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Abstract 

This work addresses various applications pertaining to the design, modelling 

and animation of parametric surfaces using elliptic Partial Differential Equations 

(PDE) which are produced via the PDE method.  Compared with traditional 

surface generation techniques, the PDE method is an effective technique that 

can represent complex three-dimensional (3D) geometries in terms of a 

relatively small set of parameters.  A PDE-based surface can be produced from 

a set of pre-configured curves that are used as the boundary conditions to solve 

a number of PDE. An important advantage of using this method is that most of 

the information required to define a surface is contained at its boundary. Thus, 

complex surfaces can be computed using only a small set of design 

parameters.  

In order to exploit the advantages of this methodology various applications were 

developed that vary from the interactive design of aircraft configurations to the 

animation of facial expressions in a computer-human interaction system that 

utilizes an artificial intelligence (AI) bot for real time conversation. Additional 

applications of generating cyclic motions for PDE based human character 

integrated in a Computer-Aided Design (CAD) package as well as developing 

techniques to describe a given mesh geometry by a set of boundary conditions, 

required to evaluate the PDE method, are presented. Each methodology 

presents a novel approach for interacting with parametric surfaces obtained by 

the PDE method.  This is due to the several advantages this surface generation 

technique has to offer.  Additionally, each application developed in this thesis 

focuses on a specific target that delivers efficiently various operations in the 

design, modelling and animation of such surfaces.  
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Chapter 1: Introduction 

1.1 Background 

The growth of computer hardware and the progress of computational algorithms 

over the last few years have given us new alternatives for creating and 

manipulating 3-dimensional (3D) geometry. Complex and time consuming 

computations are now affordable and they are easy to produce through the 

current Computer-Aided Design (CAD) packages which provide various tools for 

the design and manipulation of complex geometries and surfaces in general. 

The latest advances in graphics hardware require new techniques to take 

advantage of the new hardware specifications and enable the programming of 

the rendering pipeline. Geometry can now be visualized and manipulated in real 

time in various mobile devices without requiring high performance 

specifications.  

Some of the World Wide Web technologies such as Virtual Reality Modelling 

Language (VRML) provide capabilities for creating 3D models or virtual 

environments that can be embedded in web pages.  Its applications vary from 

art to engineering while the main area of development is visualizing data. 

Additionally, new libraries such as the WebGL can process and display 

Hardware-assisted 3D rendering in web browsers without the use of plug-ins by 

utilizing the Graphics Processor Unit (GPU).  Furthermore, there is a growing 

demand for new techniques that can utilize all the new possibilities that are 

introduced in the field of computer graphics. In the following chapters various 

techniques are presented that take advantage of a recently developed surface 

generation technique that produces a parametric surface as a solution to a 

suitably chosen Partial Differential Equation (PDE). This technique is known as 
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the PDE method and offer several advantages to different areas in computer 

graphics over other more traditional surface generation techniques. 

1.2 Objectives 

The major objectives of this work can be summarized as follows: 

 To use Partial Differential Equations as a 3D surface generation 

technique. 

 To utilize the PDE method in a CAD environment such as Autodesk 

Maya. This involves communication between various layers of a node 

based system such as Maya, using a scripting language and a high level 

programming language such as C++. 

 To integrate of the PDE method in an interactive 3D environment for 

designing and manipulating Aircraft configurations. 

 To explore various animation techniques utilizing the PDE method. Two 

techniques were developed for generating cyclic animation using PDE 

surfaces.  The first technique focuses in creating everyday cyclic motions 

for a PDE based human model using simple mathematical expressions. 

Whereas the second one focuses in producing fish locomotion by means 

of manipulating the spine of the PDE surface. 

 To develop an automatic curve extraction technique for converting mesh 

models to a set of boundary-based patches required in order to obtain a 

PDE-based surface representation for each patch comprising the original 

mesh model.  This is a new approach of mesh segmentation that can 

potentially minimize the storage and memory requirements in a number 

of applications. 
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 To develop a human-computer interaction system that integrates facial 

expressions in the form of PDE-based surfaces.  

1.3 Achievements 

Each of these methodologies presents a new technique for interacting with 

parametric PDE surfaces. The main contribution of this thesis is to exploit the 

PDE characteristics over traditional polygonal and parametric surfaces. This is 

achieved by reducing the storage requirements of a given model to a small set 

of boundary based curves, providing tools for direct surface manipulation and 

deformation and offering build-in tools for the animation of the surface.  

The adaptation of the PDE method in various platforms has simplified the 

construction and manipulation of such surfaces while creating the opportunity to 

communicate with several external tools, such as script and skeleton 

hierarchies, in order to achieve better results.   Among the achievements, a new 

technique has been developed which aims to characterize a given mesh model 

into a set of curve based patches that are used to evaluate the PDE method. 

The advantage of this technique is that a given mesh model can be represented 

as a set of patch wise PDE surfaces, thus utilizing all the PDE characteristics. 

This methodology can be proved very useful for introducing such surfaces in 

LOD systems where the resolution of a model is dependant in various criteria 

such as camera distance and topological various characteristics.   

The PDE method has also been proved very useful in the animation of surfaces. 

To that extend, several techniques have been developed that exploit the 

characteristics of parametric PDE surfaces in generating cyclic motions and 

blend shapes. Utilizing the PDE spine, a by-product of the analytic solution of 

the PDE method, provides the user with a tool for creating and manipulating 
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parameterized dynamic animation. The animation can be controlled using 

simple periodic functions whereas different motion characteristics can be 

modelled intuitively in a CAD environment.   

Moreover, a computer-human interaction technique has been developed to 

adapt PDE surfaces in order to minimize the data transfer and re-use the 

animation of face expressions to various given face models. The contribution of 

the thesis can be summarised as the development of several new techniques 

with a shared objective, to utilize the characteristics of parametric PDE 

surfaces. The following chapters will present each technique in details followed 

with several examples.  

 

1.4 Publications 

Below is the list of journals and conference publications that were published. 

 M. Athanasopoulos , H. Ugail  and G. González Castro (2009): 

"Parametric design of aircraft geometry using partial differential 

equations" Advances in Engineering Software , 40 479-486. 

 M. Athanasopoulos, G. González Castro and H. Ugail (2009): "Cyclic 

Animation of Human Body Using PDE Surfaces and Maya", 2009 

International Conference on Cyberworlds, IEEE Computer Society. ISBN: 

978-0-7695-3791-7 , University of Bradford, UK. 

 G. González Castro, M. Athanasopoulos M and H. Ugail  (2010): "Cyclic 

Animation using Partial Differential Equations" The Visual Computer, 26 

(5): p. 325-338. 
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 M. Athanasopoulos, G. González Castro and H. Ugail  (2010): “On the 

development of an interactive talking head system” International 

Conference on Cyberworlds 2010. p.414-420 

 M. Athanasopoulos, G. González Castro and H. Ugail (2010):”On the 

development of a talking head system based on the use of PDE-based 

parametric surfaces”. Transactions in Computational Science XII,ISBN: 

978-3-642-22335-8. 

More detailed the above publications can be found in the chapters below: 

 Chapter 3: Parametric design of complex surfaces using PDE 

o Automatic curve extraction 

 Chapter 4: Manipulation of PDE surfaces 

o A toolkit to design and manipulate aircraft geometry 

o Global Manipulation using the PDE Maya plug-in 

 Chapter 5: Generating PDE-based animation 

o Cyclic animation of human motion 

o Fish Locomotion using the PDE spine 

 Chapter 6: Interactive talking head system 

o Building a PDE based talking head system 

1.5 Resources 

A wide selection of applications and data where used for developing the work 

were presented in this thesis. The development of the various tools which will 

be discussed in the next chapters, was undertaken with the use of C++ and C# 

in Visual studio 2005 as well as OpenGL for visualization of the PDE surfaces; 

whereas the modelling, manipulation and animation of several models 

throughout this thesis was accomplished with the use of a CAD package such 
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as Autodesk Maya. Additionally, open source libraries were used for developing 

the interactive talking head system for converting text to speech using the 

Microsoft SAPI 5 and the Rebecca AIML API for generating a response from a 

given input text. All the models were purchased or constructed manually with 

the use of Maya. 

1.6 Structure of thesis 

The thesis is structured as follows:  

 Chapter 2, “Introduction to geometric modelling”, aims to give an 

introductory overview of implicit and parametric surfaces and discuss 

their advantages and disadvantages. The second part of this chapter 

gives an overview of the PDE method including the mathematical theory 

underneath it and it is illustrated by various graphical examples.  This 

methodology will be used as the primary surface generation technique 

throughout this thesis.  

 Chapter 3, “Parametric design of complex surfaces using PDE”. This 

chapter presents three curve fitting techniques that have been used in 

this thesis to describe a given mesh surface as a set of parametric 

curves that will be evaluated by the PDE method.  Moreover, this chapter 

focuses primarily on a new curve extraction technique which its purpose 

is to automatically segment a given surface to a set of curves that satisfy 

the boundary requirements of the PDE method.   

 Chapter 4, “Manipulation of PDE surfaces” presents two different 

applications that integrate the PDE method in interactive 3D 

environments. The first application is responsible for the design and 

manipulation of different aircraft configurations using parametric PDE 
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surfaces. The second application has been developed as an external 

plug-in for the Autodesk Maya package and it continues the work of a 

previously developed plug-in used for constructing PDE surfaces within 

the Maya environment. Its purpose is to expand the existing functionality 

and introduce global and local deformations on a given surface by 

constructing an underlying invisible PDE surface layer that surrounds 

and interactively deforms the surface in question.  

 Chapter 5,” Generating PDE-based animation” examines various 

animation techniques used in computer graphics. It covers some basic 

theory behind commonly used techniques in animating traditional 

polygon surfaces. The second part of this chapter focuses on exploiting 

the PDE method in animation and particularly on producing cyclic 

motions for two different examples. The first example consists of 

producing cyclic motion for basic movements such as walk and run of a 

PDE based human character model using the Maya environment.  The 

second example utilizes the PDE spine as the control skeleton for 

simulating fish locomotion of PDE-based models. 

 Chapter 6,”Interactive talking head system” presents a technique for 

generating PDE based facial expressions used in a computer-human 

interaction environment. The proposed methodology utilizes various tools 

to produce an environment that will interact with a user to produce 

realistic conversations. The system consists of four layers responsible for 

producing the computer-user interaction; the artificial intelligence (AI) 

engine, the text-to-speech (TTS) engine, the blend shape layer and the 

PDE solver for producing the final animated surfaces. 
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Chapter 2: Introduction to geometric modelling 

2.1 Introduction 

Given that the demand for more detailed 3D models in virtual environments is 

growing, various techniques have been developed to generate such surfaces. 

The importance of these techniques is that they can approximate a set of 

control points to create a smooth parametric curve; the approximated curves will 

be evaluated later by various surface generation methodologies such as the 

PDE method.  This chapter will be covering the theory behind several 

polynomial curve and surface generation techniques. 

2.2 Types of curves 

2.2.1 Polynomial curves  

A 2-dimensional curve is defined parametrically as, 

 

)),(),(()( uYuXuQ         (2.1) 

where )(uX  and )(uY  are the x  and y coordinates of a point on the curve in 

question for any value ofu . Figure 2.1 shows an example of a polynomial curve. 

Polynomials are computational efficient and easy to work with, however it is not 

always possible to produce a satisfactory curve using single polynomial for  

)(uX  and )(uY  [1]. To that extend, a higher degree is required in order to 

satisfy a large number of constraints. For example, a polynomial of degree 

)1( n  is needed to fit a polynomial curve though n  data points. However, 

higher degree polynomials are not efficient to process and are numerically 

unstable [2]. 
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Figure 2.1. A parametrically defined curve. 

One of the solutions to this problem consists of making used of the fact that a 

curve can be broken into a number of pieces called segments. Each segment is 

defined by a separate polynomial where it connects its segments together to 

form a polynomial curve, Figure 2.2. A polynomial curve can be defined based 

on an interpolation or approximation technique. In the case of interpolation the 

curve is required to pass through the data points
iP . However in the case of an 

approximation based technique, the curve uses the data points as guidelines so 

that the best fit approximation is found and therefore, it does not necessary 

pass through the data points.  

 

Figure 2.2. An example of an interpolated polynomial curve  

passing through all the control points.  

The use of polynomial interpolation results in some undesired features. The 

computation of the interpolating polynomial for higher degree is computational 
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expensive compared to linear interpolation. Additionally, artifacts can appear at 

the end points of the curve when using a higher degree polynomial 

interpolation, a problem called Runge's phenomenon [3].  To that extend, 

splines-based techniques, such as Bézier or B-splines are commonly used to 

overcome these limitations.  

 

2.2.2 Splines 

Spline is a special function defined piecewise by polynomials [1]. A piecewise 

function is a function whose definition changes depending on the value of the 

independent variable. Splines are popular curves used widely in many CAD 

packages [2] for designing and modelling of parametric surfaces. They offer 

simplicity in their construction, accuracy of evaluation, and can approximate 

complex shapes through various curve fitting techniques.  Spline interpolation is 

preferred to polynomial interpolation because it returns the same results even 

when using low-degree polynomials. Cubic splines usually generate good 

approximations while their evaluation is computational efficient. Additionally, a 

Spline can be categorized according to the polynomial used for evaluation, for 

example a B-spline is evaluated using the basis function on the entire curve; a 

Bézier spline is evaluated using Bernstein polynomials; and Hermite spline is 

using the Hermite polynomial for interpolating each segment. 

 

2.2.3 B-splines 

B-spline or Basis spline is a curve parameterised by a spline function that is 

evaluated using the De Boor algorithm [4].  They consist entirely of smooth 
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curves; however, sharp corners can be generated by joining two spline curve 

segments. Although, a B-spline curve consists of a set of control points, it 

generally does not pass through them. B-spline is a generalisation of a Bézier 

curve and it can avoid the Runge phenomenon without increasing the degree of 

the polynomial. A particular property of a B-spline is the local control point; it 

allows altering only a small part of the curve by re positioning a single curve 

point nV . The local control points or control points are connected by straight 

lines to form the control polygon as seen in Figure 2.3; and are usually applied 

in situations of approximation rather than those related to interpolation. Figure 

2.3 shows the control points, 0V .... nV , required to evaluate the cubic spline 

curve.  

 

Figure 2.3. Example of cubic b-spline curve 

 

The addition of control points enables the possibility of a curve partially without 

affecting the remaining segments; a very useful property for the design and 

modelling of parametric curves and surfaces.  

A p
 th degree B-spline is defined by [4], 
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where iP  are the control points, and )(ufi  are the n
th degree piecewise 

polynomial functions.  Although B-spline curves require more information, and a 

more complex mathematical formulation than Bézier curves; they offer more 

advantages compared to Bézier curves. A B-spline is a special case of Bézier 

curve. A B-spline can be a Bézier curve and satisfy all important properties that 

Bezier curves have. The degree of a B-spline is not dependant on the number 

of control points, thus a lower degree curve can still contain a large number of 

control points. They can provide more control flexibility by manipulating the 

position of a control point locally without changing the overall shape of the 

curve. However, polynomial curves cannot represent simple shapes such as 

ellipses or curves; thus a more generalized B-spline is required. 

2.2.4 Bézier splines 

Another type of spline curve is the Bézier curve [4, 5]; it is a parametric curve, 

first developed in 1962 by the French engineer Pierre Bézier. Although originally 

they were used by Renault to design automobile bodies, currently they are 

widely used in Computer graphics to model smooth surfaces. A linear, 1st 

degree Bézier curve is usually a straight line between two given points 0V and 1V . 

Higher degree curves requires more intermediate control points between the 

two endpoints to match position, gradient and curvature. In order to mach only 

position and gradient requirements, a 2nd degree polynomial is sufficient. 

Example of a higher degree curve is the quadratics, 3rd degree Bézier curve, 

which is defined by three given points 0V , 1V  and 2V . The first two control points 

0V and 2V  are the two end points of the curve whereas the last control point 1V is 

an intermediate point that controls the direction of tangents of both endpoints.  

The Quadratic and cubic degree Bézier curves are the most commonly used in 
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CAD packages for modelling and animation. Given that evaluating higher 

degrees Bézier curves are computationally expensive multiple low degree 

Bézier curves are used as a solution. These curves are then patched together 

in order to produce complex shapes. Each subdivided segment can be 

represented by a lower degree Bézier curve. A curve that is made of several 

Bézier curves is called a composite Bézier curve or a Bézier spline curve.  

 

 

Figure 2.4.Example of cubic Bezier curve 

 

Bezier curves are defined using four control points, also known as knots. Knots 

0V - 3V are responsible for approximating a curve that passes through these 

control points. Control points 1V  and 2V  control the overall shapes of the curve, 

whereas 0V and 3V are the endpoints of the curve.  

Figure 2.4 shows a Bézier spline curve containing a two patched Bézier curves. 

There are different methods for forming such curves. The Bézier-Bernstein 

method gives an approximation to a mathematical function that passes through 

a given set of control points. This is more suitable for interactive curve design 

since the control points give the designer a better control over the curve shape. 

A degree d  Bezier is define in [4]  as,  
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where the Basis function )}({ , uB ni are the 
thn degree Bernstein polynomial, and 

iP   are the coefficients or control point. Bezier curves have various properties 

for controlling the curve shape. Some of them are: 

 The curve passes through the start and end points of the control polygon. 

 The curve follows the shape of the control point polygon and lies within 

the convex hull of the control points. In the case of a closed curve, the 

first and last control points are the end points of the curve segment.  

 The order of the curve is related to the number of control points. Hence 

using many control points to control the curve shape results in evaluating 

high order polynomials.  

 The curve is transformed by applying affine transformations to its control 

points and generating the new curve from the transformed control points.  
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2.3 Types of surfaces 

 

Geometric surfaces consist of polygonal, implicit and parametric. As with the 

curve generations techniques, surface generation techniques can be defined 

with an implicit or parametric equation. Each of these surfaces has their 

advantages and disadvantages and will be outlined in this section. 

2.3.1 Polygonal surfaces  

A polygonal surface, which is the most common type of surface used in 

computer graphics, consists of a collection of vertices, faces and edges 

connected to each other to form a polygonal mesh.  Edges are defined by two 

vertices that are connected to each other by a straight line, whereas three 

vertices connected to each other by three edges form a triangular face. Since 

faces are planar, they cannot bend; however smooth surfaces can be 

approximated by many small flat surfaces, this is usually achieved by 

subdividing the original face in smaller faces. Although polygonal surfaces are 

faster to visualize than any other representation, they are incapable of 

manipulating the surface directly. Figure 2.5, contains an example of a mesh 

object; it is impossible to directly manipulate a complex surface like the polygon 

mesh below without applying various complex and slow computational 

deformation techniques. 
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Figure 2.5.Example of a polygonal mesh model of a dragon [6]. 

 

2.3.2. Implicit surfaces 

Implicit surfaces have been used in various fields such as mathematics, 

physics, biology and engineering. They are defined mathematically as a set of 

points x  that are satisfying the implicit function 0)( xf ; where x  is a point on 

the surface implicitly described by the function )(xf   [7]. In other words, point x  

is on the surface if and only if the relationship 0)( xf holds for x . This 

representation is called implicit since it provides a test for determining whether a 

point is on the surface or not, however it does not give any explicit rules for 

generating such points. In 3D space an implicit surface is given by a function 

[8], 

 

,: 3 RRf         (2.4) 

such that, for an iso-value v , the implicit surface, is defined where   

vzyxf ),,(  

 The implicit representation of a surface is constructed with properties that if: 

,0),,( zyxf  point is on the surface. 
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,0),,( zyxf  point is inside. 

,0),,( zyxf  point is outside.    (2.5) 

 

Implicit surfaces can represent geometry in various ways. For example it can 

represent a surface as a set of zero functions which can be specified by 

discrete samples or blobby functions, mathematical functions or procedural 

methods. Discrete samples can be used to measure physical properties of 

geometry such as colour, density, temperature and pressure. Whereas 

mathematical functions can include any mathematical expressions for 

generating a surface. The most known algebraic surfaces are the quadratic 

ones; these surfaces offer efficient rendering with only a few intrinsic 

parameters for controlling its shape. 

 

(a) 

 

(b) 

 

Figure 2.6. (a) Example of implicit cube-sphere surface. (b) Blob surface. 

 

The surface represented in Figure 2.6 (a) is mathematically defined using the 

Equation 2.6.  
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whereas as Figure 2.6 (b) has been computed using the Equation 2.7. 

  ,02.0)4cos()4cos()4cos(222  zyxzyx    (2.7) 

where x , y  and z are coordinates of the Cartesian system and 0),,( zyxf .Both 

surfaces were computed using the K3DSurf surface generation application [9]. 

There are various techniques allowing the rendering of implicit surfaces, some 

of them include polygonization, ray-tracing and contours.  

Polygonization [10] occurs by spatial partitioning of the surface into smaller 

voxels and using marching cubes algorithm to identify the polygons needed to 

represent the part of the iso-surface that passes through this cube. The new 

individual polygons are then merged with the resulting surface. The technique 

can be summarized as follows, given an iso-surfaces defined by   0xf where

vzyxf ),,( . 

 Subdivide 3-dimensional space into uniform cells/voxels 

 Evaluate implicit function for all grid points 

 Find surface intersection voxels 

 Subdivide surface-intersecting voxels to threshold size 

 Polygonize the voxel based on the edge intersections. 

 

One disadvantage of using this technique is that the quality of the polygonized 

mesh is dependant to the cell size. For example, if the cell size is too large, the 

surface might not be able to be defined properly. Topological errors might 
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appear and features might not be contained in the output polygonized surface. 

Alternatively, if the cells are too small the technique is not efficient, 

computational expensive and prone to numerical errors. 

Ray-tracing techniques [11]  usually visualize the surface by subdividing the 

space in which the surface lies in into progressively smaller voxels and using 

ray tracing techniques to identify and visualize the voxels that are intersecting 

the surface.  Finally, contour techniques [12] are used to reconstruct an iso-

surface from cross sectional contours. Each cross section is a non-intersecting 

polygonal shape consisting in one or several closed polygonal contours. 

Implicit surfaces offer many advantages over the construction, manipulation and 

visualization of a surface; some of them are: 

 They offer efficient check whether a point is inside or outside a surface, 

evaluating for ),,( zyxf  as seen in equation 2.5, can identify if a point is 

inside, outside or on the surface. 

 

 Surface normals can be computed at any given point by the partial 

derivatives as, 

),,,(),,(
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      (2.8) 

where 
x

f




 is  the partial derivative of a function f  with respect to variable x  

and n is the normal vector . 

 Implicit representations offer efficient surface intersections. Given a ray with 

a starting point p  and a direction v , all points on the ray can be expressed in 
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parametric form as tuptx )( . Inserting this ray equation into the implicit 

representation gives 0)]([ txf which it can be solved for t . 

 

 Additionally, implicit surfaces can offer efficient Boolean operations. The 

arithmetic operators from equation 2.5 are replaced with Set operators to 

allow direct manipulation of an iso-surface. Examples can be seen using 

Constructive Solid Geometry (CSG) [13]: using this technique, an iso-

surface is represented as a tree with simple implicit functions as its leaf 

nodes and boolean operators as its interior nodes.  The geometric primitives 

that form the Boolean operations are soft objects bounded by the iso-

surface. 

 

2.3.3. Parametric surfaces 

Parametric surfaces are polynomial based methods that can be used to 

generate complex geometries by using a set of control points that controls the 

shape of the surface. The parametric representation, can be written as , 

),,( vuFX         (2.9) 

where  u and v  are surface parameters, X  is a vector zyx ,, denoting a point 

on the surface and 10  u . Compared to implicit surfaces, parametric 

representations allow direct generation of points on the surface by setting the 

values of u and v where ),(),( vuFvuX  . 

Parametric surfaces are ideal for generating polygonal surfaces that 

approximate a given set of boundary points. Figure 2.7 (a) contains an example 

of a parametric surface computed using the NURBS function [5] in Maya, for the 



33 

 

given boundary curves  P0.....P4, as seen in Figure 2.7 (b).The boundary 

conditions can be defined for x , y and z  by the parametric function such a, 
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vufz

vufy

vufx

z
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x
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



     (2.10) 

 

 

(a) 

 

(b) 

Figure 2.7. Boundary conditions and control net (a). 
Example of a parametric NURBS surface (b). 

Surface manually designed in [9]. 

 

The normal vector n


 for a parametric surface can be computed from the cross 

product of any two linearly independent vectors that are tangent to the surface 

at that point, Equation 2.11.   

In order to calculate n  we need the partial derivatives of zyx ,,  with respect to

vu, . If ),,( zyxX is a vector representing the point zyx ,, then 

),,(),( uuuu zyxvuX  and ),,(),( vvvv zyxvuX  are vectors of the partial derivatives 

of that point. 

Then Normal n  is defined by, 
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since the surface is explicitly parameterized, every point on the surface contains 

parametric coordinates that can be used to generate texture coordinates for 

indexing a texture map. Figure 2.8 contains another example of parametric 

surface used to define a simple terrain representation. Compared to polygonal 

meshes, design and manipulating complex parametric surfaces becomes an 

easy task; adjusting only the control points of the boundary conditions results in 

smooth surface representations. 

 

Figure 2.8. Example of a NURBS surface used to define a terrain surface.  
Surface manually designed in [9]. 

 

However, a parametric surface is difficult to ray-trace, since there is no direct 

way to take an arbitrary point in space and test it to see if it is on the surface.  

Another disadvantage of parametric surfaces is that they require piecewise 

parametric representation to represent complex shapes. This is usually done by 

partitioning the surface into parametric patches; the same technique used for 

constructing parametric spline curves. Each parametric patch is defined by a set 

of control points used to describe the surface and a parametric function is used 

to calculate the new surface points. Three popular techniques used for 

generation of parametric surfaces are presented below.   
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2.3.3.1 Bezier surfaces 

As with the Bézier curve, the Bernstein basis function is used for the Bézier 

surface patch. A Bezier surface is the tensor product of Bezier curves [4]. To 

create a Bézier surface, we blend a mesh of Bézier curves using the blending 

function, 
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where j and k are points in parametric space and yxP , represents the location of 

the knots in real space. The ini PuB )(,  and 
jmj PvB )(,

 are the Bezier functions that 

extend to rational Bezier surfaces for u and v . The Bézier functions specify the 

weighting of a particular sequence of knots know as the Bernstein or Bezier 

coefficients.   

A Bezier surface patch can be generated by a set of )1)(1(  mn control points. 

Similar to the case of the Bezier curve, every point on the surface depends on 

u and v  parameters which vary between 0 and 1.  The parameter u  controls 

the variation from top to bottom along the patch ( jP ,0 - jnP , ), whereas parameter 

v  controls the variation from left to right ( 0,iP - miP , ) as specified in Equation 

2.12.   Calculating the normal for a point on the surface is a simple operation; it 

is computed by taking the derivative of the surface with respect to u  and v

separately, which represents the tangent vectors of the surface in the direction 

of either u or v . The normalized cross product of these tangent vectors will 

result in the surface normal for a particular point.  The u  and v  tangent vectors 

can be calculated separately using the Equation 2.13.   

The normal vector XN  can be calculated using the cross product of uT  and vT
,
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,vuX TTN       (2.13) 

where  the tangent of u  is calculated by 
u
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u
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 and the tangent of v is 

computed  by 
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2.3.3.2 B-Spline surfaces 

The B-spline surface is defined by a set of points or control net, two knot 

vectors and the product of the B-spline functions [4, 14], 
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where ipi PuB )(,  and 
jqj PvB )(,

are the pth and qth degree B-spline functions 

defined by the knot vectors )1( n and )1( m . A B-spline surface is another 

example of tensor product surfaces where the set of control points are usually 

referred to the control net and the  u  and v  parameters range between 0 and 1.  

B-spline surfaces contains several important properties, some of them are:  

 They contain a strong convex hull property inherited from B-spline curve. 

This guarantees that the resulting surface patch will lie completely in the 

convex hull of the control points
jiP ,
. 

 The local modification property of B-spline curves exists for the surfaces 

as well. If a control point jiP , is transformed, only the neighbouring area 

on the surface of the moved control point will be affected from the 

change. 
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 Affine Invariance. Applying affine transformations directly to the control 

points that describe a surface will transform the surface as well.  

 A B-spline surface can become easily a Bezier surface. 

 

2.3.3.3 NURBS 

NURBS (Non Uniform Rational Basis Splines) surfaces, are another example 

used for generating parametric surface patches [5]; they are derived from 

extending the NURBS curve equation to two parametric directions u  and v .   A 

NURBS surface of pth degree in u direction and qth degree in the v  direction it is 

a piecewise rational function of the form, 
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where 
jiP ,
is the control net, jiw ,  are the weights and the )(, uN pi and )(, vN qj  are 

the non-rational Basis spline functions. By evaluating this equation we obtain a 

surface with local control and one knot vector in each parametric direction and 

with rational properties. Rational functions allow better control over the 

derivatives of curves, which results in adjusting the curvature of the surface [4]. 

Figure 2.9 contains an example of a NURBS surface; the curves  0P , 1P  and 2P

are the boundary conditions required to evaluate the rational B-spline functions. 
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Figure 2.9.Example of a NURBS surface and its  
boundary conditions, curves P0, P1 and P2. 

 

The use of parametric and implicit functions for representing a surface has both 

their advantages and disadvantages. To achieve successful geometric 

modelling is usually done by utilizing both techniques. Some of the advantages 

and disadvantages of the two methods are listed below. 

