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Abstract 

The Sun is of fundamental importance to life on earth and is studied by scientists from 

many disciplines. It exhibits phenomena on a wide range of observable scales, 

timescales and wavelengths and due to technological developments there is a continuing 

increase in the rate at which solar data is becoming available for study which presents 

both opportunities and challenges. Two satellites recently launched to observe the sun 

are STEREO (Solar TErrestrial RElations Observatory), providing simultaneous views 

of the SUN from two different viewpoints and SDO (Solar Dynamics Observatory) 

which aims to study the solar atmosphere on small scales and times and in many 

wavelengths. The STEREO and SDO missions are providing huge volumes of data at 

rates of about 15 GB per day (initially it was 30 GB per day) and 1.5 terabytes per day 

respectively. Accessing these huge data volumes efficiently at both high spatial and 

high time resolutions is important to support scientific discovery but requires 

increasingly efficient tools to browse, locate and process specific data sets.  

This thesis investigates the development of new technologies for processing 

information contained in multiple and overlapping images of the same scene to produce 

images of improved quality. This area in general is titled Super Resolution (SR), and 

offers a technique for reducing artefacts and increasing the spatial resolution. Another 

challenge is to generate 3D images such as Anaglyphs from uncalibrated pairs of SR 

images. An automated method to generate SR images is presented here. The SR 

technique consists of three stages: image registration, interpolation and filtration. Then a 

method to produce enhanced, near real-time, 3D solar images from uncalibrated pairs of 

images is introduced. 

Image registration is an essential enabling step in SR and Anaglyph processing. 

An accurate point-to-point mapping between views is estimated, with multiple images 

registered using only information contained within the images themselves. The 

performances of the proposed methods are evaluated using benchmark evaluation 

techniques. A software application called the SOLARSTUDIO has been developed to 

integrate and run all the methods introduced in this thesis. SOLARSTUDIO offers a 

number of useful image processing tools associated with activities highly focused on 

solar images including: Active Region (AR) segmentation, anaglyph creation, solar limb 

extraction, solar events tracking and video creation. 
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CHAPTER ONE 

1 INTRODUCTION 

In October 2006 NASA launched the STEREO mission, comprising two spacecrafts 

placed into orbit around the Sun to provide a continuous stream of images from two 

separate viewpoints, and in February 2010 NASA launched the SDO (Solar Dynamics 

Observatory) which aims to study the solar atmosphere on small scales and times and in 

many wavelengths.  The STEREO and SDO missions are providing huge volumes of 

data at rates of about 15 GB (initially it was 30 GB) and 1.5 TB per day respectively. 

The STEREO mission‎provided‎ the‎ first‎opportunity‎ to‎obtain‎3D‎views‎of‎ the‎Sun‟s‎

atmosphere [1]. The high level data are provided by the STEREO and SDO science 

centres (SSC) via event catalogues. 

The STEREO science centre browser pages [2] provide JPEG images promptly, 

with uncompressed FITS images containing calibration information 2 or 3 days later 

(see page http://stereo.gsfc.nasa.gov/artifacts/artifacts_beacon.shtml). The initial 

images, captured at different wavelengths as shown in Figure ‎1.1, are available in the 

sizes 128128, 256256, 512512, 10241024 and 20482048 pixels.  

http://stereo.gsfc.nasa.gov/
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Figure ‎1.1 STEREO EUVI images taken from STEREO-Ahead on 01/02/2007 (a) EUVI 

171 Å at  00:15 UT(b) EUVI 195 Å at 00:15 UT (c) EUVI 284 at 00:51 UT (d) EUVI 304 Å 

at 00:52 UT. 

As the STEREO mission continues, the separation angle of the two spacecrafts 

with respect to the Sun, as shown in Figure ‎1.2, increases by about 44 degrees per year 

[3]. During the first 400 days of the STEREO mission the separation angle was less than 

50 and was suitable for making 3D views for the surface of the Sun. Before the 

STEREO mission, a test, to determine 3-D loop geometry by triangulation from two 

simulated views of a known structure separated by 15° was conducted by NASA [4]. 

The results compared with the known geometry are illustrated in Figure ‎1.3. For 

separation angles between about 50 and 110 (between days 400 to 800 into the 

mission) the data is suitable for determining the trajectory and accurate dimensions of 

CMEs. The separation angle was 144 in June 2010 and 4 years after launch the 

separation angle will be about 320, meaning the two spacecraft will again be close 

enough to allow 3D viewing, this time of the far side of the Sun as seen from the Earth. 
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Figure ‎1.2 Positions of the STEREO-A Ahead and STEREO-B Behind spacecraft relative 

to the Sun (yellow). The orbital radius of the earth is between the orbital radii of the two 

spacecraft. 

 
Figure ‎1.3 Determination of 3-D loop

1
 geometry from simulated images of known loops 

from two views separated by 15°. The (x, y, z) location of points (crosses) determined by 

triangulation from the STEREO satellites are plotted over the known test loops (solid 

curves) [4]. 

One of the aims here is to apply Super-Resolution (SR) techniques using a set of 

images, to provide a view of the Sun with a higher image resolution than is available in 

the individual images, for example, higher resolution anaglyphs to be created than is 

possible from pairs of original images. In this context, SR is an approach toward 

resolution enhancement which uses a set of low resolution (LR) observations taken at a 

high cadence rate so the scene does not change significantly over several images. 

                                                

1 A‎ feature‎in‎the‎Sun‟s‎corona‎ appears as magnetic flux fixed at both ends, and threading through the 

solar body, projecting into the solar atmosphere. 
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Potentially, SR can serve many applications such as web browsing, medical diagnosis, 

surveillance video, recognition, enlarging consumer photographs and satellite imaging.  

The limited spatial resolutions that can be recorded by digital devices and the 

desire to improve the down sampled images have motivated researchers to research SR. 

Also even when cameras with sufficiently high resolutions are available, the costs of 

high precision optics and imaging sensors must be taken into account for many 

commercial applications. As well as increasing the resolution of the images, SR could 

achieve this with reduced bit transfer rate, e.g. SR can be used to encode the input video 

with low resolution at low bit rate and reconstruct a high resolution video efficiently at 

the decoder side as illustrated in [5]. 

Although people can use higher resolution cameras, there is a significant 

demand to generate higher resolution images or video from LR cameras such as mobile 

phone or web cameras. SR is useful to recognize more details from a set of LR images 

of a scene such as: enhancing the license plate numbers of moving vehicles in real 

traffic videos as presented in [6] by fusing the information derived from multiple, sub-

pixel shifted, and noisy LR observations, estimating the underlying scene with a 

resolution as high as possible by combining information from several LR images when 

viewing the geological structure of planets such as mountains, valleys, rocks, etc, and 

viewing solar events such as active regions, loops, filaments, etc.  

An essential step required to enhance the performance of SR and 3D visualization 

methods is image registration. Whole image registration can be used to match an image 

and a map or two images as in SR, while registration of corresponding regions within 

pairs of images can be used to create two new images in the same horizontal plane 

reflecting a view like binocular vision. The resulting pseudo-stereo pair of images can 

be used in the construction of anaglyphs for 3D viewing. The original images will be 

used as benchmark against which improvements are achieved.  
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A key factor in the work of this thesis is there is no reliance on camera calibration, 

which has several advantages over using calibration information. Working without 

calibration with solar images avoids transferring any calibration errors into, for 

example, the process of tracking objects. Also changes in calibration do not affect the 

results. Also working without calibration provides the opportunities to apply the 

proposed methods on other scenes rather than the Sun. Another key factor is the 

immediately available JPEG files, rather than the high resolution FITS files available 2 

or 3 days later, can be made use of to enable efficient near real-time systems to be 

created.  

The sections to follow provide information relating to SR and anaglyphs with 

background in Section ‎1.1. Factors degrading STEREO images that can reduce the 3D 

perception in anaglyph are discussed in Section ‎1.2. Some existing applications relating 

to SR, anaglyphs and solar imaging are presented in Section ‎1.3. The research aims and 

objectives of this thesis are introduced in Section ‎1.4. An outline of the thesis is 

presented in Section ‎1.5. 

1.1 Background 

1.1.1 Super-resolution 

The principal work of a camera is to measure scene intensities, and like any other 

measuring instrument, has a transfer function which may introduce information loss into 

the measurement process such as: bandwidth reduction, aliasing and noise which are all 

common degradations found in imaging systems. Therefore, the resulting images are 

often unable to completely capture the fine details in a scene.  

In principle, several overlapping images of a scene could be used to increase the 

resolution. This could be achieved if the image registration and restoration are of 

sufficient accuracy, allowing recovery of image frequencies over any single image. 
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Image registration aims to spatially align one image to another. The key problem in 

image registration is to estimate the relative motion between the images of the scene, 

where each of the LR observations represents a different sampling of the scene. One can 

use this sub-pixel motion information to produce finer details. In case of moving camera 

and/or objects, depending on their speed, the shifts among successive LR frames may be 

more than one pixel. This can be resolved by finding the corresponding points which are 

the positions of the same scene point in the two images, then adjusting them to form a 

sub-pixel shift. The pair wise correspondences can be detected and matched using their 

spatial relations or various descriptors of features. For example, in this research, SURF 

(Speeded Up Robust Feature) [7] method is used to find the corresponding points (CPs) 

for STEREO Ahead and Behind pairs of images to extract the shared feature points as 

shown in Figure ‎1.4. Having a set of registered images with a common reference frame, 

enables two principal applications to be developed, Super-resolution and Anaglyphs. 

 

Figure ‎1.4 Locations of matching regions in a pair of STEREO images with separation 

angle of 8.554 using the SURF method with a threshold of 0.7. 

Image restoration techniques attempt to recover the un-degraded scene 

intensities by combining information from multiple images of the same scene. The 
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simplest example is temporal averaging, which is an effective way of reducing image 

noise of static scenes. Figure ‎1.5 [8] shows a frame taken from a fixed camera for a 

static scene of a car illuminated by very poor lighting conditions. Histogram 

equalization of a single frame fails to show the car license plate, but by averaging a 

number of frames together, the noise is reduced and the plate became clearer as shown 

in Figure ‎1.6. 

  
Figure ‎1.5 A single frame from a static video scene on the left. After histogram 

equalization is on the right. The license plate is still unreadable.  

 

1 frame 

 

5 frames 
 

10 frames 

 

20 frames 

 

40 frames 

 

125 frames 
Figure ‎1.6 Noise reduction based on averaging a number of frames. The average image 

become clearer as the the number of frames increases. 

In the case of multiple cameras (viewpoints), the problems of image restoration 

are increased. To achieve SR, every image should be mapped accurately into a global 

reference frame leading the same scene point to be allocated to the same position in 

every image in which it appears. 
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1.1.2 Anaglyphs 

Perceiving depth information by presenting the left and right images of a stereo pair to 

the left and right eyes respectively can be achieved using techniques which can be 

divided into Time-Multiplexed stereo rendering and Time-Parallel stereo rendering. The 

first method presents the two images of the stereo pair to the left and right eyes 

alternately. Additional hardware is used to ensure that each eye views the correct image, 

such as shuttered glasses with synchronised liquid crystal display (LCD) or cathode-ray 

tube (CRT) display. In the second method, the stereo images are displayed at the same 

time and another mechanism ensures each eye sees only the intended image. The most 

common example of this type is the anaglyph which uses glasses with different colour 

filters over each eye. There are some others, such as head mounted LCD or CRT based 

display devices, polarization based systems and glasses free 3D displays. 

The anaglyph is a useful way of generating stereoscopic images in a cost-

effective and technically simple way. The anaglyph is obtained by combining a pair of 

stereo intensity images using a pair of complementary colours (often red for left image 

and blue/green for the right one), in a single image. When viewed through a pair of 

glasses‎with‎matching‎colour‎ filters,‎ the‎user‟s‎ visual‎cortex‎ fuses‎ the‎ viewed‎ images,‎

providing they were not captured from points too far apart, so the brain interprets them 

as a 3D impression as shown in Figure ‎1.7. 

In summary, if SR is used to create high resolution images that provide more 

details than individual LR images, creating anaglyphs from such SR pairs of images 

should enable 3D views of the scene enhanced over those from pairs of LR images. 
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Figure ‎1.7: Red/cyan anaglyph to provide a 3D view of the sun generated from a pair of 

images‎taken‎from‎STEREO’s‎spacecrafts‎(Ahead‎and‎Behind)‎at‎2007/05/09‎16:40:45‎

(yyyy/mn/dd hh:mm:ss).  

1.2 Factors degrading STEREO images 

Not everything seen in STEREO images is related to the Sun or the solar atmosphere as 

explained in [9]. Some image features are caused either by the telescope optics, the 

cameras used to capture the images, or the way the STEREO spacecrafts are operated. 

These features can be quite confusing and below are some examples: 

 Tracks caused by cosmic rays or energetic particles from the Sun passing through 

the STEREO detectors as shown in Figure ‎1.8. 

 
Figure ‎1.8 Close up of a cosmic ray track seen on the STEREO Behind COR2 detector. 

This example was obtained from [10]. 

 Visible artefacts in the temporary beacon images caused by the use of high 
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compression factors are shown in Figure ‎1.9. Even the full resolution data have 

some compression applied to them, which results in a small amount of distortion of 

the brightest cosmic rays as discussed in reference [11]. More cosmic rays can be 

seen in the full resolution data as than in the highly compressed data as shown in 

Figure ‎1.9 (a) and (b). 

 
a 

 
b 

Figure ‎1.9 Cosmic ray events distortion caused by using the high compression factors 

applied on beacon data, as seen by the STEREO Behind EUVI telescope on January 18, 

2010. (a) Cosmic ray features distorted by the high compression factors. (b) The same 

cosmic ray features seen in the full resolution data. 

Generally, image degradations are mainly due to the loss of information in 

camera images characterized by their particular transfer functions. Each camera has a 

limited resolution due to the sampling by its imaging transducer – usually a CCD 

(Charge-Coupled Device) array. CCD arrays are also subject to several sources of noise 

including thermal noise, shot noise, and electronic noise in the amplifier circuits. The 

images are subject to optical blur even when using diffraction limited lenses and lens 

aberrations or poor focusing can make this much worse. In addition, motion blur occurs 

if the camera is moving, causing the light entering the camera from a point in the scene 

to be spread over several CCD cells during the open shutter time of the camera. 

Lighting conditions may not be the same for all images, due to automatic camera 
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adjustments or illumination changes, so compensating adjustments need to be made. 

Finally, pixel transformations applied to image such as rotation, resizing, de-noising, 

convolution etc. may lead to loss of some of the information contained in the original 

image. 

To perceive a scene in 3D, the left and right eyes must see views of the scene 

from slightly different positions and these are provided in an anaglyph by combining the 

two views in different colours and using colour filters to ensure each eye sees only the 

intended view. Although anaglyphs provide an inexpensive way of achieving 3D 

visualization, they also have drawbacks, the main one being that it is not easy to 

represent full-colour images. Each pixel in an anaglyph, fused by the visual cortex of 

the viewer, gets its colour from both left and right images, which is grey for the 

red/cyan combinations and yellow for the red/green combination. This makes it a 

challenging task to accurately display the colours of the original stereo image into a 

single pixel in the anaglyph image. Other drawbacks include; ghosting or crosstalk, 

which occurs when the eye not only see the image which is supposed to see but also a 

part of the other image which should be totally blocked from the sight of this eye. This 

can be caused by: phosphor afterglow, Liquid Crystal Shutter (LCS) leakage, and LCS 

timing [12], retinal or binocular rivalry, which happens because not all colours are 

represented by the display device; or colour merging, which means that colour 

components of the left and right images are transferred to the same colour [13]. 

In addition, losses of 3-D perception can result from: artefacts possible resulting 

from change of resolution of an image (e.g. zooming into or upsizing of an image), 

errors in fitting (e.g. the corresponding pairs of objects in a registered pair of images 

must have the same size and be on the same horizontal plane).  

As mentioned previously, STEREO and SDO both provide images of the Sun at 

huge data rates. Hence, it is not easy process to download, browse and analyze 
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significant areas of interest for these data volumes on a remote server, simply because 

these processes overload the existing Internet and network infrastructures. Also from a 

scientist‟s‎ viewpoint,‎ the‎ process‎ of‎ retrieving‎ large‎ data‎ volumes‎ from‎ even‎ a‎ few 

repositories, and dealing with immobile data sets poses the problems of searching, 

browsing and extracting interesting images while avoiding the search for a needle in a 

haystack problem. 

For the purpose of achieving super resolution, this thesis is concerned with solar 

images taken at high cadence rates, so it is not expected that the Sun will change over 

the timescale of the images used, and for the purpose of anaglyphs, it is concerned with 

solar images taken from the two spacecrafts STEREO-A and STEREO-B at small 

separations angles.  

1.3 Applications  

In this section, a list of exciting applications involving SR, anaglyphs and solar image 

visualization tools are discussed. Images with a high pixel density are desirable in many 

applications, such as high resolution (HR) medical images for medical diagnosis, high 

quality video conferencing, space and planetary surveillance, etc. The resolution 

directly available is not always enough and achieving super-resolution from 

uncalibrated images is an attractive field of study. Algorithms that are robust enough to 

be applied to real image data are beginning to emerge [8]. A comprehensive forensic 

video/image processing software [14] called‎“Cognitech‎Video‎Investigator”‎is‎used to 

enhance, denoise, deblur, and super-resolve zoom forensic video evidence (e.g. faces 

and license plates). Another successful application is the Salient Stills software [15] that 

tries to create photo quality still image from low quality interlaced video streams. 

Anaglyphs are a simple and inexpensive technique for 3D visualization and are 

used in a wide range of applications. They have been used for entertainment 
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applications in film and television, and for educational and scientific applications in 

schools and distance learning and in virtual laboratory applications.  

In [16] an anaglyph stereoscopic method was found to improve the quality of the 

geo-morphological maps from nadir Spot-HRV images, which face problems resulting 

from vegetation cover which obscures the topographic features. In [17], anaglyphs are 

used as a visualization‎ technique‎ to‎ support‎ scientific‎ application‎ for‎ NASA„s‎ 2003‎

Mars Exploration Rover Mission. Reference [18] introduced a method for using an 

anaglyph technique for a medical application, which is the investigation of membrane 

traffic. They used anaglyphs for exploring budding viral particles Force Microscope 

images.  

ColorCode 3D, described in a patent [19], provides a stereo viewing system that 

uses amber and blue filters. ColorCode 3D offers the 3D perception nearly full colour 

viewing with existing television and paint mediums. The left eye with the amber filter 

receives the cross-spectrum colour information and right eye with the blue filter sees a 

monochrome image designed to provide the depth effect. The human brain fuses both 

images to perceive a 3D view. The UK television station Channel 4 [20] broadcast a 

series of programmes encoded using this system during the week of 16 November 2009.  

It is worth noting that anaglyph generation for solar images is available‎in‎“SolarSoft”‎

using IDL, but the license requirements of IDL could restrict the public use of some of 

the functions developed for processing solar data. 

Regarding solar image browsers, JHelioviewer is a JPEG 2000-based software 

developed by Müller et al [21]. This software provides remote access as a client-server 

application to visualize and manipulate SOHO‟s image data for the purpose of 

discovering new phenomena. The Solar Weather Browser (SWB) is a software tool 

developed by the SIDC (Solar Influences Data analysis Center) [22], for visualizing 

solar images in combination with any relevant information that can be overlaid on the 
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images. The Solar Viewer widget [23] allows the viewing of recent images of the Sun 

on computer desktops. These images come from NASA/ESA‟s‎ SOHO‎ missions,‎

NASA‟s TRACE satellite, and the Big Bear Observatory. 

1.4 Research aims and objectives 

This work is inspired by the following observations regarding the state-of-the-art in this 

field: 

 The continuous increase in satellites data volumes creating the need for efficient 

computer systems for the automated processing of data. 

 The lack of existing systems that could provide data access and comparison for 

more than one mission. 

 The lack of advanced imaging systems that could provide the user with 

advanced imaging capabilities in the fields of SR and 3D processing. 

 The lack of computer platforms which are available in the public domain for the 

benefit of the scientific community. 

This work had several aims, overall to provide a computerized system accessing 

related data sets from various instruments that are often analyzed in isolation, to help 

scientists discover new phenomena. The first aim was to create super resolution images 

from a set of uncalibrated low-resolution images. The enhanced images could then be 

used to improve the quality of view from anaglyphs. However, for the purpose of 

working with uncalibrated images, feature detection and matching is first needed to 

extract correspondences in pairs of solar images. The resulting method has been called 

STEREO-CPs. To achieve super resolution, sets of images consisting of many 

overlapping views of a scene are investigated along with how to produce superior 

images using the information contained within them. 
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The second aim was to develop automated and efficient technologies for 3D 

image enhancement and processing. The focus is on reconstructing the discontinuity 

between homogeneous colour pixels to improve its perceptual quality, and then create 

anaglyphs from super resolved pairs of images. This also needs feature matching 

algorithms and several have been investigated and some integrated to achieve the 

automated techniques presented in this thesis. 

The final aim was to make the implementation of all methods presented in this 

thesis to be available to the public. This should help not only the scientific discovery but 

also the researchers to do further research without the need to re-implement what 

already done. 

The intended outcomes of this research were mainly enhanced resolution 

images, near real-time 3-D‎ images‎ (anaglyphs)‎and‎an‎ imaging‎ toolkit‎ for‎STEREO‟s‎

and‎SDO‟s‎images.‎The‎inputs‎to‎such‎a system could be several solar images which can 

be retrieved in near real-time from the STEREO and SDO satellites. 

In summary, the objectives of this research were:  

 To implement algorithms able to work on uncalibrated solar images. Working 

without calibration allows automatic alignment of a set of images (estimating the 

vertical and horizontal shifts of a sequence of images with respect to a reference 

image so they can be into the same plane) and avoids transferring any calibration 

errors into the process of tracking objects. Using the immediately available JPEG 

files with small size and different resolutions, rather than the FITS files with large 

size and single resolution, allows near real-time systems to be created efficiently. 

 To apply super-resolution technique to view the Sun with a higher image resolution 

than is available in the original individual images of the sun. 

 To implement algorithms for creating 3D images from calibrated or uncalibrated 
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pairs of images able to work near real-time. This will be useful in a few years time 

for viewing the back-side of the Sun from the earth, when the two STEREO 

spacecrafts again have a small separation angle. 

 Provide efficient tools to browse, select and manipulate specific data sets among the 

huge data volumes available from STEREO and SDO. Accessing these data 

efficiently at both high spatial and high time resolution is useful to support scientific 

discovery. 

The original contributions associated with successful evaluations presented in this 

thesis can be summarised as follows: 

 A new technique for the automatic generation of a set of CPs from an uncalibrated 

pair of STEREO images is introduced. CPs are used to automate the image 

registration process needed to construct SR images and to build 3D anaglyphs for 

the input image sequence. Benchmark evaluation techniques are used for 

performance measurements. 

 A new SR technique, which consists of three main stages: image registration, 

interpolation and filtering, is developed. This novel technique is applied to STEREO 

and SDO images to view the Sun with a higher image resolution than is available in 

the original individual images of the Sun. Quality assessment is improved by using 

both subjective and objective measurements. 

 Algorithms to create anaglyphs from uncalibrated and calibrated pairs of STEREO 

images are introduced. A comparison for the former with the information available 

in the header FITS files is presented. 

 A computer platform called SOLARSTUDIO to provide efficient access to 

STEREO and SDO images at both high spatial and high time resolution is designed. 

SOLARSTUDIO is the only tool working with both STEREO and SDO missions, 
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providing standard image processing tools, and offering more highly focused 

functions on uncalibrated solar images such as AR detection, super resolution and 

anaglyphs. The comparison involved several related works based on three criteria: 

the missions covered (SOHO, STEREO and/or SDO); the information required to 

perform the image processing (e.g. calibrated or un-calibrated data); and the 

functionalities that are offered by each application. SOLARSTUDIO could be the 

future of solar imaging. 

1.5 Outline of the thesis 

The remaining chapters and their principal contribution are organized as follows: 

 Chapter 2 provides an extended literature review of recent research on STEREO 

data, feature detection and matching methods, super-resolution techniques, anaglyph 

generation, and applications providing solar image browsing and manipulating tools. 

 Chapter ‎3 introduces‎ the‎ author‟s‎ geometric‎ registration‎ techniques‎which‎ are‎ the 

essential steps for creating the SR and anaglyph methods presented in chapters 4 and 

5 respectively. An automated method of generating a set of corresponding points 

from uncalibrated pairs of images is introduced. Some experimental results 

demonstrating the effectiveness of these techniques are also presented. 

 Chapter ‎4 presents‎ the‎ author‟s‎ method‎ of‎ super resolution including image 

registration, projection, and filtering. Experimental results to evaluate the 

performance of the proposed method comparing to existing ones are presented. The 

comparison is conducted based on ground truth data. 

