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Abstract 

Rasha Hamed Abdel Moaty Fares 

Performance modelling and analysis of congestion control mechanisms for 

communication networks with quality of service constraints 

Keywords: Congestion Control – Mean Delay – Quality of Service – Short Range   

Dependent – Long Range Dependent – Communication Networks. 
 

Active Queue Management (AQM) schemes are used for ensuring the Quality of 

Service (QoS) in telecommunication networks. However, they are sensitive to parameter 

settings and have weaknesses in detecting and controlling congestion under dynamically 

changing network situations. Another drawback for the AQM algorithms is that they 

have been applied only on the Markovian models which are considered as Short Range 

Dependent (SRD) traffic models. However, traffic measurements from communication 

networks have shown that network traffic can exhibit self-similar as well as Long Range 

Dependent (LRD) properties. Therefore, it is important to design new algorithms not 

only to control congestion but also to have the ability to predict the onset of congestion 

within a network. 

An aim of this research is to devise some new congestion control methods for 

communication networks that make use of various traffic characteristics, such as LRD, 

which has not previously been employed in congestion control methods currently used 

in the Internet. A queueing model with a number of ON/OFF sources has been used and 

this incorporates a novel congestion prediction algorithm for AQM. The simulation 

results have shown that applying the algorithm can provide better performance than an 

equivalent system without the prediction. Modifying the algorithm by the inclusion of a 

sliding window mechanism has been shown to further improve the performance in 

terms of controlling the total number of packets within the system and improving the 

throughput.  

Also considered is the important problem of maintaining QoS constraints, such as 

mean delay, which is crucially important in providing satisfactory transmission of real-

time services over multi-service networks like the Internet and which were not 

originally designed for this purpose. An algorithm has been developed to provide a 

control strategy that operates on a buffer which incorporates a moveable threshold. The 

algorithm has been developed to control the mean delay by dynamically adjusting the 

threshold, which, in turn, controls the effective arrival rate by randomly dropping 

packets. This work has been carried out using a mixture of computer simulation and 

analytical modelling. The performance of the new methods that have been produced has 

been evaluated against existing methods with encouraging results.  
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CHAPTER 1 
 
Introduction 

 

1.1 Introduction 

With the rapid proliferation of the Internet, there has been an enormous growth in both 

the demand for access from its users and in the demand for new services. The success of 

the Internet is largely dependent on the strength of its protocols. Over the last decade, 

the Transmission Control Protocol (TCP) has been the predominant transport protocol 

used by the Internet Protocol (IP) technology to support various Internet services. TCP 

has consistently met the challenge of new applications but due to the massive growth of 

the Internet, weaknesses in TCP have become increasingly apparent [1]. For instance 

delay, packet losses and decreasing network efficiency are examples of drawbacks that 

can arise when the traffic conditions change. 

Internet traffic congestion occurs when the aggregate demand exceeds the capacity 

of the available resources and hence causes performance degradation. Recently, as 

demands for access have exceeded the ability for providers to upgrade network paths, 

the networks‟ efficiency has deteriorated and congestion has become a persistent 

problem [2]. Congestion results in packets being dropped or lost from the network 
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during transmission. The main reason for dropping these packets is that when 

subsequent packets arrive at each network element, there is not enough buffer space to 

accommodate all the transmitted packets. Using large buffers can absorb more bursty 

traffic but will increase the end-to-end delay as well, which will decrease the overall 

network performance.  

In order to guarantee Quality of Service (QoS) to diverse Internet services, it is 

important to employ effective buffer management schemes at Internet routers. Various 

buffer management mechanisms have been proposed to control Internet traffic 

congestion and satisfy specified QoS requirements. In an attempt to address the growing 

needs of applications, the Internet Engineering Task Force (IETF) has recommended the 

use of Active Queue Management (AQM) schemes for congestion control [3]. The 

IETF also recommended the use of the Random Early Detection (RED) algorithm [4] as 

the default mechanism for managing queue lengths. RED aimed at avoiding congestion 

by predicting when it will occur rather than reacting to it.  

RED has been prone to some configuration problems due to its sensitivity to 

parameter settings [5]. Many significant modifications have been done on RED in order 

to improve its performance such as Adaptive RED (ARED) [6], BLUE [7], Random 

Exponential Marking (REM) [8-9] and Double Slope RED (DSRED) [10]. RED and its 

variants usually operate in conjunction with TCP but they rely on static thresholds 

which can be restrictive when they operate with sources with varying arrival rates. This 

suggests the need for a new adaptive algorithm for AQM that is simple to implement 

and can control congestion when the arrival rate varies with time. 

In order to design a robust and a reliable congestion control algorithm, it is 

important to address the characteristics of some types of modern network traffic such as 

Long Range Dependent (LRD) and self-similar traffic [11-12]. Recent studies have 
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shown that network traffic can exhibit self-similar as well as LRD properties [11, 13-

14]. Traditional models are also known as Short Range Dependent (SRD) traffic 

models, and their use in networks characterized by self-similar processes can lead to 

overestimations about the performance of the analyzed networks [12]. The properties of 

self-similar traffic are very different from the properties of traditional models based on 

Poisson or the Markovian models. The scale-invariant characteristics of the self-similar 

traffic are in strong contrast to traditional network traffic models which show burstiness 

at short time scales but are smooth at large time scales [15]. The scale-invariant 

burstiness implies the existence of some periods of high activity at a wide range of time 

scales which badly affects congestion control. In order to address some of these issues, 

this thesis focuses on investigating two extremely important challenges to today‟s 

Internet: the use of LRD for network congestion prediction and bounding mean delay in 

a buffer with a time-varying arrival rate. 

 

1.2 Motivation 

The ability to predict traffic congestion within a network is one of the fundamental 

requirements of modern network design. Congestion prediction has become a 

fundamental objective of some network management algorithms to guarantee a better 

QoS to users [16]. This is considered a challenging and laborious problem that 

encompasses several components: the transport protocols, the network design, the 

control mechanisms and the traffic‟s nature itself [14]. Therefore, high performance 

predictors are required that are efficient and simple to implement. LRD implies the 

existence of a correlation structure, which may be exploitable for congestion prediction 

purposes. The correlation structure present in LRD traffic can be used to predict the 

future traffic levels [15, 17-18]. The feasibility of predicting the congestion under self-
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similar traffic conditions with sufficient reliability can be effectively utilized for 

congestion control purposes. The predictability structure present in LRD traffic can be 

used for improving network performance based on the feedback algorithm presented in 

this thesis.  

The rapid growth of the Internet and the increased demand to use the Internet for 

time-sensitive applications has necessitated the need for effective congestion control 

algorithms. To support the requirements for real-time applications such as audio and 

video applications, communication networks must provide service guarantees to 

connections, including guarantees on throughput and network delays. For the most 

demanding applications, such as safety critical ones, the network should offer a service 

which provides a bounded delay guarantee. However, for the packet switched 

technology considered, this is not feasible since instantaneous delay is a random 

variable that changes from instant to instant. However, provision of a bounded mean 

delay, although sometimes not considered the best metric to use in isolation, can 

guarantee average bit rates and be invaluable for services that require a prompt delivery.  

This applies whether these services are real-time services or not. In summary therefore, 

this thesis focuses on the extremely important challenges to today‟s Internet and the 

development of new mechanisms to control congestion and mean delay in 

communication networks.  

 

1.3 Aims and Objectives 

Providing QoS guarantees for real-time traffic has become an increasingly important 

and challenging topic in the design of high-speed networks. One aim of this research is 

to develop new algorithms to provide mean delay guarantee for real-time traffic to 

satisfy QoS requirements. This thesis also aims at investigating new mechanisms for 
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controlling congestion and mean delay in communication networks with both SRD and 

LRD traffic. It also aims at developing a new algorithm that makes use of a network 

characterized with LRD and self-similar traffic in order to achieve congestion 

prediction. 

In order to achieve the aims of this research, the objectives of the thesis are set as 

follows: 

 To review the development of the congestion control mechanisms and to learn 

about the different queue management algorithms. 

 To develop a multi-class queueing system based on RED with two classes of 

traffic and to examine the effect of each class on the other in a shared buffer. 

 To identify the difference between SRD and LRD traffic characteristics. 

 To understand the LRD and self-similar traffic characteristics and their use in 

congestion prediction. 

 To develop a new algorithm to maintain average delay constraints through a 

buffer with time-varying arrival rate. 

 To test and validate analytical models by comparing them with corresponding 

simulation models running in a steady state. 

 

1.4 Original Contributions 

The principal contributions of this thesis are: 

 

 The development of a new congestion prediction algorithm based on LRD and 

self-similar characteristics found in modern Internet traffic. It has been shown 

that the mean time spent ON for each node can be used as an indicator of which 

node is causing congestion. Modifying the algorithm by the inclusion of a 
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sliding window mechanism has demonstrated a further improvement in 

performance. 

 

 The use of a dynamic moving threshold in a buffer with time-varying arrival rate 

to maintain the average delay at a constant value when the arrival rate varies 

with time. An equation has been developed that relates the threshold position to 

the target mean delay over each time window. The accuracy of the analytical 

model has been verified using a simulation model. The algorithm has been 

generalized for other arrival processes in order to examine the effects of LRD 

and self-similarity which are the characteristics of some types of modern 

network traffic. 

 

1.5 Thesis Organization 

The rest of the thesis is organized as follows: 

 

Chapter 2 surveys related work on the congestion problem and the different 

mechanisms for controlling congestion. It also presents the concepts of TCP congestion 

control. 

 

Chapter 3 reviews the queue management algorithms. It addresses the significant 

weaknesses in the Passive Queue Management (PQM) algorithms and explains the 

AQM algorithms that have been developed to address the drawbacks of the PQM 

schemes. It also explains in detail the RED algorithm and its variants.  

 

Chapter 4 gives a detailed explanation of the simulation model which has been used as 

a basis for the rest of the simulation models throughout the thesis.  
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Chapter 5 investigates the effects of using a multi-class traffic in a shared buffer. It 

tests the marginal performance as well as the overall performance. 

 

Chapter 6 is concerned with providing a new feedback algorithm for congestion 

prediction. The developed algorithm makes use of a network characterized with LRD 

and self-similar traffic in order to predict the onset of congestion within a network. 

 

Chapter 7 describes a novel mechanism for AQM that provides average delay 

guarantees for real-time applications. It provides an analytical model that incorporates a 

control strategy which uses a dynamic moving threshold. The algorithm has been 

developed to control the mean delay by dynamically adjusting the threshold, which, in 

turn, controls the effective arrival rate by randomly dropping packets. This work has 

been carried out using a mixture of computer simulation and analytical modelling.  

 

Chapter 8 summarizes the contributions of this thesis and suggests the 

recommendations for future work of interest. 
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CHAPTER 2 
 
Internet Traffic Congestion and its 
Control  

 

2.1 Introduction 

Computer networks have experienced an explosive growth over the years. The 

increasing number of wired and wireless networks has caused severe congestion 

problems. Congestion is a problem that occurs on shared networks when multiple users 

compete for access to the same resources. Congestion typically occurs where multiple 

links feed into a single link. It also occurs at routers when nodes are subjected to more 

traffic than they are designed to handle. During congestion periods, congestion persists 

and losses can be significant. Congestion losses cannot be avoided by modest increases 

in buffer capacity, as excessive buffer size can lead to excessive delay and hence 

degradation of the performance.  

Congestion control is about using the network as efficiently as possible so as to 

avoid congestion collapse. Many algorithms have been proposed to control congestion. 

The goal of the congestion control mechanisms is to use the network efficiently and 

attain the highest possible throughput while maintaining a low loss ratio and small delay 
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[2]. Despite the fact that a number of mechanisms have been proposed to control 

congestion, the search for new mechanisms continues [19]. The reasons for this are: 

first, it is difficult to get a satisfactory solution because there are many requirements for 

congestion control schemes. Second, there are several network design policies that 

affect the design of the congestion control mechanisms. Therefore, a mechanism that is 

designed for one network may not work on another network with different architecture.  

 

2.2 Congestion Management 

Technological advances and customer demands are rapidly ushering in high-speed 

networks. This has made congestion management an important issue in recent networks 

in order to provide good service under heavy load. Early congestion notification would 

clearly decrease the effects of congestion such as packet loss. A number of control 

mechanisms for congestion control have been suggested and found to increase the 

performance of the Internet [20]. These studies started in the late 80‟s [21] and some 

form the basis for current implementations. For example, the proposals by Jacobson 

[21] form the basis for the TCP congestion control in current implementations [22]. 

Congestion management has three aspects [23]: congestion prevention, congestion 

avoidance and congestion recovery and these are described in what follows. 

 

2.2.1 Congestion Prevention 

Congestion prevention [23] is the most essential aspect of congestion management. It 

involves designing a network that minimizes the probability that congestion will occur 

[24]. By applying prevention algorithms, the peak demands can be predicted with 

reasonable precision. Congestion prevention should include well-designed routing 
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algorithms and queueing polices to ensure that a user‟s access rate does not exceed its 

subscribed traffic rate and to protect critical classes of traffic.  

 

2.2.2 Congestion Avoidance 

Congestion avoidance [25] involves detecting when congestion is imminent and aims at 

keeping the operation of a network at or near the maximum power. It allows a network 

to operate in the region of low delay and high throughput with minimal queueing, 

thereby preventing it from entering the congestion state [26]. Congestion avoidance is 

action that is taken by the network to prevent congestion, so it is preventive in nature. 

Actions should be taken before performance degradation occurs to reduce the chance of 

congestion. Congestion can be avoided by monitoring traffic patterns and considering 

changing the packet routing tables to route traffic around a heavily loaded network [27].  

There are several alternatives for a source to detect when congestion is imminent [28]: 

 Congestion occurs when the output buffers at a switch are full. Congestion 

avoidance can be initiated when some fraction of the buffers are full. 

 By monitoring output line usage as congestion occurs when usage exceeds a 

threshold. 

 By monitoring round trip delays as an increase in these delays causes an increase 

in queue sizes and congestion. 

 By setting a timer that sets off an alarm when a packet is not acknowledged in 

time. 

 

2.2.3 Congestion Recovery 

Congestion recovery is action taken by the network after performance degradation is 

detected. When congestion occurs, actions are taken to help the network to recover. The 
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goal of congestion recovery is to limit the effects of congestion and to restore the 

operation of the network to its normal state after congestion has occurred [29]. Without 

congestion recovery algorithms, networks may crash entirely when congestion is 

detected. Therefore, congestion recovery schemes would still be required even if a 

network adopts a strategy of congestion avoidance. The reason for this is to retain 

throughput in the case of abrupt changes in the network that may cause congestion.  

 

2.3 Congestion Collapse 

The Internet first experienced the congestion collapse problem in the 1980s [2]. John 

Nagel was one of the earliest researchers who mentioned the term „congestion collapse‟ 

in 1984 [30]. In particular, when IP gateways connect networks of widely different 

bandwidth then the IP gateways are vulnerable to the congestion collapse phenomenon. 

The normal behaviour in heavily loaded pure datagram networks is as follows: as nodes 

become congested, the Round Trip Time (RTT) through the network increases and the 

count of datagrams also increases; this is normal as long as there is only one copy of 

each datagram in transit. This indicates that congestion is under control. If the RTT 

becomes shorter than the sending host‟s measurements of RTT, this can indicate that the 

network is running into serious trouble. This indicates that the network is entering the 

congestion collapse phase [30]. When the RTT exceeds the maximum retransmission 

interval for any host, more and more copies of the same datagram will be introduced 

into the network. This causes all the available buffers to be full and packets to be 

dropped. Congestion collapse happens when the RTT is at its maximum and hosts are 

sending each packet several times [30]. When collapse occurs, a larger fraction of the 

packets in the network will be duplicated and goodput will be reduced. 
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2.4 Congestion Control 

Congestion control in packet switching networks may involve different components of 

the congestion management strategy including congestion avoidance and congestion 

recovery. Such mechanisms have to be provided to avoid congestion collapse. 

Congestion control became a high priority in network design due to ever growing 

network bandwidth and the rapidly expanding Internet applications [29]. Controlling 

congestion is the combined responsibility of network gateways and end point hosts. 

Gateways are responsible for congestion detection, controlling queue size and arrival 

rate control. Sources are responsible for the data transmission rates adjustments to 

enable the gateways to achieve their goals. Congestion control is concerned with 

allocating the network resources such that the network can operate at an acceptable 

performance level under heavy load [19]. Congestion control schemes are recovery 

mechanisms which help the network to recover from the congestion state. These 

schemes protect the network from being flooded by its users and help improve the 

performance after congestion has occurred [31].  