 Parametric representation is more suitable for designing and representing 

complex shapes in a 3D environment; the coefficients of a given parametric 

form (e.g. Bezier, B-splines, NURBS) provides many advantages over the 

design and manipulation of a surface. 

 The complexity of many geometric operations is dependant to the selection 

of the representation form. For example, using the parametric representation 

is easy to enumerate points on the surface but requires more complex 

operations to identify if a point is on the surface or not. From the other hand, 

utilizing the implicit form offers easier surface intersection test whereas it is 

more difficult to generate a new point on the surface.  

0P
 

1P  

2P  
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2.4 The use of PDE as a surface generation technique  

2.4.1 Introduction 

PDE have been recently introduced in computer graphics as a tool for 

geometric modelling and animation. A partial differential equation is an equation 

in which the unknown function depends on set partial derivatives of this 

unknown function with respect to two or more independent variables. It is an 

efficient boundary based surface generation technique that can represent 

complex 3D geometries in terms of a relatively small set of design variables. 

PDE can generate both implicit and parametric geometry. Examples of implicit 

PDE surfaces can be seen in free-form surface construction, noise reduction 

[15] and image manipulation [16] implementations. Whereas, parametric PDEs 

offer a lot of advantages in areas such as surface generation, shape blending 

[17], interactive design [18] and interactive sculpting [19]. 

The use of this methodology allows a surface to be regarded as graphical 

representation of the solution of a given partial differential equation subject to a 

particular set of boundary conditions, which serves as constraints. 

The Bloor-Wilson PDE method is a method for generating parametric PDE 

surfaces and has been used throughout this thesis.  The Bloor-Wilson PDE 

method [20], which was originally introduced as a blending tool [17], is a surface 

generation technique that offers many advantages compared with other 

polynomial surface generation techniques such as B-splines or NURBS. Some 

of them are: 

 PDE-based surfaces require a smaller number of parameters compared to 

spline-based techniques for representing a given surface. PDE-based 
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surfaces can be characterized by a set of boundary curves, whereas spline-

based techniques are evaluated using a set of control points.  

 Surface smoothness can be guaranteed when blending two or more surface 

patches. The smoothness of a blended PDE-based surface can be 

increased from the order that is used for computing the PDE method. 

 PDE-based surfaces can unify the geometric and physical aspects of 

surface modelling and manipulation.  

 

2.4.2 Introduction to PDE method 

The boundary value approach characterizing the PDE method is summarized 

mathematically below. However, the full mathematical details are presented in 

[21] and will give the reader a full overview if there is further interest in such 

detail. Let ),( vuX  be a function defining a surface in 3D space in a domain 

(with specified boundary data).  

Here u  and   represent the parametric coordinates of a point in , and (u,v)X  

as a mapping from that point in ),( vu  to a point in 3D space such that

32 )( ER  . We regard X  as the solution to a partial differential equation of 

the form, 

 v)),z(u,  v),y(u,  v),(x(u,   v)(u,X     (2.16) 

thus, the full problem consists of finding a solution of the form, 
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where a  is an intrinsic parameter and  r  determines the order of the PDE. 
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Note that when 1a   and 2r  equation (2.17) is known as the biharmonic 

equation that can be used to model some physical phenomena occurring in 

areas such as fluid and solid mechanics. A wide variety of methods exist for 

finding the solution of elliptic PDE similar to that shown in Equation (2.17). 

These include elementary separation of variables, Green’s Functions, and 

sophisticated numerical techniques, [22, 23].The approach undertaken in this 

thesis is based on the approximate solution to Equation (2.17). This solution is 

given in terms of analytic functions.  

As seen in [21], taking the region   of )(u, v  parameter space to be the region 

corresponding to ( 10   u  , π v 20  ), Equation (2.17) is solved as subject to 

the boundary conditions on the solution which relate how )(u, vX and its normal 

derivatives nX   vary along  . The imposed boundary conditions on the 

solution are of the form, 

,0 0(v)P ,v)  (X      (2.18) 

,1 1(v)P ,v)  (X        (2.19) 

,0 0(v) ,v)  (X u      (2.20) 

,1 0(v) ,v)  (X u      (2.21) 

The boundary conditions )(0 P  and )(1 P   determine the value of ),( vuX  on 

the surface patch at 0u  and 1u , respectively. Whereas the derivative 

conditions )(0   and )(1   are determined from the surface normals at the 

corresponding boundaries of the surface at 0u  and 1u . Since the derivative 

vector is defined using a curve defined in the 3-dimensional space, the shape 

and position of this curve relative to the positional boundary curve determine 

both the direction and the magnitude of the derivative vector.  Figure 2.10 below 
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contains an example of a PDE surface patch evaluating four boundary curves 

using a 40 x 40 resolution in the u, v parametric space.  

 

Figure 2.10. PDE surface resulting from a set of boundary conditions comprising piecewise 
linear polynomials. The resulting PDE surface was computed using a 40 x 40 grid. 

 

In order to generate a typical PDE surface, Equation (2.17) is solved over a 

finite region   of the )(u, v  parameter space subject to the boundary conditions 

with periodic boundary conditions, v  being the periodic parameter, and using 

the method of separation of variables. Thus, the analytic solution of Equation 

(2.17) can be written as, 
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and  , a, b, ba, a, a, a nnnnnnn 3214321 and ,bn4  are vector-valued constants, whose 

values are determined by the imposing boundary conditions at 0u  and 1u .  

For a given set of boundary conditions, it is necessary to express the boundary 

conditions in terms of their respective Fourier series expansion, and identify the 
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various Fourier coefficients in order to find a one to one correspondence 

between the Fourier coefficients of the boundary conditions and the constants 

 ai and  bi respectively. For an approximate solution, the Fourier series can be 

truncated (typically 6N ) and a remainder term is included. Thus, Equation 

(2.22) leads to, 

  ,sincos
1

0 (u, v)R  (nv) (u)B (nv) (u)A (u) A (u, v) X
N

n

nn  
  (2.26) 

Although the solution is approximate, the method guarantees that the chosen 

boundary conditions will be exactly satisfied by using the remainder function 

(u, v)R  where is defined as, 

,4321

wuwuwuwu (v)uer (v)er (v)uer  (v)er (u, v) R     (2.27) 

and )1(  aNw  and 4321  , , , rrrr  are responsible for satisfying the original 

boundary conditions that are obtained by considering the difference between 

the original  boundary conditions and the boundary conditions satisfied by the 

function  

 



N

n

nn  (nv)(u)B (nv) (u)A (u) A (u, v) F
1

0 sincos   (2.28) 

Note that the Fourier series associated with the solution of Equation (2.17) is 

considered as an approximate solution satisfying the given boundary conditions. 

However, it can be considered as an exact solution if all the boundary 

conditions can be expressed in terms of a finite Fourier series. Figure 2.11 

shows a sequence of figures that illustrate the effect of derivative condition 
uX

on the shape of the surface. Note that all the surfaces shown in Figure 2.11 

have the same boundary conditions on the function X at 0u and 1u , 
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whereas the boundary conditions on the function 
uX at 0u  and 1u has been 

varied. 

 

(a) 
 

(b) 

 

(c) 

Figure 2.11. The effects of derivative conditions on a PDE surface (resolution 40 x 40 in the u , 

v parametric space). 

Once the PDE method has been computed, a  surface mesh can be generated 

as a solution of a suitably posed boundary value problem implemented on a 2D 

parametric space, a meshing scheme can be integrated with the aid of the 2-

dimensional parameter space to obtain a suitable surface triangulation [24]. 

Another example of a PDE surface is presented below in Figure 2.12 (a) 

containing a closed surface. The last boundary curve 3P  has been scaled down 

and it is responsible for closing the surface. Figure 2.12 (b) shows a PDE-based 

representation of a closed cylinder consisting of three 4th order PDE patches; 

the base, top and body of the cylinder. 

 

 

(a) 
 

(b) 

Figure 2.12. PDE-based representation of closed cylinder. Boundary curves 
associated with the top of the cylindrical surface  (a) and (b) shows  the full cylindrical surface 

P0 P1 P2 P3 

1u  

0u  
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2.4.3 Applications of PDE surfaces 

PDE can represent several physical phenomena. It can be used to represent 

physical models where the acceleration and velocity of the surface can be 

included such as the surface can be deformed according to external forces. 

Alternatively, it can describe the heat distribution in one or two dimensions in a 

given space.  To that extend, PDE have been used under different approaches 

that vary from the computation and manipulation of a surface to addressing 

problems such applying local and global deformations using sculpting and 

blending of multiple PDE surface patches [25]. 

 

2.4.3.1 Interactive manipulation of PDE surfaces 

Once a 3D surface has been defined using the PDE method, it may be 

necessary to manipulate it in order to improve or adjust the shape. The PDE 

method formulated by Bloor and Wilson [20] has been utilized as the foundation 

for the development of such surface generation tools. The derivative conditions 

determine the overall shape of the surface, whilst the size and the direction of 

the derivative vector can be adjusted interactively in order to manipulate the 

shape of the surface. Figure 2.11 shows the effect of derivative condition uX on 

the shape of the surface. An important aspect for interactively manipulating a 

PDE surface is that the user does not required to have any mathematical 

knowledge concerning the PDE, since it is only required to define the boundary 

conditions that will represent the outer contour of the surface. The manipulation 

of the boundary conditions can be handled using simple geometric 

transformations such as translate, scale and rotate in an interactive 

environment [26]. 
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 2.4.3.2 Blending PDE surface patches  

Another important function of the PDE method is surface blending of multiple 

patches [21]. In order to create more complex shapes we need to be able to 

create models that will contain more than one surface patch. Once a surface 

patch has been created, the PDE method can seek the solution of the next 

surface patch by evaluating the set of curves that belongs to the adjacent 

surface patch. The first step consists of identifying the exact position on a 

surface where the portion needs to be blended, as illustrated in Figure 2.13 (a). 

Any chosen point in the ),( vu  parametric space will have an associated point on 

the surface. Thus, by creating a new curve on the parametric domain ),( vu , the 

points on the surface are mapped onto the points in the parameter space. Note 

that any curve in the parametric space is guaranteed to lie on the surface. The 

new curve can be then manipulated interactively by the user. The next step 

requires adding additional boundary curves in order to define the new PDE 

patch adjacent to that surface. Figure 2.13 (b) shows the new boundary curves 

that are used to evaluate the new blended PDE patch as seen in Figure 2.13 

(d). Note that this process must be carried out in such a fashion that a certain 

degree of smoothness is guaranteed. To that extend, the PDE method offers a 

solution for addressing this problem, where the degree of smoothness can be 

controlled by the order of the PDE used to find the surface. Additionally, a 

smooth blending between two surface patches can be guaranteed by either 

having common boundary conditions at the joining region of each path or a 

boundary curve lying on the surface patch as seen in Figure 2.13 (d).  
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(a)  
(b) 

 
 

(c) 
 

(d) 

 
Figure 2.13. Blending PDE surfaces. Curve projected in the parametric space. (a) Creating the 

area that will be blended. (b) Adding a curve-set to evaluate the blended PDE-based surface (c) 
Manipulate a curve to achieve required design. (c). Surface blended with the new PDE surface 

patch 

 

2.4.3.3 Trimming PDE surfaces 

Another functionality of the PDE method is surface trimming [21, 27]. This 

follows a similar principle to that applied to surface blending is adapted, an area 

for removal needs to be identified by constructing a curve that lies on the 

parametric domain. Once the curve has been constructed, a bounding box 

containing the curve in the parameter space is computed. All the mesh points in 

the vu,  space that belongs to this bounding rectangle are then indentified and 

discarded. A separate vu, mesh is then calculated in the new region between 

the rectangle and the curve in the parameter space, allowing a re-

parameterization of the new surface. A linear interpolation, between points on 

the rectangle and the corresponding points on the curve, is carried out to 

determine the new vu, points for the re-parameterization. Finally, the new 

corresponding surface points and surface normals for the new parameterisation 

can be calculated.  



48 

 

2.4.4 Other applications 

PDE have been used in various areas such as surface processing of a portion 

or an entire surface to areas such as surface manipulation and animation. 

Some examples of surface processing consist of image inpainting, noise 

reduction and N-sided hole filling are listed below. 

 Image inpainting is the technique used for modifying an image by removing 

an unwanted object. Implicit PDE have been used in [16] for such purpose.  

 Parabolic PDEs in [15] have been used for reducing noise while preserving 

the image details.  

 N-sided hole filling consists of constructing a surface for filling surface holes 

while guarantying surface continuity at the boundary.  An example of such a 

technique can be seen in [28] where mean curvature flow and  fourth and 

sixth order flows have been used  to construct implicit PDE surfaces for 

filling such holes. 

Another area where PDE surfaces can offer a lot of advantages is animation. 

Techniques such as morphing of facial expressions and generating cyclic 

animations using mathematical expressions or by utilizing the spine of the 

surface [29] are some of the examples that will be discussed in later chapters of 

this thesis. Parametric PDE surfaces appear to be very useful for implementing 

such techniques since the surface is determined by a set of boundary curves. 

This technique, capable of manipulating only a small set of control points can 

produce a quick and smooth transition between two objects. Additionally, it 

offers a natural mechanism for animating a surface by taking advantage of a 

mathematical property related to the solution of Equation 2.17.  The spine of a 

PDE-based surface is analytically defined and corresponds to the term 0A in 
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Equation 2.22. The spine can be thought as the skeleton or backbone of the 

geometry of a surface that is controlled through parameters defined on a simple 

analytic function. More information about cyclic animation using the PDE spine 

will be given in Chapter 5.  

 

2.5 Examples of PDE surfaces 

Figure 2.14 contains several screenshots of various surface representations 

computed using the PDE method. The surfaces have been computed in a 40 x 

40 grid in the parametric domain. For each PDE surface contained in the figure 

below, the black curves are the boundary conditions required to evaluate the 

PDE method. The resulting surfaces are multiple blended surface patches, each 

of which is the graphical solution to a 4th order PDE.  

 

 

 

 

(a) 

 

 

 

(b) 

 

(c) 
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(d) 

 

 

(e) 

 

(f) 

Figure 2.14. Examples of complex PDE-based surfaces. Representing a collection of  
shells (a, b, d, e, and f). Representation of the Klein bottle (c). 

 

Figure 2.15 contains an example of a face model computed using 28 boundary 

curves as seen in Figure 2.15 (b). The resulting surface in Figure 2.15 (a) 

consists of 9 PDE surface patches blended together to ensure surface 

continuity. This example is used in a later chapter to generate facial 

expressions in a computer-user interactive talking head system. Figure 2.15 (c) 

and (d) contains the torso of the human body that is used in a later chapter to 

generate human based cyclic animation of a character.  
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(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

 

Figure 2.15. Example of a face model computed using the PDE method.  
PDE-based surface representation (a, c). 

Boundary conditions for computing the PDE method (b, d). 
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Figure 2.16 below contains various aircraft configurations designed using the 

PDE method in an interactive environment that implements a technique capable 

of direct design and manipulation of PDE-based aircraft shapes. Each 

configuration is split into three main groups, the fuselage, the latter wings and 

the rear wings; each group can be designed and manipulated real time by the 

user. Further information about this work can be found in Chapter 3 of this 

thesis.  

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 2.16. Examples of various aircraft configurations computed using the PDE method. 
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2.6 Conclusions 

This chapter has presented a surface approximation technique used in 

computer graphics for generating parametric surfaces. The surface generation 

is based on the use of the PDE method and is fully parameterized to allow 

direct construction and manipulation of PDE based surfaces. Unlike other 

surface generation techniques, the PDE method can parameterize complex 

surfaces in terms of a small set of design variables, instead of hundreds of 

control points. Taking a boundary value approach to the problem of surface 

design has the advantage that most of the information required to define a 

surface are contained at the boundary conditions or contour curves 

representing that surface.  

The PDE method offers several advantages over the design and 

manipulation of a surface. It can guarantee smooth blending between two 

surface patches by either adjusting the order of the PDE solution or by 

associating the boundary conditions with the parametric space between the two 

surface patches that need to be blended. Additionally, this chapter presents a 

new approach for using parametric PDE surfaces in an interactive environment 

for designing and manipulating PDE-based aircraft configurations. This 

technique provides the user with tools for simplifying the design of aircraft 

configurations using parametric PDE surfaces in a stand-alone 3D environment. 

Each new aircraft design can be saved and loaded again from the user interface 

for further manipulation. Whereas, the manipulation of each configuration is 

achieved by simple affine transformations that are applied directly to the 

boundary conditions of the PDE method.   
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Future work can be undertaken in improving the overall quality of the 

aircraft configurations. This can be achieved by including a variety of aircraft 

parts and transformation tools for improving the construction process of the 

airplane designs. Future work could also be undertaken in determining the 

impact of external static or dynamic forces to the materials and structures 

during the flight. In the following chapters, the PDE method is utilized in several 

applications focusing on modelling, manipulation and animation of PDE 

surfaces. 
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 Chapter 3: Parametric design of complex surfaces using PDE 

3.1 Introduction 

A key step for producing PDE surfaces is obtaining the boundary conditions or 

curves that are required to compute the geometry. These curves can be defined 

either manually or extracted automatically by using various curve fitting 

techniques. In both cases, the quality of the output surface will be associated 

with the accuracy with which the curves represent the original surface. A 

smooth surface can be approximated using various approaches; most of the 3D 

surfaces in this work have been produced using a combination of cubic Bézier 

curves [5]. Bézier curves are parametric polynomial curves that are widely used 

in computer graphics to generate smooth curves; they consist of a set of control 

points or control handles that are used to directly to manipulate the curve by 

applying various affine transformations. Every control point in the curve is 

computed as a weighted sum of all the control points, this way each point is 

influenced by every control point in the set.   

 

3.2 Curve extraction techniques 

As it was mentioned in the previous section, choosing a higher degree 

polynomial can guarantee better approximation of position, gradient and 

curvature of the curve. However, there are cases where a 1st degree polynomial 

curve can approximate better results by linearly interpolating several control 

points as curve segments. In this section we will focus on techniques used to 

generate several types of polynomial curves that are used to calculate the 

boundary curves required to obtain PDE surfaces. 
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3.2.1 Manual design of boundary curves 

In this section a human 3D body will be used as a guideline to generate a set of 

curves. These curves will describe the human body surface and will be later 

used to calculate a set of PDE surfaces that will represent the original geometry 

[30]. Extracting the curves manually is a technique where the designer will be 

required to generate manually a set of curves representing a given object within 

a CAD package. An example is shown in Figure 3.1 were the character model 

was imported in the Maya (CAD package) as a guideline. The goal here is to 

identify meaningful regions and divide the mesh accordingly. Each of these 

regions will be represented with a PDE surface and used in the next chapter to 

generate cyclic animation.  

 

 

Figure 3. 1.Original human geometry used for curve extraction. 

 

3.2.1.1 Polygon edges to curve technique 

The human mesh model is divided in 5 regions; torso, left-right arm and left-

right leg.  The process consists of selecting a set of polygon edges connected 

to each other and converting them to a set of linear polynomial curves. Linearly 

interpolated curves are used to preserve the original curvature of the geometry 
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model representing the human body, where each selected edge becomes a 

curve segment of the overall curve. Thus, for every two points contained in a 

selected edge will be used as the control points for the final curve. After 

extracting enough curves to represent the geometry, the curves must be re-

computed to hold the same number of control points and grouped according to 

the body part they are associated with. Figure 3.2, shows the left arm mesh 

region with the corresponding boundary curves; the arm consists of 16 Bezier 

curves that will be used to generate 5 PDE surface patches blended together.  

 

Figure 3. 2.Boundary curves extracted from the left arm of the mesh model. 

 

One of Maya’s capabilities is it provides tools for manipulation and over 

surfaces and curves. Various tools can help the user visually create, select and 

modify any loaded data set from within the environment. Additionally, Maya 

comes with an integrated scripting language, MEL script, allowing even more 

control over any shape that exists in the system.  The curve design process 

requires the extraction and manipulation of curves from the given surface 

geometry.  The selection of polygon edges is used as a guideline to extract the 

outline shape of the area and convert it in to a set of curves. Once a set of 

edges is selected, with the use of various MEL scripts it can be converted to a 

curve and stored as a Maya NURBS object for later use.  When enough curves 

are extracted, they are grouped and stored for the surface generation 

procedure. 
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(a) 

 

(b) 

 

(c) 

Figure 3. 3.Torso region curve set and PDE surface (side and back view). 

 

Figure 3.3 (a), contains the boundary curves representing the torso area of the 

human mesh model. Figure 3.3 (b) and (c) contains the side and back view of 

the PDE surface obtained from these boundary curves. A MEL script handles 

the procedure through which the curve data are exported or imported between 

Maya and an external C program required for calculating the PDE surface.  

Figure 3.4, shows the boundary curves and the resulting PDE surface divided in 

5 regions. The surface below is a close approximation of the original human 

body mesh model. In order to achieve a better representation, various curve 

fitting techniques must be applied and a PDE of higher order needs to be 

computed. Representing any geometry using parametric curves gives us the 

advantage of reducing the original data size since only a small set of control 

points is used to represent a surface instead of a large number of vertices and 

faces. Additionally, the surface can be re-calculated for a given LOD (Level of 

Detail) by updating the vu, space. This surface generation application can 

therefore produce meshes with different resolutions of the same object 

depending on the distance between the camera and the user or similar 

parameters. 
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Figure 3. 4. The extracted boundary conditions of the human body (a) and 
the resulting PDE-based surface representation (b). 

 

 

3.2.2 Parametric design of boundary curves 

In this section a different approach is examined. This approach allows the user 

to design and manipulate curves used for constructing PDE-based aircraft 

geometry [31]. The process consists of generating a set of parametric curves 

that represents a particular aircraft shape. The aircraft is divided into 3 different 

basic parts; each part is a separate process that is required for the final design 

of the aircraft. The first step consists of generating the fuselage part of the 

aircraft. The process starts with an initial curve-set containing 4 curves that 

represent a cylinder, as a base for the fuselage part. Each curve can be 

manipulated interactively by applying simple transformations such as 

translation, rotation and scaling.  The system can load existing pre-configured 

curves, where various properties such as distance, radius and position can be 

controlled by the user. The rest of the airplane is divided into wings and tail 

wings; each part is designed and manipulated using the same process. This 

technique is examined in more detail as a toolkit to design and manipulate 

aircraft geometry in Chapter 4 Section 2. 
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3.3 PDE-based mesh segmentation  

3.3.1 Introduction 

This section focuses on a new technique which aims in representing a given 

mesh model to a set of boundary-based curves that can be used to compute a 

set of parametric patch wise PDE surfaces. This is a unique methodology that 

can be proven very effective in solving the problem of converting a model to a 

parametric surface. Once a surface can be represented parametrically, it opens 

the possibility for utilizing the PDE characteristics for the manipulation and 

animation of such surface.  In order to understand the problem of automatically 

generating boundary-based that will represent any given mesh model, first we 

need to be able to analyze and decompose the surface in a geometrical 

fashion. This problem lies in understanding how mesh and shape segmentation 

[32, 33] works. In the case of mesh segmentation, the model is segmented into 

a number of patches that are uniformly divided according to some property, 

such as curvature, geodesic distance etc. However, in the case of shape 

segmentation, the mesh model is divided into patches that identify parts that 

correspond to main features of the given shape, e.g. legs, arms, head, and 

torso for a human body mesh model.  There are many approaches available 

that apply both techniques; however the solution is usually based on solving an 

application specific problem. The choice of the right segmentation algorithm is 

dependent on the application requirements. For example, mesh based 

approaches usually require that the boundaries of the regions must be smooth; 

and the boundaries where the regions meet should allow continuity with the 

neighbouring regions. Additionally, the mesh simplification algorithm that is 

proposed in this work is required to divide the shape into uniform curve-sets that 

will be used to calculate a parametric surface instead of mesh patches.  
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3.3.2 Mesh segmentation techniques 

There are several algorithms for mesh segmentation that can be divided into 

categories according to their methodology. Some examples of these techniques 

can be found below. 

Region grow; In this approach, new regions are expanding according to some 

rules.  This set of rules determines whether the region will continue or stop 

growing. Vieira and Shimada in [34], present a region growth-based technique 

that automatically segments dense and noisy mesh models into regions that 

can be approximated by single surfaces.  The algorithm first computes the noise 

levels and the curvature of the mesh model; it then partitions it into regions of 

connected vertices that are geometrically and topologically compatible with the 

input surface. This technique extends the existing region-growing algorithms 

and introduces methods for global noise estimation, threshold selection, and 

sharp edge detection. 

Another example is presented in [35]; Sapidis and Besl perform a region 

growing segmentation technique that divides a mesh in regions that can be 

approximated by polynomial functions. Region growing is initialized with a seed 

region to which a polynomial is fitted. The region grows according to a distance 

and an orientation criterion; the approximating polynomial of that expanded 

region is then computed. The process continues until there can be no further 

expansion. An advantage of this algorithm is that the approximation surface of 

the new segmented part is constrained to a set of rules such as distance and 

orientation that the authors have set. 
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Clustering; in this approach segmentation is computed either by a dividing the 

mesh into a hierarchy of elements (faces, vertices) that are approximated using 

a geometric primitive, e.g. plane, cylinder, sphere or by using an iterative 

clustering approach where a k-means algorithm is applied [36],[37]. 

 An example of hierarchical clustering can be found in [36]; in this work the 

authors have developed an hierarchical segmentation algorithm for triangle 

meshes that is based on fitting primitives such as plane, spheres and cylinders, 

belonging to an arbitrary set. The proposed method can automatically generate 

a binary tree of cluster elements, each of which is fitted with one of these 

primitives. Initially, each face represents a single cluster; for each new iteration, 

all the adjacent faces are considered as the next candidate, and the one that 

can be better approximated with one of the primitives will form a new single 

cluster. The approximation error is computed using the same metric for all the 

primitives, so that it can identify the most suitable primitive to approximate the 

set of faces in a cluster.  

An example of iterative clustering using the k-mean algorithm is presented in 

[37]; the mesh segmentation is achieved using fuzzy clustering and cuts. The 

algorithm finds meaningful regions using a clustering algorithm while keeping 

the boundaries. It then uses a technique called fuzzy decomposition to find the 

exact boundaries that represent the object’s features. To find fuzzy 

components, one condition must be fulfilled. Every face needs to belong to 

exactly one patch, and allow fuzzy membership. The algorithm starts by 

computing the distance for each face in the mesh. Each face is then associated 

with a probability value of belonging to another patch.  Computing the 

decomposition can filter the probability values of each face thus identifying and 

constructing the exact boundaries of the mesh model.  
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Explicit Boundary Extraction; in this approach segmentation is produced by 

extracting the contours of a model. This technique has been used in [38, 39] 

where the authors apply a scissoring technique to extract the feature contours 

of the mesh based on its curvature.  The scissoring operation is divided into 3 

steps; the first step consists of extracting the feature contours by computing the 

minimum curvature value for each vertex of the mesh and converting them to 

closed contours. The contours are closed by using a geometric snake technique 

that consists of finding the shortest path using a combination of distance, 

normal and centricity criteria. These closed contours will represent the 

segmentation boundaries of the mesh. One of the main advantages of this 

approach is that it produces smooth and closed segmentation boundaries. More 

information about interactive segmentation using intelligent scissoring can be 

found in [40]. 

The work presented in [41] proposes a mesh segmentation algorithm by 

merging adjacent triangle pairs. The segmentation algorithm uses surface 

curvature to divide the model into one or more approximated planar patch 

regions, where each patch has a similar normal property. The algorithm initially 

compares the angle between the surface normals of the two adjacent triangles 

with a given error angle threshold.  If the angle between the normals of the two 

triangles is close to the threshold value, the two triangles are separated into 

regions, and the edge between the two triangles becomes the boundary of the 

two regions. Additionally, the segmentation result can be controlled under a 

given error bound. An advantage of this technique is that it can be easily 

adapted to (LOD) Level of Detail techniques that can produce various mesh 

representation according to the resolution.  
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The technique used in this work can be classified as a hybrid approach of 

explicit boundary extraction segmentation and mesh simplification technique. 

The proposed approach is required to divide a given surface into boundary-

based patches that will be represented using the PDE method. One of the main 

advantages of this technique is the ability of producing different LOD 

representations. Since a given mesh model can be described analytically using 

the PDE method, adjusting the vu, space parameters of each boundary patch 

can increase or decrease the surface resolution in a uniform or adaptive 

manner according to the end-user application. The new approach will be 

presented in more details in the following sections. 

3.3.3 Automatic curve extraction of boundary based patches 

The segmentation technique used in this work is required to divide a given 

mesh model to a set of triangular shaped patches based on the mesh curvature. 

Each patch will be later represented as a set of boundary curves that will be 

evaluated by the PDE method to produce PDE surface patches. Since mesh 

segmentation is not an easy task, the curve extraction technique is divided into 

several steps in order to have a better understanding of each process. This 

section contains the methodology required for producing an automatic curve 

extraction technique used to find a PDE-based surface representation of mesh 

models.  

 

3.3.4 Methodology 

The first step required for extracting a set of curves from a mesh model is to 

identify contour regions containing important features that need to be extracted. 