 Chapter 5 introduces methods to automatically create anaglyphs from uncalibrated 

pairs of images. Automatic techniques for by the processes of rescaling and fitting 

are introduced with experimental results to show it can be made to work effectively. 

 Chapter ‎6 presents the SOLARSTUDIO, which provides efficient software for 
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visualizing and analyzing STEREO and SDO data. 

  Concluding remarks and recommendations for future work are presented in Chapter 

7.
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CHAPTER TWO 

2 LITERATURE REVIEW 

The review in this chapter covers six distinct areas of research, which in order are the 

generation of solar data used in this thesis, the geometric registration techniques which 

enable the super resolution and anaglyph methods presented in later chapters, the 

segmentation of active regions, the implementation of super resolution techniques, the 

creation of anaglyphs and the browsing and processing tools for solar images. 

2.1 Solar Data 

The Sun is of fundamental importance to life on earth and is studied by scientists from 

many disciplines. It exhibits phenomena on a wide range of sizes, timescales and 

wavelengths and due to technological developments there is a continuing increase in the 

rate at which solar data is made available for study, which presents both opportunities 

and challenges. 

Two recently launched satellites to observe the sun are STEREO (Solar 

TErrestrial RElations Observatory)
2
, launched at the end of 2006 to provide 

simultaneous views from widely spaced locations and SDO (Solar Dynamics 

                                                

2 http://stereo.gsfc.nasa.gov, last access: 2010. 
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Observatory)
3
, which officially began its five-year science mission on 14 May 2010 to 

study the solar atmosphere at small size and time scales and at many wavelengths. The 

STEREO and SDO missions are providing huge volumes of data at rates of about 15 

GB (initially it was 30 GB) and 1.5 terabytes per day respectively. 

The data from STEREO is available through the STEREO Science Center (SSC) 

archive and is utilised in many science investigations. Currently it is used through the 

Space Weather Browser from the Royal Observatory of Belgium, the “SolarSoft” Latest 

Events service maintained by the Lockheed-Martin Solar and the Astrophysics 

Laboratory as mentioned in [24]. The National Space Weather Prediction Centre 

(SWPC) that is the laboratory and service centre of the National Oceanic and 

Atmospheric Administration (NOAA) serves the STEREO Beacon data via a website 

and provides near-real-time data from the STEREO mission, but NOAA cannot create 

products that rely on STEREO data because of the limited lifetime of the STEREO 

mission [25]. 

Each spacecraft in STEREO has four instrument packages [26] mounted as 

shown in Figure ‎2.1, and each instrument provides information as follows: SECCHI
4
 

observes the solar corona and inner heliosphere from the surface of the Sun to the orbit 

of the Earth; SWAVES
5
 provides observations of the generation of CMEs, their 

evolution, and their interaction with the Earth‟s magnetosphere; IMPACT
6 

is a suite of 

seven instruments that samples the 3-D distribution of solar wind plasma electrons and 

records the characteristics of the solar energetic particle (SEP) ions and electrons; 

                                                

3 http://sdo.gsfc.nasa.gov, last access: 2010. 

4 SECCHI: Sun Earth Connection Coronal and Heliospheric Investigation 

5 SWAVES: STEREO Waves Investigation  

6 IMPACT: In-situ Measurements of Particles and CME Transients Investigation 
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PLASTIC
7
 samples solar wind and supra-thermal particles, providing measurements of 

kinetic properties and composition. 

 

Figure ‎2.1 STEREO satellite showing mounted instrument packages. 

The instrument packages can be divided into two classes, two remote-sensing 

(SECCHI, SWAVES) and two in-situ sensing (IMPACT, PLASTIC) [27]. SECCHI is a 

suite of remote sensing instruments consisting of five telescope packages: two white 

light coronagraphs (COR1: 1.5–4    (Solar Radii) and COR2: 2.5–15   ); two new 

designs of Heliospheric Imagers (HI-1: 15–84    and HI-2: 66–318   ); and an extreme 

ultraviolet imager (EUVI: 1–1.7   ), which will image the solar corona from the solar 

disk to beyond 1 AU as shown in Figure ‎2.2. As the human eye cannot see ultraviolet 

light directly, the colours of these images are just ways of showing the features of the 

sun and to differentiate different wavelengths. Different colours have been assigned to 

particular EUV wavelengths, so usually 195 Å images are green, 304 Å images are 

orange, etc. Feature such as active regions, prominences or coronal holes are 

prominently imaged in the EUVI, as shown in Figure ‎2.3. All these features may last 

                                                

7 PLASTIC: PLAsma and SupraThermal Ion Composition Investigation 
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weeks or even months, providing the opportunity to watch them move across the face of 

the Sun as it rotates. The first CME was observed using SECCHI COR STEREO-

Ahead, during its earliest instrument open-door operations in December 2006 [28]. 

 
 

Figure ‎2.2 Examples of STEREO images that are provided by the SECCHI instrument 

package. The right image shows how SECCHI can image the solar corona from the solar 

disk to beyond 318   . 

 
Figure ‎2.3 The Sun at 304 Å displaying active regions, coronal holes, and prominences 

which may last weeks or even months. Light at this wavelength is emitted by He II (helium 

ionized once) at a temperature between 60,000 K - 80,000 K; NASA. 

The SDO‟s [29] Atmospheric Imaging Assembly (AIA) observes the solar 

corona in ten wavelengths, also mainly in the UV. Some examples of images from AIA 

and from the Heliosesmic and Magnetic Imager (HMI), which measures the Sun's 
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magnetic field, are shown in Figure ‎2.4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure ‎2.4 SDO images taken on 29/07/2010 (a) AIA 171 (b) AIA 193 (c) AIA 304 (d) AIA 

211 (e) AIA 131 (f) AIA 335 (g) AIA 094 (h) AIA 4500 (i) AIA 1700 (j) AIA HMI 

Magnetogram (k) AIA Composite of 211, 193, 171 wavelengths (l) AIA Composite of 304, 

211, 171 wavelengths.  
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The twin STEREO satellites have been separating as the mission proceeds with 

the angle between them subtended at the Sun increasing by 44 degrees a year [3]. 

Therefore, for the first time, real 3D images and movies of the Sun can be generated 

(when the angle is not too large). An advantage of a wide angle is that more of the Sun 

can be seen at one time, as shown in Figure ‎2.5, whereas, before the STEREO mission, 

the Sun was watched only from the Sun-Earth line of sight, by SOHO, SDO or Earth 

based observatories. 

 
Figure ‎2.5 The separation angle between the two spacecraft and the Sun, STEREO-B 

views the events on the far side of the Sun that launch particles toward the Earth at the 

first time; NASA. 

The STEREO mission enables scientists to view the 3D structure of the Sun 

when the angle is small, but with increasing angle, leading to most of the solar surface 

being visible simultaneously, the possibilities for 3D reconstruction decreases. One of 

these satellites (STEREO-B view) will provide early views of ARs, before they come 

around to face the Earth, which should help in space weather prediction. Also, the 

ability to view most of the Sun will help to track solar events from their initiation to 

termination.  

The EUVI instrument doors of the Ahead and Behind spacecraft were opened on 

Dec 4, 2006, and on Dec 12, 2006, respectively and the two spacecrafts started to 

Visible to Ahead Visible to Behind 
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slowly separate at the end of January 2007, as shown in Table ‎2-1 (collected from [26]). 

Positions of both STEREO Ahead and Behind spacecrafts with their separation angles 

can be determined at any time through the SSC website as shown in Table ‎2-2. 

Table ‎2-1 Spacecraft separation angle per month. 

Date Separation Angle 

2007 Feb 1 0.6° 

2007 Mar 1 1.2° 

2007 Apr 1 3.0° 

2007 May 1 6.1° 

2007 Jun 1 10.6° 

 

Table ‎2-2 Positions of A and B STEREO satellites on Jun 1,2008 12:00 [30]. 

 

Heliocentric distance (AU) 

Semi-diameter (arcsec) 

HCI longitude 

HCI latitude 

Carrington longitude 

Carrington rotation number 

Heliographic (HEEQ) longitude 

Heliographic (HEEQ) latitude 

HAE longitude 

Earth Ecliptic (HEE) longitude 

Earth Ecliptic (HEE) latitude 

Roll from ecliptic north 

Roll from solar north 

Separation angle with Earth 

A and B Separation angle 

STEREO-B Earth STEREO-A 

1.050801 

913.234 

150.602 

-3.852 

84.746 

2070.765 

-24.913 

-3.852 

226.140 

-25.105 

-0.277 

-0.591 

-6.905 

25.106 

 

1.014183 

946.208 

175.515 

-0.569 

109.659 

2070.695 

-0.000 

-0.569 

251.245 

-0.000 

-0.000 

 

 

 

53.829° 

0.956956 

1002.792 

204.018 

3.080 

138.162 

2070.616 

28.503 

3.080 

279.968 

28.723 

0.113 

-0.207 

-6.828 

28.724 

 

 

The first 400 days of the STEREO mission provided data for small-angle 

stereoscopy (< 50°), which are best for making rapid-cadence high resolution 3D 

images of coronal structures [31], and for direct 3D viewing with anaglyphs (see chapter 

5), but when the angle is between 50° and 110° (days 400 to 800) it is more suitable for 

determining the trajectory and the true dimensions of the observed CMEs by performing 
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triangulation. When the angle of separation is greater than 90°, features that start on the 

far side and become more complex as they move to the front side and could produce 

events affecting Earth, are visible (for the first time). 

Data compression (ICER8 algorithm
9
) is applied on the instrument [32] before 

sending data to the ground. Artefacts of the lossy compression algorithm are not visible 

in bright image regions, especially not in active regions with bright coronal loops [33], 

but perhaps there is some loss of useful information [34]. The Compression Factor (CF) 

is given in the FITS
10

 headers of images as shown in Table ‎2-3.   

There are two separate STEREO telemetry streams coming from each 

spacecraft, the space weather beacon and the science recorder playback telemetries. The 

beacon telemetry transmits 24 hours per day providing the most recent data and images. 

The STEREO Science Centre is providing this real-time data stream for processing by a 

volunteer network of antenna stations around the world. The images are compressed by 

large factors because the beacon telemetry rate is very low[35]. 

Data of much higher quality than the beacon data transmitted by the STEREO 

spacecrafts are written to the on-board recorder and sent to the ground using the NASA 

Deep Space Network. This high quality data needs a few days to arrive at the STEREO 

Science Centre website as illustrated in [35]. Therefore, the most recent images on the 

STEREO Science Centre browser tools are beacon images. The full quality versions 

become available to replace the temporary beacon images, generally about 2-3 days 

later. However, it is worth mentioning that the beacon images are recognized by writing 

                                                

 

 

9 Incremental Cost-Effectiveness Ratio (ICER) algorithm is an image data compressor designed to fulfil the needs of deep-space applications while 

achieving state-of-the-art compression effectiveness, and can provide lossless and lossy compression 

10 FITS stands for `Flexible Image Transport System' and is the standard astronomical data format endorsed by both NASA and the IAU 

http://en.wikipedia.org/wiki/Incremental_cost-effectiveness_ratio
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the digit “7” near the end of the filename, for example in‎STEREO‎Behind‎ “n7euB”, 

while the full resolution images write the digit “4” in that position. 

Table ‎2-3 Some parameter values that can be obtained from FITS header files. 

FITS header descriptor STEREO-A image STEREO-B image 

FILENAME 20070509 204045 n4euA.fts 20070509 204045 n4euB.fts 

OBSRVTRY STEREO A  STEREO B 

INSTRUME  SECCHI SECCHI  

DETECTOR  EUVI EUVI 

DATE-OBS  2007-05-09 20:40:45.006 2007-05-09 20:41:29.966 

BITPIX                      16 16 

NAXIS1,NAXIS2 [pixels]  2048 2048 

WAVELENGTH [Å] 171 171 

DATAMIN [DN]  692.000 664.000 

DATAMAX [DN]  8261.00 6837.000 

DATAAVG [DN]  947.927 856.703 

DATASIG [DN] 354.176 295.418 

COMPRSSN 95 / ICER5 95 / ICER5 

COMPFACT  27.3387 / From file sizes 27.3166 / From file sizes 

EXPTIME [s]  4.0020400 / from MEB 4.0053920 / from MEB 

CRPIX1 [pixel]  1021.81 1033.69 

CRPIX2 [pixel]  926.434 1050.32 

CDELT1 [arcsec]  1.58777 1.59000 

CDELT2 [arcsec] 1.58777 1.59000 

 

STEREO images can be found online with different resolutions (width×height) 

128×128, 256×256, 512×512, 1024×1024 and 2048×2048 pixels, in JPEG format at 

(http://stereo-ssc.nascom.nasa.gov/cgi-bin/images), and with 512×512 and 2048×2048 

pixels for the beacon and scientific FITS images respectively, which both are available 

on (http://stereo-ssc.nascom.nasa.gov/data/beacon) and (http://stereo-

ssc.nascom.nasa.gov/data/ins_data) respectively. In the FITS headers can be found the 

pixel coordinates of the Sun centre for STEREO images, e.g., in Table 2-3, CRPIX1 = 

1021.81, CRPIX2 = 926.434 for image A and CRPIX1 = 1033.69, CRPIX2 = 1050.32 

http://stereo-ssc.nascom.nasa.gov/cgi-bin/images
http://stereo-ssc.nascom.nasa.gov/data/beacon/ahead/secchi
http://stereo-ssc.nascom.nasa.gov/data/beacon/ahead/secchi
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for image B, with a solar radius of RSUN = 998.966 for image A and RSUN = 912.946 

for image B, where both of FITS files were created on May 09-2007 20:40:45 UT. 

2.2 Geometric Registration 

An essential task for super resolution and anaglyphs is to find accurate point-to-point 

correspondences between pair of images so the images can be properly aligned. This is 

known as image registration. After reading and reflecting on the literature, it was noted 

that the presence of noise and variations in illumination and perspective makes the 

extraction of true matches from a pair of STEREO images a challenging task. Image 

registration methods can be classified as either area based or feature based. The former 

are sometimes called correlation-like or template matching methods. The location of 

corresponding points is based on the analysis of windows of predefined size about 

points of interest in the two images. The limitations of using the area-based methods are 

as follows: firstly, a rectangular window can be transformed to another quadrilateral 

shape so the same parts of the scene in the reference and sensed images are not covered; 

secondly, there is a high probability that a window containing a smooth area without 

any prominent details will be matched incorrectly with other smooth areas in the 

reference image due to its non-saliency [36]; finally, cross-correlation (CC) methods 

used for matching, are sensitive to noise and varying illumination and contrast. 

Feature-based matching methods are typically applied when the local structural 

information is transformed to different shapes and orientations in the two images; in this 

case cross correlation performs poorly in matching. The basic steps are: feature 

detection, feature matching, mapping function design, image transformation and re-

sampling [36]. Pairs of STEREO images have different shifts, scales and angles to the 

Sun, so this survey has focused on the feature based methods. 
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Features which are locally invariant are widely used for finding corresponding 

points between two images taken from different viewpoints. In [37], locally invariant 

regions are achieved by detecting corners and then taking small circular regions around 

them. Invariance to rotation is achieved using derivatives of Gaussians, while invariance 

to scale variations is achieved by taking circular regions of different sizes. 

In [38], two methods are proposed, one for feature selection to maximize the 

quality of tracking, and the other for feature monitoring during tracking in order to 

discriminate between good and bad features based on dissimilarity features. Monitoring 

feature dissimilarity for tracking has limitations, for example, a bright spot on a glossy 

surface is a bad (that is, non-rigid) feature but may change little over a long sequence; 

this may not be detected by dissimilarity measures, in other words, not everything can 

be decided locally. A method for selecting features known as KLT (Kanade-Lucas-

Tomasi) is proposed. The features are tracked through a sequence of video frames by 

selecting a frame as reference image, and then the active points are detected using 

gradient values, finally tracking these features in the next frame by finding the 

transformations between the two frames. The matched is achieved if the dissimilarity 

between the pair features is smaller than a specified residual value (10 is 

recommended). These provide the new locations for the features of the reference frame 

in the transformed frame. KLT method is designed to handle translations, and affine 

transformations but with small change in viewpoints.  

An image registration technique for the frames in video sequences, which is 

based on the use of spatial intensity gradients and a Newton-Raphson iteration, is 

presented by [39]. This technique can be used to extract depth information from stereo 

vision systems by making fewer potential matches between two images than techniques 

which examine the possible positions of registration in some fixed order. The depth 
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information can be obtained in principle by four steps: finding objects in images, 

matching objects, determining the camera parameters, and determining the distances 

from the camera to the objects. The presented approach was used to combine object 

matching to solve the camera parameters and the distances of the objects by using the 

fast registration technique. 

The scale-invariant feature transform (SIFT) algorithm presented in [40] 

identifies locations in image scale space that are invariant to translation, scaling, 

rotation, and illumination variations [41]. A flow chart of this algorithm is shown in 

Figure ‎2.6. It has four major stages: (1) scale-space peak selection; (2) key localization 

(3) orientation assignment; (4) key point descriptor. In the first stage, local peaks 

(maxima and minima of Difference of Gaussian (DoG)) are identified by constructing a 

Gaussian pyramid in a series of DoG images in multi scales. In the second stage, key 

localization is achieved to sub-pixel accuracy; also in this stage the unstable candidate 

key points are eliminated. In the third stage, a dominant orientation is assigned to each 

key point. Finally, a local descriptor is created by computing a histogram of local 

oriented gradients around the key point and stores the bins in a 128-dimensional vector 

(8 orientation bins for each of the 4×4 location bins). The matches are determined by 

finding the 2 nearest neighbours of each key-point from the first image among those in 

the second image, and the match is accepted, only if the distance to the closest 

neighbour is less than a predefined threshold (default is 0.8) to that of the second closest 

neighbour. The threshold can be increased to find more matches or can be decreased to 

find only the most robust matches. 

An alternative method to the SIFT local image descriptor, which is called PCA-

SIFT, is introduced in [42]. PCA-SIFT performs the same first three stages of SIFT but 

the smoothed weighted histogram used in SIFT is replaced using a Principal 
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Components Analysis (PCA) of normalized gradient patches. PCA-SIFT intends to 

improve the fourth stage by applying PCA to the local gradient patch, instead of using 

histograms PCA-SIFT gives 20 element descriptor, significantly shorter than the 128 

element SIFT descriptor. The authors claim that PCA based local descriptors are more 

distinctive, more robust to image deformation, and more compact than the SIFT 

descriptor. In [43], the SIFT method is used as a particle filter algorithm for the joint 

detection and tracking of independently moving objects in stereo sequences recorded by 

uncalibrated moving cameras. Moving objects entering or leaving the field of view are 

handled and the method is applied to real world stereo sequences. Object tracking in 

real scenes using a SIFT based mean shift algorithm is presented in [44]. SIFT features 

are used to find correspondences among the region of interests across frames. The mean 

shift is used to carry out similarity search via colour histograms. 

 

Figure ‎2.6 Flow chart diagram for the SIFT algorithm. 
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In [45], the SIFT approach is used to partially automate the process of estimating 

the fundamental matrix (F) (encapsulating the epipolar geometry of the two camera 

positions). The key points are identified using SIFT and matched using the L2 distance. 

Then the fundamental matrix is estimated from this set of matches by using RANSAC. 

Mikolajczyk and Schmid [46] introduced an alternative representation to the 

SIFT algorithm, called Gradient Location and Orientation Histogram (GLOH). This 

uses the standard SIFT approach, but instead of computing the descriptor on a 

rectangular grid, the descriptor is calculated on a log polar grid, where the grid is 

divided into three bins in the radial direction and eight bins in the angular direction. The 

descriptor vector has length 272, which is reduced to 128 using PCA. 

A novel scale and rotation-invariant interest point detector and descriptor 

method called Speeded Up Robust Features (or SURF) is presented in [7]. The focus is 

on scale and image rotation invariant detectors and descriptors. Their detector and 

descriptor do not use colour. They divided their approach into three steps. First, points 

of interest are selected at distinctive locations in the image using a Fast Hessian detector 

[47]. Integral images for image convolutions are used to reduce the computation time. 

Second, the feature vector is generated by constructing a square region centred on the 

point of interest and then the direction of the Haar wavelet response within the square 

neighbourhood is used to create the feature vector (the longest vector is the dominant 

orientation). Finally, a matching pair is detected, if the Euclidean distance between the 

feature vectors is less than 0.7 times the distance of the second nearest neighbour. The 

speed of matching is increased by only comparing features having the same type of 

contrast (sign of the Laplacian). 

A data set consisting of a large number of panoramic images with large seasonal 

changes (snow covered ground, bare trees, autumn leaves, etc.) is compared in [48] 
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using both SIFT and SURF. The results obtained showed that two variants of SURF, 

called U-SURF and SURF-128 worked better than the other methods in terms of 

accuracy and speed.  

Several approaches to the problem of detecting salient regions are examined in 

[47] and an approach developed using a combination of spatial and temporal saliency 

maps. Temporal saliency is computed by finding differences in the motion of particular 

regions relative to other regions. It was found that SURF was faster and more accurate 

than SIFT on their data. 

Another intensity-based and feature-based approach from different viewpoints is 

proposed in [49]. The first step extracts salient regions using an algorithm proposed in 

[50] based on an entropy detector. The next step matches these regions using similarity 

measures. Finally the efficiency of the algorithm is tested on small medical images of 

the human brain. 

Mikolajczyk [51] introduced an affine point-of-interest detector using a multi-

scale Harris detector and an iterative procedure to modify shape and scale over a 

neighbourhood around the point-of-interest. The shape is then normalized by calculating 

the second moment matrix (whilst the scale is indicated by local extrema of normalized 

derivatives over scale). The iterative procedure enables the capture of stable points that 

are invariant to affine transformations. After getting candidate matches a local 

descriptor based on normalized Gaussian derivatives is generated for each image patch 

surrounding the candidate points. Finally a matching scheme is applied to find 

corresponding points between the set of extracted regions using Mahalanobis distance 

and to improve robustness cross correlation is applied to verify the matches and the 

epipolar geometry is estimated using RANSAC. 

Corners are detected by a Harris corner detector for modelling 3D objects in 
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[52]. The matching is achieved by applying normalized cross correlation and the 

epipolar geometry is recovered from these matches using RANSAC.  

Several approaches are considered in [36] for evaluating the performances of the 

previous algorithms including Alignment Error (AE), Localization Error (LE), CP Error 

(CPE) and Test Point Error (TPE) methods, consistency checks using multiple cues and 

visual assessment by experts. AE is the error that is generated from the difference 

between the mapping model used for the registration and the actual model. This can be 

evaluated using mean square error. LE is the displacement of the CPs due to their 

inaccurate detection. It cannot be measured directly on the given image. However, the 

mean precision of most CP detection methods is known for various image types from 

computer simulation studies and ground truth comparisons. CPE is generally not a good 

alignment error measurement [36], because it only measures how well the CP 

coordinates can be fitted by the chosen mapping model. TPE refers to the CPs that are 

ignored in the calculation of the mapping parameters. This method can only be used if a 

sufficient number of the CPs is available. 

A method such as RANSAC needs at least 7 inliers. In the consistency check 

using the multiple cues method, the registered image is compared using an appropriate 

metric in the image space with the same image registered by another comparative 

method. 

Graphs of recall versus 1-precision are used in another evaluation technique to 

quantify the results in [42]. Recall and 1-precision are defined in equations 2-1 and 2-2 

respectively. The evaluation is carried out on a dataset of images. The key points for all 

of the images in the dataset are identified using the initial stages of the SIFT algorithm. 

Matches are identified for key points whose Euclidean distance between feature vectors 

falls below a chosen threshold. The matches are classified as correct-positives and false 



[Literature Review] 

 

35 

positives. A match is called correct-positive if the key points correspond to the same 

physical location (as determined either by ground truth for labelled images, or using 

known image transformations for synthetic image deformation tests), and is otherwise 

false-positive. 

The Quality Factor (QF) is used in [53] to compute the quality of the 

fundamental matrix F. QF, the mean perpendicular distance between a point and its 

corresponding epipolar line, is calculated using Equation 2-3. The fundamental matrix 

describes the geometrical relationship between an uncalibrated pair of stereo images. 

QF is a basic tool in the analysis of scenes taken from two un-calibrated cameras, and 

the lower the value of QF the better the quality. Knowledge of the epipolar geometry 

should facilitate extracting the 3D information for the scene from the images [54]. 
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where 

   : Mean distance of points to theirs epipolar lines in the two images. 

      
  : Pairs of matched points. 

 : Point to line Euclidean distance expressed in pixels. 

