can be written as a convex combination of fully separable pure states,

i.e. if there are convex weight pi and fully separable states |ψ⟩ABC with

ρfsABC =
∑
i

pi|ψfs⟩ABC⟨ψfs|ABC (2.83)

In the case of bi-separable, ρbsABC can be written as a convex combination

of bi-separable pure states

ρbsABC =
∑
i

pi|ψbs⟩ABC⟨ψbs|ABC (2.84)

Lastly, in the case of fully entangled mixed states, there are two classes,

W class and GHZ class. If ρABC can be written as a convex combination of

W-type pure states

ρABC =
∑
i

pi|ψW ⟩ABC⟨ψW |ABC (2.85)

it is W class. Otherwise, it is GHZ class.

2.4 Entanglement measure

In the previous section, we have classified entanglement for bi-partite and

tri-partite system. However, given a quantum state, to identify the entan-

glement is not an easy task. One approach is by looking at the separability

criterion [35, 47, 69, 83], if it is not separable then it is entangled. In quan-

tifying entanglement, a number of measures have been proposed [46, 71].
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Entanglement witnesses have been proven an effect for the detection of en-

tanglement [75, 77]. Entropy provides a tool, which can be used to quantify

entanglement. Before we discussed entropy in a quantum state, we intro-

duced the entropy of classical information theory called Shannon entropy.

This is because quantum information theory parallels with classical informa-

tion theory, but it is based entirely on density matrices, rather than prob-

ability distribution for the description of quantum ensembles [18]. A few

methods of measure entanglement are discussed in this section. These in-

clude conditional entropy, quantum mutual information and negativity.

2.4.1 Shannon entropy

Entropy is a key concept in quantum information theory [62]. Entropy was

introduced by Shannon and therefore, became known as the Shannon entropy

H(X) ≡ H(p) ≡ −
∑
x

px log2 px (2.86)

where p is a probability distribution, and we define 0 log2 0 = 0. It measures

an uncertainty of a random variable X, or as quantify the information in a

source X that produces messages xi with probabilities pi [22, 44].

As an example, if we consider binary entropy, the entropy of two outcomes

random variable as

H(X) = −p log p− (1− p) log(1− p) (2.87)

where p and 1− p are the probabilities of the outcomes. Assume H(X) = 0
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when p = 0 or 1, the variable is not random and there is no uncertainty.

Intuitively, we expect the entropy equal to zero when it is certain and become

a maximum when both variables equal likely.

The relative entropy measures the closeness of the two probability distri-

butions, p(x) and q(x) from the same source X is defined as [44, 62]

H(p(x)∥q(x)) ≡
∑
x

p(x) log2
p(x)

q(x)
= −H(X)−

∑
x

p(x) log2 q(x) (2.88)

Suppose we have two random variables X and Y . The joint entropy of

X and Y can be defined as

H(X,Y ) ≡ −
∑
x,y

p(x, y) log2 p(x, y) (2.89)

measures the total uncertainty of the pair (X,Y ).

The entropy of X conditional on knowing Y is called conditional entropy

and is defined by

H(X|Y ) ≡ H(X,Y )−H(Y ) (2.90)

H(X|Y ) measure uncertainty on average about the value of X, knowing the

value of Y .

Correlations between two different random variables X and Y or measure

how much information X and Y have in common is measured by the mutual

information. It is defined as [44, 62]

H(X : Y ) = H(X) +H(Y )−H(X,Y ) (2.91)
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It is also a special case of the relative entropy because it measured how distin-

guishable a joint probability distribution pij from the completely uncorrelated

pair of distribution pipj [44]

H(pij ∥ pipj) = H(pi) +H(pj)−H(pij) (2.92)

2.4.2 Von Neumann entropy

In the quantum state, the entropy defined in a similar way as the Shannon

entropy is called the von Neumann entropy. It replaces the probability dis-

tribution with the density operator, ρ. Here, we generalize the von Neumann

entropy based on Shannon entropy. The von Neumann entropy of a quantum

state ρ is defined as [62, 68]

S(ρ) = −Tr(ρ log2 ρ) (2.93)

If λx are the eigenvalues of ρ, the von Neumann entropy can be re-express as

S(ρ) = −
∑
x

λx log2 λx (2.94)

Assume ρ and σ are two density operators. The relative entropy of ρ to

σ is defined as

S(ρ∥σ) ≡ Tr(ρ log2 ρ)− Tr(ρ log2 σ) (2.95)

From Klein’s inequality, the quantum relative entropy is non-negative

S(ρ∥σ) ≥ 0 (2.96)
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with equality if and only if ρ = σ.

If we consider a composite system consisting of two components A and

B, by analogy with the Shannon entropy, we can define the joint entropy

S(ρAB), conditional entropy, E(A|B) and quantum mutual information, IAB.

The joint entropy is defined as

S(ρAB) = −Tr(ρAB log2 ρAB) (2.97)

where ρAB is the density operator of the composite system AB.

Conditional entropy is defined as

E(A|B) = S(ρAB)− S(ρB) (2.98)

Quantum mutual information is defined as [1, 65]

IAB = S(ρA) + S(ρB)− S(ρAB) (2.99)

Now, we look further into conditional entropy, E(A|B). If we defined

classical conditional entropy H(X|Y ) by using the conditional probability

p(i|j) and the joint probability p(i, j)

H(A|B) = −
∑
ij

p(i, j) log2 p(i|j) (2.100)

Analogy Eq.(2.100) in a quantum state, quantum conditional entropy be-

comes [19]

E(A|B) = −TrAB[ρAB log2(ρA|B)] (2.101)
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As we know p(i|j) is a probability distribution, 0 ≤ p(i|j) ≤ 1. Hence, its

quantum analog ρA|B is not a density operator [18]. Based on the properties

of the density operator (refer section 2.2.1), eigenvalues of a density operator

satisfy 0 ≤ λi ≤ 1. Thus, the eigenvalue can be larger than one. As a result,

E(A|B) can be negative

E(A|B) = S(ρAB)− S(ρB) < 0 (2.102)

Therefore,

S(ρAB) < S(ρB) (2.103)

This means, the entropy of the entire system AB is less than the entropy

of the subsystems B which violates the classical information theory where

H(X,Y ) ≥ H(X). This happens, for example, in the case of entanglement

between A and B.

The concavity of E(A|B) in ρAB implies that [19]

E(A|B) ≥
∑
i

wiS(ρ
(i)
A ) ≥ 0 (2.104)

As a result of the concavity of E(A|B), any separable state is associated with

non-negative E(A|B). The converse is not true. Therefore, E(A|B) ≥ 0 is

only a necessary condition for separability [18, 19, 20].

Next, we look at the quantum mutual information, IAB. This IAB is used

to measure the total correlations between the two subsystems [42, 44] and

it is semipositive [31], IAB ≥ 0. Positive values indicate that there exist

classical and quantum correlation between two subsystem A and B. Zero, if



2.4 Entanglement measure 32

and only if subsystem A and B is a product state, ρAB = ρA ⊗ ρB.

2.4.3 Negativity

The partial transpose of a density operator ρ of a bi-partite state with respect

to subsystem A is denoted as ρTA . If we define the density operator in i− j

element

ρij = ⟨φi|ρ|ϕj⟩ = ⟨φi,A|⟨φi,B|ρ|ϕj,A⟩|ϕj,B⟩ (2.105)

Then ρTA in i− j is given by

ρTA
ij = ⟨ϕj,A|⟨φi,B|ρ|φi,A⟩|ϕj,B⟩ (2.106)

In an easier way, we can say the mn − pq elements of ρ, ⟨m|⟨n|ρ|p⟩|q⟩ is

mapped to the pn−mq elements of ρTA , ⟨p|⟨n|ρTA|m⟩|q⟩ for all the possible

integer m,n, p, q where |m⟩, |p⟩ are basis vectors of the subsystem A and

|n⟩, |q⟩ are basis vectors of the subsystem B. For example, we consider ρ as

ρ =
1

2
(|010⟩⟨010|+ |010⟩⟨111|+ |111⟩⟨010|+ |111⟩⟨111|) (2.107)

Therefore, ρTA is

ρTA =
1

2
(|010⟩⟨010|+ |011⟩⟨110|+ |110⟩⟨011|+ |111⟩⟨111|) (2.108)

Hence, the negativity is a computable measure of entanglement defined

as [77]

N (ρ) =
∥ρTA∥1 − 1

2
(2.109)



2.5 Software Tools 33

where ∥ρTA∥1 is a trace norm of a partial transpose with respect to subsystem

A.

The trace norm of any Hermitian operator A is defined as

∥A∥1 ≡ Tr
√
A†A (2.110)

which is equal to the sum of the absolute value of the eigenvalue of A. There-

fore, from Eq.(2.110), Eq.(2.109) becomes

N (ρ) =
Tr

√
ρTA

†
ρTA − 1

2
(2.111)

where N (ρ) = 0 for separable and unentangled states.

2.5 Software Tools

All the numerical calculation in this thesis is calculating by using MATLAB

[43, 72], the language of technical computing. This software gives a lot of

built-in functions that we can use. A few examples are

• trace - to calculate trace of a matrix

• kron - to calculate kronecker tensor product

• log2 - to calculate base 2 logarithm

• expm - to calculate matrix exponential

• eig - to calculate eigenvalues and eigenvectors
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It is also easy to build our own functions and use in the main program.

Another advantage using MATLAB is we can get a few functions from the

forum (Matlab Newsgroup) and embedded in our program.

In this thesis, we use MATLAB code to simulate the proposed models

by plotting the figures. We use MATLAB figures to analyze the results.

Alternatively, Mathematica is another tool that can be used. The main

advantage of this software is easy to visualize any applications.

2.6 Summary

In this chapter, we have explained the Hamiltonian of quantum harmonic

oscillator and how the quantum state evolves in time. We give the defini-

tion and examples of bi-partite and multi-partite entanglement. To measure

the entanglement, we start the discussion with a Shannon entropy and then

analogy to the von Neumann entropy. Quantum mutual information was

introduced to quantify the classical and quantum correlation between the

subsystems, IAB ≥ 0. The conditional entropy to confirm entanglement is

described as E(A|B) < 0. We introduced another tool to measure the entan-

glement, negativity (N (ρ) > 0), to make sure the subsystem is entangled.



Chapter 3

Measurements on quantum

system

In this section, we discussed about quantum measurements. We started

the discussion with generalized measurements and then focused on the von

Neumann measurements. The positive operator-valued measure (POVM)

also briefly discussed in this section. In the section of measurements and

entropy, we explained some background about the effects of measurements

on entropy and entanglement. Finally, we introduced quantum discord, a

measure of the quantumness of correlations.

35
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3.1 Generalized measurements

In quantum mechanics, the act of measurement generally changes the state of

the system [85]. Measurement on a quantum system is given by a postulate

called postulate 3 [8, 62].

Postulate 3

A generalized quantum measurement is described by a collection {Mm} of

measurement operators. The index m refers to the measurement outcomes

that may occur. These measurement operators satisfy the completeness equa-

tion ∑
m

M †
mMm = I (3.1)

If the state of the quantum system before the measurement is |ψ⟩ then the

state of the system after the measurement is

|ψ′
m⟩ =

Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩
(3.2)

where p(m) = ⟨ψ|M †
mMm|ψ⟩ there is the probability that result m occurs.

We note that the completeness equation assures that the probability sums

up to one ∑
m

⟨ψ|M †
mMm|ψ⟩ =

∑
m

p(m) = 1 (3.3)

To implement Postulate 3, consider the quantum state

|ψ⟩ =
√
2

3
|0⟩+

√
3

3
|1⟩+ 2

3
|2⟩ (3.4)
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where |0⟩, |1⟩, |2⟩ are orthonormal basis and |ψ⟩ is normalized. Therefore the

measurement operators

M0 = |0⟩⟨0| (3.5)

M1 = |1⟩⟨1| (3.6)

M2 = |2⟩⟨2| (3.7)

Each measurement operator is HermitianM †
m =Mm. Thus,M

2
0 = (|0⟩⟨0|)(|0⟩⟨0|) =

|0⟩⟨0| =M0, similarly, M2
1 =M1 and M

2
2 =M2. It also fulfills the complete-

ness equation, M0 +M1 +M2 = I.