However, the technique for obtaining such results needs to be able to process 
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any given model regardless of its complexity. This is usually the most difficult 

step for most mesh segmentation techniques and there are several approaches 

to obtain this information (see Section 3.3.2 above).  This work uses a mesh 

reduction technique to simplify a mesh model and use it as a guideline for 

extracting a set of template patches that can be used to obtain feature points 

from the original high resolution input mesh.  The diagram in Figure 3.5 below 

describes the process of extracting the template patches using a simplified 

version of the input mesh. In this case, the extracted patches are represented 

as a set of template boundary curves connected to each other using the low 

resolution face connectivity. Note that each face of the simplified model will be 

converted into a curve containing 31 points. The number of points needs to be 

uniform for all the curve-sets representing the mesh geometry. This is due to 

uniform distribution of points between patches when computing the PDE 

method for a particular subdivision level.  The process of converting faces to 

curves and obtaining the feature points from the original mesh will be described 

in a later section of this chapter. 

 

Figure 3. 5.Template patches extraction using mesh simplification. 
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3.3.4.1 Mesh simplification 

Mesh simplification is a process used for reducing the number of faces used in 

the mesh model while keeping the overall shape and preserving the boundaries 

as much as possible. There are numerous algorithms proposed for mesh 

simplification that are dependent on the characteristics of the input mesh as well 

as on the needs of the application. These techniques can be categorised 

according to the approach, efficiency and quality of the resulting mesh. Some 

techniques can produce very good approximations but they lack in processing 

efficiency and are difficult to implement. Some other techniques can produce 

efficient approximations but they fail to preserve the topology and quality of the 

input mesh.  Mesh simplification in this work is used to produce a desirable low 

resolution mesh that will be employed as a guideline for the template patches 

used in the extraction process.  However, the results of the simplification are 

highly dependent on the complexity of the input mesh. To that extend, the 

reduction algorithm used in this work might not produce the best approximations 

for any given mesh model. A short overview of various mesh simplification 

algorithm and their applications will be covered in this section. 

 

3.3.4.2 Mesh simplification techniques 

Mesh simplification techniques can be grouped into two categories: local and 

global strategies [42]. Local simplification strategies [43] are usually quite 

ambitious; they simplify the mesh by repeating a process based on some local 

operator, whereas global strategies are applied to the input mesh as a whole. 

A typical local simplification approach usually consists of an operation that when 

applied to the mesh, it processes small collections of elements (faces, vertices) 
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to produce the new simplified mesh.  Determining which element should be 

processed is computed from an error or cost function that measures the cost-

value relation the approximation would introduce after the operation. 

Additionally, this technique allows the user to specify the desired amount of 

elements to be removed. 

Vertex decimation; an example of mesh simplification using decimation is 

presented in [44].The authors have developed a  method that iteratively selects 

a vertex for removal, removes all adjacent faces, and re-tessellates the resulting 

hole. A vertex classification operation is used based on the face adjacency in 

order to determine the error associated with each decimation. During each 

iteration, a given vertex is flagged as a candidate for removal, if that a vertex 

meets the specified decimation criteria, then the vertex and all its adjacent faces 

are deleted. The resulting hole in the mesh is closed by applying a local 

triangulation scheme. This process is repeated until some target criteria such as 

percentage of reduction is met. 

Edge Contraction; this is the most common mesh simplification operation. 

Edge contraction is the process of introducing a new vertex that is adjacent to 

all its neighbouring vertices and then deletes the endpoints of this edge and all 

their incident edges [45]. Edge contractions can alter the topology of a mesh, 

since repeatedly contracting all the edges around a hole will eventually close it. 

Additionally, edge contractions can be applied to edges containing non-manifold 

vertices [46]. It was original proposed in [47] as a method for surface 

reconstruction of unorganized points, and mesh simplification. The authors have 

introduced an energy minimization approach for solving the mesh optimization 

problem. The method produces simplified meshes with edges aligned along 

directions of low curvature, and vertices that are concentrated in areas of high 
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Gaussian curvature. The method can also recover sharp edges and corners 

since the energy does not penalize surfaces with sharp angles. 

Another example of mesh simplification based on the use of Quadric Error 

Metrics is presented in [48]. Here, the authors have developed a simplification 

algorithm that produces efficiently high quality approximations using quadratic 

matrices for maintaining surface error approximations.  The algorithm is based 

on the iterative contraction of vertex pairs which is a generalization of edge 

contraction algorithm. A vertex contraction is performed during a given iteration 

based on a cost function. This function is defined by computing the error 

approximation of each vertex. Additionally, the algorithm supports non-manifold 

[46] surface models. The algorithm can be summarized as follows: 

 Compute the Quadratic matrices for all vertices. 

 Select all valid pairs. 

 Compute the optimal contraction target v for each valid pair (v1, v2). The 

new error becomes the cost for contracting that pair. 

 Place all the pairs in an indexed list with the minimum cost pair at the 

top. 

 Iteratively remove the pair (v1, v2) with the least cost from the list, 

contract this pair, and update the costs of all valid pairs involving v1. 

This algorithm was used for the mesh simplification process of the curve 

extraction technique. Its implementation was based in the Garland and 

Heckbert mesh simplification Quadric Error Metrics code [48]. Figure 3.6 below 

contains a mesh model of the Venus of Milo before and after mesh 

simplification process. The original mesh model, Figure 3.6 (a), contains 11,043 

vertices and 21,977 faces. After mesh simplification the model was reduced to 
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106 vertices and 198 faces, Figure 3.6 (b). The polygon reduction was optimal 

for this mesh model due to its simplicity; the output mesh contains 198 faces 

that will be used for constructing 198 PDE-based surface patches.  However, if 

the reduced mesh model contains faces with small areas and/or faces with long 

edges, it will produce errors during the curve extraction process. Additionally, 

there are cases where the results might need adjusting in order to extract the 

correct patch layout. In the case of Venus mesh model, Figure 3.6, the surface 

has been reduced more than 90 % percent from the original model to produce 

patches that can be converted into curve-sets.  Complicated mesh models that 

contains a lot of curvature, non-manifold geometry or sharp edges require less 

reduction so that key feature points are maintained in the reduced version. It 

has been tested that a 20 percent reduction for complex models is enough to 

maintain its curvature without losing too much information. However, using a 20 

percent reduction will produce a low resolution model with high number of faces 

that need to be converted to patches. Adjusting the percentage and the quality 

of the simplification will alter the final results. 

 

(a) 

 

(b) 
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(c) 
 

(d) 

 

Figure 3. 6. Venus hi-res mesh model (11,043 vertices and 21,977 faces) (a)  
and low-res mesh model after mesh simplification (106 vertices and 198 faces) (b). 

Sphere hi-res mesh model (vertices 4.800, faces 9600) (c) and low-res mesh  
model after mesh simplification (vertices 77, face 150) (d). 

 

 

3.3.5 Boundary patch segmentation 

The low resolution model acquired from the mesh simplification process will be 

used as the guideline for the boundary patch extraction process. The mesh 

based reduction is used as a means for indentifying the contour features of the 

mesh. These features are contained in the low resolution mesh where the mesh 

simplification algorithm will respect them as constraints during the reduction 

process. The next step consists of converting the faces of the low resolution 

model to a set of curves that can be used to find the respective PDE surface. 

Each face of the reduced model is associated with the high resolution model 

This ensures that all regions of the original mesh will be included in the final 

model representation. This process is a simple operation that finds the distance 

from each of the vertices of the original mesh to a given face in the low 

resolution model, in order to find the closest point. A low resolution face is 

treated as a surface patch and the three points that each face contains are 

snapped to the closest point of the original mesh.  This information will be useful 

for converting the face to curve points, where the three vertices of the face will 

be used to interpolate the in-between points of each edge. 
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3.3.5.1 Template boundary curve extraction 

In order to satisfy the requirements inherent to the PDE method, the patches 

that represent the original high resolution model need to be converted into a set 

of boundary curves which the PDE methodology will use to produce a surface. 

Initially, a template curve needs to be extracted and used as a map for 

extracting the high resolution features, that are enclosed in that region, for that 

given patch. The template boundary curve is a curve consisting of 31 points, 

and is generated by linearly interpolating the two vertices of each edge 

contained in a given patch. The template curve can be represented as a 

triangular curve containing 10 points on each edge and one extra point used to 

close the curve, Figure 3.7 (a). Figure 3.7 (b), contains the template boundary 

curve with respect to the corresponding triangle in the low resolution mesh 

model. The triangle patch has been extracted from the low resolution model and 

used to map that region to the original mesh model.   The two end points of 

each edge are repositioned during the low-to-high resolution patch association. 

The new end points have been snapped to the original mesh to ensure surface 

continuity during the feature extraction process. Lastly, the two edge points are 

linear interpolated to produce 10 points for each edge. 
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(a) 

 

(b) 

Figure 3. 7.The template boundary curve associated with patch 1 of the Venus mesh model (a) 
and template curve and low resolution face (patch 1) of Venus model (b). 

 

The new template curve represents now the patch for that region and will be 

used to map each control point to the high resolution model.   This operation 

requires projecting each of the control points to the original mesh in order to find 

a point that lies on that surface. However, during this operation each control 

point needs to search every face of the original mesh until a ray-to-triangle hit 

has been achieved. This process can take a lot of processing time for an entire 

mesh.  To that extend, a sub mesh partitioning technique is used to extract a 

mesh region that lies within the template boundary curve. 

 

3.3.6 Sub-mesh partitioning 

In this section a technique that partitions the original mesh into a number of 

mesh based regions is presented. Each of the new mesh regions is used to 

accelerate the curve extraction process and adjust the resolution of the region 

by subdividing it during the local feature extraction. The process starts by 

selecting a geometric primitive such as a box, triangle or circle to cover the 

patch surface. A point to primitive intersection test is then computed in order to 
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find which point of the original mesh is inside that region. If the point is inside 

the region, the position and the face connectivity are stored and used to 

construct the sub-mesh.  When a patch is processed, the new mesh is stored 

indexed according to the patch it belongs. The process continues for each patch 

that is used to represent the high resolution mesh. 

Three different primitives have been tested in order to produce better and more 

efficient results. Each primitive is first constructed to fit the patch in question. An 

intersection test is then computed for every point of the original mesh until all 

the points inside the primitive are found. 

  

3.3.6.1 Point in box 

A cubic box is the first primitive that was tested to identify points inside the 

patch region. Constructing a box aligned to the triangular patch is a simple 

operation that can be produced from finding the bounding box of the shape.  A 

bounding box is constructed using the centroid and, the minimum and maximum 

points of the patch in question. The centroid can be found by averaging all the 

control points of the template boundary curve that belongs to that patch, as 

shown in Equation 3.1.  

 

          xC = ( 1x  + 2x + 3x ..... + nx )  / n  

          yC = ( 1y  + 2y + 3y ..... + ny )  / n  

          zC = ( 1z  + 2z + 3z ..... + nz )  / n ,

  

 

 

(3.1) 
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where xC , yC  and zC  are the Cartesian coordinates of the centroid and ix , iy  

and iz  are the number of points. 

Once the centroid is found, the minimum and maximum points of the template 

curve are calculated and used to construct the bounding box of the patch. 

Equation 3.2 contains the formula for calculating the bounding box dimensions 

using the minimum and maximum points.  

 

   width  = max.x - min.x 

   height = max.y - min.y 

   length = max.z - min.z, 

 

                         (3.2) 

 

The process then continues by testing all vertices of the original mesh model 

against the bounding box. Point inside a box intersection is a simple operation 

that can be tested using the code in Figure 3.8 below. Additionally, a tolerance 

value can be added to the minimum and maximum value to expand the 

bounding box in cases where the boundaries of the extracted mesh do not 

cover the entire patch region.  
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// If point is inside bounding box limits 

if ((point.x >= min.x) && (point.x <= max.x) && 

    (point.y >= min.y) && (point.y <= max.y) && 

    (point.z >= min.z) && (point.z <= max.z)) 

{ 

// Point found 

}else 

continue; 

Figure 3. 8. Pseudo code for Point inside Box intersection test. 

Using a box as intersection primitive offers computation efficiency during the 

construction of such primitive and the intersection process. However, the 

extracted sub-mesh contains a lot of extra data that cannot be used. This is due 

to triangle-to-box fitting; a lot of points that are not inside the triangle but are 

inside the box will pass the intersection test and will be included in the sub-

mesh. Figure 3.9, contains the extracted mesh using the point to box 

intersection approach. 

 

 

Figure 3. 9.Sub-mesh extracted using the point in box intersection. 
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3.3.6.2 Point in circle 

The next primitive to test is a circle. In order to construct such a primitive, a 

circle or circumcircle needs to be computed. This circle needs to pass through 

the three extreme points of the template boundary curve. However, constructing 

a circle that fits three points is less computational efficient compared to 

constructing a box. Constructing a circle requires a point and a radius. In this 

case the circumcenter of the triangle that is found using the three extreme 

points; whereas the diameter of the circle is computed from the length of any 

side of the triangle. The circumcenter of a triangle can be found as the 

intersection of the three perpendicular bisectors.  The perpendicular bisectors 

are calculated from the cross product between each of the edges and the 

normal vector of the triangle. Using a line intersection test, the point where of 

these vectors intersect is the circumcenter of the triangle, Figure 3.10 shows the 

pseudo code used for finding the required circle.  

// Distance between current point and circumcenter 

Vector d = point -  circumcenter; 

Float magnitute = sqr(d.x * d.x + d.y * d.y + d.z * d.z); 

if(magnitute <= radius) 

{ 

// Point found 

}else 

continue; 

 

Figure 3. 10.Pseudo code used for finding the Point inside circle intersection test. 
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The advantage of using a circle as a mesh extraction primitive is the simplicity 

of the point in circle intersection test. Since it is constructed to fit the triangular 

patch, the test whether a point is inside the circle can be found by comparing 

the magnitude of the distance between the point in question and the 

circumcenter, with the radius of the circle, Figure 3.10.  On the other hand, 

constructing a circle requires a lot more computations while the results can still 

include a lot of unnecessary data.  Figure 3.11, contains the circular mesh 

extracted using this approach; many areas of the circular mesh will not be used 

during the projection test since they are outside the triangle region.  

 

 

 

Figure 3. 11.Circular sub-mesh extracted using the point in circle intersection. 

 

3.3.6.3 Point in triangle  

The last primitive to perform intersection test is the triangle. The triangle is the 

best candidate for the sub mesh partitioning process, since constructing such 

primitive does not require any additional estimation.  The process is initialized 

by defining a new triangle that consists of three extreme points taken from the 

template boundary curve. Prior to perform the intersection test, the triangle 

might require scaling since some points in the region might fail during the test.  
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A scaling factor of 0.5 is usually enough to include all the necessary points 

around the original triangle area.   The process then continues by testing all the 

points in the original mesh using a point in triangle intersection test. There are 

various methods for determining if a point is inside a triangle, more information 

can be found in [49].  A common method of testing whether a point intersects a 

triangle is to intersect a ray with the plane defined by the triangle and then 

determine whether the intersection point lying on the plane is inside the triangle 

or not. In order to identify in which side of the line a point is on, is computed 

using the cross product of the two vectors that are defined between two point of 

the edge and the point in question is computed. The direction of the cross 

product follows the right-hand rule. If the dot product of at least one vector 

points in different direction from the rest then the point is outside of the triangle. 

If the dot product of all vectors point to the same direction, the point is inside. 

This is very simple and effective method that requires calculating the cross and 

dot product three times or less per triangle. Note that the direction of the cross 

product is dependent on the face orientation. In either case this can be easily 

adapted by changing the condition from negative to positive.  If the dot product 

of all vectors is positive then the face is clockwise otherwise it is anticlockwise.  

Figure 3.12 shows an example code for performing the point in triangle 

intersection test. For each edge, two vectors are constructed between the edge 

points and the point in question. The dot product of each of the perpendicular 

vectors is then compared to determine if it points in the same direction for all 

edges.  A vertex is rejected if it points in the opposite direction. 
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   Vector pV2 =  point1 – Point;   // edge 3 point 1  

   Vector pV0 =  point0 - Point;     // edge 3 point 0 

   Vector q2 = Cross product(pV2, pV0);  

   Foreach edge of the Triangle 

   {     

        Vector pV0 =  point0 – Point; // edge i point 0 

        Vector pV1 =  point1 - Point;   // edge i point 1 

       // calculate cross product between the 2 vectors 

        Vector q = Cross product(pV0, pV1); 

       //Compare each perpendicular vector 

         if (q2.DotProduct(q) < 0)               

             return false;//Point is outside triangle 

} 

Figure 3. 12.Pseudo code for finding the Point inside triangle test. 

 

This primitive will be used to extract all the required data for the feature 

extraction process. Using a triangle offers great advantages in the sub mesh 

extraction process. The construction of such primitive requires no calculation at 

all, whereas the intersection test is more efficient and accurate compared with 

the previous techniques. Figure 3.13, shows the triangular mesh extracted 

using this approach; most of the extracted data belong in the corresponding 

patch area, only a few set of points will be ignored since they are outside of the 

triangular region. However this can be controlled by adjusting the scaling factor 

during the point in triangle operation.  
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Figure 3. 13.Triangular sub-mesh extracted using the point in triangle intersection. 

 

3.4 Feature extraction 

The procedure of finding a sub mesh region for each of the patches 

representing the input mesh will accelerate the overall process, while being able 

to locally adjust the sub mesh surface resolution; it can also increase the quality 

of a particular patch. The next step consists of transferring features from the 

original mesh to the template boundary curves. As mentioned before, the 

template boundary curve represents the boundary limits of a patch obtained 

from the low resolution mesh model and its is used as a guideline for extracting 

features that lie inside that region.  As seen in Figure 3.13 above, the curve that 

is inside the triangular mesh region represents the template boundary curve. At 

this point, the template curve consists of a set of points forming a planar 

triangular face. The feature extraction process will use the control points of each 

template curve to project them to the sub mesh region they belong. Projecting a 

point to a triangle is a technique used in ray tracing [49] for finding the 

intersection point between a ray and a triangle. The use of a  the sub region of 
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the surface will accelerate the process since only the triangles that are inside 

the patch region will be tested to see whether they are valid projection triangles 

or not, rather than iterating though the entire mesh. 

 

3.4.1 Feature extraction using raytracing 

Ray tracing is a global illumination technique used for rendering. During ray 

tracing, a ray is usually generated from the position of the eyes back to the 

scene. All the rays are tested against all objects in the scene to determine 

whether they intersect any object or not. If an intersection is found, ray tracing 

can handle shadows, reflections, and/or texture mapping according to the 

rendering requirements. Ray tracing has many uses in computer graphics as 

well as in other fields, for example it can be used for extracting data in 

acceleration structures [50], usually achieved using ray traversal [51]. In this 

work, ray tracing has been used for projecting a point to a surface during the 

feature extraction process. The process starts by constructing a ray for the first 

control point of the template boundary curve.   The position of that point is used 

as the starting position of the ray, however the direction of the ray plays very 

important role in maintaining the correct projection direction.  Once a ray is 

constructed, it is tested against all faces in the current sub mesh to find the 

point of intersection. Once the intersection point is found, it replaces the original 

control point of the template curve and continues to the next point until they are 

all projected.  This technique guarantees that every new point will lie on the 

surface of the original mesh model. 

Finding the intersection point consists of a two step operation, initially the ray is 

tested whether it hits the triangle using the technique discussed in Section 3. If 
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the ray hits the triangle, it uses barycentric coordinates to find the exact location 

in the three-dimensional space.  

As mentioned before, choosing the correct ray direction is a process that can 

affect the quality as well as the accuracy of the resulting points. A quick solution 

would be to use the face normal for the ray’s direction; however this ray does 

not always guarantee that it will hit the correct triangle. Moreover, if the face 

contains edges that are boundary to a hole in the mesh, the face normal 

direction will not hit any elements.  Three different approaches were tested for 

obtaining the most appropriate ray direction. The first test was carried out using 

the face normal direction for every point in the curve. The results using this 

vector are satisfactory but there are many cases where the resulting points of 

intersection for many patches across the mesh are not the best selection. 

Additionally, this approach requires aligning all the edges per curve according to 

the face connectivity after the extractions is finished.  

The next ray test consists of using the edge normal. Edge normals are 

calculated by averaging the normal of each neighbouring face with the current 

face normal per edge. Figure 3.14 below shows an example of using the edge 

normal for ray direction. The face normal 1d from face A is averaged using the 

normal 2d of the adjacent face B . The resulting normal 3d will be used as the 

direction for every point of that edge.    



83 

 

 

Figure 3. 14.Edge normals for ray direction. The vector 3d denotes the ray direction 

Each edge normal is computed separately using its adjacent face neighbour; if 

an edge is boundary and does not contain any neighbours then a different 

direction must be found. This limitation generates problems since the input 

mesh can include any form of configuration. And meshes that fall into the above 

category will fail. 

Lastly, the ray direction used for feature extraction is based on the vertex 

normals of each patch. In this case, the vertex normals between the two end 

points of each edge are used to linearly interpolate the new position. Each new 

interpolated vector is used as the ray direction for the control point that belongs 

to. Figure 3.15, below shows the interpolated vectors for each control point 

between the two edge end points; each vector is used as an independed ray. 

This approach guarantees optimal results even in cases where the mesh 

contains holes or sharp edges between the patch edges.   Additionally, every 

new projected point will be shared correctly with the neighbouring patch edge. 

This will ensure surface continuity when calculating the PDE surface for each 

patch.  

A B 

 

1d

 

3d  

2d  
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Figure 3. 15.Vertex normals for ray direction. 

 

3.4.2 Acceleration constraints 

Ray tracing is a demanding operation that requires a lot of processing time; 

although the sub mesh surface is used to accelerate the process for each 

patch, this process is highly dependent on the total number of patches that are 

used to represent the original geometry. There are cases where the original 

input model can be correctly characterized using 1000 or more patches.  In 

such cases, the curve extraction operation is expected to take hours to 

calculate all the necessary patches. Additionally, every patch contains one 

template boundary curve with 31 points, once the process successfully projects 

all the point to the surface, the operation continues with the generation of three 

additional curves that will cover the inner areas of each patch. Each inner curve 

is created by scaling the template boundary curve three times; every new inner 

curve will be projected to the surface using the same procedure. To that extend, 

every patch contains 4 curves with 31 points each that need to be projected to 

the surface. If the number of patches is 1000, the total number of test for 124 

points per patch is 124.000; which is the total number of projections needed. 

Additionally, every sub mesh contains extra vertex information that will be 

tested 4 times per curve; this is due to the fact that if for example a sub mesh 

contains 1000 faces only 124 faces will be used for the patch in question. 

A B 
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However, there are several techniques that can accelerate such process by 

indexing all the necessary data in a spatial grid. A spatial grid can be described 

as a grid that is partitioning itself into regions of cells or voxels. Each voxel 

contains a list of objects that are associated with it. Extracting information from 

such data structure can be achieved using grid traversal [51].  During grid 

traversal, a ray is shot towards the grid. If it hits any objects in the starting voxel 

list, the intersections are sorted and the closest one is returned. If no 

intersection is found in the current voxel, the next neighbouring cell is searched. 

The process continues until either an intersection is found or the entire grid has 

been traversed. There are two popular space partition techniques: octrees [50], 

voxels in the grid contain different sizes, and constant size voxel partitioning 

[52]. Implementing such a scheme will help accelerate the ray tracing process; 

every point that needs to be projected will be tested with all faces that are 

associated with the cell that intersects the ray, rather than testing all the faces in 

the sub mesh.  The number of cells in the x , y  and z direction also plays an 

important role in increasing or decreasing the calculation time. To that extend, 

the bigger the cell is, the smaller the number of data that are associated is. This 

technique is not used in the current curve extraction version and is proposed as 

an add-on to help accelerate the whole process for future work.  

 

3.4.2.1 Surface computation 

The final step of the curve extraction technique consists of evaluating the 

extracted data for computing the PDE surface. Every patch contains 4 curves 

projected on the original surface that satisfy the boundary requirements for 

solving the PDE method. Figure 3.16 (a), shows the template boundary curve 
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projected to the sub mesh surface associated with the first patch of the Venus 

mesh model. Figure 3.16 (b), contains all the curves required for computing the 

PDE method. The three inner curves have been created by scaling the template 

boundary curve and projecting it to the surface. The 4th curve contains only one 

point, this is the centroid of the boundary curve projected to the surface, and is 

used to close the surface. Figure 3.16 (c) and (d) consist of the generated 

surface using the PDE method at subdivision level 3. Note that being able to 

represent a surface analytically, offer us the advantages of parametric surfaces 

such dynamically adjusting its resolution.   Moreover, the surface can be re-

computed to increase or decrease its resolution from subdivision level 0 to 

theoretically any given number.  The application is configured to calculate 9 

subdivision levels, since the total number of vertices at this level increases to 

1.500 and 2.200 faces per patch. Usually most of the details of the surface are 

reproduced between levels 4 and 5; a higher number of subdivisions add only 

extra points and faces.  
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 3. 16.Final projected boundary curve (a). The final projected curve-set required to 
produce the PDE surface (b).  Front and side view of the PDE surface at subdivision level 3 (c) 

and (d). 

 

3.5 Examples 

This section contains examples created during the automatic curve extraction 

process. Figure 3.17 (a) below contains the template boundary curves that 

represent the front side of the Venus model. The curves have been extracted 

from the reduced version of the Venus Model; each template boundary curve is 

a flat triangular curve consisting 31 points. In total there are 198 PDE patches, 

each mapped to a face obtained from the low resolution reduced model. Figure 
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3.17 (b), shows the PDE patches after the feature extraction process. Each 

boundary curve has been projected to the original model surface using the ray 

tracing techniques discussed in previous section. Finally, Figure 3.17 (c) shows 

the PDE patches containing the inner curves. The inner and boundary curves in 

each PDE patch are used as the boundary conditions required for computing 

the PDE method.  

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3. 17.The template boundary PDE patches that represent the Venus model (a) .The final 
boundary PDE patches after the feature extraction process (b). PDE patches containing inner 

curves (c). 
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Figure 3.18 contains the PDE surfaces obtained in different subdivision levels. 

Figure 3.18 (a) shows the original Venus mesh model from where the PDE 

boundary data came from. The rest of the figures show the new PDE surface 

consisting of 198 patches for different subdivision levels.  Subdivision level 0 

consists only from 3 points that form a triangle patch. At this level the model is 

the same as the low resolution model; see table 3.1 below for total number of 

vertices and faces comparison. Figure 3.18 (c) contains the PDE model at 

subdivision level 2; at this level most of the features of the original model have 

been obtained.  

 

 

Model Elements Original Subdivision 0 Subdivision 2 

Venus Vertices 

Faces 

11.043 

21.977  

594 

198 

1.980 

2.376 

 

Table 3. 1. Total number of elements for each subdivision level compared to original Venus 
model 

 

 

Finally Figure 3.18 (d) contains the PDE surface in subdivision level 4, this level 

consist of 4356 vertices and 5940 faces. At this subdivision level some 

problems begin to appear in the PDE surface, this is due to the number of 

points that are concentrated in triangular patches with small areas. As a solution 

to this, a different triangulation scheme can be used to improve the distribution 

of points across each PDE patch.  Additionally, problems might appear from 

averaging the normals between the patches. Note that there are still features in 

the original model that do not appear in the PDE representation; this is usually 
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caused by the automatic extraction process since only a small selection of 

points are extracted to represent a region in the original mesh model. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3. 18. The original Venus mesh model (a). 
The complete Venus PDE model in subdivision level 0 (b). 

Subdivision level 2 (c).  Subdivision level 4 (d). 

 

Figure 3.19 below shows the curve patches used to compute a sphere model.  

Figure 3.19 (a) contains the template boundary patches extracted from the low 

resolution sphere model, whereas Figure 3.19 (b) contains the final PDE 

patches after the feature extraction process. A sphere is a good example for the 

curve extraction technique since there are not any feature characteristics inside 

each patch. The Figures consists of the final PDE surface in two different 

subdivision levels compared with the original sphere model. As seen in Figures 

3.20 (a) and (c) the original model and the PDE representation at level 2 are 

almost the same. Subdivision level 0 is the most basic configuration and is 

identical to the low resolution sphere model.  
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(a) 

 

(b) 

 

Figure 3. 19. The complete curve set for the template boundary curves that represents sphere 
model (a). The final boundary curves after the feature extraction process (b). 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3. 20. Original Sphere mesh model (a). 
The PDE surface representation on Sphere at subdivision level 0 (b). 

Subdivision level 2 (c). 

 

 

 

Table 3.2 below contains the total number of vertices and faces for subdivision 

level 0 and 2. The PDE sphere at level 2 looks like the original model, while 

using a lot less number of vertices and faces. 
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Model Elements Original Subdivision 0 Subdivision 2 

Sphere Vertices 

Faces 

4.800 

9600 

450 

150 

1.500 

1.800 

 

Table 3. 2. Total number of elements for each subdivision level compared to original sphere 
model. 