 : Fundamental matrix  
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2.3 Active region segmentation 

Active Regions (ARs) are‎ localized‎ volumes‎ of‎ the‎ Sun‟s‎ outer‎ atmosphere‎ where‎ a‎

strong magnetic field, emerging from the sub-surface layers, gives rise to various 

features including sunspots and faculae in the photosphere, and also represents the areas 

where flares and coronal mass ejection (CMEs) could occur [33]. A prominent AR on 

December 13-2007 is shown in Figure ‎2.7. The automated detection of ARs is 

becoming increasingly important for reliable forecasts of solar activities and space 

weather.  

 

Figure ‎2.7 A prominent AR showing several loops and twisting lines that trace magnetic 

field lines above it. Captured in EUVI 171 Å radiation on December 13, 2007. 

NOAA has assigned numbers to active regions according to their appearance 

[55], but unfortunately NOAA will not create products that rely on STEREO data 

because of the limited lifetime of the STEREO mission [56]. Several papers have 

investigated AR detection for solar images: In [57] is developed an automated detection 

of‎ARs‎based‎on‎the‎bright‎areas‎on‎a‎darker‎background‎using‎Hα‎and‎Ca‎KII‎3‎from‎

the Meudon observatory. This approach segmented a single standardized solar image 

with a resolution of 10241024 pixels and a solar disk of radius of 420 pixels with 

centre at 511.5 × 511.5 pixel. However these specifications are not compatible with 

STEREO images, because the twin observatories provide several resolutions (128×128, 

256×256, 512×512, 1024×1024, and 2048×2048), and different coordinates for the solar 

centre. Measurement accuracy is assessed by comparing the quantitative results of the 
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automated method and with those obtained manually at the Meudon observatory [58] 

and NOAA. These accuracies do not reflect comparisons of the shapes of ARs. 

In [59] an automated identification of sunspots on full-disk white-light solar 

images obtained from SOHO/MDI and Ca II K1 images from Meudon is developed. 

Edge detection is applied to find sunspot candidates followed by thresholding using 

statistical properties of regions around sunspots. The detection results achieved a high 

correlation (96%) with manual analysis. 

Work in [60] presented a new method for the automatic detection and tracking 

of solar filaments, addressing problems facing users of existing catalogues. This is done 

by taking into account structural and temporal evaluation of filaments, differences in 

intensity, sudden disappearance and reappearance. The problem of tracking is solved by 

plotting detected filaments on Carrington maps and applying region growing. 

In [61] a new technique to identify the sunspots automatically on full disk solar 

images is presented. Sobel edge-detection is applied to find sunspot candidates, and then 

morphological operations are used to filter out noise and define a local neighbourhood 

background via thresholding. The accuracy assessment is performed by comparing 

results with the manual synoptic sunspot maps generated at the Meudon Observatory. 

2.4 Super resolution 

The success of super resolution (SR) methods is highly dependent on the accuracy of 

each of its three main stages. For example, in [62], if the motion estimated for some of 

the images is not correct, then the algorithm may degrade the image rather than enhance 

it. Each stage has potential drawbacks and an error ratio which affects the performance 

of the SR technique. Poor registration performance causes errors, e.g. the multi frame 

super resolution problem described in [63], where errors occur in estimating the relative 
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displacement from the reference image. In interpolation, increasing the size of an image 

must be performed with minimum visible artefacts such as blurring (which may destroy 

edges) and/or blocking. In restoration, the characteristics of blurring are assumed to be 

known [64], such as the point spread function (PSF) of the LR sensor, and the relative 

motion between the imaging system and the original scene, but if this information is not 

available it must be estimated, and in this case blurring may appear in the output image 

due to poor estimation. 

Solar images may present several difficulties for applying SR. One problem is 

the availability of multiple images of the Sun taken at a suitably high cadence rate. 

Another problem concerns on how to register these images, taking into account the 

Sun‟s‎activity‎and‎dynamic magnetic fields [65], which result in shape changes of solar 

features. However, it is expected that some objects, such as active regions as shown in 

Figure ‎2.8, do not change significantly over the short time scales needed for the purpose 

of registration. 

 

Figure ‎2.8 Active regions (ARs) appear bright in the 195 Å wavelength image of Extreme 

UV light. 

Several researchers have published papers on SR techniques and their techniques 

may include all or any of SR stages mentioned previously. In [66], a non-uniform 

interpolation approach is used to perform the reconstruction from samples taken at non-
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uniformly distributed locations. This approach performs three stages for SR registration 

by estimating the relative motions, non-uniform interpolation to produce an enhanced 

resolution image, and smoothing by applying a de-convolution method to remove 

blurring and noise. This approach has been investigated in [64]. Its main advantage is 

the low computational load, making real-time applications possible, on the other hand, it 

needs a very accurate registration between images, and the blur or noise characteristics 

should be identical for all LR images. In the restoration step, errors which may have 

occurred in the interpolation step are ignored. 

Another approach to SR uses the frequency domain. Reconstruction can be 

achieved by relating the aliased discrete Fourier transform coefficients of the LR images 

to a sampled continuous Fourier transform of an unknown HR image, even in the 

absence of noise or blurring, as is proved in [67]. 

Deterministic regularization has been completely discussed in [64] and uses a 

regularization parameter   (smoothness constraint) as shown in Equation 2-4 during the 

reconstruction process in order to solve the ill posed problem in SR image 

reconstruction. Constrained Least Square (CLS) methods can be used to find the desired 

image. The desirable solution can be represented by a smoothness constraint, with larger 

value of   making the solution smoother. This is suitable when there are a small number 

of LR images, but if there are larger number of LR images with low noise, then a small 

value of   will provide better solution. 

     𝑌    𝑋      𝑋  

 

    

                        

                                                         (2-4) 

where 

   Observed image 
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𝑌 : Kth image 

  : Represents the additive noise 

𝑋: The real scene image 

  : Regularization parameter 

 : High pass filter 

 𝑌    𝑋  : Estimated shift between Yk images with respect to the real scene 

image. 

In [68], a multiple input smoothing convex functional is defined and used to 

obtain a globally optimal high resolution video sequence where, the regularization 

parameter is updated at each iteration step from the partially restored video sequence. 

Most previous work has not provided a‎way‎ to‎ find‎ the‎optimal‎ value‎ for‎α [69]. The 

regularization may work well when the scene is strongly restricted, e.g. a binary text 

image [8].  

Projection Onto Convex Sets (POCS) proposed in [70], accounts for the blurring 

introduced by sensors (PSF) and under-sampling which results in aliased imagery and, 

consequently, in partial loss of scene information. The resolution of the restored image 

is limited by the sensor PSF and the sampling rate, but in real applications, the PSF for 

the imaging system is not always available. Several approaches have used POCS as in 

[71] and [72] to solve the inverse problem of SR using a full generative image model 

and arbitrary motion model. POCS based approaches to SR have suffered from slow 

convergence, and because they optimized a purely constraint-based objective, they do 

not converge to a unique solution as mentioned in [8]. 

Optical flow is presented in [73] . It is suitable for images that are non-planar, 

non-rigid, or which are subject to self-occlusion when rotated. This approach should 
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work well if there is a small amount of noise. Three optical flow methods are discussed 

in [74]: Least-Squares based flow, consistent flow (CONS) and bundled flow with 

CONS flow as input. 

The Generative Method is proposed in [75]. It tends to restore the HR image 

using additional information not found in the LR images. This technique relies on 

strong class based priors to offer more information than simple smooth priors used in 

existing SR algorithms. The authors claim that the results are better in terms of both 

subjective and root-mean-square (RMS) pixel error. 

The Iterative Back-Projection Approach (IBR) is formulated in [76]. In this 

approach the HR image is constructed in a similar way to the back projection method 

used in Computer Aided Tomography (CAT), by back projecting the difference between 

simulated LR images via imaging blur and the observed LR images. This process is 

repeated iteratively to minimize the energy of the error rate. A main feature of this 

approach is that‎it‟s‎easy to understand. However, this approach uses a back projection 

kernel that is not easy to estimate.  

Robust super-resolution is proposed in [62] using a robust median pixel-wise-

estimator to discard measurements which are inconsistent with the imaging model by 

minimizing the error under a norm. Subjective measurements are applied to compare the 

results of four different algorithms. The experiments were conducted replacing the 

proposed estimator with two other robust estimators. The first estimator, the Trimmed-

Mean, is computed by sorting the errors by their magnitude, and ignoring the top 50%. 

The second estimator, the Least-Median-Of-Squares (LMeds), is computed on 1-D data. 

The result of using the median is almost identical to using the mean. Artefacts are 

introduced using both estimators due to poor estimation.  

Registration or motion estimation for each image with reference to one 
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particular image is proposed in multiple registration methods. The work in [77] shows 

how to compute the images‟ Fourier Transforms and to determine the 1-D shifts in both 

their amplitudes. The work in [78] develops a method to estimate the motion using a 

frequency-domain analysis in order to determine the shift and rotation. The work in [79] 

demonstrates how to use different down-sampled versions of the images to be analyzed 

in order to achieve SR by estimating the shift and rotation. The work in [76] shows how 

the resolution can be improved by estimating the displacements between images 

accurately. 

The method in [77] works well on images with strong frequency content in 

certain directions. The approach in [75] works well when the blurring process is known. 

Here, images are represented as two different datasets, frontal images of faces and 

printed Roman text. The approach in [49] ignores the sensor blurring by mapping the 

pixels in the observed low resolution frames into a single high resolution frame using 

the displacements between the frames. 

An image enhancement using sub-pixel displacements is presented in [79]. Sub-

pixel accuracy with respect to translation and rotation is registered for a sequence of 

images taken from a moving camera, resulting in image enhancement in the resolution 

and noise removal. The low resolution images are interpolated and merged onto a finer 

grid before de-blurring with an inverse blur operator. The method was tested on real 

noisy images and it was reported that the method worked best when the camera has little 

or no acceleration. A similar technique is proposed in [80], where a hierarchical block 

matching is used to obtain a dense optic flow field. The reference frame is interpolated 

in order to increase its resolution; the other low resolution images are then warped and 

merged into the reference frame according to the optic flow field. The SR image is then 

generated by applying a standard single image de-blurring method. 
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2.5 Anaglyphs 

An anaglyph is a combination of a stereo pair of images for left and right views of a 

scene, which contain appropriate offsets with respect to each other, where each image is 

shown using a different colour in order to achieve 3D perception by users who are 

wearing the same colour glasses. The first anaglyph image was produced in 1853 by 

Wilhelm Rollmann [81] in Leipzig and they were used to view 3D still images or 3D 

movies as shown in Figure ‎2.9. Anaglyph Maker [82] is a simple application for 

combining pairs of images taken at slightly different viewpoints on the same horizontal 

plane into a single anaglyphic image. In this application, two pre-processing steps are 

required to be performed before superimposition by the user: rescaling and fitting to 

adjust the image offsets. 

 
Figure ‎2.9 Red/Blue glasses filter the two projected images allowing each eye to see only 

one image. 

Several methods have been proposed to generate anaglyphs. The Photoshop 

method (PS) [13] is the simplest for implementation. In this method for every pixel in 

the anaglyph image, the red value is the red colour component of the left image and the 

blue/green (cyan) value is the blue/green colour component of the right image. 
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However, for example, if an imaged region is red then it will only be visible to the left 

eye and will not produce a 3D effect. In the modified Photoshop method (MPS), the 

original method is followed after first mapping the colour component of the left image 

to greyscale. This produces a grey anaglyph when corresponding left and right image 

features have equal intensity. The original PS algorithm and its variant the modified PS 

method‎ don‟t‎ take‎ into‎ account‎ the‎ transmission‎ function (percentage of the light at 

wavelength     which is passed by the filter) of the filters, as a result the generated 

anaglyph will be the same regardless of the type of glasses we use. 

 A least square (LS) projection method was introduced by Dubois [81] , which 

method takes into account two factors. First, the transmission function of the glasses 

which is used in the computation of the anaglyph. Second, the spectral distribution for 

estimating the colours in the colour space. The drawbacks of this method are the need 

for a clipping operation because of the presence of some results (colour components) 

which are out of the RGB range, and also the resulting anaglyph image is a little dark 

[13]. 

Based on the (LS) method, the uniform method (UN) was proposed by Zhang 

and McAllister [83]. This method takes into account the spectral distribution of the 

primaries and the transmission function of the filters. They attempted to improve the 

quality of the anaglyph by estimating the colours in CIE using the Least Square method, 

with the uniform form instead of the norm form for the length measure. Another 

difference between the two methods is that Dubois minimizes the square-sum of 6 

differences between the typical and real values of colours, while in the uniform method 

they minimize the maximal value among the 6 differences. 

Anaglyphs suffer from several problems including ghosting, binocular rivalry, 

and colour merging, which may sometimes prevent the viewer perceiving depth in the 
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scene. This motivated some researchers to look for methods to solve the ghosting 

problem and generate anaglyphs with better quality. 

Another approach called midpoint algorithm for generating anaglyph was 

introduced in [13], this method is based on calculating a point P in the uniform 

CIEL*a*b* (or CIELAB) space which is the midpoint of the line connecting the two 

transmitted colours. 

The study presented in [13] demonstrates some of the problems which afflict the 

generation of anaglyphs with high colour quality. A stereo pair of images of an Indian 

mother and her daughter of size 443×389 pixels, were used to test the performances of 

three algorithms: the PS method, the Midpoint method, and the least squares method. 

Creating an anaglyph using the PS method was the simplest but resulted in a ghosting 

problem and poor quality colour representation. The application of the midpoint 

algorithm to generate anaglyphs shows that, there are some resulting colours out of the 

RGB colour range. For this reason a clipping process is performed. Although this 

method takes into account the properties of the filters, it still suffers from ghosting. 

Analyzing the anaglyphs that resulted from the Eric Dubois (Least squares) method 

shows that, this method requires the clipping process, but on the other hand no ghosting 

was detected in the tested anaglyph image. While the Midpoint algorithm is the best for 

forming an anaglyph with high quality colours and good details, it still suffers from 

ghosting. On the other hand, the least square method produces an anaglyph image which 

is a bit dark with fewer details, and this can be solved by applying gamma correction, 

but the advantage of this method is that, there is little ghosting. From the previous 

comparison it appears that none of the previous described methods can produce colour 

anaglyphs without any ghosting or region merging. 

In [84], three methods are proposed to produce anaglyphs with high quality and 
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minimize the undesired ghosting artefacts. This was achieved by employing the 

following three methods: Stereo Pair Registration, Colour Components Blurring, and 

Depth Map Manipulation and Artificial Stereo Pair Synthesis. 

Alkhadour et al. [85] presented a simple and flexible method for generating a 

monochrome and a colour anaglyph. The algorithm is designed to allow the user to 

choose the level of compromise between the amount of colour and amount of ghosting 

by simply modifying the colour saturation to improve the 3D visualization of the scene. 

2.6 Visualizing and Manipulating Solar Images 

In this section, several applications and web-browsing tools associated with working on 

solar images of interest gathered from SOHO, STEREO and SDO satellites are 

introduced.  

JHelioviewer is a JPEG 2000-based visualization and discovery software for 

SOHO‟s‎ image‎ data‎ developed‎ by‎ Müller‎ et‎ al. [21]. This software provides remote 

access as a client-server application for compressed images using the lossy compression 

mode of JPEG2000, a compression technology system defined in ISO/IEC 15444-1[86]. 

The Joint Technical Committee of Photographic Experts (JPEG) has developed the 

international standard for interactivity with JPEG2000 files called JPEG 2000 

Interactive Protocol (JPIP). JHelioviewer uses JPIP and OpenGL. JPIP is used to 

minimize data transfer by streaming image data in a region-of-interest and quality-

progressive way by exploiting the multi-resolution and spatially random access 

properties of JPEG2000, making a smart dissemination of the data for client-server 

communication. This was briefly discussed by Taubmana and Prandolinib [87]. 

OpenGL allows rapid hardware acceleration of image processing and rendering (see, 

http://www.opengl.org/about/overview). JHelioviewer was implemented in Java and 
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supports users creating movies streaming between two dates/times, applying frame-by-

frame basic image processing, overlaying unlimited number of images or movies under 

adjustable transparency levels, and locating solar events data. 

The Automated Solar Activity Prediction system (ASAP) [88], identifies and 

classifies sun spots in near real-time to make predictions of the likelihood of solar 

flares. The active region candidates are detected from SOHO/MDI magnetogram 

images, while the sunspots candidates are detected from MDI continuum images. 

Region growing and neural network techniques are applied afterwards to combine both 

candidates to determine precise boundaries of sunspot groups. A new visualisation 

system for viewing 3D solar features and solar loops [89], was introduced recently to 

work under ASAP. 

The Solar Weather Browser (SWB) is a software tool developed by the SIDC 

(Solar Influences Data analysis Center) [22], for visualizing solar images in 

combination with any relevant information that can be overlaid on the images. The 

structure of the SWB includes: the SWB-server, SWB-user interface and SWB 

download and user support website. The server side uses highly compressed formats of 

solar images and context data that can be accessed by the client side on the user 

machine. Background images (e.g EIT) can be interactively combined with overlays 

(e.g. sunspot or filament locations) on the client side. This feature can be useful for 

viewing the results of automated solar image recognition/processing chains. It is also 

useful for the distribution of solar image archives playing the role of a quick-look 

viewer. SWB provides data related to SOHO and STEREO. A method for CME 

detection called CACTUS [22] (A software package for Computer Aided CME 

Tracking) is also available in SWB. A screen shot of the SWB is shown in Figure ‎2.10. 

CACTUS was developed to detect CMEs in image sequences from LASCO 
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(Large Angle and Spectrometric Coronagraph) C1 and C2 coronagraphs. The LASCO 

instrument is on board the SOHO satellite. The output of this software is a list of events 

similar to the CME catalogues as shown in the SOHO/LASCO CME catalogue (e.g. 

date, time and speed of CMEs), with principal angle, angular width and velocity 

estimation for each CME. The first steps in the CMEs detection are to merge the C2 and 

C3 images, and clean, enhance and reformat them to improve the CME contrast and 

detection.‎ Motion‎ pattern‎ extraction‎ for‎ the‎ CME‟s‎ bright‎ features‎ moving‎ outward‎

from the Sun is applied afterwards. The performance of this method was evaluated by 

comparing its output with the visually assembled CME catalogues which exist on 

http://lasco-www.nrl.navy.mil/cmelist.html. The success rate was about 75%. In 

addition, this technique revealed CMEs that were not listed in the catalogues. 

 

Figure ‎2.10 Screen-shot of the SWB tool. 

2.7 Discussions and Summary  

In‎ the‎ literature‎ review,‎ the‎ author‟s‎ contributions‎ can‎ be‎ viewed‎ as‎ making a brief 

assessment of existing SR techniques, creation of anaglyphs methods and the browsing 
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and/or manipulating tools for solar images. The success of SR approaches is dependent 

on the accuracy of individual SR stages. Precise alignment, interpolation and smoothing 

are the major keys to generate an enhanced SR model. It is clear that there have been 

several studies for SR techniques that are biased towards their own images. Also it is 

clear that applying SR on solar images is poorly investigated or achieved although these 

kinds of images potentially represent suitable data on which to apply SR techniques. In 

this thesis, a practical study of solar images taken by the STEREO and SDO spacecrafts 

is performed.  

Also the literature revealed that the existing anaglyphs for 3D viewing of solar 

images are generated either by manual scaling and fitting [90] or by the STEREO 

software that is distributed as part of the Solar Software Library which known as 

“SolarSoft”‎(to‎see‎some‎examples‎visit [91]). The links to guide the user to install the 

SolarSoft library can be found on [92]. Generating anaglyphs using IDL is based on the 

information in the FITS file headers such as the sun centre and solar radius. The license 

requirements to use IDL packages could restrict the public use of some of the developed 

functions for processing solar data. It is worth mentioning that each high resolution 

FITS file is about 8.3MB in size and only becomes available a few days after the real 

observation. Also the compressed beacon images suffer from artefacts resulting from 

the compression factor that is used onboard. Motion estimation between sequences of 

images taken from same spacecraft at different time is not easy to be estimated based on 

the information in the FITS file headers. This kind of motion estimation is important to 

generate SR images. Furthermore, working without calibration on JPEG images enables 

working in near real-time efficiently and avoids the bandwidth restrictions of the 

available network infrastructure. For example, creating a 3D video including 1000 

frames from STEREO images requires downloading more than 16.6GB of high 
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resolution FITS files and double this if applied to SDO images.  

From the previous review it can also be seen that there is a key problem to find 

true correspondences between two images with differences of scale, rotation, 

illumination and perspective transformation. Mismatched correspondences might reduce 

the performance of dependent methods such as transformation with respect to the 

reference image, scaling and fitting. Hence, the focus first might be on producing 

correct matches with sufficient number of CP‟s. 

Tracking an AR through a STEREO solar video (this video can be reconstructed 

from a software written by the author of this thesis by composing sequence of images 

between two dates/times) should be a useful cue for solar event investigations, e.g. 

tracing the AR loops between two dates or times would be useful in determining their 

trajectories and height variation. 

Also in the literature, the number of data browsing tools available for STEREO 

and SDO is limited and each tool provides rather limited functions. For example, the 

web browser for the official STEREO website [2] provides JPEG images in five 

resolutions: 128×128, 256×256, 512×512, 1024×1024, and 2048×2048 pixels and SDO 

data in the four resolutions: 512×512, 1024×1024, 2048×2048 and 4096×4096 pixels. 

On the official sites; these data are used to create screen animations with basic movie 

control functions. One of the restrictions when accessing STEREO and SDO images is 

the limit on the number of images per query. For instance, no more than 2000 images 

can be queried per instrument between two dates (time is not included which may not be 

convenient when the cadence rate is high) in the STEREO browser. The images of 

interest can be displayed with one of three options: List (just file names), images, or 

slideshow. On the SDO official site, no more than 400 images per query are allowed, 

generated as still images, movie, or archive (zipped file).  
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Considering the previous work it‎becomes‎obvious‎that‎user‟s‎ability‎to‎process‎

data is still limited. For example, existing software packages do not enable users to 

create 3D visual models of the regions of interest, create videos and SR. However, it is 

found that several applications have been developed to view solar images including: 

STEREO-GSFC, SDO-GSFC, SWB, and JHelioviewer. Major challenges still exist 

when studying the solar atmosphere at different size scales, time scales and 

wavelengths. Firstly, limited functionalities are offered by the official browsers tools for 

both STEREO and SDO. Secondly, there exist restrictions on the number of images 

queried per user. Thirdly, there is a serious lack of developed systems that enable users 

to access multi-wavelength images from more than one satellite at the same time. 

Finally, license requirements to use the IDL programming language could restrict the 

public use of some of the functions developed for processing solar data. To tackle some 

of these challenges, SOLARSTUDIO has been developed.   
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CHAPTER THREE 

3 GENERATING SETS OF CORRESPONDING POINTS 

FROM UNCALIBRATED PAIRS OF IMAGES 

3.1 Introduction 

In this chapter, a new technique for the automatic generation of a set of Corresponding 

Points (CPs) from an un-calibrated pair of images taken from the two STEREO 

spacecrafts is introduced. The ability to extract accurate CPs automatically is useful for 

several reasons. They are needed to match sequences of image to investigate time and 

spatial variations. They can also be used to automate the image registration process 

needed to construct super resolution images and to build 3D anaglyphs for the input 

image sequence. The main objective of this chapter is to generate a set of robust and 

accurate CPs for every pair of uncalibrated STEREO images that lies in a specified 

range. Working with STEREO images without calibration avoids transferring any 

calibration errors into the process of tracking objects. Moreover, using the immediately 

available JPEG files, rather than the FITS files, allows near real-time systems to be 

created efficiently.  

This chapter is organized as follows: Section ‎3.2 presents a performance 

comparison between standard algorithms using STEREO images. Section ‎3.3 presents 

problems observed with the SURF and SIFT methods. An automated method to reduce 

the number of mismatches in corresponding points is described in Section ‎3.4. 
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Experimental results are presented in Section ‎3.5. Conclusions on the results are 

provided in Section ‎3.6. 

3.2 Comparisons between SIFT, SURF and KLT Algorithms 

The implementations of the methods compared were collected from the following 

resources: SIFT from [93], SURF from [94] and KLT from [95]. The standard 

parameter values recommended by the authors are rarely optimal for any given image, 

but they work well on average collections of different images. The aims here are to 

optimise these parameter values to evaluate the performance of the corresponding 

methods. Consequently, the method that works best on the test images can be selected to 

generate the initial CPs. One of the novel aspects of this work is to enhance the quality 

of the CPs found initially. 

The evaluation methods used to quantify the results are the Quality Factor (QF) 

and visual confirmation. The former is used to monitor the number of incorrect matches 

and minimize the number of mismatches which need to be visually detected. Following 

Ke [42], the performances of the different methods were measured by examining all 

pairs of key points. A true match occurs when the pair of points corresponds to the same 

physical location. This is determined by tables of ground truth data for labelled images 

as illustrated in Figure ‎3.1 and Figure ‎3.2. 