Then, the probability of outcome 0

p(0) = ⟨ψ|M †
0M0|ψ⟩

= ⟨ψ|M0|ψ⟩

= (

√
2

3
⟨0|+

√
3

3
⟨1|+ 2

3
⟨2|)|0⟩⟨0|(

√
2

3
|0⟩+

√
3

3
|1⟩+ 2

3
|2⟩)

=
2

9

With the same approach, the probability to have outcome 1 and 2 will be

p(1) = 3
9
and p(2) = 4

9
. As a result, the sum of the probability is 1

p(0) + p(1) + p(2) =
2

9
+

3

9
+

4

9
= 1 (3.8)

The state after the measurement for outcome 0 is

|ψ′
0⟩ =

M0|ψ⟩√
p(0)

=

√
2
3
|0⟩√
2
9

= |0⟩ (3.9)
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Similarly for outcome 1 and 2, |ψ′
1⟩ = |1⟩ and |ψ′

2⟩ = |2⟩.

3.2 Von Neumann measurements

The von Neumann measurement or projective measurement is a special case

of postulate 3 or generalized measurement. The projection operators Πm are

orthogonal projectors, that is Hermitian Π†
m = Πm and ΠmΠn = δmnΠm [8,

60, 62].

The von Neumann measurement is described by a measurement operator

M , a Hermitian operator on the state of the system being observed. If

M =
∑
m

mΠm (3.10)

where m is an eigenvalue of M with the corresponding projector Πm. The

possible outcome of the measurement corresponds to the eigenvalues m given

by [57, 66]

p(m) = Tr[Πmρ] (3.11)

where ρ is the state of the system just before the measurement.

The state of the system immediately after the measurement can be di-

vided to selective or non-selective measurement [66]. Selective measurement

means instantaneously we are informed about the result classically. Non-

selective measurement, physically describes the density matrix of

the system, when it is known that a measurement has been made,

but the result or outcome is not known. The state for the selective
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measurement immediately after the measurement is given by

ρ′ =
ΠmρΠm

p(m)
(3.12)

where ρ is a state just before the measurement. The state after measurement

for non-selective is

ρ̃ =
∑
m

ΠmρΠm (3.13)

The relation between selective and non-selective measurement is total

over all possible outcomes. Selective measurement with corresponding prob-

abilities will give non-selective measurement [79]

d−1∑
m=0

ρ′Tr(ρΠm) =
d−1∑
m=0

ΠmρΠm

Tr(ρΠm)
Tr(ρΠm)

=
d−1∑
m=0

ΠmρΠm

= ρ̃

3.3 Positive operator-valued measure (POVM)

A positive operator-valued measure (POVM) is a set of non-negative Hermi-

tian operators Em on a Hilbert spaceH that sum to unity or the completeness

relation is obeyed as [8, 62, 68]

∑
m

Em = I (3.14)
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The index m labels the possible outcome of a measurement. If the measure-

ment is performed on a state |ψ⟩, the probability of the outcome is

p(m) = ⟨ψ|Em|ψ⟩ (3.15)

The POVM formalism is needed for the case of a projective measurement

on a larger system which is not projective measurement on the subsystem

alone. Another difference of POVM from the projective measurement is that

the elements of a POVM are not necessarily orthogonal and a POVM is not

repeatable.

A POVM can distinguish between two non-orthogonal states. A good

example of this is presented in [62] which assumes that Alice sents one of

the two states to Bob

|ψ1⟩ = |0⟩ (3.16)

or

|ψ2⟩ =
|0⟩+ |1⟩√

2
(3.17)

It is impossible for Bob to identify the state he received. However, it is

possible by performing the POVM measurement to distinguish the state.

We consider three elements of POVM

E1 =

√
2

1 +
√
2
|1⟩⟨1| (3.18)

E2 =

√
2

1 +
√
2

(|0⟩ − |1⟩)(⟨0| − ⟨1|)
2

(3.19)

E3 = I− E1 − E2 (3.20)
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It is clear that E1, E2 and E3 are positive operator and

E1 + E2 + E3 = I (3.21)

Therefore, the completeness relation is obeyed. As a result {E1, E2, E3} form

a POVM.

Assume that Bob received the state |ψ1⟩ = |0⟩ and performs a measure-

ment described by the POVM elements E1, E2 and E3. The probability for

Bob to obtain outcome m, provided he received the state |ψi⟩(i = 1, 2) is

p(m|i) = ⟨ψi|Em|ψi⟩ (3.22)

In the case that Bob wants to observe the result outcome E1, the probability

is

p(1|1) = ⟨ψ1|E1|ψ1⟩ = 0 (3.23)

Therefore, there is zero probability for outcome E1 and he can conclude that

he received state |ψ2⟩. Similar case if Bob received the state |ψ2⟩. Assume,

he wants to observe the outcome E2. Then, the probability of the outcome

will be

p(2|2) = ⟨ψ2|E2|ψ2⟩ = 0 (3.24)

Hence, he can conclude that the state |ψ1⟩ was sent to him. Sometimes, if Bob

obtains the measurement outcome is E3, he cannot conclude anything. The

important is, although he cannot always distinguish the state he received,

by taking advantage of POVM, he will never make a mistake identifying the
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state sent to him.

3.4 Measurements and entropy

This section describes the relation between measurement and entropy. The

effect of entropy of a quantum system when a measurement is performed to

the subparts of the quantum systems. One theorem is given by [62]

Theorem (von Neumann measurement increase entropy)

Suppose ΠN is a complete set of orthogonal projectors and ρ is a density

operator. Then the entropy of the state ρ̃ =
∑

N ΠNρΠN of the system after

the measurement is at least as great as the original entropy

S(ρ̃) ≥ S(ρ) (3.25)

with equality if and only if ρ = ρ̃.

In [4], Zukarnain et al studied the time evolution of a system comprising

three oscillators A,B and C. The system is described with the Hamiltonian

where the oscillator B and C interact with each other and no interaction

between oscillator A. The initial state at a time t = 0, is

ρABC(0) = ρAB(0)⊗ ρC(0)

Zukarnain et al [4] considered two examples of ρAB(0), i.e. separable state

and entangled state. After the evolution, authors found in both cases, oscil-

lators A,C become entangled.

Further, they also considered measurement after the evolution in oscilla-
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tor C whose result is communicated classically to A. It is shown for both

cases, effects of the measurements to the separable and entangled states are

identical. The measurement effects the density matrix ρA of the oscillator

A. In many cases, ρA becomes a pure state and in some cases it becomes a

mixed state.

Another work done by [79]. It investigated the bi-partite system which

performed the measurement on first subsystem and calculate the entropy of

the second subsystem. The entropy is calculated for the three cases. The

first case which we refer to as without measurement, calculates the entropy

before the measurement, S(ρ2). The second case known as the non-selective

measurement, calculates the entropy after the measurement without knowing

the outcome, S(ρ̃2). The last case which we refer to as selective measure-

ment calculates the entropy after the measurement with informed outcome,

S(ρ′2(N)) with N is the different outcome.

Various cases of state have been considered. These include pure states,

separable states, entangled states and entangled states after the symplectic

transformation [80]. The results show that

• pure states

S(ρ2) = S(ρ̃2) = S(ρ′2(N)) = 0

All the entropy is equal to zero for every case, without measurement,

non-selective and selective measurement.

• separable states

S(ρ̃2) = S(ρ2)
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The entropy for the case of non-selective measurement is equal to the

entropy of without measurement.

S(ρ′2(N = 0, 3, 4)) > S(ρ2)

S(ρ′2(N = 1, 2)) < S(ρ2)

The entropy for the case of selective measurement might be increased

or decreased.

• entangled states

S(ρ̃2) = S(ρ2)

The entropy for the case of non-selective measurement is equal to the

entropy of without measurement.

S(ρ′2(N = 0, 1, 2, 3, 4)) = 0

The entropy for the case of selective measurement is equal to zero. It

is shown that the entangled state became a pure state.

• entangled states after symplectic transformations

S(ρ̃2) = S(ρ2)
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The entropy for the case of non-selective measurement is equal to the

entropy of without measurement.

S(ρ′2(N = 0, 1, 2, 3, 4)) < S(ρ2)

The entropy for the case of selective measurement is less than the en-

tropy of without measurement.

3.5 Quantumness and quantum discord

Entanglement is a special kind of quantum correlation [28]. If we measure

the composite quantum system, generally we will have entangled state or

non-entangled state. Non-entangled state is normally defined as a separable

state. Separable state is often regarded as a classical state. Recently, it

was pointed out that separability of the density matrix (i.e. the absence of

entanglement) does not imply classicality [64].

The quantumness of the state is the correlations between two quantum

systems, which have a quantum as well as a classical nature [30]. It is

interesting to know how ‘non-classical’ or how ‘quantum’ a given state is.

Very non-classical states, might be more useful in applications of quantum

information processing than states which are only slightly non-classical. The

state of maximal quantumness is called ‘Queen of quantum states’ [37].

Quantum discord, the most popular measure of quantumness of correla-
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tions, can capture the non-classical correlations more general than the en-

tanglement [17]. It captures all the non-classical correlations present in the

system, including entanglement [28]. The positive values of quantum discord

indicate the presence of non-classical correlation, even if they are separable.

Vanishing the quantum discord is a criterion to be preferred effectively as

classical correlations are called classical quantum state [25, 44, 64].

To calculate the quantum discord [17, 28, 44, 64], we consider the mutual

information

J(S :M) = H(S)−H(S|M) (3.26)

where H(S) denotes the Shannon entropy and H(S|M) = H(S,M)−H(M)

is the conditional entropy. If we replaced H(S|M) in Eq.(3.26), this leads to

another classically equivalent expression for the mutual information

H(S :M) = H(S) +H(M)−H(S,M) (3.27)

In the case of quantum systems, Eq.(3.27) becomes

ISM = S(ρS) + S(ρM)− S(ρSM) (3.28)

where S(ρ) = −Tr[ρ log(ρ)], the von Neumann entropy.

In the case of Eq.(3.26), to generalize in quantum systems, we need to

consider the conditional entropy. The conditional entropy, H(S|M) measures

the ignorance about S that remains if we make measurements to determine

M . If M is in a quantum system, information that we can extract about it

depends on the measurement. Assuming that we restrict the measurement
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on a complete set of orthogonal projectors Πj, corresponding to outcome j,

the state of S after the measurement is

ρS|Πj
=

ΠjρSMΠj

pj
(3.29)

where pj = Tr(ΠjρSM) is the probability corresponding to outcome j.

As a result, a quantum analogue for the conditional entropy can be defined

as

E(S|Πj) =
∑
j

pjS(ρS|Πj
) (3.30)

Then, J(S :M) can be generalized for quantum systems as

JSM = S(ρS)− E(S|Πj) (3.31)

The value of JSM depends on the choice of Πj. If we want to quantify all

the classical correlations by maximizing the JSM over all Πj, then

JSM = S(ρS)− Ẽ(S|M) (3.32)

where Ẽ(S|M) = minΠj

∑
j pjS(ρS|Πj

). Hence, the quantum discord is the

difference between ISM and JSM

δSM = ISM − JSM (3.33)

= S(ρM)− S(ρSM) + Ẽ(S|M) (3.34)

A few properties of quantum discord are given below:
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• quantum discord is always positive, i.e. δSM ≥ 0 [26, 64].

• δSM > 0 indicates the presence of non-classical correlations [17, 28, 64].

• δSM = 0 for the states with only classical correlation [24, 26, 64].

• δSM = 0⇔ ρSM =
∑

j ΠjρSMΠj where Πj is a complete set of orthog-

onal projectors with outcome j [25, 26, 64].

A state with vanishing discord is a necessarily separable state with pos-

itive partial transpose (PPT) [17]. This is the analog of Peres-Horodecki

criterion, i.e. if a state is not PPT, then it must be entangled. [17] also

provides a witness for quantum discord where it is proved that all classical

correlations 2 × N states are the necessarily strong positive partial trans-

pose (SPPT). SPPT was introduced in [21]. It is a subclass of PPT which

guarantees the positivity of their partial transposition by using the canonical

factorization of the original density operator. Therefore, if a 2×N state is not

SPPT, the state must be non-classical, measured by quantum discord. More-

over, it has been shown that almost all quantum states have non-vanishing

discord [34]. These mean that generally a composed quantum system does

contain non-classical correlation. Note that [34] gives a simple necessary

criterion for vanishing discord: if δSM = 0 then [ρSM ,1S ⊗ ρM ] = 0. Thus, if

ρSM does not commute with 1S ⊗ ρM , it means quantum discord is positive

and hence, ρSM is a non-classical correlation.
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3.6 Summary

In this chapter, we have presented quantum measurement and quantum dis-

cord. In the quantum measurement, we started the discussion with general-

ized measurement given by a postulate. Next, we focused our discussion on

von Neumann measurement in which we introduced definitions and formula-

tions of selective and non-selective measurement.