 

3.6 Conclusions 

The automatic curve extraction technique presented in this section is a new 

approach of mesh simplification that has been used to obtain the boundary 

conditions required for calculating the PDE method.  The technique starts by 

dividing the input mesh model into a set of boundary curve-based patches. The 

mesh is reduced using a mesh simplification technique until it reaches a 

satisfactory level of quality and number of faces. Each face is then converted to 

a template boundary patch consisting of 31 control points. These points are 

then projected to the original mesh in order to extract the features that lie within 

that region. Once a boundary curve is complete, the process continues by 

generating 3 additional inner curves for that particular patch; 4 curves in total 

per patch are used to calculate the corresponding PDE surface. Once a given 

model can be described as a set of curves, it can be reconstructed using PDE 

surfaces over a given level in real time. This offers great advantage in 

environments where the LOD controls the resolution of the model determined 

by the distance from the user to the object. The PDE data required for 

constructing a surface are much smaller in size compared to any optimized 

mesh model.  Only a small set of curves containing 31 points is enough to 

represent a given mesh model consisting of thousands vertices and faces.  
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However since the PDE method is an approximation technique, some features 

might get lost during the evaluation of the surface. It is also guaranteed that 

some features will be lost during the automatic curve extraction process; this is 

due to various operations (mesh reduction, ray tracing) that take place in the 

original mesh model. Future work can be undertaken in optimizing and refining 

the results of the curve extraction process. Additionally, a web based 

implementation for computing PDE surfaces in web based visualization 

environments, can be used to accelerate the transmission time between 

client/server communications. 
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Chapter 4: Manipulation of PDE surfaces 

 

4.1 Introduction 

In the last chapter we examined various techniques for curve generation that 

satisfy the boundary requirements of the PDE method for various applications. 

Without the boundary data it would not be possible to generate any form of 

parametric PDE surfaces. Here we explore the PDE method in presenting two 

different applications capable of designing and manipulating parametric 

surfaces in real time.  

4.2 A toolkit to design and manipulate aircraft geometry 

4.2.1 Introduction 

Plane Designer is an application designed and used for geometric modelling 

using PDE based airplanes written in Visual C++ and OpenGL .The 

construction of airplane surfaces in this work has been generated using the 

PDE method. Unlike spline techniques, the PDE method can produce complex 

surfaces in terms of a small set of design variables or parameters. The shape of 

the surface is defined through boundary curves and a small set of design 

parameters, taking a boundary value approach to the problem of surface 

design. This approach allows the design system to be extended so that the 

functionality of the object can be taken into account at an early stage of the 

design process.  Additionally, it has been previously shown in chapter 2.1.2 that 

the use of the PDE method [25] can significantly reduce the computational cost 

associated with the process of designing and optimising the performance of 

either a given airplane surface configuration or specific components such as 

wings or fuselage [53, 54]. Here, the optimisation of the airplane geometry takes 
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advantage of a small set of design parameters required by the PDE method to 

define complex geometry.  Thus, using such set of geometry parameters, it is 

possible to optimise the shape of an aircraft automatically in a reasonable time 

scale. To that extend, it opens the possibility to automatically compute a shape 

which minimises lift or drag.  

The aim of this work is to discuss the advantages of using the PDE method in 

modelling airplanes in contrast with the use of other existing methods and to 

show how airplane surfaces with more general boundary conditions can be 

constructed and manipulated in real time. Additionally, it is demonstrated that 

this technique is capable of representing and manipulating an already existing 

geometric model of an airplane without any prior knowledge on the part of the 

designer regarding the mathematical details of the PDE method itself. For the 

purpose of explaining the use of the PDE method in airplane design, we will use 

examples illustrating the various designs, transformations and modifications of 

airplane models. All the examples presented throughout this work have been 

created real time from the PDE Airplane designer application.  

 

4.2.1.1 Background  

One of the major tasks in the design phase of a new aircraft is the definition of 

its configuration along with the main geometric characteristics. Present CAD 

packages provide various tools for the parametric representation of complex 

geometries and surface definition is usually accomplished by utilizing such CAD 

systems. For an aerodynamic early phase conceptual design, a step before the 

application of CAD is needed, for example a toolbox that will produce generic 

and parameterized aerodynamic surfaces, which will take into account the 
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special needs and constraints for the conceptual design of an aircraft [55]. 

Besides the well known general CAD packages, very few are specialized in 

aircraft design. Some of them are highlighted below.  

Klein and Sobieczky [56, 57] present examples of aerodynamic design of high 

speed airfoils and wings which is carried out by their Genetic Algorithm 

software. They use explicit functions to describe curves needed in the design of 

aircraft surfaces. Their goal is achieved by establishing a flexible input data 

generator for both direct and inverse design. The geometry and flow quality are 

modelled by a set of analytical functions with parameterized input. For 

communication purposes with CAD packages, the resulting surface is 

interpolated using NURBS surfaces. 

A surface generation software named Ge.P.A.S. (Generic Parameterized 

Aircraft Surface) developed by Sarakinos and Valakos [58] is also designed for 

the construction of aerodynamic aircraft surfaces. The surface generation 

procedure is parameterized and different aircraft configurations can be 

produced interactively. The surface generation procedure is based on the use of 

NURBS curves and surfaces. Fuselage type surfaces are constructed inside a 

scalable reference volume, where common basic curves in successive parallel 

planes are transformed to form the corresponding cross sections. Wing type 

surfaces are constructed in a more straightforward manner, using standard 

formulations for wing geometry definition and a database of wing sections to 

select from. 

RAGE [59] is another package that has been designed for the generation of 

aerodynamic models, where central parameterized geometry definition has 

been used. It is used at the preliminary stage of aircraft design for preliminary 
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parametric studies and optimization. Designers can develop aircraft geometries 

that vary from very simple to quite detailed configurations for analysis with an 

assortment of computational aerodynamics tools in a very fast manner. Aircrafts 

are designed with the use of fuselage, wings and engine components which are 

available in the software. Each component is generated by a number of 

subcomponents that define the geometry. RAGE is able to output files that are 

compatible with several aerodynamic analysis codes and is compatible with 

most of the major CAD packages. 

 

4.2.3 Creating an aircraft 

The airplane design application discussed in this section requires creating and 

manipulating PDE-based aircraft geometry. The basic idea in creating any 

surface patch or an airplane shape using the PDE method is to define the 

boundary conditions appropriately and seek the solution to its corresponding 

PDE for generating the associated surface [21].  The aircraft design 

implementation process is divided in three parts, the fuselage, wings and tails 

geometry. Each of these parts contains similar properties but different 

characteristics that can be adjusted interactively by the user.  Each airplane 

component is controlled by a set of parametric curves used as the boundary 

requirements for evaluating the PDE method.  Visualization and user interaction 

are handled from the (Open Graphics Library) OpenGL API [9], which is a 

standard specification defining a cross-language API used for 2D and 3D 

graphics. One of its basic operations is to accept primitives such as points or 

polygons and convert them into pixels though the OpenGL graphics pipeline.  

For selection and picking of various primitives OpenGL provides a selection 
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rendering mode. However, other techniques exists to offer more flexibility, here 

every primitive is rendered in a unique colour while in selection mode. Then 

each single pixel colour, under the current mouse location is examined to 

determine whether that primitive is selected. 

This work is an attempt to integrate and utilize the PDE method as a toolkit in 

the design and manipulation of aircraft geometry. For more complex 

configurations more aircraft parts need to be included in the system to improve 

the overall representation of the final geometry.  Images of existing airplane 

geometry have been used as a guideline to understand various model designs.  

Figure 4.1(a) below shows the main parts of a Boeing 737 used in the current 

application. Figure 4.1 (b) contains a generic PDE surface aircraft configuration 

designed in the current application. The creation and manipulation of each body 

part will be described in the following sections. 

 

(a) 

 

(b) 

Figure 4. 1. Template shape of Boeing 737. (a) 
A representation of a generic PDE-based surface aircraft configuration. (b) 
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4.2.3.1 The fuselage 

The first step in the aircraft design process is the fuselage creation. 

The fuselage is the main body section of an airplane that holds crew and 

passengers or cargo.  The interactive platform allows the user to select the 

number of curves that represent the fuselage, the distance between them and 

the length of the two diameters, minor and major axis, of each of the curves, as 

shown in Figure 4.2 (a). These parameters serve as the initial configuration of 

the fuselage shape. The initial number of curves will also play an important role 

in the construction of the PDE surface since a single 4th order PDE surface 

requires four curves; the first and last curves are the boundary conditions 

describing the position of the surface whereas the rest of the curves determine 

the overall shape of the surface.  The fuselage surface in each configuration is 

designed with two PDE surface patches blended together. For this case the 

PDE method requires seven curves as input.  The first four curves define the 

first PDE surface or patch, while the last curve of the first patch combined with 

the rest of the curves will define the second PDE patch, as shown in Figure 4.2 

(a). Although the current version of the application is capable of producing up to 

two blended PDE patches for each aircraft part, more patches can be 

implemented. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. 2The parametric fuselage component construction process. Initial curve configuration  
for the fuselage (a). Interactive manipulation of the fuselage (b) (c). 

PDE-based surface representing the fuselage (d). 

 

After these curves are inserted in the system, a cylindrical shaped template 

surface is constructed as the initial fuselage (Figure 4.2 (d)). Figure 4.2 contains 

the steps for designing the fuselage. Figure 4.2 (a) shows the initial cylindrical 

template used for manipulation. Simple transformations such as translation and 

scaling are applied to each curve separately to adjust the overall shape, Figure 

4.2 (b) and (c).  Additionally, the system offers various tools for interactive 

design; these include general transforms that can be applied to each curve in 

design mode. The user can choose a transformation method and select a curve 

from the rendering window; a transformation axis that controls the direction of 

the movement over the x , y  and z coordinates is displayed to guarantee better 

manipulation. When the fuselage has reached the desired shape, a surface 

generation function is available to calculate the PDE surface for the current 

curve set configuration. Figure 4.2 (d), consists of two PDE surface patches 

blended together in order to increase the shape control and the representation 

of the final geometry.  
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4.2.3.2. Constructing the wings geometry 

The next step in the aircraft design process is the construction of the wing 

configuration. The wing component construction follows the same steps as with 

the fuselage generation process. An additional step is required for constructing 

the initial curve-set on the fuselage surface. The first curve of the template wing 

curve-set will be projected automatically on insertion to the fuselage surface in a 

way that the resulting surface will be blended to it [17].  

First, the exact position of the surface that will be blended needs to be 

examined, as illustrated in Figure 4.3 (c). Any chosen point in the ),( vu  

parametric space will be mapped to a point on the surface. Thus, by creating a 

curve on the parametric domain, points on the surface can be identified and 

generated on the required curve. Note that any planar curve drawn in the ),( vu  

parametric space will be guaranteed to lie on the surface.  The new curve can 

be manipulated by the user, where simple transformations such as scale and 

translate are applied directly to the ),( vu  space where the curve is projected. 

Every time the curve is adjusted, the transformations will be applied to the 

projected curve. This technique ensures that the wing geometry will always lie 

on the target surface, which in this case is the fuselage, blending together the 

two surfaces in question.  
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(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e) 

 

(f) 

Figure 4. 3. Construction of a generic aircraft shape. Fuselage curves (a). Two patches fuselage 
object (b).The initial curve for the wing (c). The generating curves of the wing (d). Wing and 

fuselage objects blended (e).  The final basic shape of the airplane (f). 

 

Once the initial position of the curve, Figure 4.3 (c), is defined according to the 

aircraft model requirements, the process continues with the insertion of the 

remaining wing curves aligned in that position.  This set of curves can be 

individually transformed to achieve the required shape for the wing. Figure 4.3 

(d) shows a pre-configured set of curves representing the wing part of the 

airplane. When the wing curve configuration is complete, the system can 

produce the resulting PDE surface representation for the given boundary 

conditions as seen in Figure 4.3 (e). In order to complete the construction of the 

wing geometry, the new PDE surface needs to be reflected to the opposite 

direction (Figure 4.3 (f)). This can be achieved by mirroring all the vertices of 

the current mesh to the desired wing axis direction. These new data can be 

used to store and display the new of the wing surface. 
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4.2.3.3 The PDE surface representation of the tail 

The last step, depending on the aircraft configuration in question, involves the 

design of the rear tail wings. The process is the same as described in previous 

section; a curve will be projected on the fuselage surface to define the initial 

position of the tail wing shape, Figure 4.4 (a). A new curve-set aligned to that 

blended curve will be inserted and manipulated in order to achieve the desired 

shape. Figure 4.4 below contains all the necessary steps for the rear tail wing 

construction process.  Steps a, b and c are required to design the vertical tail or 

vertical stabilizer, whereas steps d and e contains the construction of the 

horizontal stabilizers of the aircraft design.  

 

 
    

(a) (b) (c) (d) (e) 

 

Figure 4. 4. Construction of the PDE–based rear tail wing component. Creating the initial 
position of the wing part (a). Initializing and manipulating curve-set representing the wing (b).  

The PDE-based representation of the wing surface (c). Designing the side wings (d)(e). 
 

 

4.2.4  Applying transformations 

Surface manipulation  is carried out intuitively in an interactive environment by 

using a set of parameters which are associated with the boundary conditions 

[60]. A curve can be individually selected and manipulated within that 

environment by applying various transformations. Each transformation, such as 

translation, scaling or rotation, is based on parameters through which the user 
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is able to change the original shape of the curve to the desired shape by the 

user. To that extend, mouse coordinates are used and the parameter is updated 

accordingly in the axis the user has selected. Figure 4.5 shows the 

transformation axis that controls the transformation direction of selected curves. 

By selecting a transformation from the menu and a curve, an axis appears that 

controls the x , y  and z  coordinates of the chosen curve in the three-

dimensional space. The transformations used in this chapter are all examples of 

affine transformations. One of the essential properties of such transformations 

that need to be noted is that the curvature of an object will remain unaltered. 

Any affine transformations or combination of transformations can be expressed 

in homogenous coordinates in terms of a matrix as shown in the equation 

below, 
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where the ijm  in the matrix are constants for any given transformation. It can be 

shown mathematically that all combinations of rotation, translate and shearing 

are affine transformations. 

 

Figure 4. 5. The transformation axis 
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Each transformation updates the curves differently, for example scaling 

multiplies each axis by a given scaling factor that is calculated from the mouse 

movement, 

,
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where yx ss ,  and zs  are the parametric values that update the axes by 

multiplying with the original yx, and z  coordinates respectively to produce then 

new scaled curve. In the interest of rotating the curve around a specified axis, 

first the axis of rotation is selected for the transformation to take place and apply 

the formula with a given angle of rotation. For example, Equation 4.3, states the 

new coordinates of any given point of the curve after rotating it around the x  

axis by the angle e , 
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    (4.3) 

the translation of a curve is obtained by simply adding or subtract a point to any 

given point. The new coordinates of any given point on the curve are now given 

by Equation 4.4, 
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where yx tt ,  and zt represent the components of the translation point. 

These transformations are applied locally on the curves. In each case, the 

centroid of each curve needs to be calculated and used according to the 
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selected transformation .i.e. for scaling, the centroid need to be subtracted from 

each new point .  

The centroid C  is computed using Equation 4.5, 

,
...21

n

PPP
C n
      (4.5) 

where nP is the total points the curves contains in the zyx ,, and n  is the total 

number of points. 

4.2.5 Parametric manipulation of the aircraft geometry 

The curve generation process discussed in the previous section is responsible 

for dividing the aircraft design process into several designing steps, as well as 

including various tools for creating and manipulating the boundary curves. This 

section is focused on the manipulation of an existing aircraft configuration. One 

of the main advantages of using the PDE method in this work is that all the 

information required for calculating a surface can be found in the boundary 

data. The boundary data can be expressed as a set of curves that hold 

information about the shape of that surface. Once these curves are identified 

and extracted, the system will store them for representation and possible 

manipulation.  The system includes a set of pre-configured curves representing 

various models that can be loaded and visualised from the application’s main 

menu. Once a configuration is loaded, each part of the aircraft geometry can be 

individually selected and re-adjusted to generate new shapes or different 

configurations of aircrafts. The user can interactively select a transformation 

mode from the menu, such as translate or scale, and a directional axis for that 

transformation to take place, Figure 4.6. Each selected aircraft part contains a 

transformation axis different to the axis used before for designing the curves.  
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Rotation has been disabled since applying such transformation will deform the 

overall design. The new updated position will be then applied to each of the 

curves that are associated with the selected part; thus recalculating the PDE 

surface using the new updated boundary conditions.  

Figure 4.6 (a) shows the transformation vectors for scaling locally the fuselage 

component of the aircraft geometry. In this example, only the x and y  

coordinates are enabled to prevent deformations in the aircraft design process. 

The directional vectors will ensure that the transformation will take place only for 

the selected axis.  The shape of some of the curves is seen in Figure 4.6. They 

appear to be much bigger than the actual surface representation.   For the sake 

of guaranteeing a smooth surface, these curves have been used as the 

derivative conditions for the solution of the PDE method. Figure 4.6 (b), 

contains the resulting PDE surface for the fuselage after the scaling process. In 

this example the wing and rear tail wing components are detached from the 

main body since the transformation is applied only in the fuselage part of the 

aircraft. Blending any detached surface with the main body follows the same 

steps as discussed in the wing design section. This process requires projecting 

the starting curve of that surface to the ),( vu  parametric space of the fuselage 

geometry.  However, the required boundary data for the construction of that 

surface already exists in the system, thus making the process of blending two 

surfaces a very simple operation. The user will have to select the wing part and 

with the use of the keyboard directional keys, the initial curve will be projected 

as well as re-positioned on the fuselage in ),( vu  parametric space, ensuring 

surface continuity.  
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(a) 

 

(b) 

Figure 4. 6. Two vectors for controlling the fuselage shape, each vector transforms the 
associated surface patch (a). The resulting fuselage after the scaling, the wing and tail 

geometry needs to be projected to the fuselage to ensure surface continuity (b). 

 

The process of manipulating the wing geometry is subject to some restrictions; 

only one transformation vector is available for global manipulation of this 

particular curve-set (Figure 4.7 (a)). This vector, which acts as a handle, 

translates or scales the selected curve-set in that particular direction; while the 

new generated surface will be automatically blended with the fuselage. Once 

the manipulation of the wing part has achieved the desired shape, the user can 

reflect the surface on the opposite side of the fuselage and therefore finalize the 

construction. Additionally, each curve of the selected aircraft component can be 

modified individually. Figure 4.7 (b), shows the local translation of the last curve 

of the wing configuration. The transformation process for each mode is different. 

For example, local manipulation of the starting curve of the shape is not 

possible, since that curve needs to be projected onto the fuselage surface and 

re-position the rest of the curves for that surface. This process can be also 

applied to manipulate the horizontal and vertical rear tail wing component 

according to the aircraft configuration. 
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(a) 

 

(b) 

Figure 4. 7. Transforming the wing geometry. 
Global manipulation of the wing configuration (a). 
Local manipulation of the wing configuration (b). 

 

This technique gives us the advantage of modifying the overall shape of an 

existing aircraft design by simply applying a series of transformations to the 

boundary curves. The aircraft geometry can be re-evaluated each time the 

boundary curves are adjusted. The use of the PDE method, results in a surface 

that can be re-computed with different resolutions only by adjusting the 

resolution of the vu,  parametric space the surface lies in. The advantage of this 

operation is that it minimizes the storage requirements while maintaining the 

quality of the output surface, since only a small set of control points is required 

to reproduce that surface.  Next section contains various PDE-based aircraft 

configurations constructed using the PDE aircraft designer system. 
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4.3 Examples 

4.3.1 Delta wing configuration 

Figure 4.8, consists of a delta wing configuration airplane. This configuration 

requires following the steps explained in the previous sections. The procedure 

is described in different steps in Figure 4.8. The first screenshot shows the 

construction of the wing curves on one side of the aircraft. As discussed before, 

the first curve of the set needs to be projected onto the fuselage surface to 

ensure surface continuity.   This curve will be used as a guideline for the rest of 

the wing curves. Once all the new wing curves are inserted into the system, the 

shape of the curves can be modified by applying a series of transformations.  

The wing geometry will be computed and visualised using the PDE method. To 

complete the wing configuration, the resulting PDE surface must be reflected on 

the opposite side of the fuselage. This operation will generate a mirrored curve-

set of the current wing configuration and generate a PDE surface for these new 

boundary data.  Depending on the desired aircraft configuration additional steps 

might be required; Figure 4.8 (b) and (c) shows the construction of the 

horizontal and vertical tail geometry by applying the same technique of local 

and global transformation of the boundary conditions. Finally all the parts are 

constructed and rendered in the application as shown in Figure 4.8 (e). 
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(a) (b) 

  

(c) (d) 

 
(e) 

Figure 4. 8. Constructing a Delta wing aircraft configuration. 
Creating the left wing part (a). Reflecting left wing to the right side (b).Creating side wing  
tail parts (c) (d). Final PDE-based surface representation of a delta wing configuration. 

 

4.3.2 Double delta configuration 

The second example shown in Figure 4.9 contains a double delta wing 

configuration. An alternative approach for constructing such configuration will 

require loading the previous delta wing configuration and manipulating the 

already existing geometry. The major difference in this design is the double 

delta shape of the wing components and in order to achieve such a 

representation, the wing curves need to be initialized with 7 curves. This extra 

information will produce a two-patch PDE surface, thus giving more flexibility 
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over the manipulation of the geometry. A series of global and local 

transformations need to be applied to the curve set so that the desired double 

delta shape to be achieved. Figure 4.10 show various configurations designed 

using the plane designer application. The engine component is an additional 

part that can be inserted from within the application. It consists of a set of four 

cylindrically shaped curves that can be transformed only globally. This part is 

used here only for visual purposes and it can be improved to include various 

pre-configured engine designs. 

 

Figure 4. 9. Double delta wing configuration. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure 4. 10. Various PDE-based aircraft configurations. 

 

4.4 PDE Maya plug-in 

The next examples focus on the integration of the PDE method to different 

technologies. This application was originally developed by Eyad Elyan [61] as a 

Maya plug-in for constructing PDE surfaces. An expansion of later work has 

been carried out as part of this project; this included the manipulation of PDE-

based polygon surfaces using the PDE method. Maya is a popular modelling 

and animation CAD package that contains various tools for the interactive 

design and manipulation of mesh surfaces. From an implementation point of 

view, the system requires a set of minimum four curves.  More complex shapes 

will require higher number of curves and tools than will enable manipulation of 

control points.  Availability of such tools within a visualization environment 

enables the user to create and control curves with more ease. The aim of this 

work is to utilize Maya’s functionality in the creation and manipulation of PDE 

surfaces as well as enable the use of PDE surfaces from within the application. 

The integration of the PDE method was achieved using the Maya Software 

development kit (SDK) [62] that contains a rich set of tools that makes possible 

adding new functionality to the software. The SDK includes a Maya C++ 

Application Programming Interface (API) that provides functionality for adding, 

querying and changing Maya objects to create optimized and robust tools [63]. 
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The use of the  API, adds new functionalities to Maya such as: commands, 

shaders, animation nodes, graphical manipulators, geometry shapes, dynamic 

fields, particle emitters and any type of custom node. Figure 4.11 below 

contains an example of PDE surface constructed in the Maya environment with 

the use of the Maya PDE Plug-in. 

 

Figure 4. 11. PDE surface calculated between 0 to   domain. 

 

4.4.1 Integration of the PDE method 

The plug-in is utilizing the Maya node based system, which implements various 

commands for rendering, animation and modelling [64]. These commands are 

available from the C++ API and enable accessing the contents of a Scene 

graph, selection list and various other functions that can be used to 

communicate with the user’s input and generate a PDE based geometry. Maya 

is a very efficient database for storing graphical information. All the information 

is stored in the Dependency Graph (DG) [62]. The Dependency Graph is a 

collection of entities or nodes connected together. Connections in the graph 

allow data to move from one node to another. In summary, the DG is the heart 

of Maya, while it performs the typical rendering, modelling and animation; it also 

handles the communication between multiple networks of nodes.  All objects in 

a scene and their data connections are represented by nodes and connections 

in the dependency graph. Nodes have properties called attributes that store the 
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configurable characteristics of each node. Similar types of attributes can be 

connected together, letting data flow from one node to another.  A node has a 

set of input and output parameters that define its characteristics. One node’s 

output could be an input for another. Several nodes can connect to each other 

to inherit their attributes. This data flow between different nodes can be used as 

construction history where if only one of the inputs of a node in the Dependency 

Graph is changed, it affects all the connected nodes in the hierarchy. There are 

various types of nodes that can be programmed, some of them are: 

 Geometry deformers, contain various tools to enable surface 

manipulation. These include linear and non-linear deformers such as 

lattice, wrap and twist, bend, wave, sine etc. 

 Dynamics emitters. These enable dynamic simulation by utilizing 

particles to create various effects such as waves, fire etc.  

 Shaders (including hardware shaders). Various shaders nodes can be 

connected to each other for creating surface materials such as 

Anisotropic, Blinn, Lambert, Phong etc. 

 Shapes. Includes various pre-build shapes such as sphere, cube, 

pyramid, cylinder, torus etc. 

 

Taking advantage of the Maya Node system [63], the application generates a 

PDENode that takes as an input parameter a set of minimum four curves in the 

3D space and outputs a PDE surface object. Once the PDE node receives the 

input curves from the selection list of the DG, it will calculate the PDE method 

for the given boundary conditions and visualise the resulting geometry in the 

Maya viewport. Every change in the boundary curves will trigger the PDE node 
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to re-calculate and display the new updated PDE surface in real time. 

Additionally, a new panel will be added in the Attribute Editor containing 

parameters for adjusting the PDE method.  The user can manually update the 

u  and v  coordinates in the parametric domain of the output geometry, resulting 

in smoothing the surface. The editor panel can also control some internal 

parameters that affect the PDE method. Figure 4.12 shows a PDE cylinder 

evaluated in different resolution levels created from adjusting the vu,
 
parameter 

domain. Other parameters include updating the number of control points per 

curve, specify the range v  between of 0 – 2 and changing the mode of the 

PDE solution. Note that the mode of the PDE solution can be adjusted from the 

graphical interface in the Maya environment and can control the approximation 

of the resulting surface to the boundary conditions.   

   

Figure 4. 12. Cylindrical PDE-based surface obtained though the Maya plug-in  
developed in this work. Surface resolution 10x10.(a) The resulting PDE surface using a  

 resolution  equal to 20x20 resolution.(b) 50x50 resolution.(c) 

 

The Figure 4.13 (a) below shows the initial boundary conditions required to 

compute a two-patch PDE surface, shown in Figure 4.13 (b). Additionally, the 

user can control the boundary curve in order to further manipulate the object. 

Simple affine transformations such as rotation or scaling can be applied directly 

to the curves to control the shape. The PDE method is then re-calculated every 

time the input parameters are updated. The output node can be connected with 
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a custom rendering node to control the appearance. Maya provides various 

rendering nodes that can enhance the quality of the rendering, as well as create 

various effects such as wood, metal, plastic, water, etc which can be used 

directly onto the PDE surface. 

 

    

Figure 4. 13. Manipulating PDE geometry. 

 

An example of a more complex geometry is presented below in Figure 4.14. 

Here the curves showed in Figure 4.14 (b) represent a region of a 3D scan 

mesh shown in Figure 4.14 (a). The face has been segmented into meaningful 

regions such as eyes, nose, mouth etc. Each region is controlled by a set of 

curves; a total 28 curves generate 9 PDE surface patches. Figure 4.14 shows 

three different resolutions of the same object.  The user can choose between 

several versions of the same object depending on the end-user need. 

Additionally, only a small set of control points is required to calculate a surface 

representation. The Figures 4.14 (c) (d) (e) have been calculated using a 

resolution of 10 x 10, 20 x 20 and 50 x 50 in the discretized u , v  resolution 

accordingly. 



118 

 

 

(a) 

 

 

(b) 

 

(c) 

 
 

(d) 

 

(e) 

Figure 4. 14.  The original scan model of a face (a). The boundary curves that represent the 
face geometry (b). The PDE-based surface representation of the scanned face evaluated in 

three different resolutions (10x10, 20x20 and 50x50 respectively) (a, b, c). 
 

 

4.4.2 Global manipulation using the PDE Maya plug-in 

As mentioned before the PDE Maya plug-in was developed by Eyad Elyan [61] 

as a toolset for constructing PDE surfaces in Maya. His work was expanded to 

include global PDE and mesh surface deformation capabilities [65]. A new 

technique has been introduced to manipulate both PDE and polygon surfaces 

using the PDE method; this technique can be used as a modelling tool to 

manipulate globally the geometry of complex surfaces.  

This new feature requires a given polygon surface or a set of curves and a 

constraint curve positioned where the global manipulation is required. The 
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process consists of generating a set of curves around a given mesh by using 

the constraint curve as a guideline. The user is able to design a curve around 

the area that need to be modified, this curve will be used as the constrain curve 

and as a handle for the manipulation of that surface. The constraint curve is 

duplicated to generate three additional curves; the bounding box of the mesh is 

computed to identify the minimum and maximum points of the object. Each of 

these new curves will be then positioned inside the bounding box; the order is: 

First and last curve will be placed in the maximum and minimum position of the 

bounding box accordingly. The second curve is the constraint curve and third 

curve will be the difference of the first and second curve, Figure 4.15 (b). Next, 

the PDE surface is computed, Figure 4.15 (c). The resulting surface has a 

cylindrical shape that contains the input mesh object. Note that the local PDE 

surface and the control curve set contained in Figure 4.15 (top), are not visible 

to the user and they are only used internally for manipulating the input 

geometry.    

