

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

PERFORMANCE MODELLING AND ANALYSIS

OF CONGESTION CONTROL MECHANISMS

FOR COMMUNICATION NETWORKS WITH

QUALITY OF SERVICE CONSTRAINTS

R. H. A. FARES

PhD

2010

Performance Modelling and Analysis of Congestion

Control Mechanisms for Communication Networks

with Quality of Service Constraints

An investigation into new methods of controlling congestion and

mean delay in communication networks with both short range

dependent and long range dependent traffic

Rasha Hamed Abdel Moaty Fares

Submitted for the degree of

Doctor of Philosophy

Department of Computing

School of Computing, Informatics and Media

University of Bradford

2010

iii

Abstract

Rasha Hamed Abdel Moaty Fares

Performance modelling and analysis of congestion control mechanisms for

communication networks with quality of service constraints

Keywords: Congestion Control – Mean Delay – Quality of Service – Short Range

Dependent – Long Range Dependent – Communication Networks.

Active Queue Management (AQM) schemes are used for ensuring the Quality of

Service (QoS) in telecommunication networks. However, they are sensitive to parameter

settings and have weaknesses in detecting and controlling congestion under dynamically

changing network situations. Another drawback for the AQM algorithms is that they

have been applied only on the Markovian models which are considered as Short Range

Dependent (SRD) traffic models. However, traffic measurements from communication

networks have shown that network traffic can exhibit self-similar as well as Long Range

Dependent (LRD) properties. Therefore, it is important to design new algorithms not

only to control congestion but also to have the ability to predict the onset of congestion

within a network.

An aim of this research is to devise some new congestion control methods for

communication networks that make use of various traffic characteristics, such as LRD,

which has not previously been employed in congestion control methods currently used

in the Internet. A queueing model with a number of ON/OFF sources has been used and

this incorporates a novel congestion prediction algorithm for AQM. The simulation

results have shown that applying the algorithm can provide better performance than an

equivalent system without the prediction. Modifying the algorithm by the inclusion of a

sliding window mechanism has been shown to further improve the performance in

terms of controlling the total number of packets within the system and improving the

throughput.

Also considered is the important problem of maintaining QoS constraints, such as

mean delay, which is crucially important in providing satisfactory transmission of real-

time services over multi-service networks like the Internet and which were not

originally designed for this purpose. An algorithm has been developed to provide a

control strategy that operates on a buffer which incorporates a moveable threshold. The

algorithm has been developed to control the mean delay by dynamically adjusting the

threshold, which, in turn, controls the effective arrival rate by randomly dropping

packets. This work has been carried out using a mixture of computer simulation and

analytical modelling. The performance of the new methods that have been produced has

been evaluated against existing methods with encouraging results.

iv

Declaration

I hereby declare that this thesis has been genuinely carried out by myself and has not

been used in any previous application for a degree. The invaluable participation of

others in this thesis has been acknowledged where appropriate.

Rasha Hamed Fares

v

Dedication

To my parents, my husband and my children

vi

Acknowledgments

In the Name of Allah, the Most Gracious, the Most Merciful

All Praise is Due to Allah for His Glorious Ability and Great Power. I would like to

thank Allah for giving me the power, patience and knowledge to complete this doctoral

thesis.

I would like to express my gratitude to all those who gave me the support and

encouragement to complete this thesis. First of all, I would like to express my sincere

appreciation and profound gratitude to my supervisor Professor Mike Woodward, who

provided invaluable guidance throughout the course of this research. I would like to

express my appreciation for his helpful suggestions, continual and unwavering

encouragements, patience and endless support through the entire research and thesis

writing process.

I would like to express my appreciation to all the staff at the department of

Computing, especially: Professor Irfan Awan, Professor Demetres Kouvatsos, Professor

Valentina Zharkova, Dr. Geyong Min and Mrs Bev Yates. I would also like to thank my

colleagues: Dr. Iman Alansari, Dr. Khalid Alawfi, Dr. Fahad Alraddady, Amina Alswai,

Ibtehal Nafea, Guzlan Miskeen, Yasmin Bashon and Roquia Abdelrahman. Many

thanks also go to my friend Hadjer Djellat.

I would like to gratefully acknowledge the provision of the scholarship from the

Ministry of Higher Education in Egypt and the Egyptian Cultural Centre and

Educational Bureau in London.

I am deeply indebted to my family who offered me great support and

encouragement throughout my studies. My heartfelt thanks go to my parents, my sisters

and my brother for their unfailing love, prayers and selfless support.

vii

Last but not least, my affectionate thanks go to my husband Dr. Amin Asfor and to

my lovely children Mariam and Anaas for their sacrifices, support and patience. Words

are inadequate to express my gratitude to them for their tremendous support and

continuous encouragement.

viii

Publications

1. Rasha Fares and Mike Woodward, “A new Algorithm for Controlling the Mean

Queue Length in a Buffer with Time Varying Arrival Rate”, The 4
th

International Conference for Internet Technology and Secured Transactions

(ICITST-2009), In proceedings of IEEE Computer Society, London, UK, 9
th

-

12
th

 November 2009.

2. Rasha Fares and Mike Woodward, “Maintaining Delay Constraints through a

Buffer Using Dynamic Queue Threshold”, 1
st
 Annual Conference for the

Egyptian students in UK and Ireland. The Egyptian Cultural Centre and

Educational Bureau, London, 15
th

 October 2009.

3. Rasha H. Fares and Mike E. Woodward, “The use of Long Range Dependence

for Network Congestion Prediction”, The First International Conference on

Evolving Internet (INTERNET 2009), In proceedings of IEEE Computer

Society, Cannes/La Bocca, French Riviera, France, 23
rd

- 29
th

 August 2009.

4. R. Fares, M. Woodward and I. Awan, “Congestion Control Mechanisms for

Multi-Class Traffic”, the 9
th

 Informatics Workshop for Research Students,

University of Bradford, Bradford, UK, June 2008.

5. R. Fares, M. Woodward and I. Awan, “Performance Analysis of Buffer

Management Schemes under Multi-Class Traffic”, The 9
th

 Annual Postgraduate

Symposium on the Convergence of Telecommunications, Networking and

Broadcasting, Liverpool John Moores University, Liverpool, UK, 23
rd

 – 24
th

June 2008.

ix

Contents

List of Tables .. xiii

List of Figures ... xiv

List of Abbreviations ... xix

CHAPTER 1 .. 1

Introduction ... 1

1.1 Introduction ... 1

1.2 Motivation ... 3

1.3 Aims and Objectives ... 4

1.4 Original Contributions ... 5

1.5 Thesis Organization ... 6

CHAPTER 2 .. 8

Internet Traffic Congestion and its Control ... 8

2.1 Introduction ... 8

2.2 Congestion Management ... 9

2.2.1 Congestion Prevention ... 9

2.2.2 Congestion Avoidance ... 10

2.2.3 Congestion Recovery ... 10

2.3 Congestion Collapse .. 11

2.4 Congestion Control .. 12

2.4.1 Open Loop Congestion Control ... 15

2.4.2 Closed Loop Congestion Control ... 15

2.5 TCP Congestion Control ... 16

2.5.1 TCP Slow Start ... 17

2.5.2 TCP Congestion Avoidance ... 18

2.5.3 TCP Fast Retransmit .. 19

2.5.4 TCP Fast Recovery .. 20

2.6 Other Protocols .. 20

x

2.7 Summary ... 21

CHAPTER 3 .. 23

Queue Management Algorithms .. 23

3.1 Introduction ... 23

3.2 Queue Management ... 23

3.3 Passive Queue Management .. 24

3.3.1 Drop Tail .. 24

3.3.2 Drop Front .. 25

3.3.3 Random Drop ... 26

3.3.4 Drawbacks of Passive Queue Management ... 27

3.4 Active Queue Management ... 27

3.4.1 Early Random Drop (ERD) .. 28

3.4.2 Random Early Detection (RED) .. 29

3.4.3 Adaptive RED (ARED) ... 34

3.5 RED Variants with Aggregate Control ... 36

3.5.1 Stabilized RED (SRED) ... 36

3.5.2 Random Exponential Marking (REM) ... 37

3.5.3 Double Slope RED (DSRED) .. 40

3.5.4 BLUE ... 42

3.6 RED Variants with Per-Flow Control ... 43

3.6.1 Flow Random Early Drop (FRED) .. 43

3.6.2 Class Based Threshold RED (CBT-RED) ... 44

3.6.3 Balanced RED (BRED) ... 44

3.7 Summary ... 45

CHAPTER 4 .. 47

Simulation Validation ... 47

4.1 Introduction ... 47

4.2 Simulation Model Components ... 48

4.3 Simulation Validation .. 49

xi

Chapter 5 ... 53

Dual Class RED ... 53

5.1 Introduction ... 53

5.2 DC-RED Model ... 54

5.3 Performance Analysis .. 61

5.4 Marginal Mean Delay Analysis ... 61

5.4.1 The Effect of the Service Rate on the Marginal Mean Delay 62

5.4.2 The Effect of Class1 Arrival Rate on the Marginal Mean Delay 64

5.4.3 The Effect of Class2 Arrival Rate on the Marginal Mean Delay 65

5.5 Marginal Dropping Probability Analysis .. 67

5.5.1 The Effect of the Service Rate on the Dropping Probability 67

5.5.2 The Effect of Class1 Arrival Rate on the Dropping Probability 69

5.5.3 The Effect of Class2 Arrival Rate on the Dropping Probability 71

5.6 Overall Mean Delay Analysis ... 73

5.7 Overall Dropping Probability Analysis ... 74

5.8 Summary ... 75

CHAPTER 6 .. 76

Congestion Prediction in Networks with LRD Traffic .. 76

6.1 Introduction ... 76

6.2 Short Range Dependence .. 77

6.2.1 Poisson Distribution ... 78

6.2.2 Exponential Distribution .. 78

6.3 Long Range Dependence ... 80

6.3.1 Heavy Tailed Distribution .. 80

6.3.2 Pareto Distribution ... 81

6.4 Self-Similarity ... 83

6.4.1 Deterministic Self-Similarity (Scale Invariance) ... 83

6.4.2 Stochastic Self-Similarity .. 84

6.5 Impact of LRD on Congestion Prediction ... 87

xii

6.5.1 Motivation .. 87

6.5.2 Simulation Model ... 88

6.5.3 Prediction Algorithm .. 90

6.5.4 Performance Results .. 94

6.6 Impact of System Parameters .. 102

6.6.1 Applying a Sliding Window Algorithm ... 103

6.6.2 The Effect of Using Different Limits ... 111

6.6.3 The Effect of Using Different Window Lengths ... 112

6.6.4 The Effect of Using Different Gaps ... 114

6.6.5 The Effect of Using Different Gap/Window Ratios 116

6.7 Summary ... 119

CHAPTER 7 .. 121

Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival

Rate ... 121

7.1 Introduction ... 121

7.2 Impact of a Dynamic Moving Threshold .. 122

7.2.1 The Feedback Control Strategy .. 122

7.2.2 The Arrival Process .. 124

7.2.3 Performance Metrics .. 126

7.2.4 Performance Validation ... 132

7. 2.5 Simulation Results .. 138

7.3 Impact of Dynamic Threshold Using Pareto Switchover 144

7.3.1 Motivation .. 144

7.3.2 Performance Results .. 144

7.4 Summary ... 149

CHAPTER 8 .. 151

Conclusions and Future Work ... 151

8.1 Conclusions ... 151

8.2 Recommendations for Future Work .. 155

References .. 156

xiii

List of Tables

3.1 Summarized RED Algorithm.. 31

3.2 Pseudocode for the RED Algorithm.. 33

3.3 Pseudocode for the original Adaptive RED by Feng et al.............................. 34

3.4 Pseudocode for the ARED algorithm.. 35

3.5 Pseudocode for the REM algorithm.. 39

3.6 Pseudocode for the DSRED algorithm.. 42

3.7 Pseudocode for the BLUE algorithm.. 43

4.1 RED configuration parameters.. 49

5.1 DC-RED configuration parameters... 55

5.2 Pseudocode for the DC-RED algorithm.. 60

6.1 Pseudocode for the prediction algorithm... 93

6.2 The congestion predictor configuration parameters.. 94

6.3 The sliding window algorithm... 105

6.4 The results obtained by using variable gap lengths and window

length=150... 117

6.5 The results obtained by using variable gap lengths and window

length=300... 117

7.1 Validation configuration parameters... 133

7.2 The mean delay controller configuration parameters...................................... 138

7.3 The mean delay controller configuration parameters for LRD

source... 145

xiv

List of Figures

2.1 Classification of congestion control algorithms.. 14

2.2 TCP congestion avoidance [40].. 19

3.1 Drop/mark probability of RED... 31

3.2 Flowchart of the RED algorithm... 32

3.3 REM marking probability... 40

3.4 Model for DSRED buffer... 41

3.5 Dropping function for DSRED... 41

4.1 Average queue size profile of RED [4]... 50

4.2 Simulation of the RED algorithm.. 50

4.3 Simulation of the RED algorithm with 95% confidence intervals.................. 51

5.1 Single buffer with two thresholds per class... 55

5.2 Different cases for the single buffer with two thresholds per class................. 58

5.3 Dropping probability for both classes when they have the same minimum

and maximum thresholds values (LA1=LB1) and (LA2=LB2)............................. 59

5.4 Dropping probability for both classes when LA1< LB1< LA2............................ 59

5.5 Marginal mean delay at μ=6, λ1=9 and λ2=3... 62

5.6 Marginal mean delay at µ=12, λ1=9 and λ2=3... 62

5.7 Marginal mean delay at μ=18, λ1=9 and λ2=3... 63

5.8 Marginal mean delay at λ1=6, μ=12 and λ2=3... 64

5.9 Marginal mean delay at λ1=9, μ=12 and λ2=3... 65

5.10 Marginal mean delay at λ1=12, μ=12 and λ2=3... 65

5.11 Marginal mean delay at λ2=3, μ=12 and λ1=6... 66

5.12 Marginal mean delay at λ2=6, μ=12 and λ1=6... 66

xv

5.13 Marginal mean delay at λ2=9, μ=12 and λ1=6... 67

5.14 Marginal dropping probability at μ=6, λ1=9 and λ2=3..................................... 68

5.15 Marginal dropping probability at μ=12, λ1=9 and λ2=3................................... 69

5.16 Marginal dropping probability at μ=18, λ1=9 and λ2=3................................... 69

5.17 Marginal dropping probability at λ1=6, μ=12 and λ2=3................................... 70

5.18 Marginal dropping probability at λ1=9, μ=12 and λ2=3................................... 70

5.19 Marginal dropping probability at λ1=12, μ=12 and λ2=3................................. 71

5.20 Marginal dropping probability at λ2=3, μ=12 and λ1=6................................... 72

5.21 Marginal dropping probability at λ2=6, μ=12 and λ1=6................................... 72

5.22 Marginal dropping probability at λ2=9, μ=12 and λ1=6................................... 73

5.23 The overall mean delay at different values of λ1 where μ=12 and

λ2=3... 74

5.24 The overall dropping probability at different values of λ1 where μ=12 and

λ2=3.. 74

6.1 The cdf of a Pareto distribution at different values of α and k=1.................... 82

6.2 The pdf of a Pareto distribution at different values of α and k=1.................... 82

6.3 Fractals of Koch snowflake [81]... 84

6.4 Comparison of actual, traditional and self-similar Ethernet traffic viewed

on different time scales [82].. 86

6.5 Schematic diagram of the congestion prediction model.................................. 89

6.6 The number of packets using limit=30x10
6
.. 96

6.7 The number of packets using limit=20x10
6
.. 96

6.8 The number of packets using limit=10x10
6
.. 96

6.9 The MQL using limit=30x10
6
... 97

6.10 The MQL using limit=20x10
6
... 97

6.11 The MQL using limit=10x10
6
... 97

xvi

6.12 The average delay using limit=30x10
6
.. 99

6.13 The average delay using limit=20x10
6
.. 99

6.14 The average delay using limit=10x10
6
.. 99

6.15 The dropping probability using limit=30x10
6
... 100

6.16 The dropping probability using limit=20x10
6
... 100

6.17 The dropping probability using limit=10x10
6
... 100

6.18 The normalized throughput using limit=30x10
6
... 101

6.19 The normalized throughput using limit=20x10
6
... 101

6.20 The normalized throughput using limit=10x10
6
... 101

6.21 The number of packets with prediction using limit=20x10
6
........................... 102

6.22 Schematic diagram of the sliding window algorithm...................................... 103

6.23 The number of packets after applying the sliding window algorithm using

limit=20x10
6
.. 106

6.24 Comparing the number of packets with and without applying the sliding

window algorithm using limit=20x10
6
.. 106

6.25 The normalized throughput after applying the sliding window algorithm

using limit=20x10
6
.. 107

6.26 The MQL after applying the sliding window algorithm using limit=20x10
6
. 108

6.27 The average delay after applying the sliding window algorithm using

limit=20x10
6
.. 108

6.28 The dropping probability after applying the sliding window algorithm using

limit=20x10
6
.. 109

6.29 The number of packets using gap=30.. 110

6.30 The number of packets using gap=25.. 110

6.31 The number of packets using gap=15.. 110

6.32 The effect of changing the limit on the average number of packets............... 111

xvii

6.33 The effect of changing the limit on the average delay.................................... 112

6.34 The effect of changing the limit on the average throughput........................... 112

6.35 The effect of changing the window length on the average number of

packets... 113

6.36 The effect of changing the window length on the average delay.................... 113

6.37 The effect of changing the window length on the average throughput........... 114

6.38 The effect of changing the gap length on the average number of packets...... 115

6.39 The effect of changing the gap length on the average delay........................... 115

6.40 The effect of changing the gap length on the average throughput.................. 116

6.41 The relationship between the average number of packets and the ratio

(gap/TWL).. 118

6.42 The relationship between the average throughput and the ratio (gap/TWL)... 118

6.43 The relationship between the average delay and the ratio (gap/TWL)............ 119

7.1 Schematic diagram of the mean delay controller model................................. 123

7.2 A two-state MMPP source.. 125

7.3 The state transition diagram.. 127

7.4 The change in the arrival rate due to packet dropping.................................... 129

7.5 The change in the dropping probability due to packet dropping..................... 129

7.6 The normalized throughput vs. traffic load... 133

7.7 The mean delay vs. traffic load... 134

7.8 The dropping probability vs. traffic load... 134

7.9 The calculation of the dropping probability Pd(x)... 135

7.10 Flowchart of the mean delay controller model.. 137

7.11 Measured mean delay compared with target delay at TWL=15...................... 139

7.12 Measured mean delay compared with target delay at TWL=10...................... 140

xviii

7.13 Variance of measured mean delay error vs. TWL.. 141

7.14 Measured mean delay compared with target delay at TWL=7........................ 142

7.15 Variance of measured mean delay error vs. TWL at low arrival rate.............. 143

7.16 Measured mean delay compared with target delay at TWL=9........................ 143

7.17 Variance of measured mean delay vs. TWL using LRD source at high

arrival rate.. 145

7.18 Measured mean delay compared with target delay at TWL=10 using LRD

source... 146

7.19 Measured mean delay compared with target delay at TWL=7 using LRD

source... 146

7.20 Target delay vs. the threshold (Measured mean delay).................................. 147

7.21 Variance of measured mean delay vs. TWL using LRD source at low arrival

rate... 148

7.22 Measured mean delay compared with target delay at TWL=5 using LRD

source at low arrival rate... 148

7.23 Measured mean delay compared with target delay at TWL=9 using LRD

source at low arrival rate... 149

xix

List of Abbreviations

ACK Acknowledgement

AIMD Additive Increase Multiplicative Decrease

AQM Active Queue Management

ARED Adaptive RED

avg Average queue length

BRED Balanced RED

CBT-RED Class Based Threshold-RED

cdf Cumulative distribution function

cwnd Congestion window

DC-RED Dual Class RED

DES Discrete Event Simulation

DM Measured mean delay

DSRED Double Slope RED

DT Target mean delay

ERD Early Random Drop

EWMA Exponential Weighted Moving Average

FIFO First-In First-Out

FRED Flow Random Early Drop

FTP File Transfer Protocol

H Hurst parameter

HDLC High-level Data Link Control

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

xx

IP Internet Protocol

LRD Long Range Dependent

maxp Maximum dropping probability

maxth Maximum threshold

minth Minimum threshold

MMPP Markov Modulated Poisson Process

MQL Mean Queue Length

pdf Probability density function

pmf Probability mass function

PQM Passive Queue Management

QoS Quality of Service

RED Random Early Detection

REM Random Exponential Marking

RTT Round Trip Time

sec Seconds

SRD Short Range Dependent

SRED Stabilized RED

ssthrsh Slow start threshold

TCP Transmission Control Protocol

TWL Time Window Length

UDP User Datagram Protocol

VBR Variable Bit Rate

W Time Window

wq Queue weight

WWW World Wide Web

1

CHAPTER 1

Introduction

1.1 Introduction

With the rapid proliferation of the Internet, there has been an enormous growth in both

the demand for access from its users and in the demand for new services. The success of

the Internet is largely dependent on the strength of its protocols. Over the last decade,

the Transmission Control Protocol (TCP) has been the predominant transport protocol

used by the Internet Protocol (IP) technology to support various Internet services. TCP

has consistently met the challenge of new applications but due to the massive growth of

the Internet, weaknesses in TCP have become increasingly apparent [1]. For instance

delay, packet losses and decreasing network efficiency are examples of drawbacks that

can arise when the traffic conditions change.

Internet traffic congestion occurs when the aggregate demand exceeds the capacity

of the available resources and hence causes performance degradation. Recently, as

demands for access have exceeded the ability for providers to upgrade network paths,

the networks‟ efficiency has deteriorated and congestion has become a persistent

problem [2]. Congestion results in packets being dropped or lost from the network

Chapter 1: Introduction

2

during transmission. The main reason for dropping these packets is that when

subsequent packets arrive at each network element, there is not enough buffer space to

accommodate all the transmitted packets. Using large buffers can absorb more bursty

traffic but will increase the end-to-end delay as well, which will decrease the overall

network performance.

In order to guarantee Quality of Service (QoS) to diverse Internet services, it is

important to employ effective buffer management schemes at Internet routers. Various

buffer management mechanisms have been proposed to control Internet traffic

congestion and satisfy specified QoS requirements. In an attempt to address the growing

needs of applications, the Internet Engineering Task Force (IETF) has recommended the

use of Active Queue Management (AQM) schemes for congestion control [3]. The

IETF also recommended the use of the Random Early Detection (RED) algorithm [4] as

the default mechanism for managing queue lengths. RED aimed at avoiding congestion

by predicting when it will occur rather than reacting to it.