For the effects of measurement, we discussed in measurements and en-

tropy. From this section, we can conclude

• the entropy of the state after non-selective measurement is at least as

great as entropy before the measurement.

• effects of measurement to separable and entangled state are identical.

• the entropy of pure state before and after the measurement is equal to

zero.

• the entropy of separable state for non-selective measurement is equal

with entropy without measurement.

• the entropy of separable state for selective measurement might increase

or decrease with entropy without measurement.

• the entropy of entangled state for non-selective measurement is equal

with entropy without measurement.

• the entropy of entangled state for selective measurement becomes zero.

• the entropy of entangled state after symplectic transformations for non-

selective measurement is equal with entropy without measurement.
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• the entropy of entangled state after symplectic transformations for se-

lective measurement is less than the entropy without measurement.

Lastly, we introduced quantum discord, the most popular measure of

quantumness of correlations. The positive values of quantum discord indicate

the presence of non-classical correlations, even if the state is separable. Sep-

arable state (not entangled) does not mean classicality. Vanishing quantum

discord is a criterion for the classical correlations called classical quantum

state.



Chapter 4

Counter-intuitive results in

correlations of tri-partite

systems

In this chapter, we discuss about correlations in a chain of three oscillators

A,B and C with nearest neighbour coupling [49]. We considered oscillators

A,B and oscillators B,C are couplings. There is no direct coupling between

oscillators A,C. We have considered three cases of Hamiltonian. Case 1,

strong coupling between oscillators A,B and B,C; Case 2, strong coupling

existing between oscillators B,C and weak coupling existing between oscilla-

tors A,B and case 3, weak coupling existing among all the three oscillators.

The initial state of the system is a factorizable state with no coupling for all

the three oscillators. At time t, we evolve the state. We demonstrate the

existence of counter-intuitive results.

51
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4.1 Hamiltonian and notations

The tri-partite system that is considered in this study consists of three oscil-

lators, A,B and C with the Hamiltonian:

H = ωA(a
†
AaA ⊗ 1⊗ 1) + ωB(1⊗ a†BaB ⊗ 1) + ωC(1⊗ 1⊗ a†CaC)

+λAB[aA ⊗ (a†B)
2 ⊗ 1] + λ∗AB(a

†
A ⊗ a

2
B ⊗ 1)

+λBC(1⊗ a†B ⊗ a
2
C) + λ∗BC [1⊗ aB ⊗ (a†C)

2] (4.1)

where ωA, ωB and ωC are frequencies of the three oscillators. λAB and λBC are

coupling constants for oscillators A,B and oscillators B,C, correspondingly.

With the initial state at t = 0, we assume the density matrix is ρABC(0).

Then at time t the density matrix evolves with

ρABC(t) = eiHtρABC(0)e
−iHt (4.2)

We also calculate the partial trace by

ρij = Trk(ρijk); ρi = Trjk(ρijk); i, j, k = A,B,C (4.3)

Entropy of the density matrix is calculated by von Neumann entropy as

S(ρ) = −Tr[ρlogρ] (4.4)

In this Eq.(4.4), we used logarithm with base two, so all the entropic quanti-

ties are in bits. If we assume λi is the eigenvalue of ρ then we can re-expressed
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the von Neumann entropy as

S(ρ) = −
∑
i

λi log(λi) (4.5)

In our calculation, we used Eq.(4.5) to calculate the entropy with log base

of 2.

Quantum mutual information, Iij is used to measure classical and quan-

tum correlation between two subsystems

Iij = S(ρi) + S(ρj)− S(ρij) (4.6)

If Iij ≥ 0, it indicates existing classical and quantum correlation between two

subsystems.

Entanglement is measured by using an entanglement witness called con-

ditional entropy, E(i|j)

E(i|j) = S(ρij)− S(ρj) (4.7)

Negative values of E(i|j) show there exist entanglements between two sub-

systems whilst positive values give an inconclusive witness result. In addition

to the conditional entropy, in confirming the result of entanglement, we cal-

culate the negativity as [77]

N [ρ12] =
Tr[σ†

12σ12]
1
2 − 1

2
(4.8)

where ρ12 is a density matrix of a bipartite system; the σ12 is a partial trans-
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pose of ρ12 with respect to the first subsystem; the Tr[σ†
12σ12]

1
2 , calculates the

sum of the singular values of σ12. If N [ρ12] is zero, this means the subsystem

is not entangled and for N [ρ12] > 0, the subsystem is entangled.

4.2 Numerical Results

4.2.1 Example of tri-partite system

In our study, we consider an example of a pure state at t = 0

|ψ⟩ = 1

2
(|0⟩A + |1⟩A)⊗ |1⟩B ⊗ (|1⟩C + |2⟩C) (4.9)

This example is a factorizable state, i.e. ρA ⊗ ρB ⊗ ρC = ρABC . We assume

at t = 0, all the three oscillators not coupling with each other. At time t, we

evolve the state by using the time evolution as Eq.(4.2).

In the numerical calculation, the Hilbert space was truncated. The Hilbert

space, spanned by the number state |NA, NB, NC⟩ with NA, NB, NC =

0, 1, . . . , (K − 1). To choose a sufficient truncation, two tests of accuracy

were used. First, the traces of all density matrices should be greater than

0.98. In the full Hilbert space, these traces are equal to one. Second, the

quantum mutual information, Iij was computed for the various number of

truncation. Refer to Table 4.1 where it is indicated that K = 9 is sufficiently

truncated. This is a very good approximation. The rest of the calculation in

this section is based on K = 9.

If we refer at the Hamiltonian system that we considered in Eq.(4.1), the

interaction term between A and B ((aA⊗ (a†B)
2⊗ 1) and (a†A⊗ a2B ⊗ 1)) and
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Table 4.1: The quantum mutual informations IAB, IAC and IBC for various
values of the truncation dimension, K for ωAt = 10.

K=8 K=9 K=10 K=11
IAB 0.1471 0.5147 0.5147 0.5147
IAC 0.8990 1.4775 1.4775 1.4775
IBC 2.0649 1.8832 1.8832 1.8832

B and C (1 ⊗ a†B ⊗ a2C and 1 ⊗ aB ⊗ (a†C)
2). It is shown that the energy

can be preserved only if ωA = 2ωB and ωB = 2ωC . This situation can create

resonant coupling between the two subsystems. As a result, in our numerical

calculation we consider three cases that we denote as case 1, case 2 and case 3.

CASE 1

We consider the Hamiltonian of Eq.(4.1) with frequencies and coupling con-

stant correspondingly as

ωA = 2ωB = 4ωC = 1 (4.10)

λAB = λBC = 1 (4.11)

This shows that

ωA = 2ωB (4.12)

2ωB = 4ωC ⇒ ωB = 2ωC (4.13)

which is creating the resonant coupling between the subsystems A,B and

B,C. We also assign strong coupling constant, λAB = λBC = 1 where we

expect strong coupling between oscillators A,B and also oscillators B,C.
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CASE 2

We consider the Hamiltonian of Eq.(4.1) with

ωA = ωB = 2ωC = 1 (4.14)

λAB = λBC = 1 (4.15)

In this case, it shows that there exists resonant coupling (ωB = 2ωC) between

subsystems B and C. No resonant coupling exists between subsystems A

and B. We also consider strong coupling constant, which is λAB = λBC = 1.

From this assumption, we expect strong coupling between oscillators B,C

and weak coupling between oscillators A,B.

CASE 3

We consider the Hamiltonian of Eq.(4.1) with

ωA = ωB = ωC = 1 (4.16)

λAB = λBC = 0.1 (4.17)

Here, there is no resonant coupling between all the oscillators, and we assign

weak coupling constant. With this condition, we expect weak coupling among

all three oscillators.
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4.2.2 Classical and quantum correlations

The quantum mutual information, Iij as Eq.(4.6), indicates there exists clas-

sical and quantum correlations between two subsystems if Iij is non-negative.

Reference to Fig.(4.1), Fig.(4.2) and Fig.(4.3) clearly shows that in cases 1, 2

and 3 there exists in all the subsystems, classical and quantum correlations

(Iij ≥ 0). If we refer to Fig.(4.3), it is shown that IAC < IAB and IAC < IBC .

This result is expected because oscillators A,B and oscillators B,C are cou-

plings. There is no direct coupling between oscillators A,C. In Fig.(4.1)

and Fig.(4.2), it has been shown that IAC > IAB. This is the first counter-

intuitive result that we have. In order to confirm our counter-intuitive result,

we compute the ratio IAB/IAC as a function of ωB and ωC at ωAt = 5 and

λAB = λBC = 0.1. This is shown in Fig.(4.4) that IAC is greater than IAB

(white area) for some values of parameters ωB and ωC .

4.2.3 Entanglement

The entanglement witness that we used is a conditional entropy (E(i|j)).

Negative value of E(i|j) indicates an entanglement between subsystems [18,

19]. In Fig.(4.7), for case 3, it shows that E(A|B) and E(C|B) are negative

and E(A|C) and E(C|A) are positive. This means that oscillators A,B and

oscillators B,C are entangled where as the result is inconclusive for oscillators

A,C. This result is expected due to no direct coupling between oscillators

A,C.

In Fig.(4.5) and Fig.(4.6), we observe that E(A|C), E(B|C) and E(C|B)

are negative whilst E(A|B) and E(B|A) are positive. This means, oscillators
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Figure 4.1: The quantum mutual information Iij as in Eq.(4.6) for the Hamil-
tonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). IAB (solid line),
IAC (dashed line), and IBC (dashed line and circle) are plotted as functions
of time (ωAt) for Case 1(pg. 54). Iij ≥ 0 indicates the existence of classical
and quantum correlations between two subsystems.
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Figure 4.2: The quantum mutual information Iij as in Eq.(4.6) for the Hamil-
tonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). IAB (solid line),
IAC (dashed line), and IBC (dashed line and circle) are plotted as functions
of time (ωAt) for Case 2(pg. 55). Iij ≥ 0 indicates the existence of classical
and quantum correlations between two subsystems.
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Figure 4.3: The quantum mutual information Iij as in Eq.(4.6) for the Hamil-
tonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). IAB (solid line),
IAC (dashed line), and IBC (dashed line and circle) are plotted as functions
of time (ωAt) for Case 3(pg. 55). Iij ≥ 0 indicates the existence of classical
and quantum correlations between two subsystems.
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Figure 4.4: The ratio of IAB/IAC as functions of ωB and ωC for ωAt = 5
and λAB = λBC = 0.1. The Hamiltonian of Eq.(4.1) with the initial state
ρABC(0) of Eq.(4.9) is considered. The ratio is smaller/greater than one, in
the white/grey area correspondingly.
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Figure 4.5: The conditional entropy E(i|j) as Eq.(4.7) as function of time ωAt
for case 1 (pg. 54). The Hamiltonian of Eq.(4.1) with initial state ρABC(0)
of Eq.(4.9) is considered. In the top figure we show E(A|B) (solid line) and
E(B|A) (dashed line); in the middle figure we show E(A|C) (solid line) and
E(C|A) (dashed line); in the bottom figure we show E(B|C) (solid line) and
E(C|B) (dashed line). E(i|j) < 0 shows existence of entanglement between
two subsystems whilst positive values give an inconclusive result.
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Figure 4.6: The conditional entropy E(i|j) as Eq.(4.7) as function of time ωAt
for case 2 (pg. 55). The Hamiltonian of Eq.(4.1) with initial state ρABC(0)
of Eq.(4.9) is considered. In the top figure we show E(A|B) (solid line) and
E(B|A) (dashed line); in the middle figure we show E(A|C) (solid line) and
E(C|A) (dashed line); in the bottom figure we show E(B|C) (solid line) and
E(C|B) (dashed line).E(i|j) < 0 shows existence of entanglement between
two subsystems whilst positive values give an inconclusive result.
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Figure 4.7: The conditional entropy E(i|j) as Eq.(4.7) as function of time ωAt
for case 3 (pg. 55). The Hamiltonian of Eq.(4.1) with initial state ρABC(0)
of Eq.(4.9) is considered. In the top figure we show E(A|B) (solid line) and
E(B|A) (dashed line); in the middle figure we show E(A|C) (solid line) and
E(C|A) (dashed line); in the bottom figure we show E(B|C) (solid line) and
E(C|B) (dashed line).E(i|j) < 0 shows existence of entanglement between
two subsystems whilst positive values give an inconclusive result.
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A,C and oscillators B,C are entangled but not inconclusive for oscillators

A,B. This is the second counter-intuitive result that we have. To confirm

our counter-intuitive result, we introduced parameter R. R = 1, for area

where E(A|C) or E(C|A) are negative and both of E(A|B) and E(B|A) are

positive. R = 0, for the other cases. We plot R = 1 (white) and R = 0

(grey) as a function of ωB and ωC for ωA = 1 at t = 5 and λAB = λBC = 0.1.