The constraint curve is internally linked to the computation and transformation 

of the new cylindrical PDE surface and it will dynamically reconstruct and 

manipulate the object every time its control points are adjusted [66]. It is used 

as a handle to control the transformations of the geometry. The global 

manipulation of the mesh is achieved by associating each point of the mesh 

model with the nearest point of the PDE surface; and finding the difference 

between the PDE surface and the target mesh for each point. Manipulation is 

carried out by adding that difference to each point of the original mesh model 

according to the mapping correspondence previously found. This ensures that 

the position of all the translated points of the PDE surface will be transferred to 

the corresponding on any given mesh. 
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Figure 4.15 (bottom), shows various examples of surface manipulation. The 

user can directly manipulate the control curve or a set of control points to 

achieve the desired shape. Additionally, the number of control points in the 

constraint curve can be increased to improve the results of the manipulation. 

That will generate more points on the PDE surface, which in return produces a 

better association and a smoother deformation of points between the two 

surfaces. Various properties that define the PDE surface can also be adjusted 

from the PDE panel in the Maya environment. The resulting mesh can be re-

processed again by repeating the procedure as many times as needed. The 

choice of a different constraint curve results in a different PDE configuration and 

can enhance the overall manipulation. 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 4. 15. PDE-based global deformations of a mesh surface. 
Initial mesh surface and constraint curve (a). Boundary curves representing the local PDE-
based surface (b). The local PDE-based surface used for the deformation (c).Examples of 

global deformations (d, e, f). 

 

Although the technique has been applied directly to polygon surfaces, it can be 

used for PDE surface as well. The process follows the same steps, with the 

exception of using a set of curves instead of a mesh for input geometry. The 

input curve set is used to calculate the PDE surface that represents the mesh 

for manipulation. The procedure is afterwards the same: another set of curves is 

generated and used to calculate a local PDE surface that includes the mesh for 

manipulation.  And lastly the association of every point of the two geometries is 

used to manipulate the surface. 

4.5 Examples 

Examples of PDE based global manipulation are shown in Figure 4.16. The 

objects have been deformed using the PDE Maya plug-in; the face in Figure 

4.16 (c) (d)  shows the global transformation of the nose area. A set a control 

points are selected and translated in the x  axis direction, the deformation 
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occurs in real time and it is controlled by an inner PDE surface that is 

recalculated every time the curve is adjusted by the user. 

 

 

 

(a) 

 

(c) 

 

 

(b) 

 

(d) 

Figure 4. 16. Original Stanford bunny model (a). PDE-based surface deformation of the  
Stanford bunny model using a global scaling (b). Original human face model (c). Deformations of a 

human face model by selecting control points on the constraint curve( d) 
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4.6 Conclusions 

The surface generation software presented in this chapter has been designed 

for the construction of generic aircraft shapes. The surface representation is 

based on the PDE method and is fully parameterized so that completely 

different aircraft configurations can be generated. Unlike other techniques, the 

PDE method can parameterize complex surfaces in terms of a small set of 

design variables, instead of hundreds of control points. The shape of the 

surface is then defined through boundary conditions and a small set of design 

parameters. Taking a boundary value approach to the problem of surface 

design has the advantage that most of the information required to define a 

surface is contained at the boundary or character lines representing that object. 

The representation and the control of aircraft shapes is achieved through the 

adjustments of parameters associated with the curves. Thus, the user can 

interactively transform the parameters and change the shape of the aircraft 

without having any knowledge of the mathematical theory behind the PDE 

method.  

The software is designed in a user friendly interactive manner in order to allow 

the user to design and manipulate any aircraft configuration in real time. Future 

improvements may include: additional aircraft parts, various tools for designing 

accurate airplanes such as the addition of materials, colours and textures to the 

airplane surface to make it look more realistic while exporting 3D objects in 

various formats so they can be used within commercial CAD packages. Future 

work could also be undertaken in either aircraft simulation by using a dynamics 

engine or a stress/strain analysis; for instance, simulating an aircraft under 
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severe weather conditions or applying stress analysis to determine the stress in 

materials and structures subjected to static or dynamic forces.  

The aim of this second technique presented here is to expand the PDE method 

capabilities to enable surface deformation and offer an easy way of constructing 

and transforming PDE surfaces within a 3D environment. This has been 

achieved by providing a graphical and user friendly toolset within the Maya 

environment to generate and manipulate complex geometry in real time. The 

PDE surfaces can be either deformed locally, by adjusting the control points of 

the boundary curves that is associated with; or globally by using an internal 

PDE surface, controlled by a constraint curve to calculate the difference 

between these two surfaces and add it to the original mesh. The technique is 

still under development and there is still room for improvement. Future work 

includes a better inner PDE configuration to improve the association of the two 

geometries and the overall deformation as well. Additionally, interactive 

selection of various areas can be integrated to enable direct local based 

deformations of a given mesh. 
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Chapter 5: On the development of PDE-based animation 

5.1 Introduction  

Animation of a human character is a crucial problem in computer graphics. 

Depending of the end-user application, the geometric model resembling a 

human is subject to different constraints.  For instance, one of the major tasks 

within the video game industry consists of minimizing the computational cost 

while keeping the motion as realistic as possible. To that extend, there are 

various constraints to take into account when modelling a motion such as 

external forces or adapting the gait to the environment. In other fields of 

computer graphics such as video and films, the requirements are realistic 

animation of detailed and accurate models without caring about the computation 

cost since the rendering takes place in real time. Nowadays, several 

commercial packages provide the user with tools that automatically generate 

human-based animation and can manage motion-capture data.  Animating 

complex models such as humans is usually done by creating a simple 

representation of the model, called skeleton. The motion is first computed for 

the skeleton, which can be displayed and manipulated interactively within a 

CAD or a visualization environment. Once the animation reaches satisfactory 

levels, it can be applied to a human character model as a “skin”; the surface 

representing the character model. Some of the requirements that must be taken 

into account before modelling a cyclic motion are: 

 The character animation must look realistic. 

 Animation must react and adapt to the surrounding environment. 

(Collisions, terrain slope. etc). 

 Animation must allow changes in the motion of the character. (Lifting 

weight, external forces, etc.). 
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These requirements can be less or more important, depending on the end-user 

application. In virtual environments for example, environment adaptation and 

interaction is more important than computing realistic forces and torque.  The 

aim of the chapter is to examine various techniques for computer graphics 

animation, as well as introducing new techniques for generating PDE-based 

cyclic animation. 

5.1.1 Key-frame systems 

Key-frame was originally developed by Walt Disney to generate traditional 

animation [67]. In such systems, animators would design a particular sequence 

by drawing frames that establish the animation. The realism and the quality of 

the animation were depending entirely on their skill to animate realistically a 

character they had designed. This technique was later implemented in 

computer systems, where the animator could interactively create and adjust 

key-frames as a sequence of loops.  In computer animation the term key-frame 

applies to any variable whose value is set at specific key-frame and its values 

for the intermediate frames are interpolated according to some procedure. 

These systems usually provide an interactive interface from where the animator 

can specify the key values and the desired interpolation technique [68]. A 

common procedure to generate animations consists of generating different 

series of key-frames and using various interpolation techniques to approximate 

the in between positions.  Various methods have been developed to 

automatically generate series of key-frames based on the basic human motion 

mechanisms, thus providing parameterization of the resulting motion [69]. The 

motion can be controlled by parameters such as step length and step 

frequency. A key-posture is associated with each key. These postures are 

linearly interpolated to produce the in-between angular values. While 
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interpolation of key-frames remains a fundamental technique for most animation 

systems, as a standalone technique for animating contains various 

disadvantages. Some of them are: 

 It is only suitable for simple motion of rigid bodies. 

 Special care must be taken to ensure that no distortions on the 

surface are introduced. 

As the need for more complex animation increased, new techniques were 

introduced   to automate the generation of human-based animation.  Some of 

them will be presented in the following sections. 

5.1.2 Articulate figure animation 

Articulated figure animation which is based on Forward/Inverse kinematics, 

became popular since it relies on the understanding of the basic human motion 

mechanisms [70]. An articulated figure also called “skeleton” is a hierarchical 

structure that consists of a series of rigid links connected at joints as shown in 

Figure 5.1.  Thus, the quality of the motion is based on the quality of the model 

representation or skeleton rather than on the artist’s skills.  Most of the theory 

on kinematic animation in computer graphics comes directly from the field of 

robotics. Robotics is concerned with all types of joints in which two links move 

relative to one another; whilst the computer graphics approach is mainly based 

on revolute joints (one link rotates about a fixed point of the other link). These 

links are usually considered to be pinned together and the link further down the 

hierarchical chain rotates while the other one remains fixed.  

Structures with more than one degree of freedom are called complex joints. 

These include planar and ball-and-socket joints. Planar joints are the ones with 

one link slides on the planar surface of another. Whereas, a ball-and-socket 
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joint is capable of motion around any number of axis, enabling it to rotate 360 

degrees. Usually, when a joint has more than one degrees of freedom (DOF), 

such as ball-and-socket joints, it is modelled as a set of n  one degree of 

freedom joints connected by 1n links.  

 

 

Figure 5. 1. Skeleton system 

 

The representation of a hierarchical model is usually done by a tree structure of 

nodes linked together by arcs. In this representation, the highest node of the 

tree is called the root node. The position of all the other nodes of the hierarchy 

is located relative to the root node. A node that is higher up in the hierarchy 

than another node is called a parent node and the one below is called the child 

node. In the tree structure there is always a root arc that represent a global 

transformation to apply to the root node and to all of the nodes in the tree. 

Changing this transformation will re-position the entire structure. The animation 

of articulated structures in human animation usually falls into one of the two 

following categories: Forward and inverse kinematics. 
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5.1.3 Forward kinematics 

In forward kinematics the motion of all joints is specified by the animator. The 

motion of the end effectors (hands and feet) can be determined indirectly as the 

accumulation of all the transformations that lead to that end effector [70]. In a 

case of animating a figure’s foot, the motion is computed from the combined 

effect of the transformations at the hip, knee and ankle. Equation 5.1 below 

shows  the function for calculating the new position x  for a given angle, 

 

),(fX 

     

(5.1) 

where x  derives from given angle  .    

In this formulation, the hierarchy will be evaluated by traversing the tree 

according to the setting of the joint’s parameters from the root to the child 

nodes. The traversal will search the tree until an unprocessed downward arc is 

found.  If the arc is found, it is processed and the traversal continues to the next 

unprocessed arc. The procedure is continued until all nodes and arcs have 

been visited. 

The main disadvantage of using forward kinematics exclusively is that it 

requires manual design of the poses that need to be processed.  In the case of 

a human model the animator will have many transformations to control for each 

body part, which may prove to be too complicated. The procedure of getting the 

model to the final desired position by specifying joint angles can be a very 

difficult task for the user; a task which often is a trial and error process. 

Additionally, the use of forward kinematics makes difficult to add constraints to 

the motion, for example specifying that the feet should not penetrate the ground 
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during a walk cycle. In many cases, available biomechanical data can help to 

automate the generation of key frames, while interpolation techniques are used 

to generate the in-between positions.   

 

5.1.4 Inverse kinematics 

In this technique the animator defines the position of the end effectors only. It is 

used in applications where the movement of the end effector drives the 

animation of the hierarchy. Such an animation includes everyday motions such 

as running, walking or arm positioning. Attempts to animate such movements 

using forward kinematics can prove difficult. The procedure of generating the 

animation by inverse kinematics consists of placing the figure in a sequence of 

desired poses closely spaced in time and space, giving the illusion of motion.  

For each of these given poses, the joint angles that are required to maintain that 

configuration are calculated analytically.  Given an initial pose vector and the 

final pose vector, intermediate configurations can be formed by interpolating the 

values of the pose vectors.  Equation 5.2 below shows the function for 

calculating the angle that is required to move the joints by specifying the 

position,  

),(1 Xf 

  

   (5.2) 

where  angle   is found from the given position X . 

 

Inverse kinematics is considered a hierarchical network of nodes or skeletal 

structure. When travelling down the hierarchy from the root, every node is 

accessible, while moving up the hierarchy from any node always leads to the 

root node. Inverse kinematics can be applied between any nodes in the 
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skeleton and can specify the position and orientation of all nodes between the 

end node and the base node. Note that the node corresponding to the end 

effector, also called the end node, is lower down the hierarchy than the node 

corresponding to the base node.  This can be seen as a constraint which 

inverse kinematics tries to satisfy. This constraint can be used independently 

between the skeleton system and the virtual environment by keeping the joint 

limits correctly constrained while carrying out a particular action. 

Most of the kinematic approaches used for generating human-based animation 

rely on a combination of forward and inverse kinematics for computing the 

motion.  One of the main advantages in these kinematic models is the high level 

of parameterization they provide. Attributes such as position, velocity and 

acceleration can be included in the computation, leading to the generation of 

different gaits. Additionally, they can offer low computational cost, for example 

the complexity of inverse kinematic algorithms is )( 3nO [71] depending on the 

number of joints. Obviously the inverse/forward kinematics approach is not the 

only factor involved in animating of articulate structures. The motion of rigid 

joints is not always suitable for natural articulated structures. In the case of 

vertebrate mammals, the motion occurs from the flexing of the spine, which is 

not a rigid joint. Different approaches exist to generate animation that can 

guarantee realism will be discussed in later sections.  
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5.1.5 Dynamics animation  

Dynamics animation can add various constraints to a predefined motion or can 

directly generate a cyclic motion such as a walk or a run. The simplest form of 

dynamics animation is where a mathematical model is used to manipulate the 

geometry of a surface as well as its movement. In these models various 

dynamics theories are used to calculate surface deformation or collision 

behaviours with another object. Fundamental laws of dynamics are applied to 

an articulate hierarchical structure to improve the realism of the motion. Various 

examples that are using this technique include flocking animation [72], crowd 

animation [73] , cloth animation [74], simulating water animation [75] and fish 

locomotion [76]. In the case of fish locomotion, the motion can be calculated as 

a sinusoidal function with different levels of amplitude. In this particular case, an 

analytical model can be used to simulate the forces that produce the motion.   

An example of fish animation can be found in [76], where factors such as social 

behaviour and collision with external objects have been included in the 

calculation of the motion. This work uses a mesh representation of a generic 

fish and adopts a spring mass model that calculates the natural movement of 

the fish as well as the collision response. The spring model consists of four 

springs called motor controllers that control the amplitude and the speed of the 

movement. Generally, spring-mass models are solved using numerical 

techniques such as the semi-implicit Euler method [77, 78]. Such numerical 

methods can be either slow or prone to numerical errors, which may lead to 

inaccuracies affecting the geometric model. One of the main advantages of 

using such approaches is that the motion is produced from visually observed 

and controlled data which leads to a more realistic calculation of the motion. 
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5.1.6 Cyclic animation 

Understanding the interaction of various joints involved in the process of 

locomotion is a crucial step to produce realistic human based motion. Various 

every day actions such as walking, running or reaching for an object can be 

expressed as a form of a cyclic movement [79].  Walking, as an action, is 

responsible for translating the model from one position to another and at the 

same time maintaining balance and different gait characteristics.  However, in 

this case, dynamics plays a much more important role in the formation of 

walking motion than it does in reaching for an object. Knowledge of the walking 

motion can be expressed as a set of biomechanical data or a set of adjustable 

parameters that can be used as a global control mechanism for generating a 

distinct gait. Attributes such as stride length, hip rotation and foot position can 

be used to specify a particular pose. Additionally, kinematics is used to create 

constraints on various joints rotations such as movement duration and 

positioning, while dynamics forces and torques can be then added to the 

defined pose to satisfy these constraints and improve the physical movement. 

A cyclic animation is defined as a loopable animation of a character repeating 

an action, and can be used in a hierarchical structured animation to move a 

character along a path easily and realistically. The repetition of a phase 

sequence is called a cycle and the time taken to complete is referred as the 

period. Furthermore, a phase within a cycle can then be defined from a set of 

parameters responsible for a particular movement. For example, a duration leg 

factor can be used to describe the time elapsed between the moment the leg is 

on the ground and when it generates a distinguished locomotion. By animating 

a single cycle, rather than manually animating every footstep, the animator can 

save time. This technique is ideal for repetitive motions, such as a character 
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walking, running, swimming, etc. For example, in the case of walking, the 

character is animated taking a step with its right foot and then a step with its left 

foot. The loop is created so that when the sequence is repeated, the resulting 

motion is seamless.  

After examining the human walk in more detail (Figure 5.2), it can be 

characterized as a sequence of phases separated by foot strikes and takeoffs. 

A foot strike refers to the moment when the foot is in contact with the ground 

while a takeoff describes the moment when the foot leaves the ground. In gait 

terminology, a complete cycle from one takeoff to another takeoff is defined as 

a stride, while the cycle between the takeoffs of the two feet is called a step. 

Four foot strikes and takeoff events occur during a stride.  A run cycle can also 

be described as a sequence of phases. The main difference from a walk cycle 

is that there are phases where both feet are off the ground. 

 

 

 

Figure 5. 2.Sequence of phases for a walk cycle. 
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5.1.7 Spine animation 

Another approach for generating realistic animation is by utilizing the spine of a 

PDE-based surface. One of the many advantages of the PDE surfaces is the 

ability to create and manipulate complex shapes with ease. In CAD 

environments the user has little or no knowledge about the mathematics behind 

the calculation of a PDE surface and the manipulation of its boundary data. 

Thus, it is crucial to adapt a technique that allows surface definition as well as 

manipulation. The spine of a surface is an entity that characterizes the object’s 

topology and describes the object by a lower dimension [29]. It has a very close 

geometric resemblance to the object’s medial axis or topological skeleton. It is 

not widely used in CAD systems due to the lack of implementations that support 

spine generation procedures since the introduction of this types of surfaces is 

fairly recent. The spine of a surface can be represented as a cubic polynomial 

that can be used as a shape manipulation tool to deform the shape in an 

interactive manner.  Due to the analytic form of the solution used to generate 

the PDE surface, the spine of the surface can be computed as a by-product of 

the solution [80]. This outlines the advantage of using PDE surfaces since most 

of the parametric surface generation techniques have to calculate the spine 

separately.   

Utilizing the spine of a surface for producing animations can be classified as 

dynamics animation since it can produce and manipulate a motion by means of 

mathematical functions. Mathematical functions can be applied to the spine to 

generate oscillating effects on the surface. The surface can be then controlled 

by analytic expressions that will adjust the movement according to the input 

parameters. One of the main advantages of using PDE based spine animation 

is that a mathematical model is used to specify the geometry of a model as well 
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as its movement.  Additionally, the spine can be animated in a cyclic manner 

since the general mathematical nature of a motion can be expressed using a 

travelling wave advancing in the opposite direction of the motion. These types 

of wave like motions are more suitable for generating animation of vertebrate 

mammals, since the motion occurs from the flexing of the spine, which is not a 

rigid joint.   

In the case of the fish locomotion, the motion can be calculated as a sinusoidal 

function with different levels of amplitude. In this particular case, an analytical 

model is used to simulate the forces that produce the motion. More details on 

parameterizing fish locomotion using the PDE spine can be found in Section 

5.4.  In this example the fish movement is divided into four main categories. A 

mathematical function is then used to obtain the spine of the surface at different 

positions and parameterize the fish movement. Additionally, the motion of the 

fish is transferred from the PDE surface representation to an enhanced mesh 

model that representing the fish. 

 

5.2 Skinning 

Once the motion of the articulated figure has been defined, the next step is to 

attach it to a “skin” surface that will be controlled by the skeletal structure. This 

process is called skinning and is a mesh deformation technique that can be 

applied to soft body surfaces such as character figures and animals, as well as 

rigid surfaces such as robots. There are two widely used approaches for 

skinning a human character; surface and layered model. The surface model 

consists of a single outer skin surface, usually the human body model, and the 

skeleton structure that contains the animation. The human body model is 
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usually represented from either polygons or parametric patches such as 

NURBS or PDE surfaces.  

The most common surface skinning technique is linear blend skinning; which is 

a mesh deformation technique implemented in most modern 3D engines, most 

frequently used for characters driven by skeletal animation in computer games. 

In this case, only one input skin mesh is provided. The skeleton-to-skin binding 

is defined in a geometrical way. Every vertex of the skin surface is associated 

with one or more skeleton joints.  When a skeleton joint is rotated, the 

appropriate vertices are deformed to simulate the motion. Skinning a single 

surface is a fast method but it can generate several distortions on the surface if 

not applied accurately.  

Better results can be obtained with additional computation cost; weighting the 

vertices surrounding a joint can guarantee that their position is affected by 

multiple bones. While weighting the vertices can result in smoother skin 

deformations around the joints, severe distortions can still occur depending on 

the skeleton’s design. The placement of joints in the body affects the realism of 

the surrounding deformation. To avoid such distortions, joints need to be placed 

according to anthropometric data [81]. Additionally, replacing the linear blending 

technique with a more sophisticated blending technique can improve the 

skinning quality.  

Another common approach used for human skin deformation is the multi-

layered structure model. This technique was introduced by Chadwick, Haumann 

and Parent [82], their approach was to include an articulated skeleton, the 

surface geometry representing the skin and an intermediate muscle layer, which 

connects the other two together. The layered structure consists of three layers: 



138 

 

a skeleton layer, a muscle layer and a skin layer. The skeleton layer represents 

the skeletal structure of the human body, which consists of joints and bones. 

The muscle layer represents the muscular structure of the human body. Since 

the overall appearance of a human body is influenced by its internal muscle 

structures, the muscle model is the most crucial layer for realistic human 

animation.  

The muscle layer is implemented as a system of free-form deformation (FFD) 

[83] lattices in which the skin geometry is embedded. Its only function is to 

deform the surface’s geometry that represents the skin. The deformation of the 

muscle is controlled through the joint angles and torques generated by the 

skeleton layer, under the following restrictions: the points of the muscle on the 

bones must be attached during animation. These deformations will be attached 

and will deform the geometric skin surface to the skeleton. The FFD are 

designed to maintain continuity on the outside of the bones and create the skin 

bend on the inside of the bones. 

Finally, the skin or surface layer determines the position of the joints of the 

skeleton layer and the geometry of the muscle layer. The deformation of the 

skin layer during an animation occurs by associating the vertices of the skin 

surface with the joints of the skeleton and the muscle layer.   

The key advantage of the layered approach is that once a character is 

constructed, only the underlying skeleton needs to be scripted to generate the 

animation. The shape’s dynamics is then constructed automatically from the 

muscle layer. Additionally, the character layer can be used as a template to 

transfer the motion to other similar characters. Different approaches are based 

on a more anatomically accurate model of a human character, using bones, 
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muscles, tendons and fatty tissue in order to simulate a more realistic and 

articulated deformation of the motion of the human body [84]. 

 

5.3 Cyclic animation of human motion 

5.3.1 Introduction 

A cyclic animation involves the construction of  a sequence of frames that can 

be used for repetitive motions, such as  character walking, running or other 

actions contained in the background of the animation [69]. In this section we 

propose a modeling technique for producing cyclic motions of human body. The 

3D software used in this application for manipulation of surfaces and animation 

is Maya from Autodesk [9]. Maya is a popular, integrated node-based 3D 

software suite with an internal scripting language called Maya Embedded 

Language (MEL) [63].  The surface of the human body has been created from a 

set of pre-configured curves that were used as the set of boundary conditions to 

solve a number of PDE. These boundary curves are attached to a skeletal 

system that holds the animation for cyclic motions. An important function of the 

method described here is the use of mathematical expressions within Maya 

software for generating the cyclic motion leading to a very realistic movement. 

Additionally, with the use of a MEL script User Interface (UI), the user can 

interactively manipulate the position and movement of various body parts to 

achieve various cyclic motions or poses. Finally, the animation can be 

transferred to either the original mesh model from where the boundary curves 

associated with the PDE surface were extracted or to another mesh model with 

equivalent topology.  
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 Cyclic motion of a human model is usually achieved by animating first a simple 

representation of a human body. Usually, this is carried out by using a skeleton 

system to store and manipulate the animation. This technique, often referred as 

rigging, uses several “bones” or joints connected to each other to control the 

overall movement of the skeleton. The motion of the skeleton can be created 

manually by positioning the handles that control the joints to desired poses and 

then several interpolation techniques can be applied to generate the in-between 

positions. More information on these techniques can be found in [85]. A different 

approach on generating animation is by using expressions that control the 

movement of the joints which can create very realistic movement [86]. The 

animation in this work was created with the use of mathematical expressions in 

Maya that are included as script based instructions which allow the user to 

control the attributes of the objects. Expressions are useful for linking attributes 

between different objects where a change in one attribute can modify the 

behaviour of the other.  

Additional steps involve connecting the animation to the human model surface 

that will be used for the final animation. Once the mesh is skinned with the 

animation, every transformation applied to the skeleton will be applied directly to 

the mesh object.  Finally a new motion retarget technique is used for retargeting 

the animation to a different human mesh model, enabling the possibility to have 

multiple character objects sharing the same animation.  
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5.3.1.1 Previous work 

The problem that arises in animating human models consists of portraying the 

realism of the movement.  A number of previous works in the area have 

introduced new techniques for achieving realistic motion. These include: 

 An automated method for modelling cyclic 3D motion [87] using a new 

algorithm that enforces smooth transitions between the cycles by operating 

within the Fourier domain. A key point in this method is its ability to 

automatically deal with noise or missing data.  

 A method for learning and tracking human motion for video [88].This method 

converts large sets of periodic human motion data automatically into cycles. 

The learned temporal model provides a prior probability distribution over 

human motion that can be used for tracking human subjects in complex 

monocular video sequences and recovering their motion. 

 A technique that allows content creators to easily integrate virtual humans 

into Web3D virtual environments, such as X3D and VRML [89].This 

technique allows the user to interactively integrate virtual humans acting as 

formal instructors in virtual environments for learning or training purposes. 

For example, virtual humans can be used to show and explain maintenance 

procedures, allowing learners to receive more practical explanations which 

are easier to understand.  

 A three layer hierarchical control system for animating human avatars in 3D 

virtual environments [90]. The first layer controls the movement of the 

avatar’s joints, the second defines skills or basic behaviours and the third 

executes a behaviour-based script language that can be used to describe 

stories to be performed by the avatars.  
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To date, as far as the author is aware, the majority of techniques for animation 

of cyclic human motion have only been obtained using mesh models. The use 

of the PDE method [60] for surface generation provides several advantages for 

the manipulation of the surface.  For instance, once a surface has been initially 

defined, it may be necessary to manipulate it in order to improve the shape. 

Hence it is desirable to have control over the shape of the surface once it has 

been defined. For that reason, the PDE method gives us the advantage to 

represent a surface analytically, thus making the manipulation of that surface 

fast and accurate.  

The aim of this technique is to take advantage of the PDE method and use it as 

the foundation to develop a methodology in human body animation by applying 

expressions for generating animation with cyclic motions and also retarget the 

animation to different human mesh geometry. All the examples presented 

throughout this section have been created interactively in Maya.  

 

5.3.2 PDE-based parameterization of the human skin 

The surface representing the outer contour surface of the human body used in 

this work was obtained through the PDE method. Details on the complete 

formulation and solution can be found in Chapter 2.2.  

Autodesk Maya was used throughout this work to calculate and animate the 

PDE-based human body. An existing mesh model of a human body is imported 

to the Maya environment as a guideline to extract the boundary information 

responsible for generating the surface. The procedure used to extract the 

curves is explained in details in Chapter 3 Section 4. 
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Figure 5.3 (b) shows the complete curve-set for all the main parts of the human 

body that was used to generate the PDE surfaces in Figure 5.3 (a) and (b).  The 

human model is divided here in 5 main regions, torso, left arm, right arm, left leg 

and right leg.  Each region consists of its corresponding boundary curves and 

the resulting PDE surface accordingly. This surface is a close approximation to 

the original mesh. 

 

 

(a) 

 

 

(b) 

 

Figure 5. 3. Complete curve-set of human body. (a) 
The resulting PDE surfaces generated from the curve-set. (b) 

 

 

5.3.2.1 On the construction of an articulated skeleton 

Skeleton’s “bones” or joints  are very important for defining how a character 

moves [91].  A skeleton system is a hierarchical structure that consists of a 

series of rigid links connected at joints. The representation of hierarchical model 

is usually done by a tree structure of nodes linked together by arcs. The highest 

node of the tree is called the root node. The position of all the other nodes of 

the hierarchy is located relative to the root node. A node that is higher up in the 

hierarchy than another node is called a parent node and the one below is called 
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the child node. The human animation in this work is controlled from a skeleton 

system organized by a hierarchy of joints. This system defines the human body 

skeleton to which the bounding curves required for calculating the PDE surface, 

are attached and animated. The process consists of constructing a skeleton 

using the human character mesh model as a guideline.  In order to generate 

basic cyclic motions, the articulated figure consists of a series of connected 

joints representing legs, arms and torso. The skeleton hierarchy controls the 

movement of the figure and is used to transfer the animation to the “skin” data 

so that a given pose is produced [92, 93]. The skeleton shown in Figure 5.4 

contains the joints and several controls for different parts of the body, each 

control can manipulate the part of the body to which it is connected to. These 

controls will be later associated with a series of parameters used to control the 

motion and position of the joints.  

 

Figure 5. 4.  Articulated skeleton system used for PDE-based cyclic 
animation. 

 

5.3.2.2 Skeleton to skin binding 

Once the motion of the skeleton system has been defined, the next step is to 

attach the skeleton to a “skin” surface. This process is called skinning and is a 
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mesh deformation technique that can be applied to soft body surfaces as well 

as other geometrical primitives [94]. The skeleton to skin binding is defined in a 

geometrical manner. Every vertex of the skin surface is associated with one or 

more skeleton joints.  When a skeleton joint is rotated, the appropriate vertices 

are deformed to simulate the motion. Skinning a single surface is a fast method; 

however it can generate several distortions on the surface if not applied 

correctly.  