Several STEREO images of different sizes taken from different views have been 

tested using the SIFT, SURF and KLT algorithms. From these tests it has been observed 

that the number of true matches increases with increasing algorithm threshold, but this 

also increases the number of mismatches. Examples of the performance of the SIFT 

algorithm at different thresholds ranging from 0.1 to 0.8 are shown in Table ‎3-1 and 

Table ‎3-2. 
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Figure ‎3.1 SIFT (Threshold 0.50) is applied to the pair of STEREO images (Ahead and 

Behind) EUVI 171 Å taken at 20070905_000600 with a separation angle of 29.169. One 

mismatch indicated by red line is evident. 

 

Figure ‎3.2 SURF is applied to a pair of images taken from STEREO spacecrafts at a 

separation angle of 29.169 and a threshold of 0.80, resulting in 37 CPs with 6 mismatches 

indicated by red lines. The calculation time was 0.925 s with the system described in the 

text. 

Another example used EUVI-171 Å STEREO images taken from Ahead and 

Behind spacecrafts at 19-05-2007 00:06:30. No matches were retrieved at the threshold 

of 0.10, and 308 CPs were retrieved at the threshold of 0.80 but 9 of them were 

mismatches. 

The CPU time was measured for each test. The experiments were conducted on 

a PC computer with an Intel T93001 Dual core processor running at 2.50 GHz, 6 MB 
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Level 2 cache and 3 GB of main memory. As expected, the results show that the CPU 

time increases as the size of images increases. The threshold value has almost no effect 

on the time. For example, SIFT takes 5.91 s and 5.88 s to be applied to a pair of 

STEREO EUVI images of size 792×792 pixels for thresholds 0.1 and 0.8 respectively. 

On the other hand, it requires 6.99 s and 6.97 s to be applied to a pair of STEREO of 

Ahead and Behind images of sizes 920×920 and 914×914 pixels respectively for 

thresholds of 0.4 and 0.8 respectively.  

The thresholds recommended by the authors of SIFT, SURF and KLT are 0.7, 

0.8 and 10.0 respectively. However, the experiments on pairs of STEREO images 

revealed that SIFT provides correct matches with sufficient numbers of CPs with a 

threshold of 0.6. For example, for a pair of STEREO Ahead and Behind images at the 

separation angle of 8.554, one mismatch was observed from a total of 170 CPs. The 

number of mismatches increases gradually above this threshold value as illustrated in 

Table ‎3-1 and Table ‎3-2 which present the SIFT performance on STEREO image pairs 

at the two separation angles 8.554 and 16.780. In another example, for STEREO 

EUVI 195 Å image pairs taken with Ahead  spacecraft at 19-May- 2007 00:06:30 UT 

and Behind spacecraft 30 minutes later, there are no mismatches at the threshold 0.6 but 

the number of mismatches increases gradually with greater threshold values. The same 

behaviour has been observed in all the experiments.  

The same experiments are performed with the SURF and KLT methods; the best 

threshold for each method on the tested images is found to be 0.8 for SURF as shown in 

Table ‎3-4 and 10 for KLT (maximum residue). The KLT algorithm returned no matches 

when applied to pairs of images taken from the two spacecrafts. However, it sometimes 

provided matches on pairs of images taken from a same spacecraft with a small 

separation time (150 seconds) but with mismatches. The Harries detector also returned 
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poor results on the tested images. SIFT and SURF both provided better results than the 

KLT and Harries detector algorithms. 

Table ‎3-1 SIFT performance for a pair of STEREO EUVI-171 Å images taken at 19-05-

2007 00:06:30 UT with sizes 731×731 for Ahead and 761×761 for Behind. The numbers of 

key points resulting from these images before the matching process are 702 and 620 

respectively. The separation angle is 8.554. A null value appears when the number of 

matches is less than 8 which are required by the 8-points algorithm to estimate the QF 

value. QF is estimated based on Equation 2-3. 

Threshold Number of 

 matches provided 

Number of  

correct matches 

Number of 

mismatches 

QF 

0.10 0 0 0 Null 

0.20 2 2 0 Null 

0.30 20 20 0 1.97 

0.40 65 65 0 2.10 

0.50 124 124 0 1.22 

0.60 170 169 1 3.26 

0.70 256 232 4 8.90 

0.80 308 299 9 15.06 
 

Table ‎3-2 SIFT performance for a pair of STEREO EUVI-171 Å image taken from Ahead 

and Behind spacecraft at 05-07-2007 00:06:30 with sizes 792×792 pixels. The numbers of 

extracted key points from each image are 623 and 576 respectively. The separation angle is 

16.780. 

Threshold Number of 

matches provided 

Number of  

correct 

matches 

Number of 

mismatches 

QF 

0.10 0 0 0 Null 

0.20 0 0 0 Null 

0.30 3 3 0 Null 

0.40 9 9 0 0.5 

0.50 32 32 1 2.08 

0.60 50 45 5 5.68 

0.70 85 77 8 24.66 

0.80 137 116 21 59.57 

 

The results of the comparisons of SIFT and SURF presented in Table ‎3-3 and 

Table ‎3-4 produced two observations: firstly, SURF is always faster and sometimes 

more accurate than SIFT and KLT. This result was mentioned in [47] for a different 
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dataset. SIFT provided satisfactory results but was slower and provided fewer CPs 

compared with SURF. The second observation is that the number of correct matches 

decreases as the separation angle between the two spacecrafts increases and vice versa 

as demonstrated in Figure ‎3.3. 

Table ‎3-3 The performance of SIFT on several pairs of images taken from STEREO 

Ahead and Behind at different separation angles. The standard SIFT threshold of 0.7 is 

used. It can be seen that the numbers of matches decreases with increasing separation 

angle. 

Date/Time of capture 

DD-MM-YY SS:MM:HH 

Separation  

Angle‎(θ) 

Number of 

matches 

provided 

Number 

of  

correct 

matches 

Number of 

mismatches 

QF 

19-05-2007 00:06:30 8.554 236 232 4 8.9 

05-07-2007 00:06:00 16.780 85 77 8 24.66 

05-09-2007 00:06:00 29.169 30 22 8 31.52 

05-10-2007 00:06:00 34.560 8 6 2 Null 

05-11-2007 00:06:00 39.088 13 4 8 Null 

 

Table ‎3-4 The performance of SURF on several pairs of images taken from STEREO 

Ahead and Behind at different separation angles. The standard SURF threshold of 0.8 has 

been used. 

Date/Time of capture 

DD-MM-YY 

SS:MM:HH 

Separation  

Angle‎(θ) 

Number of 

matches 

provided 

Number of  

correct 

matches 

Number of 

mismatches 

QF 

19-05-2007 00:06:30 8.554 133 133 0 3.80 

05 -07-2007 00:06:00 16.780 83 81 2 5.55 

05-09-2007 00:06:00 29.169 35 32 5 22.83 

05-10-2007 00:06:00 34.560 25 7 18 75.32 

05-11-2007 00:06:00 39.088 25 5 20 80.20 
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Figure ‎3.3 The variation of numbers of correct matches with separation angle for the SIFT 

method applied to pairs of STEREO images. 

3.3 The observed problems 

This section describes several experiments performed to automatically find the CPs 

within two images. The SIFT and SURF algorithms are designed to be insensitive to 

scale, translation, and rotation variations as demonstrated in [40], [47], [7] and [41]. 

However, the experiments with STEREO images revealed several problems which are 

listed below. 

Sometimes the SIFT and SURF algorithms provide redundant corresponding 

points as illustrated in Figure ‎3.4. In this figure, the SIFT algorithm provides 20 

corresponding points, but three of them, labelled A, refer to the same location. 

Unchecked, this could affect the performance of functions that require a minimum 

number of CPs, such as the 8-point algorithm and RANSAC (7-point algorithm). 

With both SIFT and SURF, sometimes more than one point in the left image 

corresponds to the same point in the right image as illustrated in Figure ‎3.4 by rows 

labelled B; these are called conflicting points. 

The default parameter values recommended by the authors of the previous works 

0

50

100

150

200

250

8.554 16.78 29.169 34.56 39.088

N
u

m
b

e
r 

o
f 

C
P

s

Separation Angle

The relation between the numbers of correct matches 
and the STEREO separation angle

Correct Matches



[Generating Sets of CPs From Uncalibrated Pairs of Images] 

 

59 

may not be optimal for particular types of images. For example, using the default 

parameters sometimes provides too many correspondences which are mismatches. An 

example showing false CPs after using the default threshold for SIFT is shown in Figure 

‎3.5. A methodology to reduce mismatches is presented in Section ‎3.4. 

  CPs in the left image                            CPs in the right image 

292.440000           319.480000           318.610000           318.390000 

292.440000           319.480000           318.610000           318.390000 

292.440000           319.480000           318.610000           318.390000 
225.960000           314.900000           254.670000           310.530000 

435.230000           417.500000           446.640000           405.820000 

177.870000           392.470000           208.880000           387.260000 

246.760000           316.870000           274.610000           316.030000 

552.650000           373.910000           545.090000           365.340000 

389.160000           287.780000           404.000000           288.720000 

510.520000           386.870000           510.790000           377.620000 

480.510000           380.220000           485.160000           371.150000 

287.300000           338.490000           313.370000           335.240000 

415.310000           526.360000           423.250000           505.380000 

220.050000           410.400000           248.980000           402.720000 

220.090000           410.540000           248.980000           402.720000 
168.330000           411.440000           199.440000           405.490000 

198.490000           401.780000           228.020000           395.750000 

346.000000           339.130000           367.970000           336.490000 

251.860000           346.920000           280.410000           343.960000 

206.020000           300.200000           234.210000           303.210000 

                              Found 20 matches. 

Figure ‎3.4 CPs generated from SIFT applied on a pair of STEREO Ahead and Behind 

images taken at 09 May 2007 000630 UT. Redundant CPs are observed. (A) Triply 

redundant CPs. (B) Two different CPs correspond to the same point in the right image. 

3.4 An automated method for mismatches reduction 

Due to the effects of mismatches in image registration resulting in artefacts in super 

resolution images [96] and distortions in 3D views (see Section ‎3.5), it is very important 

to understand the main causes of mismatches as discussed in Subsection ‎3.3, in order to 

eliminate them. This section describes an automated algorithm that has been developed 

to generate sets of high-quality CPs for pairs of STEREO images, which is called 

STEREO-CPs. 

The experiments revealed that the standard thresholds of SIFT and SURF rarely 

worked well on the test images. Figure ‎3.5 and Figure ‎3.6 show two examples of 

a. Redundant 

CP‟s. 

b. Two CP‟s 
correspond to 

the same point 

in the right 

image. 
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applying SIFT using its default threshold on pairs of STEREO images. It was noted that 

the number of mismatches increases with increasing threshold value for both SIFT and 

SURF methods. Decreasing the threshold value decreases the number of mismatches 

and also the number of correct matches, perhaps causing insufficient number of high-

quality CPs to be obtained. A method to decrease the number of mismatches by 

integrating the SIFT and SURF algorithms is proposed. The SURF algorithm is used to 

generate initial CPs and the number of mismatches is reduced by applying the SIFT 

method to the areas surrounding every pair of initial points. 

 

Figure ‎3.5 SIFT algorithm (Threshold = 0.70) is applied on STEREO pair images (from 

Ahead and Behind) EUV 171 at a separation angle of 16.78. Several mismatches indicated 

by red lines are visible. 

This section is organized as follows: tackling the redundant or conflicting CP 

pairs is presented in Subsection ‎3.4.1. In Subsection ‎3.4.2, the mismatches are reduced 

by method using SIFT after SURF then thresholding the median of difference of pairs of 

coordinates. 
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Figure ‎3.6 Two mismatches (indicated by red lines) from applying SIFT to a pair 

STEREO images are visible. The SIFT threshold is 0.7, the images were taken at 05-10-

2007‎00:06:00‎and‎θ‎is‎34.56. 

3.4.1 Removing redundant and conflicting CPs 

Redundant and conflicting CPs in the initial set generated by the SURF algorithm are 

removed by the algorithm shown as a flow chart in Figure ‎3.7. 

3.4.2 Mismatch elimination  

The number of generated mismatches can be minimized by discarding the extreme 

deviations from the median of all the pairs coordinates. This can be achieved by going 

through the following steps: 

 The values of    and    can be calculated by applying the equations 3-1 and  

3-2. 

 The averages of    and    (       and       ) are calculated by applying equations  

3-3 and 3-4. 

 The medians           for        and        respectively are founded by applying 

equations 3-5 and 3-6. 
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Figure ‎3.7 Flow chart diagram for removing redundant CPs in the results from SIFT and 

SURF algorithms. 

 The differences of    and    with their medians (         ) are calculated by 

applying the equations 3-7 and 3-8.  

 Then outliers are detected if    is greater than the threshold_x defined in 

Equation 3-9, or    exceeds the threshold_y defined in Equation 3-10, as 

specified in Equation 3-11. 

The thresholds are used to identify the mismatches from the distribution of true 

matches, by discarding the pairs of points that have extreme deviation from the median. 

It was found that these thresholds work well in several experiments with pairs of 

STEREO images. A flow chart of this method is shown in Figure ‎3.8. The example in 

Table ‎3-5 uses the CPs for pairs of STEREO Ahead and Behind images that are shown 

Temp1=sizeOf(Mat1); Temp2=sizeOf(Mat2); 

For every item in Mat1 and Mat2 

Fetch Item1, Item2 from Mat1, Mat2 

Fetch Item2 from Mat2 

Add Item1 into Temp1 

Add Item2 into Temp2 

 

Go to next Item 

If Item1 

in Temp1 

Return Temp1, Temp2 

Are all 

Items? 

END 

Read Mat1, Mat2 
generated from SURF 
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in Figure ‎3.9,‎ with‎ outliers‎ indicated‎ in‎ red‎ texts‎ in‎ columns‎ αy‎ and‎ αx.‎ Another 

example is the three mismatches clearly visible in Figure ‎3.10 and represented by a plot 

diagram as shown in Figure ‎3.11.  

                                                 (3-1) 

                                                                (3-2) 

      
  

   
                                (3-3) 

       
  

   
               (3-4) 

 
 

                       (3-5) 

 
 

                      (3-6) 

                                            (3-7) 

  α    
 

                                     (3-8) 

         𝑋              
               

 
                 (3-9) 

         𝑌              
               

 
                  (3-10) 

                  
             𝑋

  
             𝑌

                                           (3-11) 

where: 

N: Number of CPs. 

     : X-axis coordinates for the CPs in the left and right images respectively. 

     : Y-axis coordinates for the CPs in the left and right images respectively. 

     : Percentage difference in the pair X-coordinates for the CPs. 

      : Percentage differences in the pair Y-coordinates for the CPs. 

  ,     Medians of                 respectively. 
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Figure ‎3.8 The flow chart diagram for reducing mismatches that could result from the 

SURF method. 

For each point in list of CPs 

Go to next point 

Diff_X(i)=abs(X1(i)- X2(i)) 

Diff_Y(i)=abs(Y1(i)- Y2(i)) 

i=i+1 

SumDx=sum(Diff_X) 

SumDy=sum(Diff_Y) 

i=0, idx1=0, idx2=0 

For each value in Diff_X, Diff_Y 

Go to next value 

i=i+1 

Percent_X(i)= Diff_X(i)/SumDx 

Percent_Y(i)= Diff_Y(i)/SumDy 

Are all 

values? 

Mx=median(Percent_X) 

My=median(Percent_Y) 

Are all 

values? 

Inlier(++idx1)= i 

Outlier(++idx2)=i 

END 

i=i+1 

Remove pair points at position i 
Is 

 (αx(i)> ThresholdX 
Or 

   αy(i)> ThresholdY) 

αx=abs(Mx-Percent_X);  

αy=abs(My-Percent_Y); 

 i=0; 

For each value in αx, αy 

End of 

list? 



[Generating Sets of CPs From Uncalibrated Pairs of Images] 

 

65 

Table ‎3-5 Mismatches reduction performed on the pair of images shown in Figure ‎3.6. The 

mismatches‎are‎marked‎in‎red‎colour‎for‎all‎CPs‎that‎have‎αy‎or‎αx‎greater than threshold-

y and threshold-x respectively. 

T-

True 

F-

False 

EUVI Ahead 

spacecraft 

EUVI Behind 

spacecraft 
Differences in coordinates of CPs 

Y1-

axis 

X1-

axis 

Y2-

axis 

X2-

axis 
|∆Y| |∆X| ∆Y% ∆X% αy αx 

F 466.22 415.60 428.82 424.27 37.40 8.67 4.44% 0.91% 0.020 0.141 

F 776.82 209.27 391.28 102.71 385.54 106.56 45.81% 11.23% 0.394 0.037 

T 196.30 357.42 165.42 421.28 30.88 63.86 3.67% 6.73% 0.027 0.082 

T 438.73 377.61 385.11 555.26 53.62 177.65 6.37% 18.71% 0.000 0.037 

T 512.47 279.78 458.72 473.90 53.75 194.12 6.39% 20.45% 0.000 0.055 

F 317.09 681.98 489.19 705.24 172.10 23.26 20.45% 2.45% 0.140 0.125 

T 552.38 234.90 498.28 425.63 54.10 190.73 6.43% 20.09% 0.000 0.051 

T 574.12 209.77 519.84 394.17 54.28 184.40 6.45% 19.43% 0.000 0.045 
Total 841.67 821.53 100% 100%   

Average 12.50% 12.50%   

Median 6.41% 14.97% 0.010 0.053 

Threshold-Y and Threshold-X   0.206 0.104 

 

 

 

Figure ‎3.9 Plot of differences of medians versus CP numbers generated after applying the 

SIFT algorithm on the pair images represented in Table ‎3-5. Outliers are identified as 

having‎αx‎greater‎than‎threshold-X‎or‎αy‎greater‎than‎threshold-Y. 
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Figure ‎3.10 Several mismatches resulting from after applying SIFT on a pair of STEREO 

images. The standard SIFT threshold was used. The separation angle is 29.169. 

 

Figure ‎3.11 Plot of differences of medians versus CP numbers that were generated after 

applying the SIFT algorithm on the pair of STEREO images that is shown in Figure ‎3.10. 

The‎mismatches‎are‎identified‎as‎having‎αx‎greater‎than‎the‎estimated‎threshold-X of 

0.0164‎and‎αy‎greater‎than‎threshold-Y of 0.0137. Seven CPs were identified as 

mismatches from a total of 26 CPs. 

3.4.2.1 Mismatches reduction using a SIFT after SURF method 

The previous algorithm still has the drawback that the displacements of some 

mismatches may be similar to some correct matches as illustrated in Figure ‎3.12. 

However, the number of mismatches can often be reduced by using the SIFT algorithm 

to match the area surrounding each CP provided by the SURF algorithm. SURF is used 
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to generate the initial CPs based on the results of the comparisons of SIFT, KLT and 

SURF presented in Section ‎3.2 which revealed that SURF is always faster and most 

times provides more accurate CPs than SIFT and KLT on the tested images. The results 

are evaluated by estimating QF values and the visual assessments on labelled images. 

 

Figure ‎3.12 Result from applying the median based method after the SIFT algorithm. The 

matches before removing the mismatches are shown in Figure ‎3.10. The remaining 

mismatches which are indicated by red lines have similar displacements to the correct 

matches. 

Several experiments have been performed to discard mismatches that result after 

applying the SURF method to pairs of images. The results have shown that the number 

of acceptable CPs decreases as the separation angle between the two STEREO 

spacecrafts increases and vice versa. In most cases the QF value is improved after 

verification by the SIFT method.  

The SURF method was applied with the recommended threshold value to 

several pairs of STEREO images taken from the Ahead and Behind spacecrafts at 

different separation angles. At a separation angle of 8.554, the QF value was equal to 

3.85 with a total of 157 CPs using the SURF method. The QF value improved to 1.48 

with total of 150 CPs after applying the SIFT method to the areas surrounding the 157 

pairs CPs as shown in Figure ‎3.13. This experiment was repeated with four larger 
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separation angles with the results shown in Table 3-6. The QF value is improved for 

most of the experiments, but some mismatches are still associated with the output. For 

this reason a third technique, combining the previous two methods to minimise the 

number of mismatches, is presented in the next subsection. 

 

Figure ‎3.13 CPs from the SURF algorithm are verified using the SIFT method to discard 

mismatches. The SURF and SIFT thresholds are 0.7 and 0.6 respectively. The separation 

angle is 8.554. The QF value for the resulting CPs improved from 3.85 to 1.48. 

3.4.2.2 Integration of SIFT after SURF and the median based methods 

The integration of SIFT after SURF and the median based methods are described by the 

flowchart shown in Figure ‎3.14. The input is a pair of images from which the initial set 

of CPs is extracted by the SURF method. The CPs are verified by SIFT after SURF 

using surrounding area of size 100×100 centred around each pair of candidate CPs. This 

size has been found to provide enough information about the neighbouring pixels. If 

SIFT returns no matches for a candidate CP then this CP is discarded. Then the final 

stage reduces the number of mismatches by discarding CPs which satisfy the 

thresholding criteria that is described in Subsection ‎3.4.2. 
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Table ‎3-6 Results from applying SIFT after SURF to STEREO image pairs for five 

different separation angles. QF is used to show the improvements in the quality of the CPs 

before and after SIFT validation. The QF values were improved in all experiments except 

where insufficient number of CPs remained for the 8-points algorithm as shown by the 

null indicator. 

Number and 

separation 

Image size 

(width x height) 

SURF results 

before Validation 

After SIFT 

validation 
Date/ Time 

DDMMYYYY 

SSMMHH UT 
Comment  Angle Left Right 

Number 

of CPs 
QF 

Number 

of CPs 
QF 

1 8.554 761x761 731x731 133 3.85 129 1.48 19052007 000630. 

2 16.780 792x792 792x792 83 5.59 74 2.03 05072007 006000. 

3 29.169 778x778 748x748 35 22.83 24 7.23 05092007 000600. 

4 34.560 920x920 914x914 25 75.32 7 Null 

05102007 000600. 

Four correct matches 

and three mismatches. 

5 39.088 920x920 914x914 25 80.20 2 Null 
05112007 000600. 

No mismatches. 

 

3.5 Experimental results 

As indicated before, SURF provides better overall performance on the STEREO test 

images, compared to SIFT and KLT, but also produces significant numbers of 

mismatches. Therefore, the comparison is based on the results from the SURF method. 

A comparison among the implementation of the SURF, RANSAC and STEREO-CPs 

methods is carried out and shown in Table ‎3-7. This table contains information obtained 

by averaging the results of more than 100 experiments. These experiments are carried 

out on test images with separation angles between 0.624 and 39.088 shown in 

Appendix A. The comparison criteria are based on averaging the QF values, (QF 

averages the LQb values where LQb is the largest perpendicular distance of a point to 

its associated epipolar line), and the number of accepted QF values.  
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Figure ‎3.14 Structure of the STEREO-CPs algorithm for generating an improved set of 

correct matches. 

Table ‎3-7 Performance comparison between SURF, RANSAC and the STEREO-CPs 

methods for experiments carried out on 102 pairs of test images. 

Description SURF RANSAC The STEREO-CPs 

Average of QF values 11.28 3.05 1.35 

Average of LQb values 131.17 19.78 8.76 

Qualified QF values (QF<1) 15.68% 40.19% 59.80% 
 

The results show an improvement in the quality of the remaining CPs using both 

RANSAC and STEREO-CPs. The average QF value for all the experiments with SURF, 

RANSAC and the STEREO-CPs are 11.28, 3.05 and 1.35 respectively, so STEREO-

CPs gives the best performance of the three methods. The averages of the LQb values 

are found to be 131.17, 19.78 and 8.76 for SURF, RANSAC and the STEREO-CPs, 

1. Read Pair Images (Limg, Rimg) 

2. Apply SURF to (Limg, Rimg) 

3. Save the resulting CPs in a matrix called mat1 

4. Apply SIFT on the area surrounding each CP in mat1 

 

5. Remove all points from mat1 that return zero match by SIFT 

6. Remove the redundant points from mat1 if found 

7. Remove the outliers from mat1 using the threshold of medians method 

 

8. Save mat1 in an external file including the file names of Left and Right 

images 
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respectively, and again the best performance is from the STEREO-CPs method. Finally, 

the percentages of the accepted CPs which had QF values less than 1 are 15.68%, 

40.19%, and 59.80% for SURF, RANSAC and the STEREO-CPs respectively. Again 

STEREO-CPs gave the best result of the three. 

The null values that appear near the bottom of the Table shown in Appendix A 

represent 2.94% of the results from the experiments. These indicate that a QF value 

could not be calculated due to the number of CPs being less than the minimum of 8 

needed by the 8-points algorithm used to calculate the fundamental matrix appearing in 

the definition of QF. This almost always happens when the pair of images is featureless 

and/or the separation angle is greater than about 35. 