This is present in Fig.(4.8), where the values of ωB and ωC , indicates that

oscillators A,C are entangled but not sure about oscillators A,B.

In order to confirm our calculation, we used negativity (Nij) to measure

the entanglement. If Nij is vanished, it means no entanglement. Based

on Fig.(4.9) and Fig.(4.10), we plot the negativity. Fig.(4.9), shows strong

entanglement for oscillators A,C and very weak entanglement for oscillators

A,B whereas Fig.(4.10), indicates a consistent pattern of entanglement for

oscillator A,C and oscillators A,B when compared with Fig.(4.8). White

area in Fig.(4.8), gives NAB < NAC in Fig.(4.10). Negativity result gives

strong entanglement for oscillators A,C and a weak one at oscillators A,B.

4.3 Discussions

In this chapter, the correlation between the three oscillators A,B and C have

been studied. The Hamiltonian system that we considered vividly described

the coupling of the oscillators. Oscillators A,B and oscillators B,C are

coupled but there is no direct coupling between oscillators A,C. At t = 0, we

considered a factorizable state as in Eq.(4.9) and observed no coupling among

all the oscillators. At time t with density matrix evolved by Eq.(4.2), the
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Figure 4.8: The parameter R as functions of ωB, ωC for ωA = 1 and λAB =
λBC = 0.1 at time ωAt = 5. The Hamiltonian of Eq.(4.1) with the initial
state ρABC(0) of Eq.(4.9) is considered. R = 1 and R = 0 in the white and
grey area, correspondingly. R = 1 (white) for area where E(A|C) or E(C|A)
are negative and both of E(A|B) and E(B|A) are positive. R = 0 (grey) for
the other cases.
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Figure 4.9: The negativity Nij of Eq.(4.8) for the Hamiltonian of Eq.(4.1)
with the initial state ρABC(0) of Eq.(4.9). NAB (solid line) and NAC (dashed
line) are plotted as a function of ωB for ωA = 1, ωC = 0.25 and λAB = λBC =
0.1 at time ωAt = 5. Nij > 0 indicates the subsystem is entangled and
Nij = 0 that it is not entangled.
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Figure 4.10: The negativity Nij of Eq.(4.8) for the Hamiltonian of Eq.(4.1)
with the initial state ρABC(0) of Eq.(4.9). NAB (solid line) and NAC (dashed
line) are plotted as a function of ωC for ωA = 1, ωB = 0.25 and λAB = λBC =
0.1 at time ωAt = 5. Nij > 0 indicates the subsystem is entangled and
Nij = 0 that it is not entangled.
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aim was to study correlation and entanglement among the three oscillators

using the Hamiltonian system.

Based on the numerical results, we calculate a quantum mutual infor-

mation (Iij) to identify the existence of classical and quantum correlations.

Conditional entropy, E(i|j) was computed to indicate the existence of entan-

glement for the subsystem. In Fig.(4.3) and Fig.(4.7), our test proved that

IAC < IAB and oscillators A,B entangled with an inconclusive result for oscil-

lators A and C. This is expected result because oscillators A,B formed cou-

pling whilst oscillators A,C did not. We had shown from Fig.(4.1), Fig.(4.2),

Fig.(4.5)and Fig.(4.6) that quantum mechanics violate this expected results.

In our counter-intuitive test results, we observed the first IAC > IAB and

second, oscillators A,C entangled but were not sure about oscillators A,B.

In order to make it clear, we plot Fig.(4.4) to confirm that in some values of

ωB and ωC (white area) IAC is greater than IAB. For the entanglement, we

confirmed by calculating the negativity that shows (Fig.(4.9) and Fig.(4.10))

oscillators A and C entangled, but we were not sure about oscillators A,B.



Chapter 5

Von Neumann measurements in

tri-partite systems

In this chapter, we extend our discussion from Chapter 4. By using the

same example as in the previous Chapter with the focus on case 1 (strong

coupling between oscillators A,B and B,C), we continue our studies with

measurements. We want to study the effects of measurement to the corre-

lations and entanglement of the quantum system. To identify the effects,

we have calculated the entropy, S(ρ), quantum mutual information, Iij and

conditional entropy, E(i|j) of the system after the measurement. Further, we

have investigated the quantumness of the system, especially on inconclusive

correlations. Our objectives are to study how the collapse state due to the

measurement on A effects the whole state of the systems and to look whether

we still can get a counter-intuitive result after the measurement.

70
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5.1 Measurements on A

Two counter-intuitive results found in Chapter 4. First, IAC > IAB and

another one is the oscillators A,C entangled and not being sure about oscil-

lators A,B, although there is coupling between oscillators A,B and no direct

coupling between oscillators A,C. Next, we study the measurement. We are

interested in investigating the effects of the measurement to the correlations

and entanglement of the tri-partite quantum system and whether we still can

get the counter-intuitive results. We performed measurements of the photon

number N by A at ωAt = 3.

Projection operators ΠN which is performed on the oscillator A is

ΠN = ΠA
N ⊗ 1B ⊗ 1C ≡ |N⟩⟨N | ⊗ 1B ⊗ 1C (5.1)

where N is a photon number or outcomes and 1i is an identity matrix for

the subsystems.

We consider two types of von Neumann measurement as discussed in

section 3.2, selective and non-selective measurements. With selective mea-

surement, the results are communicated instantaneously with classical meth-

ods to oscillators B and C. However, with non-selective measurement, it is

known that a measurement has been made, but the results or outcome are

not known.

In the case of the selective measurement, the state immediately known
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after the measurement

ρ′ABC(t, N) =
ΠNρABC(t)ΠN

Tr[ρABC(t)ΠN ]
(5.2)

where ρABC(t), the state just before the measurements at a time ωAt and

prob(t, N) = Tr[ρABC(t)ΠN ] (5.3)

is the probability outcome of the measurement corresponding to photon num-

ber N .

The partial trace for the selective measurement is

ρ′ij(t, N) = Trk[ρ
′
ijk(t, N)] (5.4)

ρ′i(t, N) = Trjk[ρ
′
ijk(t, N)] (5.5)

where i, j, k = A,B,C.

The von Neumann entropy can be calculated as

S(ρ′i(t, N)) = −Tr[ρ′i(t, N) log2(ρ
′
i(t, N))] (5.6)

S(ρ′ij(t, N)) = −Tr[ρ′ij(t, N) log2(ρ
′
ij(t, N))] (5.7)

The quantum mutual information, I ′ij(t, N) is calculated to indicate the

existence of classical and quantum correlations between the two subsystem

after the selective measurement.

I ′ij(t, N) = S(ρ′i(t, N)) + S(ρ′j(t, N))− S(ρ′ij(t, N)) ≥ 0 (5.8)
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Entanglement after the selective measurement is identified by calculating

the conditional entropy

E ′(i|j)(t, N) = S(ρ′ij(t, N))− S(ρ′j(t, N)) (5.9)

In the case of non-selective measurement, the state immediately after the

measurement is

˜ρABC(t) =
d−1∑
i=0

ΠiρABC(t)Πi (5.10)

where ρABC(t) is the state just before the non-selective measurement.

We noted that, in the case of non-selective measurement, the approach is

same as selective measurement, and we have calculated the partial trace as

ρ̃ij(t) = Trk[ρ̃ijk(t)] (5.11)

ρ̃i(t) = Trjk[ρ̃ijk(t)] (5.12)

where i, j, k = A,B,C.

The von Neumann entropy can be calculated as

S(ρ̃i(t)) = −Tr[ρ̃i(t) log2(ρ̃i(t))] (5.13)

S(ρ̃ij(t)) = −Tr[ρ̃ij(t) log2(ρ̃ij(t))] (5.14)

The quantum mutual information has been calculated as

Ĩij(t) = S(ρ̃i(t)) + S(ρ̃j(t))− S(ρ̃ij(t)) ≥ 0 (5.15)
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The conditional entropy is calculated by

˜E(i|j)(t) = S(ρ̃ij(t))− S(ρ̃j(t)) (5.16)

5.2 Quantum discord of oscillators A, B and

A, C

We are interested in studying the quantumness of oscillators A,B and oscil-

lators A,C for all cases, without measurement, selective measurement and

non-selective measurement. In this section, we have applied the approach to

calculate the quantum discord based on the quantum discord discussed in

[17, 28, 64].

In the case of without measurement, we have calculated the partial trace

of A and AB

ρA(t) = TrBC(ρABC(t)) (5.17)

ρAB(t) = TrC(ρABC(t)) (5.18)

where ρABC(t) is a state after the evolution as Eq.(4.2). We have also calcu-

lated the entropy

S(ρA(t)) = −Tr[ρA(t) log(ρA(t))] (5.19)

S(ρAB(t)) = −Tr[ρAB(t) log(ρAB(t))] (5.20)

We assume that we performed the measurement on A at ωAt = 3 with
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projection operators

ΠA
j = |j⟩⟨j| ⊗ 1B (5.21)

where j is labelled as a different outcome for this measurement and 1B is an

identity matrix for subsystem B. The state of B after the outcome corre-

sponding to ΠA
j

ρB|ΠA
j
(t) =

ΠA
j ρAB(t)Π

A
j

probj(t)
(5.22)

with

probj(t) = Tr(ΠA
j ρAB(t)) (5.23)

The entropy, S(ρB|ΠA
j
(t)) has been calculated by

S(ρB|ΠA
j
(t)) = −Tr[ρB|ΠA

j
(t) log(ρB|ΠA

j
(t))] (5.24)

Then, we calculated the conditional entropy

E(B|{ΠA
j })(t) =

∑
j

probj(t)S(ρB|ΠA
j
(t)) (5.25)

Quantum discord is the difference between two identical expressions of

mutual information, thus the quantum discord

δAB(t) = IAB(t)− JAB(t) (5.26)

= S(ρA(t))− S(ρAB(t)) + E(B|{ΠA
j })(t) (5.27)

In our case, we consider only measurement on A and ΠA
j in Eq.(5.21) which

defines a measurement that is optimal for the conditional entropy Eq.(5.25).
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We also calculated the quantum discord of oscillators A,C. In this case,

we used the same approach to calculate the quantum discord of oscillators

A,B which replaced the notation B with notation C in all our calculations.

Therefore, the quantum discord for oscillators A,C

δAC(t) = IAC(t)− JAC(t) (5.28)

= S(ρA(t))− S(ρAC(t)) + E(C|{ΠA
j })(t) (5.29)

where

E(C|{ΠA
j })(t) =

∑
j

probj(t)S(ρC|ΠA
j
(t)) (5.30)

with S(ρC|ΠA
j
(t)) is the entropy of ρC|ΠA

j
(t)

ρC|ΠA
j
(t) =

ΠA
j ρAC(t)Π

A
j

probj(t)
(5.31)

where

probj(t) = Tr(ΠA
j ρAC(t)) (5.32)

and

ΠA
j = |j⟩⟨j| ⊗ 1C. (5.33)

Details of the approach or algorithms to calculate the quantum discord for

oscillators A,B and oscillators A,C for the case of without measurement

given in Appendix A and Appendix B correspondingly.