In this work, the “skin” surface is represented as a set of boundary curves that 

define the human character model. Given that the skeleton has been defined 

using the character model as a guideline, the extracted boundary curve data 

has to maintain the same position in the Cartesian space. Skinning is then 

performed between the articulate figure and the curve set in the Maya 

environment by binding each curve-set group to the correspondent skeleton 

joints. Figure 5.5 shows the boundary curves that represent the human body 

geometry attached to the skeleton system for animation. Further consideration 

must be taken when fitting the curves to the joints accurately [95]. Problems can 

occur if the curves are not aligned properly with the skeleton joints resulting in 

deformed surfaces as shown in Figure 5.5. The distorted surface in the arm 

area (shown in Figure 5.5) occurs since the starting point of each curve in the 

curve-set is not aligned properly, resulting in an unwanted wrapping effect. This 

problem can be solved during the extraction process of the curves, where 

techniques capable of sorting of curve points or aligning of curves can be 

applied. This has been discussed in Chapter 3.  
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Figure 5. 5. Boundary curves attached to the skeleton (a). 
 Example of distortions when skinning is not properly applied (b). 

 

5.3.3 Expression driven animation 

The next step involves the use of mathematical expressions to re-position the 

skeleton system for calculating the human based cyclic movement. 

Understanding the various phases involved in the process of locomotion is 

crucial to produce realistic human based motion. Various every day actions 

such as walking, running or reaching for an object can be expressed as cyclic 

motions.  Examining the human walk in more detail, it can be characterized as a 

sequence of phases separated by foot strikes and takeoffs. The repetition of a 

phase sequence is called a cycle and the time take to complete is called period. 

Furthermore, a phase within a cycle can then be defined from a set of 

parameters responsible for a particular movement. The animation in this work 

has been produced with the use of mathematical expressions that are included 

as script based instructions allowing the user to control the attributes of an 

object within Maya though MEL script. The control is based on a mathematical 

function, time variables or various attributes of an object. They can be used to 
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add various constraints to a predefined motion or can directly generate a cyclic 

motion such as walking or running.  

The general motion of the body parts involved in cyclic motion is controlled by 

periodic functions such as sines and cosines. Let x  be a coordinate 

independent to the described movement, y the coordinate describing the height 

of the human body and z the direction of the movement itself. Thus, the 

translation associated with a given cycle motion of any of the body parts 

involved is given by, 

,cos

sin

t)(T

t)(T

z

y








                          (5.4) 

where 
yT and 

zT are functions representing  the translation in y  and z  

coordinates respectively, t  denotes time and  the frequency of the 

movement. Note that as both directions are using the same frequency, their 

speed is also the same in both directions. The formula for animating the right 

foot using the above expressions are presented below, 
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where H  controls the height of the step and is applied to both feet and



HR  and 



HRF  are fine tune parameters controlling the step height of the right foot 

together with the initial height of the  right foot respectively. Note that these two 

parameters are generally set to zero by default. The L parameter controls the 

length of the step and is applied to both feet whilst LR  is a fine tune parameter 

adjusting the length of the step given by the right foot which by default is equal 



148 

 

to zero. The use of a minus sign in 
zT  ensures that the feet are moving in 

opposite directions and thus, the code responsible for modelling the movement 

of the left feet will use Equation 5.5 with a different set of parameter and without 

the positive sign.  

 

5.3.3.1 Designing movement 

The skeleton system consists of several constraints placed in key positions in 

order to individually control various joints. These constraints are associated with 

a series of parameters that are used to control the motion and the position of 

the skeleton structure. An important feature of the PDE-based human cyclic 

animation technique discussed in this section is represented by a script UI tool 

that add several functionalities for designing motion [86]. Once the skeleton 

structure is configured and attached to the boundary curves representing the 

human mesh model, the user can adjust various parameters linked directly to 

the skeleton. Figure 5.6 shows the script based user interface (UI) used to re-

position the skeleton joints and control the cyclic animation. The user can select 

the initial speed of the movement and the starting preset of the cyclic animation 

from the panel. The panel offers three default preset motions that can be 

adjusted from the various parameters. Figure 5.6 (b) consists of the parameters 

controlling the Walk and Run cycle. These parameters are linked to skeleton 

constraints required for manipulating basic characteristics of the motion such as 

the height and the length of each step or hip and shoulder rotation. Basic as 

well as advanced controls are available to adjust the cyclic motion or design a 

new pose for the skeleton system.  Once the motion is defined, the animation 

can be produced by pressing the animation playback button in the Maya 
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environment. The movement is initialized from these parameters and calculated 

for each frame of the animation cycle. The UI panel offers great advantages 

since it is simplifying the process of defining and controlling a human based 

cyclic motion. 

 

  

 

Figure 5. 6.The Maya script based UI used to control the cyclic motion. (a)  Controls used to 
manipulate walk and run parameters linked with the skeleton system. (b) 

 

Finally when an animation cycle has been defined over the PDE representation, 

the motion can be retargeted to the original human model where the curves 

where extracted or to a different human based mesh model with similar 

topology [96]. Given that motion is difficult to generate from scratch using 

traditional methods for different characters, the use of existing motions is a 

faster alternative to obtain the animation. Moreover, for each motion retarget 

process of the animation cycle, the final animated geometry is exported and 

saved in Maya for playback or further manipulation.  

The aim of motion retargeting is to transfer the motion created for one figure to 

another one with identical structure characteristics (arm length, torso size etc).  

When two figures share the same structure, the motion of one may not apply to 

the other and sometimes requires adjustments.  Adjusting various parts of the 
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PDE-based representation model to ensure topological alignment and preserve 

the motion is an important step.  Figure 5.9 shows a case where the armadillo 

model [6] contains a different topology from the PDE template representation.  

The torso area for example has completely different topology from the template 

character representation.  Moreover additional features such as tail, nails or 

body armour cannot be successfully aligned with the default PDE 

representation without some topological adjustments. The animation of this 

figure consists of retargeting the motion to the legs and torso area, the top area 

of the mesh model could not be retargeted without introducing distortions on the 

surface. The motion retarget technique will be discussed in more detail in 

Section 5.5. 

5.3.4 Results 

Figure 5.7 and 5.8 shows a sequence of frames taken from a walk and run 

cycle using the PDE-based technique discussed in this section for generating 

cyclic animation. The animation was retargeted to a different model by 

associating each point of the mesh model with the nearest point of the PDE 

surface. A motion retargeting technique was then applied to transfer the motion 

between from one model to another. Figure 5.9, contains a sequence of frames 

of a walk cycle of the armadillo mesh model. Motion has been applied in the 

torso and legs region of the mesh only, which is due to the complexity of the 

armadillo character object. This technique works better with human based 

characters since the PDE-based representation has been defined from a human 

character mesh model. A more generic PDE-based template for character 

representation can be used to eliminate such problems.  
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Figure 5. 7. Walk cycle. The motion has been transfer to the original human mesh geometry. 

 

 

Figure 5. 8. Run cycle. The motion has been transfer to the original human mesh geometry. 

 

    

 

Figure 5. 9. Sequence of frames of a walk cycle of the armadillo mesh model. 
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5.4 Fish locomotion 

5.4.1 Introduction 

Another example of animating PDE surfaces is presented in this section. This 

work is utilizing a fast analytic solution technique for simulating fish locomotion. 

The spine of the geometric model is fully determined by the analytic solution of 

the PDE used throughout this work and is exploited for characterizing the 

wavelike movements observed in fish locomotion. The animation of fish 

locomotion is a difficult task. It is a subject that has captured the attention of 

various areas including biology, fluid mechanics [78] and recently robotics and 

computer animation [76]. In computer graphics and animation a number of 

factors affect the accuracy of the simulation. Using traditional animation 

techniques require the manual specification of the motion (e.g. key framing, 

rigging) that can usually lead to poor results. Moreover, the difficulty to animate 

the characteristics of the fish locomotion encourages the development of new 

approaches. Techniques utilizing dynamics animation can add various 

constraints to a predefined motion as well as automatically generate the fish 

locomotion. In these models various dynamics theories are used to calculate 

surface deformation or collision behaviours with another object. Fundamental 

laws of dynamics can be applied to an articulated hierarchical structure to 

improve the realism of the motion. Unlike existing techniques for fish 

locomotion, which are mainly based on spring mass models, the proposed 

technique is fast and avoids unnecessary numerical errors.  

It takes advantage of the mathematical properties related to elliptic PDE 

surfaces. In particular, it uses the spine of the PDE surface to generate fish 

locomotion. The spine can be thought as the skeleton or backbone of the 

geometry of a surface that is controlled through parameters defined on a simple 
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analytic function. Additionally the fish locomotion technique presented in this 

work can be applied directly to fish geometry generated using the PDE method 

or transferred to existing mesh models. In the latter case, the animation is 

retargeted to a different target mesh model using a point-to-point association. 

Thus, the user can choose between two different representations of the same 

animation depending on the end-user application. The aim of this work is to 

develop a simple technique for simulating fish locomotion. The analytic 

solutions of elliptic PDEs is used as a tool for achieving such motion since its 

properties can easily be adapted into an algorithm capable of producing such 

undulatory movement. 

 

5.4.2 Background  

The movement observed in fish when swimming is normally generated by 

contracting the muscles to produce waves that travel the length of the body [97]. 

This movement can be divided into two categories the periodic propulsion and 

transient movements. The periodic propulsion is responsible for the 

displacement, whereas the second one consists of sudden movements 

generally associated with sudden changes on speed and direction. These 

actions usually occur from sensorial identification of a close-by obstacle or 

predator-prey detection. The full characterization of the undulatory movement 

observed in most aquatic animals when swimming can be found in [98]. 

This work divides the periodic motion observed in aquatic animals into four 

subcategories and identifies which type of fish belongs to each of these 

categories. 
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The four subcategories of periodic propulsion are: 

 Anguilliform. This movement is considered the most basic form of 

motion. It is observed in long fish such as eels and tile-fish and 

distinguishes from the other categories since the whole body length is 

used throughout the motion.  

 Subcarangiform. The undulatory effect is observed in the back region of 

the fish with the amplitude increasing towards the tail. Trout and cod are 

examples of possessing this type of motion and it is considered as an 

intermediate mode between the anguilliform and carangiform mode [ref]. 

 Carangiform. Examples of fish possessing this kind of movement are 

sea-bass, barracuda and gold fish. The main characteristic in this 

movement is the fact that the motion is visible on the posterior half of the 

body, making this part of the body more flexible than the rest. 

 Thunniform. Aquatic animals possessing this movement are considered 

as the fastest and long distance swimmers. Main characteristic is the 

crescent shape tail fin, which is responsible for increasing the speed. 

Fish that fall in that category are shark and tuna. 

5.4.2.1 Related work 

The work of Tu and Terzopoulos [76] is regarded as one of the first attempts to 

generate a realistic animation of artificial fish where physical characteristics 

such as physics, movement, perception and behaviour were included. The 

system simulates the appearance, movement and behaviour of individual fish 

as well as complex group behaviours. The animation of the fish locomotion is 

calculated from a dynamic mass-spring system that can maintain the structural 

characteristics of the body while allowing flexing. To synthesize realistic fish 
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locomotion the mass-spring system consists of 23 nodal point masses and 91 

springs. The motion is then controlled by four springs called motor controllers 

and account for the amplitude and speed of the fish movement. The behaviour 

of the fish is controlled by an autonomous agent which consists of sensors and 

a brain with motor, perception and learning behaviour. Moreover, most of the 

work carried out in fish locomotion and virtual environments is based on the 

spring-mass model as described above. Generally, spring-mass models are 

solved using numerical techniques that have the tendency to be either slow or 

prone to numerical errors.  

Another example of fish locomotion is presented in [99]; the authors developed 

a virtual aquarium environment where a mechanics-based fluid expression 

generator controls the flow of the fluid. The movement of the fish and seaweeds 

is based on the spring-mass model. Additional factors such as social and 

collision with external objects have been included in this virtual reality systems. 

A work for animating fish locomotion in virtual environments using fuzzy logic is 

presented in [100]. This work describes a framework for animating and 

controlling articulated bodies in a fluid simulation.  This technique relies on the 

calculation of the fluid-solid interaction forces and a motion control strategy 

based on fuzzy logic.  

 

5.4.3 Modelling fish locomotion 

The process of fish locomotion can be divided in three steps. The initial step 

consists of constructing the PDE surface representation of the fish as well as 

identifying the spine and the radial component of that surface. The second step 

is related to the analytic formulation used to animate the spine of the surface 
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throughout the animation cycle. Finally, the third step consists of retargeting the 

motion from the PDE surface to a target mesh model.  

5.4.3.1 Construction of PDE geometry 

Constructing the PDE representation of a fish can be achieved by obtaining a 

set of boundary curves that represent a given fish geometry. These set of 

curves can be manually designed or extracted from within a CAD environment 

and then used as the boundary data for the construction of the PDE surface. 

The cross sectional curves are essentially composed of vertices obtained from 

the original mesh model so that the PDE based surface preserves the realism of 

the mesh model as accurately as possible. Mesh models of the fish used in this 

work have been found in [67]. Given that the movement of fish is mainly divided 

into four major types, at least one fish representing each of these categories 

has been chosen to be modelled. The fish representing the anguilloform 

movement is an eel. Fish swimming in subcarangiform are represented by a 

tropical fish and the dolphin has been selected as a suitable example of 

thunniform form. Figure 5.10, shows the original geometric model of a dolphin 

from which a set of 37 boundary curves has been extracted leading to its 

corresponding PDE surface. Additionally, the spine associated with this PDE 

surface representation is also outlined. The original geometric model is 

composed of 2932 vertices and the PDE configuration has been calculated over 

a grid of 41 by 41 points. 
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Figure 5. 10. Original geometric model representing a dolphin, the set of extracted curves from 
the original model together with the resulting PDE surface obtained and its corresponding spine. 

 

 

5.4.3.2 Locomotion using the spine of a surface 

The next stage consists of finding a suitable mathematical equation for 

modelling the undulatory movement of fish locomotion using the spine of the 

surface [29]. As mentioned before the spine of an object is can be thought as 

the skeleton of the geometry of a surface that is controlled through parameters 

defined on a simple analytic function. Additionally, the spine of a surface is 

represented as a cubic polynomial curve that is used to control the shape of the 

PDE surface. The mathematical function will be applied directly to the spine so 

that it will generate the wave like movement effect on the PDE surface [80].  

Moreover, it is desired that the analytic expression provides a certain degree of 

freedom to the user so that adjusting different parameters will produce different 

movements.  The analytic expression used to manipulate the spine, denoted by 

(u,t)
i

Sp throughout an animation cycle is given by, 
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,2sincos )
i

tπω(φ)(auΩ(u)
original

Sp(u,t)
i

Sp    (5.6) 

 

where )(u determines the amplitude and depends upon u ,   represents the 

phase,   denotes the wave number and   regulates the frequency of the 

movement. The subscript i  determines the frame for which each animation 

cycle, and ]1,0[
i

t  is the time associated with each respective frame. 

Moreover, this equation can represent any of the four categories in which the 

fish movement has been classified. Animation of the PDE surface 

representation is then achieved by manipulating the spine associated with the 

model to be animated and adding to each point in the parametric domain its 

corresponding original radial component for every given frame. Table 5.1 lists 

the values of all the required parameters to manipulate the spine according to 

each of the fishes modelled in this work. This table lists the values of all the 

required parameters to manipulate the spine according to each of the fishes 

modelled in this work. The parameters are: amplitude )(uA , wave number , 

phase  and frequency . 
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Movement Modelled Fish )(uA
 

  
 

  

Anguilliform Eel 

2

 3.0 u

 

1.5 

2



 

1.0 

Subcarangiform Trout 

2

u

 

0.75 

2



 

2.0 

Carangiform Tropical Fish 0.1 1.0 

2



 

2.0 

Thunniform Shark 

2

u

 

0.25 0 1.0 

Thunniform Dolphin 1.0 0.75 

2



 

1.3 

 

Table 5. 1. Parameters used to manipulate the spine of a PDE surface representing each fish 
according to its corresponding type of swimming movement. 

 

With this formulation, conservation of volume is not guaranteed. However, if the 

parameters are set correctly the animated surface will maintain the change of 

volume within reasonable limits while not affecting the realism of the model. 

Figure 5.11 (b), shows the original PDE surface representation of an eel fish 

with two different frames of the animation cycle. The spine associated with each 

of these PDE surfaces has also been outlined in the Figure. Figure 5.11 

presents the original mesh model, the set of extracted boundary curves and its 

corresponding PDE surface. The fish selected to represent this process has 

been the trout. Once the PDE surface representation of the models has been 

found, the spine will be manipulated according to Equation 5.6 using the 

parameters from Table 5.1. Additionally, the animation of the PDE surface 

representation of each fish will be obtained over a cycle. The duration of the 
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cycle has been set equal to one second and twenty-four frames have been 

obtained during each cycle.    

 

(a) 

 

 

 

 

 

 

(b) 

Figure 5. 11. Original mesh model of a trout, extracted boundary curves and resulting  
PDE surface representation (a). PDE surface representations of an eel and the 

 spines associated with these surfaces at different times over an animation cycle (b). 

 

 

Once an animation cycle consisting of n  frames has been obtained over the 

PDE surface representation, the animation can be transferred to either the 

original mesh model from where the boundary curves associated with the PDE 

surface were extracted from or to another mesh model representing the same 

type of fish. The advantage of using this technique is that two different 

representations of the same object are modelled simultaneously, giving the user 

the opportunity to choose between a complex and a simplified representation 

depending on the end application where the animation is required. Figure 5.12 

shows the initial and two additional frames of an animation cycle, the motion 

was computed in the cylindrical PDE surface and then transferred to the fish 
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geometry. The process of transferring the animation from a PDE surface 

representation to any mesh model representing the same type of fish will be 

discussed in more detail in the next section.  

 

 

 

Figure 5. 12. PDE surface representation of cylinder and mesh model of the tropical fish at 
different times over an animation cycle. The initial configuration and two different frames are 

displayed here for both the PDE surface and the mesh model. 

 

 

5.4.4 Results 

Figure 5.13 shows a sequence of frames containing different types of fish. 

Motion has been computed initially in the PDE surface representation of each of 

these fish using the spine of the surface, and then transferred to the original 

mesh models. The aquatic environment is a video clip produced in Maya to 

demonstrate PDE-based fish locomotion.  The four different types of fish were 

modelled and animated by adjusting the parameters obtain by table 5.1 

according to the category they are classified. 
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Figure 5. 13. Sequence of frames belonging to an animation cycle of the original mesh models 
associated with different types of fish. The first, the sixth, twelfth, eighteen and last frame are 

shown for a tropical fish, a trout, a shark and a dolphin on each case. 
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5.5 Motion retargeting 

In the last two sections a motion retarget technique was introduced and applied 

directly to PDE surfaces for transferring a cyclic motion to a mesh object. This 

section will discuss in more detail this technique. Given that motion is difficult to 

generate from scratch using traditional methods, the use of existing motions is a 

faster alternative to obtain the animation. A motion retargeting technique 

consists of simply transferring the existing motion to different target objects in 

order to achieve the desired effect. In summary, it re-maps animation onto 

characters with different morphologies. 

Generally few techniques address specifically the problem of motion 

retargeting. Animators usually have to adapt motions for different characters 

using existing animation tools such as key framing or articulating figure controls. 

Some commercial systems, such as Maya and Poser, are beginning to support 

motion retargeting.  Some of these new techniques addressing the problem of 

motion transfer are presented below. 

The work developed by Hecker [96] presents a system for animating characters 

whose morphologies are unknown at the time the animation is created. The 

proposed tool allows animators to describe motion using existing posing and 

key-framing methods. At runtime, the generalized data are applied to specific 

characters to fulfil various pose goals that are supplied to an inverse kinematics 

solver. This system allows animation of characters with highly varying skeleton 

morphologies.  

Another technique for motion retargeting is presented in the work carried out by 

Gleicher [101], where the focus is on adapting the motion of one articulated 

figure to another one with identical structure but different segment lengths. The 
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method computes the adapted motion for each new character using the space 

time constraint approach. Given that the technique looks at the entire motion, it 

can make adjustments in the resulting motion based on all the requirements. 

Specific features of the motion are indentified as constraints that must be 

maintained. A constraint solver computes an adapted motion that re-establishes 

these constraints while preserving the characteristics of the original motion. 

In Monzani [102] a new technique is proposed that introduces an Intermediate 

skeleton to solve the motion retargeting problem using articulated figures.  

Given a captured motion associated to its Performer Skeleton, the problem of 

retargeting the motion to the end user skeleton is divided into two steps. The 

first step is introducing an intermediate skeleton to convert the motion from one 

hierarchy to a completely different one. The last step corrects the resulting 

motion and enforces various Cartesian constraints by using inverse kinematics. 

The technique of motion retargeting presented in this section is based on a 

point-to-point association between two objects with similar topologies as seen in 

Figure 5.14. Motion is then transferred from this association. Once an animation 

cycle or a required pose has been obtained over the PDE surface 

representation discussed in previous chapter, the animation can be transferred 

to the original mesh model from where the boundary curves associated with the 

PDE surface were extracted or to a different model with similar topology.   Note 

that this technique can be used directly to polygon meshes as well as PDE 

surfaces; the procedure would be the same since the required data for both 

surfaces are the vertices that define the mesh models.  

The process of transferring the animation from a PDE surface representation to 

a given mesh model is carried out as follows:  
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 Alignment of the initial PDE surface and the target mesh model in the same 

initial position. Key features of the model have to be positioned so that they 

nearly overlap. This facilitates the correct correspondence between the two 

surfaces.  

 Mapping correspondence between models. This process consists of 

associating each point of the mesh model with the nearest point of the PDE 

surface in `their initial configuration’. Thus, each point in the mesh model nV  

is represented on the PDE surface by a given point nP  in the PDE surface 

and it is assumed that this point remain as the closest one to the same 

particular point at any frame throughout the animation cycle.   

 Animation of the mesh model is carried out by finding the difference nd  

between the resulting PDE surface at a given frame and the original one for 

each point. Then, this difference is added to each point of the original mesh 

model according to the mapping correspondence previously found, Equation 

5.7. The procedure can be repeated for any given frame of an animation 

cycle,  

 

,'

nnn dPP       (5.7) 

 

where nP  is a given point in the PDE surface, nd is the difference between the  

PDE surface at a given frame and the original one for each point. 
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Figure 5. 14.The point to point association between the PDE-based model and the original 
mesh model.  

 

The advantage of using the PDE-based motion retargeting technique is that two 

different representations of the same object are modelled simultaneously. This 

provides the user the opportunity to choose between a complex and a simplified 

representation depending on storage and memory resources associated with 

the end application where the animation is required. Note that the quality of the 

mapping correspondence between the PDE-based representation and the 

original mesh model depends on the resolution of the grid used to compute the 

PDE representation. Thus, using a grid with a similar number of points to the 

number of points in the original mesh will produce a better mapping 

correspondence. This technique has been used throughout this thesis to 

transfer motion between a PDE representation and a mesh model. One 

limitation that could affect the motion transfer is that the quality of the motion is 

dependant to the point-to-point association of the whole geometry for two given 

mesh models. This can introduce various distortions on the output surface since 

accurate mapping between any two given surfaces that don’t have similar 

morphologies cannot be guaranteed. Thus, a segmentation of the surface into 

meaningful regions will eliminate that problem. In next chapter a variation of this 

PDE Model Original Model 

0P  

nP  

0V  

nV  

nd  
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technique will segment the mesh model in question into vertex maps; each of 

these maps will be processed separately in order to maintain the motion quality 

and characteristics. 

 

5.5.1 Examples 

Figure 5.15 contains several examples of motion retargeting to various models. 

The PDE representations, in Figure 5.15 (a, b, c) have been generated using 

the script based UI panel for re-positioning the skeleton joints. In Figure 5.15, 

(d, e, f) the animation was retargeted to a different model by associating each 

point of the mesh model with the nearest point of the PDE surface. Then, the 

difference between the resulting PDE surface at any given frame and the 

original one for each point in the surface was found and added to each 

respective point. Once the point to point association is achieved correctly, 

motion retarget can be applied to various poses. Figure 5.16, contains 

examples of retargeting the animation to a different human character model.  

Note that some features of the character model are not used in the motion 

transfer. These features are not included in the process since the PDE 

representation consists of only the basic parts of a human character such as 

legs, arms and torso.  For example, the head of the female character in Figure 

5.16 it is not affected from the motion transfer and it can introduce deformations 

depending on the pose.  
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

(e) 

 

(f) 

 

Figure 5. 15. The PDE surface representation of a human model (a, b, c).The 
resulting animation transfer from the PDE surface to the original model (d, e and 

f). 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 
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(d) 

 

 

(e) 

 

 

(f) 

 

Figure 5. 16. Examples of transferring animation to different model with 
similar topology. The PDE representation (a, b, c). The transferred animation 

to the target model (d, e, and f). 

5.6 Conclusions 

This work presents two techniques for generating cyclic motions using the PDE 

method. The PDE method can parameterize complex surfaces in terms of a 

small set of design variables, instead of hundreds of control points. The shape 

of the surface is then defined through boundary curves and a small set of 

design parameters. The first technique explores the PDE method in generating 

every day human-based cyclic motions like walking and running. An important 

function of this technique is the use of mathematical expressions for generating 

cyclic motions. By using periodic functions, such as sines and cosines, the 

general motion of the human body can be controlled, thus making the 

movement very realistic.  Finally, the animation can be transferred to the 

original mesh model from where the boundary curves associated with the PDE 

surface were extracted from or to a different geometric model with similar 

topology. An improvement to be included in this technique is a more generic 

PDE character representation that will enable the animation to a wider variety of 

character models. Future work can also be undertaken using spine based 
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animation to control the movement of the human model, since the PDE method 

determines the spine of a surface analytically, thus enabling the animation of 

the entire human body by applying mathematical expressions to the spine as 

required by any given movement. 

The second example presents a methodology to simulate fish locomotion using 

the spine of a PDE surface representation of a given fish. The analytic solution 

of elliptic PDE is used as a tool for achieving such motion since its properties 

can easily be adapted into an algorithm capable of producing such undulatory 

movement. The spine associated with the backbone of the fish is manipulated 

analytically to produce a tool for controlling the animation. An analytic function 

for modelling the undulatory movement observed in fish when swimming was 

found. A set of parameters associated with the transformation applied to the 

spine are capable of producing the four categories into which fish movement 

has been divided. Additionally the motion can be applied directly to the fish 

geometry generated using the PDE method or transferred to an existing mesh 

models. In the latter case, the animation is retargeted to a different target mesh 

model using a point-to-point association. The technique proposed here 

represents a more reliable method than the already existing spring-mass model 

since it is faster and less prone to numerical errors. This work can be continued 

by implementing virtual aquatic environments where perception and behavioural 

aspects in single or groups of fish can be included. Another future direction 

consists of applying optimisation techniques for controlling the volume of the 

surface at each frame of the animation sequence 
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Chapter 6: Interactive talking head system 

6.1 Introduction 

Generating realistic facial animation is one of the most difficult tasks in 

computer animation. The human face is a very well defined structure that allows 

a large amount of expressions between individuals. Synthesizing facial 

expressions  is an important step in modelling a human face since the face is 

the main component for communication and personalization of a character 

[103]. A computer-generated face has distinct advantages, since it is possible to 

create and control repeatable facial movements. Recent work in facial modelling 

and animation has been triggered an increase in the appearance of virtual 

characters in film, video and games. Depending on the end-user application, the 

model must correspond closely to a specific target character. For realistic facial 

animation, more complex face models can be used whose surface geometry will 

correspond closely to a real face. 

The geometry and movement of the face is usually associated with the 

constraints that define the human anatomy.  During speech, it is often required 

to synchronize the movement of the lips and the face geometry.  Lip synching 

involves animating the rigid articulation of the jaw and the muscle deformation 

of the tongue as well as the lips. Moreover, the animator needs to take into 

consideration synchronizing the lips with respect to a soundtrack in order to 

produce realistic speech animation. This Chapter will examine several 

commonly used facial and speech animation techniques. Additionally, a PDE-

based facial animation technique used in a Talking Head system for computer 

human interaction is also presented. 
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6.1.1 Facial animation techniques 

Significant research efforts have been made in facial modelling and animation 

since the pioneering work of Parke in  [104].   Traditionally, computer facial 

animation has been divided into three basic steps: Designing the 3D facial 

mesh, digitizing it, and finally simulate the facial movement.  However, over the 

years a few more steps have been included in the process of producing realistic 

facial animation systems. An optimal facial animation system or a talking head 

system will be required to create realistic animation, operate in real time and 

adapt easily to individual faces.  Although some recent work has produced 

realistic results, the process of generating facial animation still requires human 

intervention [105].  In this section several techniques used for producing facial 

animation are presented.  