The QF values for the pairs of STEREO images increase when the separation 

angle between the two spacecraft increases, and vice versa. For example, Figure ‎3.15 

shows how the STEREO-CPs can be used to remove mismatches. For this figure the 

separation angle is 29.169, the SURF and SIFT thresholds are 0.8 and 0.6 respectively. 

The‎QF‎value‎for‎the‎SURF‟s‎output‎is 22.83, and when the STEREO-CPs is applied it 

improves to 4.13. Several mismatches were generated after applying the SURF method 

as shown in Figure ‎3.15 (a). The STEREO-CPs method reduces the number of matches 

from 41 to 20 as shown in Figure ‎3.15 (b), taking 13.29 s of CPU time. The running 

time increases as the number of CPs increases and vice versa.  

An example of a 3D anaglyph generated using the set of CPs obtained by 

applying SURF, RANSAC and the STEREO-CPs is introduced to show the resulting 

distortion generated by the rectification process from an unaccepted QF value, where 

the minimum distortion can be achieved at the smallest QF value. The same rectification 

method (called DRUI direct rectification algorithm for un-calibrated images proposed 

by Al-Zahrani [97]) is used to align the pair of images into the same plane. This 
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example is shown in Figure ‎3.16. This pair of EUVI 195 Å images was taken from 

STEREO Ahead and Behind on March 15, 2007 at 22:15:40 at a separation angle of 

1.935. SURF, RANSAC and the STEREO-CPs provided a set of CPs with QF values 

of 1.74, 0.46 and 0.35 respectively. The distortion that can be generated using CPs with 

unacceptable QF value is clearly observed in Figure ‎3.16 (a). The resulting distortion 

generated by the rectification process is less at the smallest QF values, as shown in 

Figure ‎3.16 (a, b and c). 

 

 

(a) 

 

(b) 

Figure ‎3.15: Comparison of before and after applying the STEREO-CPs method to pairs 

of STEREO images with a separation of 29.169. (a) CPs from SURF method including 20 

mismatches. (b) CPs remaining after the STEREO-CPs method with 1 mismatch 

remaining at the pair points numbered 18. 
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a b c 
Figure ‎3.16 Anaglyphs generated from an uncalibrated pair of STEREO images, taken in 

March 15, 2007 at 22:15:40 UT, at a separation angle of 1.935. The distorted image in the 

Figure (a) has been generated from a set of CPs extracted from SURF with QF value of 

1.74. The Figure in (b) is generated from a set of CPs extracted after applying RANSAC 

with QF value of 0.46. The Figure in (c) is generated from a set of CPs extracted from the 

STEREO-CPs with QF value of 0.35. 

3.6 Conclusions 

This chapter presents a method called STEREO-CPs which aims to generate a set of 

CPs of sufficient quality and number. This technology will represent the corner stone 

for the advanced imaging applications, introduced in the chapters to follow, such as SR 

and 3D anaglyphs.‎To‎the‎author‟s knowledge, this is the first time a study like this has 

been conducted. This method can be applied to FITS and JPEG images. The work 

involved uncalibrated JPEG images to run on scenes other than the Sun and to provide 

efficient algorithms capable for use on near real-time based systems, whereas the FITS 

files of large size provided in single resolution (2048×2048 pixels) take about 3 days 

before they become available on the archive. These algorithms will be ready for use 

when the STEREO spacecrafts meet again. The potential of this technology is huge 
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because it can be used, for example, to generate anaglyphs, generate super resolution 

images, or for feature tracking. 

One of the major advantages of STEREO-CPs is that it is fully automated and 

requires no prior information about the processed images. STEREO-CPs is the first CPs 

algorithm designed for STEREO. Compared to the standard methods in more than 100 

experiments, the STEREO-CPs method is more discriminating, leading to significant 

improvements in the quality set of the CPs in pairs of STEREO images. 

The most significant current limitation of the STEREO-CP method is that it 

works well at separation angles only up to 35. This is adequate for the early part of the 

STEREO mission from March to July 2007 which is convenient for the creation of 3D 

solar images.  

Currently, this work is being extending to find matches between images at larger 

angles, to represent other scenes rather than the Sun, and exploring ways to apply the 

ideas behind the STEREO-CPs to other related algorithms. STEREO-CPs is used to 

enhance the performance of the work in later chapters generating SR, anaglyphs and 

feature tracking for solar images. Creating true 3D solar images (anaglyphs from two 

different views) from a pair of STEREO images is feasible if the separation angle 

between the two spacecraft is small. However, STEREO-CPs can be used to create the 

anaglyph by combining two extreme UV images taken several hours apart by the same 

spacecraft. This can be possible if the sun has rotated around enough to create a 

sufficiently separated perspective to create 3D as illustrated on 

http://stereo.gsfc.nasa.gov/gallery/item.php?id=3dimages&iid=50, last access 17 Nov, 

2010.  

http://stereo.gsfc.nasa.gov/gallery/item.php?id=3dimages&iid=50
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CHAPTER FOUR 

4 SUPER RESOLUTION FOR SOLAR IMAGES 

4.1 Introduction 

The fidelity of data gathered by cameras is limited by the quality of the optical and 

electrical components of the digital imaging system. In other words, the principal work 

of a camera is to measure scene intensities, and like any other measuring instrument, has 

a transfer function which may introduce information losses into the measurement 

process such as: bandwidth reduction and noise which are the common degradations 

found in imaging system. Therefore, the resulting images are often unable to completely 

capture the fine details in a scene. Furthermore, artefacts caused by radiation and 

electronic components can be produced in images from satellites. The sampled images 

captured by the detectors are limited in their resolution also resulting in the loss of some 

details from the real scene and possibly aliasing. For example, some details in the real 

scene projected onto the detector are smaller than the size of the individual cell in the 

detection array and are averaged out during the image captured process. These details 

will not be available for other image processing operations such as image sharpening 

and filtering tools offered by commonly available commercial imaging or graphics 

packages to be applied on. Finally, the output of digital cameras is often compressed 

with a JPEG encoder, generating quantization noise. If the coding rate of a JPEG 
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encoder is not high enough, there appear noticeable blocking and ringing artefacts in the 

decoded image [98]. Many of these problems could be reduced by using super 

resolution (SR) techniques. 

Several existing SR tools, including Iterated Back Projection (IBP), Projection 

onto Convex Sets (POCS), Robust SR and QE SR, were tested by applying them on 

STEREO and SDO images. It was noted that most of these tools are complex and 

sometimes biased towards their own images, resulting in unsatisfactory results (visible 

artefacts) with STEREO and SDO images. This could be due to inaccurate solar image 

registration, failure to recover high resolution details from the tested images and/or 

inappropriate image filtration. Furthermore, it is clear that applying SR on solar images 

is poorly offered by a single imaging platform especially designed for solar images. In 

this thesis, a practical study on real solar images taken by the STEREO and SDO 

spacecrafts is performed to tackle these problems.  

This chapter is concerned with using solar images taken with small shifts 

between them by a single camera to produce SR. The aims of this, particularly in this 

thesis, are to provide finer details than are available in the individual JPEG images 

provided by STEREO and SDO missions, constructing HR enlargements or finer view 

from a set of LR images. In contrast to image interpolation (e.g., [99] and [100]), new 

HR details are added to the reconstruction. It has been found that SR can be achieved 

efficiently from compressed images provided by STEREO and SDO at high cadence 

rate. SR methods to remove JPEG artefacts are presented in [98] and [101] by 

reconstructing a map from low quality images (LR or JPEG encoded images) to target 

high quality images.  

No prior information about the camera, such as the locations, focal length, PSF, 

etc, are assumed and any information needed are gathered from the images themselves, 

which make the presented SR approach applicable to scenes other than the Sun. Solar 
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images have been selected to apply this on because of the availability of LR set of 

images with small shifts (when the cadence rate is high). The method of achieving SR 

proposed in this chapter includes three steps: firstly, registration of the solar images is 

achieved by fusing the information derived from multiple, sub-pixel shifted images; 

secondly, application of a special interpolation technique by projecting and selecting the 

most appropriate pixels to construct the high resolution grid; and thirdly a smoothing 

method to smooth the output data. 

The remaining sections are organized as follows. In Section ‎4.2 a method to 

register solar images is introduced. In Section ‎4.3, a method projecting all LR images 

onto a HR grid and interpolating only certain excluded pixels is presented. In Section 

‎4.4, a smoothing method based on Gaussian filtering is described. In Section ‎4.5, three 

types of objective measurements and benchmark evaluations, to provide quantitative 

comparisons, are explained. Several experimental results and evaluation with respect to 

the objective and subjective quality measurements are presented in Section ‎4.6. Finally, 

summary and conclusions are presented in Section ‎4.7. 

4.2 Registration 

SR algorithms using multiple images are improved by accurate image registration [76]. 

The ideal scenario, is for the image registration operation to know the displacement 

between images before the alignment process. With STEREO images, small 

displacements result from small time intervals between images. STEREO-A and 

STEREO-B satellites both capture sequences of images of the Sun from different 

viewpoints. In this research, these images are retrieved automatically with the closest 

time intervals available. For example a single SECCHI EUVI 17.1 nm image of the 

Sun, taken by STEREO-A on May 09, 2007 at 02:36:05 UT (hh:mm:ss) is followed by 

three at 02:36:43, 02:37:20, and 02:37:58 respectively. These images are shown in 



[Super Resolution for Solar Images] 

 

78 

Figure ‎4.1 with an artificial orange colour. It is known that many image features do not 

change much between images captured at high cadence rates. However, taking images 

with a low cadence rate will increase the possibility for multiple scale dynamic regions 

to grow or shrink between images. In this case, improving these features is difficult 

because of the information loss from the real scene which is viewed in the reference 

image. 

The registration method for solar images introduced in this chapter estimates the 

shift between images by searching for the most prominent features with little change 

based on the short time of cadence with respect to a reference image, such as AR or 

local maxima points. Recognition of ARs is performed by thresholding the differences 

between neighbouring pixels as explained in subsection ‎4.2.1. The locations of ARs in 

the set of LR images are used to estimate the shifts in location with respect to the 

reference image. The steps to estimate the shifts for solar images are summarised as 

follows: 

 
a 

 
b 

 
c 

 
D 

Figure ‎4.1Images of the Sun, taken by the SECCHI EUVI 304 on STEREO-A on May 09, 

2007. (a), (b), (c) and (d) were taken at 02:36:05, 02:36:43, 02:37:20, and 02:37:58 UT 

respectively.  

 

 Select the reference image from STEREO-A or STEREO-B satellites and 

retrieve the nearest set of LR images to the reference image. 

 Detect and extract the location coordinates for the centre points of active regions 
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(see subsection ‎4.2.1) in each LR image required in the matching process. 

 Match the detected regions in the set of LR images with respect to the reference 

image. Two matching methods are presented in this work. The first uses 

correlation
11

, by looking for pixels within predefined windows of size 1313 

(this value makes the method work best on the tested images) that are maximally 

correlated with other windows surrounding each AR centre point. Only pixel 

coordinates that correlate mostly with each other by the searching window are 

returned. To maximise the speed of search, a radius of value equals to the greater 

width or height of the area surrounding the detected AR in the reference image is 

defined for matching pixels. This area is useful because there is a little disparity 

between neighbouring images captured at high cadence rates; hence, based on 

experiments, the shift is not expected to exceed it. This method is relatively 

simple and fairly fast, but has the limitations that it works well only on solar 

images with small shifts, and is sensitive to changes in illumination and scale. 

The second approach uses the CPs resulting from the STEREO-CPs method by 

finding‎ the‎  x and‎ y between the resulting correspondences. The STEREO-

CPs method proceeds slower than the previous method but can overcome its 

limitations (see Chapter 3). The results of using both methods on the test images 

were almost identical because the shift is quite small. 

 Estimate the horizontal and vertical shifts    and    by finding the difference 

between these locations with respect to the reference image. 

 Translate the pixels for all LR images toward the reference image based on the 

estimated shifts, in order to align all LR images in same plane before the 

                                                

11 http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/#match 
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projection process. 

4.2.1 Active Regions Detection 

AR detection is applied by recognizing the pixels that are related to the AR based on the 

difference in intensities between neighbouring pixels as shown in Figure ‎4.2, where 3D 

plot diagrams have been used to emphasise the difference between quiet regions (Figure 

‎4.2b with its 3D plot diagram in Figure ‎4.2d) and active regions (Figure ‎4.2c with its 3D 

plot diagram in Figure ‎4.2e) of the Sun. The presented technique first accepts images or 

video as input. If the input is a video then segmentation into a stream of images is 

performed first. A flow chart describing the algorithm is shown in Figure ‎4.3. The 

algorithm tries to find the maximum difference between neighbouring pixels based on 

(Equation 4-1). 

                                                                  (4-1) 

where 

                  

                    

                     

                       

A threshold value is used to determine the intensity range for the pixels of AR; 

the best value is estimated at 65% based on the intensities determination of the quiet 

region versus AR of the Sun (see Figure ‎4.2). The AR pixels are represented as in 

(Equation 4-2). 

               
                                              

                                                                
                                                                           

   

(4-2) 

The final part is displaying the shapes of ARs extracted from the red or blue 
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channel in which the AR is most prominent depending on the wavelength as shown in 

Table ‎4-1. In Figure ‎4.4, the output after thresholding and extracting the blue channel 

from EUVI 195 is shown in Figure ‎4.4c, and the red channel from EUVI 171 is shown 

in Figure ‎4.4d. The shapes of the detected ARs are enlarged for clarity and displayed as 

shown in Figure ‎4.4(e and f). The system determines the type of wavelength by 

requiring the user to select it before starting the detection process. 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure ‎4.2 Determination of the quiet region versus AR of the Sun, whereas the highest 

pixels count from‎a‎3D‎plot‎surface‎of‎a‎“flattened”‎solar‎image.‎(a)‎Full-disk solar image, 

(b) Quiet region cropped image, (c) AR cropped image, (d) Interactive 3D surface plot for 

the sub-image in (b), and (e) Interactive 3D surface plot for the sub-image in (c). 
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Figure ‎4.3 Flow chart of ARs detection. 
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Table ‎4-1 Highlight ARs in EUVIs images based on colour extraction.  

EUVI type Colour to be extracted EUVI Sub-image Channel extraction 

171 Red 

  

195 Blue 

  

284 Blue 

  

304 Blue 

  

 

This algorithm has been tested on several images and videos from STEREO-A 

and STEREO-B. The tests are based on subjective measurement and not data provided 

by NOAA, because NOAA only provides the locations of ARs and not their shapes. 

4.2.2 Translation and Error Estimation 

Generally, the horizontal shift  , vertical shift  , and the rotation  , relating two LR 

images 1 and 2 are estimated as indicated in Equation 4-3 [76]. In the STEREO and 

SDO missions, the spacecrafts provide multiple frames and at this stage of research 

when the cadence rate is high the shifts are small and rotation is ignored as shown in 

Equation 4-4 where the proposed interpolation method in Section ‎4.3 can prevent 

contributions from unrelated pixels. Expanding 𝑌  to the first order in a Taylor's series, 

gives Equation 4-5 representing the shift between two LR images. Then the observation 

model can be represented by relating the HR image to the LR (observed) images as in 

Equation 4-6. The input signal        denotes the HR image in the focal plane co-



[Super Resolution for Solar Images] 

 

84 

ordinate system     . The motion is represented as translation    obtained from 

applying equations (4-7, 4-8, and 4-9) (see next paragraph). The next consideration is 

the effects of the physical dimensions of the LR sensor associated with the blurring 

kernel  . Finally, the addition of noise    yields the     LR image per observation. 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure ‎4.4 AR detection; full solar disk image of STEREO-A observed on 2007-May-19. a) 

At 00:12:00 UT in EUVI 195   ; b) At 00:06:30 UT in 171   ; c) Detected ARs from image 

(a); d) Detected ARs from image (b); e) Enlarged detected ARs from image (c), and f) 

Enlarged detected ARs from image (d). 

                                                   (4-3) 

                                                                                   (4-4) 

                 
   

  
  

   

  
                                                    (4-5) 
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                                                                              (4-6) 

where 

𝑌  : kth observed image 

  : blurring kernal 

  : original scene 

   : an additive noise 

   : translation of k LR pixel spacing estimated in next paragraph. 

      : the observed location 

      : the scene location 

Among the approaches investigated in the literature for sub-pixel motion 

estimation, the one indicated in [76] has provided satisfactory results. The error function 

between two images 𝑌  and 𝑌  after accounting for any integer pixel shifts is denoted by 

       and represented in Equation 4-7. This error could be recovered by computing its 

derivatives with respect to   and   and setting them to zero, that should also minimize 

the difference between the image 𝑌  and the image 𝑌 , which is warped by   and   as 

shown in equations 4-8 and 4-9, which are built only to resolve the small displacements. 

This algorithm works well when the shifts do not exceed 1 pixel in both x and y axes so 

should be suitable for use with STEREO or SDO images with short interval times.  

                  
   

  
  

   

  
         

 

 

                                (4-7) 

        
                                                                (4-8) 

        
                                                              (4-9) 
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where 

   
   

  
 : Horizontal shift ratio; 

   
   

  
 : Vertical shift ratio 

        : The difference between two images 

4.3 Projection and Interpolation 

STEREO images are available online with different dimensions. An empty grid of 

appropriate size must be created for the purpose of projecting the pixels from the 

registered set of LR images. The grid dimension will represent the size of the output 

image (SR image), so it will be called the HR grid. In this work, the HR grid is usually 

reconstructed with size equal to    of the size of the input images, where   is a positive 

integer number, e.g. if n=0 then the output size is equal to the same size of the input 

image. The double size (   ) is useful to compare the generated SR image with an 

original HR image if that is available. The HR grid samples are projected from the 

available 𝑌  images rather than from just a single image which does not provide any 

additional information. All pixels from these images are mapped from the registration 

step by warping the shifted pixels into the HR grid and are called contributing pixels. 

The contributing pixels from each image can be represented as in Equation 4-10, 

and the HR grid samples can be projected from all LR images as shown in Equation 4-

11. The interpolation is applied to all pixels which satisfy the threshold based conditions 

defined in Equation 4-12. These conditions reduce the number of interpolation 

calculations, because the interpolation is needed only if a noticeable deviation between 

warping pixels is detected. The interpolation technique implemented is Bicubic 

interpolation which uses 4×4 neighbourhoods of known pixels (for a total of 16 pixels) 
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to interpolate the unknown pixels as shown in Figure ‎4.5. The threshold value   = 2 is 

used to adjust the level of interpolation and has been found to improve the output. The 

threshold prevents extreme contributions having higher or lower values than the 

average, projecting onto the HR grid. 

 

Figure ‎4.5 Bicubic interpolation based on the closest 4×4 neighbourhoods of known pixels 

at position (x,y). 

          𝑌      

 

   

 

                                              (4-10) 

where 

         : contributed pixel for the location ( ,  ) in LR image  . 

𝑌 : Stands for the     LR image. 

 : Number of LR images. 
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where 

        : is the HR grid of size     before filtration. 



[Super Resolution for Solar Images] 

 

88 

        

 
 
 

 
 

      

                               𝑌      

  
                               𝑌      

                 
 
 

 
 

 

(4-12) 

where 

       : represents the pixels in SR grid. 

       : is the interpolated pixel based on Bicubic interpolation method. 

                     : is the average for all CPs in 𝑌  images. 

      : is the standard deviation for the                       . 

 : Threshold value. 

The outputs from this stage usually contain artefacts which need be resolved; 

these artefacts are handled in subsection ‎4.4. The computational load for this method 

should be lower than those of the standard Bilinear and Bicubic interpolation as the 

information about the surrounding pixels is utilized only under the conditions indicated. 

4.4 Smoothing 

In order to smooth and reduce any artefacts from the previous step, a Gaussian filter 

method is used to enhance image structures at different scales. The automated 

construction of a suitable 2D-Gaussian kernel is represented in Equation 4-13. The 

kernel with elements depending on their distance and on the adjustable parameter ( ) 

can be obtained from Equation 4-14, where A is defined by Equation 4-15. Applying 

these equations produces a surface whose contours are concentric circles with a 

Gaussian distribution about the centre point. The kernel matrix using the values from 

the Gaussian distribution is then convolved with the HR grid samples producing the SR 

http://en.wikipedia.org/wiki/Contour
http://en.wikipedia.org/wiki/Concentric_circles
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image as shown in Equation 4-16. Each new pixel value is a weighted average of its 

neighbouring pixels. The original pixel value receives the greatest weight and 

neighbouring pixels receive smaller weights as their distance from the original pixel 

increases. 

This means that the Point Spread Function (PSF) is a Gaussian. The imaging 

PSF is typically determined entirely by the imaging system (that is, camera or telescope 

and sensor), which produced the LR images, but if the imaging system is unknown, then 

it can at least be assumed to be a low-pass filter. In the technique presented, a Gaussian 

filter with the adjustable parameter ( ) offered the highest objective measurement 

values, as shown in Section ‎4.6, compared with box or median filters. 

                
  

                                                     (4-13) 

where 

            : is the quadratic Gaussian kernel  

    for the convolution 3×3 matrix 

 : Estimated distance between elements as shown in Equation 4-14 

 : is used to adjust the width of the e-function and can be estimated as shown in 

Equation 4-15. 

                  

     

   

     

   

 

                                   (4-14) 

where 

   : the size of the image 

 : is equal to either kernel's height or width dividing by 2. 

http://en.wikipedia.org/wiki/Weighted_average
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                                              (4-15) 

                            

                                                                                                                                   (4-16) 

where 

  : is the image after the convolution. 

  : is the image before the convolution  

 : is a convolution operator. 

4.5 Quality Measurements 

From the survey of the literature in Chapter 2, it seems that most previous researchers 

relied on subjective measurement, which uses the human eye, to assess their outputs. 

Quality assessment is improved by using both subjective and objective measurements. 

Examples of the objective measurements are Signal to Noise Ratio (SNR), Mean Square 

Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index 

Matrix (SSIM). As indicated in Table ‎4-2, the most commonly used method for 

presenting results is subjective visual quality followed by MSE, and PSNR objective 

quality assessments. Several quality measurements methods are discussed in the next 

subsections. 

4.5.1 Mean-Squared Error (MSE) 

MSE is a quality metric for comparing two images 𝑌      and 𝑌      , and is defined 

in Equation 4-17. MSE has a significant problem in that it relies on the image intensity 

scaling without which it does not guarantee providing an accurate indication. 
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                                     (4-17) 

 
Table ‎4-2 Measurements of super-resolution accuracy that have been used in some of the 

previous works. 

SR Method 
Performance Measurements 

Subj SNR MSE PSNR 

Vandewalle, Susstrunk et al. [77] √    

Baker and Kanade [75] √    

Irani and Peleg [76] √    

Huang, Sun et al. [49] √  √  

Zomet, Rav-Acha et al. [62] √    

Clark, Palmer et al. [66] √   √ 

Alexey Lukin [102] √ √ √ √ 

Hong, Kang et al. [68] √   √ 

Tekalp, Ozkan et al. [70] √    

Huang, Sun et al. [49] √    

Elad and Feuer [103] √  √  

Capel [8] √    

 

4.5.2 Peak Signal to Noise Ratio (PSNR) 

PSNR resolves the intensity scaling problem of MSE by scaling the MSE according to 

the image range as shown in Equation 4-18. PSNR is measured in decibels (dB), and is 

good for comparing the restoration results for the same image. However, neither MSE 

nor PSNR are well matched to perceived visual quality [43].  

             

      
 

   
  

                                                                                                                                   (4-18) 

where 

      the maximum possible pixel value of the image. 

Typical values for PSNR are between 30 and 50 dB in the degraded image, 

file:///C:/Users/sokyna/Desktop/26-102010%20WrittimgUp/l
file:///C:/Users/sokyna/Desktop/26-102010%20WrittimgUp/l
file:///C:/Users/sokyna/Desktop/26-102010%20WrittimgUp/l
file:///C:/Users/sokyna/Desktop/26-102010%20WrittimgUp/l
file:///C:/Users/sokyna/Desktop/26-102010%20WrittimgUp/l
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where the higher the number the better. If the two images are identical, then MSE 

returns zero and PSNR returns infinity. 

4.5.3 Structural Similarity (SSIM) 

SSIM is used to measure the similarity between two images and is designed to improve 

the assessment of visual image quality over MSE and PSNR. The measurement process 

for the SSIM is based on the luminance [43] as defined in Equation 4-19. The result is a 

decimal value between -1 and 1. If the result is equal to 1 then the two images should be 

identical. 

     𝑋 𝑌  
                     

   
    

        
    

     
 

                                                                                                                                  (4-19)  

where 

   ,    :average of   and   respectively. 

  
  ,   

  :variance of   and   respectively. 

     : covariance of x and  . 

          ,          : two variables to stabilize the division with small 

denominator. 