Due to increasing mismatch in link speeds caused by intermixing of old and new 

technology, congestion became a significant problem. Recent technological advances 

have resulted in a significant increase in the bandwidths of computer network links. 

This heterogeneity has resulted in mismatch of arrival rates and service rates in the 

intermediate nodes, causing increasing queueing and congestion. Without proper 

protocol redesign, the congestion problem will not be solved and, thus reduce 

performance. This has led to the following myths about congestion [19]: 

 Congestion is caused by a shortage of buffer space. This problem cannot be 

solved with a large buffer space because with infinite buffers, the queues and 

the delays can get so long that by the time the packets come out of the buffer, 
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most of them have already timed out and have been retransmitted. Large 

buffers are considered more harmful than smaller ones since packets have to be 

dropped after they have consumed precious network resources [32]. 

 Congestion is caused by slow links. This cannot simply be solved with high-

speed links. Introducing high-speed links without proper congestion control 

can lead to reduced performance and increased instability. With high-speed 

links, the arrival rate will be much higher than the service rate, leading to long 

queues, buffer overflows and packet losses. This means that high-speed links 

have to be managed and the protocols have to be designed specifically to 

ensure that this increasing range of link speeds does not degrade the 

performance. 

 Congestion is caused by slow processors. The congestion problem cannot be 

solved by high-speed processors. A high-speed processor may increase the 

mismatch of speeds within a network and hence increase the chances of 

congestion.  

 Congestion can be caused by all of the above. 

The conclusion is that congestion is a dynamic problem and cannot be solved with static 

solutions alone. Without proper protocol implementations, the congestion problem will 

be even worse. The protocols need to be dynamic in order to detect and react to 

congestion. A properly designed congestion control algorithm will ensure that users are 

able to increase their traffic load as long as this does not significantly affect the 

response time. 

The congestion problem can be solved in connection-oriented networks by 

reserving the resources at all routers during connection setup. In connectionless-

networks the congestion problem can be solved by choke packets (explicit messages) 
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from the network to the sources or by timeout on a packet loss [26]. Congestion control 

mechanisms consist of two parts: a feedback mechanism which allows the network to 

inform its users of the current state of the network, and a control mechanism which 

allows the users to adjust their loads on the network. Therefore, congestion control in 

computer networks can be viewed as a control system for maintaining the overall traffic 

within certain normal levels [29]. Current literature classifies most congestion control 

approaches into two categories [2, 29]:  

 Open loop congestion control algorithms 

 Closed loop congestion control algorithms 

The basis for the classification is based on the characteristics of how each algorithm 

extracts information for their control decision. Figure (2.1) represents a classification of 

congestion control algorithms. 

 

 

 

Figure 2.1: Classification of congestion control algorithms 
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2.4.1 Open Loop Congestion Control 

Open loop control systems are systems which have no feedback. Open loop congestion 

control algorithms are algorithms in which the control decisions do not depend on any 

sort of feedback information from the congested point in the network [29]. Applying 

open loop control in computer networks means that these algorithms do not monitor the 

state of the network dynamically. A network that is based on open loop control would 

use resource reservation, that is, a new flow would only be admitted if the admission 

control entity allows it to enter [2]. Open loop schemes have a continuous activation 

feature and an admission handling mechanism but are not robust enough and cannot 

guard the network against all traffic patterns. Open loop congestion control algorithms 

can be classified as source control and destination control. Control algorithms at the 

source tend to control the flow rate at the sources. For example: the Leaky bucket 

algorithm [33] and the stop and go policy [34]. The destination control algorithms tend 

to control traffic either at the destination or the intermediate nodes. For example: the 

selective packet discarding schemes [35]. 

 

2.4.2 Closed Loop Congestion Control 

Closed loop control systems are systems that use feedback. They make their control 

decisions based on feedback information to the sources. The feedback can be either 

global or local [29]. Global feedback means the feedback information goes from 

destination to source whereas local feedback means the feedback information comes 

only from intermediate nodes. These algorithms can dynamically monitor the network 

performance.  The feedback involved in the closed loop algorithms can be either explicit 

or implicit. In explicit feedback algorithms, feedback information is sent in separate 

messages (explicitly). In implicit feedback there is no need to send the feedback 
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explicitly. For example: the TCP slow start scheme [21]. The explicit feedback can be 

classified into two categories: persistent feedback if the feedback is available at all 

times; for example: the adaptive admission congestion control scheme [36] and the 

binary feedback scheme [37], and responsive feedback if the feedback is only available 

under certain conditions. The feedback information is generated in response to the 

traffic conditions in the network for example: the choke packet scheme [31] and the 

dynamic time windows algorithm [38]. 

 

2.5 TCP Congestion Control 

 The problem of congestion control has been the subject of extensive research over the 

past two decades [25]. A variety of congestion control schemes have been proposed 

over the years but have encountered difficulties because of the uncertainties involved in 

modelling the statistical behaviour of many types of traffic sources. Congestion control 

and traffic management in high-speed networks is further complicated by the diverse 

mix of traffic types and service requirements. Over the past years, TCP congestion 

control mechanisms have been used to effectively regulate the rates of individual 

connections sharing network links [2] and have been instrumental in controlling packet 

loss and in preventing congestion collapse across the Internet [5]. 

 TCP is a core protocol for the Internet [2]. It provides reliable data transmission and 

provides a communication service at an intermediate level between an application 

program and IP. TCP is a connection oriented protocol which means that a connection 

should be established between the source and the destination before transmission. TCP 

is the most widely used protocol in the transport layer on the Internet [39]. One of 

TCP‟s primary functions is to match the transmission rate of the sender to that of the 

receiver to ensure good performance. TCP implements a sliding window scheme to 
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perform the flow control. The receiver carries out the flow control by granting the 

sender a certain window length of data. The sender must not send more than the full 

window length without waiting for acknowledgements at any time. TCP achieves 

reliability by sending a segment and waiting for its acknowledgment (ACK). If the 

ACK does not arrive, the segment should be retransmitted. When an ACK arrives, TCP 

can transmit new segments not exceeding the number of bytes acknowledged. In 

practice, the window size is adjusted dynamically according to the available buffer 

space [40].   

 In TCP, congestion is detected by a loss of packet or time out. TCP responds to 

congestion by reducing the transmission rate. TCP congestion control mechanisms 

consist of four algorithms [21, 41-42]: slow start, congestion avoidance, fast retransmit 

and fast recovery. 

 

2.5.1 TCP Slow Start 

The slow start algorithm is used during the initial data transfer phase of a TCP 

connection. The main principle behind the slow start algorithm is to start with a small 

window size and to increase it slowly when acknowledgements arrive. In addition to the 

window already maintained by the sender, slow start adds another window called the 

congestion window (cwnd). Initially, the congestion window is set to one segment then 

after each time an ACK is received; the window is increased by one segment. The 

congestion window is considered as flow control imposed by the sender, while the 

advertised window is considered as flow control imposed by the receiver [42]. The 

congestion window increases exponentially by doubling the congestion window size, 

and thus the transmission rate, every RTT as illustrated in Figure (2.2). The sender can 

transmit up to the minimum of the advertised window and the congestion window. 
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When ACK is received the cwnd increases from one to two then two segments can be 

transmitted. When each of the two segments is acknowledged, the cwnd is increased to 

four and so on. The router will start discarding packets if the capacity of the Internet has 

been reached and the congestion window has become so large. 

 

2.5.2 TCP Congestion Avoidance 

In the slow start algorithm, the exponential growth of the congestion window can 

quickly lead to congestion unless it is checked at some point. TCP implements the 

congestion avoidance algorithm [21] to avoid congestion before it happens. In this 

algorithm, TCP sources keep track of a threshold value which is dynamically adjusted 

through a variable called the slow start threshold (ssthresh). The algorithm forces a 

linear increase of the congestion window after it reaches the ssthresh value as illustrated 

in Figure (2.2). When the window size exceeds the ssthresh value, TCP enters the 

congestion avoidance phase [43]. In this phase the congestion window increases by 

1/cwnd each time an ACK is received. This means that the congestion window is 

effectively increased by one segment per RTT; hence the congestion window grows 

linearly rather than exponentially [43]. TCP detects a packet loss through the receipt of 

duplicate acknowledgement from the receiver or a time out occurring [42]. Each time a 

time out occurs, TCP assumes that a packet loss has occurred and immediately cuts its 

transmission rate in half by setting the ssthresh value to half the current congestion 

window. Then TCP must invoke slow start to get things going again by setting the 

congestion window to one segment [40-41]. After retransmitting the dropped packet, the 

TCP sender uses the slow start algorithm to increase the window from 1 to the new 

value of ssthresh, at this point congestion avoidance again takes over [41]. 
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Figure 2.2: TCP congestion avoidance [40] 
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delayed segments. Then a new ACK will be generated. If three or more duplicate ACKs 

are received in a row, this indicates that a segment has been lost. Then TCP retransmits 

the missing segment without waiting for a retransmission timer to expire. This process 

is called the fast retransmit algorithm [42].  
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2.5.4 TCP Fast Recovery  

The fast retransmit algorithm should be used by the TCP sender to detect and repair 

losses, based on incoming duplicate ACKs. After the fast retransmit algorithm sends the 

missing segment, the fast recovery algorithm should be applied to govern the 

transmission of new data until a non duplicate ACK arrives. The fast recovery algorithm 

is an improvement that allows high throughput under moderate congestion especially 

with large windows [42]. The reason for not applying slow start after the receipt of 

duplicate ACKs is that TCP does not want to reduce the flow abruptly by going into 

slow start [42]. Usually the fast recovery algorithm is implemented after the fast 

retransmit algorithm as follows [41-42]: 

 After the third duplicate ACK in a row is received, set ssthresh to half the 

current cwnd. Retransmit the missing segment. Set cwnd to ssthresh plus three 

times the segment size.  

 Increment cwnd by the segment size each time another duplicate ACK is 

received. Transmit a segment if allowed by the new value of cwnd.  

 Set cwnd to ssthresh as in the first step when new data is received and 

acknowledged. This ACK should acknowledge all the intermediate segments 

sent between the lost segment and the receipt of the first duplicate 

acknowledgement. TCP reduces the rate to half the rate it was when the packet 

was lost, in this step TCP is in congestion avoidance.  

 

2.6 Other Protocols  

Although TCP and its variants are by far the most common protocols currently used in 

the transport layer of the Internet, there are other transport protocols, such as User 

Datagram Protocol (UDP) [44], that do not involve retransmission. These are used 
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mainly for real-time applications in which prompt delivery is much more important than 

accurate delivery. UDP can involve a lot of packet loss and these packets are not 

recovered so UDP can only be useful for services where lost packets can be tolerated. 

Because retransmission is eliminated at the transport layer, network resources are more 

efficiently used at the expense of increased datagram loss and so it would be expected 

that such protocols would give rise to lower levels of congestion than transport 

protocols such as TCP.  

Similarly, protocols in the link layer, such as the High-level Data Link Control 

(HDLC) protocol [45-46], can also have a significant effect on congestion levels in that 

these protocols usually involve some form of retransmission, but this time on a link-by-

link basis rather than an end-to-end basis. The primary purpose of such protocols is to 

make the links appear to higher layers to be free from transmission errors and so error 

detection and retransmission is usually involved. This can significantly increase end-to-

end delay, particularly in the case of noisy links, and so may cause datagrams to time 

out at the link layer when TCP is used. This, in turn, involves end-to-end retransmission 

and so a subsequent increase in congestion. 

 

2.7 Summary  

Congestion is a complex phenomenon which occurs when the number of transmitted 

packets through a network approaches or exceeds the network capacity. When 

congestion occurs, the transmission delay for individual packets increases and packets 

are discarded. Many algorithms have been proposed to control congestion in order to 

avoid the congestion collapse problem. Congestion control algorithms are used to 

maintain the number of packets within the network below the level at which 

performance falls off dramatically.  
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 In order to effectively regulate the rates of individual connections sharing network 

links, the TCP congestion control algorithms have been implemented. TCP congestion 

control mechanisms consist of four algorithms: slow start, congestion avoidance, fast 

retransmit and fast recovery. In TCP, congestion is detected by a loss of packet or time 

out. TCP responds to congestion by reducing the transmission rate. One problem with 

the TCP congestion control algorithms is that TCP sources reduce their transmission 

rates only after queue overflow. This is a problem since considerable time may pass 

between the packet drop and its detection. AQM algorithms have been proposed to 

prevent losses due to buffer overflow. The goal of AQM algorithms is to detect 

congestion early and convey congestion notification before queue overflow and packet 

loss occurs. The next chapter will give an overview about the queue management 

algorithms and will investigate the different AQM algorithms in details.  
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CHAPTER 3 
 
Queue Management Algorithms 

 

3.1 Introduction 

The Internet has grown from a small data transfer oriented network with little 

congestion to a large multiservice network. Various types of real and non-real time 

traffic are transmitted over the Internet. With the growth of the Internet, it has become 

necessary to deploy queue management algorithms to improve QoS. Queue 

Management algorithms are the algorithms that manage the queue length by dropping or 

marking packets when necessary in order to notify sources of congestion [3]. The aim of 

this chapter is to survey some queue management algorithms in terms of their structure 

and classification. 

 

3.2 Queue Management 

Queue management algorithms play an important role in fair bandwidth allocation [47]. 

Queue management algorithms can be classified into two categories: Passive Queue 

Management (PQM) and Active Queue Management (AQM) [40]. The first category 

does not recognize congestion till the buffer is full and then starts dropping packets; an 
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example of this is Drop Tail [48]. The second category drops packets probabilistically 

before the buffer gets full and hence makes early congestion notification, such as the 

RED algorithm [4].  

 

3.3 Passive Queue Management 

PQM is a traditional and simple method of controlling a buffer. PQM algorithms do not 

employ any preventive packet drop before the buffer gets full. All arriving packets are 

dropped with a probability of one if the buffer level has been reached. Drop Tail, Drop 

Front and Random Drop are some examples of algorithms that fall under the PQM 

category. These algorithms do not send early congestion notification to sources to 

decrease their traffic rate which means that they have only two states either 100% 

packet drop or no packet drop. 

 

3.3.1 Drop Tail 

Drop Tail (also known as Tail Drop) is the traditional technique for managing router 

queue lengths. It is the most commonly used algorithm by Internet routers because of its 

robustness and simple implementation [3, 49]. It tends to penalize bursty connections by 

discarding arriving packets when the gateway‟s buffer space is exhausted. The 

algorithm works by setting a maximum queue length, once the number of packets in the 

queue has reached its limit, it then drops all the subsequent arriving packets. The 

process of dropping packets continues until there is a packet transmitted from the queue 

and congestion is eliminated. Unfortunately, such a method often causes high packet 

delays and bursty packet drop. There are two main drawbacks for the Drop Tail 

algorithm; „Lock-Out‟ and „Full Queues‟ [3].  
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 Lock-Out: In some situations Drop Tail allows a single connection or a few 

connections to monopolize the queue space of the router. This prevents other 

connections from getting in the router queue. This results in a fairness problem 

due to the unfair sharing of network resources among the connections. 

 Full Queues: Because Drop Tail drops packets only when the queue is full, it 

results in the router buffer being full for a long period of time. This results in 

long queueing delay.  

Drop Tail with full queues over a long period of time causes global 

synchronization. With global synchronization all sources will lower their sending rate 

until congestion is eliminated. As a result, this period of low link utilization will cause a 

reduction in the overall throughput. The only way to achieve better performance with 

Drop Tail is to detect congestion early in such a way as to avoid the full buffer problems 

and to be able to absorb data bursts. 

 

3.3.2 Drop Front 

Drop Front is similar to Drop Tail in dropping packets when the buffer is full. In Drop 

Front, when a packet arrives at a full buffer, the packet at the front of the queue should 

be discarded [50]. This enables the newly arriving packets to be accommodated at the 

end of the queue while the packet that has been buffered at the front of the queue is 

dropped.  This algorithm compared with Drop Tail, causes duplicate acknowledgements 

to be sent one whole buffer drain time earlier than in the Drop Tail case. Therefore, 

Drop Front can be considered as an early congestion notification algorithm which 

prevents the over reaction by the sources and hence decreases or prevents global 

synchronization. This could increase the throughput which can be considered as an 

advantage over the Drop Tail algorithm.  
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Drop Front has more advantages over Drop Tail, such as avoiding unnecessary 

packet loss, solving the lock-out problem, and fairness because it partially counteracts 

TCP‟s bias against connections with larger round trip times [3]. The disadvantages of 

this algorithm are that the buffer is full most of the time which causes high delay, and in 

the case of unresponsive or fast flows there will be a very high loss rate. 