In the case of non-selective measurement, the same approach is applied.
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We calculated the quantum discord for oscillators A,B

δ̃AB(t) = ĨAB(t)− J̃AB(t) (5.34)

= S(ρ̃A(t))− S(ρ̃AB(t)) + ˜E(B|{ΠA
j })(t) (5.35)

where

˜E(B|{ΠA
j })(t) =

∑
j

probj(t)S( ˜ρB|ΠA
j
(t)) (5.36)

with S( ˜ρB|ΠA
j
(t)) is the entropy of ˜ρB|ΠA

j
(t)

˜ρB|ΠA
j
(t) =

ΠA
j ρ̃AB(t)Π

A
j

probj(t)
(5.37)

where

probj(t) = Tr(ΠA
j ρ̃AB(t)) (5.38)

and

ΠA
j = |j⟩⟨j| ⊗ 1B (5.39)

By using the same approach, quantum discord for oscillators A,C is

δ̃AC(t) = ĨAC(t)− J̃AC(t) (5.40)

= S(ρ̃A(t))− S(ρ̃AC(t)) + ˜E(C|{ΠA
j })(t) (5.41)

where

˜E(C|{ΠA
j })(t) =

∑
j

probj(t)S( ˜ρC|ΠA
j
(t)) (5.42)
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with S( ˜ρC|ΠA
j
(t)) is the entropy of ˜ρC|ΠA

j
(t)

˜ρC|ΠA
j
(t) =

ΠA
j ρ̃AC(t)Π

A
j

probj(t)
(5.43)

where

probj(t) = Tr(ΠA
j ρ̃AC(t)) (5.44)

and

ΠA
j = |j⟩⟨j| ⊗ 1C (5.45)

Details of the procedure are given in Appendix C and Appendix D corre-

spondingly.

In the case of selective measurement, we calculated the quantum discord

for oscillators A,B

δ′AB(t, N) = I ′AB(t, N)− J ′
AB(t, N) (5.46)

= S(ρ′A(t, N))− S(ρ′AB(t, N)) + E ′(B|{ΠA
N})(t, N) (5.47)

where

E ′(B|{ΠA
N})(t, N) = prob(t, N)S(ρ′B|ΠA

N
(t, N)) (5.48)

with S(ρ′
B|ΠA

N
(t, N)) as the entropy of ρ′

B|ΠA
N
(t, N)

ρ′B|ΠA
N
(t, N) =

ΠA
Nρ

′
AB(t, N)ΠA

N

prob(t, N)
(5.49)

where

prob(t, N) = Tr(ΠA
Nρ

′
AB(t, N)) (5.50)
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and

ΠA
N = |N⟩⟨N | ⊗ 1B (5.51)

and we also calculated the quantum discord for oscillators A,C.

δ′AC(t, N) = I ′AC(t, N)− J ′
AC(t, N) (5.52)

= S(ρ′A(t, N))− S(ρ′AC(t, N)) + E ′(C|{ΠA
N})(t, N) (5.53)

where

E ′(C|{ΠA
N})(t, N) = prob(t, N)S(ρ′C|ΠA

N
(t, N)) (5.54)

with S(ρ′
C|ΠA

N
(t, N)) as the entropy of ρ′

C|ΠA
N
(t, N)

ρ′C|ΠA
N
(t, N) =

ΠA
Nρ

′
AC(t, N)ΠA

N

prob(t, N)
(5.55)

where

prob(t, N) = Tr(ΠA
Nρ

′
AC(t, N)) (5.56)

and

ΠA
N = |N⟩⟨N | ⊗ 1C (5.57)

The details of the approach to calculate the quantum discord is given in

Appendix E and Appendix F.

5.3 Numerical Results

In this area of study, we have considered the same examples as the ones

in section 4.2.1. However, we only focused on case 1. We considered the



5.3 Numerical Results 80

Hamiltonian system the same as Eq.(4.1). To make sure that we choose

a sufficient truncation, two tests of accuracy are considered. First test, to

make sure all the traces of all density matrices should be greater than 0.98.

In our calculation, we found that all the traces of density matrices are greater

than 0.98. In the second test, we computed the quantum mutual information

after the measurement for the various numbers of truncation (K). Base on

Table 5.1, it is shown that K = 9 is a sufficient truncation to give a good

approximation. After this, all the calculation is based on truncation K = 9.

Table 5.1: The quantum mutual informations for non-selective measurement
(ĨAB, ĨAC , ĨBC) as Eq.(5.15) and selective measurement (I ′AB, I

′
AC , I

′
BC) as

Eq.(5.8) for various values of the truncation dimension, K at ωAt = 8.

K=8 K=9 K=10 K=11

ĨAB 0.0977 0.0627 0.0627 0.0627

ĨAC 0.5431 0.4288 0.4288 0.4288

ĨBC 2.5142 2.1986 2.1986 2.1986
I ′AB(N = 0, 1, 2) 0 0 0 0
I ′AC(N = 0, 1, 2) 0 0 0 0
I ′BC(N = 0) 3.0733 2.8857 2.8857 2.8857
I ′BC(N = 1) 2.2677 2.4246 2.4246 2.4246
I ′BC(N = 2) 0 0 0 0

In this example, we performed a photon number measurement on A and

the measurement takes place at ωAt = 3. We investigated three cases, with-

out measurement, selective measurement and non-selective measurement.

Without measurement means that we do not perform any measurement on

density matrix after the evolution. Then we investigated the correlation and

entanglement of the tri-partite quantum systems for all cases by calculating

the entropy, quantum mutual information and conditional entropy. Further,



5.3 Numerical Results 81

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

ω
A
t

pb(N=0)

Figure 5.1: The probability outcome of the measurement of the photon num-
ber as in Eq.(5.3) for N = 0 as a function of time ωAt, for the selective
measurement. The Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of
Eq.(4.9) is considered.

we also investigated the quantumness of oscillators A,B and oscillators A,C

by calculating the quantum discord.

5.3.1 Entropy

In the numerical calculation of selective measurement, we found that for

the photon number N = 0, 1, 2, the probability of the outcome of the photon

number N are shown in Fig.(5.1), Fig.(5.2) and Fig.(5.3). Meanwhile, for the

case of photon number N = 3, 4, . . . , 9, the probability is zero, prob(t, N =

3, 4, . . . , 9) = 0.
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Figure 5.2: The probability outcome of the measurement of the photon num-
ber as in Eq.(5.3) for N = 1 as a function of time ωAt, for the selective
measurement. The Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of
Eq.(4.9) is considered.
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Figure 5.3: The probability outcome of the measurement of the photon num-
ber as in Eq.(5.3) for N = 2 as a function of time ωAt, for the selective
measurement. The Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of
Eq.(4.9) is considered.
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Referring to Fig.(5.4), it has shown that

S(ρ̃A(t)) ≥ S(ρA(t)) (5.58)

the entropy of density matrix A of non-selective measurement is greater than

or equal to the entropy of density matrix A without measurement.

For selective measurement

S(ρ′A(t, N = 0, 1, 2)) = 0 (5.59)

it has been shown that state A becomes a pure state after the selective

measurement.

Base on Fig.(5.5) and Fig.(5.6), it is shown that

S(ρ̃B(t)) = S(ρB(t)) (5.60)

S(ρ̃C(t)) = S(ρC(t)) (5.61)

the entropy of oscillator B and oscillator C for non-selective measurement

are equal with entropy of oscillator B and oscillator C without measurement.

This equality can happen if and only if [62]

ρ̃B(t) = ρB(t) (5.62)

ρ̃C(t) = ρC(t) (5.63)

the density matrix after non-selective measurement equals with density ma-

trix before the measurement.



5.3 Numerical Results 85

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.5

0

0.5

1

1.5

ω
A
t

S(ρ
A
)

N=0,1,2

Figure 5.4: The entropy of oscillator A S(ρA), as a function of time ωAt, for
the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). We
show S(ρ′A(t, N)) (solid line) for the case of selective measurement with N =
0, 1, 2 as in Eq.(5.6); S(ρA(t)) (dotted line) for the case of ‘no measurement’

as in Eq.(4.4); S(ρ̃A(t)) (dashed line and circle) for the case of non-selective
measurement as in Eq.(5.13). The measurement takes place at ωAt = 3.
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Meanwhile for selective measurement

S(ρ′B(t, N = 0, 1)) ≤ S(ρB(t)) (5.64)

S(ρ′C(t, N = 0, 1)) < S(ρC(t)) (5.65)

it shown that for the outcome N = 0, 1, the selective measurement decrease

the entropy of oscillators B,C. Interesting results for outcome N = 2

S(ρ′B(t, N = 2)) = 0 (5.66)

S(ρ′C(t, N = 2)) = 0 (5.67)

the state of oscillators B and C become a pure state.

5.3.2 Correlation

Looking up to Fig.(5.7), Fig.(5.8) and Fig.(5.9), it has revealed that

Ĩij(t) ≥ 0; i, j = A,B,C (5.68)

It indicates that there exists classical and quantum correlation among all the

oscillators A,B and C. It also has shown that

Ĩij(t) ≤ Iij(t) (5.69)

means that non-selective measurement decrease the correlation but the values

of the ĨAC(t) > ĨAB(t) as shown in Table (5.2).
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Figure 5.5: The entropy of oscillator B S(ρB), as a function of time ωAt, for
the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). We
show S(ρ′B(t, N)) (solid line) for the case of selective measurement with N =
0, 1, 2 as in Eq.(5.6); S(ρB(t)) (dotted line) for the case of ‘no measurement’

as in Eq.(4.4); S(ρ̃B(t)) (dashed line and circle) for the case of non-selective
measurement as in Eq.(5.13). The measurement takes place at ωAt = 3.
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Figure 5.6: The entropy of oscillator C S(ρC), as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).We
show S(ρ′C(t, N)) (solid line) for the case of selective measurement with N =
0, 1, 2 as in Eq.(5.6); S(ρC(t)) (dotted line) for the case of ‘no measurement’

as in Eq.(4.4); S(ρ̃C(t)) (dashed line and circle) for the case of non-selective
measurement as in Eq.(5.13). The measurement takes place at ωAt = 3.
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Figure 5.7: The quantum mutual information IAB as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). We
show I ′AB(t, N) (solid line) for the case of selective measurement as in Eq.(5.8)
with N = 0, 1, 2; IAB(t) (dotted line) for the case of ‘no measurement’ as in

Eq.(4.6); ĨAB(t) (dashed line and circle) for the case of non-selective mea-
surement as in Eq.(5.15). The measurement takes place at ωAt = 3.
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Figure 5.8: The quantum mutual information IAC as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). We
show I ′AC(t, N) (solid line) for the case of selective measurement as in Eq.(5.8)
with N = 0, 1, 2; IAC(t) (dotted line) for the case of ‘no measurement’ as in

Eq.(4.6); ĨAC(t) (dashed line and circle) for the case of non-selective mea-
surement as in Eq.(5.15). The measurement takes place at ωAt = 3.
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Figure 5.9: The quantum mutual information IBC as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9). We
show I ′BC(t, N) (solid line) for the case of selective measurement as in Eq.(5.8)
with N = 0, 1, 2; IBC(t) (dotted line) for the case of ‘no measurement’ as in

Eq.(4.6); ĨBC(t) (dashed line and circle) for the case of non-selective mea-
surement as in Eq.(5.15). The measurement takes place at ωAt = 3.
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Table 5.2: Comparative values of the quantum mutual information for non-

selective measurement ĨAC(t) and ĨAB(t) as Eq.(5.15) at ωAt = 3, 4, . . . , 15.
The Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9) is
considered.

ωAt ĨAC(t) ĨAB(t)
3 0.4882 0.1112
4 0.5980 0.2985
5 0.6931 0.2393
6 0.5524 0.1482
7 0.3307 0.1156
8 0.4288 0.0627
9 0.1274 0.0431
10 0.6276 0.1462
11 0.2840 0.0468
12 0.4841 0.1870
13 0.4320 0.2911
14 0.6235 0.2347
15 0.4115 0.1887

For the case of selective measurement,

I ′AB(t, N = 0, 1, 2) = 0 (5.70)

I ′AC(t, N = 0, 1, 2) = 0 (5.71)

it means that there is nothing common between oscillator A,B and oscillators

A,C. We can conclude that no correlations between oscillators A,B and

oscillators A,C. An interesting result for oscillators B,C

I ′BC(t, N = 0) ≥ IBC(t) (5.72)

I ′BC(t, N = 1) < IBC(t) (5.73)
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This result applies for most of the time except at ωAt = 10 and ωAt = 11.

The I ′BC might increase or decrease after the selective measurement.

It is different for outcome N = 2

I ′BC(t, N = 2) = 0 (5.74)

no correlation between oscillators B,C.