 : Dynamic range of the pixel values (typically this is                     ) 

        and         by default 

In summary, MSE, PSNR, and SSIM are mathematical methods of quality 

measurements, but these metrics may give inconsistent results. In [104], a performance 

test of MSE and SSIM metrics based on certain benchmark images is described which 

finds that SSIM gives better indication than MSE. In this work, both subjective and 

http://en.wikipedia.org/wiki/Dynamic_range
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objective quality assessments (PSNR and SSIM) are used for evaluation. From the 

literature review it seems this use of SSIM is unique in SR testing. The known HR 

images have been used to compare the real performance of the selected SR methods. 

4.6 Experimental results  

Comparisons using SSIM and PSNR have been performed against several SR 

approaches including Iterated Back Projection (IBP), Projection onto Convex Sets 

(POCS), Robust SR and QE SR. The implementations of IBP, POCS, and Robust SR 

methods were obtained from the authors of [105] and the QE SR from the authors of 

[106]. Two types of experiments were performed; the first depends on the objective 

quality measurements to compare the resulting enlarged SR image of size equal to 

double the size of the reference (LR) image with the known HR image. The second uses 

the subjective quality measurement to judge the finer details in the SR image with 

respect to the reference image without enlargement. 

4.6.1 Enlarged super resolution images  

Several experiments have been conducted on sets of EUVI 195 Å and EUVI 171 Å LR 

sub-images. A set of LR sub-images were cropped from a set of EUVI 195 Å LR 

images of size 512×512 pixels taken at 10 minutes separation saved with the JPG file 

format and 24 bits depth as shown in Figure ‎4.6. The output is shown in Figure ‎4.7 after 

enlarging the reference image by a factor of two using several SR methods. The original 

sub-image cropped from the known HR image size of 1024×1024 pixels before down 

sampling is shown in Figure ‎4.7a. The aim here is to create a SR image double the size 

of the input images. Hence, the result most similar to the original image is considered 

the best. In this experiment, none of the resulting SR methods show the same details of 

the original sub-image, because the cadence rate is about 10 minutes per image, which 
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means, the features have slightly changed.  

 

a. LR1 (Reference image) 

 

b 

 

c 

 

d 

Figure ‎4.6 Four LR Sub-images are cropped from STEREO-A image of size 512×512 on 

May-19-07 at 00:12:00, 00:22:00, 00:32:00 and 00:42:00 (a, b, c and d respectively), that 

are required to generate SR image. (a) LR1 (the reference image), (b) LR2, (c) LR3 and 

(d) LR4. 

The output from the Robust SR is shown in Figure ‎4.7b with PSNR = 39.4 dB, 

Figure ‎4.7c is the output for IBP which has PSNR = 39.6 dB, Figure ‎4.7d is related to 

POCS with PSNR = 38.9 dB, Figure ‎4.7e is for the QE Super-resolution with PSNR = 

38.0 dB, Figure ‎4.7f is for the Bicubic interpolation (standard resize method), with 

PSNR = 40.2 dB, and in Figure 3.5g is the output of the proposed method with the 

highest PSNR value which equals to 41.6 dB. Using SSIM, the results of SR methods 

are sorted based on the similarity with the original sub-image from low to high as 

follows: POCS, IBP, Robust SR, Bicubic interpolation, QE SR and then the proposed 

method as shown in Table ‎4-3. 

Another test has been performed using EUVI 171 Å solar images of size 

2048×2048 pixels and a set of LR images of size 1024×1024 pixels. The sub-images 

were cropped around the area of the active region that resides in the solar disk as shown 

in Figure ‎4.8. The SR results shown seem closer to the original than those in Figure ‎4.7 

because the set of LR images were taken at the higher cadence rate of about 2.5 minutes 

per image reducing the change between them. The proposed method scores the highest 

PSNR value with 34.1 dB, followed by Bicubic interpolation, IBP, QE SR, Robust SR, 
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and then POCS. Also the proposed method scores the highest SSIM value with 0.96 

followed by QE, IBP, Bicubic, Robust SR, and then POCS.  

 
Original sub-image 

 
b. Robust Super-resolution, with 

PSNR=39.4 

 
c. Iterated Back Projection, with 

PSNR=39.6 

 
d. Projection Onto Convex Sets, 

with PSNR=38.9 

 
e. QE Super-resolution, with 

PSNR=38. 0 

 
f. Bicubic Interpolation, with 

PSNR=40.2 

 
g. The proposed Method, with 

PSNR=41.6 

Figure ‎4.7 SR sub-images, (A) Original sub-image cropped from STEREO-B image of size 

1024x1024 on May-19-07 at 00:12:00, (B) Robust Super-resolution, (C) Iterated Back 

Projection, (D) Projection Onto Convex Sets, (E) QE Super-resolution, (F) Bicubic 

Interpolation, and (G) Proposed method. 
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a. Original sub-image 

 
b. Robust Super-resolution, with 

PSNR=32.3 

 
c. Iterated Back Projection, with 

PSNR=32.5 

 
d. POCS, with PSNR=31.9 

 
e. QE Super-resolution, with 

PSNR=32.3 

 
f. Bicubic Interpolation, with 

PSNR=32.8 

 
g. The proposed method, with 

PSNR=34.1 

Figure ‎4.8 SR sub-images , cropped from STEREO-A EUVI 171 Å images on May-19-07 

at 00:06:30 of size 2048x2048 pixels, (a) Original, (b) Robust Super-resolution, (c) Iterated 

Back Projection, (d) Projection Onto Convex Sets, (e) QE Super-resolution, (f) Bicubic 

Interpolation, and in (g) The proposed SR method. 

Further experiments have been performed on 10 different wavelength sets 

comprising 40 LR sub-images taken by STEREO-A of size 1024×1024 pixels on May-

19-2007 between 00:06:30 and 01:46:30 (hh:mm:ss). The enlarged SR images of size 

factor 2 of the reference images are compared with their related original images of size 
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2048×2048. The results are averaged and shown in Table ‎4-4. The proposed method has 

the highest PSNR value with 35.3 dB, followed by Bicubic, IBP, QE, Robust SR, and 

then POCS. Also the proposed method has the highest SSIM value followed by QE SR, 

Bicubic interpolation, IBP, POCS, and then Robust SR method.  

Table ‎4-3 Comparing SR images with the original image of the same size based on SSIM 

and PSNR. The solar LR images of STEREO-B EUVI 195 Å of size 512x512 and EUVI 

171 Å of size 1024×1024 have been used, captured on May-19-2007 at 00:12:00. 

SR Method Quality Measurements 
Sub-images cropped 
 from SR of size 1024×1024  
of EUVI 195 

Quality Measurements 
Sub-images cropped  
From SR of size 2048×2048 
of EUVI 171 

SSIM PSNR SSIM PSNR 
QE SR 0.968 38.0 0.961 32.3 
POCS 0.963 38.9 0.947 31.9 
Robust SR 0.965 39.4 0.955 32.3 
Iterated Back Projection 0.968 39.6 0.957 32.5 
Bicubic Interpolation 0.971 40.2 0.956 32.8 
Proposed method 0.975 41.6 0.963 34.1 

 

Table ‎4-4 Performance comparisons based on SSIM and PSNR. 40 LR sub-images have 

been cropped from STEREO-A images of size 1024x1024, in May-19-2007 between 

00:06:30 and 01:46:30 (hh:mm:ss) and colapsed in 10 sets. 

SR Method Quality Measurements 

SSIM PSNR 

QE SR 0.946 33.9 

POCS 0.928 33.6 

Robust SR 0.926 33.8 

Iterated Back Projection 0.934 34.1 

Bicubic Interpolation 0.942 34.5 

The proposed Method 0.947 35.3 

 

Another experiment involves images with superimposed numeral which are 

removed by the proposed method which excludes pixels that are higher or lower than 

the thresholded average (Interpolation Performance). A set of full disk solar LR images 

for STEREO-A EUVI 195 Å have been downloaded, and then different labels have 

been added to each LR image in different locations as shown in Figure ‎4.9 (a, b, c, and 

d). This experiment aims to show how much information can be obtained from all LR 

images to produce a more similar image to the original, and to show the performance of 

http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C3%85
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the presented interpolation by excluding the pixels that exceed the thresholded average. 

The comparison was made between QE SR and the proposed method, because QE SR 

has offered better SSIM indication than POCS, IBP, and Robust SR. The result from QE 

super-resolution is shown in Figure ‎4.9e, the output looks like the reference image (note 

the label), but the output from the proposed method is more similar to the original image 

as shown in Figure ‎4.9f. The proposed method generates the SR image by selecting the 

most appropriate pixels among all LR images in the set; the output has no labels as well 

as being closer to the original image. 

 
a 

 
b 

 
c 

 
d 

 
e. Result from QE super resolution 

 
f. Result from the proposed method 

Figure ‎4.9 Comparison between QE SR and the proposed SR method to show the 

interpolation performance. (a, b, c, and d) reprsent the set of LR images. (e) Result from 

QE SR. (f) Result from the proposed SR method. 
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a. LR (reference) image  

 
b. SR image 

 
c. LR (reference) sub-image 

 
d. Super-resolution sub-image 

Figure ‎4.10 The SR image in the top right shows the full disk of the Sun with finer details 

than the reference image shown in the top left. The edges of the loops in the active region 

area are more distinguishable than they appear in the LR image. (a) LR (reference) image. 

(b) SR image. (c) Sub-image from figure a. (d) Sub-image from figure (b). 

4.6.2 SR image with respect to the reference image without enlargement 

The second type of experiments involves creating SR images of the same size as the 

reference image. Hence, only the subjective assessments are used, because the resulting 

SR image has details not available in any individual image, so it is not possible to 

provide objective quality assessment. Firstly, a set of four LR EUVI 171 Å images 

taken by STEREO-A on 13th May 2007 at 00:12:15 with a separation time of 75 s and a 

size of 512×512 pixels was used to generate SR images of the same size. The results, 

presented in Figure ‎4.10, show that the edges of the loops and the ARs shapes in the SR 

images are more distinguishable than in the LR images. Secondly, a set of LR images of 

EUVI 195    of size 2048×2048 taken by STEREO-A on 5th July 2007 at 11:37:00 with 

http://en.wikipedia.org/wiki/%C3%85
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10 s separation time, was used to generate SR image holding the same size. A 

prominent region is cropped to provide better visual assessment between LR and SR 

images as shown in Figure ‎4.11. 

Finally, a set of LR sub-images of EUVI 304 taken by STEREO-A on 9
th

 May 

2007 at 02:36:05 at a cadence rate 36 s was used to generate a SR sub-image of the 

same size. The enhancements are clearly visible in Figure ‎4.12.  

 
a. LR sub-image 

 
b. SR sub-image 

Figure ‎4.11 The shapes of the active region that marked by a circle appear sharper in SR 

sub-image than the LR sub-image. The involved images before crop are of size 2048×2048 

taken by STEREO-Ahead on 5th July 2007 at 11:37:00 with 10 seconds separation time. 

 
a. LR sub-image 

 
b. SR sub-image 

Figure ‎4.12 EUVI 304 Å sub-image taken by STEREO-Ahead on 9th May 2007 at 

02:36:05 with 36 seconds cadence, shows the loops of an active region that resides on the 

right side of the solar disk. The edges in SR sub-image look more detailed than the LR 

sub-image. (a) LR sub-image. (b) SR sub-image. 

http://en.wikipedia.org/wiki/%C3%85
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4.7 Summary 

The SR approach applied to solar images presented in this chapter includes three major 

stages. Firstly, image registration of the images is performed based on an automated 

method for AR detection developed using correlation. This is simple and suitable to 

match images with small shifts as assumed in this work but is also sensitive to changes 

in scales and intensities. Hence, the STEREO-CPs method is used to overcome these 

limitations and provides the ability to run the proposed method on scenes other than the 

Sun. Secondly, interpolation has been applied based on the Bicubic technique with a 

threshold parameter, and thirdly smoothing has been done using a Gaussian filter with 

adjustable parameters. Several practical tests have been performed and the results 

evaluated using subjective and objective (PSNR and SSIM) assessments. The results 

show an improvement in the output compared with several competitive SR methods 

including IBP, Robust, QE, and POCS and in addition, the Bicubic interpolation 

method. Also it is found that Bicubic interpolation provided results better than those 

from some SR methods, which could be an indication of: firstly, a failure of the 

registration step. Secondly, the corresponding SR methods work best on certain images. 

Finally, the finer details in the tested images were not well recovered from the given set. 

The output of the presented approach is used to enhance 3D perception by creating 

higher resolution image pairs to create anaglyphs in Chapter 5. 
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CHAPTER FIVE 

5 GENERATING ANAGLYPHS USING PAIRS OF 

IMAGES FROM THE STEREO SATELLITES 

5.1 Introduction 

An anaglyph is a combination of left and right images of a scene taken with offset 

viewpoints with respect to each other, where the images are shown using different 

colours in order to achieve 3D perception by users wearing glasses with complementary 

colour filters. The resulting anaglyphs can be used for viewing 3D images or 3D 

movies.  

On the Sun, the depth perception in 3D views is useful because it can reveal 

features that are not apparent in 2D views. The mission of NASA STEREO provided 

the first opportunity to view the Sun in 3D using images captured at the same time from 

two different satellites. The current attempts to create anaglyphs from pairs of STEREO 

images provided on STEREO-GSFC site are based on manual rescaling and fitting 

using image processing software such as Adobe Photoshop and Anaglyph Maker
12

 as 

illustrated on http://stereo.gsfc.nasa.gov/classroom/3d.shtml, last access 17 Nov, 2010). 

                                                

12Anaglyph Maker is a program available at http://www.stereoeye.jp/software/index_e.html, which is 

used to create interleaved images for 3D viewing using LC-shuttered glasses, from the given stereo 

photograph pair. 
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Another example of anaglyph creation from a pair of STEREO images is available from 

Ian Musgrave
13

. The generation of anaglyphs from pairs of STEREO images using the 

information available in FITS header files can be performed as described in [33]. 

Anaglyph creations from calibrated and uncalibrated pair of images are 

introduced here. The focus is on how to efficiently construct anaglyphs when the 

separation angle between the spacecraft is small enough to allow 3D perception. The 

size of the high resolution FITS files is about 8.3 MB provided with single resolution, 

so creating a video from these high resolution images with 1000 frames would need the 

download of more than16.6GB of data. However this overloads the existing Internet and 

network infrastructures. Furthermore, the wavelength type in FITS is included in its 

headers only and not in its file names, e.g. 20070513_002115_n7eu.fts, so this needs to 

download extra irrelevant data. However, in JPEG files, the wavelength is included in 

the file names, e.g. 20070513_001615_n4euA_195.jpg. This is used to optimise the 

query to determine what data is important before starting the download process. 

The main aims of this chapter are as follows. The first aim is to provide methods 

to create anaglyphs efficiently from pairs of STEREO images, either as still images or 

videos. For example, if there is a particular time interval required for study, it would be 

useful to provide a quick-look 3D movie to see if there is anything worth further study. 

The second aim is to provide methods able to work in near real-time. Both aims can be 

achieved by working with lossy compressed JPEG images (with no calibration 

information) rather than the uncompressed FITS files (containing calibration 

information), which are more suitable for scientific analysis but take about 3 days to 

become available on the archive. These algorithms will be ready to be used when these 

spacecrafts meet again. The third aim is to improve the quality of the anaglyphs by 

                                                

13 http://astroblogger.blogspot.com/2007/07/stereo-anaglyph-of-sun.html, last access 21/10/2010. 



[Generating Anaglyphs Using Pairs of Images From the STEREO Satellites] 

 

104 

combining left and right images of the scene from SR images which show the surface of 

the Sun in more details than the LR images. HRA (High Resolution Anaglyph) is a term 

used here to refer to the anaglyph created from pairs of HR images. HRA is possible 

during periods of high cadence rates, where the performance of the proposed SR method 

that was illustrated in chapter 4 is enhanced. After reading the literature, this appears to 

be the first attempt to enhance the quality of anaglyphs using SR. The final aim is to 

introduce techniques that could be used for other applications beside solar imaging. 

Several points should be taken into account before creating anaglyphs for 

STEREO images. Firstly, the separation angle between the two spacecraft should be 

small (less than 44°) [107]. Secondly, if the angle is larger, between about 44° and 90°, 

then anaglyph creation is still possible as mentioned in [2] but requires some pre-

processing steps, e.g. rotate the Sun on its axis for the left view and/or right view before 

the combination process). Thirdly, we can work with or without calibration information 

for both spacecraft. Using calibration information, there is no need to know any 

information about the scene, but without calibration, some features of interest in the two 

images must be matched in order to map the corresponding pixels between the pair of 

images. Finally, when the angle exceeds 90°, it becomes too difficult to construct 

anaglyphs, because the spacecraft views of the scene are too different. 3D scene 

reconstruction can then only be done by mathematical analysis and graphic display 

rather than binocular vision [33]. 

Anaglyphs can be generated by combining two extreme UV images taken by the 

same spacecraft at different times. The different viewpoints result from the rotation of 

the sun (period roughly 28 days), but small-angle stereoscopy is usually all that can be 

achieved with this technique because solar features change with time. For example, the 

coronal holes of the Sun on Dec, 2008 (this example is taken from 
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http://stereo.gsfc.nasa.gov/gallery/item.php?id=3dimages&iid=46) are the most 

prominent features in the anaglyph image shown in Figure ‎5.1. The SOLARSTUDIO 

application was used to create this 3D image by combining two extreme UV 171 Å 

images taken about 12 hours apart on Dec. 19, 2008. Many 3D images and movies 

generated from STEREO data are offered by STEREO-GSFC and are available online 

at http://stereo.gsfc.nasa.gov/gallery/3dimages.shtml. 

 

Figure ‎5.1 Anaglyph of the Sun created from pair of STEREO-Ahead spacecraft on Dec. 

19, 2008 with 12 hours apart. The coronal holes are the most promiment features. 

5.2 Anaglyphs from calibrated pairs of STEREO images with a 

significant angle of separation 

Anaglyphs can be created from recorded pairs of STEREO images taken at the same 

time from two perspectives corresponding to small-angle stereoscopy over the period 

between March and July of 2007. The steps necessary for creating anaglyphs using 

calibration data are illustrated in the following example which utilises two extreme UV 

images taken on May 09-2007 at 20:40:45 at separation angle of 7.246° ( the angle at 

this date was retrieved from NASA GSFC [30]). A verging stereo anaglyph (camera 

http://stereo.gsfc.nasa.gov/gallery/3dimages.shtml
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optical axes converging at a finite distance) is generated using information provided in 

the headers of the FITS files as follows: 

1. Retrieve the pair of STEREO images with small separation angle. The right image is 

from STEREO-A and the left image is from STEREO-B. 

2. Co-align, rescale, and rotate both images into the same plane (see Figure ‎5.2) based 

on the information in the FITS header files, including the pixel coordinates of the 

Sun centre, i.e., CRPIX1 = 1020.63, CRPIX2 = 926.70 for image A and CRPIX1 = 

1035.55, CRPIX2 = 1051.08 for image B, with a solar radius of RSUN = 998.9600 

for image A, and RSUN = 913.5800 for image B, as described in [33]. 

3. The disk of the STEREO-A image can be reduced to the same size as the disk of the 

STEREO-B image as shown in the following equations: 

             
     

     
 

(5-1) 

      where 

RSUNB: Radius of the Sun for STEREO-B image 

RSUNA: Radius of the Sun for STEREO-A image 

and  

                                                                    (5-2)                                                                                                                   

4. Move the solar disk in the left image to a proper offset with respect to the right 

image based on the central point locations. The new location of the central point in 

the processed STEREO-A images can be determined as in Equations 5-3 and 5-4 

and the alignment is shown in Figure ‎5.2. 

                                        (‎5-3) 
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                                                               (5-4) 

5.  Convert the left and right images to grey colour as shown in Figure ‎5.3(c and d). 

6. Extract the red channel from left image and the blue/green channels from right 

image. It is important that the Ahead and Behind images are the cyan and red 

filtered images respectively, otherwise the 3D effect will be inverted using standard 

glasses. 

7. Combine the left and right images to generate the anaglyph image as shown in 

Figure ‎5.3(e). 

 

 

Figure ‎5.2 Full disk inverted colour EUV 171 images of STEREO-A (top left) and B (top 

right).‎The‎crossing‎vertical‎and‎horizontal‎lines‎show‎the‎Sun’s‎center‎point.‎The‎

Coalignment‎involves‎centring‎the‎Suns’‎centers‎[33] in the images. 

5.3 Anaglyphs from uncalibrated pairs of STEREO images with a 

significant angle of separation 

The steps to create anaglyphs from un-calibrated data are similar to those described in 
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the previous section except the information taken from the FITS header is obtained from 

the images themselves. The required data is obtained using STEREO-CPs to find the 

size ratio between the Sun‟s‎disks in the STEREO Ahead and Behind images. Then two 

methods can be used to create anaglyphs as shown below: 

 
a. Right image 

 
b. Left image after 12 hours 

 
c. Rescaled Right image in grey mode 

 
d. The adjusted offset Left image in grey mode 

 
e. The anaglyph image created from combination of right and left images 

 
Figure ‎5.3 Steps to create an anaglyph. (a) and (b) are the original images, (c) and (d) are 

the aligned and converted to grey scale images and (e) is the resulting anaglyph. 

5.3.1 Boresighted stereo anaglyphs 

Image rectification can be used to generate two images with horizontal epipolar lines on 

the same scan lines from a pair of images of a scene taken from different viewpoints, 

which facilitates the search for corresponding points. Also it can be used to match an 
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image and a map. Anaglyphs equivalent to those generated from a boresighted stereo 

system (parallel camera alignment) can be constructed from the resulting pseudo-stereo 

pair of images. Rectification is achieved by transforming the image planes so that the 

corresponding space planes coincide [108], in other words, applying transformations 

which map the epipoles to infinity. It must be born in mind that this image rectification 

is not possible if either epipole lies inside the image.  

The STEREO-CPs method is used to generate the CPs and rectification is 

performed using the DRUI direct rectification algorithm for un-calibrated images 

proposed by Al-Zahrani [97]. DRUI is a short closed calculation that is virtually 

immediate compared with the more time consuming resampling and display of rectified 

images. DRUI assumes that the fundamental matrix is known and the modified eight 

point algorithm proposed by Longuet-Higgins and modified by Hartley [109] is used to 

estimate the fundamental matrix as illustrated in [110]. The modified eight point 

algorithm is simple and accurate linear method for estimating the fundamental matrix 

[111]. In Figure ‎5.4, two un-calibrated STEREO images have been used to create the 

anaglyph. STEREO-CPs was used to generate the CPs as shown in Figure ‎5.4a, and 

DRUI was applied to rectify the images as shown in Figure ‎5.4b. The resulting anaglyph 

is constructed by combining the rectified images as shown in Figure ‎5.4c. 

The visual limitation of this method is the resulting distortion of the rectified 

images from the circular shape. The distortion is limited by including rectify 

transformations isotropic
14 

scaling of the rectified images to make the central epipolar 

line in each view have equal lengths before and after rectification. The distortion could 

be minimised by applying appropriate skewing transformation to the images but cannot 

be eliminated because the epipolar lines are parallel in the pseudo-stereo pair. 

                                                

14 Isotropic means that the intensity of the radiated light is the same in all directions. 
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a. Image matching. 

 
b. Rectified images. 

 
c. Anaglyph  

Figure ‎5.4 Anaglyph creation from a rectified pair of un-calibrated images using CPs from 

the STEREO-CPs method. (a) Feature matching by applying STEREO-CPs. (b) Rectified 

images after running DRUI on images shown in Figure (a). (c) 3D image of the Sun. 
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5.3.2 Verging stereo anaglyphs 

To follow the same processes of alignment as used when the calibration information is 

available: firstly, the resize factor ratio is estimated by finding the minimum x and y 

coordinates from the set of CPs within the left and right images as shown in Figure ‎5.5. 

The resize factor then can be calculated by Equation 5-5. Secondly a reference pair of 

points is required to fit the pair images with a proper offset which can be             

and             in the left and right images respectively. An Euclidean 

transformation can be used to bring the right image into alignment with the left image 

based on the geometric relationship between the corresponding points. In this step, the 

resulting CPs from STEREO-CPs method are fed to a data-fitting function called 

“cp2tform”‎ which‎ is‎ included‎ in‎ MATLAB‎ to‎ determine‎ the‎ parameters‎ of‎ the‎

transformation needed to bring the image into alignment as shown in Table ‎5-1. 

“cp2tform”‎ returns‎ the‎ parameters‎ in‎ a‎ geometrical‎ transformation‎ structure.‎ The‎

Euclidean‎transformation‎ is‎determined‎by‎passing‎the‎“linear”‎parameter‎ to‎rotate‎the‎

image into alignment with the map coordinates.  