RED has been prone to some configuration problems due to its sensitivity to

parameter settings [5]. Many significant modifications have been done on RED in order

to improve its performance such as Adaptive RED (ARED) [6], BLUE [7], Random

Exponential Marking (REM) [8-9] and Double Slope RED (DSRED) [10]. RED and its

variants usually operate in conjunction with TCP but they rely on static thresholds

which can be restrictive when they operate with sources with varying arrival rates. This

suggests the need for a new adaptive algorithm for AQM that is simple to implement

and can control congestion when the arrival rate varies with time.

In order to design a robust and a reliable congestion control algorithm, it is

important to address the characteristics of some types of modern network traffic such as

Long Range Dependent (LRD) and self-similar traffic [11-12]. Recent studies have

Chapter 1: Introduction

3

shown that network traffic can exhibit self-similar as well as LRD properties [11, 13-

14]. Traditional models are also known as Short Range Dependent (SRD) traffic

models, and their use in networks characterized by self-similar processes can lead to

overestimations about the performance of the analyzed networks [12]. The properties of

self-similar traffic are very different from the properties of traditional models based on

Poisson or the Markovian models. The scale-invariant characteristics of the self-similar

traffic are in strong contrast to traditional network traffic models which show burstiness

at short time scales but are smooth at large time scales [15]. The scale-invariant

burstiness implies the existence of some periods of high activity at a wide range of time

scales which badly affects congestion control. In order to address some of these issues,

this thesis focuses on investigating two extremely important challenges to today‟s

Internet: the use of LRD for network congestion prediction and bounding mean delay in

a buffer with a time-varying arrival rate.

1.2 Motivation

The ability to predict traffic congestion within a network is one of the fundamental

requirements of modern network design. Congestion prediction has become a

fundamental objective of some network management algorithms to guarantee a better

QoS to users [16]. This is considered a challenging and laborious problem that

encompasses several components: the transport protocols, the network design, the

control mechanisms and the traffic‟s nature itself [14]. Therefore, high performance

predictors are required that are efficient and simple to implement. LRD implies the

existence of a correlation structure, which may be exploitable for congestion prediction

purposes. The correlation structure present in LRD traffic can be used to predict the

future traffic levels [15, 17-18]. The feasibility of predicting the congestion under self-

Chapter 1: Introduction

4

similar traffic conditions with sufficient reliability can be effectively utilized for

congestion control purposes. The predictability structure present in LRD traffic can be

used for improving network performance based on the feedback algorithm presented in

this thesis.

The rapid growth of the Internet and the increased demand to use the Internet for

time-sensitive applications has necessitated the need for effective congestion control

algorithms. To support the requirements for real-time applications such as audio and

video applications, communication networks must provide service guarantees to

connections, including guarantees on throughput and network delays. For the most

demanding applications, such as safety critical ones, the network should offer a service

which provides a bounded delay guarantee. However, for the packet switched

technology considered, this is not feasible since instantaneous delay is a random

variable that changes from instant to instant. However, provision of a bounded mean

delay, although sometimes not considered the best metric to use in isolation, can

guarantee average bit rates and be invaluable for services that require a prompt delivery.

This applies whether these services are real-time services or not. In summary therefore,

this thesis focuses on the extremely important challenges to today‟s Internet and the

development of new mechanisms to control congestion and mean delay in

communication networks.

1.3 Aims and Objectives

Providing QoS guarantees for real-time traffic has become an increasingly important

and challenging topic in the design of high-speed networks. One aim of this research is

to develop new algorithms to provide mean delay guarantee for real-time traffic to

satisfy QoS requirements. This thesis also aims at investigating new mechanisms for

Chapter 1: Introduction

5

controlling congestion and mean delay in communication networks with both SRD and

LRD traffic. It also aims at developing a new algorithm that makes use of a network

characterized with LRD and self-similar traffic in order to achieve congestion

prediction.

In order to achieve the aims of this research, the objectives of the thesis are set as

follows:

 To review the development of the congestion control mechanisms and to learn

about the different queue management algorithms.

 To develop a multi-class queueing system based on RED with two classes of

traffic and to examine the effect of each class on the other in a shared buffer.

 To identify the difference between SRD and LRD traffic characteristics.

 To understand the LRD and self-similar traffic characteristics and their use in

congestion prediction.

 To develop a new algorithm to maintain average delay constraints through a

buffer with time-varying arrival rate.

 To test and validate analytical models by comparing them with corresponding

simulation models running in a steady state.

1.4 Original Contributions

The principal contributions of this thesis are:

 The development of a new congestion prediction algorithm based on LRD and

self-similar characteristics found in modern Internet traffic. It has been shown

that the mean time spent ON for each node can be used as an indicator of which

node is causing congestion. Modifying the algorithm by the inclusion of a

Chapter 1: Introduction

6

sliding window mechanism has demonstrated a further improvement in

performance.

 The use of a dynamic moving threshold in a buffer with time-varying arrival rate

to maintain the average delay at a constant value when the arrival rate varies

with time. An equation has been developed that relates the threshold position to

the target mean delay over each time window. The accuracy of the analytical

model has been verified using a simulation model. The algorithm has been

generalized for other arrival processes in order to examine the effects of LRD

and self-similarity which are the characteristics of some types of modern

network traffic.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 surveys related work on the congestion problem and the different

mechanisms for controlling congestion. It also presents the concepts of TCP congestion

control.

Chapter 3 reviews the queue management algorithms. It addresses the significant

weaknesses in the Passive Queue Management (PQM) algorithms and explains the

AQM algorithms that have been developed to address the drawbacks of the PQM

schemes. It also explains in detail the RED algorithm and its variants.

Chapter 4 gives a detailed explanation of the simulation model which has been used as

a basis for the rest of the simulation models throughout the thesis.

Chapter 1: Introduction

7

Chapter 5 investigates the effects of using a multi-class traffic in a shared buffer. It

tests the marginal performance as well as the overall performance.

Chapter 6 is concerned with providing a new feedback algorithm for congestion

prediction. The developed algorithm makes use of a network characterized with LRD

and self-similar traffic in order to predict the onset of congestion within a network.

Chapter 7 describes a novel mechanism for AQM that provides average delay

guarantees for real-time applications. It provides an analytical model that incorporates a

control strategy which uses a dynamic moving threshold. The algorithm has been

developed to control the mean delay by dynamically adjusting the threshold, which, in

turn, controls the effective arrival rate by randomly dropping packets. This work has

been carried out using a mixture of computer simulation and analytical modelling.

Chapter 8 summarizes the contributions of this thesis and suggests the

recommendations for future work of interest.

8

CHAPTER 2

Internet Traffic Congestion and its
Control

2.1 Introduction

Computer networks have experienced an explosive growth over the years. The

increasing number of wired and wireless networks has caused severe congestion

problems. Congestion is a problem that occurs on shared networks when multiple users

compete for access to the same resources. Congestion typically occurs where multiple

links feed into a single link. It also occurs at routers when nodes are subjected to more

traffic than they are designed to handle. During congestion periods, congestion persists

and losses can be significant. Congestion losses cannot be avoided by modest increases

in buffer capacity, as excessive buffer size can lead to excessive delay and hence

degradation of the performance.

Congestion control is about using the network as efficiently as possible so as to

avoid congestion collapse. Many algorithms have been proposed to control congestion.

The goal of the congestion control mechanisms is to use the network efficiently and

attain the highest possible throughput while maintaining a low loss ratio and small delay

Chapter 2: Internet Traffic Congestion and its Control

9

[2]. Despite the fact that a number of mechanisms have been proposed to control

congestion, the search for new mechanisms continues [19]. The reasons for this are:

first, it is difficult to get a satisfactory solution because there are many requirements for

congestion control schemes. Second, there are several network design policies that

affect the design of the congestion control mechanisms. Therefore, a mechanism that is

designed for one network may not work on another network with different architecture.

2.2 Congestion Management

Technological advances and customer demands are rapidly ushering in high-speed

networks. This has made congestion management an important issue in recent networks

in order to provide good service under heavy load. Early congestion notification would

clearly decrease the effects of congestion such as packet loss. A number of control

mechanisms for congestion control have been suggested and found to increase the

performance of the Internet [20]. These studies started in the late 80‟s [21] and some

form the basis for current implementations. For example, the proposals by Jacobson

[21] form the basis for the TCP congestion control in current implementations [22].

Congestion management has three aspects [23]: congestion prevention, congestion

avoidance and congestion recovery and these are described in what follows.

2.2.1 Congestion Prevention

Congestion prevention [23] is the most essential aspect of congestion management. It

involves designing a network that minimizes the probability that congestion will occur

[24]. By applying prevention algorithms, the peak demands can be predicted with

reasonable precision. Congestion prevention should include well-designed routing

Chapter 2: Internet Traffic Congestion and its Control

10

algorithms and queueing polices to ensure that a user‟s access rate does not exceed its

subscribed traffic rate and to protect critical classes of traffic.

2.2.2 Congestion Avoidance

Congestion avoidance [25] involves detecting when congestion is imminent and aims at

keeping the operation of a network at or near the maximum power. It allows a network

to operate in the region of low delay and high throughput with minimal queueing,

thereby preventing it from entering the congestion state [26]. Congestion avoidance is

action that is taken by the network to prevent congestion, so it is preventive in nature.

Actions should be taken before performance degradation occurs to reduce the chance of

congestion. Congestion can be avoided by monitoring traffic patterns and considering

changing the packet routing tables to route traffic around a heavily loaded network [27].

There are several alternatives for a source to detect when congestion is imminent [28]:

 Congestion occurs when the output buffers at a switch are full. Congestion

avoidance can be initiated when some fraction of the buffers are full.

 By monitoring output line usage as congestion occurs when usage exceeds a

threshold.

 By monitoring round trip delays as an increase in these delays causes an increase

in queue sizes and congestion.

 By setting a timer that sets off an alarm when a packet is not acknowledged in

time.

2.2.3 Congestion Recovery

Congestion recovery is action taken by the network after performance degradation is

detected. When congestion occurs, actions are taken to help the network to recover. The

Chapter 2: Internet Traffic Congestion and its Control

11

goal of congestion recovery is to limit the effects of congestion and to restore the

operation of the network to its normal state after congestion has occurred [29]. Without

congestion recovery algorithms, networks may crash entirely when congestion is

detected. Therefore, congestion recovery schemes would still be required even if a

network adopts a strategy of congestion avoidance. The reason for this is to retain

throughput in the case of abrupt changes in the network that may cause congestion.

2.3 Congestion Collapse

The Internet first experienced the congestion collapse problem in the 1980s [2]. John

Nagel was one of the earliest researchers who mentioned the term „congestion collapse‟

in 1984 [30]. In particular, when IP gateways connect networks of widely different

bandwidth then the IP gateways are vulnerable to the congestion collapse phenomenon.

The normal behaviour in heavily loaded pure datagram networks is as follows: as nodes

become congested, the Round Trip Time (RTT) through the network increases and the

count of datagrams also increases; this is normal as long as there is only one copy of

each datagram in transit. This indicates that congestion is under control. If the RTT

becomes shorter than the sending host‟s measurements of RTT, this can indicate that the

network is running into serious trouble. This indicates that the network is entering the

congestion collapse phase [30]. When the RTT exceeds the maximum retransmission

interval for any host, more and more copies of the same datagram will be introduced

into the network. This causes all the available buffers to be full and packets to be

dropped. Congestion collapse happens when the RTT is at its maximum and hosts are

sending each packet several times [30]. When collapse occurs, a larger fraction of the

packets in the network will be duplicated and goodput will be reduced.

Chapter 2: Internet Traffic Congestion and its Control

12

2.4 Congestion Control

Congestion control in packet switching networks may involve different components of

the congestion management strategy including congestion avoidance and congestion

recovery. Such mechanisms have to be provided to avoid congestion collapse.

Congestion control became a high priority in network design due to ever growing

network bandwidth and the rapidly expanding Internet applications [29]. Controlling

congestion is the combined responsibility of network gateways and end point hosts.

Gateways are responsible for congestion detection, controlling queue size and arrival

rate control. Sources are responsible for the data transmission rates adjustments to

enable the gateways to achieve their goals. Congestion control is concerned with

allocating the network resources such that the network can operate at an acceptable

performance level under heavy load [19]. Congestion control schemes are recovery

mechanisms which help the network to recover from the congestion state. These

schemes protect the network from being flooded by its users and help improve the

performance after congestion has occurred [31].

Due to increasing mismatch in link speeds caused by intermixing of old and new

technology, congestion became a significant problem. Recent technological advances

have resulted in a significant increase in the bandwidths of computer network links.

This heterogeneity has resulted in mismatch of arrival rates and service rates in the

intermediate nodes, causing increasing queueing and congestion. Without proper

protocol redesign, the congestion problem will not be solved and, thus reduce

performance. This has led to the following myths about congestion [19]:

 Congestion is caused by a shortage of buffer space. This problem cannot be

solved with a large buffer space because with infinite buffers, the queues and

the delays can get so long that by the time the packets come out of the buffer,

Chapter 2: Internet Traffic Congestion and its Control

13

most of them have already timed out and have been retransmitted. Large

buffers are considered more harmful than smaller ones since packets have to be

dropped after they have consumed precious network resources [32].

 Congestion is caused by slow links. This cannot simply be solved with high-

speed links. Introducing high-speed links without proper congestion control

can lead to reduced performance and increased instability. With high-speed

links, the arrival rate will be much higher than the service rate, leading to long

queues, buffer overflows and packet losses. This means that high-speed links

have to be managed and the protocols have to be designed specifically to

ensure that this increasing range of link speeds does not degrade the

performance.

 Congestion is caused by slow processors. The congestion problem cannot be

solved by high-speed processors. A high-speed processor may increase the

mismatch of speeds within a network and hence increase the chances of

congestion.

 Congestion can be caused by all of the above.

The conclusion is that congestion is a dynamic problem and cannot be solved with static

solutions alone. Without proper protocol implementations, the congestion problem will

be even worse. The protocols need to be dynamic in order to detect and react to

congestion. A properly designed congestion control algorithm will ensure that users are

able to increase their traffic load as long as this does not significantly affect the

response time.

The congestion problem can be solved in connection-oriented networks by

reserving the resources at all routers during connection setup. In connectionless-

networks the congestion problem can be solved by choke packets (explicit messages)

Chapter 2: Internet Traffic Congestion and its Control

14

from the network to the sources or by timeout on a packet loss [26]. Congestion control

mechanisms consist of two parts: a feedback mechanism which allows the network to

inform its users of the current state of the network, and a control mechanism which

allows the users to adjust their loads on the network. Therefore, congestion control in

computer networks can be viewed as a control system for maintaining the overall traffic

within certain normal levels [29]. Current literature classifies most congestion control

approaches into two categories [2, 29]:

 Open loop congestion control algorithms

 Closed loop congestion control algorithms

The basis for the classification is based on the characteristics of how each algorithm

extracts information for their control decision. Figure (2.1) represents a classification of

congestion control algorithms.

Figure 2.1: Classification of congestion control algorithms

Congestion
control

schemes

Open loop
control

Source
control

Destination
control

Closed loop
control

Implicit
feedback

Explicit
feedback

Responsive Persistent

Chapter 2: Internet Traffic Congestion and its Control

15

2.4.1 Open Loop Congestion Control

Open loop control systems are systems which have no feedback. Open loop congestion

control algorithms are algorithms in which the control decisions do not depend on any

sort of feedback information from the congested point in the network [29]. Applying

open loop control in computer networks means that these algorithms do not monitor the

state of the network dynamically. A network that is based on open loop control would

use resource reservation, that is, a new flow would only be admitted if the admission

control entity allows it to enter [2]. Open loop schemes have a continuous activation

feature and an admission handling mechanism but are not robust enough and cannot

guard the network against all traffic patterns. Open loop congestion control algorithms

can be classified as source control and destination control. Control algorithms at the

source tend to control the flow rate at the sources. For example: the Leaky bucket

algorithm [33] and the stop and go policy [34]. The destination control algorithms tend

to control traffic either at the destination or the intermediate nodes. For example: the

selective packet discarding schemes [35].

2.4.2 Closed Loop Congestion Control

Closed loop control systems are systems that use feedback. They make their control

decisions based on feedback information to the sources. The feedback can be either

global or local [29]. Global feedback means the feedback information goes from

destination to source whereas local feedback means the feedback information comes

only from intermediate nodes. These algorithms can dynamically monitor the network

performance. The feedback involved in the closed loop algorithms can be either explicit

or implicit. In explicit feedback algorithms, feedback information is sent in separate

messages (explicitly). In implicit feedback there is no need to send the feedback

Chapter 2: Internet Traffic Congestion and its Control

16

explicitly. For example: the TCP slow start scheme [21]. The explicit feedback can be

classified into two categories: persistent feedback if the feedback is available at all

times; for example: the adaptive admission congestion control scheme [36] and the

binary feedback scheme [37], and responsive feedback if the feedback is only available

under certain conditions. The feedback information is generated in response to the

traffic conditions in the network for example: the choke packet scheme [31] and the

dynamic time windows algorithm [38].

2.5 TCP Congestion Control

 The problem of congestion control has been the subject of extensive research over the

past two decades [25]. A variety of congestion control schemes have been proposed

over the years but have encountered difficulties because of the uncertainties involved in

modelling the statistical behaviour of many types of traffic sources. Congestion control

and traffic management in high-speed networks is further complicated by the diverse

mix of traffic types and service requirements. Over the past years, TCP congestion

control mechanisms have been used to effectively regulate the rates of individual

connections sharing network links [2] and have been instrumental in controlling packet

loss and in preventing congestion collapse across the Internet [5].

 TCP is a core protocol for the Internet [2]. It provides reliable data transmission and

provides a communication service at an intermediate level between an application

program and IP. TCP is a connection oriented protocol which means that a connection

should be established between the source and the destination before transmission. TCP

is the most widely used protocol in the transport layer on the Internet [39]. One of

TCP‟s primary functions is to match the transmission rate of the sender to that of the

receiver to ensure good performance. TCP implements a sliding window scheme to

Chapter 2: Internet Traffic Congestion and its Control

17

perform the flow control. The receiver carries out the flow control by granting the

sender a certain window length of data. The sender must not send more than the full

window length without waiting for acknowledgements at any time. TCP achieves

reliability by sending a segment and waiting for its acknowledgment (ACK). If the

ACK does not arrive, the segment should be retransmitted. When an ACK arrives, TCP

can transmit new segments not exceeding the number of bytes acknowledged. In

practice, the window size is adjusted dynamically according to the available buffer

space [40].

 In TCP, congestion is detected by a loss of packet or time out. TCP responds to

congestion by reducing the transmission rate. TCP congestion control mechanisms

consist of four algorithms [21, 41-42]: slow start, congestion avoidance, fast retransmit

and fast recovery.

2.5.1 TCP Slow Start

The slow start algorithm is used during the initial data transfer phase of a TCP

connection. The main principle behind the slow start algorithm is to start with a small

window size and to increase it slowly when acknowledgements arrive. In addition to the

window already maintained by the sender, slow start adds another window called the

congestion window (cwnd). Initially, the congestion window is set to one segment then

after each time an ACK is received; the window is increased by one segment. The

congestion window is considered as flow control imposed by the sender, while the

advertised window is considered as flow control imposed by the receiver [42]. The

congestion window increases exponentially by doubling the congestion window size,

and thus the transmission rate, every RTT as illustrated in Figure (2.2). The sender can

transmit up to the minimum of the advertised window and the congestion window.

Chapter 2: Internet Traffic Congestion and its Control

18

When ACK is received the cwnd increases from one to two then two segments can be

transmitted. When each of the two segments is acknowledged, the cwnd is increased to

four and so on. The router will start discarding packets if the capacity of the Internet has

been reached and the congestion window has become so large.

2.5.2 TCP Congestion Avoidance

In the slow start algorithm, the exponential growth of the congestion window can

quickly lead to congestion unless it is checked at some point. TCP implements the

congestion avoidance algorithm [21] to avoid congestion before it happens. In this

algorithm, TCP sources keep track of a threshold value which is dynamically adjusted

through a variable called the slow start threshold (ssthresh). The algorithm forces a

linear increase of the congestion window after it reaches the ssthresh value as illustrated

in Figure (2.2). When the window size exceeds the ssthresh value, TCP enters the

congestion avoidance phase [43]. In this phase the congestion window increases by

1/cwnd each time an ACK is received. This means that the congestion window is

effectively increased by one segment per RTT; hence the congestion window grows

linearly rather than exponentially [43]. TCP detects a packet loss through the receipt of

duplicate acknowledgement from the receiver or a time out occurring [42]. Each time a

time out occurs, TCP assumes that a packet loss has occurred and immediately cuts its

transmission rate in half by setting the ssthresh value to half the current congestion

window. Then TCP must invoke slow start to get things going again by setting the

congestion window to one segment [40-41]. After retransmitting the dropped packet, the

TCP sender uses the slow start algorithm to increase the window from 1 to the new

value of ssthresh, at this point congestion avoidance again takes over [41].

Chapter 2: Internet Traffic Congestion and its Control

19

Figure 2.2: TCP congestion avoidance [40]

 2.5.3 TCP Fast Retransmit

When a duplicate acknowledgment is received, the sender does not know if it is because

a segment was lost or a segment was delayed and received out of order at the receiver.

The purpose of this duplicate acknowledgment is to let the source know that a segment

was received out of order and to tell it what sequence number is expected [42]. Since it

is not known whether a duplicate ACK is caused by a lost segment or just a delayed

one, TCP waits for a small number of duplicate acknowledgements to be received. If

there are only one or two duplicate ACKs, it is considered as just a reordering of the

delayed segments. Then a new ACK will be generated. If three or more duplicate ACKs

are received in a row, this indicates that a segment has been lost. Then TCP retransmits

the missing segment without waiting for a retransmission timer to expire. This process

is called the fast retransmit algorithm [42].

ssthresh

2

4

6

10

12

Exponential

increase

Linear increase

C
o

n
g

es
ti

o
n

 W
in

d
o

w

Round Trip Time (RTT)

 1 2 3 4 5 6 7

Slow start threshold

Slow start

Congestion avoidance

2

4

6

8

10

12

Chapter 2: Internet Traffic Congestion and its Control

20

2.5.4 TCP Fast Recovery

The fast retransmit algorithm should be used by the TCP sender to detect and repair

losses, based on incoming duplicate ACKs. After the fast retransmit algorithm sends the

missing segment, the fast recovery algorithm should be applied to govern the

transmission of new data until a non duplicate ACK arrives. The fast recovery algorithm

is an improvement that allows high throughput under moderate congestion especially

with large windows [42]. The reason for not applying slow start after the receipt of

duplicate ACKs is that TCP does not want to reduce the flow abruptly by going into

slow start [42]. Usually the fast recovery algorithm is implemented after the fast

retransmit algorithm as follows [41-42]:

 After the third duplicate ACK in a row is received, set ssthresh to half the

current cwnd. Retransmit the missing segment. Set cwnd to ssthresh plus three

times the segment size.