 

3.3.3 Random Drop 

Random Drop is an alternative queue discipline to Drop Tail. It was proposed to provide 

both congestion control and avoidance to network gateways. With Random Drop, a 

router drops a packet which is randomly selected from the queue when the queue is full 

and there is an arriving packet to the queue. Random Drop relies on the hypothesis that 

a packet randomly selected from the queue belongs to a particular connection with a 

probability matching that connection‟s average transmission rate [51]. Dropping a 

randomly selected packet from the buffer results in users generating much traffic having 

a greater number of packets dropped compared with those generating less traffic. 

Dropping a packet randomly from the queue, results in a drop distribution proportional 

to the bandwidth distribution among all TCP connections [52].  

There are some drawbacks for the Random Drop algorithm such as, wasting the 

processing time because it drops the packets which have been queued for a period of 

time. Also the increased complexity of the algorithm compared with Drop Tail and 

Drop Front, which is caused by moving the packets forward in place of the dropped 

packets. The major drawback is that the algorithm does not result in fairness, which was 

the primary goal that the Random Drop algorithm attempted to achieve [52-53]. Also 

Random Drop does not improve the congestion recovery behaviour of the gateways in 
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that its behaviour is worse in a topology with single gateway bottlenecks than in those 

with multiple bottlenecks [51].  

 

3.3.4 Drawbacks of Passive Queue Management  

PQM algorithms do not send an early congestion warning to senders to decrease their 

sending rate with a view to relieving network congestion. They drop the packets after 

the buffer is full which increases the queueing delay and causes global synchronization. 

A common drawback between all the PQM algorithms is the unfairness of the 

connections sharing the buffer. PQM reacts only when the buffer is full which causes a 

high loss rate as the buffer is full most of the time. These problems however, have been 

observed when they are used to control congestion in buffers that carry traffic that is 

controlled by TCP congestion control algorithms [3].  

Because of the inherent problems of PQM, the IETF recommended AQM for 

Internet routers to improve the performance and to avoid the problems related to the 

PQM algorithms [3]. Detecting congestion early is better as it can avoid performance 

degradation.   

 

3.4 Active Queue Management 

AQM provides preventive measures to manage a buffer to eliminate the problems 

associated with PQM [40]. AQM employs preventive packet drop before the buffer gets 

full to achieve high link utilization, low queuing delay and fair bandwidth allocation for 

the competing connections. AQM mechanisms attempt to avoid congestion and regulate 

the average queue length around a certain level by sending congestion notification such 

as marking or dropping packets to the sources to decrease their sending rate. They are 

designed to detect incipient congestion and start dropping or marking the arriving 



Chapter 3: Queue Management Algorithms 

 

28 

 

packets to avoid future congestion. Preventive packet drop provides implicit feedback to 

notify senders of the onset of congestion. The feedback is used by the senders to reduce 

their rate to relieve the level of congestion. 

The gateway implements AQM to drop packets early and prevent the subsequent 

increase of dropping in routers to improve throughput. With TCP the sending rate 

increases when there is no congestion notification. With AQM dropping a packet early 

helps to save a large number of packets being dropped. The probability of preventive 

packet drop increases with increasing levels of congestion. Arriving packets are dropped 

randomly, which prevents all sources from backing off simultaneously and eliminates 

global synchronization.  It also avoids the lock-out behaviour by sharing the bandwidth 

fairly among the competing flows. 

Many AQM algorithms have been proposed in the literature; for example, ERD 

[52], RED [4] and ARED [6] are examples of well known AQM algorithms. The recent 

developments in this area have shown that the dynamic parameter configuration of 

existing algorithms can lead to better performance [52]. 

 

3.4.1 Early Random Drop (ERD) 

ERD is an AQM that uses one threshold to detect congestion and drop the arriving 

packets if they exceed the threshold. The algorithm uses the instantaneous queue length 

which is represented by the actual number of packets in the queue. When the number in 

the queue reaches the buffer size, every new arriving packet is dropped. The mechanism 

benefits from earlier congestion notification and has shown a lower degree of global 

synchronization when compared with Drop Tail [52]. It is also capable of controlling 

aggressive users more than Drop Tail but the degree of controlling aggressive users was 

not satisfactory [52-53]. The fixed drop probability does not work well with dynamic 
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traffic and it uses the actual queue size to detect the congestion, which is not suitable to 

detect congestion at a router for different traffics [53]. The authors in [52]  stressed that 

in future implementations the drop probability and the drop level should be adjusted 

dynamically, depending on network traffic and that ERD gateways deserve further 

investigation. 

 

3.4.2 Random Early Detection (RED) 

In the current Internet, the TCP detects congestion only after a packet has been dropped 

at the gateway. Therefore, with increasingly high speed networks, it is increasingly 

important to have mechanisms that detect the onset of congestion while keeping 

throughput high but average queue sizes low. The RED gateway [4] is an AQM 

algorithm for routers which has been designed for networks where a single marked or 

dropped packet is sufficient to signal the presence of congestion to the transport layer 

protocol. 

RED is a proactive approach to control congestion, which has been proposed to be 

used in the implementation of AQM to control and manage congestion in networks. 

RED is a congestion avoidance algorithm and, as its name implies, works on congestion 

at an early stage i.e. before it occurs. It tries to prevent congestion, rather than just 

reacting to it, by dropping packets before the gateway‟s buffers are completely 

exhausted. 

RED interacts with TCP, as TCP defines how the source rates are adjusted while 

AQM defines how the congestion measure is updated. Depending on the transport 

protocol, RED can mark a packet by dropping it at the gateway or by setting a bit in the 

packet header. In contrast to the Drop Tail algorithm which drops packets only when the 

buffer is full, RED drops or marks the arriving packets probabilistically. The probability 
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function is a piecewise linear and increasing function of the congestion measure. This 

probability increases with the average queue length and the number of packets accepted 

since the last time a packet was dropped. RED‟s goal is to drop packets from each flow 

in proportion to the amount of bandwidth the flow uses on the output link. It does this 

by dropping each arriving packet with equal probability. Therefore, the misbehaving 

connections with the largest input rate will have the biggest drop percentage among 

total dropped packets [4].  

The performance benefits of RED are: 

 Reduces the number of packets dropped in routers. 

 By maintaining the average queue size at a low level, it succeeds in reducing the 

delay. 

 RED prevents global synchronization by having a random marking probability. 

 Prevents lock-out behaviour by ensuring that for each packet arrival there is 

always a buffer available.  

 Decreases the end-to-end delay for both responsive TCP and non-responsive 

real-time traffic UDP. 

 Prevents a large number of consecutive packet losses even with bursty traffic. 

Because RED has provided the above substantial performance benefits, the IETF has 

recommended the use of RED in Internet routers [3, 54]. 

The RED algorithm involves four parameters to regulate its performance. These 

parameters are: minimum threshold (minth), maximum threshold (maxth), maximum 

dropping probability (maxp) and average queue length (avg). RED uses an Exponential 

Weighted Moving Average (EWMA) queue length as an indicator of congestion. 

Calculating the avg is done by using a low-pass filter with exponentially weighted 

moving average. Figure (3.1) shows the drop/mark probability versus the buffer size for 
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the RED gateway algorithm. Packets are dropped when the average queue length falls 

between the two thresholds with linear probability. Packets are dropped with probability 

equals to one if the average queue length is greater than the maximum threshold. Figure 

(3.2) shows the flowchart for the RED mechanism. The RED algorithm can be 

summarized in Table (3.1) while Table (3.2) shows the detailed algorithm for a RED 

gateway. 

 

Table 3.1: Summarized RED Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Drop/mark probability of RED 

  

if avg <minth 

No packets are dropped 

if   minth ≤ avg < maxth 

Mark/drop the arriving packet with probability pa 

else if maxth < avg 

Mark/drop the incoming packet 

 

minth maxth 

1 

maxp 
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The main disadvantages of RED are: 

 A lack of significant performance improvement for pure web traffic [55] and 

mixtures of UDP, File Transfer Protocol (FTP) and Hypertext Transfer Protocol 

(HTTP) traffic [56]. 

 The tradeoffs between stability and responsiveness of the system [57]. 

 The difficulties in tuning RED parameters [6, 55, 57]. 

 Bandwidth unfairness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Flowchart of the RED algorithm 
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Table 3.2: Pseudocode for the RED Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization: 

        avg = 0 

        count = -1 

For each packet arrival 

   Calculate the new avg: 

            if   the queue is nonempty 

                  avg = (1 − wq) avg + wq q 

            else 

                  m = f (time – q_time) 

                 avg = (1 − wq)
m
 avg 

    if   minth ≤ avg < maxth 

          Increment count 

          Calculate probability pa: 

                   pb =  maxp (avg − minth) / ( maxth − minth) 

                   pa =  pb  / (1 − count.pb) 

         with probability pa: 

                  mark the arriving packet 

                  count= 0 

    else if maxth < avg 

                  mark the arriving packet 

                  count= 0 

           else count= -1 

when queue becomes empty  

            q_time = time 

 

Saved Variables: 

avg: average queue length 

q_time: start of the queue idle time 

count: packets since last marked packet 

 

Fixed parameters: 

wq: queue weight 

minth: minimum threshold for queue 

maxth: maximum threshold for queue 

maxp: maximum value for pb 

 

Other: 

pa: current packet marking probability 

q: current queue size 

time: current time 

f (t): a linear function of the time t 
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3.4.3 Adaptive RED (ARED) 

Although RED can improve TCP performance under certain parameter settings and 

network conditions, the RED algorithm is still susceptible to several problems such as 

high delay/jitter and parameter settings [5]. It has been found that one of RED‟s 

weaknesses is that the average queue length varies with the level of congestion and 

parameter settings. Achieving predictable average delays with RED requires constant 

tuning of RED‟s parameters to adjust to traffic conditions [6, 86]. Also, RED does not 

perform well when the average queue size becomes larger than maxth, resulting in 

significantly decreased throughput and increased dropping rates [6]. Again avoiding this 

regime would require constant tuning of the RED parameters. Several proposals for 

AQM schemes have been proposed to avoid these problems.  

The original Adaptive RED proposal by Feng et al [5] retains RED‟s basic structure 

and adjusts the maximum dropping probability maxp to keep the average queue size 

between the two thresholds minth and maxth. The pseudocode for the original Adaptive 

RED proposal by Feng et al is presented in Table (3.3). 

 

Table 3.3: Pseudocode for the original Adaptive RED by Feng et al  
 

 

 

 

 

 

 

 

 

  

Every (avg) update: 
 

if (minth < avg < maxth) 

status =Between 

 

if ((avg < minth) && (status ≠Below)) 

status =Below 

maxp = maxp / α 

 

if ((avg > maxth) && (status ≠Above)) 

status=Above 

maxp = maxp . β 
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To overcome the limitations of the basic RED algorithm, the Adaptive RED 

(ARED) algorithm has been proposed by Floyd et al [6]. The new version of ARED 

which has been proposed by Floyd achieves the target average queue length, without 

sacrificing RED‟s other benefits. Thus, ARED reduces both the packet loss rate and the 

variance in queueing delay. It appears to solve the problem of setting RED parameters. 

The ARED algorithm is designed to set the wq automatically based on the link 

speed and adapting maxp in response to measured queue lengths. The reason for 

adapting maxp is to keep the average queue size between minth and maxth and to keep the 

average queue size within a target range. maxp has been adapted using an Additive 

Increase Multiplicative Decrease (AIMD) policy. To avoid the performance degradation 

of the ARED algorithm, the maxp should be restricted within the range [0.01, 0.5]. The 

ARED algorithm has been given in detail in Table (3.4). 

 

Table 3.4: Pseudocode for the ARED algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

For every interval seconds: 
 

if (avg > target and maxp  ≤ 0.5) 

    increase maxp : 

    maxp = maxp +α 

 

else if (avg < target and maxp  ≥ 0.01) 

     decrease maxp : 

     maxp = maxp  β 

 

Variables: 

avg: average queue length 

Fixed parameters: 

interval: time; 0.5 seconds 

target: target for avg [minth + 0.4 (maxth - minth), minth + 0.6 (maxth - minth)] 

α: increment; min (0.01, maxp /4) 

β: decrease factor; 0.9 
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3.5 RED Variants with Aggregate Control 

There are different variants of RED aimed at improving its performance and removing 

its sensitivity to parameter settings. These variants aimed at obtaining high throughput 

while having low delay. Classifying the RED variants can be done based on the key 

aspects of each algorithm. The first category called aggregate control, deals with 

modifying the calculation of the control variable and/or dropping function. The second 

category called per-flow control is concerned with configuring and setting RED‟s 

parameters.  

RED uses aggregate control to determine the packet dropping probability. 

However, RED suffers from large queueing delay variance (jitter) because of the 

oscillation of queue level. It also suffers from low throughput when poorly setting 

parameters. In RED variants with aggregate control, all connections have the same 

dropping probability (i.e., the dropping probability is non-discriminative to connections) 

[40]. These variants address some of the limitations of the basic RED algorithm. 

 

3.5.1 Stabilized RED (SRED) 

The SRED algorithm [58] has been proposed to make the performance of the RED 

mechanism stable. SRED pre-emptively drop packets with a load dependent probability 

when the buffer is congested. SRED drops packets depending on the number of active 

flows and the instantaneous queue length instead of calculating the average queue 

length. SRED helps in stabilizing the buffer fill level, by estimating the number of 

active connections or flows. The final packet dropping probability in SRED is given by 

Equation (3.1). 
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The dropping probability P(q) is given by Equation (3.2) as follows: 

     

 
  
 

  
 
                           

 
   
        

  
 

 
                         

  
      

 

 

                                      
 

 
  

                                                                            (3.2)     

maxp is the maximum dropping probability, B is the buffer capacity and q is the 

instantaneous queue length.  

SRED overcomes the scalability problems associated with some AQM algorithms 

[59] because it does not collect or analyze state information on individual flows. The 

simulation results of the SRED algorithm show that the normalized throughput is very 

low even with a few traffic flows.  

 

3.5.2 Random Exponential Marking (REM) 

Flow control algorithms are distributed algorithms to share network resources among 

competing sources. They often consist of two sub-algorithms: a link algorithm executed 

inside the network at routers, and a source algorithm executed at edge routers or host 

computers. The REM algorithm [8] consists of a link algorithm that probabilistically 

marks packets inside the network, and a source algorithm that adapts source rate to 

observed marking. The end-to-end marking probability is exponential, which allows a 

source to estimate its path congestion measure and adjusts its rate. The REM algorithm 

does not require per flow information. Table (3.5) shows the link algorithm of REM.  
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The REM algorithm has been proposed to achieve both high utilization and 

negligible loss and delay. Its key idea is to use a variable called „price‟ as a congestion 

measure. The price variable is used to determine the marking probability. It is updated 

periodically based on rate mismatch and queue mismatch. Rate mismatch represents the 

difference between input rate and link capacity, while queue mismatch represents the 

difference between queue length and target. The price variable increases if the weighted 

sum of these mismatches is positive and decreases otherwise. The weighted sum is 

positive when the input rate exceeds the link capacity or when there is excess build-up 

to be cleared and negative otherwise. 

The most important difference between RED and REM is that REM decouples 

congestion measure from performance measure such as queue length, delay or loss. 

Another difference between RED and REM is that RED has a linear marking 

probability while REM has an exponential marking probability, as illustrated in Figure 

(3.3). Despite this, REM can help stabilize the gateway queue and reduce packet loss 

but it has two main drawbacks. The first is configuring its parameters to ensure the 

desired performance. The second issue concerns hardware implementation; if REM is 

going to be implemented in hardware then only a few values of   are easily 

implemented, where   is a base value used in the marking probability computation [40].  
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Table 3.5: Pseudocode for the REM algorithm 
 

                   

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                          

                                        

Periodically 

Update aggregate input rate: 

 

Update marking probability ml: 

 

 

                                  
 

End periodically 

 

   while buffer ≠0 

 

               Mark packet with probability ml 

 

   End while 

 

Saved variables: 

  : aggregate input rate estimate 

  : link price 

  : current marking probability 

Fixed parameters: 

 : weight in aggregate input rate estimation 

 : stepsize in price adjustment 

  : weight of puffer in price adjustment 

 : base in marking probability computation 

Temporary variables: 

       : current aggregate input rate 

      : current buffer occupancy 

        : current link capacity 
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Figure 3.3: REM marking probability 

 

3.5.3 Double Slope RED (DSRED) 

Many AQM algorithms have been proposed to improve RED performance. These 

algorithms have attempted to modify RED parameters but have resulted in limited 

improvement in throughput. Zheng and Atiquzzaman proposed the DSRED algorithm 

[10] in order to improve the throughput and delay characteristics of RED. The idea of 

the DSRED algorithm is to divide the gateway buffer segment between the minimum 

threshold (Kl) and the maximum threshold (Kh) into two sub-segments as shown in 

Figure (3.4). Each segment uses a linear drop function with different slopes   and   

respectively. The slopes are complementary and are adjusted by the mode selector . 