This technique has been tested on several pairs of STEREO images and 

efficiently produced visually satisfactory anaglyphs. Figure ‎5.6 shows four outcomes 

using images in four extreme ultraviolet wavelengths. The labels on the original images 

were maintained to identify the processed images before the combination. This 

technique will be available to generate anaglyphs in near real-time when the two 

spacecrafts meet again at the behind of the Sun in a‎few‎years‟‎time. 
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Figure ‎5.5 The resulting CPs from STEREO-CPs are used to estimate the different sizes of 

the full solar disk. The top left and bottom right corners of the outbound rectangle for 

each image is determined by finding the minimum and maximum x, y coordinates of the 

CPs.  

              
           

           
   

                                                                                                                                     (5-5) 

Table ‎5-1 MATLAB commands to bring two images into alignment using the resulting 

CPs from STEREO-CPs method.  

No MATLAB Command Comment 

1 [input_points base_points]=STEREO_CPs(file1,file2); Return the resulting 

CPs from STEREO-

CPs method 

2 mytform = cp2tform(input_points, base_points, 'linear'); Return the parameters 

of the transformation 

needed to bring the 

image into alignment. 

The Euclidean 

transformation is 

selected. 

3 registered = imtransform(unregistered, mytform); Bring the image into 

alignment. 

Lminx, Lminy 
Rminx, Rminy 

Lmaxx, Lmaxy 

Rmaxx,Rmaxy 
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5.4 Anaglyphs at large separation angles 

In future work, the process of creating anaglyphs from the STEREO spacecrafts when 

their separation angle is between 40 and 90 degrees should be considered. A possible 

solution is to investigate the numerical techniques described in [24]. However 

anaglyphs can still be created by combining two extreme UV images taken at different 

times by one spacecraft e.g. two EUV 195 Å images taken 12 hours apart by STEREO 

Ahead on Aug. 07, 2009 was generated and displayed in [112] as shown in Figure ‎5.7. 

Similarly, the SDO mission can be used to generate 3D images of the Sun from a single 

spacecraft and the anaglyph shown in Figure ‎5.8 was generated using SOLARSTUDIO 

to combine two images that were taken in a EUV wavelength about 8 hours apart on Jun 

25, 2010. 

 
a 

 
b 

 
c 

 
d 

Figure ‎5.6 3D images for the full disk of the Sun generated from uncalibrated pairs of 

images. 3D images using EUVI of (a) 195 Å. (b) 304 Å. (c) 171 Å. (d) 284 Å. 
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Figure ‎5.7 Anaglyph of the Sun created by combining two images taken 12 hours apart by 

STEREO Ahead on August 7, 2009. This figure was included in [112]. 

 

Figure ‎5.8 Anaglyph of the Sun combining two EUV images that were taken about 8 hours 

apart (June 25, 2010) into one 3D image. This image was generated by the 

SOLARSTUDIO application written by the author. 

5.5 Anaglyphs from pairs of super resolution images 

High Resolution Anaglyphs (HRAs), as the name implies, are anaglyphs created with a 

higher resolution than the original images. This can be achieved by applying the SR 

method proposed in Chapter 4 to provide a high resolution (HR) pair of images from 
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two sets of low resolution (LR) images of both views (left and right) as shown in Figure 

‎5.9.  

5.6 Evaluation 

In order to make quantitative comparisons between the performances of the algorithms 

of sections 5.2 and 5.3.2 in rescaling the solar disk using the calibration information 

included in header FITS files and information available in the images, the ratio of the 

disc sizes in Ahead and Behind images were calculated. The resulting ratios are shown 

in Table ‎5-2. The average absolute difference between the two methods for the 

conducted experiments is 0.45%. 

 
a. A set of LR images of the left scene 

 
b. A set of LR images of the right scene 

 
c. SR image of the left scene 

 
d. SR image of the right scene 

 
e. HRA image 

Figure ‎5.9 Steps to create the HRA image. 
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Table ‎5-2 Performance evaluation between rescaling from calibrated and uncalibrated 

pairs of STEREO images. The ratios are the estimated sizes of STEREO Behind images to 

STEREO Ahead images. The calibration information and the proposed method are given 

the abbreviations Cal and PM respectively. 

No. 
Date/Time 

Month DD,YYYY 

HH:MM:SS 

Estimated Size Ratios 
Error% 

Abs(Cal-PM) Calibration 

(Cal) 
Proposed Method 

(PM) 
1 20070302 004800 96.34% 96.74% 0.40% 
2 20070303 101800 96.25% 96.27% 0.02% 
3 20070308 224553 95.90% 95.99% 0.09% 
4 20070311 231553 95.70% 95.71% 0.01% 
5 20070314 204800 95.51% 95.44% 0.07% 
6 20070317 200800 95.31% 95.19% 0.12% 
7 20070320 170800 95.11% 95.10% 0.01% 
8 20070323 110800 94.92% 95.10% 0.18% 
9 20070326 112800 94.70% 94.89% 0.19% 
10 20070329 230130 94.45% 94.20% 0.25% 
11 20070410 000400 93.64% 93.54% 0.10% 
12 20070410 000900 93.64% 94.10% 0.46% 
13 20070410 001630 93.64% 93.71% 0.07% 
14 20070410 005900 93.63% 93.87% 0.24% 
15 20070501 000400 92.08% 92.03% 0.05% 
16 20070501 001130 92.08% 92.32% 0.24% 
17 20070501 001200 92.08% 92.47% 0.39% 
18 20070501 002900 92.08% 92.30% 0.22% 
19 20070601 113600 90.00% 90.33% 0.33% 
20 20070604 150100 89.83% 90.40% 0.57% 
21 20070606 173600 89.71% 88.37% 1.34% 
22 20070607 191100 89.66% 89.22% 0.44% 
23 20070610 004830 89.54% 90.32% 0.78% 
24 20070613 181100 89.36% 89.93% 0.57% 
25 20070618 201100 89.13% 88.72% 0.41% 
26 20070619 211600 89.08% 89.69% 0.61% 
27 20070624 222600 88.88% 90.06% 1.18% 
28 20070625 234600 88.84% 89.66% 0.82% 
29 20070629 220100 88.70% 88.95% 0.25% 
30 20070704 223100 88.54% 87.60% 0.94% 
31 20070705 221600 88.51% 88.66% 0.15% 
32 20070709 183100 88.41% 89.28% 0.87% 
33 20070711 033600 88.38% 88.43% 0.05% 
34 20070712 030100 88.36% 88.77% 0.41% 
35 20070713 033600 88.34% 88.98% 0.64% 
36 20070716 033600 88.28% 88.98% 0.70% 
37 20070717 160600 88.25% 87.34% 0.91% 
38 20070719 163100 88.22% 88.59% 0.37% 
39 20070723 180100 88.17% 86.62% 1.55% 
40 20070729 183100 88.12% 88.71% 0.59% 

 

This error is quite small and seems to have little detrimental effect on the 3D 

perception. The experiments cover the period between 2nd of March, 2007 and 29th of 
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July, 2007 and are presented as a chart in Figure ‎5.10. This figure shows that the size of 

the solar disk in STEREO Behind images decreases gradually with respect to the size of 

STEREO Ahead images as the mission proceeded in this period. It also shows that the 

error ratio increases gradually when the separation angle between the two spacecraft 

increases. Note that the size ratio scale and the date/time of images in this chart are 

arranged to clarify the small error differences. Two images from the samples with 

1.34% error are combined to show the difference in the size of full disk of the Sun for a 

pair of STEREO images taken on 6th of June 2007 at 17:36:00 as shown in Figure ‎5.11. 

In spite of this difference, 3D perception is achieved in both cases. 

 

Figure ‎5.10 The performance of the algorithm presented in section 5.3 is evaluated 

compared with the method of rescaling the full solar disk STEREO pairs using the 

calibration information included in header FITS files. 

A visual comparison between LR anaglyph image and HRA image is shown in 

Figure ‎5.12. Zooming into a region of interest with the same scale is used to show the 

visual enhancement of the HRA anaglyph over the normal one. Another example of 

HRA image for the full disk Sun is shown in Figure ‎5.13, no zoom is applied; the HRA 
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image provides finer details than the normal anaglyph image. 

 

 
a. Superposition of image without rescaling using a pair of un-calibrated images. 

 
b. Fitted and rescaled image from calibrated 

pair of images. 

 
c. Fitted and rescaled image from un-calibrated 

pair of images with error ratio 1.34%. 
Figure ‎5.11 Visual comparison to clarify the rescaling process by fitting the full disk of the 

Sun pair of images taken on June, 06 2007 at 17:36:00. (a) Fitting the pair without 

rescaling. (b) Fitting and rescaling for calibrated pair. (c) Fitting and rescaling for un-

calibrated pair using CPs. 
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a. Anaglyph image 

 
b. HRA image 

 
c. Sub-image from anaglyph image 

 
d. Sub-image from HRA image 

Figure ‎5.12 Comparison between anaglyph and HRA. 

 

a. Low resolution anaglyph 

 

b. High resolution anaglyph 

Figure ‎5.13 Examples of 3D images of the EUVI 171 Å full Sun. On the left is the 3-D 

image generated by combining pairs of LR images, and on the right is the 3-D image 

generated using HR images. The images were taken on May 13, 2007. 

5.7 Conclusion 

Anaglyphs are a cost-efficient and technically simple way of generating stereoscopic 

images. Anaglyphs of the Sun can reveal features that are not apparent in 2D images 

and are obtained by combining a pair of STEREO images using a pair of 

complementary colours (often red and blue/green for the Ahead and Behind spacecraft 
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respectively). Currently anaglyphs are created by manual rescaling and fitting by the 

user‎or‎by‎using‎IDL‎methods‎provided‎by‎“SolarSoft”‎using‎the‎information‎available‎

in the FITS file headers. FITS files only become available a few days after the real 

observations. Also the license requirements for IDL packages could restrict the public 

use of some of the developed functions for processing solar data.  

To tackle these limitations new techniques are proposed in this research. The 

first is to efficiently create anaglyphs for the Sun and provide algorithms able to work in 

near real-time using CPs from STEREO-CPs. This will be useful to view the back side 

of the Sun in 3D when the two spacecraft next approach each other. The second 

technique is to enhance the 3D perception by combining a superior pair of images 

generated by the proposed SR method presented in this thesis rather than LR images. 

The performance of the proposed rescaling method was compared with the process of 

rescaling using calibration information included in FITS file headers. The results show 

that the proposed rescaling method over the tested period gives very similar results to 

those obtained using calibration data. Advantages of the proposed method are that it is 

simple, and saves the user time and effort. 
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CHAPTER SIX 

6 SOLARSTUDIO: A TOOL FOR VISUALIZING AND 

PROCESSING LARGE SETS OF SOLAR IMAGES 

6.1 Introduction 

As explained earlier, STEREO and SDO provide full disk images of the Sun at different 

cadence rates in different wavelengths with maximum resolutions of 2048×2048 and 

4096×4096 pixels, respectively. It is not an easy process to download, browse and 

analyze significant areas of interest for these data volumes on a remote server, simply 

because these processes overload the existing Internet and network infrastructures. Also 

from‎a‎scientist‟s‎viewpoint,‎the‎process‎of‎retrieving‎ large‎data‎volumes‎ from‎even‎a‎

few repositories, and dealing with immobile data sets poses the problems of searching, 

browsing and extracting images of interest while avoiding the search for a needle in a 

haystack problem, as explained in [21]. The SOLARSTUDIO visualizing and analysing 

software has been developed to tackle these problems.  

6.2 Motivations for developing SOLARSTUDIO 

As explained in Chapter 2, several applications have been developed to view solar 

images including: STEREO-GSFC, SDO-GSFC, SWB, and JHelioviewer. However, 

major challenges still exist when studying the solar atmosphere at different scales, times 

and wavelengths. Firstly, limited functionalities are offered by the official browsers 
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tools for both STEREO and SDO. Secondly, there exist restrictions on the number of 

images queried per user. Thirdly, there is a serious lack of developed systems that 

enable users to access multi-wave length images from more than one satellite at the 

same time. Finally, the license requirements of the IDL programming language could 

restrict the public use of some of the developed functions for processing solar data. To 

tackle some of these challenges, SOLARSTUDIO was developed. 

SOLARSTUDIO could help scientists discover new phenomena and link related 

data sets from various instruments that are often analyzed in isolation. To achieve this, 

SOLARSTUDIO enables the user to browse images from both STEREO and SDO 

satellites using a unique GUI (Graphical User Interface). SOLARSTUDIO has a 

modular object-oriented-based design, which makes it easy to update according to 

users‟ feedback. SOLARSTUDIO will be available in the public domain, and users 

would be able to download it from http://spaceweather.inf.brad.ac.uk/index.html, as a 

standalone application including installation instructions and a user manual.  

This chapter is organised as follows: SOLARSTUDIO‟s‎ operation,‎ image‎

access, architecture and features are described in sections ‎6.3, ‎6.4, ‎6.5 and ‎6.6, 

respectively. Comparisons with other systems are introduced in Section ‎6.7, while 

conclusions are provided in Section ‎6.8. 

6.3 The SOLARSTUDIO Imaging Tools 

The SOLARSTUDIO was developed to download the remote JPEG and FITS images 

provided by the STEREO and the JPEG images provided by the SDO. Also other 

compatible images (BMP, TIFF, PNG, and JPEG and FITS files) can be accessed 

locally. SOLARSTUDIO enables the user to browse these images using a unique GUI 

(Graphical User Interface). SOLARSTUDIO has a modular object-oriented-based 
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design,‎which‎makes‎it‎easy‎to‎update‎according‎to‎users‟‎feedback.‎The UML (Unified 

Modelling Language) is used to show the architecture of this system as follows: the use 

case diagram which describes the two main processes (browsing and processing) 

offered by the SOLARSTUDIO is shown in Figure ‎6.1. The sequence diagrams for 

browsing and processing the solar images are shown in Figure ‎6.2 and Figure ‎6.3 

respectively. Communications between the classes of SOLARSTUDIO are shown in 

Figure ‎6.4,‎where‎the‎“Imaging‎Tool”‎class is the super class from which the other sub-

classes inherit its attributes and operations which are described in Section ‎6.6. 

 

Figure ‎6.1 Use case diagram of SOLARSTUDIO indicating the main two processes: image 

browsing and applying an imaging tool. 

Currently SDO FITS images are accessed outside the application. 

SOLARSTUDIO makes it possible to retrieve images from two satellites while 

maximizing their usability. Accessing these huge data volumes efficiently at both high 

spatial and high time resolutions is important to support scientific discovery. 

SOLARSTUDIO allows users to browse large data volumes as still images, and/or 

movies of multiple resolution image files. An archive system is incorporated also to 

save the requested images, so next time they are needed there is no need to download 

them again (useful if no Internet connection is available). Users can display, process, 

zoom, build super resolution images and construct anaglyphs (from un-calibrated 

STEREO pairs) automatically, without strict network bandwidth penalties. 
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Figure ‎6.2 Sequence diagram to represent the process of browsing the remote and local 

image(s). 

 
Figure ‎6.3 Sequence diagram to represent the process of applying an image tool. 
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Figure ‎6.4 Class diagram to represent all classes in the SOLARSTUDIO associated with 

their relations between them. 

6.4 Remote Image Access with Web-Request Class 

Web-Request is an abstract base class for the .NET Framework's request/response 

model for accessing data from the Internet. It makes a request to a Uniform Resource 

Identifier (URI) (see [90]). SOLARSTUDIO uses this class to request data from the 

official STEREO and SDO websites. For example, a request for images from STEREO 

or SDO is performed by sending a request to the URIs of [2] and [91], respectively. 

The URI is a string that is built during run time from a query string. The query 

string represents the resource on the Internet that is created from the parameters 

requested from users as shown in Figure ‎6.5.The file names of images for both 

STEREO and SDO missions are saved into a relational database. Two relational tables 

are created to save the file names for each mission as shown in Table ‎6-1. An index key 

is created also for each table in order to speed up the query process. The URI structures 

for STEREO and SDO are shown in Table ‎6-2 and Table ‎6-3 respectively. 
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Figure ‎6.5 The process of accessing remote images in SOLARSTUDIO platform. 

Table ‎6-1 Relational data definition created to save the data for both STEREO and SDO 

using information from the file names of images. 

Field name Data type Description 

Image Name Text Primary Key 

Observation Time Date/Time Indexed key(yes for duplicate) 

 

Table ‎6-2 The URI structure for STEREO images. 

Field Description Example 

Host Remote host address http://stereo.gsfc.nasa.gov/browse 

Year The year is in YYYY format 2007 

Month The month is in MM format 05 

Day The day is in DD format 01 

Spacecraft Spacecraft name Ahead 

Instrument Instrument type Euvi 

Telescope Telescope type 171 

Resolution Resolution in pixels 128 

ImageName 

JPEG image file name in 

YYYYMMDD_HHMMSS_S

tring_Telescope.jpg 

20070501_235900_n4euA_171.jpg 

URI 
The URI composed from 

merging all above fields 

http://stereo.gsfc.nasa.gov/browse//200

7/05/01/ahead/euvi/171/128/20070501_

235900_n4euA_171.jpg 

Table ‎6-3 The URI structure for SDO images. 

Field Description Example 

Host Remote host address. 
http://sdo.gsfc.nasa.gov/assets/img/

browse 

STEREO & SDO remote hosts 

Build the query string 

 

Retrieve Images 

  

Send Request 
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Year The year is in YYYY format. 2010 

Month The month is in MM format. 06 

Day The day is in DD format. 01 

ImageName 

JPEG image file name in 

YYYYMMDD_HHMMSS_Resol

ution_Telescope.jpg format. 

20100601_000136_512_0171.jpg 

URI 
The URI composed from merging 

all above fields 

http://sdo.gsfc.nasa.gov/assets/img/

browse/2010/06/01/20100601_000

136_512_0171.jpg 

6.5 SOLARSTUDIO Components 

A user friendly interface has been created to provide image browsing capabilities. It 

offers access to local or remote images, creates animations for whole image(s) or 

regions of interest (sub-image(s)) and makes available several image processing 

methods including the extraction of colours, Gaussian, smoothing and median filters, 

thresholding, conversion to gray scale, resizing (Bicubic, Bilinear, Nearest Neighbour), 

cropping, sharpening, edge detection (Laplacian, Sobel and Difference), brightness 

adjustment, rotation, Fourier Transform (FFT) (backward and forward), thinning and 

erosion. All these image processing methods can be applied on the large image data sets 

related to STEREO and SDO. For example, the users could interactively browse a 

number N of images, seconds, minutes, hours, days or months after a predefined 

date/time, e.g. if N=100 and the user selects the value parameter images, then the 

download terminates after downloading 100 images, but by selecting the value 

parameter seconds, then it terminates after 100 seconds of the predefined date/time, and 

so on.  

SOLARSTUDIO makes the local and remote image sets easily accessible via a 

.NET framework client application. Hence, all image processing methods are performed 

on the local machine (client side). A user selects a set of images for visualisation and 

processing and the system checks to see whether each image in the set already exists in 

the local machine. The user usually specifies the satellite (STEREO or SDO), 



[SOLARSTUDIO] 

 

128 

instrument and image dates. If the images do not exist locally, then a download will be 

performed based on the URI returned by the SQL query. This process is useful; it 

enhances the system efficiency by avoiding repeating processes on the same data set 

and the system is able to work on previously accessed data even if no Internet 

connection is available.  

As shown in Figure ‎6.6, SOLARSTUDIO enables local and remote access for 

solar images. For instance, a pair of images taken from STEREO‟s‎Ahead and Behind 

spacecraft on 13-May-2007 at 00:13:00 is downloaded remotely and displayed on the 

local machine. The feature detection and matching method called STEREO-CPs 

(described in Chapter 3) is applied to this pair of images. The resulting CPs can be used 

to create an anaglyph image. Also multiple anaglyph images can be used to create a 3D 

video file. 

The architecture of the SOLARSTUDIO client-server application is shown in 

Figure ‎6.7. SOLARSTUDIO is organized to request images from two servers if no 

images exist in the local archive (visited images) repository. The extracted images can 

be processed locally using any of the general image processing operations mentioned 

previously. Other image processing methods specifically designed for images from 

STEREO and SDO can also be applied including: adjusting the solar disks in a pair of 

STEREO images to the same size, segmenting active regions, tracking object(s) through 

sequences of images, forming composite images from multiple EU images, extracting 

the solar limb from images, creating an anaglyph image from pairs of STEREO images 

and creating a super-resolution image from a sequence of lower resolution images. It is 

worth mentioning that many of the basic image processing features are available in 

“SolarSoft”‎under‎IDL.‎However,‎SOLARSTUDIO is a standalone application and has 

no licensing requirements, unlike IDL applications. Moreover, SOLARSTUDIO offers 
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advanced and novel features such as super-resolution, feature detection and matching, 

3D anaglyphs and videos creation, etc. 

 
Figure ‎6.6 Screenshot of the SOLARSTUDIO application. The above part of the 

application window is the database search interface. In this example a pair of images of 

EUVI 304 is used for feature detection and matching, and to create anaglyph and video 

files. 

6.6 SOLARSTUDIO Features 

SOLARSTUDIO is designed to allow solar physicists to quickly browse through large 

volumes of images in JPEG format from both STEREO and SDO missions and provide 

individual image, video and, in suitable circumstances, 3D views. Having identified a 

temporal period of interest the relevant uncompressed STEREO FITS images can be 

downloaded by the user, but this is a slow process because of the large file sizes and 

also because the relevant images may take a few days to become available on the source 

servers. SOLARSTUDIO also provides several standard and advanced image 

processing functions and others specifically focused on solar applications which can be 
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applied to images saved in JPEG, FITS and several other formats. Resulting images can 

be saved in BMP, PNG, TIFF, or JPEG formats. The tools currently provided in the 

SOLARSTUDIO are described in subsections ‎6.6.1 and ‎6.6.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6.7 The SOLARSTUDIO components: database interface, STEREO and SDO 

repositories, the standard image processing operations and specialised image processing 

operations for solar images. 

6.6.1 Standard Image Processing Tools 

Several image processing tools to process and analyse images are integrated in 

SOLARSTUDIO and the parameters required by the tools are assigned through user 

friendly interfaces; e.g. using slide bars and/or list boxes, etc. and show the effect on a 

preview image before applying it on the original image as shown in Figure ‎6.8. The 

image processing features and tools included in the SOLARSTUDIO application are: 

http://stereo.gsfc.nasa.gov http://sdo.gsfc.nasa.gov 

Archive 
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 Resize and rotate performed using either nearest neighbour, bilinear or bicubic 

interpolation 

 Animation creates a movie loop from displayed images which can be played in 

SOLARSTUDIO and exported as an AVI file 

 Crop can be performed for an unlimited number of frames to extract regions 

specified by a window defined in the first frame 

 Colour operations such as: gray scale, invert, channel extraction and brightness 

adjustment 

 Binarization to produce a binary image based on a user-defined threshold value 

 Mathematical morphology operations in 8-bits mode including erosion, objects 

labelling, dilation and thinning 

 Convolution filters including Gaussian smoothing and edge sharpening 

 Feature detectors including Harris and Fast corner detectors 

 Feature detectors and matching such as Harris with correlation, SIFT and SURF 

 Edge detectors including Canny, Sobel and difference methods 

 Median and adaptive smoothing filters 

 Fourier forward and backward transformations 

 

Figure ‎6.8 A sample of SOLARSTUDIO's GUI offering a preview of the effect of a 

Gaussian filter before applying it to the image. 
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6.6.2 Solar Image Processing Tools  

The SOLARSTUDIO functions that are specially designed for the processing of solar 

images are: 

 A method (called STEREO-CPs) based on the SIFT and SURF methods but 

optimised to detect and match features between a pair of solar images, see Figure 

‎6.9c for an example of corresponding points. 

 Rescale the solar disks in different images to the same size using corresponding 

points. 

 Translate the centres of the solar disks in a pair of images to the same locations as 

shown in Figure ‎6.9. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure ‎6.9 Resizing solar disk using CPs obtained using the STEREO_CPs method. The 

images of size 512×512 pixels are taken from STEREO spacecrafts on 13/05/2007. The 

vertical and horizontal lines indicate the heights and widths of the solar disks. (a) Ahead 

EUVI 304 Å, solar disk of size 317×317 pixels (b) Behind EUVI, solar disk of size 290×290 

pixels (c) Feature detection and matching generated from STEREO-CPs (d) Ahead EUVI 

304 Å, solar disk resized to 290×290 pixels. 
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 Super resolution [96] generates a higher resolution image from a minimum set of 4 

lower resolution images captured with a cadence high enough to minimise dynamic 

changes of the sun between the images. A cadence of 2.5 minutes per image has 

been found to generally give good results. However, in some cases, where no 

significant changes take place at the Sun, longer cadences can be used shown in 

Figure ‎6.10. 