5.3.3 Entanglement

Based on our second counter-intuitive result as discussed in Chapter 4, study

shows that without measurement, oscillators A,C are entangled but we can-

not conclude whether oscillators A,B are entangled or not. Now, by perform-

ing a measurement on A, we investigated whether it will affect the results.

Referring to Fig.(5.10), Fig.(5.11), Fig.(5.12) and Fig.(5.13) it shows that

after non-selective measurement

˜E(A|B)(t) > 0; ˜E(B|A)(t) > 0 (5.75)

˜E(A|C)(t) > 0; ˜E(C|A)(t) > 0 (5.76)

oscillators A,B and oscillators A,C are not entangled. Meanwhile, Fig.(5.14)

and Fig.(5.15) show that

˜E(B|C)(t) < 0 (5.77)

˜E(C|B)(t) < 0 (5.78)
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oscillators B,C are entangled.

For selective measurement

E ′(A|B)(t, N = 0, 1, 2) = 0; E ′(B|A)(t, N = 0, 1, 2) ≥ 0 (5.79)

E ′(A|C)(t, N = 0, 1, 2) = 0; E ′(C|A)(t, N = 0, 1, 2) ≥ 0 (5.80)

it shows that, the oscillators A,B and oscillators A,C are not entangled.

Next, by looking at Fig.(5.14) and Fig.(5.15) we assume that the more

negative the conditional entropy, it will give more entanglement. This shows

that E ′(B|C)(N = 0) is more entangled then E ′(B|C)(N = 1). Meanwhile,

for outcome N = 2 where

E ′(B|C)(t, N = 2) = E ′(C|B)(t, N = 2) = 0 (5.81)

it shows that at N = 2, the oscillators B,C not entangled.

5.3.4 Quantum discord

Before the measurement, we have known that oscillators A,C are entangled,

but not sure about oscillators A,B. By calculating the quantum discord of

oscillators A,B and oscillators A,C, Fig. (5.16), shows that

δAB > 0 (5.82)

δAC > 0 (5.83)



5.3 Numerical Results 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ω
A
t

E(A|B)

N=0,1,2

Figure 5.10: The conditional entropy E(A|B) as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).
We show E ′(A|B)(t, N) (solid line) for the case of selective measurement
as in Eq.(5.9) with N = 0, 1, 2; E(A|B)(t) (dotted line) for the case of ‘no

measurement’ as in Eq.(4.7); ˜E(A|B)(t) (dashed line and circle) for the case
of non-selective measurement as Eq.(5.16). The measurement takes place at
ωAt = 3.
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Figure 5.11: The conditional entropy E(B|A) as a function of time ωAt, for
the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).We
show E ′(B|A)(t, N) (solid line) for the case of selective measurement as in
Eq.(5.9) with N = 0, 1, 2; E(B|A)(t) (dotted line) for the case of ‘no mea-

surement’ as in Eq.(4.7); ˜E(B|A)(t) (dashed line and circle) for the case of
non-selective measurement as in Eq.(5.16). The measurement takes place at
ωAt = 3.
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Figure 5.12: The conditional entropy E(A|C) as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).
We show E ′(A|C)(t, N) (solid line) for the case of selective measurement
as in Eq.(5.9) with N = 0, 1, 2; E(A|C)(t) (dotted line) for the case of ‘no

measurement’ as in Eq.(4.7); ˜E(A|C)(t) (dashed line and circle) for the case
of non-selective measurement as in Eq.(5.16). The measurement takes place
at ωAt = 3.
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Figure 5.13: The conditional entropy E(C|A) as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).
We show E ′(C|A)(t, N) (solid line) for the case of selective measurement
as in Eq.(5.9) with N = 0, 1, 2; E(C|A)(t) (dotted line) for the case of ‘no

measurement’ as in Eq.(4.7); ˜E(C|A)(t) (dashed line and circle) for the case
of non-selective measurement as in Eq.(5.16). The measurement takes place
at ωAt = 3.
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Figure 5.14: The conditional entropy E(B|C) as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).
We show E ′(B|C)(t, N) (solid line) for the case of selective measurement
as in Eq.(5.9) with N = 0, 1, 2; E(B|C)(t) (dotted line) for the case of ‘no

measurement’ as in Eq.(4.7); ˜E(B|C)(t) (dashed line and circle) for the case
of non-selective measurement as in Eq.(5.16). The measurement takes place
at ωAt = 3.
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Figure 5.15: The conditional entropy E(C|B) as a function of time ωAt,
for the Hamiltonian of Eq.(4.1) with the initial state ρABC(0) of Eq.(4.9).
We show E ′(C|B)(t, N) (solid line) for the case of selective measurement
as in Eq.(5.9) with N = 0, 1, 2; E(C|B)(t) (dotted line) for the case of ‘no

measurement’ as in Eq.(4.7); ˜E(C|B)(t) (dashed line and circle) for the case
of non-selective measurement as in Eq.(5.16). The measurement takes place
at ωAt = 3.
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and

δAC > δAB (5.84)

In Fig.(5.17), Fig.(5.18) and Fig.(5.19), we found the results

δ̃AB = δ′AB = 0 (5.85)

δ̃AC = δ′AC = 0 (5.86)

A summary of all the results, before and after the measurements are illus-

trated in Fig.(5.20), Fig.(5.21) and Fig.(5.22) where ←→ indicate coupling,

L9999K indicate no direct coupling, E indicate entangled state, Ĕ indicate in-

conclusive state, δ > 0 indicate non-classical correlations and δ = 0 indicate

classical correlations.

5.4 Discussion

Investigating quantum measurement in various components of a multipar-

tite quantum system has been an interesting research, especially when it

changes the state of the system. In this research, we investigated the quan-

tum measurement of three oscillators A, B and C. We considered the strong

coupling between the oscillators A,B and oscillators B,C. There are no

direct coupling between oscillator A,C. We performed the photon number

measurement on A at ωAt = 3 and calculated the entropy, quantum mutual

information, conditional entropy and quantum discord before and after the

measurements.

In the numerical calculation, it is shown that the entropy of oscillators
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Figure 5.16: The quantum discord δij as in Eq.(3.34) for the Hamiltonian of
Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9).We show δAB (solid line)
as in Eq.(5.27) and δAC (dashed line) as in Eq.(5.29) as functions of time
ωAt, for the case of ‘no measurement’. The fact that δij > 0 shows that the
oscillators A,B and A,C are correlated quantum mechanically.
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Figure 5.17: The quantum discord δ̃ij for the Hamiltonian of Eq.(4.1)with the

initial state ρABC(0) of Eq.(4.9). We show δ̃AB (solid line) as in Eq.(5.35)

and δ̃AC (cycle) as in Eq.(5.29) as a function of time ωAt, for the case of
non-selective measurements. The measurement takes place at ωAt = 3 .
The fact that δ̃AB = δ̃AC = 0, shows that the oscillators A,B and A,C are
classically correlated. (Note that, the quantum discord δ̃AB and δ̃AC lines are
superimposing each other.)
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Figure 5.18: The quantum discord δ′AB as in Eq.(5.47) for the Hamiltonian of
Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9). We show δ′AB(N = 0) (solid
line); δ′AB(N = 1) (cycle) and δ′AB(N = 2) (diamond) as a function of time
ωAt, for the case of selective measurements. The measurement takes place at
ωAt = 3. The fact that δ′AB(N = 0, 1, 2) = 0 shows that the oscillators A,B
at N = 0, 1, 2 are classically correlated.(Note that, the quantum discord
δ′AB(N = 0), δ′AB(N = 1) and δ′AB(N = 2) lines are superimposing each
other.)
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Figure 5.19: The quantum discord δ′AC as in Eq.(5.53) for the Hamiltonian of
Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9). We show δ′AC(N = 0) (solid
line); δ′AC(N = 1) (cycle) and δ′AC(N = 2) (diamond) as a function of time
ωAt, for the case of selective measurements. The measurement takes place at
ωAt = 3. The fact that δ′AC(N = 0, 1, 2) = 0 shows that the oscillators A,C
at N = 0, 1, 2 are classically correlated. (Note that, the quantum discord
δ′AC(N = 0), δ′AC(N = 1) and δ′AC(N = 2) lines are superimposing each
other.)
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Figure 5.20: The summary of the case of ‘no measurement’ for a chain of three
oscillators A,B,C. A solid arrow indicates coupling, dashed arrow indicates
no direct coupling. E indicates entangled state, and Ĕ indicates that the
entanglement witness does not lead to any conclusion. δ > 0 indicates non-
classical correlations. It is shown that after the evolution, oscillators A,C
and B,C are entangled and oscillators A,B might or might not be entangled.
Correlations between oscillators A,C are stronger than the correlations be-
tween the oscillators A,B. Quantum discord indicates that oscillators A,B
and A,C are non-classically correlated.
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Figure 5.21: The summary of the case of non-selective measurement for a
chain of three oscillators A,B,C. A solid arrow indicates coupling, dashed
arrow indicates no direct coupling, E indicates entangled state, and Ĕ indi-
cates that the entanglement witness does not lead to any conclusion. δ = 0
indicates classically correlated system. It is shown that after the measure-
ments, oscillators B,C are entangled and oscillators A,B and A,C might or
might not be entangled. Correlations between oscillators A,C are stronger
than the correlations between the oscillators A,B. Quantum discord indi-
cates that oscillators A,B and A,C are classically correlated.
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Figure 5.22: The summary of the case of selective measurement for a chain
of three oscillators A,B,C. A solid arrow indicates coupling, dashed arrow
indicates no direct coupling, E indicates entangled state, and Ĕ indicates
that the entanglement witness does not lead to any conclusion. δ = 0 indi-
cates classically correlated system. It is shown that after the measurements,
oscillators B,C are entangled and oscillators A,B and A,C might or might
not be entangled. Quantum discord indicates that oscillators A,B and A,C
are classically correlated.
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A,B and C after the non-selective measurement is non-negative

S(ρ̃i(t)) ≥ 0; i = A,B,C (5.87)

and

S(ρ̃i(t)) ≥ S(ρi(t)); i = A,B,C (5.88)

This is an expected result because the theorem in section 3.4 mentions that,

the entropy after the non-selective measurement is at least as great as the

original entropy.

In the case of selective measurement, we found the oscillator A become

a pure state for all outcomes N = 0, 1, 2 due to the measurement on A. In

spite of that, the entropy of B and C decrease after the measurement for

N = 0, 1 and an interestingly for the outcome N = 2, both entropy, B and

C become zero.

We have also calculated the quantum mutual information Iij for the case

of after measurements. In many cases, the results prove that there exist

classical and quantum correlation among all the oscillators A,B and C. Non-

selective measurement proves that the measurement decrease the correlations

of oscillators A,B and oscillators A,C (Refer to Fig.(5.7) and Fig.(5.8)). We

also note that

ĨAC > ĨAB (5.89)

Below we have some interesting results on selective measurement

I ′AB(N = 0, 1, 2) = I ′AC(N = 0, 1, 2) = 0 (5.90)
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Table 5.3: The entropy of oscillator B in the case of selective measurement,
S(ρ′B(t, N)) as Eq.(5.6) for N = 0, 1, 2 at ωAt = 3, 4, . . . , 15. The Hamilto-
nian of Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9) is considered.

N=0 N=1 N=2
3 1.5586 1.0334 0
4 1.5477 0.3191 0
5 1.6087 0.7749 0
6 1.6461 1.0534 0
7 1.7275 1.1581 0
8 1.4429 1.2123 0
9 2.0764 1.2503 0
10 0.9705 1.1555 0
11 1.6086 1.4514 0
12 1.7900 1.1348 0
13 1.4048 1.3313 0
14 0.9076 0.8659 0
15 1.6411 1.3968 0

These results show that there is nothing common between oscillators A,B

and oscillators A,C after the measurement. We can conclude that, after the

selective measurement, oscillators A,B and oscillators A,C become factor-

izable. Meanwhile, for oscillators B,C, we found the results might decrease

(N = 0) or increase (N = 1) after the measurement. This did not happen to

an outcome N = 2, where I ′BC(t, N = 2) = 0.

Further, to investigate the results in Eq.(5.90), refer to Table (5.3), (5.4),

(5.5) and (5.6), this shows that all the entropy is equal, S(ρ′B(t, N = 0, 1, 2)) =

S(ρ′C(t, N = 0, 1, 2)) = S(ρ′AB(t, N = 0, 1, 2)) = S(ρ′AC(t, N = 0, 1, 2)).