 Increment cwnd by the segment size each time another duplicate ACK is

received. Transmit a segment if allowed by the new value of cwnd.

 Set cwnd to ssthresh as in the first step when new data is received and

acknowledged. This ACK should acknowledge all the intermediate segments

sent between the lost segment and the receipt of the first duplicate

acknowledgement. TCP reduces the rate to half the rate it was when the packet

was lost, in this step TCP is in congestion avoidance.

2.6 Other Protocols

Although TCP and its variants are by far the most common protocols currently used in

the transport layer of the Internet, there are other transport protocols, such as User

Datagram Protocol (UDP) [44], that do not involve retransmission. These are used

Chapter 2: Internet Traffic Congestion and its Control

21

mainly for real-time applications in which prompt delivery is much more important than

accurate delivery. UDP can involve a lot of packet loss and these packets are not

recovered so UDP can only be useful for services where lost packets can be tolerated.

Because retransmission is eliminated at the transport layer, network resources are more

efficiently used at the expense of increased datagram loss and so it would be expected

that such protocols would give rise to lower levels of congestion than transport

protocols such as TCP.

Similarly, protocols in the link layer, such as the High-level Data Link Control

(HDLC) protocol [45-46], can also have a significant effect on congestion levels in that

these protocols usually involve some form of retransmission, but this time on a link-by-

link basis rather than an end-to-end basis. The primary purpose of such protocols is to

make the links appear to higher layers to be free from transmission errors and so error

detection and retransmission is usually involved. This can significantly increase end-to-

end delay, particularly in the case of noisy links, and so may cause datagrams to time

out at the link layer when TCP is used. This, in turn, involves end-to-end retransmission

and so a subsequent increase in congestion.

2.7 Summary

Congestion is a complex phenomenon which occurs when the number of transmitted

packets through a network approaches or exceeds the network capacity. When

congestion occurs, the transmission delay for individual packets increases and packets

are discarded. Many algorithms have been proposed to control congestion in order to

avoid the congestion collapse problem. Congestion control algorithms are used to

maintain the number of packets within the network below the level at which

performance falls off dramatically.

Chapter 2: Internet Traffic Congestion and its Control

22

 In order to effectively regulate the rates of individual connections sharing network

links, the TCP congestion control algorithms have been implemented. TCP congestion

control mechanisms consist of four algorithms: slow start, congestion avoidance, fast

retransmit and fast recovery. In TCP, congestion is detected by a loss of packet or time

out. TCP responds to congestion by reducing the transmission rate. One problem with

the TCP congestion control algorithms is that TCP sources reduce their transmission

rates only after queue overflow. This is a problem since considerable time may pass

between the packet drop and its detection. AQM algorithms have been proposed to

prevent losses due to buffer overflow. The goal of AQM algorithms is to detect

congestion early and convey congestion notification before queue overflow and packet

loss occurs. The next chapter will give an overview about the queue management

algorithms and will investigate the different AQM algorithms in details.

23

CHAPTER 3

Queue Management Algorithms

3.1 Introduction

The Internet has grown from a small data transfer oriented network with little

congestion to a large multiservice network. Various types of real and non-real time

traffic are transmitted over the Internet. With the growth of the Internet, it has become

necessary to deploy queue management algorithms to improve QoS. Queue

Management algorithms are the algorithms that manage the queue length by dropping or

marking packets when necessary in order to notify sources of congestion [3]. The aim of

this chapter is to survey some queue management algorithms in terms of their structure

and classification.

3.2 Queue Management

Queue management algorithms play an important role in fair bandwidth allocation [47].

Queue management algorithms can be classified into two categories: Passive Queue

Management (PQM) and Active Queue Management (AQM) [40]. The first category

does not recognize congestion till the buffer is full and then starts dropping packets; an

Chapter 3: Queue Management Algorithms

24

example of this is Drop Tail [48]. The second category drops packets probabilistically

before the buffer gets full and hence makes early congestion notification, such as the

RED algorithm [4].

3.3 Passive Queue Management

PQM is a traditional and simple method of controlling a buffer. PQM algorithms do not

employ any preventive packet drop before the buffer gets full. All arriving packets are

dropped with a probability of one if the buffer level has been reached. Drop Tail, Drop

Front and Random Drop are some examples of algorithms that fall under the PQM

category. These algorithms do not send early congestion notification to sources to

decrease their traffic rate which means that they have only two states either 100%

packet drop or no packet drop.

3.3.1 Drop Tail

Drop Tail (also known as Tail Drop) is the traditional technique for managing router

queue lengths. It is the most commonly used algorithm by Internet routers because of its

robustness and simple implementation [3, 49]. It tends to penalize bursty connections by

discarding arriving packets when the gateway‟s buffer space is exhausted. The

algorithm works by setting a maximum queue length, once the number of packets in the

queue has reached its limit, it then drops all the subsequent arriving packets. The

process of dropping packets continues until there is a packet transmitted from the queue

and congestion is eliminated. Unfortunately, such a method often causes high packet

delays and bursty packet drop. There are two main drawbacks for the Drop Tail

algorithm; „Lock-Out‟ and „Full Queues‟ [3].

Chapter 3: Queue Management Algorithms

25

 Lock-Out: In some situations Drop Tail allows a single connection or a few

connections to monopolize the queue space of the router. This prevents other

connections from getting in the router queue. This results in a fairness problem

due to the unfair sharing of network resources among the connections.

 Full Queues: Because Drop Tail drops packets only when the queue is full, it

results in the router buffer being full for a long period of time. This results in

long queueing delay.

Drop Tail with full queues over a long period of time causes global

synchronization. With global synchronization all sources will lower their sending rate

until congestion is eliminated. As a result, this period of low link utilization will cause a

reduction in the overall throughput. The only way to achieve better performance with

Drop Tail is to detect congestion early in such a way as to avoid the full buffer problems

and to be able to absorb data bursts.

3.3.2 Drop Front

Drop Front is similar to Drop Tail in dropping packets when the buffer is full. In Drop

Front, when a packet arrives at a full buffer, the packet at the front of the queue should

be discarded [50]. This enables the newly arriving packets to be accommodated at the

end of the queue while the packet that has been buffered at the front of the queue is

dropped. This algorithm compared with Drop Tail, causes duplicate acknowledgements

to be sent one whole buffer drain time earlier than in the Drop Tail case. Therefore,

Drop Front can be considered as an early congestion notification algorithm which

prevents the over reaction by the sources and hence decreases or prevents global

synchronization. This could increase the throughput which can be considered as an

advantage over the Drop Tail algorithm.

Chapter 3: Queue Management Algorithms

26

Drop Front has more advantages over Drop Tail, such as avoiding unnecessary

packet loss, solving the lock-out problem, and fairness because it partially counteracts

TCP‟s bias against connections with larger round trip times [3]. The disadvantages of

this algorithm are that the buffer is full most of the time which causes high delay, and in

the case of unresponsive or fast flows there will be a very high loss rate.

3.3.3 Random Drop

Random Drop is an alternative queue discipline to Drop Tail. It was proposed to provide

both congestion control and avoidance to network gateways. With Random Drop, a

router drops a packet which is randomly selected from the queue when the queue is full

and there is an arriving packet to the queue. Random Drop relies on the hypothesis that

a packet randomly selected from the queue belongs to a particular connection with a

probability matching that connection‟s average transmission rate [51]. Dropping a

randomly selected packet from the buffer results in users generating much traffic having

a greater number of packets dropped compared with those generating less traffic.

Dropping a packet randomly from the queue, results in a drop distribution proportional

to the bandwidth distribution among all TCP connections [52].

There are some drawbacks for the Random Drop algorithm such as, wasting the

processing time because it drops the packets which have been queued for a period of

time. Also the increased complexity of the algorithm compared with Drop Tail and

Drop Front, which is caused by moving the packets forward in place of the dropped

packets. The major drawback is that the algorithm does not result in fairness, which was

the primary goal that the Random Drop algorithm attempted to achieve [52-53]. Also

Random Drop does not improve the congestion recovery behaviour of the gateways in

Chapter 3: Queue Management Algorithms

27

that its behaviour is worse in a topology with single gateway bottlenecks than in those

with multiple bottlenecks [51].

3.3.4 Drawbacks of Passive Queue Management

PQM algorithms do not send an early congestion warning to senders to decrease their

sending rate with a view to relieving network congestion. They drop the packets after

the buffer is full which increases the queueing delay and causes global synchronization.

A common drawback between all the PQM algorithms is the unfairness of the

connections sharing the buffer. PQM reacts only when the buffer is full which causes a

high loss rate as the buffer is full most of the time. These problems however, have been

observed when they are used to control congestion in buffers that carry traffic that is

controlled by TCP congestion control algorithms [3].

Because of the inherent problems of PQM, the IETF recommended AQM for

Internet routers to improve the performance and to avoid the problems related to the

PQM algorithms [3]. Detecting congestion early is better as it can avoid performance

degradation.

3.4 Active Queue Management

AQM provides preventive measures to manage a buffer to eliminate the problems

associated with PQM [40]. AQM employs preventive packet drop before the buffer gets

full to achieve high link utilization, low queuing delay and fair bandwidth allocation for

the competing connections. AQM mechanisms attempt to avoid congestion and regulate

the average queue length around a certain level by sending congestion notification such

as marking or dropping packets to the sources to decrease their sending rate. They are

designed to detect incipient congestion and start dropping or marking the arriving

Chapter 3: Queue Management Algorithms

28

packets to avoid future congestion. Preventive packet drop provides implicit feedback to

notify senders of the onset of congestion. The feedback is used by the senders to reduce

their rate to relieve the level of congestion.

The gateway implements AQM to drop packets early and prevent the subsequent

increase of dropping in routers to improve throughput. With TCP the sending rate

increases when there is no congestion notification. With AQM dropping a packet early

helps to save a large number of packets being dropped. The probability of preventive

packet drop increases with increasing levels of congestion. Arriving packets are dropped

randomly, which prevents all sources from backing off simultaneously and eliminates

global synchronization. It also avoids the lock-out behaviour by sharing the bandwidth

fairly among the competing flows.

Many AQM algorithms have been proposed in the literature; for example, ERD

[52], RED [4] and ARED [6] are examples of well known AQM algorithms. The recent

developments in this area have shown that the dynamic parameter configuration of

existing algorithms can lead to better performance [52].

3.4.1 Early Random Drop (ERD)

ERD is an AQM that uses one threshold to detect congestion and drop the arriving

packets if they exceed the threshold. The algorithm uses the instantaneous queue length

which is represented by the actual number of packets in the queue. When the number in

the queue reaches the buffer size, every new arriving packet is dropped. The mechanism

benefits from earlier congestion notification and has shown a lower degree of global

synchronization when compared with Drop Tail [52]. It is also capable of controlling

aggressive users more than Drop Tail but the degree of controlling aggressive users was

not satisfactory [52-53]. The fixed drop probability does not work well with dynamic

Chapter 3: Queue Management Algorithms

29

traffic and it uses the actual queue size to detect the congestion, which is not suitable to

detect congestion at a router for different traffics [53]. The authors in [52] stressed that

in future implementations the drop probability and the drop level should be adjusted

dynamically, depending on network traffic and that ERD gateways deserve further

investigation.

3.4.2 Random Early Detection (RED)

In the current Internet, the TCP detects congestion only after a packet has been dropped

at the gateway. Therefore, with increasingly high speed networks, it is increasingly

important to have mechanisms that detect the onset of congestion while keeping

throughput high but average queue sizes low. The RED gateway [4] is an AQM

algorithm for routers which has been designed for networks where a single marked or

dropped packet is sufficient to signal the presence of congestion to the transport layer

protocol.

RED is a proactive approach to control congestion, which has been proposed to be

used in the implementation of AQM to control and manage congestion in networks.

RED is a congestion avoidance algorithm and, as its name implies, works on congestion

at an early stage i.e. before it occurs. It tries to prevent congestion, rather than just

reacting to it, by dropping packets before the gateway‟s buffers are completely

exhausted.

RED interacts with TCP, as TCP defines how the source rates are adjusted while

AQM defines how the congestion measure is updated. Depending on the transport

protocol, RED can mark a packet by dropping it at the gateway or by setting a bit in the

packet header. In contrast to the Drop Tail algorithm which drops packets only when the

buffer is full, RED drops or marks the arriving packets probabilistically. The probability

Chapter 3: Queue Management Algorithms

30

function is a piecewise linear and increasing function of the congestion measure. This

probability increases with the average queue length and the number of packets accepted

since the last time a packet was dropped. RED‟s goal is to drop packets from each flow

in proportion to the amount of bandwidth the flow uses on the output link. It does this

by dropping each arriving packet with equal probability. Therefore, the misbehaving

connections with the largest input rate will have the biggest drop percentage among

total dropped packets [4].

The performance benefits of RED are:

 Reduces the number of packets dropped in routers.

 By maintaining the average queue size at a low level, it succeeds in reducing the

delay.

 RED prevents global synchronization by having a random marking probability.

 Prevents lock-out behaviour by ensuring that for each packet arrival there is

always a buffer available.

 Decreases the end-to-end delay for both responsive TCP and non-responsive

real-time traffic UDP.

 Prevents a large number of consecutive packet losses even with bursty traffic.

Because RED has provided the above substantial performance benefits, the IETF has

recommended the use of RED in Internet routers [3, 54].

The RED algorithm involves four parameters to regulate its performance. These

parameters are: minimum threshold (minth), maximum threshold (maxth), maximum

dropping probability (maxp) and average queue length (avg). RED uses an Exponential

Weighted Moving Average (EWMA) queue length as an indicator of congestion.

Calculating the avg is done by using a low-pass filter with exponentially weighted

moving average. Figure (3.1) shows the drop/mark probability versus the buffer size for

Chapter 3: Queue Management Algorithms

31

the RED gateway algorithm. Packets are dropped when the average queue length falls

between the two thresholds with linear probability. Packets are dropped with probability

equals to one if the average queue length is greater than the maximum threshold. Figure

(3.2) shows the flowchart for the RED mechanism. The RED algorithm can be

summarized in Table (3.1) while Table (3.2) shows the detailed algorithm for a RED

gateway.

Table 3.1: Summarized RED Algorithm

Figure 3.1: Drop/mark probability of RED

if avg <minth

No packets are dropped

if minth ≤ avg < maxth

Mark/drop the arriving packet with probability pa

else if maxth < avg

Mark/drop the incoming packet

minth maxth

1

maxp

Chapter 3: Queue Management Algorithms

32

The main disadvantages of RED are:

 A lack of significant performance improvement for pure web traffic [55] and

mixtures of UDP, File Transfer Protocol (FTP) and Hypertext Transfer Protocol

(HTTP) traffic [56].

 The tradeoffs between stability and responsiveness of the system [57].

 The difficulties in tuning RED parameters [6, 55, 57].

 Bandwidth unfairness.

Figure 3.2: Flowchart of the RED algorithm

End

Incoming packet

Calculate the new avg

avg > minth

avg >maxth

Yes No

No Yes
Add packet to

queue

Drop/mark the arriving

packet with probability pa

Drop/mark the

arriving packet

Chapter 3: Queue Management Algorithms

33

Table 3.2: Pseudocode for the RED Algorithm

Initialization:

 avg = 0

 count = -1

For each packet arrival

 Calculate the new avg:

 if the queue is nonempty

 avg = (1 − wq) avg + wq q

 else

 m = f (time – q_time)

 avg = (1 − wq)
m
 avg

 if minth ≤ avg < maxth

 Increment count

 Calculate probability pa:

 pb = maxp (avg − minth) / (maxth − minth)

 pa = pb / (1 − count.pb)

 with probability pa:

 mark the arriving packet

 count= 0

 else if maxth < avg

 mark the arriving packet

 count= 0

 else count= -1

when queue becomes empty

 q_time = time

Saved Variables:

avg: average queue length

q_time: start of the queue idle time

count: packets since last marked packet

Fixed parameters:

wq: queue weight

minth: minimum threshold for queue

maxth: maximum threshold for queue

maxp: maximum value for pb

Other:

pa: current packet marking probability

q: current queue size

time: current time

f (t): a linear function of the time t

Chapter 3: Queue Management Algorithms

34

3.4.3 Adaptive RED (ARED)

Although RED can improve TCP performance under certain parameter settings and

network conditions, the RED algorithm is still susceptible to several problems such as

high delay/jitter and parameter settings [5]. It has been found that one of RED‟s

weaknesses is that the average queue length varies with the level of congestion and

parameter settings. Achieving predictable average delays with RED requires constant

tuning of RED‟s parameters to adjust to traffic conditions [6, 86]. Also, RED does not

perform well when the average queue size becomes larger than maxth, resulting in

significantly decreased throughput and increased dropping rates [6]. Again avoiding this

regime would require constant tuning of the RED parameters. Several proposals for

AQM schemes have been proposed to avoid these problems.

The original Adaptive RED proposal by Feng et al [5] retains RED‟s basic structure

and adjusts the maximum dropping probability maxp to keep the average queue size

between the two thresholds minth and maxth. The pseudocode for the original Adaptive

RED proposal by Feng et al is presented in Table (3.3).

Table 3.3: Pseudocode for the original Adaptive RED by Feng et al

Every (avg) update:

if (minth < avg < maxth)

status =Between

if ((avg < minth) && (status ≠Below))

status =Below

maxp = maxp / α

if ((avg > maxth) && (status ≠Above))

status=Above

maxp = maxp . β

Chapter 3: Queue Management Algorithms

35

To overcome the limitations of the basic RED algorithm, the Adaptive RED

(ARED) algorithm has been proposed by Floyd et al [6]. The new version of ARED

which has been proposed by Floyd achieves the target average queue length, without

sacrificing RED‟s other benefits. Thus, ARED reduces both the packet loss rate and the

variance in queueing delay. It appears to solve the problem of setting RED parameters.

The ARED algorithm is designed to set the wq automatically based on the link

speed and adapting maxp in response to measured queue lengths. The reason for

adapting maxp is to keep the average queue size between minth and maxth and to keep the

average queue size within a target range. maxp has been adapted using an Additive

Increase Multiplicative Decrease (AIMD) policy. To avoid the performance degradation

of the ARED algorithm, the maxp should be restricted within the range [0.01, 0.5]. The

ARED algorithm has been given in detail in Table (3.4).

Table 3.4: Pseudocode for the ARED algorithm

For every interval seconds:

if (avg > target and maxp ≤ 0.5)

 increase maxp :

 maxp = maxp +α

else if (avg < target and maxp ≥ 0.01)

 decrease maxp :

 maxp = maxp β

Variables:

avg: average queue length

Fixed parameters:

interval: time; 0.5 seconds

target: target for avg [minth + 0.4 (maxth - minth), minth + 0.6 (maxth - minth)]

α: increment; min (0.01, maxp /4)

β: decrease factor; 0.9

Chapter 3: Queue Management Algorithms

36

3.5 RED Variants with Aggregate Control

There are different variants of RED aimed at improving its performance and removing

its sensitivity to parameter settings. These variants aimed at obtaining high throughput

while having low delay. Classifying the RED variants can be done based on the key

aspects of each algorithm. The first category called aggregate control, deals with

modifying the calculation of the control variable and/or dropping function. The second

category called per-flow control is concerned with configuring and setting RED‟s

parameters.

RED uses aggregate control to determine the packet dropping probability.

However, RED suffers from large queueing delay variance (jitter) because of the

oscillation of queue level. It also suffers from low throughput when poorly setting

parameters. In RED variants with aggregate control, all connections have the same

dropping probability (i.e., the dropping probability is non-discriminative to connections)

[40]. These variants address some of the limitations of the basic RED algorithm.

3.5.1 Stabilized RED (SRED)

The SRED algorithm [58] has been proposed to make the performance of the RED

mechanism stable. SRED pre-emptively drop packets with a load dependent probability

when the buffer is congested. SRED drops packets depending on the number of active

flows and the instantaneous queue length instead of calculating the average queue

length. SRED helps in stabilizing the buffer fill level, by estimating the number of

active connections or flows. The final packet dropping probability in SRED is given by

Equation (3.1).

Chapter 3: Queue Management Algorithms

37

 (3.1)

The dropping probability P(q) is given by Equation (3.2) as follows:

 (3.2)

maxp is the maximum dropping probability, B is the buffer capacity and q is the

instantaneous queue length.

SRED overcomes the scalability problems associated with some AQM algorithms

[59] because it does not collect or analyze state information on individual flows. The

simulation results of the SRED algorithm show that the normalized throughput is very

low even with a few traffic flows.

3.5.2 Random Exponential Marking (REM)

Flow control algorithms are distributed algorithms to share network resources among

competing sources. They often consist of two sub-algorithms: a link algorithm executed

inside the network at routers, and a source algorithm executed at edge routers or host

computers. The REM algorithm [8] consists of a link algorithm that probabilistically

marks packets inside the network, and a source algorithm that adapts source rate to

observed marking. The end-to-end marking probability is exponential, which allows a

source to estimate its path congestion measure and adjusts its rate. The REM algorithm

does not require per flow information. Table (3.5) shows the link algorithm of REM.

Chapter 3: Queue Management Algorithms

38

The REM algorithm has been proposed to achieve both high utilization and

negligible loss and delay. Its key idea is to use a variable called „price‟ as a congestion

measure. The price variable is used to determine the marking probability. It is updated

periodically based on rate mismatch and queue mismatch. Rate mismatch represents the

difference between input rate and link capacity, while queue mismatch represents the

difference between queue length and target. The price variable increases if the weighted

sum of these mismatches is positive and decreases otherwise. The weighted sum is

positive when the input rate exceeds the link capacity or when there is excess build-up

to be cleared and negative otherwise.

The most important difference between RED and REM is that REM decouples

congestion measure from performance measure such as queue length, delay or loss.

Another difference between RED and REM is that RED has a linear marking

probability while REM has an exponential marking probability, as illustrated in Figure

(3.3). Despite this, REM can help stabilize the gateway queue and reduce packet loss

but it has two main drawbacks. The first is configuring its parameters to ensure the

desired performance. The second issue concerns hardware implementation; if REM is

going to be implemented in hardware then only a few values of are easily

implemented, where is a base value used in the marking probability computation [40].