 

6.1.2 Blend shapes 

There are two common techniques used for producing deformable face models: 

using a blend shape or a physically-based model. Blend shape interpolation 

[106]  is the most intuitive and commonly used technique in facial animation 

practice; it produces a facial expression as a linear combination of a given set of 

facial expressions, the blend shapes. A blend shape model can be expressed 

simply by the linear weighted sum of a number of topologically adjusted shape 

primitives,   

 

, kjkj bwu
     (6.1) 
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where ju  is the j th vertex of the resulting animated model, kw is the blending 

weight, and kjb  is the j th vertex of the k th

 blend shape. The weighted sum can 

be then applied to the vertices of a mesh model as well as to  the control 

vertices of parametric surfaces [107]. Blend shapes are a standard 

methodology of commercial animation packages such as Maya, poser and 3ds 

max. The simplest case of blend shape interpolation is an interpolation between 

two key frames over a time interval. 

Linear interpolation between two key-frames is often used because of its 

simplicity; however different techniques, such as cosine or spline interpolation 

functions can be used to produce various acceleration and deceleration effects 

at the start and end of an animation cycle.  In the case of interpolating four key-

frames, bilinear interpolation [108] can be used to generate a better variety of 

facial expressions compared to linear interpolation. Additionally, bilinear 

interpolation when combined with multiple face expressions, it can generate a 

wide range of facial expression blending. 

One of the main disadvantages in generating facial animation using blend 

shape interpolation is the blend shape interference. This problem often 

produces overlapping effects between individual blend shapes. It usually 

appears in cases where the animator is required to interpolate multiple blend 

shape poses by adjusting controls associated with these sets of expressions. 

Multiple blend shape adjustment can re-set a previous desired position of a 

particular pose.   The animator then has to go back and readjust the first 

desired expression. As a solution, the interference problem can be minimized 

by processing individual blend shapes locally and by refining these shapes 

when interference is found.  
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Computer-based facial animation initially involved shape interpolation, where 

two or more complete facial expressions are captured and the in-between 

frames were produced by interpolation.  Animation was then accomplished 

using a cosine interpolation scheme to fill in the intermediate frames between 

the expressions. The 3D data used to describe the facial expressions were 

obtained photogrammetrically using pairs of photographs. 

The work of Wayters in [109] addresses the problem of automatically 

synchronizing computer generated faces with synthetic speech. Based on plain 

ASCII text input, a synthetic speech segment is generated and synchronized in 

real-time using an articulating mouth and face. A closer interpolated 

approximation to acceleration and deceleration uses a cosine function to ease 

in and out of the motion: 

Although blend shape interpolations are fast and can easily generate 

satisfactory facial animations, they are restricted to a small range of facial 

configurations. Combinations of independent face poses are difficult to produce 

and often interfere with each other, which cause animators to have to readjust 

the weights of blend shapes. However, for speech animation, producing fluent 

natural speech requires calculation of co-articulated visemes. By contrasts to 

these methods, a physically-based model can be used to simulate realistic 

speech animation by integrating various skin layers, muscles, fatty tissues and 

bones on the facial geometry. The speech is then produced by activating the 

virtual muscles to drive the animation. 
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6.1.3 Parameterization models 

Parameterization techniques are often used in facial animation to overcome 

some of the limitations of simple interpolations approaches. This is carried out 

by manipulating a collection of faces through a set of parameters. These 

techniques allow explicit control of specific facial configurations.  A combination 

of independent parameter values can then generate any possible facial 

expression with relatively low cost. However, the design of the parameters set is 

based on manually selecting the vertices and adjusting that a part of the face, 

which makes the model dependent on the facial topology. A limitation of such 

techniques is that the choice of the parameter set depends on the facial mesh 

topology, thus, a generic parameterization is not possible. Moreover, extensive 

manual tuning is required to set the parameter values.  

 

6.1.3.1 FACS 

A widely used facial parameterization method is based on the Facial Action 

Units (AUs). It was originally introduced by the Swedish researcher Carl-

Herman Hjortsjo in 1969, and later extended to FACS, the Facial Action Coding 

System [110].  According to FACS, the facial behaviour can be divided into 46 

action units (AU), each of which is anatomically related to the movement of the 

facial muscles and jaw/tongue derived from an analysis of facial anatomy. 

FACS is often used in the muscle based animation systems. Animation using 

muscle models overcome the limitation of blends shape interpolations and can 

provide a wide variety of facial expressions. 
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6.1.3.2 MPEG-4 facial animation system  

An extension to FACS is the MPEG-4 Facial Animation standard  [111]. It 

contains a standardized syntax for the definition and animation of synthetic 

faces by directly manipulating feature points of the face. MPEG-4 animates a 

3D face model by defining, a total of 84 face definition parameters (FDP) and 68 

facial animation parameters (FAP). The facial definition parameters are 

responsible for describing the movements of the face, while the facial animation 

parameters are designed to reproduce expressions, emotions and speech 

pronunciation.   

There are 66 FAPs and 2 high-level FAP (expressions, visemes) defined in 

total. Each FAP describes which facial points are affected, the direction and the 

amount of displacement. The 68 parameters are categorized into 10 different 

groups related to parts of the face. FAPs represent a complete set of basic 

facial actions including head motion, tongue, eye, and mouth control. This 

allows the representation of most natural facial expressions.  Since the FAPs 

are required to animate faces of different sizes and proportions, the FAP values 

are defined in face animation parameter units (FAPU). This unit is based on 

face model dimensions and can be computed based on some special key points 

of the face (like eye distance or mouth size). The FAPU’s are computed from 

spatial distances between facial features on the model in its neutral pose. 

Additionally, the standard specifies the facial animation table (FAT) that 

determine which vertices will be affected by a particular FAP.  Note that the 

standard does not specify any particular technique for achieving facial mesh 

deformation of a given FAP. Implementation details such as the resolution of 

the mesh, deformation algorithm and rendering are left to the implementation of 

the facial animation system. Various techniques for facial deformation have 



177 

 

been developed over the years. They are categorized below based on the 

mechanisms by which the geometry of the face is manipulated. 

 

6.1.4 Free-Form deformation model 

Free-form deformation (FFD) deforms volumetric objects by manipulating 

control points arranged in a 3D cubic lattice [83].  A good physical analogy for 

FFD is to consider a mesh or a group of mesh objects embedded in an 

imaginary and flexible control box containing a 3D grid of control points, as 

shown in Figure 6.1. As the control box is deformed into arbitrary shapes, the 

embedded object deforms accordingly. Mathematically, the FFD is defined in 

terms of a tensor product trivariate Bernstein polynomial. Alternately, this 

deformation can be formulated in terms of other polynomial bases, such as 

tensor product D-splines or non-tensor product Bernstein polynomials. 

 

 
 

 

Figure 6. 1. Free-Form Deformation using a 4x4x2 
grid lattice 

 

FFD is an efficient and intuitive technique that is independent of the surface 

geometry. It can deform many types of surface primitives, including polygons, 

quadric, parametric, and implicit surfaces. One of the main disadvantages is 

that the shape of the FFD lattice doesn’t allow arbitrarily shaped deformation. 
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However, variations of this technique offer several advantages on the design 

and manipulation of the lattice. Extended FFTs [112] allows manipulation of the 

lattice before its association with the mesh object. The lattice can be 

represented as any geometrical shape (prismatic, cylindrical, tetrahedral, etc).  

Another technique is presented in [113]  using parametric and implicit PDE 

surfaces to define geometric solid models. The models will contain both 

geometric information and intensity distribution associated to the flexible 

boundary conditions. This technique allows designers to manipulate PDE 

surfaces of complex geometry through direct sculpting and FFD modelling. 

Manipulating a FFD control point can be considered as evaluating a physical-

based muscle. Additionally, adjusting the position of the control points of the 

lattice, Figure 6.1, provides a more intuitive and efficient approach for 

manipulating muscles. However, compared with muscle deformations, the 

physical-based muscle model that will be covered in the next section provides 

precise simulation of the actual facial muscles and skin deformation. 

 

6.1.5 Physical-based muscle deformations 

Physics-based muscle models are used to create models based on simplified 

structures of bones, muscles, skin, and tissues. Such models offer the 

advantage of manipulating facial geometry based on simulating the 

characteristics of the facial muscles.  Physics-based muscle models are 

grouped into three categories: mass-spring systems, vector representations, 

and layered spring meshes.  

The mass-spring system model for simulating facial animation was introduced 

by Platt and Badler in [114], [115].Their system integrates FACS notation to 
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indentify facial regions and consists of 38 regional muscle blocks 

interconnected by a spring network. The effects of the movement are modelled 

according to the deformation of the muscles and their effect on the skin. Since 

facial deformation is modelled through muscle movement, a system needs to 

describe visible facial expressions at the muscle level. An action unit (AU) 

describes the action produced by one or a group of muscles in the spring 

network.   

The muscle vector model was originally proposed by Waters in [116]. In this 

method, a muscle definition includes a vector direction, an origin, and an 

insertion point. The facial deformation is influenced by the muscles beneath the 

skin. This model can produce natural human emotions such as anger, fear, 

surprise, disgust etc by utilizing dynamic parameters that emulate the primary 

characteristics of facial expressions. 

Positioning of vector muscles into anatomically correct facial areas can be a 

difficult task since incorrect placement can potentially result in undesirable 

deformation of the facial areas. However, the vector muscle model is widely 

used because of its representation and independence of the facial mesh 

structure. An example of this technique is presented in [117].  The system 

automatically generates 28 facial feature parameters from an input video 

recorded face. These parameters are then decomposed using the linear model 

into the shape and action parameters. The animation of the face is 

approximated by utilizing the Least Squares Fitting (LSF) procedure for the 

shape and action parameters.  The action parameter is then used to drive the 

animation. 
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Terzopoulos and Waters introduce the layered spring model in [118], in this 

work, they proposed a facial model that represents the anatomical structure and 

dynamics of the human face. The systems consist of three layers of deformable 

mesh that correspond to skin, fatty tissue, and muscle tied to bone.  Each mesh 

node is connected with the corresponding layer through an elastic spring. The 

deformation is produced from muscle forces applied to the mesh system. 

Realistic effects such as wrinkling around the mouth are computed from 

constraints that are preserving the volume in the tissue layer. 

Another example of the layered muscle technique is presented in [119]. This 

muscle model uses three conceptual layers: a skin / tissue layer, a layer of 

muscles attached to the skull and the underlying bone structure, composed of 

the skull and rotating jaw. Implicit surfaces are used for specifying the shape of 

the muscles. The skull geometry and the layout of the facial muscles are 

created semi automatically based on the facial geometry. The influence of 

muscle contraction onto the skin is simulated using a mass-spring system that 

connects the skull, muscle, and skin layers of the facial model. 
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6.2 Taking head systems 

6.2.1 Introduction  

Speech is treated in a different way compared to the animation of facial 

expressions, key-frame-based techniques provide a poor approximation in 

representing speech animation [120].  A phoneme is the basic unit of the 

acoustic speech. A visual representation of the phoneme is called viseme. In 

speech animation visemes are often used to represent the position of the lips, 

jaws and tongue in a particular phoneme.  This technique is very popular for 

generating realistic speech without having to manually set the key frame 

positions for every viseme expression.  In virtual environments, it is necessary 

to keep the data transmission size as small as possible for real time 

performance. Facial animation usually requires a large set of expressions to 

produce any given text. Facial data need to be as small as possible to generate 

the speech animation without any lag or de-phase over the network  

A talking head system is an environment where a 3D human head is talking and 

interacting with a user [121, 122]. Such a system, needs to provide all the 

necessary tools for creating a computer-human interaction process. To that 

extend, a text-to-speech (TTS) system is required to generate a sequence of 

phonemes from an input text. Many phoneme sounds are visually ambiguous 

when pronounced. Therefore, one viseme can be used to represent several 

phonemes.  The conventional lip sync technique consists initially of 

decomposing the speech into a set of phonemes. These phonemes will be 

visually represented in the system as a set of visemes. A mapping between the 

phonemes in the speech signal and the visemes in the database is carried out 

to construct the appropriate lip shape. Additionally, the system requires a real 
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time response to a user’s input.  Real time dialog systems can include 

personality, emotions and interactive dialog in a computer-human or computer-

computer situation. The process of human-computer interaction is facilitated 

with the use of chatterbots where actions such as personality, emotions and 

respond can be integrated within the talking head system. Moreover, emotional 

tags embedded in the dialogue database can be used to generate facial 

expressions. The PDE-based talking head system is an application developed 

in C# using the OpenTK API for rendering and visualization.  The application is 

also utilizing the Microsoft TTS engine for text to speech conversion and the 

Rebecca AIML chatterbox API for processing user’s input. 

 

6.2.1 Related work 

The problem arisen from facial animation consists of portraying the realism of 

the movement. The natural contact with facial expressions and the availability of 

better and more powerful hardware demand an ongoing improvement of the 

animation techniques for facial animation. A number of works in the area 

previously have introduced new techniques for achieving realistic motion. These 

include:  

A Talking Head System for Korean Text [123]; the system animates the face of 

a speaking 3D avatar in such a way that it realistically pronounces the given 

Korean text. The proposed system consists of SAPI compliant text-to-speech 

engine and MPEG-4 compliant face animation generator. The input to the 

engine is a Unicode text that is to be spoken with synchronized lip shape. The 

TTS engine generates a phoneme sequence with their duration and audio data. 
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The TTS applies the co-articulation rules to the phoneme sequence and sends 

a mouth animation sequence to the face modeler.    

Greta: A Simple Facial Animation Engine [124] is a 3D facial animation engine 

compliant with MPEG-4 specifications; the aim in this work was to simulate in a 

rapid and believable manner the dynamics aspect of the human face. Greta, a 

3D proprietary facial model with the look of a young woman, is the core of an 

MPEG-4 decoder and is compliant with the “Simple Facial Animation Object 

Profile" standard. The 3D model uses a pseudo-muscular approach to emulate 

the behaviour of face tissues and also includes particular features such as 

wrinkles and furrow to enhance its realism. Facial features such as wrinkles 

have been implemented using bump mapping which allows a high quality 3D 

facial model with a relative small polygonal complexity.  

Real-time Lip Synchronization Based on Hidden Markov Models [125]; A lip 

synchronization method that enables re-using of training videos when input 

voice is similar to training voice sequences. The face sequences are clustered 

from video segments, then by making use of sub-sequence Hidden Markov 

Models, the system builds a correlation between speech signals and face shape 

sequences.  This decreases the discontinuity between two consecutive output 

faces and obtains accurate and realistic synthesized animations. The system 

can synthesize faces from input audio in real-time without noticeable delay. 

Since acoustic feature data calculated from audio is directly used to drive the 

system without considering its phonemic representation, the method can adapt 

to any kind of voice, language or sound.  

Movement Realism in Computer Facial Animation in [126]; This is another work 

targeting realism in movement and behaviour of agents or avatars in virtual 
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environments. The system is using co-articulation rules for visual speech and 

facial tissue deformation producing expressions and wrinkles. 

 

6.2.2. On the development of a PDE-based talking head system 

In this section a new technique is presented that re-uses facial animation data 

for different 3D human face target models. The system uses a set of pre-

configured viseme poses to generate a series of PDE-based template models. 

Each new viseme pose is then retargeted to a different facial mesh model for 

producing the speech animation. This is a pre-processed operation that takes 

place at the loading time of the application and it is repeated for all the required 

visemes in the database. 

The 3D human head is synchronized with a TTS engine to generate voice; a 

text-to-visemes function generates and returns in real time the current visemes 

of a given input text. The system also integrates an AI bot engine to determine 

the reply the talking head will give to a given text input by the user. The engine 

used in this work is the Rebecca (Artificial Intelligence Markup Language) AIML 

library that implements the Alice bot language processing chatterbox [127]. 

Chatterbots are computer systems that can produce a human-computer 

interaction in natural language. The user can enter a question or phrase and the 

AI bot will generate the appropriate answer to facilitate a real time conversation.  

Text response from the bot is then captured by the TTS engine and converted 

to a set of visemes to synchronise and animate the 3D human face. Animation 

is carried out by linearly interpolating a given set of visemes to generate the in-

between transition of the speech animation.  
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6.3 Text-to-speech  

Speech is often more efficient than written messages. Various important 

developments in speech synthesis and natural language processing techniques 

resulted in the concept of text-to-speech synthesis. A text-to-speech synthesis 

can be defined as automatic production of speech through a grapheme-to-

phoneme transcription of the sentences to produce [128]. The applications of a 

TTS system are numerous and extend in various fields. Some of them are: 

 Human computer interaction, e.g. Talking head system combines the TTS 

with a facial animation engine to naturally reproduce a character’s facial 

expressions while reading a specific text. 

 Voice narrator, e.g. speech synthesizers in measurement or control 

systems. 

 Disability aids, e.g. speech synthesis for blind users. 

 Telecommunications services, e.g. voice support for applications. 

 

Figure 6.2 contains the general functional diagram of a synthesizer. It consists 

of a Natural Language Processing module (NLP), capable of producing a 

phonetic conversion of  the text read together with the desired voice tone and 

rhythm (also called prosody), and a Digital Signal Processing module (DSP), 

which transforms the symbolic information it receives into speech. Phonetic and 

prosody information together can generate the symbolic linguistic 

representation that is output to the front-end application. The back-end 

application, usually provided from the API, converts the symbolic linguistic 

representation into sound usually referred as the synthesizer. Details about the 
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architecture of a TTS system is outside the scope of this thesis, additional 

information can be found in [128]. 

 

 

 
Figure 6. 2. General function diagram of TTS system. 

 

 

The text-to-speech system converts normal language text into speech; it 

recognizes the input text and, using a synthesized voice, chosen from several 

pre-generated voices, speaks the written text. The TTS engine used for this 

work is the Microsoft TTS which is fully programmable from the Speech API 5.0. 

The SAPI acts as a software layer that allows speech-enabled applications to 

communicate with both speech recognition and TTS engines.  Additionally, the 

SAPI is responsible for a number of functions in a speech system, such as: 

 Controlling audio input, whether from a microphone, files, or custom 

audio source. 

 Converting audio data. 

 Storing audio and serializing results for later analysis. 

 Using SAPI grammar interfaces and loading dictation. 

 Performing speech recognition. 
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The speech API provides a high-level interface between an application and the 

speech engine. All the low-level details needed to control the real-time 

operations of various speech engines are implemented in a collection of 

libraries and classes.  With the help of the API, the TTS operation, which is 

required to convert a given text into a set of viseme, can be performed in real 

time.  The text-to-viseme process is used to identify which letter from the 

database is required to animate a given text and synchronize it with the voice.  

Using events, the application synchronizes the output speech with real time 

actions such as the phonemes or visemes generated from the input text.  

In this case, the generated viseme is used to query from the database the 

current viseme index that is required for the speech animation. Table 6.1 

contains the first 10 indexes used to identify which visemes are needed to 

simulate the speech animation. The TTS engine contains 22 visemes in total 

used for reproducing the sounds from any given input text in English. Note that 

many phoneme sounds are visually ambiguous when pronounced. Therefore, 

one viseme can be used to represent several phonemes.   For example letters 

F and V can be reproduced by using the same viseme. Consonant letters such 

as B, M and P can represented as well with the same viseme. To that extend, 

the animation system can link various similar visemes together to minimize both 

loading and processing time.  

A total of 15 visemes are used in the talking head database to simulate speech. 

The remaining 7 visemes from the TTS engine have been associated with other 

similar visemes. For example, SP_VISEME_1, 2 and 3 from table 6.1 can be 

represented as SP_VISEME _1.  
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SP_VISEME_1, ae,ax,a 
SP_VISEME_2, aa 
SP_VISEME_3, ao 
SP_VISEME_4, ey,eh,uh 
SP_VISEME_5, er 
SP_VISEME_6, y 
SP_VISEME_7, w,uw 
SP_VISEME_8, ow 
SP_VISEME_9, aw 
SP_VISEME_10 oy 
 

Table 6. 1. List of the first 10 viseme indexes association. 

 

The integration of the TTS system in the talking head environment was 

developed using the .NET framework. Using Component Object Model (COM) 

ISpVoice interface applications can control the TTS functionality. Initialization of 

the engine is achieved simply by creating a spVoice object, whereas for text to 

speech synthesis a single call to ISpVoice.Speak is required. Additional 

functionality for manipulation of voice and synthesis is provided; various 

function calls can control the speaking rate, the output speech volume and the 

current speaking voice.   

The speak method can be operated synchronously or asynchronously, an 

important feature for synchronizing the speech output with the rendering API as 

well as adjusting speech properties in real time. The SAPI communicates with 

the applications by sending events using standard windows callback 

mechanisms. Applications can then synchronize to real-time actions such as 

word boundaries, phoneme or viseme boundaries. Events are used for 

synchronizing the output speech. Each audio stream generated from the SAPI 

engine contains an event id where the application can identify position and 
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status of the stream. A viseme event id is associated with the list in Table 6.1 in 

order to find the current viseme.  This information will help to calculate the 

interpolation time between subsequent viseme. Additionally, the TTS engine will 

playback the audio stream from the input text.  

 Communication between the application and the SAPI is processed as a two 

step operation. The application first receives a general window message from 

the SAPI. This message is similar to other window messages used by the 

operating system, such as mouse, keyboard, and window events. The second 

step in the communication process consists determining which action occurred. 

The application needs to determine the exact action that is taking place. A list of 

all the SAPI defined action can be found using the SPEVENTENUM list.  Using 

SPEVENT and GetEvents method the SAPI can identify specific information 

about the current event. Actions such as START_INPUT_STREAM, 

END_INPUT_STREAM and VISEME are used to determine the current activity 

that is taking place. Once the current event is determined, the application needs 

to take the necessary action. When a  START_INPUT_STREAM event is 

captured, the input stream from a Speak call begins synthesizing to the output, 

whereas an END_INPUT_STREAM is identified as the end of the Speak event. 

In the case of the VISEME event id, the SAPI returns the relevant viseme with 

some additional information for the current Speech operation.  
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6.4 A.L.I.C.E’s brain 

6.4.1 Introduction 

Once the speech engine is configured to capture and process real time events, 

the following step consists of integrating an Artificial Intelligence Markup 

Language or AIML chatterbot to generate response from a given text. A.L.I.C.E. 

(Artificial Linguistic Internet Computer Entity), also referred to as Alicebot, or 

Alice, is a language processing chatterbox based on an experiment specified by 

Alan M. Turing [129] in 1950. A chatterbox is a program that engages in a 

conversation with a user by applying some heuristical pattern matching rules to 

the human's input [105, 130] A.L.I.C.E. software utilizes AIML, an XML based 

language used for creating chat robots. 

It contains a class of data objects defined in the XML specification [131] called 

AIML objects and describes the behaviour of computer programs that process 

them. Various Alicebot clones have been created based upon the original 

implementation of the program and its AIML knowledge base [132]. Some of 

these AIML interpreters are: 

 Rebecca AIML (C++, Java, .NET/C#, Python) 

 Program D (Java) 

 Program R (Ruby)  

 Program O (PHP) 

 

This work uses the Rebecca AIML library for generating real-time responses. 

The system establishes a local connection with the Rebecca AIML bot to 

process and generate response to a given input text. The response is then 

handled as an input text for the SAPI text-to-speech engine. 
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6.4.2 Previous work  

Persona-AIML [133]. This work presents the Persona-AIML architecture for the 

creation of chatterbots in AIML (Artificial Intelligence Markup Language) with 

personality. Computational models of personality are in general adapted from 

some psychology model or theory. The Personality Component defines the 

beliefs, the personality elements, and the rules that determine chatterbot’s 

behaviour. 

Another work is presented in [134] demonstrating an emotional MPEG-4 

compliant talking head system based on AIML. It uses Alicebot to generate 

response and emotion from given input text. Emotions are embedded in the 

AIML database as a set of predefined emotion tags. These emotional tags are 

passed to the personality model to simulate believable behaviors. The 

personality model, depending upon the current mood and the input emotional 

tags, updates the mood. Depending upon the output of the personality model, 

mood processing is done to determine the next emotional state. This process 

determines the probabilities of the possible emotional states. Additionally, the 

system generates lip sync from the visemes generated from the Text-To-

Speech engine. 

TQ-Bot [135]. This work presents an Intelligent Tutoring System using AIML 

with the aim to provide personalized instruction to students. The authors have 

developed an open e-Learning platform for helping the students during their 

learning process and to support the activities of the teacher. The bot is able to 

analyze the requests made by the learners in written natural language and to 

provide adequate and domain specific answers orienting the student to the right 
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course contents. Additionally, TQ-Bot is able to track and supervise the student 

progress by means of personalized questionnaires.  

The brain of A.L.I.C.E. consists of 41,000 elements called categories [127]. 

Each category contains a question and answer, called the “pattern" and 

“template". The patterns are stored in a tree structure managed by an object 

called the Graphmaster, which implements a matching algorithm. Graphmaster 

matching is a special case of backtracking, depth-first search. In most cases 

matching is handled by a linear traversal of the graph from the root to a terminal 

node. 

The AIML architecture allows the use of different models of personality in the 

construction of chatterbots. It implements various tags to introduce randomness 

in answers, and to keep track of small dialogue history. Although it does not use 

any syntactic or semantic language analysis techniques to generate the 

response, the content embedded in AIML is enough to engage the user in 

believable conversation to a certain degree. A.L.I.C.E contains a learning mode, 

called supervised learning since a botmaster is required to create and manage 

the content. The botmaster will monitor the bot conversations and can create 

new AIML content to make the bot responses more believable, accurate or 

human like. Moreover, every AIML object has both a logical and a physical 

structure. The physical structure consists of units called topics and categories, 

while the logical structure is composed of elements and character references. 
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6.4.2 AIML elements  

The basic unit of knowledge in AIML is called a category [127]. The term 

category was borrowed from pattern recognition theory [6]. Each category 

contains of an input question, an output answer, and an optional context. The 

question is called pattern, the response is called template and lastly, the 

optional context is divided into two types called “that” and “topic”. The AIML 

pattern tag consists only of words, spaces, and the wildcard symbols. Words 

must contain only letters and numbers separated by a single space whereas the 

wildcard characters can function like words.  A pattern element must appear in 

each category and it must always be the first child element of that category 

element. A pattern does not have any attributes. 

Additionally, AIML supports interaction with other languages and systems. For 

example the <system> tag can be used to execute any program or command 

accessible from the operating system and insert the result in the reply. 

Alternatively, the <javascript> tag can be used to allow scripting inside the 

templates. The <template> tag is the most basic AIML tag and is always paired 

with a <pattern> tag. It always appears within <category> elements and it 

doesn’t contain any attributes. The <template> must follow the <that> element 

or follow the <pattern> element. The majority of AIML content is within 

the template. The template may contain zero or more AIML template elements 

mixed with character data.  

Figure 6.3(b) shows an AIML example code, the pattern defines the input and 

the template tag defines the bots response to that input. The syntax of an AIML 

category is: 
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<aiml> 

      <category> 

         <pattern> Input Text </pattern>  

         <template> Response </template> 

      </category> 

 </aiml> 

(a) 

<aiml> 

      <category> 

         <pattern> Hello </pattern>  

         <template> Hi!  How are you?   

</template> 

      </category> 

</aiml> 

(b) 

Figure 6. 3. General syntax of an AIML category tag. (a) 
Simple example of input and output response. (b) 

 

 

The above AIML code matches the client text input, in this case the word “Hello” 

and sends back to the client the response “Hi! How are you?”. 

The optional context in the category tag consists of two elements, called <that> 

and <topic>. The <that> element appears inside the category, and its pattern 

must match the bot’s last response. The <that> element is a special type of 

pattern element used for context matching. It is optional in a category, but if it 

exists it must occur no more than once, and must follow the <pattern> and 

<template> element. Remembering the last response is important for creating a 

more believable conversation. In the example below, Figure 6.4 (a), the 

<category> element is activated when the client says yes. The bot must find out 

what was the question to that answer. If the bot asked, "Do you like AIML?”, the 

category matches the <that> element and it continues the conversation using 

the <template> response element. 
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<category> 

   <pattern>YES</pattern> 

     <that>DO YOU LIKE AIML?</that> 

     <template>WHAT IS YOUR 

FAVORITE INTERPRETER?      

</template> 

</category> 

(a) 

<topic name="AIML"> 

 <category>  

    <pattern> * </pattern>  

     <template>  MY FAVORITE   

INTERPRETER IS RebeccaAIML 

     </template>  

 </category> 

(b) 

Figure 6. 4. <That> element example. (a) <Topic> element example.   (b) 

 

The <topic> is an optional element that might appear outside a <category> 

element, and it is used to group together categories. The <topic> element 

allows the bot to store duplicate patterns in different topics, this way the bot can 

generate different responses to the same input patterns depending on the topic. 

A <topic> element has a required name attribute that must contain a simple 

pattern expression.  A< topic> element may contain one or 

more category elements. The botmaster uses the <set_topic> tags to set the 

topic of current <category> element. Once the topic is set, for any new query 

from the client the bot will start looking for a response in the categories that 

match the current<topic> tag. If there is not a category defined in the current 

topic, then any categories that are not defined in topic tags are searched.   

Figure 6.4 (b), contains an example of using the <that> element. In this case, if 

the client says something that the bot does not have a specific response for, it 

could still respond within the current topic. For example, the response for any 

undefined pattern element under the AIML topic will be “My favourite interpreter 

is RebeccaAIML”.  
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AIML consists of various elements offering leaning capabilities and intelligent 

response to achieve realistic human computer interaction. Moreover, the 

<random> element tag can generate different responses to the same input text. 

Each possible template response for the current pattern element needs to be 

separated with the <li> tag element.  AIML is extensible; the botmaster can 

include an infinite number of new tags for application specific properties. 