As we know, to calculate the classical and quantum correlation as Eq.(5.8),

therefore

I ′AB = S(ρ′A) + S(ρ′B)− S(ρ′AB) (5.91)
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Table 5.4: The entropy of oscillator C in the case of selective measurement,
S(ρ′C(t, N)) as Eq.(5.6) for N = 0, 1, 2 at ωAt = 3, 4, . . . , 15. The Hamilto-
nian of Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9) is considered.

N=0 N=1 N=2
3 1.5586 1.0334 0
4 1.5477 0.3191 0
5 1.6087 0.7749 0
6 1.6461 1.0534 0
7 1.7275 1.1581 0
8 1.4429 1.2123 0
9 2.0764 1.2503 0
10 0.9705 1.1555 0
11 1.6086 1.4514 0
12 1.7900 1.1348 0
13 1.4048 1.3313 0
14 0.9076 0.8659 0
15 1.6411 1.3968 0

Table 5.5: The entropy of oscillators A,B in the case of selective measure-
ment, S(ρ′AB(t, N)) as Eq.(5.7) for N = 0, 1, 2 at ωAt = 3, 4, . . . , 15. The
Hamiltonian of Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9) is consid-
ered.

N=0 N=1 N=2
3 1.5586 1.0334 0
4 1.5477 0.3191 0
5 1.6087 0.7749 0
6 1.6461 1.0534 0
7 1.7275 1.1581 0
8 1.4429 1.2123 0
9 2.0764 1.2503 0
10 0.9705 1.1555 0
11 1.6086 1.4514 0
12 1.7900 1.1348 0
13 1.4048 1.3313 0
14 0.9076 0.8659 0
15 1.6411 1.3968 0
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Table 5.6: The entropy of oscillators A,C in the case of selective measure-
ment, S(ρ′AC(t, N)) as Eq.(5.7) for N = 0, 1, 2 at ωAt = 3, 4, . . . , 15. The
Hamiltonian of Eq.(4.1)with the initial state ρABC(0) of Eq.(4.9) is consid-
ered.

N=0 N=1 N=2
3 1.5586 1.0334 0
4 1.5477 0.3191 0
5 1.6087 0.7749 0
6 1.6461 1.0534 0
7 1.7275 1.1581 0
8 1.4429 1.2123 0
9 2.0764 1.2503 0
10 0.9705 1.1555 0
11 1.6086 1.4514 0
12 1.7900 1.1348 0
13 1.4048 1.3313 0
14 0.9076 0.8659 0
15 1.6411 1.3968 0

with S(ρ′A) = 0 and S(ρ′B) = S(ρ′AB), thus I
′
AB = 0.

It is also same for I ′AC

I ′AC = S(ρ′A) + S(ρ′C)− S(ρ′AC) (5.92)

with S(ρ′A) = 0 and S(ρ′C) = S(ρ′AC), thus I
′
AC = 0.

Next, we investigate factorizable of oscillators A,B and oscillators A,C.

Based on the previous results in section 5.3.3, we know that oscillators B,C

at N = 0, 1 is entangled, so as a control of calculation, we also test the

factorizable of oscillators B,C. To identify the factorizable, we calculate the

partial trace ρ′A(t, N = 0, 1, 2), ρ′B(t, N = 0, 1, 2) and ρ′AB(t, N = 0, 1, 2).

Then we calculate the tensor product of ρ′A(t, N = 0, 1, 2) and ρ′B(t, N =
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Table 5.7: Factorizable state for the oscillators A,B and oscillators A,C in
the case of selective measurement for N = 0, 1, 2 at ωAt = 3, 4, . . . , 15. 1 is
indicated as a factorizable state and 0 as not a factorizable state.

N=0 N=1 N=2
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1
10 1 1 1
11 1 1 1
12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1

0, 1, 2). If

ρ′A(t, N = 0, 1, 2)⊗ ρ′B(t, N = 0, 1, 2) = ρ′AB(t, N = 0, 1, 2) (5.93)

therefore, we justify that the oscillators A,B is factorizable. Refer to Table

(5.7) and Table (5.8) with 1 indicated as factorizable and 0 is not factorizable,

it is shown that oscillators A,B and oscillators A,C are factorizable for

N = 0, 1, 2. Meanwhile, oscillators B,C are not factorizable for N = 0, 1 but

factorizable for N = 2.

We also prove that, based on conditional entropy calculation, after the

measurements for the both cases (selective and non-selective), oscillatorsA,B

and oscillators A,C are not entangled. Meanwhile, oscillators B,C maintain

the entanglement. We note that for the outcomeN = 0, oscillators B,C more
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Table 5.8: Factorizable state for the oscillators B,C in the case of selec-
tive measurement for N = 0, 1, 2 at ωAt = 3, 4, . . . , 15. 1 is indicated as
factorizable state and 0 as not a factorizable state.

N=0 N=1 N=2
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 0 0 1
8 0 0 1
9 0 0 1
10 0 0 1
11 0 0 1
12 0 0 1
13 0 0 1
14 0 0 1
15 0 0 1

entangled after the selective measurement. But for the outcome N = 2, the

oscillators B,C is not entangled.

In the case of selective measurement forN = 2, we found that S(ρ′B(t, N =

2)) = 0 (Fig.(5.5)), S(ρ′C(t, N = 2)) = 0 (Fig.(5.6)) and I ′BC(t, N = 2) = 0

(Fig.(5.9)). This show that oscillator B and oscillator C become pure state

and are factorizable. Refer to Fig.(5.1), Fig.(5.2) and Fig.(5.3), they show

that the probability of photon number N = 2 is very small, 0 < prob(N =

2) < 0.01. We can conclude that, for N = 2 in selective measurement,

oscillators B,C become pure and vacuum state.

We also support these results which calculate the quantum discord of

oscillators A,B and oscillators A,C before the measurement and after the

measurement. It is proven that before the measurement, δAB and δAC is not

vanished. This means, there is a non-classical correlation between oscillators
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A,B and oscillators A,C. It also can be seen that δAB < δAC (Fig.(5.16))

which A,C is entangled and which A,B is not entangled [64].

After the measurements for both cases, non-selective and selective mea-

surements

δ̃AB = δ̃AC = 0 (5.94)

δ′AB = δ′AC = 0 (5.95)

A state with vanishing quantum discord called classical quantum state is

necessarily separable [17] and pure [64]. This is proven that after the mea-

surement, oscillators A,B and oscillators A,C become a pure and classical

quantum state.

5.5 Appendix

In this section, we list all the appendix for the detail of the approach or

algorithms to calculate the quantum discord of oscillators A,B and A,C for

all cases.

5.5.1 Appendix A: Quantum discord of oscillators A,B

for the case of without measurements

This is an algorithm to compute quantum discord for oscillators A,B for the

case of without measurements.
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1. compute the the density matrix at time t

ρABC(t) = eiHtρABC(0)e
−iHt

where ρABC(0) is the initial state at t = 0.

2. compute the partial trace

ρAB(t) = TrC(ρABC(t))

ρA(t) = TrBC(ρABC(t))

3. compute the entropy

S(ρAB(t)) = −Tr[ρAB(t) log(ρAB(t))]

S(ρA(t)) = −Tr[ρA(t) log(ρA(t))]

4. compute the projection with measurement on A

ΠA
j = |j⟩⟨j| ⊗ 1B

5. compute the probability

probj(t) = Tr(ΠA
j ρAB(t))

6. compute the state of B after the outcome corresponding to ΠA
j
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ρB|ΠA
j
(t) =

ΠA
j ρAB(t)Π

A
j

probj(t)

7. compute the entropy, S(ρB|ΠA
j
(t))

S(ρB|ΠA
j
(t)) = −Tr[ρB|ΠA

j
(t) log(ρB|ΠA

j
(t))]

8. compute the conditional entropy

E(B|{ΠA
j })(t) =

∑
j

probj(t)S(ρB|ΠA
j
(t))

9. compute quantum discord. We know:

IAB(t) = S(ρB(t)) + S(ρA(t))− S(ρAB(t))

JAB(t) = S(ρB(t))− E(B|{ΠA
j })(t)

Therefore:

δAB(t) = IAB(t)− JAB(t)

= S(ρB(t)) + S(ρA(t))− S(ρAB(t))− S(ρB(t)) + E(B|{ΠA
j })(t)

= S(ρA(t))− S(ρAB(t)) + E(B|{ΠA
j })(t)
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5.5.2 Appendix B: Quantum discord of oscillators A,C

for the case of without measurements

This is an algorithm to compute quantum discord for oscillators A,C for the

case of without measurements.

1. compute the the density matrix at time t

ρABC(t) = eiHtρABC(0)e
−iHt

where ρABC(0) is the initial state at t = 0.

2. compute the partial trace

ρAC(t) = TrB(ρABC(t))

ρA(t) = TrBC(ρABC(t))

3. compute the entropy

S(ρAC(t)) = −Tr[ρAC(t) log(ρAC(t))]

S(ρA(t)) = −Tr[ρA(t) log(ρA(t))]

4. compute the projection with measurement on A

ΠA
j = |j⟩⟨j| ⊗ 1C

5. compute the probability
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probj(t) = Tr(ΠA
j ρAC(t))

6. compute the state of C after the outcome corresponding to ΠA
j

ρC|ΠA
j
(t) =

ΠA
j ρAC(t)Π

A
j

probj(t)

7. compute the entropy, S(ρC|ΠA
j
(t))

S(ρC|ΠA
j
(t)) = −Tr[ρC|ΠA

j
(t) log(ρC|ΠA

j
(t))]

8. compute the conditional entropy

E(C|{ΠA
j })(t) =

∑
j

probj(t)S(ρC|ΠA
j
(t))

9. compute quantum discord. We know:

IAC(t) = S(ρC(t)) + S(ρA(t))− S(ρAC(t))

JAC(t) = S(ρC(t))− E(C|{ΠA
j })(t)

Therefore:

δAC(t) = IAC(t)− JAC(t)

= S(ρC(t)) + S(ρA(t))− S(ρAC(t))− S(ρC(t)) + E(C|{ΠA
j })(t)

= S(ρA(t))− S(ρAC(t)) + E(C|{ΠA
j })(t)
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5.5.3 Appendix C: Quantum discord of oscillators A,B

for the case of non-selective measurements

This is an algorithm to compute quantum discord for oscillators A,B for the

case of non-selection measurements.

1. compute the the density matrix at time t

ρABC(t) = eiHtρABC(0)e
−iHt

2. measurement performed on A with projection operators

ΠN = ΠA
N ⊗ 1B ⊗ 1C ≡ |N⟩⟨N | ⊗ 1B ⊗ 1C

3. compute the state after the non-selective measurements

˜ρABC(t) =
d−1∑
i=0

ΠiρABC(t)Πi

where ρABC(t) is a state after the evolution.

4. compute the partial trace

ρ̃AB(t) = TrC( ˜ρABC(t))

ρ̃A(t) = TrBC( ˜ρABC(t))
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5. compute the entropy S(ρ̃A(t)) and S(ρ̃AB(t))

S(ρ̃AB(t)) = −Tr[ρ̃AB(t) log(ρ̃AB(t))]

S(ρ̃A(t)) = −Tr[ρ̃A(t) log(ρ̃A(t))]

6. compute the projection with measurement on A

ΠA
j = |j⟩⟨j| ⊗ 1B

7. compute the probability

probj(t) = Tr(ΠA
j ρ̃AB(t))

8. compute the state of B after the outcome corresponding to ΠA
j

˜ρB|ΠA
j
(t) =

ΠA
j ρ̃AB(t)Π

A
j

probj(t)

9. compute the entropy, S( ˜ρB|ΠA
j
(t))

S( ˜ρB|ΠA
j
(t)) = −Tr[ ˜ρB|ΠA

j
(t) log( ˜ρB|ΠA

j
(t))]

10. compute the conditional entropy

˜E(B|{ΠA
j })(t) =

∑
j

probj(t)S( ˜ρB|ΠA
j
(t))
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11. compute quantum discord. We know:

ĨAB(t) = S(ρ̃A(t)) + S(ρ̃B(t))− S(ρ̃AB(t))

J̃AB(t) = S(ρ̃B(t))− ˜E(B|{ΠA
j })(t)

Therefore:

δ̃AB(t) = ĨAB(t)− J̃AB(t)

= S(ρ̃A(t)) + S(ρ̃B(t))− S(ρ̃AB(t))− S(ρ̃B(t)) + ˜E(B|{ΠA
j })(t)

= S(ρ̃A(t))− S(ρ̃AB(t)) + ˜E(B|{ΠA
j })(t)

5.5.4 Appendix D: Quantum discord of oscillators A,C

for the case of non-selective measurements

This is an algorithm to compute quantum discord for oscillators A,C for the

case of non-selective measurements.