Chapter 3: Queue Management Algorithms

39

Table 3.5: Pseudocode for the REM algorithm

Periodically

Update aggregate input rate:

Update marking probability ml:

End periodically

 while buffer ≠0

 Mark packet with probability ml

 End while

Saved variables:

 : aggregate input rate estimate

 : link price

 : current marking probability

Fixed parameters:

 : weight in aggregate input rate estimation

 : stepsize in price adjustment

 : weight of puffer in price adjustment

 : base in marking probability computation

Temporary variables:

 : current aggregate input rate

 : current buffer occupancy

 : current link capacity

Chapter 3: Queue Management Algorithms

40

Figure 3.3: REM marking probability

3.5.3 Double Slope RED (DSRED)

Many AQM algorithms have been proposed to improve RED performance. These

algorithms have attempted to modify RED parameters but have resulted in limited

improvement in throughput. Zheng and Atiquzzaman proposed the DSRED algorithm

[10] in order to improve the throughput and delay characteristics of RED. The idea of

the DSRED algorithm is to divide the gateway buffer segment between the minimum

threshold (Kl) and the maximum threshold (Kh) into two sub-segments as shown in

Figure (3.4). Each segment uses a linear drop function with different slopes and

respectively. The slopes are complementary and are adjusted by the mode selector .

The algorithm for DSRED is shown in Table (3.6). The dropping function Pd of

DSRED is given by Equation (3.3) and is presented in Figure (3.5).

NavgK

KavgK

KavgK

Kavg

Kavg

Kavg
P

h

hm

ml

l

m

l

d

1

)(1

)(

0

 (3.3)

Link congestion measure

Marking

probability

1

Chapter 3: Queue Management Algorithms

41

 , and avg are given by:

lh KK

)1(2
 (3.4)

lh KK

2
 (3.5)

qwavgwavg qq)1((3.6)

where avg is the average queue length, q is the instantaneous queue length, qw is the

queue weight and N is the buffer capacity.

Figure 3.4: Model for DSRED buffer

Figure 3.5: Dropping function for DSRED

Drop

µ
λ

 Kh Km Kl

Drop

Probability

γ

Kl Km

Kh N

1

Average queue length

Chapter 3: Queue Management Algorithms

42

Table 3.6: Pseudocode for the DSRED algorithm

Compared with RED, DSRED results in higher throughput and lower queueing

delay because it adapts the level of congestion by changing the slope of the dropping

function. DSRED is similar to RED in using the average queue length as the control

variable; therefore, it inherits the advantages of RED.

3.5.4 BLUE

BLUE [7] is an AQM algorithm which uses packet loss and link utilization to measure

network congestion and uses a marking or dropping probability pm. If there is buffer

overflow, BLUE increments pm. If the queue becomes empty or if the link is idle, BLUE

decreases pm. This allows BLUE to learn the correct rate it needs to send back

congestion notification. BLUE uses two other parameters which controls pm over time.

The first is freez_time which determines the minimum time interval between two

successive updates of pm. The other parameters used are d1 and d2. They determine the

For each packet arrival:

Calculate the average queue length (avg)

if (avg < Kl)

 No drop

else if (Kl ≤ avg < Km)

 Calculate dropping probability based on slope

 Drop packet

else if (Km ≤ avg < Kh)

 Calculate dropping probability based on slope

 Drop packet

 else

 Drop packet

Chapter 3: Queue Management Algorithms

43

amount by which pm is incremented when the buffer overflows or is decremented when

the link is idle. The BLUE algorithm is shown in Table (3.7). Simulation and test results

have shown that BLUE keeps the gateway queue stable and reduces the packet loss rate

[7].

Table 3.7: Pseudocode for the BLUE algorithm

3.6 RED Variants with Per-Flow Control

The RED variants with per-flow control are concerned with configuring and setting

RED‟s parameters. With per-flow algorithms, each connection has its own drop

probability and the thresholds can be set according to the traffic type [40].

3.6.1 Flow Random Early Drop (FRED)

FRED [59] was proposed to solve the fairness problem among TCP connections. FRED

provides selective dropping based on per-active-flow buffer accounting. In FRED, the

loss rate is calculated by using the average queue length for each flow. FRED maintains

its state only for flows for which it has packets buffered and not for all flows that

traverse the Internet gateway. The FRED algorithm differs from the RED algorithm in

Upon packet loss or buffer overflow:

if ((now - last_update) > freeze_time) then

 pm= pm + d1

 last_update = now

Upon link idle:

if ((now – last_update) > freeze_time) then

 pm= pm – d2

 last_update = now

Chapter 3: Queue Management Algorithms

44

doing the averaging at both packet arrivals and departures. FRED uses a linear dropping

function which is similar to RED. So FRED can be considered as a modification to

RED that improves fairness when different traffic types share a gateway. FRED

provides better protection for bursty and low speed flows and is more effective in

isolating unresponsive flows.

3.6.2 Class Based Threshold RED (CBT-RED)

Shared memory buffers provide efficient usage of memory and improve packet loss

performance at the time of congestion but they have some technical challenges, such as

speed, access and memory management [60]. CBT-RED has been proposed in [61] to

solve the fairness problem when TCP traffic competes with UDP traffic. UDP sources

do not respond to packets dropped by RED because UDP traffic does not employ any

congestion avoidance scheme. As a result, UDP sources are getting more bandwidth

than TCP sources. This results in unfairness between UDP and TCP traffic. CBT-RED

solves the fairness problem between TCP and UDP traffic by setting the queue

thresholds according to the traffic type and its priority. The algorithm sets a dropping

threshold for the UDP traffic which is different from TCP‟s dropping threshold. This

results in the TCP traffic being protected from the UDP traffic.

3.6.3 Balanced RED (BRED)

BRED [62] considered the problem of fair bandwidth sharing between adaptive flows

(TCP) and non-adaptive flows (UDP) at Internet gateways. The BRED algorithm drops

packets preventively in an attempt to penalize the non-adaptive traffic that takes more

than its fair share of bandwidth. BRED regulates the bandwidth of a flow by doing per-

flow accounting for the buffer active flows. The dropping decision is based on the

Chapter 3: Queue Management Algorithms

45

buffer occupancy of the flow. BRED maintains a variable qlen which is a measure of

the number of packets from flow (i) in the buffer. The buffer is divided into four

segments, each having a different drop probability. The decision of dropping or

accepting an arriving packet is based on the number of packets from that flow that

already exist in the buffer. If the different flows have different packets sizes, the

algorithm will be working in the byte mode and not in the packet mode.

Compared with other gateway algorithms, the performance of the algorithm

achieves a more balanced allocation among different flows. BRED is very effective in

ensuring fair bandwidth division among the adaptive and non-adaptive flows. The

algorithm maintains minimum flow state information and is scalable. Although the

algorithm can minimize the differences in the bandwidth obtained by each flow, it needs

to maintain the flow states, which means that its implementation complexity is

proportional to the router buffer size.

3.7 Summary

Queue management algorithms are the mechanisms that keep the network away from

congestion collapse, a situation that makes the network completely non functional. The

performance of TCP-based applications critically depends on the choice of queue

management in the network. Queue management algorithms are divided into two

categories: PQM and AQM. PQM algorithms work only after buffer overflow and do

not employ any preventive packet drop before the buffer gets full; for example, Drop

Tail, Drop Front and Random Drop. The second category is AQM; for example, RED

and ARED. These mechanisms employ preventive packet drop before the router buffer

overflows. These mechanisms avoid the problems associated with the PQM algorithms.

They eliminate global synchronization and improve QoS of networks. RED is found to

Chapter 3: Queue Management Algorithms

46

improve the performance of TCP/IP, and is therefore recommended by the IETF to be

used in Internet routers. Studies have shown that RED has several drawbacks such as:

low throughput, large delay/jitter, sensitivity to parameter settings and unfairness to

connections. As a result, to improve the performance of RED, a number of variants to

the original RED algorithm have been proposed such as SRED, REM, BRED, FRED

and BLUE. The RED variants have improved the performance of RED. However,

although these variants all have their own advantages, they also all have their own

shortcomings.

47

CHAPTER 4

Simulation Validation

4.1 Introduction

Due to a network‟s complexity, simulation plays a vital role in characterizing the

behaviour of any networking system [63]. Simulation is one of the most widely used

techniques in Internet traffic research. With simulation it is easy to test and analyze the

performance of the network. If the proposed network is not available for measurement,

simulation can be considered as a convenient way to predict the performance and

provide more details than an analytical model.

This chapter gives a detailed explanation of the simulation model which has been

used as a basis for the rest of the simulation models throughout the thesis. The

simulation used in this study is a purpose built Discrete Event Simulation (DES)

implemented using Java programming [64]. Despite the large number of simulation

packages available such as ns-2 [65] or Omnet++ [66], a purpose built DES has been

used for its flexibility and simplicity in programming.

Most of the simulation models implemented in the thesis have been implemented as

a modification to the RED algorithm. This is why the simulator used in this research has

Chapter 4: Simulation Validation

48

been tested and validated based on the simulation of the well known RED algorithm [4].

The validation has been carried out by comparison of results produced by the simulator

in controlling the Mean Queue Length (MQL) with those reported in [4] using the same

configuration and parameters for the RED mechanism as specified in [4].

4.2 Simulation Model Components

Networks used in practice are very complex and often cannot be accurately modelled

for exact or approximate mathematical analysis. Simulation can be considered as an

efficient way to analyse complex systems. The type of the simulator used is very vital to

accurately construct the simulation model. In the simulation model, the full range of

parameters and methods that are used in order to build the networking model are

implied. In this study, the simulator is built using the DES [67-68] method. In DES, It is

important to store the states of the system in a set of system state variables. An event list

should be created to store the changes which happen to the state variables.

All DES models share a number of common components [69]. These components

are initialisation routine, timing routine and event routine. The simulation begins by

setting the simulation clock to zero and initialising all the state variables in the

initialisation routine. The information about the next event type (either arrival or

departure) can be obtained from the timing routine. The clock should be advanced at the

end of the timing routine. The event routine updates the system state when a particular

type of event occurs and generates future events to be added to the event list. The

desired measures of performance should be produced in a report when the simulation

ends.

Chapter 4: Simulation Validation

49

4.3 Simulation Validation

Model validation has been carried out by running the model under the same input

conditions for a well known model then comparing the results in order to test the

accuracy of the proposed model. The simulation of the RED algorithm is used as the

core model for other simulation programs in the thesis. Figure (4.2) represents the

simulation of the RED algorithm with the recommended values as in [4]. The RED

gateway parameters are represented in Table (4.1).

Table 4.1: RED configuration parameters

Parameter Value

wq 0.002

maxp 0.02

minth 5

maxth 15

queue size 30

λ 6

µ 5

The main objective for the RED algorithm is to control the MQL between the two

thresholds as represented in Figure (4.1). By comparing Figure (4.2) with Figure (4.1) it

is noticeable that the results obtained from the simulation model show the same

behaviour as the actual RED results and the MQL is fluctuating between the minimum

threshold value and the maximum threshold value. This is an indication that the

simulator is working successfully and controlling the MQL between the two thresholds.

Chapter 4: Simulation Validation

50

Figure 4.1: Average queue size profile of RED [4]

Figure 4.2: Simulation of the RED algorithm

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

Q
u

e
u

e
 s

iz
e

 (
p

ac
ke

ts
)

time (sec)

number in queue

MQL

0

1
0

3
0

Q
u
eu

e

 0.0 0.2 0.4 0.6 0.8 1.0

Time

Chapter 4: Simulation Validation

51

In order to validate the consistency of the algorithm, the results obtained have been

plotted with a 95% confidence interval. The simulation time has been divided into time

windows, where the length of each window is 20 seconds (sec) and the value for the

MQL has been measured ten times. By taking the mean value for the MQL, the 95%

confidence interval can be calculated using Equation (4.1) [70]:

 (4.1)

n represents the number of trials and equals 10 in this instance.

Figure (4.3) represents the MQL with 95% confidence intervals and this demonstrates

an acceptable accuracy for the algorithm used.

Figure 4.3: Simulation of the RED algorithm with 95% confidence intervals

0

3

6

9

12

15

18

21

0 200 400 600 800 1000

M
Q

L
(p

ac
ke

ts
)

time (sec)

MQL

Chapter 4: Simulation Validation

52

4.4 Summary

Simulation plays a vital role in analyzing the performance of complex networks.

Simulation programs can be used to closely replicate the networks to be modelled and

in many cases can capture details that may be impossible to obtain from analytical

models. This is because the latter can become intractable without introducing

simplifying assumptions, especially for large networks. Since RED is the recommended

queue management for routers, it has been used as the core model for evaluation

throughout the thesis and the simulation of the RED algorithm has been implemented

using the DES. The performance of the simulator has been validated by using the same

configuration parameters as used in the original RED algorithm. The simulator

accurately controlled the MQL between the two thresholds and gave a similar

performance to the original RED mechanism.

53

Chapter 5

Dual Class RED

5.1 Introduction

Today‟s networks require the integration of a variety of data flows into buffers that may

not be precisely suited to handle the requirements and characteristics of the traffic. Network

switches send and receive real-time traffic as well as non real-time traffic. Each type of

traffic has different scheduling requirements. Also, some traffic may carry higher

priority than the other. The queues located at routers and switches must have the ability to

handle these traffic types especially in a shared buffer.

This chapter focuses on examining the performance of the RED mechanism under

two streams of traffic, under different traffic conditions. The developed algorithm is

called Dual Class RED (DC-RED). It shows the effect of varying the parameters of one

class on the other. It assigns two sets of thresholds per class. The effect of varying the

thresholds positions on the marginal performance of each class as well as the overall

performance has been investigated in terms of mean delay and packet dropping

probability.

Chapter 5: Dual Class RED

54

Although it is obvious that there must be some degree of dependency between

multiple classes of traffic in a shared buffer and the use of separate buffers for each

class in such a situation has long been accepted as a necessary requirement, to the best

of our knowledge no previous studies have reported specific quantitative results for this

scenario. It is therefore the aim of this chapter to conduct such a study so that the results

can give some insight into the interdependencies between multiple classes of traffic in a

shared buffer.

5.2 DC-RED Model

The DC-RED model is based on the RED model which is currently the most popular

AQM mechanism for the Internet. The model considered is a First-In First-Out (FIFO)

single server queuing system with two classes of traffic as represented by Figure (5.1).

The arrival rate from each class follows a different Poisson process where class1 has

average arrival rate λ1 and class2 has average arrival rate λ2. The service time is

exponentially distributed with average service rate µ. The thresholds for class1 traffic

are (LA1, LA2) and the thresholds for class2 traffic are (LB1, LB2). The parameters used in

simulating the DC-RED model are summarized in Table (5.1). The values of the arrival

rates (λ1 and λ2) and the service rate (µ) have been chosen to attain certain conditions:

 λ1 + λ2 < µ

 λ1 + λ2 = µ

 λ1 + λ2 > µ

Chapter 5: Dual Class RED

55

Table 5.1: DC-RED configuration parameters

Parameter Value

wq 0.002

maxp 0.1

LA1=LB1 5

LA2=LB2 10

queue size 50

λ1
6, 9, 12

λ2
3, 6, 9

µ

6, 12, 18

Class1 thresholds

Class2 thresholds

µ

λ λ1

λ2

LB1 LB2

LA1 LA2

Figure 5.1: Single buffer with two thresholds per class

Chapter 5: Dual Class RED

56

In order to perform a steady state analysis of the system, the performance of the

model has been measured for four different cases. The different cases of the model have

been implemented by fixing the thresholds of class1 and varying only the positions of

the class2 thresholds as elucidated in Figure (5.2). The case where the two sets of

thresholds for both classes are identical was first considered. By keeping class1

thresholds fixed where LA1=5 and LA2=10 and moving only class2 thresholds towards the

end of the queue, the other cases of the buffer with the different threshold positions have

been obtained. The separation between the two thresholds in each class is the same (LB2-

LB1=LA2-LA1=5) and the distance between the thresholds of the two classes is the same

(LB1-LA1=LB2-LA2).

The following relations have been used to calculate the dropping probability for

each class:

)(

)(
max

12

1
1

AA

A
pdrop

LL

Lavg
P

 (5.1)

)(

)(
max

12

1
2

BB

B
pdrop

LL

Lavg
P

 (5.2)

maxp is the maximum dropping probability for both classes and equals (0.1). The

average queue length (avg) is calculated using the EWMA as in the RED algorithm [4].

By using Equations (5.1) and (5.2) it is noticeable that:

 Both classes will have the same dropping probability when they have the same

minimum and maximum threshold values (LA1=LB1) and (LA2=LB2) as in Figure

(5.3).

 The dropping probability for class1 increases linearly from the minimum

threshold value (LA1) to the maximum threshold value (LA2) as in Figure (5.4).

 The dropping probability for class2 increases linearly from the minimum

Chapter 5: Dual Class RED

57

threshold value (LB1) to the maximum threshold value (LB2) also shown in Figure

(5.4).

Class1 packets will be dropped according to dropping probability Pdrop1 when they fall

between class1 thresholds (LA1, LA2). If the MQL exceeds the second threshold for

class1 (LA2), all the corresponding packets from class1 will be dropped. Class2 packets

will be dropped according to dropping probability Pdrop2 when they fall between class2

thresholds (LB1, LB2). If the MQL exceeds the second threshold for class2 (LB2), all the

arriving packets from class2 will be dropped. The detailed algorithm for the DC-RED

model has been explained in detail in Table (5.2).

Chapter 5: Dual Class RED

58

Figure 5.2: Different cases for the single buffer with two thresholds per class

µ

λ λ1

λ2

LB1 LB2

LA1 LA2

µ

λ λ1

λ2

LB1 LB2

LA1 LA2

µ

λ λ1

λ2

LB1 LB2

LA1 LA2

µ

λ λ1

λ2

LB1 LB2

LA1 LA2

(Case 1)

(Case 2)

(Case 3)

(Case 4)

Chapter 5: Dual Class RED

59

Figure 5.3: Dropping probability for both classes when they have the same

minimum and maximum thresholds values (LA1=LB1) and (LA2=LB2)

Figure 5.4: Dropping probability for both classes when LA1<LB1<LA2

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a
b

il
it

y

MQL (packets)

Pdrop1

Pdrop2

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d
ro

p
p

in
g

 p
ro

b
a
b

il
it

y

MQL (packets)

Pdrop1

Pdrop2

LA1 LA2

 Class1 Class2

Chapter 5: Dual Class RED

60

Table 5.2: Pseudocode for the DC-RED algorithm

Initialization

For each packet arrival

{

 Calculate the new average queue length (avg)

 avg = (1−wq) avg + wq q

 if (avg < Lk1)

 add the packet to the queue

 else if ((avg ≥ Lk1) && (avg ≤ Lk2))

 calculate the dropping probability Pdropj

 Pdropj = (avg-Lk1) (maxp / (Lk2-Lk1))

 drop the arriving packet with dropping probability Pdropj

 else if (avg >Lk2)

 drop the arriving packet

}

Saved Variables:

avg: average queue size

q: Instantaneous queue size

Fixed parameters:

wq: queue weight

Lk1: minimum threshold for class k and k=A, B

Lk2: maximum threshold for class k and k=A, B

maxp: maximum value for Pdropj and j=1, 2

Chapter 5: Dual Class RED

61

 5.3 Performance Analysis

In this section the performance of the DC-RED model is investigated by varying the

difference between the class1 and class2 thresholds. The performance metrics are

presented by varying the two thresholds for class2 and examining the effect on class 1

in terms of average delay and packet dropping probability. Also, the effect of changing

the parameters of one class on the other class and on the overall performance is

examined. For each individual class the average queue length has been calculated as in

the RED algorithm. The packet dropping probabilities have been calculated using

Equations (5.1) and (5.2). The packet loss probability (when packets are lost due to

buffer overflow) is not presented as one of the performance metrics of the proposed

model since it was found too small to be measured as the buffer never fills up to its limit

to cause any remarkable loss. Intensive simulation tests have been done in order to

evaluate the performance under different conditions, like changing the values for the

service rate µ or the arrival rate from each class, λ1 or λ2.

5.4 Marginal Mean Delay Analysis

Due to the increase in network services including real-time video and audio

applications, mean delay has become one of the most important performance metrics for

many Internet applications and is an important QoS metric. The mean delay has been

used to measure the performance of proposed model. The mean delay can be calculated

as the average time a packet spends in the system, which is the time spent waiting in the

queue plus the service time.

Chapter 5: Dual Class RED

62

5.4.1 The Effect of the Service Rate on the Marginal Mean Delay

In this section the effect of varying the service rate µ on the marginal mean delay is

examined. The values of the arrival rate from both classes are kept fixed at the

following values λ1=9 and λ2=3. The value for LA1=5 and for LA2=10.

Figure 5.5: Marginal mean delay at µ=6, λ1=9 and λ2=3

Figure 5.6: Marginal mean delay at µ=12, λ1=9 and λ2=3

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e

c
)

LB1-LA1, LA1 =5

Class 1

Class 2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e

c
)

LB1-LA1, LA1=5

Class 1

Class 2

Chapter 5: Dual Class RED

63

Figure 5.7: Marginal mean delay at µ=18, λ1=9 and λ2=3

Figure (5.5) indicates that by increasing the separation between class2 and class1

thresholds, this makes the delay for class2 higher than the delay for class1. The reason

is by moving class2 thresholds the buffer then accepts more packets from class2 rather

than class1. This means that packets from class2 spend more time in the queue and so

suffer from more delay than the packets from class1. At a threshold difference of 5

everything from class1 is dropped after the second threshold LA2=10, so class1 delay

levels off. Now the effective arrival rate is only λ2 since all of λ1 packets are dropped.

Since λ2=3 < µ then class2 delay also does not move up any further, since queue does

not build up beyond its steady state value, even if class2 thresholds are moved back

further.

By increasing the value of µ the delay for both classes will decrease as shown in

Figure (5.6) but class1 still has lower delay than class2. When µ=18, which is a very

high value, it is noticed that the results are superimposed and identical and so appear

merged as shown in Figure (5.7). The performance of both classes is identical and the

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e

c
)

LB1-LA1, LA1=5

Class 1

Class 2

Chapter 5: Dual Class RED

64

delay has reached a very low value, this is because the service rate is higher than any of

the arrival rates and also higher than the total arrival rate (λ), where

λ = λ1 + λ2 (5.3)

5.4.2 The Effect of Class1 Arrival Rate on the Marginal Mean Delay

From Figures (5.8), (5.9) and (5.10) it is noticeable that by increasing the number of

arrivals from class1 the mean delay for both classes increases, even though class2

arrival rate is fixed. This is because increasing any of the arrival rates will affect the

total arrival rate, as indicated by Equation (5.3). The two classes will have the same

delay value when λ1=6 as shown in Figure (5.8), then increasing λ1 will give higher

delay values for class1 and class2 as shown in Figures (5.9) and (5.10). Increasing the

separation value between the two classes will allow more packets from class2 which

will cause dramatic increase in both classes‟ marginal mean delay and makes class2

delay higher than class1 delay at the same threshold separations.