Predicate tags can be used according to a client based “set” and “get” method 

to generate an endless variety of responses. Recursive categories can be used 

to map one input to another one, either for language simplification or to identify 

similar patterns. The AIML implementation for recursion is the tag <srai>. Figure 

6.5 (a), shows a basic recursion example, if the user says “HI”, “Hello”, “Hi 

there” etc, the response template will be the same as for the “HI” pattern 

element.  

 

<category>  

  <pattern>HI THERE!  </pattern>  

 <template><srai>HI</srai> 

   </template>  

</categroy>  

  

(a) 

<category>  

  <pattern>WHAT IS  * </pattern>  

<template><srai>WHAT IS<star/> 

</srai> 

   </template>  

</categroy>  

(b) 

Figure 6. 5. A basic recursion example (a). 
Simplification of input pattern using recursion and the <star> element (b). 
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Recursions are useful for a variety of tasks, some of these include:  

 Symbolic Reduction: Reduction and simplification of complex input 

patterns. 

 Divide and Conquer: Split an input into two or more parts, and combine 

the responses to each. 

 Synonyms:  Generate different ways of saying the same thing to the 

same reply. 

 Spelling or grammar corrections. 

 Detecting keywords anywhere in the input. 

 Conditionals: Branching can be implemented with the <srai> operator. 

A common application for recursive categories is simplification and reduction of 

complex input patterns. A combination of the <star> tag and <srai> recursive 

calls can be used to produce endless combinations. For example, Figure 6.5 (b) 

shows an example of recursion using the <star> tag. The bot will match a 

pattern starting with “What is” and use the “*” value to define a recursion call to 

find the best match for the transformed input. 

 

6.5 Building the talking head system 

In a Data-driven facial animation system usually the expressions are pre-

configured and blended together to produce a sequence of letters;  whereas the 

3D human head is synchronized with a text-to-speech engine to generate 

speech according to a set of phonemes for a given word. The system is usually 

interactive and can incorporate changes of emotions dependant on the user’s 

input. The aim of this paper is to build a viseme-driven talking head system 
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where a given human head mesh model with similar topology  can be animated 

without the need to generate all the necessary expressions for the operation.  

The overall process consists of generating a set of PDE-based expressions that 

are used internally as the template expressions for any given human head 

model. The PDE method has been used for generating the surface template 

expressions; thus utilizing the advantages of parametric surfaces. The PDE 

method enables us to generate facial animation from a given complex face 

model by adjusting only a small set of boundary curves. This methodology 

enable us to produce a set of template mesh surfaces that are used to transfer 

a given motion sequence to a given human head mesh model. This section will 

explain in more detail the implementation of the talking head environment. 

 

6.5.1. Generation of viseme poses  

Viseme-driven speech animation approaches often require manual design of 

key mouth poses in order to generate realistic speech animations. The first step 

for building the facial animation system consists of generating the facial 

expression data [103]. The template face in Figure 6.6 (a), is represented as a 

set of 28 boundary curves extracted from a laser-scanned 3D face model in its 

neutral configuration. The curve-set covers the entire face area, describing the 

most important facial features. The PDE face surface is then reconstructed 

using a combination of nine different fourth order PDE that guarantee surface 

continuity is shown in Figure 6.6 (b). Note that the resolution of the parametric 

domain of PDE surface is set to 35x35. As mentioned before, a set of pre-

configured expressions is required for animating speech  [136].  A database of 

22 visemes is used to identify the corresponding viseme of a given word or 
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phrase within the TTS engine. The talking head database consists of 15 viseme 

expressions; some viseme can be repeated to save loading time e.g. viseme 

AW and OY can be represented using the same viseme.   

 

 

(a) 

 

(b) 

 

Figure 6. 6. (a)The neutral pose template curve-set. (b) The resulting surface. 

 

Each viseme is represented as a curve-set derived from a face mesh model as 

seen in Figure 6.6 (b).  The viseme curve-set poses have been obtained from 

the work presented in [137].  The authors have developed a PDE-based facial 

deformation technique that uses the boundary curves of a PDE surface to 

deform a face model using the MPEG-4 compliant facial feature points.  The 

idea behind this approach is that it utilizes the boundary curves for complex 

facial deformations rather than using conventional control points and surface 

interpolation techniques. A group of boundary points anatomically related to 

facial features, such as right corner of left eyebrow, left corner of inner lip 

contour, are selected as feature points according to the MPEG-4 definition. 

Animation of the face model is achieved by adjusting the position of the 

boundary curves before each calculation of the PDE surface. 

The deformations have been computed using a series of weighted sinusoids to 

parameterize the FAP-driven facial animation with the feature points. Additional 
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boundary points have also been selected and used as weights in areas around 

the feature points in order to guarantee surface smoothness. The mouth and 

eyes area are achieved using sinusoidal animation of the corresponding feature 

points. For stretching the lip corners, linear interpolation is applied to the 

boundary curve points representing the lips.  

The resulting curve-sets are stored in an internal viseme database and they will 

be used for computing a PDE surface that passes through the control points of 

each curve to generate a surface representation. The process is shown in 

Figure 6.7. Each curve-set viseme is used as the boundary conditions required 

for calculating the PDE method. The new surface is stored and used later for 

retargeting the facial deformations of the corresponding viseme to a different 

face mesh model. 

 

Figure 6. 7. PDE–based viseme process. 

 

The preconfigured viseme curve-sets contain all the necessary information to 

generate the PDE-based speech expressions for the animation system. Storing 

only a set of curves rather than a mesh object for each required viseme pose 

gives us the advantage at keeping the storage requirements at minimum.  This 

technology can be exploited to reduce network transmission bit-rates, by 

PDE Solver Layer Viseme curve-

sets  

(DB) 

 

 

 

PDE Viseme surface 
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sending only animation parameters rather than the video sequence. Figure 6.8 

contains various template viseme poses for calculating the required PDE 

template expressions. The curve sets seen in Figure 6.8 (top), are used to 

generate the human face mesh for the given viseme and apply motion 

retargeting to transfer the deformations to a different target human face model. 

Visemes A, B/M/P, EE and F/V used for the speech animation are shown in 

both configurations, curve and mesh representation.  

 

  
 

 

    

Viseme A Viseme B_M_P Viseme EE Viseme F_V 

Figure 6. 8. Curve based viseme poses (Top).  Template surface for corresponding curve-sets 
(Bottom). 

 

6.5.1.1 Blend shape visemes 

After the curve-sets have been computed using the PDE method, the generated 

PDE surfaces for each viseme in the database are stored and represented in 

the system as a group of polygon meshes. This is a pre-processed procedure 

that takes place at the loading time of the application and it is repeated for all 

the required visemes in the database. The next step consists of generating 
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animation for any two given facial expressions.  The talking head system must 

be able to blend any required viseme poses in real time. For this task shape 

interpolation between two key-frames is used, where two or more facial 

expressions are captured and in between frames are computed by linear 

interpolation.  

Linear interpolation is used to approximate a value using two known values of 

that function at other points. Speech animation of two given facial expressions 

is produced using the code in Equation 2 below. The new position is calculated 

by interpolating the two given visemes , 1pos and 2pos ; these indexes are 

computed from the text-to-speech engine and assinged a value according to the 

viseme mapping in the database.  The interpolation is calculated for all the 

vertices in the zyx ,, coordinates of each viseme.  The time variable, 

represented by t is computed using the current frame of the animation and is 

used to approximate the new position at time t . Additionally, the normals of the 

new surface are interpolated using the same techinque. 

         

t  = (Duration -CurrentFrame) / Duration.  

newMesh = t  * Mesh[ 1pos ] + ((1- t ) * Mesh[ 2pos ] ),   (6.2) 

 

The talking head system presented in this work integrates emotions that are 

produced from the AIML chatterbox engine according to the current user input. 

This requires the shape interpolation of an additional expression of the overall 

speech animation. In this case, the additional expression is included in the 
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interpolation function with an additional variable to control the amount or 

intensity of the blend shape.  The intensity variable is passed to the 

interpolation in real time during the calculation to produce a realistic 

conversation during the speech animation.  

The process of speech animation is explained in the diagram shown in Figure 

6.9 and shows the communication between the various layers of the speech 

animation.    Animation between two viseme poses is dependent on the user 

input. Input text is send to the chatterbot process to generate a response; 

response from the AIML engine is then processed by the TTS engine to 

produce the appropriate speech and viseme information used for the animation. 

The corresponding visemes will be parsed to the Blend Shape process to 

produce the interpolated shape at any given time.  Additionally, a third 

expression is parsed to the shape interpolator indicating the mood change. This 

information is obtained from the AIML engine in real time. This process will be 

explained later in this chapter. 

 

Figure 6. 9. The speech animation process layers. 
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6.5.2 Text-to-speech engine integration. 

As discussed in Section 6.2, the TTS engine integration is handled from the 

Microsoft SAPI 5.0 API using the .NET framework. The SAPI provides all the 

necessary functionality for controlling various speech related properties in real 

time. The diagram in Figure 6.9 shows the communication between the TTS 

engine and the Viseme database. The output of the Rebecca chatterbot is 

captured and synthesized by the TTS engine. Events are used to synchronize 

the output speech and to produce visemes from input text.   Each viseme is 

linked using the SAPI specified SPEVENTENUM list and the talking head 

viseme database, (Table 6.1 Section 6.2), and then passed to the blend shape 

layer.     

 

6.5.3 AIML integration 

The next implementation consists of integrating the AIML based chatterbot to 

the talking head system.  This process can be thought as an additional layer 

dependant to the user’s input. The current speech animation system has been 

tested with two different AIML interpreters, the Rebecca AIML and the AIMLBot, 

which is only compatible with the .NET framework. Both interpreters are 

satisfactory for the level of use in this application.  The latest version of the 

Talking head system developed here uses the AIMLBot because of its simplicity 

to operate. The results of the AI process are not affected since all the required 

data are contained in the AIML files that are common to both interpreters. 

Initializing the AIML engine requires loading the appropriate AIML files that will 

be used for the conversation. These files, obtained from the A.L.I.C.E bot 

repository, are a set of XML based scripts that contain A.L.I.C.E’s brain. 
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Additional XML files are also required to set up various bot personalization 

attributes such as name, interests, favourite phrases etc.  

One of the many advantages of using AIML is that it is fully customizable. The 

bot master can include new AIML content with custom handling of input text. As 

discussed in Section 6.3, implementing custom AIML elements can add 

intelligence to the bot and make the human-computer interaction more 

believable, accurate and human like.  Additionally, an infinite number of new 

tags can be added to extend the functionality of the bot. The selection of current 

mood in the talking head system is an example of AIML customization.  The 

emotions have been embedded in the AIML files by introducing a new tag called 

<emotion> and a “name” property (19). The property name will hold the mood 

name of the current AIML pattern element. This information has been added 

manually in a custom AIML file to support a range of different input pattern 

elements. Figure 6.10 below, shows an example of emotion handling in AIML. 

When the input text matches the pattern element, the template element 

contains additional information.  In this example, the response is produced by a 

<random> tag that contains two different responses and the emotion that is set 

for current template is happy.  However, the new <emotion> tag requires 

additional processing since the AIMLBot interpreter does not recognize custom 

tags. A simple XML node processing function searches the <category> node 

element for each new response to check if it contains a valid emotion element. 

If an emotion element is found, it is parsed to the Blend Shape layer to produce 

the new expression. Alternatively, if the current template does not contain any 

emotion element, then the current mood is set to neutral. 
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   <pattern>I LIKE YOU</pattern> 

      <template> 

       <emotion name="happy" /> 

         <random>  

         <li>  I Like you too.</li>   

         <li>  You are very kind. Thank you!.</li>   

       </random> 

  </template> 

 

Figure 6. 10. An AIML example containing emotion data. 

 

 

6.6 Motion retarget 

Finally, once the system is initialized with the PDE-based viseme expressions 

and synchronized with the AIML engine, it is required to retarget [138] the 

deformations to a different target face mesh model. More information about the 

motion retargeting technique used in this work can be found in chapter 5.5. This 

procedure is repeated for every expression in the viseme database. There are 

cases where a better mapping correspondence is required, e.g. mouth regions 

between the two objects, to achieve a more detailed representation. To solve 

the problem, the template face and the target object are split into face region 

maps, such as bottom and top mouth, nose and eyes. Each map contains the 

index of each vertex that is included in that region. The collection of these 

points is handled using the Autodesk Maya environment, where the selection 

and output of the correspondent vertices is performed using MEL scripts. The 

correct selection of these points is very important since the motion transfer is 

based on the vertex indexes each map contains.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6. 11. Region maps used for motion retarget. 
template face mouth region maps (top). Target mesh mouth region maps (bottom). 

 

Figure 6.11, contains the top and bottom mouth region maps for the template 

face and the target human face object. Motion retarget is applied separately to 

each region map until all the required facial areas are processed. Once the 

motion transfer is complete, the resulting object can be associated with the 

expression it represents in the viseme database. Note that the quality of the 

mapping correspondence between the template viseme and the output face 

model depends also on the resolution of the grid used to compute template 

surface representation. Thus, using a grid with a similar number of points to the 

number of vertices in the original mesh will produce a better mapping 

correspondence. It can be seen in the diagram in shown Figure 6.12, that the 

motion retargeting process can be visualized as an additional layer in the talking 

head system that communicates between the PDE surface layer and the input 

mesh model.  
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Figure 6. 12. Motion retarget process. 

 

6.7 Examples 

Figure 6.13, contains a sequence of viseme expressions that are transferred 

from the template mesh (a, b, c) to the different target face mesh model (d, e, f). 

The motion retargeting technique employed in this work requires a mapping 

correspondence between the two objects, such as each point of the target mesh 

model is associated with the nearest point of the template surface. This way 

each point of the target mesh will be represented on the template model. 

Finally, motion retargeting is carried out by adding the difference between each 

point in the source model and the corresponding point in the target model. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Viseme A Viseme BMP Viseme Q 

 

Figure 6. 13. Viseme expressions. PDE-based viseme expressions. (a,b,c) Motion retargeting to 
human head object.  (d,e,f) 

 

Next the sequence of expressions in Figure 6.14 shows several examples of 

motion retargeting on expressions that are used within the talking head system 

to simulate change of mood during the speech. These expressions are included 

in the blend shape process to adjust the current viseme according to the current 

mood expression. The current Mood selection can be controlled by certain input 

text, duration or from the AIML engine [133].  AIML elements can encapsulate 

the response and certain mood that is generated from each parsed input text. 

This way, the response from the bot can also contain the appropriate mood 

expression. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 

Angry Smile Disgust 

 

Figure 6. 14. Emotion expressions. PDE-based emotion expressions. (a, b, c)  Motion retarget 
to human head object . (d, e, f) 

 

Another example of motion retargeting is shown in Figure 6.15; the target 3D 

human face has been replaced with a model acquired from a 3D scanner. The 

initial alignment of the two models plays a very important role in the correct 

motion transferring between the facial region maps. There are cases where 

facial regions of the target mesh need to be removed from the motion retarget 

process. The generic face template used in this work contains 4 basic regions 

maps; for more realistic facial deformations the number of face area maps must 

be increased according to the facial features of the target objects. 
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Figure 6. 15. Motion retarget to a 3D scan mesh model. 

 

The final textured version of the animated target object is shown in Figure (6.16 

-6.17). The animated face contains teeth, tongue and mouth to increase the 

realism of the speech animation. The position of the teeth and tongue is 

interpolated alongside with the viseme blend shape process.  
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Figure 6. 16. Final rendering of the talking head system 3D face. The face model contains 
mouth, teeth and tongue animated according to each viseme. 
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Figure 6. 17. Final rendering of the different face model retargeted to the talking head system.  
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6.8 Conclusions  

This work presents a technique for animating PDE-based facial expressions 

within a talking head system. It uses a set of pre-configured curves representing 

various viseme poses to calculate a template PDE surface. The resulting 

surface is used to associate various facial feature areas with a different target 

face mesh model.  Motion retarget is then applied to transfer the deformations 

in these areas from the template to the target model. This technique offers 

animation re-usage, since all the necessary viseme poses for the animation are 

pre-calculated and re-used for a different target mesh model. Additionally, it 

minimizes the storage requirements by storing only a small set of curves for 

each expression. The system interacts with the user using an AIML chatterbot 

to generate response from input text.  

The user can enter a question or phrase and the AI bot will generate the 

appropriate answer to facilitate a real time conversation. The response is then 

captured and converted to speech from the text-to-speech engine and each 

word is split into a sequence of viseme poses that are used to synchronize the 

facial animation. The animation is carried out by linearly interpolating a given 

set of visemes to generate the in between transition of different visemes. An 

improvement to be included in this technique is a more generic template PDE 

model representation that could enable the animation to a larger variety of facial 

models. Future work can be undertaken in automating the facial map extraction 

process. This process is required to associate various facial areas between the 

two face models during the motion retargeting process. 
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Chapter 7: Conclusions and future work 

In this work several techniques were presented that exploit parametric 

surfaces obtained through the use of the PDE method. The PDE method has 

been used as the surface generation technique since it offers many advantages 

over traditional surface generation techniques.  It has been shown in previous 

chapters that it can reduce dramatically the amount of information required to 

represent complex three-dimensional surfaces.  This is due to the small number 

of design parameters that are required to describe a surface.  Moreover, the 

PDE method offers several advantages over the design, manipulation and 

animation of a surface, some of them have been adapted in a series of 

methodologies presented in the previous chapters of this thesis. 

During the writing of this thesis, many goals where achieved. The 

implementation of the techniques presented in the previous chapters helped to 

give a better and clear understanding of the PDE method, its characteristics, 

advantages and disadvantages. However, the need for developing various 

applications gave us the opportunity to explore several programming languages 

and open source libraries in order to produce virtual environments capable of 

interacting with the PDE method.  Throughout the research and development 

that took place over the last few years, several techniques that are not covered 

in this thesis were also adapted for developing efficient software designs. Since 

the implementation of the above methodologies is software based, the 

knowledge and understanding of good software development practices are 

necessary in order to design implement and maintain virtual environments. 

Moreover, some of these techniques have more to offer than others. 

Particularly, the conversion of a mesh model to a patch wise parametric surface 

is one of these techniques which aim is to solve a very difficult problem. 
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Currently, many methodologies are trying to solve the problem of mesh 

parameterization using a variety of approaches; so far the results shown that 

there is still room for introducing a better more flexible technique that will be 

able to support any given mesh model and at the same time produce flexible 

compressed data.  Doing so it will increase the use of parametric surfaces in a 

wider perspective, making possible to integrate them in systems where the 

storage and computational requirements are required to be minimum. Such 

systems including vast gaming environments and interactive cyber worlds will 

benefit from the usage of PDE surfaces by utilizing all of their characteristics in 

such areas as geometry, animation and physics.  

 

7.1 Achievements 

The main contribution of this thesis has been achieved through the 

adaptation of the PDE method in various applications focusing on modelling, 

manipulation and animation of PDE-based surfaces. One of the main 

challenges in computing a PDE surface lies in generating the set of boundary 

conditions that represent the outer contour of the surface in question. The steps 

involved in this procedure have been identified and presented in Chapter 3. A 

new technique was developed that automatically describes a surface in terms of 

boundary curves. The process starts by reducing an input mesh model using a 

mesh simplification technique until it reaches a satisfactory level of quality and 

number of faces. Each face of the reduced surface is then converted to a 

boundary patch consisting of a fixed number of control points. The curvature 

and smoothness of the original mesh surface is extracted using a ray casting 

technique between each of these new control points and the original mesh 

surface before the mesh simplification.  This process is applied in every face of 
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the simplified model in order to identify and extract all the feature points that 

describe the input mesh surface.  

Some of the problems identified during this process, consists mainly on 

the complexity of the model in question. To that extend, cases where the model 

consists of sharp edges, non-manifold geometry and complex uv-mapping need 

to be identified and handled in different manner before and after the 

simplification process. For example, during the mesh reduction process, it might 

be necessary to keep some sharp edges in order to maintain special features 

on the original model.  In such case, the triangular face that contains shard 

edge needs to be handled separately when extracting the patches. However, in 

order to preserve a sharp edge, an additional set of faces need to be identified 

and preserved during the mesh simplification leading to storing and converting 

into PDE-patches additional number of faces.  Moreover, the current technique 

is capable of producing acceptable results in models with smooth topological 

areas. The aim of this technique can be summarized as a solution to the 

problem of mesh segmentation for converting  a given mesh model to set of 

parametric PDE-based patches; this is done by utilizing a process that 

automatically identifies and produces boundary-based patches that represents 

the given model’s topology. 

Various implementations of the PDE method in various environments 

utilizing scripting language were presented in Chapter 4. Some of these include 

the development of an interactive environment for designing and manipulating 

PDE-based aircraft configurations and the integration of the PDE method in a 

CAD environment, such as Maya. The first technique provides the user with 

tools to simplify the design of aircraft configurations using parametric PDE 

surfaces in a stand-alone 3D environment. Whereas, the manipulation of such 
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configurations is achieved by simple affine transformations that are applied to 

the boundary conditions of the PDE method.  The second methodology of 

Chapter 4 presents a plug-in for the Maya environment that makes possible the 

calculation of PDE surfaces for a given set of boundary conditions. The 

advantage of such approach can be mainly seen as the incorporation of various 

tools that exist in the Maya environment in the construction of PDE surfaces. 

Additionally, this work has proven useful in expanding the PDE method 

capabilities by introducing a new surface deformation technique, while making 

possible the construction and manipulation of PDE surfaces within a CAD 

environment.  

Animation is another area in computer graphics were the PDE method 

has been successfully adapted. Several techniques were developed to show 

the advantages of such surfaces by utilizing existing animation approaches as 

well as presenting new ones. Chapter 5 presents an animation technique based 

on the PDE method that generates human-based cyclic motions like walking 

and running. It makes use of simple mathematical expressions to generate 

cyclic motions. Periodic functions, such as sines and cosines, are used to 

produce the general motion of the human body, which succeed in making the 

movement very realistic.  These expressions are then attached to a skeleton 

system that holds the boundary conditions that represent a three-dimensional 

human character. An advantage of this technique is that it can produce realistic 

human based cyclic animation of a PDE-based surface and retarget the motion 

back to the original mesh model. One of its limitations is that the character 

model that needs to be animated must meet the topological requirements of the 

PDE-based template representation. For example, non-human character 

models cannot be processed correctly since they might contain additional body 
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parts that will not fit the template character used for the animation. As an 

extension of this technique, a better template representation can be developed 

that can either support a wider selection of models or ideally will be able to 

adapt to any given surface. 

A second technique presents a different way of animating PDE-based 

surfaces by utilizing the spine of the surface. This methodology has been 

developed to simulate fish locomotion using the spine of a PDE surface 

representation of a given fish.  The spine associated with PDE-based fish model 

is manipulated analytically through the use of a set of parameters that are 

capable of producing various fish movements.  The advantage of this approach 

is that it can generate complex animation without the need of an additional 

skeleton hierarchy, all the information required to animate or deform a model 

are contained in the shape of the surface itself.  This methodology contains the 

same limitations with the cyclic animation of human character technique; this is 

due to the fact that both techniques are using a template representation for 

transferring the animation between the PDE geometry and the original model. 

The last methodology presented in Chapter 6 is using PDE-based 

surfaces for generating viseme-based facial animation. This approach consists 

of a dynamic talking head system that can animate a database of three-

dimensional face expressions by utilizing the PDE method. This technique uses 

a set of pre-configured template boundary conditions representing all the 

required viseme poses for the simulation of a human-computer based 

interaction system.  Initially every template viseme pose is evaluated using the 

PDE method, and then used to transfer the PDE-based pose to a given face 

mesh model by applying motion retargeting. This technique, offers animation re-

usage, since all the necessary viseme poses for the animation are pre-
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calculated and re-used for a different target mesh model.  Additionally, the 

system offers a computer-human interaction through the use of an AIML 

chatterbot to generate response from input text. The user can enter a question 

or phrase and the AI bot will generate the appropriate answer to facilitate a real 

time conversation. The response is then captured and converted to speech from 

the text-to-speech engine and each word is split into a sequence of viseme 

poses that are used to synchronize the facial animation.  This process can 

automate the animation of different characters in a computer-human interaction 

environment by re-using the same pre-build expression and viseme set.  

 

7.2 Future work 

A list of improvements can be identified for each methodology that is 

presented in this thesis.  Each approach can be either expanded to include 

several additional features or improve its functionality.  Starting with the 

automatic curve extraction technique, future enhancements can be undertaken 

in handling a wider variety of geometrical topologies, where problems such as 

maintaining special features need to be indentified and then converted into a 

PDE-based patch or kept as triangular faces. Different methodologies need to 

be developed in order to maintain features like texture coordinates in the 

generated PDE-based patches. However, the segmentation of the polygon 

mesh using a reduced version cannot maintain such features. To that extend, 

new techniques for generating boundary patches while maintaining the original 

surface curvature and texture coordinates need to be implemented.  Such 

techniques include the generation of boundary regions using the uv mapping, 

curvature and the normal crease angle of a given surface.  
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The motion retargeting technique that was introduced and utilized in 

various applications throughout this thesis can also be improved in various 

ways. One of the main disadvantages of such technique is that it is not fully 

automated; generating the facial area maps for re-using the facial animation of 

the talking head system required the manual selection of these facial points 

using Maya.  Additionally, the process might produce various deformations 

while retargeting the motion to a topologically different target model. Although, 

the particular motion retargeting technique is application specific; it was 

originally developed to transfer motion between a PDE representation and a 

polygon model with similar topology, there is still room for improvement. Some 

of the future enhancements can be identified as adding constraints at geometric 

areas that cannot be successfully transferred and generate automatically area 

maps by identifying various topological surface features.  

Additional future work can be undertaken on improving the interactive 

aircraft designer environment. A variety of aircraft parts and transformation tools 

for enabling complex designing of airplanes can be included to improve the 

overall appearance of the final surface; while adding export functionality to 

various formats for use with commercial CAD packages can be proven useful. 

Future work could also be undertaken in determining the stress and strain in 

materials and structures subjected to static or dynamic forces that are applied to 

an aircraft configuration during the flight.  

In the field of animation, the PDE method was proven useful since it 

provides tools for parameterizing and designing cyclic motion.  The use of the 

PDE spine as a universal rigging tool for PDE surfaces can be seen as another 

future improvement that can unify the work presented in Chapter 5. Once a 

PDE representation is obtained over a given mesh model, the spine of the 
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surface can be identified and analytically controlled in order to create specific 

cyclic motions. As an example, the animation of the PDE-based human 

representation shown in Chapter 5 was animated using a skeleton hierarchy. An 

alternative to that technique will be to identify the PDE spine for each body part 

and set various constrains in places where the joints are required to move for 

creating human based motion. For each part, a different parameterization and 

an analytic solution need to be produced in order to generate the animation. An 

advantage of such technique is that no additional data for producing the 

skeleton hierarchy are necessary. 

Finally, future improvements can be undertaken in enhancing the 

functionality of the PDE-based talking head system. Some of them include, 

publishing of the application in a web page since the data have been optimized 

for internet transfer, including a wide variety of emotion expressions and a real-

time mood system. Such features can enhance the overall simulation and 

create a very realistic human-computer interaction environment. Moreover, 

implementing a skeleton system to simulate head movement according to a 

cyclic function or the response from the AI can increase the realism of the 

conversation. 

Besides the various future improvements that can be undertaken in order 

to improve several aspects of each methodology, there are many technologies 

involved that were necessary in order to make the evaluation and visualization 

of a PDE surface possible. For example, during the construction of the 

boundary curves representing the human character used for cyclic animation, 

the boundary data were extracted manually from Maya. This process requires 

the creation and manipulation of parametric curves using tools embedded in the 

Maya environment. However, once the data were created, the communication 
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with the PDE method libraries and the skeleton hierarchy would be possible 

only by using a scripting language such as MEL script. To that extend, various 

scripts were developed to extend the capabilities of the software and provide a 

better user interaction while evaluating a PDE surface.  Alternatively, the 

rendering of parametric PDE surfaces required the use a Rendering API 

specification library. The implementation of rendering functionality using the 

OpenGL specification made possible the drawing of materials, normals and 

texture coordinates while enabling the selection of components such as curve, 

faces and objects from the user. During the implementation and integration of 

such functionalities, many problems occurred. Some of them were due to the 

complexity of the problem to solve, while others were produced due to library 

specific problem, hardware compatibility and software limitations. The PDE 

method is an approximation technique that aims to smooth the data during its 

evaluation; this is identified as one of its main disadvantages since representing 

non-smooth surfaces appears to be a challenge. Nonetheless, each application 

contains several features that can overcome any problem that might appear 

during its execution process and can provide a novel functionality for interacting 

with PDE surfaces. 

To conclude, several applications were presented in this thesis utilizing 

various methodologies but with a shared objective, to exploit the PDE method 

and show the advantages over traditional surface generation methods.  Further 

work can be undertaken to produce better and more detailed results depending 

to the end user application. Moreover, depending on the complexity of the mesh 

model in question, the techniques that have been developed need to be 

adapted in order to take into account various topological criteria that define a 

surface. However, the surface generation technique utilized here contains 
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several important features that vary from the ability to reduce the data required 

to characterise a surface to the availability of tools for deformation, manipulation 

and animation of a surface without additional tools or constraints. 
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