The algorithm for DSRED is shown in Table (3.6). The dropping function Pd of 

DSRED is given by Equation (3.3) and is presented in Figure (3.5). 
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 ,   and avg  are given by: 

lh KK 
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                       (3.4)
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                         (3.5) 

qwavgwavg qq  )1(                        (3.6) 

where avg  is the average queue length, q  is the instantaneous queue length, qw  is the 

queue weight and N is the buffer capacity. 

 

 

 

 

 

 

 

Figure 3.4: Model for DSRED buffer 

                   

 

 

 

 

 

 

 

Figure 3.5: Dropping function for DSRED  
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Table 3.6: Pseudocode for the DSRED algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Compared with RED, DSRED results in higher throughput and lower queueing 

delay because it adapts the level of congestion by changing the slope of the dropping 

function. DSRED is similar to RED in using the average queue length as the control 

variable; therefore, it inherits the advantages of RED. 

 

3.5.4 BLUE 

BLUE [7] is an AQM algorithm which uses packet loss and link utilization to measure 

network congestion and uses a marking or dropping probability pm. If there is buffer 

overflow, BLUE increments pm. If the queue becomes empty or if the link is idle, BLUE 

decreases pm. This allows BLUE to learn the correct rate it needs to send back 

congestion notification. BLUE uses two other parameters which controls pm over time. 

The first is freez_time which determines the minimum time interval between two 

successive updates of pm. The other parameters used are d1 and d2. They determine the 

For each packet arrival: 

Calculate the average queue length ( avg ) 

if ( avg  < Kl) 

      No drop 

else if (Kl ≤ avg   < Km) 

       Calculate dropping probability based on slope   

       Drop packet 

  

else if (Km ≤ avg   < Kh) 

       Calculate dropping probability based on slope   

       Drop packet 

 else  

        Drop packet 
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amount by which pm is incremented when the buffer overflows or is decremented when 

the link is idle. The BLUE algorithm is shown in Table (3.7). Simulation and test results 

have shown that BLUE keeps the gateway queue stable and reduces the packet loss rate 

[7].  

 

Table 3.7: Pseudocode for the BLUE algorithm 
 

 

 

 

 

       

 

 

 

3.6 RED Variants with Per-Flow Control 

The RED variants with per-flow control are concerned with configuring and setting 

RED‟s parameters. With per-flow algorithms, each connection has its own drop 

probability and the thresholds can be set according to the traffic type [40]. 

 

3.6.1 Flow Random Early Drop (FRED) 

FRED [59] was proposed to solve the fairness problem among TCP connections. FRED 

provides selective dropping based on per-active-flow buffer accounting. In FRED, the 

loss rate is calculated by using the average queue length for each flow. FRED maintains 

its state only for flows for which it has packets buffered and not for all flows that 

traverse the Internet gateway. The FRED algorithm differs from the RED algorithm in 

Upon packet loss or buffer overflow: 

if ( ( now - last_update) > freeze_time ) then       

       pm= pm + d1 

       last_update = now 

Upon link idle: 

if ( ( now – last_update) > freeze_time ) then 

       pm= pm – d2 

       last_update = now 
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doing the averaging at both packet arrivals and departures. FRED uses a linear dropping 

function which is similar to RED. So FRED can be considered as a modification to 

RED that improves fairness when different traffic types share a gateway. FRED 

provides better protection for bursty and low speed flows and is more effective in 

isolating unresponsive flows. 

 

3.6.2 Class Based Threshold RED (CBT-RED) 

Shared memory buffers provide efficient usage of memory and improve packet loss 

performance at the time of congestion but they have some technical challenges, such as 

speed, access and memory management [60]. CBT-RED has been proposed in [61] to 

solve the fairness problem when TCP traffic competes with UDP traffic. UDP sources 

do not respond to packets dropped by RED because UDP traffic does not employ any 

congestion avoidance scheme. As a result, UDP sources are getting more bandwidth 

than TCP sources. This results in unfairness between UDP and TCP traffic. CBT-RED 

solves the fairness problem between TCP and UDP traffic by setting the queue 

thresholds according to the traffic type and its priority. The algorithm sets a dropping 

threshold for the UDP traffic which is different from TCP‟s dropping threshold. This 

results in the TCP traffic being protected from the UDP traffic. 

 

3.6.3 Balanced RED (BRED) 

BRED [62] considered the problem of fair bandwidth sharing between adaptive flows 

(TCP) and non-adaptive flows (UDP) at Internet gateways. The BRED algorithm drops 

packets preventively in an attempt to penalize the non-adaptive traffic that takes more 

than its fair share of bandwidth. BRED regulates the bandwidth of a flow by doing per-

flow accounting for the buffer active flows. The dropping decision is based on the 
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buffer occupancy of the flow. BRED maintains a variable qlen which is a measure of 

the number of packets from flow (i) in the buffer. The buffer is divided into four 

segments, each having a different drop probability. The decision of dropping or 

accepting an arriving packet is based on the number of packets from that flow that 

already exist in the buffer. If the different flows have different packets sizes, the 

algorithm will be working in the byte mode and not in the packet mode.  

Compared with other gateway algorithms, the performance of the algorithm 

achieves a more balanced allocation among different flows. BRED is very effective in 

ensuring fair bandwidth division among the adaptive and non-adaptive flows. The 

algorithm maintains minimum flow state information and is scalable. Although the 

algorithm can minimize the differences in the bandwidth obtained by each flow, it needs 

to maintain the flow states, which means that its implementation complexity is 

proportional to the router buffer size.  

 

3.7 Summary 

Queue management algorithms are the mechanisms that keep the network away from 

congestion collapse, a situation that makes the network completely non functional.  The 

performance of TCP-based applications critically depends on the choice of queue 

management in the network. Queue management algorithms are divided into two 

categories: PQM and AQM. PQM algorithms work only after buffer overflow and do 

not employ any preventive packet drop before the buffer gets full; for example, Drop 

Tail, Drop Front and Random Drop. The second category is AQM; for example, RED 

and ARED. These mechanisms employ preventive packet drop before the router buffer 

overflows. These mechanisms avoid the problems associated with the PQM algorithms. 

They eliminate global synchronization and improve QoS of networks. RED is found to 
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improve the performance of TCP/IP, and is therefore recommended by the IETF to be 

used in Internet routers. Studies have shown that RED has several drawbacks such as: 

low throughput, large delay/jitter, sensitivity to parameter settings and unfairness to 

connections. As a result, to improve the performance of RED, a number of variants to 

the original RED algorithm have been proposed such as SRED, REM, BRED, FRED 

and BLUE. The RED variants have improved the performance of RED. However, 

although these variants all have their own advantages, they also all have their own 

shortcomings. 
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CHAPTER 4 
 
Simulation Validation 

 

4.1 Introduction 

Due to a network‟s complexity, simulation plays a vital role in characterizing the 

behaviour of any networking system [63]. Simulation is one of the most widely used 

techniques in Internet traffic research. With simulation it is easy to test and analyze the 

performance of the network. If the proposed network is not available for measurement, 

simulation can be considered as a convenient way to predict the performance and 

provide more details than an analytical model.  

This chapter gives a detailed explanation of the simulation model which has been 

used as a basis for the rest of the simulation models throughout the thesis. The 

simulation used in this study is a purpose built Discrete Event Simulation (DES) 

implemented using Java programming [64]. Despite the large number of simulation 

packages available such as ns-2 [65] or Omnet++ [66], a purpose built DES has been 

used for its flexibility and simplicity in programming. 

Most of the simulation models implemented in the thesis have been implemented as 

a modification to the RED algorithm. This is why the simulator used in this research has 
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been tested and validated based on the simulation of the well known RED algorithm [4]. 

The validation has been carried out by comparison of results produced by the simulator 

in controlling the Mean Queue Length (MQL) with those reported in [4] using the same 

configuration and parameters for the RED mechanism as specified in [4]. 

 

4.2 Simulation Model Components 

Networks used in practice are very complex and often cannot be accurately modelled 

for exact or approximate mathematical analysis. Simulation can be considered as an 

efficient way to analyse complex systems. The type of the simulator used is very vital to 

accurately construct the simulation model. In the simulation model, the full range of 

parameters and methods that are used in order to build the networking model are 

implied. In this study, the simulator is built using the DES [67-68] method. In DES, It is 

important to store the states of the system in a set of system state variables. An event list 

should be created to store the changes which happen to the state variables.  

All DES models share a number of common components [69]. These components 

are initialisation routine, timing routine and event routine. The simulation begins by 

setting the simulation clock to zero and initialising all the state variables in the 

initialisation routine. The information about the next event type (either arrival or 

departure) can be obtained from the timing routine. The clock should be advanced at the 

end of the timing routine. The event routine updates the system state when a particular 

type of event occurs and generates future events to be added to the event list. The 

desired measures of performance should be produced in a report when the simulation 

ends. 
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4.3 Simulation Validation 

Model validation has been carried out by running the model under the same input 

conditions for a well known model then comparing the results in order to test the 

accuracy of the proposed model. The simulation of the RED algorithm is used as the 

core model for other simulation programs in the thesis. Figure (4.2) represents the 

simulation of the RED algorithm with the recommended values as in [4]. The RED 

gateway parameters are represented in Table (4.1).  

 

Table 4.1: RED configuration parameters 

Parameter Value 

wq 0.002 

maxp 0.02 

minth 5 

maxth 15 

queue size 30 

λ 6 

µ 5 

 

The main objective for the RED algorithm is to control the MQL between the two 

thresholds as represented in Figure (4.1). By comparing Figure (4.2) with Figure (4.1) it 

is noticeable that the results obtained from the simulation model show the same 

behaviour as the actual RED results and the MQL is fluctuating between the minimum 

threshold value and the maximum threshold value. This is an indication that the 

simulator is working successfully and controlling the MQL between the two thresholds. 
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Figure 4.1: Average queue size profile of RED [4] 

 

 

 

 
 

Figure 4.2: Simulation of the RED algorithm  
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In order to validate the consistency of the algorithm, the results obtained have been 

plotted with a 95% confidence interval. The simulation time has been divided into time 

windows, where the length of each window is 20 seconds (sec) and the value for the 

MQL has been measured ten times. By taking the mean value for the MQL, the 95% 

confidence interval   can be calculated using Equation (4.1) [70]: 

                      
        

 
                                                                            (4.1) 

 

n represents the number of trials and equals 10 in this instance. 

Figure (4.3) represents the MQL with 95% confidence intervals and this demonstrates 

an acceptable accuracy for the algorithm used. 

 

 

 
 

Figure 4.3: Simulation of the RED algorithm with 95% confidence intervals 
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4.4 Summary 

Simulation plays a vital role in analyzing the performance of complex networks. 

Simulation programs can be used to closely replicate the networks to be modelled and 

in many cases can capture details that may be impossible to obtain from analytical 

models. This is because the latter can become intractable without introducing 

simplifying assumptions, especially for large networks. Since RED is the recommended 

queue management for routers, it has been used as the core model for evaluation 

throughout the thesis and the simulation of the RED algorithm has been implemented 

using the DES. The performance of the simulator has been validated by using the same 

configuration parameters as used in the original RED algorithm. The simulator 

accurately controlled the MQL between the two thresholds and gave a similar 

performance to the original RED mechanism. 
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Chapter 5 
 
Dual Class RED  

 

5.1 Introduction 

Today‟s networks require the integration of a variety of data flows into buffers that may 

not be precisely suited to handle the requirements and characteristics of the traffic. Network 

switches send and receive real-time traffic as well as non real-time traffic. Each type of 

traffic has different scheduling requirements. Also, some traffic may carry higher 

priority than the other. The queues located at routers and switches must have the ability to 

handle these traffic types especially in a shared buffer.  

This chapter focuses on examining the performance of the RED mechanism under 

two streams of traffic, under different traffic conditions. The developed algorithm is 

called Dual Class RED (DC-RED). It shows the effect of varying the parameters of one 

class on the other. It assigns two sets of thresholds per class. The effect of varying the 

thresholds positions on the marginal performance of each class as well as the overall 

performance has been investigated in terms of mean delay and packet dropping 

probability. 
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Although it is obvious that there must be some degree of dependency between 

multiple classes of traffic in a shared buffer and the use of separate buffers for each 

class in such a situation has long been accepted as a necessary requirement, to the best 

of our knowledge no previous studies have reported specific quantitative results for this 

scenario. It is therefore the aim of this chapter to conduct such a study so that the results 

can give some insight into the interdependencies between multiple classes of traffic in a 

shared buffer. 

 

5.2 DC-RED Model 

The DC-RED model is based on the RED model which is currently the most popular 

AQM mechanism for the Internet. The model considered is a First-In First-Out (FIFO) 

single server queuing system with two classes of traffic as represented by Figure (5.1). 

The arrival rate from each class follows a different Poisson process where class1 has 

average arrival rate λ1 and class2 has average arrival rate λ2. The service time is 

exponentially distributed with average service rate µ. The thresholds for class1 traffic 

are (LA1, LA2) and the thresholds for class2 traffic are (LB1, LB2). The parameters used in 

simulating the DC-RED model are summarized in Table (5.1). The values of the arrival 

rates (λ1 and λ2) and the service rate (µ) have been chosen to attain certain conditions: 

 λ1 + λ2 < µ 

 λ1 + λ2 = µ 

 λ1 + λ2 > µ 
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Table 5.1: DC-RED configuration parameters 

Parameter Value 

wq 0.002 

maxp 0.1 

LA1=LB1 5 

LA2=LB2 10 

queue size 50 

λ1 
6, 9, 12 

λ2 
3, 6, 9 

µ 

 

6, 12, 18 

 

 

 

 

  

Class1 thresholds 

Class2 thresholds 

µ 

λ λ1 

λ2 

LB1 LB2 

LA1 LA2 

Figure 5.1: Single buffer with two thresholds per class 
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In order to perform a steady state analysis of the system, the performance of the 

model has been measured for four different cases. The different cases of the model have 

been implemented by fixing the thresholds of class1 and varying only the positions of 

the class2 thresholds as elucidated in Figure (5.2). The case where the two sets of 

thresholds for both classes are identical was first considered. By keeping class1 

thresholds fixed where LA1=5 and LA2=10 and moving only class2 thresholds towards the 

end of the queue, the other cases of the buffer with the different threshold positions have 

been obtained. The separation between the two thresholds in each class is the same (LB2-

LB1=LA2-LA1=5) and the distance between the thresholds of the two classes is the same 

(LB1-LA1=LB2-LA2).  

The following relations have been used to calculate the dropping probability for 

each class: 

)(

)(
max

12

1
1

AA

A
pdrop

LL

Lavg
P




                     (5.1) 

)(

)(
max

12

1
2

BB

B
pdrop

LL

Lavg
P




                                (5.2) 

maxp is the maximum dropping probability for both classes and equals (0.1). The 

average queue length (avg) is calculated using the EWMA as in the RED algorithm [4]. 

By using Equations (5.1) and (5.2) it is noticeable that:  

 Both classes will have the same dropping probability when they have the same 

minimum and maximum threshold values (LA1=LB1) and (LA2=LB2) as in Figure 

(5.3). 

 The dropping probability for class1 increases linearly from the minimum 

threshold value (LA1) to the maximum threshold value (LA2) as in Figure (5.4).  

 The dropping probability for class2 increases linearly from the minimum 
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threshold value (LB1) to the maximum threshold value (LB2) also shown in Figure 

(5.4). 

Class1 packets will be dropped according to dropping probability Pdrop1 when they fall 

between class1 thresholds (LA1, LA2). If the MQL exceeds the second threshold for 

class1 (LA2), all the corresponding packets from class1 will be dropped. Class2 packets 

will be dropped according to dropping probability Pdrop2 when they fall between class2 

thresholds (LB1, LB2). If the MQL exceeds the second threshold for class2 (LB2), all the 

arriving packets from class2 will be dropped. The detailed algorithm for the DC-RED 

model has been explained in detail in Table (5.2). 