Figure 5.8: Marginal mean delay at λ1=6, µ=12 and λ2=3

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e

c
)

LB1-LA1, LA1=5

Class 1

Class 2

Chapter 5: Dual Class RED

65

Figure 5.9: Marginal mean delay at λ1=9, µ=12 and λ2=3

Figure 5.10: Marginal mean delay at λ1=12, µ=12 and λ2=3

5.4.3 The Effect of Class2 Arrival Rate on the Marginal Mean Delay

By fixing the values for µ at 12 and λ1 at 6 as in Figures (5.11), (5.12) and (5.13). It is

noticed that increasing λ2 will cause an increase in the marginal mean delay for each

class but this effect can be noticed at wider separation between (LB1, LA1). When λ1 is

fixed and only λ2 is increasing the delay for both classes should be increasing but

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e

c
)

LB1-LA1, LA1=5

Class 1

Class 2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

m
e
a
n

 d
e
la

y
 (

s
e
c
)

LB1-LA1, LA1=5

Class 1

Class 2

Chapter 5: Dual Class RED

66

because LB1 is increasing allowing the acceptance of more packets from class2 this will

take longer for the queue to be filled with packets from class2 and this causes the mean

delay to increase by increasing the value of LB1.

Figure 5.11: Marginal mean delay at λ2=3, µ=12 and λ1=6

Figure 5.12: Marginal mean delay at λ2=6, µ=12 and λ1=6

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

m
e
a
n

 d
e
la

y
 (

s
e
c
)

LB1-LA1, LA1=5

Class 1

Class 2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e
c
)

LB1-LA1, LA1= 5

Class 1

Class 2

Chapter 5: Dual Class RED

67

Figure 5.13: Marginal mean delay at λ2=9, µ=12 and λ1=6

5.5 Marginal Dropping Probability Analysis

By applying the algorithm stated in Table (5.2) class1 packets are dropped when the

MQL falls between class1 thresholds LA1 and LA2. If the MQL exceeds the maximum

threshold LA2, all the packets which belong to class1 should be dropped. The same

process happens for class2 as class2 packets will be dropped if the MQL falls between

class2 thresholds LB1 and LB2. If the MQL exceeds LB2 all the arriving packets from

class2 should be dropped.

5.5.1 The Effect of the Service Rate on the Dropping Probability

Figure (5.14) indicates that increasing LB1 will affect the number of packets dropped

from both classes, as expected; by increasing class2 thresholds the buffer is accepting

more packets from class2 which makes the marginal dropping probability for class2

decrease. On the other hand class1 packet dropping probability suffers from a slight

increase and this is because class1 thresholds are fixed and the arrival rate from class1 is

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

m
e
a
n

 d
e
la

y
 (

s
e
c
)

LB1-LA1, LA1= 5

Class 1

Class 2

Chapter 5: Dual Class RED

68

higher than the service rate µ. Increasing the value of µ will give lower dropping

probability for both classes, and it is clear from Figures (5.15) and (5.16) this is because

µ is greater than any of the arrival rates or the total arrival rate.

 It is clear from Figures (5.14), (5.15) and (5.16) that moving LB1 will cause sharp

decrease in the marginal dropping probability for both classes. When the difference

between LB1 and LA1 is high the dropping probability for class2 goes to zero and for

class1 is a very low value but higher than class2 for the same threshold settings. Figure

(5.16) shows that when the service rate is much higher than the total arrival rate both

classes behave the same in that the dropping probability is nearly zero over the whole

range of threshold separations.

Figure 5.14: Marginal dropping probability at µ=6, λ1=9 and λ2=3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

Chapter 5: Dual Class RED

69

Figure 5.15: Marginal dropping probability at µ=12, λ1=9 and λ2=3

Figure 5.16: Marginal dropping probability at µ=18, λ1=9 and λ2=3

5.5.2 The Effect of Class1 Arrival Rate on the Dropping Probability

It is noticeable from Figures (5.17), (5.18) and (5.19) that increasing λ1 will increase the

values of the marginal dropping probability for both classes. These figures also indicate

that by increasing the difference between the two classes‟ thresholds the packet

dropping probability for each class will decrease dramatically until it reaches zero for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

Chapter 5: Dual Class RED

70

class2 and a very low value for class1. Increasing the separation between LB1, LA1 as

well as increasing the value of λ1 gives higher loss for class1 than for class2.

Figure 5.17: Marginal dropping probability at λ1=6, µ=12 and λ2=3

Figure 5.18: Marginal dropping probability at λ1=9, µ=12 and λ2=3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

Chapter 5: Dual Class RED

71

Figure 5.19: Marginal dropping probability at λ1=12, µ=12 and λ2=3

5.5.3 The Effect of Class2 Arrival Rate on the Dropping Probability

As it has been noticed before, increasing any of the arrival rates and at the same time

moving class2 thresholds will affect the marginal dropping probability for both classes.

So increasing λ2 from 3 to 9 causes an increase in the dropping probability for both

classes. Figures (5.20) and (5.21) show that lower values for the marginal dropping

probability for both classes can be obtained by using a wide separation between the two

classes‟ thresholds. Figure (5.22) shows that when class2 packets arrive at a very high

rate, even higher than class1 arrival rate, both classes will suffer from a very high

packet dropping probability. But by moving class2 thresholds, the buffer will be able to

accept more packets from class2 but still cannot accept any more packets from class1,

which makes its dropping probability still very high.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

Chapter 5: Dual Class RED

72

Figure 5.20: Marginal dropping probability at λ2=3, µ=12 and λ1=6

Figure 5.21: Marginal dropping probability at λ2=6, µ=12 and λ1=6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

Chapter 5: Dual Class RED

73

Figure 5.22: Marginal dropping probability at λ2=9, µ=12 and λ1=6

5.6 Overall Mean Delay Analysis

This section represents the effect of moving thresholds on the overall mean delay at

different values of the arrival rate from class1. As expected by increasing the arrival rate

the overall mean delay increases especially while maintaining class1 thresholds fixed.

The effect of moving thresholds on the overall mean delay only takes effect at lower

separation values till the delay reaches its highest value then the trend of the delay

remains fixed as in Figure (5.23).

It is noticeable that beyond the second threshold LB1 all packets are dropped which

results in the characteristic saturation of mean delay at specific levels, which is a feature

of all mean delay graphs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1=5

Class1

Class2

Chapter 5: Dual Class RED

74

 Figure 5.23: The overall mean delay at different values of λ1 where µ=12 and λ2=3

5.7 Overall Dropping Probability Analysis

Figure (5.24) shows that increasing class1 arrival rate causes a large increase in the

overall dropping probability. By increasing LB1 the overall dropping probability will

decrease although the lower dropping probability could be achieved at lower arrival

rates.

Figure 5.24: The overall dropping probability at different values of λ1 where µ=12

and λ2=3

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

m
e

a
n

 d
e

la
y
 (

s
e

c
)

LB1-LA1, LA1=5

Lambda1=6

Lambda1=9

Lambda1=12

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

 p
ro

b
a

b
il

it
y

LB1-LA1, LA1= 5

Lambda1=6

Lambda1=9

Lambda1=12

Chapter 5: Dual Class RED

75

5.8 Summary

A DC-RED model has been implemented to test the effect of applying the RED

mechanism on two streams of traffic in a shared buffer. Intensive simulation analysis

has been done to test the performance of the model with two thresholds per class. The

performance has been assessed by looking at different combinations of conditions, such

as varying the arrival rate from either class1 or class2 or by varying the value of the

service rate. The performance analysis has demonstrated the significant impact of the

threshold positions on the performance measures of both classes. The results clearly

demonstrate how different load settings can provide different tradeoffs between delay

and dropping probability to suit different service requirements. It has also been

demonstrated that moving class2 thresholds not only affects class2 performance but also

the performance of class1 which is something that was expected. More significantly, the

results indicate that one class can completely dominate the other, which gives an

unacceptable situation. Altering any of the arrival rates or the service rate has an

apparent effect on the overall performance which would make it very difficult to reach a

steady state condition for both classes with the shared buffer if an adaptive strategy was

used, such as that in ARED. Also, the results suggest that to apply the DC-RED in a

LRD or Variable Bit Rate (VBR) situation is likely to prove impossible because of the

changes in the interdependencies caused by the changing traffic levels. The focus of the

thesis from now on will thus involve experiments on a single class of traffic in a single

buffer.

76

CHAPTER 6

Congestion Prediction in Networks with
LRD Traffic

6.1 Introduction

Traffic measurements from communication networks have shown that network traffic

can exhibit self-similar as well as LRD properties. In telecommunication networks,

congestion events tend to persist, producing large delays and packet loss resulting in

performance degradation. In order to guarantee QoS to diverse Internet services,

congestion prediction has become a fundamental objective of some network

management algorithms [16, 71]. Therefore high performance predictors are required

that are efficient and simple to implement.

The ability to predict traffic congestion within a network is one of the fundamental

requirements of modern network design. A number of recent studies have shown that

network traffic exhibits self-similar and LRD properties [11-12, 14]. The use of

traditional models, for example Poisson and the Markovian models, in networks

characterized by self-similar processes can lead to overestimations about the

performance of the analyzed networks [12]. In real traffic networks, packets tend to

Chapter 6: Congestion Prediction in Networks with LRD Traffic

77

arrive in clusters, causing a phenomenon called the burst phenomenon. Due to LRD,

the burst phenomenon can still be observed over large time scales and cannot be

smoothed out by aggregating the traffic in a larger time scale [72]. The burst

phenomenon within self-similarity, exists only in measured traffic and cannot be

predicted with traditional traffic models [72-73]. Therefore, an efficient mechanism for

prediction of the onset of congestion within networks that exhibit self-similarity and

LRD is required.

Traffic modelling plays a significant role in the analysis of real network traffic. In

order to design a robust and a reliable network, it is important to understand the traffic

characteristics of the network and the best model to represent it. For instance, SRD,

LRD, and self-similarity are examples of processes found in communication networks.

This chapter explains each process in detail. It also investigates the impact of LRD on

congestion prediction.

6.2 Short Range Dependence

Classical models are SRD processes, such as the Poisson process and the Markov chain

models. SRD is the most widely used model for modelling traditional network traffic.

Definition [11]: Consider a discrete time stochastic process X(t), where the

autocorrelation function r(k) = γ(k)/σ
2

, and for all

 , then the autocorrelation function r(k) of the SRD process is summable and decays

exponentially fast. This implies:

k

kr)((6.1)

Chapter 6: Congestion Prediction in Networks with LRD Traffic

78

6.2.1 Poisson Distribution

The Poisson distribution is a continuous-time, discrete-state probability distribution that

expresses the probability of a number of events occurring in a fixed period of time. In

computer network applications, the Poisson process is widely used to represent the

distribution of the number of arrivals.

Definition [74]: Assume N (t) represents the number of events in the interval (0, t] . If

the events occur successively in time, so that the intervals between successive events are

independent and identically distributed according to an exponential distribution. Then

the stochastic process {N (t), t ≥ 0} is a Poisson process with mean rate λ>0.

In a pure Poisson process with rate λ, the number of points occurring in a fixed interval

of length t has the Poisson probability mass function (pmf) given by:

0

0,

,0

!
)(

x

xx

e

xp

x

 (6.2)

The cumulative distribution function (cdf) is given by:

0,
!

)(
0

x

i

i

i

e
xF (6.3)

The Poisson distribution has an important property that the mean and the variance are

both equal to α [68].

 6.2.2 Exponential Distribution

The exponential distribution is used to describe the times between events in a Poisson

process. It has been used to model inter-arrival times when arrivals are completely

random and to model service times.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

79

Definition [68]: A continuous random variable X is said to be exponentially distributed

with parameter λ if its probability density function (pdf) is given by:

0

0,

,0
)(

x

xe
xf

x
 (6.4)

the cdf can be obtained by integrating Equation (6.4) such that:

0

0,

,0

1
)(

x

xe
xF

x

 (6.5)

The exponential random number generated to represent the service time or the inter-

arrival time in a simulation is calculated by solving for x in Equation (6.5) using the

inverse transform technique as follows:

xeR 1 (6.6)

Re x 1
 (6.7)

)1(Rnx (6.8)

)1(
1

Rnx

 (6.9)

R is a uniform random number distributed on [0, 1] and λ is the rate in service

completions or arrivals per unit time.

The exponential distribution has a memoryless property which is one of its most

important properties. It is also called the Markov property. The memoryless property

means that for all s ≥ 0 and t ≥ 0,)()|(tXPsXtsXP so that the time to the

next event is independent of both the past and the future [68].

Chapter 6: Congestion Prediction in Networks with LRD Traffic

80

6.3 Long Range Dependence

Modern network traffic, such as Ethernet data and VBR video traffic are LRD processes

[72, 75]. LRD is a process whose autocorrelation function is not summable and decays

hyperbolically or decays with lag time as a power law [11]. This implies:

k

kr)((6.10)

Definition [11]: Let X = (Xt: t >= 1) be a wide sense stationary process with mean

µ=E[Xt] and variance ∂
2
=E[(Xt - µ)

2
]. X is called an asymptotic LRD process if the

autocorrelation function r (k) is given by:

 kkkr ,~)(
 , 0 < β < 1 (6.11)

The Hurst parameter H is related to β by H=1-β/2 and 0.5<H<1. The Hurst

parameter is an indicator of the LRD. Careful choice of H is very important as H values

greater than 1 are prohibited due to the stationary condition on X and H=0.5 is the

condition for SRD [15]. Processes with a low Hurst parameter (near 0.5) are less bursty

while those with a high Hurst parameter (in the vicinity of 1) are highly bursty [76].

Thus the Hurst parameter is indicative of the resultant aggregated stream.

6.3.1 Heavy Tailed Distribution

The heavy tailed distribution, also called the long tailed distribution, is a probability

distribution whose tail is heavier than the exponential distribution. Heavy tailed

distributions behave quite differently from the exponential distribution, which have tails

that decline exponentially fast. In contrast, heavy tailed distributions have tails that

decline hyperbolically slowly and have infinite variance, reflecting the extremely high

variability that these distributions capture.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

81

Definition [77]: A random variable Z is said to be a heavy tailed distribution if

 xcxxZP ,~)(
 (6.12)

0 < α < 2 is called the tail index and c is a positive constant.

A number of recent studies have shown evidence that file sizes and connection

durations have heavy tailed distributions and measurements of computer network traffic

have shown that autocorrelations are often related to heavy tails, which is a

phenomenon of self-similarity [77].

By modelling a number of ON/OFF sources with heavy tailed probability

distributions (for example Pareto distributions) for both ON and OFF periods, a self-

similar aggregated traffic can be generated [13]. The ON period corresponds to a single

transmission session time and the OFF period corresponds to the silent period of a

source.

6.3.2 Pareto Distribution

The Pareto distribution (also referred to as the hyperbolic distribution and the power-

law distribution [12, 78]) is the simplest heavy tailed distribution to model self-similar

and LRD processes [79]. It can be defined using the cdf [78] such that:

 (6.13)

The pdf is given by [78]:

0,,,)(1 kkxxkxf
 (6.14)

0 < α < 2 is the shape parameter (the tail index) and k is the scale parameter. If α ≤ 2

then the Pareto distribution will have infinite variance and if α ≤ 1 it will have infinite

mean [12]. k represents the smallest possible value of the Pareto random number [78].

Chapter 6: Congestion Prediction in Networks with LRD Traffic

82

Figure 6.1: The cdf of a Pareto distribution at different values of α and k=1

Figure 6.2: The pdf of a Pareto distribution at different values of α and k=1

Figures (6.1) and (6.2) show that for the Pareto distribution, as the value of α

decreases, more of the probability mass is located in the tail of the distribution [12, 79].

The Pareto random number generated in a simulation can be computed by applying the

inverse transform technique on the cdf Equation (6.13) as follows:

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11

cd
f

x

α=1

α=2

α=3

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11

p
d

f

x

α=1

α=2

α=3

Chapter 6: Congestion Prediction in Networks with LRD Traffic

83

x

k
xF 1)((6.15)

x

k
R1 (6.16)

x

k
R

1

)1((6.17)

1

)1(R

k
x

 (6.18)

R is a uniform random number that can have a value in the range [0, 1] and x is the

Pareto random number.

6.4 Self-Similarity

Self-similarity is a notion introduced by Mandelbrot [80]. The authors in [79] provided

evidence and possible causes of self-similarity in World Wide Web (WWW) traffic.

Self-similarity can be classified into two categories: deterministic and stochastic.

6.4.1 Deterministic Self-Similarity (Scale Invariance)

A mathematical object is self-similar, if its parts, when magnified, resemble the shape of

the whole in a suitable sense [15]. Figure (6.3) depicts the symmetrical and scale-

invariant properties found in the Koch snowflake.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

84

Figure 6.3: Fractals of Koch snowflake [81]

6.4.2 Stochastic Self-Similarity

Stochastic self-similarity is a phenomenon found in real traffic networks. The

probabilistic properties of the self-similar processes remain unchanged when the process

is viewed at varying time scales [15, 82].

The properties of self-similar traffic are very different from properties of traditional

models based on Poisson or the Markovian models. As shown in Figure (6.4), Poisson

processes lose their burstiness and flatten out when time scales are changed. However,

they can exhibit burstiness over a short range of time scales.

Definition [79]: Let X = (Xt: t =1, 2, 3, ...) be a covariance stationary stochastic

process with mean μ, variance of ∂
2

and autocorrelation function r(k), k ≥ 0. It is also

assumed that the autocorrelation function, r(k), has the form [11]:

 kkkr ,~)(
 , 0 < β < 1 (6.19)

Then the new covariance stationary time series)(mX is obtained by averaging X over

non-overlapping blocks of size m [15]:

http://upload.wikimedia.org/wikipedia/commons/6/65/Kochsim.gif
http://upload.wikimedia.org/wikipedia/commons/6/65/Kochsim.gif

Chapter 6: Congestion Prediction in Networks with LRD Traffic

85

,3,2,1,1,)(
1

)(
1)1(

)(

mktX
m

kX
mk

kmt

m

 (6.20)

The aggregated series X is called a self-similar process, if)(mX is the same as X at least

with respect to their autocorrelation function [11] with self-similarity parameter H,

where 0<H<1, H≠0.5.

In order to guarantee that the modelled traffic implies self-similarity and LRD as

well, H should be restricted by 0.5<H<1, as not all self-similar processes are LRD and

vice versa [15].

Chapter 6: Congestion Prediction in Networks with LRD Traffic

86

Figure 6.4: Comparison of actual, traditional and self-similar Ethernet traffic

viewed on different time scales [82]

(a) Actual measurements

(b) Synthetic traditional traffic (c) Synthetic self-similar traffic

Chapter 6: Congestion Prediction in Networks with LRD Traffic

87

6.5 Impact of LRD on Congestion Prediction

Satisfying QoS requirements while achieving high utilization has become a very

complex and difficult task due to the scale-invariant burstiness of LRD traffic. Scale-

invariant burstiness implies the existence of some periods of high activity at a wide

range of time scales which badly affects congestion control. However, the very fact that

traffic is LRD implies the existence of a correlation structure which may be exploitable

for congestion prediction purposes; that is, the correlation structure present in LRD

traffic can be used to predict the future behaviour. Also, predicting the onset of

congestion under self-similar traffic conditions with sufficient reliability can be

effectively utilized for congestion control purposes [83]. The predictability structure

present in LRD traffic can be used for improving network performance based on the

feedback algorithm presented in this chapter.

6.5.1 Motivation

The authors in [17-18] theoretically demonstrated that the properties of LRD can be used

to predict traffic behaviour in the not-too-distant future and argued that controlling the

LRD traffic sources can be done by admitting new sources, removing existing sources or

changing the levels of existing sources by turning OFF some of the sources when in the

ON state or vice versa. The latter is the core idea for the prediction algorithm presented

in this chapter. The novelty in this approach is to combine the use of LRD prediction

with an existing congestion control algorithm, namely RED [4].

The algorithm used has a feedback control strategy that depends on the mean time

spent ON for each node to control the number of packets through the buffer. A queueing

model with a number of ON/OFF sources has been used to generate LRD, self-similar

network traffic. An algorithm has been developed involving a novel congestion

Chapter 6: Congestion Prediction in Networks with LRD Traffic

88

prediction for AQM. The algorithm is based on the hypothesis that a connection that has

been active for a time duration which exceeds a certain limit is more likely to persist in

this state for a long period when the traffic exhibits LRD [15, 17].

6.5.2 Simulation Model

It is assumed that the buffer has a finite capacity of K packets, including the server, with

two thresholds (L1) and (L2) as shown in Figure (6.5). The source consists of a

superposition of N (ON/OFF) nodes. The queueing discipline is FIFO. When the

average queue length is less than the minimum threshold (L1), there is no dropping and

the source operates normally. If the average queue length exceeds the maximum

threshold (L2), then the source is signalled to stop sending packets by dropping all the

excess packets. Packet transmission can commence after the next departure. If the

average queue length in the system falls between the first threshold (L1) and the second

threshold (L2), then the arriving packets should be dropped with dropping probability Pd

[4].

)(

)(
max

12

1

LL

Lavg
P pd

 (6.21)

where maxp is the maximum dropping probability and avg is the average queue length

calculated as in [4].

Chapter 6: Congestion Prediction in Networks with LRD Traffic

89

Figure 6.5: Schematic diagram of the congestion prediction model

The implementation of the congestion predictor would be appropriate at edge

routers so that the multiplexer that feeds the queue has knowledge of the nodes. This is

because LRD characteristics are more prevalent at the edge of networks and flatten out

within the network. If all the LRD is not removed then the congestion predictor might

need to be applied on a stage by stage basis. Tracking of information from the nodes

adds considerable complexity to the model because the status of each node needs to be

monitored. The ON times of an individual source are measured as the intervals during

which transmission of a packet is taking place from that source and the OFF times

correspond to the intervals between these periods when no transmission of packets is

taking place. Feedback to a source can be done using explicit backward congestion

notification. These explicit messages can be sent using control packets, which might be

transmitted periodically or through a separate signalling channel if one is available, but

this depending on the system.

µ

L1 L2

Congestion

predictor

S

t

a

t

e

2

1

2

S

t

a

t

e

1

S

t

a

t

e

2

1

2

S

t

a

t

e

1

S

t

a

t

e

2

1

2

S

t

a

t

e

1

N - Nodes

 Explicit backward congestion

notification

Chapter 6: Congestion Prediction in Networks with LRD Traffic

90

6.5.3 Prediction Algorithm

In the proposed continuous-time queueing system, the initial state for all the nodes has

been chosen randomly. It is assumed that the N connections are identical and share the

same specifications. During an ON state, packets are sent according to a Poisson

distribution with rate λ. When idle, the node is said to be in the OFF state. The transition

rates from ON to OFF or from OFF to ON follow the Pareto distribution. The sojourn

time distribution is chosen to be a heavy-tailed one in order to capture the long term

dependencies in the arrival process.