1. compute the the density matrix at time t

ρABC(t) = eiHtρABC(0)e
−iHt

2. measurement performed on A with projection operators

ΠN = ΠA
N ⊗ 1B ⊗ 1C ≡ |N⟩⟨N | ⊗ 1B ⊗ 1C
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3. compute the state after the non-selective measurements

˜ρABC(t) =
d−1∑
i=0

ΠiρABC(t)Πi

where ρABC(t) is a state after the evolution.

4. compute the partial trace

ρ̃AC(t) = TrB( ˜ρABC(t))

ρ̃A(t) = TrBC( ˜ρABC(t))

5. compute the entropy S(ρ̃A(t)) and S(ρ̃AC(t))

S(ρ̃AC(t)) = −Tr[ρ̃AC(t) log(ρ̃AC(t))]

S(ρ̃A(t)) = −Tr[ρ̃A(t) log(ρ̃A(t))]

6. compute the projection with measurement on A

ΠA
j = |j⟩⟨j| ⊗ 1C

7. compute the probability

probj(t) = Tr(ΠA
j ρ̃AC(t))

8. compute the state of C after the outcome corresponding to ΠA
j



5.5 Appendix 124

˜ρC|ΠA
j
(t) =

ΠA
j ρ̃AC(t)Π

A
j

probj(t)

9. compute the entropy, S( ˜ρC|ΠA
j
(t))

S( ˜ρC|ΠA
j
(t)) = −Tr[ ˜ρC|ΠA

j
(t) log( ˜ρC|ΠA

j
(t))]

10. compute the conditional entropy

˜E(C|{ΠA
j })(t) =

∑
j

probj(t)S( ˜ρC|ΠA
j
(t))

11. compute quantum discord. We know:

ĨAC(t) = S(ρ̃A(t)) + S(ρ̃C(t))− S(ρ̃AC(t))

J̃AC(t) = S(ρ̃C(t))− ˜E(C|{ΠA
j })(t)

Therefore:

δ̃AC(t) = ĨAC(t)− J̃AC(t)

= S(ρ̃A(t)) + S(ρ̃C(t))− S(ρ̃AC(t))− S(ρ̃C(t)) + ˜E(C|{ΠA
j })(t)

= S(ρ̃A(t))− S(ρ̃AC(t)) + ˜E(C|{ΠA
j })(t)
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5.5.5 Appendix E: Quantum discord of oscillators A,B

for the case of selective measurements

This is an algorithm to compute quantum discord for oscillators A,B for the

case of selective measurements.

1. compute the the density matrix at time t

ρABC(t) = eiHtρABC(0)e
−iHt

2. measurement performed on A with projection operators

ΠN = ΠA
N ⊗ 1B ⊗ 1C ≡ |N⟩⟨N | ⊗ 1B ⊗ 1C

3. compute the state after the selective measurements

ρ′ABC(t, N) =
ΠNρABC(t)ΠN

Tr[ρABC(t)ΠN ]

where ρABC(t) is a state after the evolution and N is the number of

photons.

4. compute the partial trace

ρ′AB(t, N) = TrC(ρ
′
ABC(t, N))

ρ′A(t, N) = TrBC(ρ
′
ABC(t, N))
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5. compute the entropy S(ρ′A(t, N)) and S(ρ′AB(t, N))

S(ρ′AB(t, N)) = −Tr[ρ′AB(t, N) log(ρ′AB(t, N))]

S(ρ′A(t, N)) = −Tr[ρ′A(t, N) log(ρ′A(t, N))]

6. compute the projection with measurement on A

ΠA
N = |N⟩⟨N | ⊗ 1B

7. compute the probability

prob(t, N) = Tr(ΠA
Nρ

′
AB(t, N))

8. compute the state of B after the outcome corresponding to ΠA
N

ρ′B|ΠA
N
(t, N) =

ΠA
Nρ

′
AB(t, N)ΠA

N

prob(t, N)

9. compute the entropy, S(ρ′
B|ΠA

N
(t, N))

S(ρ′B|ΠA
N
(t, N)) = −Tr[ρ′B|ΠA

N
(t, N) log(ρ′B|ΠA

N
(t, N))]

10. compute the conditional entropy

E ′(B|{ΠA
N})(t, N) = prob(t, N)S(ρ′B|ΠA

N
(t, N))
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11. compute quantum discord. We know:

I ′AB(t, N) = S(ρ′A(t, N)) + S(ρ′B(t, N))− S(ρ′AB(t, N))

J ′
AB(t, N) = S(ρ′B(t, N))− E ′(B|{ΠA

N})(t, N)

Therefore:

δ′AB(t, N) = I ′AB(t, N)− J ′
AB(t, N)

= S(ρ′A(t, N))− S(ρ′AB(t, N)) + E ′(B|{ΠA
N})(t, N)

5.5.6 Appendix F: Quantum discord of oscillators A,C

for the case of selective measurements

This is an algorithm to compute quantum discord for oscillators A,C for the

case of selective measurements.

1. compute the the density matrix at time t

ρABC(t) = eiHtρABC(0)e
−iHt

2. measurement performed on A with projection operators

ΠN = ΠA
N ⊗ 1B ⊗ 1C ≡ |N⟩⟨N | ⊗ 1B ⊗ 1C
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3. compute the state after the selective measurements

ρ′ABC(t, N) =
ΠNρABC(t)ΠN

Tr[ρABC(t)ΠN ]

where ρABC(t) is a state after the evolution and N is the number of

photons.

4. compute the partial trace

ρ′AC(t, N) = TrB(ρ
′
ABC(t, N))

ρ′A(t, N) = TrBC(ρ
′
ABC(t, N))

5. compute the entropy S(ρ′A(t, N)) and S(ρ′AC(t, N))

S(ρ′AC(t, N)) = −Tr[ρ′AC(t, N) log(ρ′AC(t, N))]

S(ρ′A(t, N)) = −Tr[ρ′A(t, N) log(ρ′A(t, N))]

6. compute the projection with measurement on A

ΠA
N = |N⟩⟨N | ⊗ 1C

7. compute the probability

prob(t, N) = Tr(ΠA
Nρ

′
AC(t, N))

8. compute the state of C after the outcome corresponding to ΠA
N
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ρ′C|ΠA
N
(t, N) =

ΠA
Nρ

′
AC(t, N)ΠA

N

prob(t, N)

9. compute the entropy, S(ρ′
C|ΠA

N
(t, N))

S(ρ′C|ΠA
N
(t, N)) = −Tr[ρ′C|ΠA

N
(t, N) log(ρ′C|ΠA

N
(t, N))]

10. compute the conditional entropy

E ′(C|{ΠA
N})(t, N) = prob(t, N)S(ρ′C|ΠA

N
(t, N))

11. compute quantum discord. We know:

I ′AC(t, N) = S(ρ′A(t, N)) + S(ρ′C(t, N))− S(ρ′AC(t, N))

J ′
AC(t, N) = S(ρ′B(t, N))− E ′(C|{ΠA

N})(t, N)

Therefore:

δ′AC(t, N) = I ′AC(t, N)− J ′
AC(t, N)

= S(ρ′A(t, N))− S(ρ′AC(t, N)) + E ′(C|{ΠA
N})(t, N)



Chapter 6

Conclusions

6.1 Conclusions

In the present work, we have studied a chain of three oscillators A,B,C. We

assume that oscillators A,B and oscillators B,C are coupled and there is

no direct coupling between oscillator A and C. The goal of this study is to

investigate the correlation among all the oscillators after the evolution. In

particular, we looked for counter-intuitive results.

We introduce three cases, which we denote as case 1, case 2 and case

3. In case 3, we assume that the coupling is not resonant and that there is

weak coupling between both oscillators A,B and oscillators B,C. In case 2,

we assume strong coupling between oscillators B,C and weak coupling be-

tween oscillators A,B. Lastly, in case 1, we consider strong coupling between

oscillators A,B and also between oscillators B,C.

In the numerical calculation, we used the quantum mutual information,

Iij to calculate the existence of classical and quantum correlations. Then, we
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used conditional entropy, E(i|j) as a witness of entanglement if the value is

negative. We also confirm the entanglement using the negativity, N(ρij).

Results from this investigation are very interesting. In case 3, we have

shown that IAB > IAC which means that oscillators A,B are strongly corre-

lated but oscillators A,C are weakly correlated. We have also shown that the

oscillators A,B are entangled, but we cannot conclude for oscillators A,C

whether they are entangled or not. This is expected result, since there is

no direct coupling between oscillators A,C. In cases 1 and 2, we found two

counter-intuitive results. The first is IAB < IAC i.e. the oscillators A,B which

are directly coupled are weakly correlated, and the oscillators A,C which are

indirectly coupled are strongly correlated. Moreover, oscillators A,B might

or might not be entangled. In contrast, oscillators A,C are entangled.

In the second investigation, we performed a photon number measure-

ment in the same tri-partite quantum system with the focus on case 1. We

performed two types of von Neumann measurements called selective and

non-selective measurements. In the first case, a selective measurement is

performed by A and the result is communicated instantaneously with clas-

sical methods to oscillators B and C. In the second case, a non-selective

measurement is performed by A and the fact that a measurement has been

made with the projectors ΠN , is communicated to oscillators B,C. In this

case the exact result is not known. In order to show the different effects before

and after the measurement, we also consider a case of without measurement.

The objective of this study is to investigate the effects of measurement on

the correlations and entanglement of the quantum system.

In the non-selective measurements there exist classical and quantum cor-
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relations between all oscillators A,B and C. The use of an entanglement

witness shows that oscillators B,C are entangled, and it is inconclusive for

the entanglement between the oscillators A,B and A,C. The use of the quan-

tum discord gives zero results for the oscillators A,B and A,C and indicates

that oscillators A,B and A,C are classically correlated. We can conclude

that after the non-selective measurement, oscillators A,B and A,C become

classically correlated and oscillators B,C still remain entangled.

In the case of selective measurement, for the examples considered, only

the outcomes N = 0, 1, 2 of the photon number measurements on the oscilla-

tor A are possible. Based on quantum mutual information, it is shown that

the density matrices ρAB, ρAC are factorizable, but ρBC is correlated. Con-

ditional entropies show that oscillators A,B may or may not be entangled

(E ′(A|B) ≥ 0, E ′(B|A) ≥ 0) for N = 0, 1, 2 and the same is true for A,C

(E ′(A|C) ≥ 0, E ′(C|A) ≥ 0). Oscillators B,C are entangled (E ′(B|C) <

0, E ′(C|B) < 0) for N = 0, 1. We note that for the case of N = 2, the os-

cillators B,C are in a pure and vacuum state correspondingly. Furthermore,

by using quantum discord, we found that oscillators A,B and A,C are clas-

sically correlated for N = 0, 1, 2. As a result, we can conclude that after the

selective measurement, oscillators A,B and A,C become classical correlated

and oscillators B,C are entangled for N = 0, 1 and pure and vacuum state

for N = 2.
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6.2 Further Work

In this thesis, we consider three harmonic oscillators A,B,C with non-linear

couplings ami a
†n
j and examples with a small average number of photons. We

also performed a photon number measurement on one harmonic oscillator

only i.e. A.

The work could be extended to different types of Hamiltonians with all

types of couplings and large average number of photons. It is interesting to

investigate these new Hamiltonians and to find whether they will give similar

counter-intuitive results. It is also interesting to investigate longer chains

[5, 15, 63, 82]. Phenomena related to two measurements simultaneously, for

example, on B and C or A and B are also interesting.

Moreover, it is interesting to investigate the phenomena of sudden death

and sudden birth of entanglement [23, 50, 84] in our case. Although it

is different from the scheme that we considered, it is interesting to study

sudden death and sudden birth of entanglement in the present context. It is

also possible that if we allow the coupling constants to be turned on and off,

we find interesting phenomena.
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