  



Chapter 5: Dual Class RED 

 

58 

 

 

 

 

 

  

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Different cases for the single buffer with two thresholds per class 
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Figure 5.3: Dropping probability for both classes when they have the same 

minimum and maximum thresholds values (LA1=LB1) and (LA2=LB2) 

 
 

 

 
 

Figure 5.4: Dropping probability for both classes when LA1<LB1<LA2 
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Table 5.2: Pseudocode for the DC-RED algorithm 
 

 

 

 

 
                 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Initialization 

For each packet arrival 

{ 

   Calculate the new average queue length (avg) 

   avg = (1−wq)  avg + wq q    

   if (avg < Lk1)  

       add the packet to the queue 

   else if ((avg ≥ Lk1) && (avg ≤ Lk2))  

          calculate the dropping probability Pdropj  

          Pdropj = (avg-Lk1) (maxp / (Lk2-Lk1)) 

          drop the arriving packet with dropping probability Pdropj      

   else if (avg >Lk2)    

          drop the arriving packet      

}  

Saved Variables: 

avg: average queue size 

q: Instantaneous queue size 

Fixed parameters: 

wq: queue weight 

Lk1: minimum threshold for class k and k=A, B 

Lk2: maximum threshold for class k and k=A, B 

maxp: maximum value for Pdropj and j=1, 2 
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 5.3 Performance Analysis 

In this section the performance of the DC-RED model is investigated by varying the 

difference between the class1 and class2 thresholds. The performance metrics are 

presented by varying the two thresholds for class2 and examining the effect on class 1 

in terms of average delay and packet dropping probability. Also, the effect of changing 

the parameters of one class on the other class and on the overall performance is 

examined. For each individual class the average queue length has been calculated as in 

the RED algorithm. The packet dropping probabilities have been calculated using 

Equations (5.1) and (5.2). The packet loss probability (when packets are lost due to 

buffer overflow) is not presented as one of the performance metrics of the proposed 

model since it was found too small to be measured as the buffer never fills up to its limit 

to cause any remarkable loss. Intensive simulation tests have been done in order to 

evaluate the performance under different conditions, like changing the values for the 

service rate µ or the arrival rate from each class, λ1 or λ2.  

 

5.4 Marginal Mean Delay Analysis 

Due to the increase in network services including real-time video and audio 

applications, mean delay has become one of the most important performance metrics for 

many Internet applications and is an important QoS metric. The mean delay has been 

used to measure the performance of proposed model. The mean delay can be calculated 

as the average time a packet spends in the system, which is the time spent waiting in the 

queue plus the service time. 
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5.4.1 The Effect of the Service Rate on the Marginal Mean Delay 

In this section the effect of varying the service rate µ on the marginal mean delay is 

examined. The values of the arrival rate from both classes are kept fixed at the 

following values λ1=9 and λ2=3. The value for LA1=5 and for LA2=10. 

 

 
 

Figure 5.5: Marginal mean delay at µ=6, λ1=9 and λ2=3 

 

 
 

Figure 5.6: Marginal mean delay at µ=12, λ1=9 and λ2=3 
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Figure 5.7: Marginal mean delay at µ=18, λ1=9 and λ2=3 
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delay has reached a very low value, this is because the service rate is higher than any of 

the arrival rates and also higher than the total arrival rate (λ), where 

λ = λ1 + λ2                                                                                                                     (5.3) 

     

5.4.2 The Effect of Class1 Arrival Rate on the Marginal Mean Delay  

From Figures (5.8), (5.9) and (5.10) it is noticeable that by increasing the number of 

arrivals from class1 the mean delay for both classes increases, even though class2 

arrival rate is fixed. This is because increasing any of the arrival rates will affect the 

total arrival rate, as indicated by Equation (5.3). The two classes will have the same 

delay value when λ1=6 as shown in Figure (5.8), then increasing λ1 will give higher 

delay values for class1 and class2 as shown in Figures (5.9) and (5.10). Increasing the 

separation value between the two classes will allow more packets from class2 which 

will cause dramatic increase in both classes‟ marginal mean delay and makes class2 

delay higher than class1 delay at the same threshold separations. 

 

 
 

Figure 5.8: Marginal mean delay at λ1=6, µ=12 and λ2=3 
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Figure 5.9: Marginal mean delay at λ1=9, µ=12 and λ2=3 

 

 
 

Figure 5.10: Marginal mean delay at λ1=12, µ=12 and λ2=3 
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because LB1 is increasing allowing the acceptance of more packets from class2 this will 

take longer for the queue to be filled with packets from class2 and this causes the mean 

delay to increase by increasing the value of LB1. 

 

 
 

Figure 5.11: Marginal mean delay at λ2=3, µ=12 and λ1=6 

 

 
 

Figure 5.12: Marginal mean delay at λ2=6, µ=12 and λ1=6 
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Figure 5.13: Marginal mean delay at λ2=9, µ=12 and λ1=6 
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higher than the service rate µ. Increasing the value of µ will give lower dropping 

probability for both classes, and it is clear from Figures (5.15) and (5.16) this is because 

µ is greater than any of the arrival rates or the total arrival rate. 

 It is clear from Figures (5.14), (5.15) and (5.16) that moving LB1 will cause sharp 

decrease in the marginal dropping probability for both classes. When the difference 

between LB1 and LA1 is high the dropping probability for class2 goes to zero and for 

class1 is a very low value but higher than class2 for the same threshold settings. Figure 

(5.16) shows that when the service rate is much higher than the total arrival rate both 

classes behave the same in that the dropping probability is nearly zero over the whole 

range of threshold separations. 

 

 
 

Figure 5.14: Marginal dropping probability at µ=6, λ1=9 and λ2=3 
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Figure 5.15: Marginal dropping probability at µ=12, λ1=9 and λ2=3 

 

 
 

Figure 5.16: Marginal dropping probability at µ=18, λ1=9 and λ2=3 
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class2 and a very low value for class1. Increasing the separation between LB1, LA1 as 

well as increasing the value of λ1 gives higher loss for class1 than for class2.  

 

 
 

Figure 5.17: Marginal dropping probability at λ1=6, µ=12 and λ2=3 

 

 
 

Figure 5.18: Marginal dropping probability at λ1=9, µ=12 and λ2=3 
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Figure 5.19: Marginal dropping probability at λ1=12, µ=12 and λ2=3 
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Figure 5.20: Marginal dropping probability at λ2=3, µ=12 and λ1=6 

 

 
 

Figure 5.21: Marginal dropping probability at λ2=6, µ=12 and λ1=6 
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Figure 5.22: Marginal dropping probability at λ2=9, µ=12 and λ1=6 
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 Figure 5.23: The overall mean delay at different values of λ1 where µ=12 and λ2=3 

 

5.7 Overall Dropping Probability Analysis 
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Figure 5.24: The overall dropping probability at different values of λ1 where µ=12 
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5.8 Summary 

A DC-RED model has been implemented to test the effect of applying the RED 

mechanism on two streams of traffic in a shared buffer. Intensive simulation analysis 

has been done to test the performance of the model with two thresholds per class. The 

performance has been assessed by looking at different combinations of conditions, such 

as varying the arrival rate from either class1 or class2 or by varying the value of the 

service rate. The performance analysis has demonstrated the significant impact of the 

threshold positions on the performance measures of both classes. The results clearly 

demonstrate how different load settings can provide different tradeoffs between delay 

and dropping probability to suit different service requirements. It has also been 

demonstrated that moving class2 thresholds not only affects class2 performance but also 

the performance of class1 which is something that was expected. More significantly, the 

results indicate that one class can completely dominate the other, which gives an 

unacceptable situation. Altering any of the arrival rates or the service rate has an 

apparent effect on the overall performance which would make it very difficult to reach a 

steady state condition for both classes with the shared buffer if an adaptive strategy was 

used, such as that in ARED. Also, the results suggest that to apply the DC-RED in a 

LRD or Variable Bit Rate (VBR) situation is likely to prove impossible because of the 

changes in the interdependencies caused by the changing traffic levels. The focus of the 

thesis from now on will thus involve experiments on a single class of traffic in a single 

buffer.  
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CHAPTER 6 
 
Congestion Prediction in Networks with 
LRD Traffic 

 

6.1 Introduction 

Traffic measurements from communication networks have shown that network traffic 

can exhibit self-similar as well as LRD properties. In telecommunication networks, 

congestion events tend to persist, producing large delays and packet loss resulting in 

performance degradation. In order to guarantee QoS to diverse Internet services, 

congestion prediction has become a fundamental objective of some network 

management algorithms [16, 71]. Therefore high performance predictors are required 

that are efficient and simple to implement.  

The ability to predict traffic congestion within a network is one of the fundamental 

requirements of modern network design. A number of recent studies have shown that 

network traffic exhibits self-similar and LRD properties [11-12, 14]. The use of 

traditional models, for example Poisson and the Markovian models, in networks 

characterized by self-similar processes can lead to overestimations about the 

performance of the analyzed networks [12]. In real traffic networks, packets tend to 
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arrive in clusters, causing a phenomenon called the burst phenomenon. Due to LRD, 

the burst phenomenon can still be observed over large time scales and cannot be 

smoothed out by aggregating the traffic in a larger time scale [72]. The burst 

phenomenon within self-similarity, exists only in measured traffic and cannot be 

predicted with traditional traffic models [72-73]. Therefore, an efficient mechanism for 

prediction of the onset of congestion within networks that exhibit self-similarity and 

LRD is required. 

Traffic modelling plays a significant role in the analysis of real network traffic. In 

order to design a robust and a reliable network, it is important to understand the traffic 

characteristics of the network and the best model to represent it. For instance, SRD, 

LRD, and self-similarity are examples of processes found in communication networks. 

This chapter explains each process in detail. It also investigates the impact of LRD on 

congestion prediction.  

 

6.2 Short Range Dependence 

Classical models are SRD processes, such as the Poisson process and the Markov chain 

models. SRD is the most widely used model for modelling traditional network traffic. 

Definition [11]: Consider a discrete time stochastic process X(t),     where the 

autocorrelation function r(k) = γ(k)/σ
2 

,                 and           for all 

   , then the autocorrelation function r(k) of the SRD process is summable and decays 

exponentially fast. This implies: 







k

kr )(                                                                      (6.1) 
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6.2.1 Poisson Distribution 

The Poisson distribution is a continuous-time, discrete-state probability distribution that 

expresses the probability of a number of events occurring in a fixed period of time. In 

computer network applications, the Poisson process is widely used to represent the 

distribution of the number of arrivals.  

Definition [74]: Assume N (t) represents the number of events in the interval (0, t] . If 

the events occur successively in time, so that the intervals between successive events are 

independent and identically distributed according to an exponential distribution. Then 

the stochastic process {N (t), t ≥ 0} is a Poisson process with mean rate λ>0.  

In a pure Poisson process with rate λ, the number of points occurring in a fixed interval 

of length t has the Poisson probability mass function (pmf) given by:  
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The cumulative distribution function (cdf) is given by: 

0,
!
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xF                                                                     (6.3)                             

The Poisson distribution has an important property that the mean and the variance are 

both equal to α [68].  

 

 6.2.2 Exponential Distribution  

The exponential distribution is used to describe the times between events in a Poisson 

process. It has been used to model inter-arrival times when arrivals are completely 

random and to model service times. 
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Definition [68]: A continuous random variable X is said to be exponentially distributed 

with parameter λ if its probability density function (pdf) is given by: 












0

0,

,0
)(

x

xe
xf

x
                                                                                    (6.4) 

the cdf can be obtained by integrating Equation (6.4) such that: 
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The exponential random number generated to represent the service time or the inter-

arrival time in a simulation is calculated by solving for x in Equation (6.5) using the 

inverse transform technique as follows: 

xeR 1                                                                                                             (6.6)

Re x  1
                                                                                                         (6.7)                          

)1( Rnx                                                                                                    (6.8)

)1(
1

Rnx  


                                                                                             (6.9) 

R is a uniform random number distributed on [0, 1] and λ is the rate in service 

completions or arrivals per unit time. 

The exponential distribution has a memoryless property which is one of its most 

important properties. It is also called the Markov property. The memoryless property 

means that for all s ≥ 0 and t ≥ 0, )()|( tXPsXtsXP   so that the time to the 

next event is independent of both the past and the future [68]. 
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6.3 Long Range Dependence 

Modern network traffic, such as Ethernet data and VBR video traffic are LRD processes 

[72, 75]. LRD is a process whose autocorrelation function is not summable and decays 

hyperbolically or decays with lag time as a power law [11]. This implies: 







k

kr )(                                                      (6.10) 

Definition [11]: Let X = (Xt: t >= 1) be a wide sense stationary process with mean 

µ=E[Xt] and variance ∂
2
=E[(Xt - µ)

2
]. X is called an asymptotic LRD process if the 

autocorrelation function r (k) is given by: 

 kkkr ,~)( 
 , 0 < β < 1                                                  (6.11)    

The Hurst parameter H is related to β by H=1-β/2 and 0.5<H<1. The Hurst 

parameter is an indicator of the LRD. Careful choice of H is very important as H values 

greater than 1 are prohibited due to the stationary condition on X and H=0.5 is the 

condition for SRD [15]. Processes with a low Hurst parameter (near 0.5) are less bursty 

while those with a high Hurst parameter (in the vicinity of 1) are highly bursty [76]. 

Thus the Hurst parameter is indicative of the resultant aggregated stream. 

 

6.3.1 Heavy Tailed Distribution 

The heavy tailed distribution, also called the long tailed distribution, is a probability 

distribution whose tail is heavier than the exponential distribution. Heavy tailed 

distributions behave quite differently from the exponential distribution, which have tails 

that decline exponentially fast. In contrast, heavy tailed distributions have tails that 

decline hyperbolically slowly and have infinite variance, reflecting the extremely high 

variability that these distributions capture.  
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Definition [77]: A random variable Z is said to be a heavy tailed distribution if 

   xcxxZP ,~)( 
                                                                         (6.12) 

0 < α < 2 is called the tail index and c is a positive constant. 

A number of recent studies have shown evidence that file sizes and connection 

durations have heavy tailed distributions and measurements of computer network traffic 

have shown that autocorrelations are often related to heavy tails, which is a 

phenomenon of self-similarity [77].  

By modelling a number of ON/OFF sources with heavy tailed probability 

distributions (for example Pareto distributions) for both ON and OFF periods, a self-

similar aggregated traffic can be generated [13]. The ON period corresponds to a single 

transmission session time and the OFF period corresponds to the silent period of a 

source. 

 

6.3.2 Pareto Distribution 

The Pareto distribution (also referred to as the hyperbolic distribution and the power-

law distribution [12, 78]) is the simplest heavy tailed distribution to model self-similar 

and LRD processes [79]. It can be defined using the cdf [78] such that: 

         
   

 

 
 
 

          

                          

                                                                                  (6.13) 

The pdf is given by [78]: 

0,,,)( 1   kkxxkxf  
                                                             (6.14) 

0 < α < 2 is the shape parameter (the tail index) and k is the scale parameter. If α ≤ 2 

then the Pareto distribution will have infinite variance and if α ≤ 1 it will have infinite 

mean [12]. k represents the smallest possible value of the Pareto random number [78].  
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Figure 6.1:   The cdf of a Pareto distribution at different values of α and k=1 

 

 

Figure 6.2:   The pdf of a Pareto distribution at different values of α and k=1 

 

Figures (6.1) and (6.2) show that for the Pareto distribution, as the value of α 

decreases, more of the probability mass is located in the tail of the distribution [12, 79]. 

The Pareto random number generated in a simulation can be computed by applying the 

inverse transform technique on the cdf Equation (6.13) as follows: 
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R is a uniform random number that can have a value in the range [0, 1] and x is the 

Pareto random number. 

 

6.4 Self-Similarity  

Self-similarity is a notion introduced by Mandelbrot [80]. The authors in [79] provided 

evidence and possible causes of self-similarity in World Wide Web (WWW) traffic. 

Self-similarity can be classified into two categories: deterministic and stochastic. 

 

6.4.1 Deterministic Self-Similarity (Scale Invariance) 

A mathematical object is self-similar, if its parts, when magnified, resemble the shape of 

the whole in a suitable sense [15]. Figure (6.3) depicts the symmetrical and scale-

invariant properties found in the Koch snowflake. 
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Figure 6.3:   Fractals of Koch snowflake [81] 

 

6.4.2 Stochastic Self-Similarity 

Stochastic self-similarity is a phenomenon found in real traffic networks. The 

probabilistic properties of the self-similar processes remain unchanged when the process 

is viewed at varying time scales [15, 82]. 

The properties of self-similar traffic are very different from properties of traditional 

models based on Poisson or the Markovian models. As shown in Figure (6.4), Poisson 

processes lose their burstiness and flatten out when time scales are changed. However, 

they can exhibit burstiness over a short range of time scales. 