For each input node two time events have been generated. The first event time is

the residence time which has been generated using a Pareto random number (giving

switchover time). The second event time is the next arrival time (giving time of next

arrival at that node) which has been generated using an exponential random number

generator. The node number, event type (arrival, departure or transition) and event time

are placed in an event list. Scheduling the next event type can be done by searching the

event list for the shortest event time. The prediction algorithm presented in Table (6.1)

is based on calculating the expected number of packets transmitted from all the nodes as

follows:

Expected number of packets =

N

i

iiin
1

 (6.22)

ni: the status of node i (ON=1,OFF=0)

λi: arrival rate from node i (packets/sec.)

τi: mean time spent ON for node i (sec.)

N: maximum number of nodes

Chapter 6: Congestion Prediction in Networks with LRD Traffic

91

It should be pointed out that equations (6.21) and (6.22) are used in both the

simulation and also would be used in practice in the implemented model. The previous

equations in this chapter relate to the simulation only since these relate to such things as

traffic models and random number generation which are, of course, simply

representative of features found in real traffic, such as LRD for example. This implies

that the congestion predictor would, in practice, need to determine the mean queue

length in the buffer and also status of the individual sources and their ON and OFF

periods by observing and monitoring the traffic from each of the individual sources.

Also, the number of packets sent by the individual sources received in a given period

would need to be counted to determine average arrival rates and the average queue

length can be determined as in [4].

If source i has been ON for time τi and the number of packets calculated using

Equation (6.22) exceeds a specific limit, this can be considered as an indication of LRD

behaviour which can possibly lead to congestion. The algorithm then searches a node

status vector for the node which may cause congestion; this means the one with the

highest τi. This is based on the hypothesis that if a LRD source has been active for a

long time, there is a very high probability that it will remain active for a long time in the

future and so may cause congestion as a consequence [17]. By identifying the node with

the highest τi, the algorithm forces this node to the OFF state in an attempt to avoid

congestion. Forcing the node to the OFF state can be done using explicit backward

congestion notification which can be sent through control packets as shown in Figure

(6.5).

Chapter 6: Congestion Prediction in Networks with LRD Traffic

92

The mean time spent ON for each node is calculated as follows [84]:

The mean time spent ON =
1

)(

on

onon

k

k
dxxf

 (6.23)

where kon and αon are the scale and shape parameters respectively for the node in the ON

state.

Although equation (6.23) is used in the simulation, in practice the mean time spent ON

would be determined by the congestion predictor which would use its measured data for

the ON times of the individual sources to compute these averages over a specific period

of time.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

93

Table 6.1: Pseudocode for the prediction algorithm

Initialization

Create node status vector (N)

While (simulation time ≤ simulation time required)

{

 Timing (node vector)

 For each packet arrival

 Calculate the new avg

 if (L1< avg < L2)

 Drop the arriving packet with probability Pd

 else if (L2< avg)

 Drop the arriving packet

 else

 Add the arriving packet to the queue

 The expected number of packets=

N

i

iiin
1

 if (measured number of packets ≥ Limit)

 {

 Identify the node with the highest mean time spent ON

 Force the node to OFF state

 }

}

Chapter 6: Congestion Prediction in Networks with LRD Traffic

94

6.5.4 Performance Results

Due to the growing complexity of modern telecommunication networks, simulation has

become the best paradigm for their performance evaluation. A discrete event simulation

has been implemented using Java programming to assess the performance of the

proposed model. The parameters used have been initialized as in Table (6.2). The two

thresholds L1 and L2 have been set as recommended by [4]. α is related to the Hurst

parameter H by H= (3-α)/2 [15] giving Hon=0.9 and Hoff =0.75.

Table 6.2: The congestion predictor configuration parameters

Parameter Value

wq 0.002

maxp 0.1

L1 5

L2 15

queue size 30

λ 5

µ 7

N (number

of nodes) 5

αon 1.2

αoff 1.5

kon= koff
1

Chapter 6: Congestion Prediction in Networks with LRD Traffic

95

The performance of the proposed model has been examined in terms of the total

number of packets transmitted from all the nodes, the MQL, the average delay, the

dropping probability and the normalized throughput. Three different limit values have

been used (30x10
6
, 20x10

6
 and 10x10

6
), in order to examine the effect of changing the

number of packets limit on the performance.

Figure (6.6) represents a comparison between the number of packets transmitted

from all the nodes with and without prediction. By using a limit of 30x10
6
 packets for

the target number of packets, it is noticeable that after applying the prediction algorithm

the number of packets has been controlled by not exceeding the specified limit instead

of increasing over the simulation time as in the case without prediction. Figures (6.7)

and (6.8) represent the effect of using a lower limit value on the total number of packets.

These graphs represent the effectiveness of the algorithm in controlling the number of

packets to lower values.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

96

Figure 6.6: The number of packets using limit=30x10
6

Figure 6.7: The number of packets using limit=20x10
6

Figure 6.8: The number of packets using limit=10x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

97

Figure 6.9: The MQL using limit=30x10
6

Figure 6.10: The MQL using limit=20x10
6

Figure 6.11: The MQL using limit=10x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

98

The effect of applying the algorithm on the MQL is presented in Figures (6.9),

(6.10) and (6.11). The MQL becomes much more stable after applying the algorithm.

Thus, it can be said that, based on the LRD properties, the algorithm managed to control

the MQL over the simulation time. From Figure (6.11), it is noticeable that the lower

the limit value, the more effective the algorithm in detecting congestion as the MQL has

been controlled at time ≈200 while in Figure (6.9) the MQL has been controlled at time

≈400. The limitations appear to be that the value of the MQL still remained high and

close to the maximum threshold position even after offending flows are dropped.

Figure (6.14) shows that the algorithm gives lower values for the average delay and

at the point the algorithm activates, the delay becomes limited. Compared with the

results obtained in Figures (6.12) and (6.13), the average delay values obtained in Figure

(6.14) have lower values which imply earlier notification of congestion as a result of

using a lower limit value. Applying the prediction algorithm also gave better

performance in terms of the dropping probability as shown in Figures (6.15), (6.16) and

(6.17).

Based on the results obtained, the lower the limit value, the better the algorithm

works as it gives earlier congestion notification and congestion control but is likely to

drop more flows to do so. Despite the fact that using a lower limit value gave better

berformance than using the high limit values in terms of the number of packets, the

MQL, the average delay and the dropping probability it showed inferior performance in

terms of the normalized throughput as shown in Figures (6.18), (6.19) and (6.20).

Figure (6.20) shows the huge degradation in the normalized throughput as a result of

using a small limit value and dropping many flows. Based on the results obtained, the

additional complexity of the model would need to be considered in any decision to

implement the model.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

99

Figure 6.12: The average delay using limit=30x10
6

Figure 6.13: The average delay using limit=20x10
6

Figure 6.14: The average delay using limit=10x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

100

Figure 6.15: The dropping probability using limit=30x10
6

Figure 6.16: The dropping probabilty using limit=20x10
6

Figure 6.17: The dropping probability using limit=10x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

101

Figure 6.18: The normalized throughput using limit=30x10
6

Figure 6.19: The normalized throughput using limit=20x10
6

Figure 6.20: The normalized throughput using limit=10x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

102

6.6 Impact of System Parameters

From the previous sections it is clear that the performance of the model depends on the

limit value. Choosing the right limit value is very important as it impacts on the

performance of the proposed model. Therefore, there is a need to remove the system

dependency on the limit value. This can be done using a sliding window algorithm.

By observing the behaviour of the proposed model, it appears that the prediction

algorithm managed to control the number of packets over the simulation time. From

Figure (6.21) it is noticeable that controlling the number of packets is not in a steady

way but it encounters a slight increase over time. To avoid the number of packets

increasing indefinitely, a sliding window algorithm could be used to limit the total

number of packets in Equation (6.22).

Figure 6.21: The number of packets with prediction using limit=20x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

103

6.6.1 Applying a Sliding Window Algorithm

As a policy in real settings it would clearly be better if flow rates of offending sources

were reduced by a specified amount rather than flows dropped to mitigate the reduction

in throughput. Perhaps using a sliding window algorithm could be used in collaboration

with the algorithm to do this [85]. Using a sliding window algorithm has many benefits

as it mimics the behaviour of a real life network, controls the number of packets in a

steady way and removes the system dependency on the limit value. Figure (6.22)

depicts the details of the sliding window algorithm.

Figure 6.22: Schematic diagram of the sliding window algorithm

The basic idea for the sliding window algorithm is to cut the simulation time into

large intervals of equal lengths called windows (W). Each window should be cut into

small intervals of equal lengths called gaps. These gaps will be used to slide the window

into the new position. At the end of each gap the number of packets is calculated using

Equation (6.22). These values which are considered as the number departed values (d)

 0 30 60 90 120 150 180 210 240 270 300 time

W: window

d: number departed

a: number arrived

n: number of packets

W1

 W2

W3

d1 n a1 d2 a2 gap

Chapter 6: Congestion Prediction in Networks with LRD Traffic

104

are saved in an array to be used later in the algorithm. At the end of the first window the

number of packets calculated using Equation (6.22) is called (n). At the end of the first

window the prediction algorithm explained in Table (6.1) should be applied to force the

offending sources to the OFF state based on the value of (n). The number of packets

calculated at the end of the new gap (point 180 in Figure (6.22)) is called the number

arrived (a). The new value for (n) which is called (n') is calculated by adding the value

of the number arrived (a) to the value of (n) and subtracting the value of the number

departed (d). (n') represents the new number of packets at the end of the new window

(W2) which will replace the old value of (n). So the number of packets used for the

prediction algorithm in this case (n') is calculated as follows:

n' = n – d + a (6.24)

The algorithm will repeat the same steps but with sliding the window to new

positions and repeating the algorithm at the end of each window, as explained in Table

(6.3). For example the new value for the number departed (d2) will be the value at 60 in

Figure (6.22) and the new value for the number arrived (a2) will be the value at 210.

This is to keep the window length fixed (equals 150 in this example) and sliding from

point to point over the simulation time.

The sliding window algorithm has been applied in the prediction algorithm to

examine the effect of applying the new algorithm on the performance of the model. The

prediction algorithm has been applied up to the simulation time=500. The reason for

applying the prediction algorithm for the first part of the simulation is to control the

number of packets to the limit value. Then the sliding window algorithm has been

applied from simulation time >500 till the end of the simulation. When the simulation

time is >500 the time is divided into windows of equal lengths and the prediction

algorithm is applied only at the end of each window. The sliding window algorithm is

Chapter 6: Congestion Prediction in Networks with LRD Traffic

105

used to maintain the stability of the number of packets and to prevent the number

increasing indefinitely

Table 6.3: The sliding window algorithm

To examine the effect of applying the sliding window algorithm on the

performance, the configuration parameters have been set as in Table (6.2). The limit

value has been set to 20x10
6
, gap=50 and TWL=150. Figure (6.23) shows the stability in

controlling the number of packets. Compared with Figure (6.21); the number of packets

has been controlled to its limit value and is not increasing anymore. Figure (6.24) shows

a comparison between the performance of the algorithm without applying the sliding

window algorithm and after applying the sliding window algorithm. It is clear from

Figure (6.24) that using the sliding window algorithm is more effective in controlling

the number of packets in a stable way.

- Cut the simulation time into windows of equal length (TWL).

- Divide the window into small intervals called gaps.

- Calculate the number of expected packets at the end of each gap (d).

- Calculate the number of expected packets at the end of the first window (n).

- Apply the prediction algorithm based on the value of (n).

- Slide the window by adding the value of the number arrived (a) and

subtracting the value of the number departed (d).

- Apply Equation (6.24) to calculate the number of packets at the end of the

new window (n').

- Repeat the previous steps until the end of the simulation time.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

106

Figure 6.23: The number of packets after applying the sliding window algorithm

using limit=20x10
6

Figure 6.24: Comparing the number of packets with and without applying the

sliding window algorithm using limit=20x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

107

Figure (6.25) shows the improvement in the normalized throughput after applying

the sliding window algorithm. Using the prediction algorithm alone caused degradation

in the normalized throughput as it appears from Figures (6.18), (6.19) and (6.20). While

using the sliding window algorithm adds an advantage to the performance as it allows

the normalized throughput to rise again. This is because the process of forcing the node

to the OFF state is only done at the end of each window not after each arrival.

The limitation to the sliding window algorithm is that the MQL is still around the

maximum threshold value as it appears from Figure (6.26). There is not much change in

the performance of the average delay as shown in Figure (6.27). Also the dropping

probability presented in Figure (6.28) is not differing too much from the results

obtained in Figure (6.16).

Figure 6.25: The normalized throughput after applying the sliding window

algorithm using limit=20x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

108

Figure 6.26: The MQL after applying the sliding window algorithm using

limit=20x10
6

Figure 6.27: The average delay after applying the sliding window algorithm using

limit=20x10
6

Chapter 6: Congestion Prediction in Networks with LRD Traffic

109

Figure 6.28: The dropping probability after applying the sliding window algorithm

using limit=20x10
6

Setting the gap length has been done by trial and error and it showed that using

small gaps is not good as it causes instability in the measurements of the number of

packets as it is shown in Figures (6.30) and (6.31) while the results obtained in Figure

(6.29) are more stable. The reason is that by choosing a too small gap the algorithm is

more likely to force more sources to the OFF state while using large gaps gives more

stable measurements as it avoids turning OFF sources too frequently.

In the following sections the effect of other parameters on the performance is

examined. To do this, one of the parameters is varied (for example the window length)

while the other variables are kept fixed (for example the gap length and the limit). Then

one of the fixed variables will be varied and the other variables will be fixed and so on.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

110

Figure 6.29: The number of packets using gap=30

 Figure 6.30: The number of packets using gap=25

Figure 6.31: The number of packets using gap=15

Chapter 6: Congestion Prediction in Networks with LRD Traffic

111

6.6.2 The Effect of Using Different Limits

To examine the effect of changing the limit value on the performance, different limit

values have been used (5x10
6
, 10x10

6
, 15x10

6
, 20x10

6
 and 25x10

6
) while keeping the

TWL fixed at 150 and the gap length=50. Figure (6.32) represents the relationship

between the limit and the average number of packets. It represents a linear relationship

between the limit value and the value obtained for the average number of packets.

Figure 6.32: The effect of changing the limit on the average number of packets

Setting the limit to a high value increases the number of packets allowed in the system

and hence increases the average delay as in Figure (6.33) and also increases the average

throughput as shown in Figure (6.34).

0

5000000

10000000

15000000

20000000

25000000

30000000

0 5000000 10000000 15000000 20000000 25000000

av
e

ra
ge

 n
u

m
b

e
r

o
f

p
ac

ke
ts

Limit (packets)

average number of packets

Chapter 6: Congestion Prediction in Networks with LRD Traffic

112

Figure 6.33: The effect of changing the limit on the average delay

Figure 6.34: The effect of changing the limit on the average throughput

6.6.3 The Effect of Using Different Window Lengths

Figure (6.35) shows the effect of changing the TWL on the average number of packets.

It is noticeable from Figure (6.35) that setting the window length to any value does not

affect on the average number of packets which has been set to 20x10
6
. The window

0

1

2

3

4

0 5000000 10000000 15000000 20000000 25000000

av
e

ra
ge

 d
e

la
y

(s
e

c)

Limit (packets)

average delay

0

0.2

0.4

0.6

0.8

1

1.2

0 5000000 10000000 15000000 20000000 25000000

av
e

ra
ge

 t
h

ro
u

gh
p

u
t

Limit (packets)

average throughput

Chapter 6: Congestion Prediction in Networks with LRD Traffic

113

length has been set to (100, 150, 200, 250 and 300) while each window has been cut to

gaps of equal length=50.

Figure 6.35: The effect of changing the window length on the average number of

packets

Figure 6.36: The effect of changing the window length on the average delay

0

5000000

10000000

15000000

20000000

25000000

30000000

0 50 100 150 200 250 300

av
e

ra
ge

 n
u

m
b

e
r

o
f

p
ac

ke
ts

Time Window Length (sec)

average number of packets

0

1

2

3

4

0 50 100 150 200 250 300

av
e

ra
ge

 d
e

la
y

(s
e

c)

Time Window Length (sec)

average delay

Chapter 6: Congestion Prediction in Networks with LRD Traffic

114

Figures (6.36) and (6.37) show the effect of the window length on the average delay

and the average throughput, respectively. Clearly, changing the window length does not

affect the average delay or the average throughput significantly, and this can be

considered as another advantage for the sliding window algorithm as the algorithm can

be used with any reasonable window length without having the problem of parameter

setting.

Figure 6.37: The effect of changing the window length on the average throughput

6.6.4 The Effect of Using Different Gaps

In this section the limit has been set to 20x10
6
 and the TWL has been kept fixed at 150.

The gap has been chosen to take the values (10, 15, 25, 30 and 50). These values have

been chosen to cut the window into equal parts. As it has been mentioned in Section

(6.6.1), setting the gap length to small values impacts on the stability of measuring the

average number of packets and this is supported by the results in Figure (6.38). From

Figures (6.39) and (6.40) it noticeable that the gap length does not significantly affect

the average delay or the average throughput.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

av
e

ra
ge

 t
h

ro
u

gh
p

u
t

Time Window Length (sec)

average throughput

Chapter 6: Congestion Prediction in Networks with LRD Traffic

115

Figure 6.38: The effect of changing the gap length on the average number of

packets

Figure 6.39: The effect of changing the gap length on the average delay

0

5000000

10000000

15000000

20000000

25000000

30000000

0 10 20 30 40 50

av
e

ra
ge

 n
u

m
b

e
r

o
f

p
ac

ke
ts

gap (sec)

average number of packets

0

1

2

3

4

0 10 20 30 40 50

av
e

ra
ge

 d
e

la
y

(s
e

c)

gap (sec)

average delay

Chapter 6: Congestion Prediction in Networks with LRD Traffic

116

Figure 6.40: The effect of changing the gap length on the average throughput

6.6.5 The Effect of Using Different Gap/Window Ratios

The main reason for applying the sliding window algorithm was to remove the system

dependency on the parameter settings. The performance of the model has been shown to

be independent on the limit value or the window length for the system used, but

suggested that small gaps should be avoided to give better stability of the system

measurements. Therefore, it is important to demonstrate that the ratio of the gap length

to the window length does not affect the performance. This is to show that the model is

flexible in setting the gap length and the window length in a way that removes the

dependency of each parameter on the other.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

av
e

ra
ge

 t
h

ro
u

gh
p

u
t

gap (sec)

average throughput

Chapter 6: Congestion Prediction in Networks with LRD Traffic

117

Table 6.4: The results obtained by using variable gap lengths and window

length=150

TWL gap
Ratio

(gap/TWL)

average

number of

packets

average

throughput

average

delay

150 10 0.06667 1.80E+07 0.764564765 2.542475984

150 15 0.1 1.96E+07 0.782914916 2.553714714

150 25 0.16667 20840083.97 0.804687758 2.5305566

150 30 0.2 20543520.43 0.83093143 2.589305047

150 50 0.33333 20629645.02 0.820921183 2.586782804

Table 6.5: The results obtained by using variable gap lengths and window

length=300

TWL gap
Ratio

(gap/TWL)

average

number of

packets

average

throughput

average

delay

300 20 0.06667 2.15E+07 0.77335463 2.51100771

300 30 0.1 21642378.39 0.761135461 2.548404156

300 50 0.16667 21317925.77 0.749999518 2.611807451

300 60 0.2 2.07E+07 0.786421746 2.610130056

300 100 0.33333 2.09E+07 0.780905776 2.659269695

Table (6.4) gives the results obtained by fixing the TWL at 150 and changing the

gap length. It provides the relationship between the ratio (gap / TWL) and the average

number of packets, the average delay and the average throughput. Table (6.5) keeps the

same ratios as in table (6.4) by fixing the TWL at 300 and varying the gap length.

The results obtained in Figures (6.41), (6.42) and (6.43) show that having the same

ratios gave similar performance, regardless of changing the window length or the gap

length. The results obtained therefore, suggested that the model is not dependant on the

parameter settings and that the average number of packets, the average delay and the

average throughput do not substantially depend on the ratio of the gap length to the

window length.

Chapter 6: Congestion Prediction in Networks with LRD Traffic

118

Figure 6.41: The relationship between the average number of packets and the ratio

(gap/TWL)

Figure 6.42: The relationship between the average throughput and the ratio

(gap/TWL)

0

5000000

10000000

15000000

20000000

25000000

30000000

0 0.1 0.2 0.3 0.4

av
e

ra
ge

 n
u

m
b

e
r

o
f

p
ac

ke
ts

Fraction (gap/TWL)

TWL=150

TWL=300

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4

av
e

ra
ge

 t
h

ro
u

gh
p

u
t

Fraction (gap/TWL)

TWL=150

TWL=300

Chapter 6: Congestion Prediction in Networks with LRD Traffic

119

Figure 6.43: The relationship between the average delay and the ratio (gap/TWL)

6.7 Summary

Predicting the future traffic levels from past observations when the traffic exhibits LRD

appears a useful way to control congestion. The proposed model introduces a new

algorithm for congestion prediction. The congestion predictor would be appropriate for

implementation at edge routers where LRD is more prevalent. The proposed approach

uses a feedback control strategy which uses the mean time spent ON for each node as an

indicator of which node is causing congestion. It forces the node with the highest mean

time spent ON to the OFF state to avoid congestion in the not-too-distant future. The

feasibility of applying the algorithm under self-similar and LRD conditions can thus be

effectively utilized for congestion control. The algorithm provided better performance

in terms of the average delay, the MQL, the dropping probability and in controlling the

number of packets.

The drawbacks were that the MQL was high and turning the offending sources OFF

caused degradation in the throughput. The throughput/good-put has been lowered

because flows were selectively dropped. Also the performance of the model appeared to

0

1

2

3

4

0 0.1 0.2 0.3 0.4

av
e

ra
ge

 d
e

la
y

(s
e

c)

Fraction (gap/TWL)

TWL=150

TWL=300

Chapter 6: Congestion Prediction in Networks with LRD Traffic

120

be dependent on the limit value. It has been shown that the lower the limit value the

better the performance is. But on the other hand, using a lower limit value caused

degradation in the throughput. Another drawback is the complexity in measuring the

ON periods and in notifying the offending sources about congestion. The additional

complexity of the model needs to be considered in any decision to implement the

model.

To remove the system dependency on parameter settings, specifically setting the

limit value, the algorithm has been modified to a sliding window algorithm. The results

obtained after applying the sliding window algorithm showed better performance,

especially for the average throughput as the modified algorithm avoided turning OFF

sources too often. On the other hand, applying the sliding window algorithm did not

cause remarkable improvements in the average delay or the dropping probability. It also

did not improve the performance of the MQL. The model also provided better results in

terms of the average number of packets. The sliding window algorithm controlled the

number of packets in a stable way and the algorithm has been shown to be largely

independent of parameter settings for the system investigated.

121

CHAPTER 7

Maintaining Average Delay Constraints
in a Buffer with Time-Varying Arrival
Rate

7.1 Introduction

In order to guarantee QoS to diverse Internet services, it is important to employ

effective buffer management schemes at Internet routers. Various buffer management

mechanisms have been proposed to control traffic congestion and satisfy specified QoS

requirements. Most of these studies rely on static thresholds which can be restrictive

when they operate with sources with varying arrival rates.

Constraining the average delay to a specified value is a key QoS requirement and

one of the most important considerations for real-time services. Bounding delay not only

applies in TCP networks [90], but also in other kinds of networks such as wireless

networks [91]. An efficient mechanism to control the delay is therefore vitally important

if delay is to be constrained to a specified value and jitter is to be minimized. This

chapter represents a novel approach for maintaining average delay constraints in a buffer

with time-varying arrival rate. The proposed feedback mechanism is used to control the

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

122

mean delay by adjusting a moveable threshold in order to control the effective arrival

rate by randomly dropping packets. The mechanism was also evaluated for a source with

LRD traffic characteristics under different arrival rate conditions.

7.2 Impact of a Dynamic Moving Threshold

The aim of applying a dynamic moving threshold is to propose a new adaptive

prediction algorithm for AQM that is simple to implement and can maintain the average

delay at a constant value when the arrival rate varies with time. To achieve this, a

control strategy has been used to bound the delay to a specified value using a dynamic

moving threshold. The proposed algorithm depends on the instantaneous queue length

to switch the arrival rate at appropriate times by dynamically adjusting the queue

threshold. The instantaneous queue length has been used rather than using the average

queue length because the possibility of buffer overflow will be reduced if congestion is

detected using the instantaneous queue length [92].

7.2.1 The Feedback Control Strategy

It is assumed that the buffer has a finite capacity of K packets, including the server, with

two thresholds (L1) and (L2) as shown in Figure (7.1). The queueing discipline is FIFO.

When the number of packets in the buffer is less than the minimum threshold (L1), there

is no dropping and the source operates normally. If the number of packets exceeds the

maximum threshold (L2), then the source is signalled to stop sending packets by

dropping all the subsequent packets. Packet transmission can commence after the next

departure (service completion). In this way the majority of packet loss due to buffer

overflow might be avoided. If the number of packets in the system at time t falls

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

123

between the first threshold (L1) and the second threshold (L2), then the arriving packets

are dropped with dropping probability)(tPd .

)(

))((
max)(

12

1

LL

Ltq
tP pd

 (7.1)

maxp is the maximum dropping probability and q(t) is the instantaneous queue length at

time t.

Figure 7.1: Schematic diagram of the mean delay controller model

The parameters used in the feedback control mechanism are:

DT: target mean delay

DM: measured mean delay

λ1: measured mean arrival rate over each time window (effective arrival rate)

λ2: measured mean arrival rate at L2

μ: service rate

L1: first threshold (fixed)

L1 L2

µ

Mean Delay

Controller

(L2 adjustment)

Arrival rate

adjustment

MMPP-2

Source

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

124

L2: second threshold (moveable over each time window)

The basic idea for the controller is to measure the mean delay and the actual mean

arrival rate over each time window (W). The actual mean arrival rate is measured by

dividing the number of arrivals within each time window by the length of the time

window. These measurements are used to calculate the new position of the threshold L2

for the next time window (W+1) in order to maintain the mean delay at the required

value. Changing the position of L2 causes changes in the effective arrival rate by

randomly dropping packets. This process is considered as an explicit feedback

mechanism to control the mean delay.

7.2.2 The Arrival Process

A basic assumption is made that the arrival rate is varying with time and between step

changes follows a Poisson arrival process. A two state Markov Modulated Poisson

Process (MMPP) source has been used to provide a time-varying arrival rate in the

system. The abrupt changes in the state of the MMPP could be considered to

approximately mimic those characteristics of TCP when changing the length of its

congestion windows. The use of a single source is to emphasize the large changes in the

arrival rate which would not be apparent had multiple sources been used. This is

because the use of multiple sources tends to smooth out any fluctuations in the overall

traffic levels and this would tend to defeat the objective of the investigation.

The MMPP [93-95] is a doubly stochastic Poisson process where the mean Poisson

arrival rate is defined by the state of a Markov chain, as in Figure (7.2). The arrival

process has two distinct states, state1 and state2. When the arrival process is in state1, it

generates arrivals that follow a Poisson distribution with rate (λ11). Similarly, when the

arrival process is in state2, it generates arrivals that follow a Poisson distribution with

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

125

rate (λ22). The transition rate from state1 to state2 is (1), and from state2 to state1 is

(2). Because the arrivals are entering the queue from two different states, it is important

to calculate the effective arrival rate within each time window by counting the number

of arrivals within each window and dividing it over the window length.

Figure 7.2: A two-state MMPP source

The MMPP is characterized by the transition rate matrix Q of the modulating Markov

chain and the arrival rate matrix Λ as follows:

2221

1211

Q (7.2)

22

11

0

0

 (7.3)

In the proposed continuous-time queueing system, the time has been divided into

slots of equal length. These slots (time windows) are assumed large enough to

accommodate a relatively large number of events (arrivals and departures). It is also

State

2

2

State

1

1

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

126

assumed that the RTT from the arrival process to the queue and back to the arrival

process is less than one time window. This assumption has been considered to enable

the arrival process to switch states from one time window to the next.

The time window length (TWL) is assumed to be much smaller than the mean time

in each state of the arrival process. This is to allow the system to assume a steady state

between changes in the arrival rate, on average, so for most time windows the arrival

process will be in the same state.

7.2.3 Performance Metrics

The queueing model used can be considered as a modification of a MMPP/M/1/K

queue. However, setting the TWL less than the mean time the arrival process remains in

each state (for example TWL = 0.1/1) [96], then over most time windows the model can

be viewed as a modification of the M/M/1/K queue. Due to the addition of the two

thresholds in the model, the queue needs to be considered as two parts in order to

calculate the steady state probabilities. The state transition diagram for the proposed

system with the two thresholds L1 and L2 is shown in Figure (7.3). The first threshold L1

is fixed and should be initialized at the beginning of the simulation. The second

threshold L2 can be adjusted to any position in the queue. The balance equations of the

continuous-time finite queue can be obtained through the state transition diagram (c.f.

Figure (7.3)). The equilibrium probabilities can be expressed in terms of)0(p as

follows:

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

127

Figure 7.3: The state transition diagram

From state (0) to state (L1):

)1()0(1 pp (7.4)

)0(

1

)1(pp

 (7.5)

)2()1(1 pp (7.6)

)0(

2

1

)0(

11

)1(

1

)2(pppp

 (7.7)

From (7.5) and (7.7), the general equation is:

1)0()(,,1,0, Lxpp x

x (7.8)

where

1

0 1 2 L1 L1+1 L1+2 L2

L1 L2

1 1 1)1(1 L)2(1 L 2

)(1L

1

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

128

From state (L1+1) to state (L2):

From (7.8)

)0()(
1

1
pp

L

L (7.9)

)1()()(111 LLL pp (7.10)

)(

)(

)1(1

1

1 L

L

L pp

 (7.11)

From (7.9) and (7.11)

)0(

)(

)1(
11

1
pp

LL

L

 (7.12)

)2()1()1(111 LLL pp (7.13)

)1(

)1(

)2(1

1

1

 L

L

L pp

 (7.14)

From (7.12) and (7.14)

)0(

)()1(

)2(
111

1
pp

LLL

L

 (7.15)

Generalizing this:

12)0(

1

0

)(,,2,1,11

1
LLipp

L
i

j

jL

iL

 (7.16)

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

129

Figure 7.4: The change in the arrival rate due to packet dropping

Figure 7.5: The change in the dropping probability due to packet dropping

1

)1(1L

)2(1L

x

2

L2 L1 L1+1 L1+2

 L2

L2 L1 L1+1 L1+2

 L1

 L2

1

x

0

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

130

With reference to Figures (7.4) and (7.5), Equation (7.16) can be written in terms of the

slope of the arrival rate characteristics as follows:

11

)1(1

12

21

1
 =slope 1

LLLL

L

 (7.17)

)1(1 1
 L (7.18)

 1)1(1
 L (7.19)

11

)2(1

2

1

LL

L

 (7.20)

2

)2(1 1

L

 (7.21)

 21)2(1
 L

(7.22)

In general:

121)(,,1,0,
1

LLkkkL (7.23)

From (7.16) and (7.23), the equilibrium probability can be solved in terms of)0(p :

12)0(

1

1
)(,,2,1,

))1((
1

1
LLyp

i
p

L
y

i

yL

 (7.24)

Then by using the normalization equation 1
2

0

L

i

ip ,)0(p can be obtained as follows:

12

1

1

1 1

1

0

)0(

))1((
1

LL

y

y

i

L
L

x

x i
p

 (7.25)

By applying the summation formula for the geometric series

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

131

1

1
1

0

11 LL

x

x

 (7.26)

Substituting (7.26) in (7.25):

 12

1

1

1 1

1

1)0(

))1((

1

1

1
LL

y

y

i

L

L
i

p

 (7.27)

The special case for)0(p when λ1=µ is given by:

12

1 1

1
1

)0(

))1((
)1(

1
LL

y

y

i

i
L

p

 (7.28)

The MQL is given by:

2

1

1

1

)(

0

)(

L

Ln

n

L

x

x pnpxNEMQL (7.29)

1 2

1

1

1

0 1 1

1
)0(

))1((L

x

L

Ln

Ln

i

Lx i
nxpMQL

 (7.30)

The target now is to find the value of L2 to achieve the target delay DT for this finite

buffer. By applying Little‟s law [97]:

)1()0(p

MQL

throughput

MQL
DT

 (7.31)

From (7.30) and (7.31):

)1(

))1((

)0(

0 1 1

1

)0(

1
2

1

1

1

p

i
nxp

D

L

x

L

Ln

Ln

i

Lx

T

 (7.32)

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

132

Now L2 is the only unknown in the following equation:

0
)1(

))1((

)0(

0 1 1

1
)0(

1 2

1

1

1

p

i
nxp

D

L

x

L

Ln

Ln

i

Lx

T

 (7.33)

Equation (7.33) forms the core of the proposed feedback control algorithm. The

bisection method [98] has been used in order to find the roots of this equation to obtain

the threshold position L2 for the next time window (W+1). Then L2 should be moved to

the new position to keep the mean delay around its target.

7.2.4 Performance Validation

In order to test and validate the analytical model used as the basis for the proposed

model, a test model has been implemented. In the test model instead of using a dynamic

moving threshold, two fixed thresholds have been used to ensure that the model is

working correctly in a steady state. The source used has an arrival rate that follows a

Poisson distribution. The arrival rate has been varied only to mimic the changes in the

arrival rate within each time window that happens as an effect of the MMPP source

changing states. The values of the configuration parameters are summarized in Table

(7.1).

Figure (7.6) represents the normalized throughput obtained from the analytical

model compared with the simulation model and it is clear that they are matching.

Figure (7.7) shows that the mean delay obtained from the simulation is also matching

with the mean delay obtained using the analytical model. Figure (7.8) also indicates a

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

133

good match between the dropping probability results obtained from simulation and

analytical model.

Table 7.1: Validation configuration parameters

Parameter Value

maxp 0.1

L1 5

L2 15

queue size 40

µ

5

Figure 7.6: The normalized throughput vs. traffic load

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11

n
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t

arrival rate (packets/sec)

Simulation

Analytical

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

134

Figure 7.7: The mean delay vs. traffic load

Figure 7.8: The dropping probability vs. traffic load

In Figure (7.8) when the arrival rate is less than the service rate there is no dropping

because there is no congestion. But when the arrival rate is approximately equal to the

service rate then in the simulation, statistical fluctuations in the arrival rate will switch

the system to a congestion situation and back again throughout the simulation. When in

a congestion situation the queue will rapidly build up and packets will be dropped. In

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

av
e

ra
ge

 d
e

la
y

(s
e

c)

arrival rate (packets/sec)

Simulation

Analytical

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10 11

d
ro

p
p

in
g

p
ro

b
ab

ili
ty

arrival rate (packets/sec)

Simulation

Analytical

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

135

the analytical model, this remains in a steady state throughout the modelling process

thus resulting in packets being dropped only between L1 and L2. In the simulation the

dropping probability increases when the arrival rate exceeds the service rate till it

reaches its maximum value (0.1) when all the subsequent packets are dropped. In the

modelling process the dropping probability is obtained as follows:

Dropping probability (analytical) =)(
2

1 1

)(xPp d

L

Lx

x

 (7.34)

Pd (x) is the probability that packet x will be dropped, and can be calculated using Figure

(7.9) as follows:

)(

)(
max)(

12

1

LL

Lx
xP pd

 (7.35)

)(xp can be obtained using Equation (7.24) as follows:

)0(

1

1
)(

1

1))1((
p

i
p

L
Lx

i

x

 (7.36)

Figure 7.9: The calculation of the dropping probability Pd (x)

 L2 x L1

Pd (L2) =maxp

Pd (x)

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

136

In the simulation model the dropping probability is calculated between L1 and L2 as

follows:

 Dropping probability=
system the toarriving packets ofnumber total

 system in the dropped packets ofnumber total
 (7.37)

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

137

Figure 7.10: Flowchart of the mean delay controller model

Initialization

Start

No

Simulation time

≥ TWL

Yes

Yes

No

TWL ≥ Maximum

value?

Start Time Window (W) Loop

Update timing statistics

Determine next event type

Measure delay variance

Calculate probability distribution and other performance measures

Measure actual mean arrival rate

Get new threshold position for the next window based on

mean delay value obtained from previous window

Output measured

delay in each window

End

Start W with a fixed Time Window Length (TWL)

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

138

7. 2.5 Simulation Results

A discrete event simulation has been implemented using Java programming to assess

the performance of the proposed model. The simulation time has been divided into time

windows of fixed length. The bisection method has been used to solve Equation (7.33)

at the end of each time window to find the new position for L2 that bounds the delay

around its target value. A flowchart for the simulation is given in Figure (7.10). The

values of the simulation parameters are summarized in Table (7.2). The two arrival rates

have been chosen higher than the service rate to demonstrate the effectiveness of the

algorithm in constraining an increasing delay. The values of L1 and maxp have been

chosen as recommended in [4].

Table 7.2: The mean delay controller configuration parameters

Parameter Value

maxp 0.1

L1 5

DT 5

queue size 40

λ11
10

λ22
6

µ

5

1
0.02

2
0.01

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

139

Figure (7.11) represents the measured mean delay (DM) compared with the target

mean delay (DT). The measured mean delay is calculated as the time spent in the system

by all packets divided by the total number of packets served at the end of each time

window [69]. Figure (7.11) shows the results obtained by using TWL=15, the measured

delay achieved is 5.553985 and the variance of measurement is 0.340679. The high

variance is a consequence of using a long TWL=15. By using a shorter TWL=10 it is

noticeable that the measured mean delay is approaching the target mean delay which is

(5). The mean delay achieved is 5.422202 and the variance of measurement is 0.283505.

The results of this are shown in Figure (7.12).

Figure 7.11: Measured mean delay compared with target delay at TWL=15

Finding the optimum window length is an important issue and impacts on the

accuracy of the measurements. Using a very long window is good in having enough

arrivals to accurately measure the mean but these arrivals will most likely be at different

arrival rates since the MMPP source might change states within the wide window. Thus,

changing the arrival rates will not give accurate measurements of the actual mean

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

140

arrival rate. Using too small window gives better measurements for the actual mean

arrival rate as the source probably is less likely to change its state within the window

but it is still not very accurate as there will not be many arrivals to measure the mean.

This implies that the accurate tracking of changes in the arrival rate is another factor

that impacts on the performance of the simulation. The ideal situation is to find the

optimum window length that tracks the variations in the arrival rate as closely as

possible so that the arrival rate can be measured accurately.

Figure 7.12: Measured mean delay compared with target delay at TWL=10

In order to examine the effect of changing the TWL on the variance of

measurements, different time window lengths have been used. Figure (7.13) shows the

delay error variance calculated at different time window lengths with 95% confidence

intervals based on ten trials for each value. The delay error variance represents the error

in measuring the delay (DT - DM) within each time window and is calculated using

Equation (7.38):

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

141

Delay error variance =
2

1

1

N

W

MT DD
N

 (7.38)

 N represents the maximum number of time windows used.

From Figure (7.13) it is noticeable that the delay error variance takes high values if

the time window is too short or too long and it reaches its minimum value at TWL=7. So

TWL=7 can be used as the optimum length of the time window. Compared with the

results obtained in Figures (7.11) and (7.12) the mean delay achieved in Figure (7.14)

was 5.147966 and the variance is 0.166576, which is a smaller value. This also shows

that the measured delay can be successfully maintained around its target value if an

appropriate length is chosen for the time window.

Figure 7.13: Variance of measured mean delay error vs. TWL

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14

d
e

la
y

e
rr

o
r

va
ri

an
ce

Time Window Length (sec)

variance

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

142

Figure 7.14: Measured mean delay compared with target delay at TWL=7

The algorithm has thus been demonstrated to be effective in bounding the average

delay at its target value especially in an increasing delay condition when the arrival rates

are varying and at high values. To test the performance of the model under lower arrival

rate conditions, one of the arrival rates from the MMPP source has been set to a low

value λ22=4 while the other rate is kept high at λ11=10 and µ=5. By plotting the delay

error variance at different TWL values with 95% confidence intervals as presented in

Figure (7.15), it is shown that the delay error variance is nearly fixed and is not affected

by changing the length of the window. This is likely to be caused by the fact that when

λ>µ as with λ11=10 and µ=5, then the delay has been controlled close to the target value

which is (5). When λ<µ as with λ22=4 and µ=5, then the delay will inherently be lower

than the target. The average delay is therefore expected to be lower than the target

delay. This can be seen from the steady state delay results when the Poisson arrival rate

is at the λ22 value (c.f. Figure (7.7) in Section (7.2.4)). Setting one of the arrival rates to

a low value makes the effective arrival rate low most of the time which makes the

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

143

average delay lower than the target value as it appears from Figure (7.16). Figure (7.16)

represents a high variance which equals 3.860855 at TWL=9.

Figure 7.15: Variance of measured mean delay error vs. TWL at low arrival

rate

Figure 7.16: Measured mean delay compared with target delay at TWL=9

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

d
e

la
y

e
rr

o
r

va
ri

an
ce

Time window length (sec)

variance

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

144

7.3 Impact of Dynamic Threshold Using Pareto Switchover

7.3.1 Motivation

Self-similarity and LRD are the characteristics of some types of modern network traffic.

In order to examine the performance of the model under LRD and self-similar

conditions. A Pareto swithchover has been used in the former MMPP source to replace

the exponential one. This means the transition from state1 to state2 and from state2 to

state1 will follow the heavy tailed Pareto distribution. Runing the model under LRD

conditions means that the source might spend a much longer time in one of the states

than the other. If this is a high arrival rate state then these situations can lead to

congestion.

7.3.2 Performance Results

In the simulation model the parameters used are summarized in Table (7.3). Setting the

arrival rate at high value in the two states caused high delay error variance. Figure

(7.17) represents the delay error variance after using the LRD source. Figure (7.18)

shows that at TWL=10 the error variance obtained=1.487159 and the measured delay is

above the target value.

The lower error variance obtained was at TWL=7 and equals 0.983471 as presented

in Figure (7.19). It is noticeable that the measured mean delay is still above the target

value this is because due to the Pareto distribution the source stays long times in the

high rate states and this caused the delay to be higher than the target value. This is

because the target delay value was too low to achieve with the high arrival rate. Figure

(7.20) represents the relationship between target delay value and the threshold (the

measured mean delay).

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

145

Table 7.3: The mean delay controller configuration parameters for LRD source

Parameter Value

maxp 0.1

L1 5

DT 5

queue size 40

λ11
10

λ22
6

µ

5

αon 1.2

αoff 1.5

kon= koff 1

Figure 7.17: Variance of measured mean delay vs. TWL using LRD source at high

arrival rate

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

0 2 4 6 8 10 12 14

d
e

la
y

e
rr

o
r

va
ri

an
ce

Time window length (sec)

variance

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

146

Figure 7.18: Measured mean delay compared with target delay at TWL=10

using LRD source

Figure 7.19: Measured mean delay compared with target delay at TWL=7

using LRD source

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

147

Figure 7.20: Target delay vs. the threshold (measured mean delay)

To test the performance of the model under lower arrival rate conditions, one of the

arrival rates of the source has been set to high value λ11=10 and the other rate has been

set to low value λ22=4 while the other parameters are kept without change with µ=5.

With the Pareto switchover times the results are likely to be biased by the possibility of

very long state residence times due to the LRD characteristics of the Pareto distribution.

Figure (7.21) shows that the large variations are confirmed by the wide confidence

intervals on the delay error variance curve. It shows that the wide intervals of the error

bars due to the use of the Pareto swithchover times which causes the source to stay at

one of the states longer than the other within a simulation run.

By using TWL=5, the variance obtained has high value=55894009 as in Figure

(7.22). The lowest error variance obtained was at TWL=9 as shown in Figure (7.23). By

using a TWL=9 the measured mean delay is close to the target delay value (5) and the

variance=55989005 as shown in Figure (7.23).

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Th
re

sh
o

ld
 (

m
e

as
u

re
d

 d
e

la
y)

Target Delay (sec)

Measured Delay

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

148

Figure 7.21: Variance of measured mean delay vs. TWL using LRD source at low

arrival rate

Figure 7.22: Measured mean delay compared with target delay at TWL=5

using LRD source at low arrival rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14

d
e

la
y

e
rr

o
r

va
ri

an
ce

Time window length (sec)

variance

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

149

Figure 7.23: Measured mean delay compared with target delay at TWL=9

using LRD source at low arrival rate

7.4 Summary

The proposed algorithm is a new algorithm for controlling the mean delay in a buffer

with time-varying arrival rate. The model presented can be used to maintain average

delay constraints in delay sensitive applications like real-time services for Internet

applications. The proposed approach uses a feedback control strategy to adjust the

queue threshold dynamically which, in turn, controls the effective arrival rate by

randomly dropping packets. In practice, if the system is operating under TCP, then these

packet drops will cause the source to slow down as TCP reduces its congestion window

size. An equation has been developed that relates the threshold position to the target

mean delay over each time window.

The performance of the model depends on the length of the time window and on the

ability to accurately measure the changes in the measured mean delay. These issues

have been investigated by applying the algorithm under high and low arrival rate

conditions. The algorithm has been generalized for other arrival processes, for example

Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate

150

the use of Pareto switch over times instead of the exponential ones in order to examine

the effects of LRD and self-similarity, which are the characteristics of some types of

modern network traffic. The performance of the model has been validated using both

simulation and analytical modelling. The results obtained from the simulation matched

well with the results obtained from the analytical model.