Definition [79]: Let X = (Xt: t =1, 2, 3, ...) be a covariance stationary stochastic 

process with mean μ, variance of ∂
2 

and autocorrelation function r(k), k ≥ 0. It is also 

assumed that the autocorrelation function, r(k), has the form [11]: 

 kkkr ,~)( 
      , 0 < β < 1                                                                          (6.19)  

Then the new covariance stationary time series )(mX  is obtained by averaging X over 

non-overlapping blocks of size m [15]: 

 

http://upload.wikimedia.org/wikipedia/commons/6/65/Kochsim.gif
http://upload.wikimedia.org/wikipedia/commons/6/65/Kochsim.gif
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                                         (6.20)                                                     

The aggregated series X is called a self-similar process, if )(mX is the same as X at least 

with respect to their autocorrelation function [11] with self-similarity parameter H, 

where 0<H<1, H≠0.5. 

In order to guarantee that the modelled traffic implies self-similarity and LRD as 

well, H should be restricted by 0.5<H<1, as not all self-similar processes are LRD and 

vice versa [15]. 
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Figure 6.4: Comparison of actual, traditional and self-similar Ethernet traffic 

viewed on different time scales [82] 

 

(a) Actual measurements 

 

 

(b) Synthetic traditional traffic (c) Synthetic self-similar traffic 
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6.5 Impact of LRD on Congestion Prediction 

Satisfying QoS requirements while achieving high utilization has become a very 

complex and difficult task due to the scale-invariant burstiness of LRD traffic. Scale-

invariant burstiness implies the existence of some periods of high activity at a wide 

range of time scales which badly affects congestion control. However, the very fact that 

traffic is LRD implies the existence of a correlation structure which may be exploitable 

for congestion prediction purposes; that is, the correlation structure present in LRD 

traffic can be used to predict the future behaviour. Also, predicting the onset of 

congestion under self-similar traffic conditions with sufficient reliability can be 

effectively utilized for congestion control purposes [83]. The predictability structure 

present in LRD traffic can be used for improving network performance based on the 

feedback algorithm presented in this chapter. 

 

6.5.1 Motivation 

The authors in [17-18] theoretically demonstrated that the properties of LRD can be used 

to predict traffic behaviour in the not-too-distant future and argued that controlling the 

LRD traffic sources can be done by admitting new sources, removing existing sources or 

changing the levels of existing sources by turning OFF some of the sources when in the 

ON state or vice versa. The latter is the core idea for the prediction algorithm presented 

in this chapter. The novelty in this approach is to combine the use of LRD prediction 

with an existing congestion control algorithm, namely RED [4]. 

The algorithm used has a feedback control strategy that depends on the mean time 

spent ON for each node to control the number of packets through the buffer. A queueing 

model with a number of ON/OFF sources has been used to generate LRD, self-similar 

network traffic. An algorithm has been developed involving a novel congestion 
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prediction for AQM. The algorithm is based on the hypothesis that a connection that has 

been active for a time duration which exceeds a certain limit is more likely to persist in 

this state for a long period when the traffic exhibits LRD [15, 17].  

 

6.5.2 Simulation Model 

It is assumed that the buffer has a finite capacity of K packets, including the server, with 

two thresholds (L1) and (L2) as shown in Figure (6.5). The source consists of a 

superposition of N (ON/OFF) nodes. The queueing discipline is FIFO. When the 

average queue length is less than the minimum threshold (L1), there is no dropping and 

the source operates normally. If the average queue length exceeds the maximum 

threshold (L2), then the source is signalled to stop sending packets by dropping all the 

excess packets. Packet transmission can commence after the next departure. If the 

average queue length in the system falls between the first threshold (L1) and the second 

threshold (L2), then the arriving packets should be dropped with dropping probability Pd 

[4]. 

)(

)(
max

12

1

LL

Lavg
P pd




                                                                                        (6.21) 

where maxp is the maximum dropping probability and avg is the average queue length 

calculated as in [4].  
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Figure 6.5: Schematic diagram of the congestion prediction model 

 

The implementation of the congestion predictor would be appropriate at edge 

routers so that the multiplexer that feeds the queue has knowledge of the nodes. This is 

because LRD characteristics are more prevalent at the edge of networks and flatten out 

within the network. If all the LRD is not removed then the congestion predictor might 

need to be applied on a stage by stage basis. Tracking of information from the nodes 

adds considerable complexity to the model because the status of each node needs to be 

monitored. The ON times of an individual source are measured as the intervals during 

which transmission of a packet is taking place from that source and the OFF times 

correspond to the intervals between these periods when no transmission of packets is 

taking place. Feedback to a source can be done using explicit backward congestion 

notification. These explicit messages can be sent using control packets, which might be 

transmitted periodically or through a separate signalling channel if one is available, but 

this depending on the system. 
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6.5.3 Prediction Algorithm 

In the proposed continuous-time queueing system, the initial state for all the nodes has 

been chosen randomly. It is assumed that the N connections are identical and share the 

same specifications. During an ON state, packets are sent according to a Poisson 

distribution with rate λ. When idle, the node is said to be in the OFF state. The transition 

rates from ON to OFF or from OFF to ON follow the Pareto distribution. The sojourn 

time distribution is chosen to be a heavy-tailed one in order to capture the long term 

dependencies in the arrival process.   

For each input node two time events have been generated. The first event time is 

the residence time which has been generated using a Pareto random number (giving 

switchover time). The second event time is the next arrival time (giving time of next 

arrival at that node) which has been generated using an exponential random number 

generator. The node number, event type (arrival, departure or transition) and event time 

are placed in an event list. Scheduling the next event type can be done by searching the 

event list for the shortest event time. The prediction algorithm presented in Table (6.1) 

is based on calculating the expected number of packets transmitted from all the nodes as 

follows: 

Expected number of packets =


N

i

iiin
1

                                                             (6.22) 

 

ni: the status of node i (ON=1,OFF=0) 

λi: arrival rate from node i (packets/sec.) 

τi: mean time spent ON for node i (sec.) 

N: maximum number of nodes 
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It should be pointed out that equations (6.21) and (6.22) are used in both the 

simulation and also would be used in practice in the implemented model. The previous 

equations in this chapter relate to the simulation only since these relate to such things as 

traffic models and random number generation which are, of course, simply 

representative of features found in real traffic, such as LRD for example. This implies 

that the congestion predictor would, in practice, need to determine the mean queue 

length in the buffer and also status of the individual sources and their ON and OFF 

periods by observing and monitoring the traffic from each of the individual sources. 

Also, the number of packets sent by the individual sources received in a given period 

would need to be counted to determine average arrival rates and the average queue 

length can be determined as in [4]. 

If source i has been ON for time τi and the number of packets calculated using 

Equation (6.22) exceeds a specific limit, this can be considered as an indication of LRD 

behaviour which can possibly lead to congestion. The algorithm then searches a node 

status vector for the node which may cause congestion; this means the one with the 

highest τi. This is based on the hypothesis that if a LRD source has been active for a 

long time, there is a very high probability that it will remain active for a long time in the 

future and so may cause congestion as a consequence [17]. By identifying the node with 

the highest τi, the algorithm forces this node to the OFF state in an attempt to avoid 

congestion. Forcing the node to the OFF state can be done using explicit backward 

congestion notification which can be sent through control packets as shown in Figure 

(6.5). 
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The mean time spent ON for each node is calculated as follows [84]: 

The mean time spent ON =
1

)(





on

onon

k

k
dxxf




                                             (6.23)     

where kon and αon are the scale and shape parameters respectively for the node in the ON 

state.  

Although equation (6.23) is used in the simulation, in practice the mean time spent ON 

would be determined by the congestion predictor which would use its measured data for 

the ON times of the individual sources to compute these averages over a specific period 

of time.  
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Table 6.1: Pseudocode for the prediction algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Initialization 

Create node status vector (N) 

While (simulation time ≤ simulation time required) 

{  

   Timing (node vector) 

   For each packet arrival 

   Calculate the new avg 

      if (L1< avg < L2) 

         Drop the arriving packet with probability Pd 

      else if (L2< avg) 

         Drop the arriving packet 

      else 

         Add the arriving packet to the queue 

 

   The expected number of packets= 


N

i

iiin
1

  

    if (measured number of packets ≥ Limit) 

   { 

      Identify the node with the highest mean time spent ON  

      Force the node to OFF state 

    } 

} 
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6.5.4 Performance Results 

Due to the growing complexity of modern telecommunication networks, simulation has 

become the best paradigm for their performance evaluation. A discrete event simulation 

has been implemented using Java programming to assess the performance of the 

proposed model. The parameters used have been initialized as in Table (6.2). The two 

thresholds L1 and L2 have been set as recommended by [4]. α is related to the Hurst 

parameter H by H= (3-α)/2 [15] giving Hon=0.9 and Hoff =0.75. 

 

Table 6.2: The congestion predictor configuration parameters 

Parameter Value 

wq 0.002 

maxp 0.1 

L1 5 

L2 15 

queue size 30 

λ 5 

µ 7 

N (number 

of nodes) 5 

αon 1.2 

αoff 1.5 

kon= koff 
1 
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The performance of the proposed model has been examined in terms of the total 

number of packets transmitted from all the nodes, the MQL, the average delay, the 

dropping probability and the normalized throughput. Three different limit values have 

been used (30x10
6
, 20x10

6
 and 10x10

6
), in order to examine the effect of changing the 

number of packets limit on the performance.  

Figure (6.6) represents a comparison between the number of packets transmitted 

from all the nodes with and without prediction. By using a limit of 30x10
6
 packets for 

the target number of packets, it is noticeable that after applying the prediction algorithm 

the number of packets has been controlled by not exceeding the specified limit instead 

of increasing over the simulation time as in the case without prediction. Figures (6.7) 

and (6.8) represent the effect of using a lower limit value on the total number of packets. 

These graphs represent the effectiveness of the algorithm in controlling the number of 

packets to lower values. 
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Figure 6.6:  The number of packets using limit=30x10
6 

 

 

Figure 6.7:  The number of packets using limit=20x10
6
  

 

 

Figure 6.8:  The number of packets using limit=10x10
6
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Figure 6.9: The MQL using limit=30x10
6
  

 

 

Figure 6.10: The MQL using limit=20x10
6
  

 

 

Figure 6.11: The MQL using limit=10x10
6
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The effect of applying the algorithm on the MQL is presented in Figures (6.9), 

(6.10) and (6.11). The MQL becomes much more stable after applying the algorithm. 

Thus, it can be said that, based on the LRD properties, the algorithm managed to control 

the MQL over the simulation time. From Figure (6.11), it is noticeable that the lower 

the limit value, the more effective the algorithm in detecting congestion as the MQL has 

been controlled at time ≈200 while in Figure (6.9) the MQL has been controlled at time 

≈400. The limitations appear to be that the value of the MQL still remained high and 

close to the maximum threshold position even after offending flows are dropped. 

Figure (6.14) shows that the algorithm gives lower values for the average delay and 

at the point the algorithm activates, the delay becomes limited. Compared with the 

results obtained in Figures (6.12) and (6.13), the average delay values obtained in Figure 

(6.14) have lower values which imply earlier notification of congestion as a result of 

using a lower limit value. Applying the prediction algorithm also gave better 

performance in terms of the dropping probability as shown in Figures (6.15), (6.16) and 

(6.17). 

Based on the results obtained, the lower the limit value, the better the algorithm 

works as it gives earlier congestion notification and congestion control but is likely to 

drop more flows to do so. Despite the fact that using a lower limit value gave better 

berformance than using the high limit values in terms of the number of packets, the 

MQL, the average delay and the dropping probability it showed inferior performance in 

terms of the normalized throughput as shown in Figures (6.18), (6.19) and (6.20). 

Figure (6.20) shows the huge degradation in the normalized throughput as a result of 

using a small limit value and dropping many flows. Based on the results obtained, the 

additional complexity of the model would need to be considered in any decision to 

implement the model. 
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Figure 6.12: The average delay using limit=30x10
6
  

 

 

Figure 6.13: The average delay using limit=20x10
6
  

 

 

Figure 6.14: The average delay using limit=10x10
6
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Figure 6.15: The dropping probability using limit=30x10
6 

 

 

Figure 6.16: The dropping probabilty using limit=20x10
6 

 

 

Figure 6.17: The dropping probability using limit=10x10
6
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Figure 6.18: The normalized throughput using limit=30x10
6
  

 

 

Figure 6.19: The normalized throughput using limit=20x10
6 

  

 

Figure 6.20: The normalized throughput using limit=10x10
6
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6.6 Impact of System Parameters 

From the previous sections it is clear that the performance of the model depends on the 

limit value. Choosing the right limit value is very important as it impacts on the 

performance of the proposed model. Therefore, there is a need to remove the system 

dependency on the limit value. This can be done using a sliding window algorithm.  

By observing the behaviour of the proposed model, it appears that the prediction 

algorithm managed to control the number of packets over the simulation time. From 

Figure (6.21) it is noticeable that controlling the number of packets is not in a steady 

way but it encounters a slight increase over time. To avoid the number of packets 

increasing indefinitely, a sliding window algorithm could be used to limit the total 

number of packets in Equation (6.22).  

 

 

Figure 6.21:  The number of packets with prediction using limit=20x10
6
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6.6.1 Applying a Sliding Window Algorithm 

As a policy in real settings it would clearly be better if flow rates of offending sources 

were reduced by a specified amount rather than flows dropped to mitigate the reduction 

in throughput. Perhaps using a sliding window algorithm could be used in collaboration 

with the algorithm to do this [85]. Using a sliding window algorithm has many benefits 

as it mimics the behaviour of a real life network, controls the number of packets in a 

steady way and removes the system dependency on the limit value. Figure (6.22) 

depicts the details of the sliding window algorithm.  

 

 

 

 

 

                                           

      

          

          

 

 

 

 

 

 

Figure 6.22: Schematic diagram of the sliding window algorithm  

 

The basic idea for the sliding window algorithm is to cut the simulation time into 

large intervals of equal lengths called windows (W). Each window should be cut into 

small intervals of equal lengths called gaps. These gaps will be used to slide the window 

into the new position. At the end of each gap the number of packets is calculated using 

Equation (6.22). These values which are considered as the number departed values (d) 

   0           30        60          90        120        150       180      210      240       270        300                 time 

W: window     

d: number departed 

a: number arrived 

n: number of packets  

W1 

 W2 

W3 

d1 n   a1 d2   a2 gap 
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are saved in an array to be used later in the algorithm. At the end of the first window the 

number of packets calculated using Equation (6.22) is called (n). At the end of the first 

window the prediction algorithm explained in Table (6.1) should be applied to force the 

offending sources to the OFF state based on the value of (n). The number of packets 

calculated at the end of the new gap (point 180 in Figure (6.22)) is called the number 

arrived (a). The new value for (n) which is called (n') is calculated by adding the value 

of the number arrived (a) to the value of (n) and subtracting the value of the number 

departed (d). (n') represents the new number of packets at the end of the new window 

(W2) which will replace the old value of (n). So the number of packets used for the 

prediction algorithm in this case (n') is calculated as follows:  

n' = n – d + a                       (6.24) 

The algorithm will repeat the same steps but with sliding the window to new 

positions and repeating the algorithm at the end of each window, as explained in Table 

(6.3). For example the new value for the number departed (d2) will be the value at 60 in 

Figure (6.22) and the new value for the number arrived (a2) will be the value at 210. 

This is to keep the window length fixed (equals 150 in this example) and sliding from 

point to point over the simulation time. 

The sliding window algorithm has been applied in the prediction algorithm to 

examine the effect of applying the new algorithm on the performance of the model. The 

prediction algorithm has been applied up to the simulation time=500. The reason for 

applying the prediction algorithm for the first part of the simulation is to control the 

number of packets to the limit value. Then the sliding window algorithm has been 

applied from simulation time >500 till the end of the simulation. When the simulation 

time is >500 the time is divided into windows of equal lengths and the prediction 

algorithm is applied only at the end of each window. The sliding window algorithm is 
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used to maintain the stability of the number of packets and to prevent the number 

increasing indefinitely 

 

Table 6.3:   The sliding window algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To examine the effect of applying the sliding window algorithm on the 

performance, the configuration parameters have been set as in Table (6.2). The limit 

value has been set to 20x10
6
, gap=50 and TWL=150. Figure (6.23) shows the stability in 

controlling the number of packets. Compared with Figure (6.21); the number of packets 

has been controlled to its limit value and is not increasing anymore. Figure (6.24) shows 

a comparison between the performance of the algorithm without applying the sliding 

window algorithm and after applying the sliding window algorithm. It is clear from 

Figure (6.24) that using the sliding window algorithm is more effective in controlling 

the number of packets in a stable way.  