151

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

The main conclusions of this thesis are summarized as follows:

 Due to the rapid growth of communication networks, congestion has become a

widespread and persistent problem. This is particularly true of the Internet which

has necessitated the need for the deployment of effective congestion control

algorithms. Many AQM schemes have been proposed to control congestion but

many of these have numerous drawbacks, such as the dependency on parameter

settings. Therefore, designing new algorithms to control congestion and

predicting the onset of congestion within a network has become an important

issue. The algorithms which have been developed and reported within this thesis

embody investigations into new methods of controlling congestion and mean

delay in communication networks.

 Based on the well known RED algorithm, an algorithm has been developed

which sets two thresholds per class in a shared buffer. The model considered is

Chapter 8: Conclusions and Future Work

152

called Dual Class RED (DC-RED) as each arrival class follows the Poisson

distribution and the dropping probability of each class is based on the RED

algorithm. The effect of varying the parameters of one class on the other class

has been investigated, in addition to the effects on the overall performance. The

performance analysis has demonstrated the significant impact of the threshold

positions on the performance measures of both classes. It has been found that it

is very difficult to reach a steady state condition for both classes with the shared

buffer.

 Because of the need to identify the onset of congestion at the earliest possible

stage, one of the main aims of the thesis has been to develop an algorithm that

predicts future traffic levels from past observations. To achieve this aim, a new

congestion control algorithm has been developed which makes use of various

Internet traffic characteristics, such as self-similarity and LRD, which have not

previously been employed in congestion control methods currently used in the

Internet. A feedback model with a number of ON/OFF sources has been

employed which uses the mean time spent ON for each node as an indicator of

which node is causing congestion. The algorithm forced an offending node to

the OFF state when the number of packets exceeded a certain limit. The

rationale behind this was that any such node that exhibits LRD and which has

been ON for an excessively long time is likely to remain ON for a long time in

the future. In this context, the algorithm might be considered to incorporate an

implicit prediction mechanism. It was found to provide better performance in

terms of the average delay, the MQL, the dropping probability and in controlling

the number of packets than an equivalent system without the prediction. The

drawbacks were that the MQL was high and turning the offending sources OFF

Chapter 8: Conclusions and Future Work

153

caused degradation in the throughput. Also the performance of the model

appeared to be dependent on the limit value.

 To remove the system dependency on setting the limit value, the prediction

algorithm was modified to incorporate a sliding window mechanism. Modifying

the algorithm by the inclusion of a sliding window mechanism was shown to

further improve the performance in terms of controlling the total number of

packets within the system and improving the throughput. The sliding window

mechanism effectively controlled the number of packets in a stable way by

avoiding turning OFF sources too often.

 Also considered has been the important problem of maintaining QoS constraints,

such as mean delay, which is crucially important in providing satisfactory

transmission of real-time services over multi-service networks like the Internet

and which were not originally designed for this purpose. The proposed approach

used a feedback control strategy to control the mean delay by dynamically

adjusting a threshold, which, in turn, controlled the effective arrival rate by

randomly dropping packets. Within a TCP environment this would cause the

source to reduce its sending rate. The source used was a two state MMPP source

in order to model the bursty and correlated traffic and to provide a time-varying

arrival rate in the system. This work has been carried out using a mixture of

computer simulation and analytical modelling.

 In order to maintain the average delay around its target value, the simulation

time was divided into windows of equal length which formed the input to a

mean delay control algorithm. An equation was developed that related the

threshold position to the target mean delay over each time window. It was found

Chapter 8: Conclusions and Future Work

154

that the performance of the model depended on the length of the time window

and on the ability to accurately detect the changes in the arrival rate. These

issues were investigated by applying the algorithm under high and low arrival

rate conditions and different time window lengths. The simulation results

demonstrated that the measured mean delay could be successfully maintained

around its target value if an appropriate length was chosen for the time window.

 The mean delay control algorithm was also evaluated for a source with Pareto

switchover times instead of the exponential ones in order to examine the effects

of LRD and self-similarity. It was found that running the model under LRD

conditions resulted in the source spending a much longer time in one of the

states than in the other within the relatively limited period of a simulation run. It

was also found that because the Pareto switched source stayed for long periods

in the high rate states of the source, this caused the delay to be higher than the

target value. The measured mean delay reached the target mean delay after

setting one of the arrival rates to a low value. The steady state performance of

the model was validated by demonstrating a good match between simulation and

analytical models.

Chapter 8: Conclusions and Future Work

155

8.2 Recommendations for Future Work

Further to the work reported in this thesis, several advances are suggested as

recommendations for future work as follows:

 For the prediction algorithm, future research should include an investigation of

the parameter configurations.

 Future research might also investigate the implementation of target MQL or

target mean delay in the prediction algorithm using a moveable threshold or

appropriate method.

 The mean delay control algorithm might be modified to be used with multi-class

traffic, although this would almost certainly require separate buffers for each

type of traffic due to the obvious interdependencies between different traffic

classes in a shared buffer environment, which would make an equilibrium state

extremely difficult to achieve.

 Modifying the mean delay controller to work as a MQL controller. Also the use

of a sliding window instead of a fixed one could be investigated.

 For all the models investigated that make use of the LRD and self-similar traffic,

it could be useful to examine the performance under different Hurst parameter

values.

 The algorithms might be generalized for other arrival processes and for different

queuing disciplines other than the FIFO discipline.

 Future work could also include the development of the simulation models to

cater for other network connections such as UDP sources.

156

References

[1] A. Khan, D. M. Shah, and Z. Xu, "Sync-TCP in high-speed environments,"

presented at the Proceedings of the 43rd annual Southeast regional conference -

Volume 2, Kennesaw, Georgia, 2005.

[2] M. Welzl, Network Congestion Control: Managing Internet Traffic Wiley 2005.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V.

Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker,

J. Wroclawski, and L. Zhang, "Recommendations on Queue Management and

Congestion Avoidance in the Internet," RFC 2309 April 1998.

[4] S. Floyd and V. Jacobson., "Random early detection gateways for congestion

avoidance," IEEE/ACM Trans. Netw., vol. 1, pp. 397-413, 1993.

[5] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, "A self-configuring RED

gateway," in INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, New York, NY,

USA, 1999, pp. 1320-1328

References

157

[6] S. Floyd, R. Gummadi, and S. Shenker, "Adaptive RED: An Algorithm for

Increasing the Robustness of RED‟s Active Queue Management," Technical

Report, August 2001.

[7] W.-c. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, "BLUE: A New Class of

Active Queue Management Algorithms " In UMCSE-TR-387-99, April 1999.

[8] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, "REM: active queue

management," Network, IEEE, vol. 15, pp. 48-53, May 2001.

[9] S. L. Athuraliya, D. Low, S. , "An enhanced random early marking algorithm

for Internet flowcontrol," in INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies, 2000, pp.

1425-1434

[10] B. Zheng and M. Atiquzzaman, "DSRED: an active queue management scheme

for next generation networks," presented at the Proceedings of the 25th Annual

IEEE Conference on Local Computer Networks, 2000.

[11] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-

similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw.,

vol. 2, pp. 1-15, 1994.

[12] V. Paxson and S. Floyd., "Wide-area traffic: the failure of Poisson modeling,"

SIGCOMM Comput. Commun. Rev., vol. 24, pp. 257-268, 1994.

[13] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, "Self-similarity

through high-variability: statistical analysis of ethernet LAN traffic at the source

level," SIGCOMM Comput. Commun. Rev., vol. 25, pp. 100-113, 1995.

References

158

[14] P. Loiseau, P. Gonçalves, G. Dewaele, P. Borgnat, P. Abry, and P. V.-B. Primet,

"Investigating Self-Similarity and Heavy-Tailed Distributions on a Large-Scale

Experimental Facility," IEEE/ACM Transactions on Networking, vol. pp, pp. 1-

14, 2010-03-01 2010.

[15] K. Park and W. Willinger, "Self-Similar Network Traffic: An Overview," in

Self-Similar Network Traffic and Performance Evaluation K. Park and W.

Willinger, Eds., ed New York; Chichester John Wiley & Sons, Inc., 2000, pp.

iii-xlix.

[16] Y. Jin, S. Bali, T. E. Duncan, and V. S. Frost, "Predicting properties of

congestion events for a queueing system with fBm traffic," IEEE/ACM Trans.

Netw., vol. 15, pp. 1098-1108, 2007.

[17] N. G. Duffield and W. Whitt, "A Source traffic model and its transient analysis

for network control " Stochastic Models, vol. 14, pp. 51 - 78 1998.

[18] N. G. Duffield and W. Whitt, "Network Design and Control Using On/Off and

Multilevel Source Traffic Models with Heavy-Tailed Distributions," in Self-

Similar Network Traffic and Performance Evaluation, K. Park and W.

Willinger, Eds., ed: John Wiley & Sons, Inc., 2000.

[19] R. Jain, "Congestion control in computer networks: issues and trends " Network,

IEEE vol. 4, pp. 24 - 30 May 1990.

[20] W. Stallings, High-Speed Networks and Internets: Performance and Quality of

Service 2nd ed.: Prentice Hall, 2002.

References

159

[21] V. Jacobson, "Congestion avoidance and control," presented at the Symposium

proceedings on Communications architectures and protocols, Stanford,

California, United States, 1988.

[22] V. Firoiu and M. Borden, "A Study of Active Queue Management for

Congestion Control," in INFOCOM 2000. Nineteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE 2000,

pp. 1435-1444.

[23] H. J. Fowler and W. E. Leland, "Local area network characteristics, with

implications for broadband network congestion management " IEEE Journal on

Selected Areas in Communications, vol. 9, pp. 1139 - 1149 1991.

[24] A. S. Tanenbaum, "Congestion Prevention Policies," in Computer Networks, 4th

ed: Prentice Hall, 2002, pp. 388 - 389.

[25] S. J. Golestani, "A stop-and-go queueing framework for congestion

management," SIGCOMM Comput. Commun. Rev., vol. 20, pp. 8-18, 1990.

[26] R. Jain, K. K. Ramakrishnan, and D.-M. Chiu, "Congestion avoidance in

computer networks with a connectionless network layer," in Innovations in

Internetworking, ed: Artech House, Inc., 1988, pp. 140-156.

[27] Z. Wang and J. Crowcroft, "Analysis of shortest-path routing algorithms in a

dynamic network environment," SIGCOMM Comput. Commun. Rev., vol. 22,

pp. 63-71, 1992.

[28] S. Keshav, "Congestion control in computer networks," PhD., University of

California at Berkeley, 1992.

References

160

 [29] C.-Q. Yang and A. V. S. Reddy, "A taxonomy for congestion control algorithms

in packet switching networks," Network, IEEE vol. 9, pp. 34 - 45 Jul/Aug 1995.

[30] J. Nagle, "Congestion Control in IP/TCP Internetworks," RFC 896 January

1984.

[31] R. Jain and K. K. Ramakrishnan, "Congestion avoidance in computer networks

with a connectionless network layer: concepts, goals and methodology " in

Proceedings of the IEEE Computer Networking Symposium, Washington, DC,

1988, pp. 134 - 143.

[32] J. Nagle, "On packet switches with infinite storage," RFC 0970 December 1985.

[33] D. I. Choi, B. D. Choi, and D. K. Sung, "Performance analysis of priority leaky

bucket scheme with queue-length-threshold scheduling policy "

Communications, IEE Proceedings-, vol. 145, pp. 395 - 401 December 1998.

[34] S. J. Golestani, "Congestion-free communication in high-speed packet

networks," IEEE transactions on communications vol. 39, pp. 1802-1812

December 1991.

[35] N. YIN, S. LI, and T. STERN, "Congestion control for packet voice by selective

packet discarding," IEEE transactions on communications vol. 38, pp. 674-683

May 1990.

[36] Z. Haas, "Adaptive admission congestion control," SIGCOMM Comput.

Commun. Rev., vol. 21, pp. 58-76, 1991.

References

161

[37] K. K. Ramakrishnan and R. Jain, "A Binary Feedback Scheme for Congestion

Avoidance in Computer Networks," ACM Transactions on Computer Systems,

vol. 8, pp. 158-181, May 1990.

[38] T. Faber, L. H. Landweber, and A. Mukherjee, "Dynamic Time Windows:

packet admission control with feedback," presented at the Conference

proceedings on Communications architectures & protocols, Baltimore,

Maryland, United States, 1992.

[39] G. C. Vinton and E. I. Robert, "A protocol for packet network

intercommunication," SIGCOMM Comput. Commun. Rev., vol. 35, pp. 71-82,

2005.

[40] M. Hassan and R. Jain, High Performance TCP/IP Networking Concepts,Issues,

and Solutions: PEARSON Prentice Hall., 2004.

[41] M. Allman, V. Paxson, and W. Stevens, "TCP Congestion Control," RFC 2581

April 1999.

[42] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms," RFC 2001 January 1997.

[43] J. F. Kurose and K. W. Ross, Computer Networking: A Top-down Approach

Featuring the Internet 3rd ed.: Addison Wesley, 2004.

[44] J. Postel, "User Datagram Protocol," RFC 768 August 1980.

[45] C. Bormann, "PPP in a Real-Time Oriented HDLC_like Framing," RFC 2687

September 1999.

References

162

[46] W. Simpson, "PPP in HDLC-like Framing," RFC 1662 July 1994.

[47] M. Nabeshima and K. Yata, "Performance improvement of active queue

management with per-flow scheduling," Communications, IEE Proceedings-,

vol. 152, pp. 797- 803, 9 Dec. 2005.

[48] R. Stanojevic, R. N. Shorten, and C. M. Kellett, "Adaptive tuning of drop-tail

buffers for reducing queueing delays," Communications Letters, IEEE, vol. 10,

pp. 570-572, 2006.

[49] A. Guido, K. Isaac, and M. Nick, "Sizing router buffers," SIGCOMM Comput.

Commun. Rev., vol. 34, pp. 281-292, 2004.

[50] T. V. Lakshman, A. Neidhardt, and T. J. Ott, "The drop from front strategy in

TCP and in TCP over ATM," INFOCOM '96. Fifteenth Annual Joint Conference

of the IEEE Computer Societies. Networking the Next Generation. Proceedings

IEEE, vol. 3, pp. 1242-1250 24-28 Mar 1996.

[51] A. Mankin, "Random drop congestion control," presented at the Proceedings of

the ACM symposium on Communications architectures & protocols,

Philadelphia, Pennsylvania, United States, 1990.

[52] E. Hashem, "Analysis of random drop for gateway congestion control," M.S.

thesis M.S. , Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1989.

[53] L. Zhang, "A New Architecture for Packet Switching Network Protocols," PhD.

Thesis PhD., Dept. of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1989.

References

163

[54] A. Mankin and K. Ramakrishnan, "Gateway Congestion Control Survey," RFC

1254 August 1991.

[55] C. Mikkel, J. Kevin, O. David, and F. D. Smith, "Tuning RED for Web traffic,"

IEEE/ACM Trans. Netw., vol. 9, pp. 249-264, 2001.

[56] M. May, J. Bolot, C. Diot, and B. Lyles, "Reasons not to deploy RED," in IEEE

IWQoS'99. Seventh International Workshop on Quality of Service, London, UK,

1999, pp. 260-262.

[57] M. Vishal, G. Wei-Bo, and T. Don, "Fluid-based analysis of a network of AQM

routers supporting TCP flows with an application to RED," SIGCOMM Comput.

Commun. Rev., vol. 30, pp. 151-160, 2000.

[58] T. J. Ott, T. V. Lakshman, and L. H. Wong, "SRED: stabilized RED," in

INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. , New York, NY, USA, 1999, pp. 1346-1355 vol.3.

[59] L. Dong and M. Robert, "Dynamics of random early detection," presented at the

Proceedings of the ACM SIGCOMM '97 conference on Applications,

technologies, architectures, and protocols for computer communication, Cannes,

France, 1997.

[60] F. Agharebparast and V. C. M. Leung, "Improving the performance of RED

deployment on a class based queue with shared buffers," in Global

Telecommunications Conference, GLOBECOM '01. IEEE 2001, pp. 2363 -

2367.

References

164

[61] M. Parris, K. Jeffay, and F. D. Smith, "Lightweight Active Router-Queue

Management for Multimedia Networking," in Multimedia Computing and

Networking, SPIE Proceedings Series, San Jose, CA, 1999, pp. 162-174.

[62] F. M. Anjum and L. Tassiulas, "Balanced-RED: An Algorithm to Achieve

Fairness in the Internet," 1999.

[63] S. Floyd and V. Paxson., "Difficulties in simulating the internet," IEEE/ACM

Trans. Netw., vol. 9, pp. 392-403, 2001.

[64] H. M. Deitel and P. J. Deitel, Java How to Program (7th Edition): Prentice-Hall,

Inc., 2007.

[65] K. Fall and K. Varadhan. (2000, The ns Manual Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9938

[66] O. C. Site. OMNeT++. Available: http://www.omnetpp.org/index.php

[67] V. S. Frost and B. Melamed, "Traffic modeling for telecommunications

networks," Communications Magazine, IEEE, vol. 32, pp. 70-81, Mar. 1994.

[68] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete Event System

Simulation, 3rd ed.: Prentice Hall, 2000.

[69] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed.:

McGraw-Hill, 2000.

[70] A. O. Allen, Probability, Statistics, and Queueing Theory with computer science

applications, 1st ed.: Academic Press, 1978.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9938
http://www.omnetpp.org/index.php

References

165

[71] B. Sumitha, A. L. N. Reddy, Z. Yueping, and L. Dimitri, "Emulating AQM from

end hosts," SIGCOMM Comput. Commun. Rev., vol. 37, pp. 349-360, 2007.

[72] Q. Li and D. L. Mills, "On the long-range dependence of packet round-trip

delays in Internet" Communications, IEEE., vol. 2, pp. 1185-1191 7-11 Jun

1998.

[73] S. T. Murad, W. Walter, and S. Robert, "Proof of a fundamental result in self-

similar traffic modeling," SIGCOMM Comput. Commun. Rev., vol. 27, pp. 5-23,

1997.

[74] K. Trivedi, Probability and Statistics with Reliability, Queueing, and Computer

Science Applications, 2nd Edition ed.: JHON WILEY &SONS, INC, 2002.

[75] B. K. Ryu and A. Elwalid, "The importance of long-range dependence of VBR

video traffic in ATM traffic engineering: myths and realities," presented at the

Conference proceedings on Applications, technologies, architectures, and

protocols for computer communications, Palo Alto, California, United States,

1996.

[76] T. Le-Ngoc and S. N. Subramanian, "A Pareto-modulated Poisson process

(PMPP) model for long-range dependent traffic," Computer Communications,

vol. 23, pp. 123-132, 2000.

[77] K. Park and W. Willinger, Self-Similar Network Traffic and Performance

Evaluation: JOHN WILY & SONS, INC., 2000.

References

166

[78] K. S. Trivedi, "Some Important Distributions," in Probability and Statistics with

Reliability, Queuing and Computer Science Applications 2ed: JOHN WILEY &

SONS, INC., 2002, pp. 144-146.

[79] M. E. Crovella and A. Bestavros, "Self-similarity in World Wide Web traffic:

evidence and possible causes," IEEE/ACM Trans. Netw., vol. 5, pp. 835-846,

1997.

[80] B. Mandelbrot, "Long-Run Linearity, Locally Gaussian Process, H-Spectra and

Infinite Variances," International Economic Review, vol. 10, pp. 82-111, 1969.

[81] Cuddlyable3, "Koch snowflake," in en:Image:Kochsim.gif vol. 200 x 100 pixels

Kochsim.gif, Ed., ed: Wikipedia.

[82] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, "Self-similarity

through high-variability: statistical analysis of Ethernet LAN traffic at the source

level," IEEE/ACM Trans. Netw., vol. 5, pp. 71-86, 1997.

[83] T. Tuan and K. Park, "Congestion Control for Self-Similar Network Traffic," in

Self-Similar Network Traffic and Performance Evaluation K. Park and W.

Willinger, Eds., ed: Jhon Wiley & Sons, 2000.

[84] K. S. Trivedi, "Moments and Transforms of Some Distributions," in Probability

and Statistics with Reliability, Queuing and Computer Science Applications ed:

JHON WILEY & SONS, INC., 2002, p. 227.

[85] R. H. Fares and M. E. Woodward, "The Use of Long Range Dependence for

Network Congestion Prediction," in 2009 First International Conference on

Evolving Internet, Cannes/La Bocca, France 2009, pp. 119-124.

References

167

[86] S. Floyd, R. Gummadi, and S. Shenker. 2000, Recommendation on using the

"gentle_" variant of RED. Available: http://www.icir.org/floyd/red/gentle.html

[87] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin., "REM: Active Queue

Management," IEEE Network, vol. 15, 2001.

[88] M. Welzl, Network congestion control : managing Internet traffic:

WileyBlackwell 2005.

[89] T. Bonald, M. May, and J. Bolot, "Analytic evaluation of RED performance," in

INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, 2000, pp. 1415-1424 vol.3.

[90] P. Hsiao, H. T. Kung, and K. Tan, "Active delay control for TCP," in Global

Telecommunications Conference, 2001. GLOBECOM '01. IEEE, San Antonio,

TX, USA, 2001, pp. 1626-1631

[91] H. Liu and M. El Zarki, "Delay and synchronization control middleware to

support real-timemultimedia services over wireless PCS networks," IEEE

Journal on Selected Areas in Communications, vol. 17, pp. 1660-1672, Sep.

1999.

[92] Z. Wei, T. Liansheng, and P. Gang, "Dynamic queue level control of TCP/RED

systems in AQM routers," Comput. Electr. Eng., vol. 35, pp. 59-70, 2009.

[93] W. Fischer and K. Meier-Hellstern, "The Markov-modulated Poisson process

(MMPP) cookbook," Perform. Eval., vol. 18, pp. 149-171, 1993.

http://www.icir.org/floyd/red/gentle.html

References

168

[94] R. O. Onvural, Asynchronous Transfer Mode Networks: Performance Issues,

2nd ed.: Artech House, 1995.

[95] A. Adas, "Traffic models in broadband networks," Communications Magazine,

IEEE, vol. 35, pp. 82-89, Jul 1997.

[96] L. Guan, M. E. Woodward, and I. U. Awan, "Control of queueing delay in a

buffer with time-varying arrival rate," J. Comput. Syst. Sci., vol. 72, pp. 1238-

1248, 2006.

[97] J. D. C. Little, "A Proof of the Queueing Formula L = λ W," Operations

Research, vol. 9, pp. 383-387, 1961.

[98] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 6th ed.: Addison

Wesley Publishing Company, 1999.

	cover_sheet_thesis
	University of Bradford eThesis

	Rasha_Thesis_final_2010