 

- Cut the simulation time into windows of equal length (TWL). 

- Divide the window into small intervals called gaps. 

- Calculate the number of expected packets at the end of each gap (d). 

- Calculate the number of expected packets at the end of the first window (n). 

- Apply the prediction algorithm based on the value of (n). 

- Slide the window by adding the value of the number arrived (a) and   

subtracting the value of the number departed (d). 

- Apply Equation (6.24) to calculate the number of packets at the end of the 

new window (n'). 

- Repeat the previous steps until the end of the simulation time. 



Chapter 6: Congestion Prediction in Networks with LRD Traffic 

 

106 

 

 

Figure 6.23: The number of packets after applying the sliding window algorithm 

using limit=20x10
6
 

 

 

Figure 6.24: Comparing the number of packets with and without applying the 

sliding window algorithm using limit=20x10
6
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Figure (6.25) shows the improvement in the normalized throughput after applying 

the sliding window algorithm. Using the prediction algorithm alone caused degradation 

in the normalized throughput as it appears from Figures (6.18), (6.19) and (6.20). While 

using the sliding window algorithm adds an advantage to the performance as it allows 

the normalized throughput to rise again. This is because the process of forcing the node 

to the OFF state is only done at the end of each window not after each arrival. 

The limitation to the sliding window algorithm is that the MQL is still around the 

maximum threshold value as it appears from Figure (6.26). There is not much change in 

the performance of the average delay as shown in Figure (6.27). Also the dropping 

probability presented in Figure (6.28) is not differing too much from the results 

obtained in Figure (6.16). 

 

 

Figure 6.25: The normalized throughput after applying the sliding window 

algorithm using limit=20x10
6
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Figure 6.26: The MQL after applying the sliding window algorithm using 

limit=20x10
6
 

 

 

 

Figure 6.27: The average delay after applying the sliding window algorithm using 

limit=20x10
6
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Figure 6.28: The dropping probability after applying the sliding window algorithm 

using limit=20x10
6
 

 

Setting the gap length has been done by trial and error and it showed that using 

small gaps is not good as it causes instability in the measurements of the number of 

packets as it is shown in Figures (6.30) and (6.31) while the results obtained in Figure 

(6.29) are more stable. The reason is that by choosing a too small gap the algorithm is 

more likely to force more sources to the OFF state while using large gaps gives more 

stable measurements as it avoids turning OFF sources too frequently.  

In the following sections the effect of other parameters on the performance is 

examined. To do this, one of the parameters is varied (for example the window length) 

while the other variables are kept fixed (for example the gap length and the limit). Then 

one of the fixed variables will be varied and the other variables will be fixed and so on. 
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Figure 6.29: The number of packets using gap=30 

 

 

 Figure 6.30: The number of packets using gap=25 

 

 

Figure 6.31: The number of packets using gap=15 
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6.6.2 The Effect of Using Different Limits   

To examine the effect of changing the limit value on the performance, different limit 

values have been used (5x10
6
, 10x10

6
, 15x10

6
, 20x10

6
 and 25x10

6
) while keeping the 

TWL fixed at 150 and the gap length=50. Figure (6.32) represents the relationship 

between the limit and the average number of packets. It represents a linear relationship 

between the limit value and the value obtained for the average number of packets.  

 

 

Figure 6.32: The effect of changing the limit on the average number of packets  

 

Setting the limit to a high value increases the number of packets allowed in the system 

and hence increases the average delay as in Figure (6.33) and also increases the average 

throughput as shown in Figure (6.34). 
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Figure 6.33: The effect of changing the limit on the average delay  

 

 

Figure 6.34: The effect of changing the limit on the average throughput  
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Figure (6.35) shows the effect of changing the TWL on the average number of packets. 
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6
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length has been set to (100, 150, 200, 250 and 300) while each window has been cut to 

gaps of equal length=50. 

 

 

Figure 6.35: The effect of changing the window length on the average number of 

packets  

 

 

 

Figure 6.36: The effect of changing the window length on the average delay  
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Figures (6.36) and (6.37) show the effect of the window length on the average delay 

and the average throughput, respectively. Clearly, changing the window length does not 

affect the average delay or the average throughput significantly, and this can be 

considered as another advantage for the sliding window algorithm as the algorithm can 

be used with any reasonable window length without having the problem of parameter 

setting. 

 

 

Figure 6.37: The effect of changing the window length on the average throughput  

 

6.6.4 The Effect of Using Different Gaps 

In this section the limit has been set to 20x10
6
 and the TWL has been kept fixed at 150. 

The gap has been chosen to take the values (10, 15, 25, 30 and 50). These values have 

been chosen to cut the window into equal parts.  As it has been mentioned in Section 

(6.6.1), setting the gap length to small values impacts on the stability of measuring the 

average number of packets and this is supported by the results in Figure (6.38). From 

Figures (6.39) and (6.40) it noticeable that the gap length does not significantly affect 

the average delay or the average throughput.  
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Figure 6.38: The effect of changing the gap length on the average number of 

packets  

 

 

Figure 6.39: The effect of changing the gap length on the average delay  
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Figure 6.40: The effect of changing the gap length on the average throughput  

 

6.6.5 The Effect of Using Different Gap/Window Ratios 

The main reason for applying the sliding window algorithm was to remove the system 
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be independent on the limit value or the window length for the system used, but 

suggested that small gaps should be avoided to give better stability of the system 

measurements. Therefore, it is important to demonstrate that the ratio of the gap length 

to the window length does not affect the performance. This is to show that the model is 

flexible in setting the gap length and the window length in a way that removes the 
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Table 6.4: The results obtained by using variable gap lengths and window 

length=150 

TWL gap 
Ratio 

(gap/TWL) 

average 

number of 

packets 

average 

throughput 

average 

delay 

150 10 0.06667 1.80E+07 0.764564765 2.542475984 

150 15 0.1 1.96E+07 0.782914916 2.553714714 

150 25 0.16667 20840083.97 0.804687758 2.5305566 

150 30 0.2 20543520.43 0.83093143 2.589305047 

150 50 0.33333 20629645.02 0.820921183 2.586782804 

 

 

Table 6.5: The results obtained by using variable gap lengths and window 

length=300 

TWL gap 
Ratio 

(gap/TWL) 

average 

number of 

packets 

average 

throughput 

average 

delay 

300 20 0.06667 2.15E+07 0.77335463 2.51100771 

300 30 0.1 21642378.39 0.761135461 2.548404156 

300 50 0.16667 21317925.77 0.749999518 2.611807451 

300 60 0.2 2.07E+07 0.786421746 2.610130056 

300 100 0.33333 2.09E+07 0.780905776 2.659269695 

 

Table (6.4) gives the results obtained by fixing the TWL at 150 and changing the 

gap length. It provides the relationship between the ratio (gap / TWL) and the average 

number of packets, the average delay and the average throughput. Table (6.5) keeps the 

same ratios as in table (6.4) by fixing the TWL at 300 and varying the gap length. 

The results obtained in Figures (6.41), (6.42) and (6.43) show that having the same 

ratios gave similar performance, regardless of changing the window length or the gap 

length. The results obtained therefore, suggested that the model is not dependant on the 

parameter settings and that the average number of packets, the average delay and the 

average throughput do not substantially depend on the ratio of the gap length to the 

window length.   
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Figure 6.41: The relationship between the average number of packets and the ratio 

(gap/TWL)  

 

 

 

Figure 6.42: The relationship between the average throughput and the ratio 

(gap/TWL)  
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Figure 6.43: The relationship between the average delay and the ratio (gap/TWL)  

 

6.7 Summary 
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algorithm for congestion prediction. The congestion predictor would be appropriate for 
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be dependent on the limit value. It has been shown that the lower the limit value the 

better the performance is. But on the other hand, using a lower limit value caused 

degradation in the throughput. Another drawback is the complexity in measuring the 

ON periods and in notifying the offending sources about congestion. The additional 

complexity of the model needs to be considered in any decision to implement the 

model. 

To remove the system dependency on parameter settings, specifically setting the 

limit value, the algorithm has been modified to a sliding window algorithm. The results 

obtained after applying the sliding window algorithm showed better performance, 

especially for the average throughput as the modified algorithm avoided turning OFF 

sources too often. On the other hand, applying the sliding window algorithm did not 

cause remarkable improvements in the average delay or the dropping probability. It also 

did not improve the performance of the MQL. The model also provided better results in 

terms of the average number of packets. The sliding window algorithm controlled the 

number of packets in a stable way and the algorithm has been shown to be largely 

independent of parameter settings for the system investigated. 
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CHAPTER 7 
 
Maintaining Average Delay Constraints 
in a Buffer with Time-Varying Arrival 
Rate 

 

7.1 Introduction 

In order to guarantee QoS to diverse Internet services, it is important to employ 

effective buffer management schemes at Internet routers. Various buffer management 

mechanisms have been proposed to control traffic congestion and satisfy specified QoS 

requirements. Most of these studies rely on static thresholds which can be restrictive 

when they operate with sources with varying arrival rates.  

Constraining the average delay to a specified value is a key QoS requirement and 

one of the most important considerations for real-time services. Bounding delay not only 

applies in TCP networks [90], but also in other kinds of networks such as wireless 

networks [91]. An efficient mechanism to control the delay is therefore vitally important 

if delay is to be constrained to a specified value and jitter is to be minimized. This 

chapter represents a novel approach for maintaining average delay constraints in a buffer 

with time-varying arrival rate. The proposed feedback mechanism is used to control the 
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mean delay by adjusting a moveable threshold in order to control the effective arrival 

rate by randomly dropping packets. The mechanism was also evaluated for a source with 

LRD traffic characteristics under different arrival rate conditions.   

  

7.2 Impact of a Dynamic Moving Threshold  

The aim of applying a dynamic moving threshold is to propose a new adaptive 

prediction algorithm for AQM that is simple to implement and can maintain the average 

delay at a constant value when the arrival rate varies with time. To achieve this, a 

control strategy has been used to bound the delay to a specified value using a dynamic 

moving threshold. The proposed algorithm depends on the instantaneous queue length 

to switch the arrival rate at appropriate times by dynamically adjusting the queue 

threshold. The instantaneous queue length has been used rather than using the average 

queue length because the possibility of buffer overflow will be reduced if congestion is 

detected using the instantaneous queue length [92]. 

 

7.2.1 The Feedback Control Strategy 

It is assumed that the buffer has a finite capacity of K packets, including the server, with 

two thresholds (L1) and (L2) as shown in Figure (7.1). The queueing discipline is FIFO. 

When the number of packets in the buffer is less than the minimum threshold (L1), there 

is no dropping and the source operates normally. If the number of packets exceeds the 

maximum threshold (L2), then the source is signalled to stop sending packets by 

dropping all the subsequent packets. Packet transmission can commence after the next 

departure (service completion). In this way the majority of packet loss due to buffer 

overflow might be avoided. If the number of packets in the system at time t falls 
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between the first threshold (L1) and the second threshold (L2), then the arriving packets 

are dropped with dropping probability )(tPd . 

 
)(

))((
max)(

12

1

LL

Ltq
tP pd




                                                                                   (7.1) 

maxp is the maximum dropping probability and q(t) is the instantaneous queue length at 

time t.   

 

 

 

 

 

 

 

 

Figure 7.1:   Schematic diagram of the mean delay controller model 

 

The parameters used in the feedback control mechanism are: 

DT: target mean delay 

DM: measured mean delay 

λ1: measured mean arrival rate over each time window (effective arrival rate) 

λ2: measured mean arrival rate at L2 
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L2: second threshold (moveable over each time window) 

The basic idea for the controller is to measure the mean delay and the actual mean 

arrival rate over each time window (W). The actual mean arrival rate is measured by 

dividing the number of arrivals within each time window by the length of the time 

window. These measurements are used to calculate the new position of the threshold L2 

for the next time window (W+1) in order to maintain the mean delay at the required 

value. Changing the position of L2 causes changes in the effective arrival rate by 

randomly dropping packets. This process is considered as an explicit feedback 

mechanism to control the mean delay. 

 

7.2.2 The Arrival Process 

A basic assumption is made that the arrival rate is varying with time and between step 

changes follows a Poisson arrival process. A two state Markov Modulated Poisson 

Process (MMPP) source has been used to provide a time-varying arrival rate in the 

system. The abrupt changes in the state of the MMPP could be considered to 

approximately mimic those characteristics of TCP when changing the length of its 

congestion windows. The use of a single source is to emphasize the large changes in the 

arrival rate which would not be apparent had multiple sources been used. This is 

because the use of multiple sources tends to smooth out any fluctuations in the overall 

traffic levels and this would tend to defeat the objective of the investigation. 

The MMPP [93-95] is a doubly stochastic Poisson process where the mean Poisson 

arrival rate is defined by the state of a Markov chain, as in Figure (7.2). The arrival 

process has two distinct states, state1 and state2. When the arrival process is in state1, it 

generates arrivals that follow a Poisson distribution with rate (λ11). Similarly, when the 

arrival process is in state2, it generates arrivals that follow a Poisson distribution with 
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rate (λ22). The transition rate from state1 to state2 is (1), and from state2 to state1 is 

(2). Because the arrivals are entering the queue from two different states, it is important 

to calculate the effective arrival rate within each time window by counting the number 

of arrivals within each window and dividing it over the window length. 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7.2:   A two-state MMPP source 

 

The MMPP is characterized by the transition rate matrix Q of the modulating Markov 

chain and the arrival rate matrix Λ as follows:  
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In the proposed continuous-time queueing system, the time has been divided into 

slots of equal length. These slots (time windows) are assumed large enough to 

accommodate a relatively large number of events (arrivals and departures). It is also 
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assumed that the RTT from the arrival process to the queue and back to the arrival 

process is less than one time window. This assumption has been considered to enable 

the arrival process to switch states from one time window to the next.  

The time window length (TWL) is assumed to be much smaller than the mean time 

in each state of the arrival process. This is to allow the system to assume a steady state 

between changes in the arrival rate, on average, so for most time windows the arrival 

process will be in the same state. 

 

7.2.3 Performance Metrics 

The queueing model used can be considered as a modification of a MMPP/M/1/K 

queue. However, setting the TWL less than the mean time the arrival process remains in 

each state (for example TWL = 0.1/1) [96], then over most time windows the model can 

be viewed as a modification of the M/M/1/K queue. Due to the addition of the two 

thresholds in the model, the queue needs to be considered as two parts in order to 

calculate the steady state probabilities. The state transition diagram for the proposed 

system with the two thresholds L1 and L2 is shown in Figure (7.3). The first threshold L1 

is fixed and should be initialized at the beginning of the simulation. The second 

threshold L2 can be adjusted to any position in the queue. The balance equations of the 

continuous-time finite queue can be obtained through the state transition diagram (c.f. 

Figure (7.3)). The equilibrium probabilities can be expressed in terms of )0(p as 

follows: 
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Figure 7.3: The state transition diagram 
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From (7.5) and (7.7), the general equation is: 
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From state (L1+1) to state (L2): 
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Generalizing this: 
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Figure 7.4: The change in the arrival rate due to packet dropping
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: The change in the dropping probability due to packet dropping
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With reference to Figures (7.4) and (7.5), Equation (7.16) can be written in terms of the 

slope of the arrival rate characteristics as follows: 
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In general: 
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From (7.16) and (7.23), the equilibrium probability can be solved in terms of )0(p : 
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Then by using the normalization equation 1
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By applying the summation formula for the geometric series 
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Substituting (7.26) in (7.25): 
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The special case for )0(p when λ1=µ is given by: 
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The MQL is given by: 
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The target now is to find the value of L2 to achieve the target delay DT for this finite 

buffer. By applying Little‟s law [97]: 
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From (7.30) and (7.31): 
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Now L2 is the only unknown in the following equation: 
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              (7.33) 

 

Equation (7.33) forms the core of the proposed feedback control algorithm. The 

bisection method [98] has been used in order to find the roots of this equation to obtain 

the threshold position L2 for the next time window (W+1). Then L2 should be moved to 

the new position to keep the mean delay around its target.  

 

7.2.4 Performance Validation 

In order to test and validate the analytical model used as the basis for the proposed 

model, a test model has been implemented. In the test model instead of using a dynamic 

moving threshold, two fixed thresholds have been used to ensure that the model is 

working correctly in a steady state. The source used has an arrival rate that follows a 

Poisson distribution. The arrival rate has been varied only to mimic the changes in the 

arrival rate within each time window that happens as an effect of the MMPP source 

changing states. The values of the configuration parameters are summarized in Table 

(7.1).  

Figure (7.6) represents the normalized throughput obtained from the analytical 

model compared with the simulation model and it is clear that they are matching.  

Figure (7.7) shows that the mean delay obtained from the simulation is also matching 

with the mean delay obtained using the analytical model. Figure (7.8) also indicates a 
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good match between the dropping probability results obtained from simulation and 

analytical model. 

 

Table 7.1: Validation configuration parameters 

Parameter Value 

maxp 0.1 

L1 5 

L2 15 

queue size 40 

µ 

 

5 

 

 

 

Figure 7.6: The normalized throughput vs. traffic load 
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Figure 7.7: The mean delay vs. traffic load 

 

 

Figure 7.8: The dropping probability vs. traffic load 
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the analytical model, this remains in a steady state throughout the modelling process 

thus resulting in packets being dropped only between L1 and L2. In the simulation the 

dropping probability increases when the arrival rate exceeds the service rate till it 

reaches its maximum value (0.1) when all the subsequent packets are dropped. In the 

modelling process the dropping probability is obtained as follows: 

Dropping probability (analytical) = )(
2

1 1

)( xPp d

L

Lx

x


               (7.34) 

Pd (x) is the probability that packet x will be dropped, and can be calculated using Figure 

(7.9) as follows: 
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)(xp can be obtained using Equation (7.24) as follows: 
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Figure 7.9: The calculation of the dropping probability Pd (x) 
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In the simulation model the dropping probability is calculated between L1 and L2 as 

follows: 

 Dropping probability= 
system  the toarriving packets ofnumber  total

 system in the dropped packets ofnumber  total
           (7.37)                                  
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Figure 7.10: Flowchart of the mean delay controller model 
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7. 2.5 Simulation Results 

A discrete event simulation has been implemented using Java programming to assess 

the performance of the proposed model. The simulation time has been divided into time 

windows of fixed length. The bisection method has been used to solve Equation (7.33) 

at the end of each time window to find the new position for L2 that bounds the delay 

around its target value. A flowchart for the simulation is given in Figure (7.10). The 

values of the simulation parameters are summarized in Table (7.2). The two arrival rates 

have been chosen higher than the service rate to demonstrate the effectiveness of the 

algorithm in constraining an increasing delay. The values of L1 and maxp have been 

chosen as recommended in [4].  

 

Table 7.2: The mean delay controller configuration parameters 

Parameter Value 

maxp 0.1 

L1 5 

DT 5 

queue size 40 

λ11 
10 

λ22 
6 

µ 

 

5 

1 
0.02 

2 
0.01 
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Figure (7.11) represents the measured mean delay (DM) compared with the target 

mean delay (DT). The measured mean delay is calculated as the time spent in the system 

by all packets divided by the total number of packets served at the end of each time 

window [69]. Figure (7.11) shows the results obtained by using TWL=15, the measured 

delay achieved is 5.553985 and the variance of measurement is 0.340679. The high 

variance is a consequence of using a long TWL=15. By using a shorter TWL=10 it is 

noticeable that the measured mean delay is approaching the target mean delay which is 

(5). The mean delay achieved is 5.422202 and the variance of measurement is 0.283505. 

The results of this are shown in Figure (7.12). 

 

 

Figure 7.11: Measured mean delay compared with target delay at TWL=15 

 

Finding the optimum window length is an important issue and impacts on the 

accuracy of the measurements. Using a very long window is good in having enough 

arrivals to accurately measure the mean but these arrivals will most likely be at different 

arrival rates since the MMPP source might change states within the wide window. Thus, 

changing the arrival rates will not give accurate measurements of the actual mean 
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arrival rate. Using too small window gives better measurements for the actual mean 

arrival rate as the source probably is less likely to change its state within the window 

but it is still not very accurate as there will not be many arrivals to measure the mean. 

This implies that the accurate tracking of changes in the arrival rate is another factor 

that impacts on the performance of the simulation. The ideal situation is to find the 

optimum window length that tracks the variations in the arrival rate as closely as 

possible so that the arrival rate can be measured accurately. 

 

 

Figure 7.12: Measured mean delay compared with target delay at TWL=10 

 

In order to examine the effect of changing the TWL on the variance of 

measurements, different time window lengths have been used. Figure (7.13) shows the 

delay error variance calculated at different time window lengths with 95% confidence 

intervals based on ten trials for each value. The delay error variance represents the error 

in measuring the delay (DT - DM) within each time window and is calculated using 

Equation (7.38): 



Chapter 7: Maintaining Average Delay Constraints in a Buffer with Time-Varying Arrival Rate 

 

141 

 

Delay error variance =  
2

1

1




N

W

MT DD
N

                (7.38) 

 N represents the maximum number of time windows used. 

From Figure (7.13) it is noticeable that the delay error variance takes high values if 

the time window is too short or too long and it reaches its minimum value at TWL=7. So 

TWL=7 can be used as the optimum length of the time window. Compared with the 

results obtained in Figures (7.11) and (7.12) the mean delay achieved in Figure (7.14) 

was 5.147966 and the variance is 0.166576, which is a smaller value. This also shows 

that the measured delay can be successfully maintained around its target value if an 

appropriate length is chosen for the time window. 

 

 

 

Figure 7.13: Variance of measured mean delay error vs. TWL 
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Figure 7.14: Measured mean delay compared with target delay at TWL=7 

 

The algorithm has thus been demonstrated to be effective in bounding the average 

delay at its target value especially in an increasing delay condition when the arrival rates 

are varying and at high values. To test the performance of the model under lower arrival 

rate conditions, one of the arrival rates from the MMPP source has been set to a low 

value λ22=4 while the other rate is kept high at λ11=10 and µ=5. By plotting the delay 

error variance at different TWL values with 95% confidence intervals as presented in 

Figure (7.15), it is shown that the delay error variance is nearly fixed and is not affected 

by changing the length of the window. This is likely to be caused by the fact that when 

λ>µ as with λ11=10 and µ=5, then the delay has been controlled close to the target value 

which is (5). When λ<µ as with λ22=4 and µ=5, then the delay will inherently be lower 

than the target. The average delay is therefore expected to be lower than the target 

delay. This can be seen from the steady state delay results when the Poisson arrival rate 

is at the λ22 value (c.f. Figure (7.7) in Section (7.2.4)). Setting one of the arrival rates to 

a low value makes the effective arrival rate low most of the time which makes the 
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average delay lower than the target value as it appears from Figure (7.16). Figure (7.16) 

represents a high variance which equals 3.860855 at TWL=9. 

 

 

Figure 7.15: Variance of measured mean delay error vs. TWL at low arrival 

rate 

 

Figure 7.16: Measured mean delay compared with target delay at TWL=9 
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7.3 Impact of Dynamic Threshold Using Pareto Switchover 

 

7.3.1 Motivation 

Self-similarity and LRD are the characteristics of some types of modern network traffic. 

In order to examine the performance of the model under LRD and self-similar 

conditions. A Pareto swithchover has been used in the former MMPP source to replace 

the exponential one. This means the transition from state1 to state2 and from state2 to 

state1 will follow the heavy tailed Pareto distribution. Runing the model under LRD 

conditions means that the source might spend a much longer time in one of the states 

than the other. If this is a high arrival rate state then these situations can lead to 

congestion. 

 

7.3.2 Performance Results 

In the simulation model the parameters used are summarized in Table (7.3). Setting the 

arrival rate at high value in the two states caused high delay error variance. Figure 

(7.17) represents the delay error variance after using the LRD source. Figure (7.18) 

shows that at TWL=10 the error variance obtained=1.487159 and the measured delay is 

above the target value.  

The lower error variance obtained was at TWL=7 and equals 0.983471 as presented 

in Figure (7.19). It is noticeable that the measured mean delay is still above the target 

value this is because due to the Pareto distribution the source stays long times in the 

high rate states and this caused the delay to be higher than the target value. This is 

because the target delay value was too low to achieve with the high arrival rate. Figure 

(7.20) represents the relationship between target delay value and the threshold (the 

measured mean delay).  
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Table 7.3: The mean delay controller configuration parameters for LRD source 

Parameter Value 

maxp 0.1 

L1 5 

DT 5 

queue size 40 

λ11 
10 

λ22 
6 

µ 

 

5 

αon 1.2 

αoff 1.5 

kon= koff 1 

 

 

 

Figure 7.17: Variance of measured mean delay vs. TWL using LRD source at high 

arrival rate 
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Figure 7.18: Measured mean delay compared with target delay at TWL=10 

using LRD source 

 

 

Figure 7.19: Measured mean delay compared with target delay at TWL=7 

using LRD source 
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Figure 7.20: Target delay vs. the threshold (measured mean delay) 

 

To test the performance of the model under lower arrival rate conditions, one of the 

arrival rates of the source has been set to high value λ11=10 and the other rate has been 

set to low value λ22=4 while the other parameters are kept without change with µ=5. 

With the Pareto switchover times the results are likely to be biased by the possibility of 

very long state residence times due to the LRD characteristics of the Pareto distribution. 

Figure (7.21) shows that the large variations are confirmed by the wide confidence 

intervals on the delay error variance curve. It shows that the wide intervals of the error 

bars due to the use of the Pareto swithchover times which causes the source to stay at 

one of the states longer than the other within a simulation run. 

By using TWL=5, the variance obtained has high value=55894009 as in Figure 

(7.22). The lowest error variance obtained was at TWL=9 as shown in Figure (7.23). By 

using a TWL=9 the measured mean delay is close to the target delay value (5) and the 

variance=55989005 as shown in Figure (7.23).  
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Figure 7.21: Variance of measured mean delay vs. TWL using LRD source at low 

arrival rate 

 

Figure 7.22: Measured mean delay compared with target delay at TWL=5 

using LRD source at low arrival rate 
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Figure 7.23: Measured mean delay compared with target delay at TWL=9 

using LRD source at low arrival rate 

 

7.4 Summary  

The proposed algorithm is a new algorithm for controlling the mean delay in a buffer 

with time-varying arrival rate. The model presented can be used to maintain average 

delay constraints in delay sensitive applications like real-time services for Internet 

applications. The proposed approach uses a feedback control strategy to adjust the 

queue threshold dynamically which, in turn, controls the effective arrival rate by 

randomly dropping packets. In practice, if the system is operating under TCP, then these 

packet drops will cause the source to slow down as TCP reduces its congestion window 

size. An equation has been developed that relates the threshold position to the target 

mean delay over each time window.   

The performance of the model depends on the length of the time window and on the 

ability to accurately measure the changes in the measured mean delay. These issues 

have been investigated by applying the algorithm under high and low arrival rate 

conditions. The algorithm has been generalized for other arrival processes, for example 
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the use of Pareto switch over times instead of the exponential ones in order to examine 

the effects of LRD and self-similarity, which are the characteristics of some types of 

modern network traffic. The performance of the model has been validated using both 

simulation and analytical modelling. The results obtained from the simulation matched 

well with the results obtained from the analytical model. 
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CHAPTER 8 
 
Conclusions and Future Work 

 

8.1 Conclusions 

The main conclusions of this thesis are summarized as follows:  

 

 Due to the rapid growth of communication networks, congestion has become a 

widespread and persistent problem. This is particularly true of the Internet which 

has necessitated the need for the deployment of effective congestion control 

algorithms. Many AQM schemes have been proposed to control congestion but 

many of these have numerous drawbacks, such as the dependency on parameter 

settings. Therefore, designing new algorithms to control congestion and 

predicting the onset of congestion within a network has become an important 

issue. The algorithms which have been developed and reported within this thesis 

embody investigations into new methods of controlling congestion and mean 

delay in communication networks. 

 

 Based on the well known RED algorithm, an algorithm has been developed 

which sets two thresholds per class in a shared buffer. The model considered is 
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called Dual Class RED (DC-RED) as each arrival class follows the Poisson 

distribution and the dropping probability of each class is based on the RED 

algorithm. The effect of varying the parameters of one class on the other class 

has been investigated, in addition to the effects on the overall performance. The 

performance analysis has demonstrated the significant impact of the threshold 

positions on the performance measures of both classes.  It has been found that it 

is very difficult to reach a steady state condition for both classes with the shared 

buffer. 

 

 Because of the need to identify the onset of congestion at the earliest possible 

stage, one of the main aims of the thesis has been to develop an algorithm that 

predicts future traffic levels from past observations. To achieve this aim, a new 

congestion control algorithm has been developed which makes use of various 

Internet traffic characteristics, such as self-similarity and LRD, which have not 

previously been employed in congestion control methods currently used in the 

Internet. A feedback model with a number of ON/OFF sources has been 

employed which uses the mean time spent ON for each node as an indicator of 

which node is causing congestion. The algorithm forced an offending node to 

the OFF state when the number of packets exceeded a certain limit. The 

rationale behind this was that any such node that exhibits LRD and which has 

been ON for an excessively long time is likely to remain ON for a long time in 

the future. In this context, the algorithm might be considered to incorporate an 

implicit prediction mechanism. It was found to provide better performance in 

terms of the average delay, the MQL, the dropping probability and in controlling 

the number of packets than an equivalent system without the prediction. The 

drawbacks were that the MQL was high and turning the offending sources OFF 
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caused degradation in the throughput. Also the performance of the model 

appeared to be dependent on the limit value. 

 

 To remove the system dependency on setting the limit value, the prediction 

algorithm was modified to incorporate a sliding window mechanism. Modifying 

the algorithm by the inclusion of a sliding window mechanism was shown to 

further improve the performance in terms of controlling the total number of 

packets within the system and improving the throughput. The sliding window 

mechanism effectively controlled the number of packets in a stable way by 

avoiding turning OFF sources too often. 

 

 Also considered has been the important problem of maintaining QoS constraints, 

such as mean delay, which is crucially important in providing satisfactory 

transmission of real-time services over multi-service networks like the Internet 

and which were not originally designed for this purpose. The proposed approach 

used a feedback control strategy to control the mean delay by dynamically 

adjusting a threshold, which, in turn, controlled the effective arrival rate by 

randomly dropping packets. Within a TCP environment this would cause the 

source to reduce its sending rate. The source used was a two state MMPP source 

in order to model the bursty and correlated traffic and to provide a time-varying 

arrival rate in the system. This work has been carried out using a mixture of 

computer simulation and analytical modelling.  

 

 In order to maintain the average delay around its target value, the simulation 

time was divided into windows of equal length which formed the input to a 

mean delay control algorithm. An equation was developed that related the 

threshold position to the target mean delay over each time window. It was found 
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that the performance of the model depended on the length of the time window 

and on the ability to accurately detect the changes in the arrival rate. These 

issues were investigated by applying the algorithm under high and low arrival 

rate conditions and different time window lengths. The simulation results 

demonstrated that the measured mean delay could be successfully maintained 

around its target value if an appropriate length was chosen for the time window.  

 

 The mean delay control algorithm was also evaluated for a source with Pareto 

switchover times instead of the exponential ones in order to examine the effects 

of LRD and self-similarity. It was found that running the model under LRD 

conditions resulted in the source spending a much longer time in one of the 

states than in the other within the relatively limited period of a simulation run. It 

was also found that because the Pareto switched source stayed for long periods 

in the high rate states of the source, this caused the delay to be higher than the 

target value. The measured mean delay reached the target mean delay after 

setting one of the arrival rates to a low value. The steady state performance of 

the model was validated by demonstrating a good match between simulation and 

analytical models. 
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8.2 Recommendations for Future Work 

Further to the work reported in this thesis, several advances are suggested as 

recommendations for future work as follows: 

 

 For the prediction algorithm, future research should include an investigation of 

the parameter configurations. 

 

 Future research might also investigate the implementation of target MQL or 

target mean delay in the prediction algorithm using a moveable threshold or 

appropriate method. 

 

 The mean delay control algorithm might be modified to be used with multi-class 

traffic, although this would almost certainly require separate buffers for each 

type of traffic due to the obvious interdependencies between different traffic 

classes in a shared buffer environment, which would make an equilibrium state 

extremely difficult to achieve. 

 

 Modifying the mean delay controller to work as a MQL controller. Also the use 

of a sliding window instead of a fixed one could be investigated. 

 

 For all the models investigated that make use of the LRD and self-similar traffic, 

it could be useful to examine the performance under different Hurst parameter 

values. 

 

 The algorithms might be generalized for other arrival processes and for different 

queuing disciplines other than the FIFO discipline. 

 

 Future work could also include the development of the simulation models to 

cater for other network connections such as UDP sources.   
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