 Anaglyphs can be generated from uncalibrated pairs of images using the 

corresponding points from the STEREO-CPs method, and can be generated from 

pairs that have been associated with predefined scale factors. The user can choose 

between two outputs: still image(s) or video files. This can be applied to the full 

solar disk or to an area of interest, as shown in Figure ‎6.11. 

 

(a) 

 

(b) 

 

(c) 

 

(d) (e) 

 

(f) 

 

(g) 
Figure ‎6.10 An example applying the SR method, which is integrated in SOLARSTUDIO. 

The SDO images shown in (a), (b), (c) and (d), were captured with a cadence rate of 8.25 

minutes per image on 20 July, 2010 (the reference image taken at 00:26:48) to produce the 

SR image (e) shown at the same size. Image (f) is that of (a) magnified 3 times using 

Bicubic interpolation and image (g) is the SR image (e) displayed full size. 



[SOLARSTUDIO] 

 

134 

 

Figure ‎6.11 SOLARSTUDIO generated 3D video (from whole images or from user defined 

sub-images) from STEREO pairs of images taken on 13/05/2007 between 12:41:15 UT and 

13:06:15 UT. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure ‎6.12 Merging colour channels from a sequence of AIA images. This is useful to 

accentuate features and simultaneously compare between multiple wavelengths. The 

images were taken by the SDO spacecraft on 27/05/2010. (a) AIA 171 Å (b) AIA 193 Å (c) 

AIA 304 Å (d) Combined image. 
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 Track object(s) through a sequence of images. 

 Segment active regions in EUVI images. 

 Merging unlimited number of EUVI or AIA images building 24 bit colours in the 

combined image file as shown in Figure ‎6.12. 

 Movie creation for Active regions from a sequence of images. 

6.6.3 Near Real-Time Based System 

To search for the latest STEREO and SDO images can be a time consuming task, often 

worsened by slow internet access. SOLARSTUDIO is designed to enable the user to 

view the latest STEREO/SECCHI EUVI and SDO images without having to be 

concerned with the formats and locations of images. The local database updates 

automatically following a user request. The system keeps a track of the current 

date/time and sends automatic requests to download recent images. 

It is believed this service is useful, because it provides an up to-date stream of 

images. SOLARSTUDIO can provide the infrastructure for other systems such as those 

concerned with space weather predictions which can make use of EUVI and AIA 

images. The anaglyph features of SOLARSTUDIO could be useful for producing 3D 

images and videos when the spacecrafts are on other side of the sun from the earth, 

around the time when the two STEREO spacecrafts meet again in 2015. However, there 

will be a period of a few months (estimated on the planning page http://stereo-

ssc.nascom.nasa.gov/plans.shtml) when the STEREO spacecrafts will be completely out 

of contact. Radio noise from the Sun is a limiting factor on how close to the sun it is 

possible to communicate with the spacecraft. 

6.7 Comparison with previous works 

The comparison conducted in Table ‎6-4 involves ASAP, SWB, JHelioviewer, 
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STEREO-GSFC (Goddard Space Flight Centre), SDO-GSFC and SOLARSTUDIO is 

based on three criteria: the missions covered (SOHO, STEREO and/or SDO); the 

information required to perform the image processing (e.g. calibrated or un-calibrated 

data); and the functionalities that are offered by each application. The comparisons 

reveal that SOLARSTUDIO is the only tool working with both STEREO and SDO 

missions, providing standard image processing tools, and offering more highly focused 

functions on uncalibrated solar images such as AR detection, super resolution and 

anaglyphs. 

6.8 Conclusion 

To the best of the author‟s knowledge, SOLARSTUDIO is the first software that: 

firstly, locates STEREO and SDO repositories from a single interface. Secondly, offers 

image processing tools specifically designed for solar images such as: active region 

segmentation in multiple EUs through single or streams of images, solar event tracking 

(e.g. Active region), merging of several AIA beacon images to accentuate features and 

simultaneously compare multiple wavelengths, super-resolution from sets of 

consecutive frames available at high cadence rates, feature detection and matching 

between pairs of un-calibrated images, and creating single or streams of Anaglyph 

images from pairs of images taken from STEREO Ahead and Behind spacecraft. 

SOLARSTUDIO offers a research platform for solar scientists who are 

interested in studying the solar atmosphere at different scales, times and wavelengths. It 

will be very useful also for researchers working on un-calibrated solar images. 

SOLARSTUDIO is a license-free and a standalone application that provides novel and 

advanced image processing features for the community.  
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 Table ‎6-4 A comparison of Solar imaging tools based on missions covered, information 

needed and the functions offered.  

No Software 
Missions 

covered Information needed Functions 

1. ASAP [88] SOHO Sunspot group catalogue, Solar 

flare catalogues, SOHO/MDI 

Continuum and Magnetogram 

images 

AR detection 

Sun spot detection 

McIntosh classification 

CME prediction 

2. SWB [22] SOHO 

STEREO 

Sunspot group catalogue, 

NOAA Active Regions, 

CACTus CME, 

SOHO/MDI Continuum and 

Magnetogram images, 
SOHO EIT images, 

STEREO-A and STEREO-B 

views with respect to the view of 

SOHO 

Client browsing 

Information overlaying CME 

detection 

3. CACTus [22] SOHO LASCO images CME detection 

4. JHelioviewer [21] SOHO Sunspot group catalogue, 

NOAA Active Regions, 

LASCO catalogue, 

SOHO EIT images, 

CACTus CME 

 

Client browsing, Movie 

creation streaming between two 

dates/times, Applying frame-

by-frame basic image 

processing, Overlaying 

unlimited number of images or 

movies under adjustable 

transparency levels, and 
Locating solar events data. 

5. STEREO GSFC 

[3] 

STEREO SECCHI instruments: an extreme 

ultraviolet imager, two white-light 

coronagraphs and a heliospheric 

imager 

Internet server browsing, Movie 

creation streaming for a day or 

between two dates/times. 

6. SDO GSFC  

[113] 

SDO Atmospheric Imaging Assembly 

(AIA) and 

Helioseismic and Magnetic 

Imager (HMI) images 

Internet server browsing, Movie 

creation streaming for a day or 

between two dates/times. 

7. SOLARSTUDIO STEREO 

SDO 

STEREO- SECCHI EUVI, 

AIA images, 

HMI images 

AR detection, Client browsing, 

Movie creation streaming 

between two dates/times, 

Applying frame-by-frame 

image processing, Merging 

various AIA images, Segment 
ARs within movie, Feature 

detection and matching, 

Tracking solar events, 

Anaglyphs, Super resolution, 

Adjusting the size of solar disk 

for a pair of STEREO A and B 

images to the same scale and 

offset 

 

The future work will mainly aim to add further methods focused on solar images 

within the SOLARSTUDIO application such as: using the calibration information 

within FITS images to generate 3D images (obj or vrml files) and view them locally, 
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accessing solar events catalogues and providing association methods [114]. 

SOLARSTUDIO will be extended in the near future to handle ground-based 

observations, an example applying SOLARSTUDIO to one of these images is shown in 

Figure ‎6.13, where an anaglyph image is created for CA II K3 images. 

 
a 

 
b 

 
c 

 
d 

 
e 

 

Figure ‎6.13 CA II K3 sub-images for 20/07/2007, taken from BASS200. (a) Original sub-

image. (b) Sobel edge detection applied on (a). (c) Brightness adjustment applied on (a). 

(d) Merging sub-images of (a), (b), and (c). (e) Anaglyph image constructed from pair of 

sub-images taken with about 3 hours separation time. 
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CHAPTER SEVEN 

7 CONCLUSIONS AND SUGGESTIONS FOR FURTHER 

WORK 

7.1 Overview 

Image enhancement and anaglyph reconstruction of a scene from uncalibrated images 

taken from different viewpoints are topics of wide interest. One dissection of work in 

this area is by whether the images are from calibrated cameras or not. In the former, 

without any knowledge of the scene, recalibration must be done if the camera setup 

changes. The second case, which allows scenes to be reconstructed with no reliance on 

camera calibration, is more widely applicable. Such success can be applied to serve SR 

and anaglyphs applications. This thesis presents new algorithms for efficient browsing 

and the enhanced 2D/3D viewing of solar images provided by STEREO and SDO 

satellites. This chapter is organised as follows. Section 7.2 provides general conclusion 

with a more detailed breakdown in Section 7.3. Section 7.4 pinpoints major 

contributions to the field. The main data and software resources that were used in the 

work are described in Section 7.5. The potential integration with other techniques and 

other possible future work are suggested in Section 7.6. The implementations of the 

presented methods are provided in the enclosed CD-ROM (See Appendix A). 
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7.2 Overall Conclusions 

In this research study, the focus is to further knowledge in the extraction of CPs from 

pairs of uncalibrated images, particularly solar images captured from STEREO and 

SDO spacecrafts. Four areas of research are investigated: automatic methods for finding 

accurate correspondences in pairs of solar images; creating SR image from a set of LR 

images providing details not available in any individual original image; creating 3D 

scenes (anaglyphs) from pairs of calibrated or uncalibrated solar images; creating a 

computer platform to integrate the presented methods in this thesis and serve multiple 

imaging tools for solar images and for other scenes. Moreover, the author presented a 

contribution to enhance the 3D views using SR method, which it is the first attempt of 

such anaglyph enhancement. 

 The research work behind this thesis has resulted in the improvement of the state 

of the art in SR and 3D visualization by introducing automatic sets of CPs from 

uncalibrated images. The data set of interest in this work consists of the huge volume of 

data taken from the STEREO and SDO spacecrafts. Applying SR, anaglyph and the 

easy access to these huge data volume at both high spatial and high time resolution 

within a single platform is important to support scientific discovery. The characteristics 

of these images in terms of size of up to 2048×2048 and 4096×4096 pixels for STEREO 

and SDO images respectively, uncalibrated bases with angular shifts increase the 

difficulties of the work. On the other hand, the majority of the existing SR methods in 

the literature were designed to work with set of images with small shifts and/or rotation 

between images, and the existing anaglyph methods were designed based on manual 

techniques such as: CPs selection, rescaling and/or fitting. 

Working with solar images without calibration has three main advantages. Firstly, it 

avoids transferring any calibration error into subsequent processes such as tracking 
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objects. Secondly, it can use the immediately available JPEG files (provided at several 

resolutions with lossy compression) rather than the high resolution FITS files (provided 

uncompressed at full resolution and with calibration information), which require a few 

days to become available, which allows the efficient use of near real-time images to be 

created for applications where the jpegs provide useful information. Finally, it allows 

methods introduced in this thesis to be flexible to run on scenes other than the Sun. 

7.3 Detailed conclusions 

Concluding remarks on this research are listed as follows: 

 Chapter 2 presents a review of: STEREO and SDO data; methods for finding 

corresponding points; generating SR and anaglyphs; several exiting applications are 

designed to browse and process solar images. A number of methods are identified as 

bases for development for working with large solar images in the subsequent 

chapters. It is found that there is a continuous increase in satellite data volumes 

creating the need for efficient computer systems for the automated processing of 

these data. Also it is found that there is a lack of existing systems to provide data 

access and comparison for more than one mission. Furthermore, a lack of imaging 

systems to provide the user with advanced imaging capabilities in the fields of SR 

and 3D processing integrated within a single computer platform available in the 

public domain for the benefit of the scientific community.  

 An automated method for generating sets of CPs from an uncalibrated pair of solar 

images of sufficient quality and number to be useful in further applications has been 

achieved and is presented in Chapter 3. This method (called STEREO-CPs) provides 

the flexibility for the SR and anaglyph approaches presented in this thesis to run on 

uncalibrated images of scenes other than the Sun. The work is demonstrated using 

uncalibrated JPEG images to provide efficient algorithms that are capable of use in 
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near real-time based systems which cannot access large-size solar data in time. 

Scientific data takes about 3 days before becoming available on the archive. The 

potential of this technology is huge because it can be used, for example, in the 

generation of SR images (to reduce the artefacts of the compressed near real-time 

images), anaglyphs and feature tracking. 

Based on the experiments on the tested solar images, initial trials of two 

relatively simple methods, the Harris detector and the KLT algorithms, with 

STEREO images at several separation angle values provided poor results, whereas 

the SIFT and SURF methods gave promising results. Also it was found that the 

SURF method outperformed the SIFT method in speed, was usually better in terms 

of quality of matches and wide distribution of matches over the tested solar images 

but the output was associated with some mismatches. Thus the SURF method is 

preferred to generate the initial set of CPs. Then SIFT is used to confirm the correct 

matches for each pair points in the initial set generated after applying the SURF 

method. The resulting mismatches are minimised again by discarding the extreme 

deviation coordinates around the median of the resulting CPs.  

Compared to standard methods including SIFT,SURF and RANSAC, in more 

than 100 experiments, it was found that the STEREO-CPs method is more 

discriminating, leading to significant improvements in the quality set of the CPs in 

pairs of STEREO images. It is concluded that the STEREO-CPs method works well 

with STEREO Ahead and Behind images with separation angles up to 35°. This is 

adequate with data from the early part of the STEREO mission between March and 

July 2007 and when the STEREO spacecrafts next have low separation angles which 

are convenient for the creation of anaglyphs. The STEREO-CPs method is also used 

in Chapter 4 to estimate the integer shifts between a set of images in the registration 

stage of the presented SR approach.  
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The limitations of the presented STEREO-CPs method are associated with the 

limitations of the SURF algorithm (used to generate initial CPs) which is sensitive 

to noise, varying illumination and contrast. Also it is always slower than SURF 

(because SIFT is used after SURF) and sometimes slower than SIFT in case of large 

number of CPs. These problems could be tackled by using machine learning to 

optimise the threshold values with reliance on the input images.  

 An SR approach for solar images describing its main three stages: image 

registration, interpolation and filtration, is presented in chapter 4. The unsatisfactory 

results from several existing SR tools such as IBP, Robust SR, QE, and POCS on 

the tested images along with a desire to introduce and integrate an SR tool within a 

computer platform for solar images motivated this work to introduce a new SR 

approach. Registration of un-calibrated images is performed based on developing an 

automated method for ARs (or local maxima) detection using correlation. It was 

found that correlation is simple and suitable to match images with small shifts as 

assumed in this work but it is also sensitive to changes in scales and rotations. 

Hence, the STEREO-CPs method is used to overcome these limitations providing 

the ability to run the proposed SR method on scenes other than the Sun. 

Interpolation is applied to compensate unknown pixels and to resize the output 

image using a Bicubic technique with threshold parameter, and smoothing is done 

using a Gaussian filter with adjustable parameters.  

Several practical tests have been performed to evaluate the performance of the 

proposed SR method using subjective (human judgement) and objective (PSNR and 

SSIM) assessments. The comparisons involved several competitive SR methods 

including IBP, Robust, QE, and POCS and the non SR based the Bicubic 

interpolation method. It is concluded that the proposed SR method works better on 

the tested images than the methods in both subjective and objective assessments 
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using images captured at high cadence rates. It is worth to mention that Bicubic 

interpolation method in general is used to resize images and not for the 

enhancement. 

A limitation of the proposed SR method is that‎ enhancement‎ wouldn‟t‎ be‎

possible if any failure occurred from STEREO-CPs method to estimate the accurate 

displacement between the associated images. A number of images of a scene 

(captured at high cadence rate are recommended) are needed by all the SR 

techniques tested. Both these factors can cause image downgrading rather than 

enhancement. 

 Automated 3D viewing methods using uncalibrated and/or calibrated pairs of 

images are presented in Chapter 5. The work presented is focused on uncalibrated 

images and efficiently creates anaglyphs for the Sun at low separation angles, and in 

addition, is able to work in near real-time using CPs resulting from the STEREO-

CPs method. This will be useful to view the back side of the Sun in 3D when the 

near real-time beacon images become available from the two spacecraft except the 

period of few months in 2015 when the spacecrafts are out of communication. The 

near real-time images are compressed, so they are suffered from artefacts caused by 

the compression process. Thus, an attempt to enhance the 3D perception by 

combining a pair of images enhanced using SR rather than the original LR pair of 

images is introduced. Also STEREO-CPs method offers the flexibility to run the 

presented methods of anaglyph creation on scenes other than the Sun.  

The performance of the presented rescaling method is compared with the process 

of rescaling using calibration information included in FITS file headers. The results 

show that the proposed rescaling method over the tested period gives very similar 

results to those obtained using calibration data with differences around 0.49%. Other 

advantages of this method are that it is simple and automatic so saves the user time 
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and effort. The main limitation of this method also is based on the performance of 

the STEREO-CPs method, e.g. the QF value which should be less than 1 must be 

considered before rectifying the images, otherwise the output should be distorted as 

explained earlier in Chapter 3. 

 In Chapter 6, the work presented aims to build a unique computer platform for 

locating STEREO and SDO repositories from a single interface by streaming 

between two dates/times. Integration of the implementation methods presented in 

this thesis within this platform will be useful to support scientific discovery. 

Examples of other integrated methods are: active region segmentation in multiple 

EUs through single or streams of images, solar event tracking (e.g. active region), 

merging of several AIA images to accentuate features and simultaneously compare 

multiple wavelengths, etc. Hence, SOLARSTUDIO is introduced to provide a 

research infrastructure for solar scientists who are interested in studying the solar 

atmosphere at different scales, times and wavelengths. It will be very useful also for 

researchers who are interested in working without calibration information on 

images. SOLARSTUDIO will be available online as a standalone application 

including installation instructions and a user manual. Working with uncalibrated 

images means SOLARSTUDIO can be applied on images of other scenes in the 

future, such as medical diagnosis, high quality video conferencing, space and 

planetary surveillance, etc. Up to date images are obtained automatically following a 

user request. 

     The limitations of the SOLARSTUDIO can be summarised as follows: 

firstly, it does not yet deal with the event catalogues provided by the solar missions. 

Secondly, it cannot view or process the 3D mesh files such as: OBJ or VRML files. 

Finally, SOLARSTUDIO will fail, except for the visited images which are found in 

the archive system, to browse the remote data provided by STEREO or SDO 
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missions if the web services of their official websites are stopped suddenly. 

7.4 Original Contributions 

The main original contributions presented in this thesis are summarised as follows: 

 A flexible technique for the automatic generation of a set of CPs from an 

uncalibrated pair of solar images is introduced. CPs are needed to match 

sequences of image to investigate time and spatial variations. They can also be 

used to automate the image registration process needed to construct super 

resolution images and to build 3D anaglyphs for the input image sequence. The 

comparisons reveal that CPs from STEREO-CPs are more distinguishable and 

more accurate than CPs from SURF, SIFT and RANSAC. 

 A new SR technique, which consists of three main stages: image registration, 

interpolation and filtering, is developed. This novel technique is applied to 

STEREO and SDO images successfully at high cadence rate to view the Sun 

with a higher image resolution than is available in the original individual images 

of the Sun. The comparisons involved several competitive SR methods. It is 

concluded that the proposed SR method works better on the tested images than 

the alternative methods in both subjective and objective assessments using 

images captured at high cadence rates. 

 Algorithms to create anaglyphs from uncalibrated or calibrated pairs of 

STEREO images are presented. For the first time, the uncalibrated JPEG images 

provided by STEREO mission can be utilised to enable the efficient automatic 

anaglyph creations. Also for the first time to enhance the view of anaglyph 

images by constructing from pairs of SR images rather than the available low 

quality images. 

 A novel computer platform called SOLARSTUDIO is designed to provide 



[Conclusions and Suggestions For Further Work] 

 

147 

efficient access to STEREO and SDO images at both high spatial and high time 

resolution to support scientific discovery. SOLARSTUDIO is the first software 

that: firstly, locates STEREO and SDO repositories from a single interface. 

Secondly, offers image processing tools specifically designed for solar images 

such as: active region segmentation in multiple EUs through single or streams of 

images, solar event tracking (e.g. Active region), and merging of several EUVI 

images to accentuate features and simultaneously compare multiple 

wavelengths. SOLARSTUDIO also includes all methods presented in this thesis 

such as: STEREO-CPs, the proposed SR, and the anaglyphs creation methods. 

Furthermore, SOLARSTUDIO is a platform that can be extended to 

accommodate different imaging operations. It could be the future of solar 

imaging. 

7.5 Research resources 

In undertaking this research, a wide range of experience was gained in order to make 

full use of the following resources: 

 The main sources of solar data were the STEREO-GSFC, SDO-GSFC in the US 

and the UK Solar System Data Centre (UKSSDC). Two programming languages 

(e.g. C#.NET and MATLAB) were used to implement the presented algorithms 

and to integrate them under one computer platform. 

 Several computer tools were developed to process the solar data (FITS and 

JPEG) and provide data in appropriate format for the use of the C++ application 

implemented by Al-khadour et al.[85] . The data format is based on generating 

proprietary Two Camera Corresponding points (TCC) files, which include 

information regarding pair of images such as: the file names of images, number 

of CPs, CPs, and resolutions in pixels.  
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 The implementations of previous work were written in several computer 

languages. IBP, Robust SR, POCS and, SIFT were written in MATLAB, The 

KLT algorithm and the direct rectification algorithm for uncalibrated images 

called DRUI were written in C++ and SURF was written in C#.NET. 

The work presented in this thesis can be developed further and some suggestions 

for future work are listed in the next section. 

7.6 Suggestions for further work 

7.6.1 Integration with other techniques 

One of the strengths of this work lies in its potential that SOLARSTUDIO is a platform 

that can be extended to accommodate different imaging operations. It could be the 

future of solar imaging. Thus, integration with other technologies that are developed 

within the space weather research group at the University of Bradford, for examples 

integration of SOLARSTUDIO with ASAP, would be useful to provide advanced space 

weather applications and data processing services. 

7.6.2 Improvements and research extensions 

Some of the challenges that still need to be overcome, with suggested solutions and 

some ideas for further research are included as follows: 

 STEREO-CPs can be improved by optimizing the threshold values of SIFT and 

SURF by using machine learning on reliance of the input images. This should 

generate better quality CPs with fewer mismatched pairs of points. 

 Processing the calibrated images to generate 3D graphics files (OBJ or VRML) 

and view them locally. Also accessing solar events catalogues and providing 

association methods [16]. 



[Conclusions and Suggestions For Further Work] 

 

149 

 The proposed SR and anaglyph methods can be applied on other data sets such 

as: medical images for medical diagnosis, high quality video conference, Blu-ray 

movies, space and planets surveillance, etc. 

 Investigate alternatives to the Bicubic interpolation method, which could offer 

fewer visible artefacts caused by image upsizing, such as: cubic B-spline [115], 

quadratic interpolation [116], or advanced interpolation using a fuzzy-inference 

system as described in [117]. 
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APPENDIX A. RESULTS OF THE STEREO-CPs METHOD 

Results of 102 experiments carried out on pairs of STEREO images with separation angles between 0.624 and 39.088. For conciseness, the type of 

Extreme Ultra Violet and the size (Width×Height) of the images are abbreviated by EUVI×Size. ThrX and ThrY denote Threshold-X and Threshold-Y 

respectively which represent the x-axis and y-axis thresholds generated by STEREO-CPs. 

 STEREO A & B pairs of images SURF RANSAC STEREO-CPs Thresholds 

No. EUVI×Size Date/Time Angle() CPs QF LQb CPs QF LQb CPs QF LQb ThrX ThrY 

1 195x1k 15-03-07 18:51:40 1.926 88 0.34 1.41 88 0.34 1.41 76 0.30 1.58 0.0146 0.0093 

2 195x1k 15-03-07 23:35:40 1.938 95 0.32 1.83 95 0.32 1.83 86 0.31 1.76 0.0356 0.0082 

3 304x1k 15-04-07 00:11:45 4.293 628 4.55 201.2 621 2.84 17.93 578 0.33 5.280 0.0014 0.0014 

4 195x1k 15-03-07 22:15:40 1.935 72 1.74 9.81 71 0.46 3.10 64 0.35 1.82 0.0115 0.0104 

5 195x1k 15-03-07 21:35:40 1.933 62 0.27 1.66 62 0.27 1.66 56 0.28 0.95 0.0192 0.0117 

6 304x1k 20-03-07 07:31:41 2.198 748 5.09 31.74 745 2.24 12.91 672 0.36 3.00 0.0013 0.0003 

7 304x1k 20-03-07 16:41:41 2.223 664 3.32 158.3 658 0.68 125.5 593 0.36 4.72 0.0014 0.0003 

8 304x1k 20-06-07 00:16:15 13.932 294 11.51 198.5 287 0.36 2.38 167 0.36 2.51 0.0022 0.0016 

9 304x1k 20-03-07 05:01:41 2.192 750 3.03 89.71 744 0.41 5.15 713 0.37 4.33 0.0013 0.0007 

10 304x1k 20-03-07 08:21:41 2.201 694 2.32 156.3 690 0.49 4.58 629 0.37 4.06 0.0014 0.0003 

11 304x1k 20-03-07 10:51:41 2.207 780 2.65 230.3 774 0.59 4.33 764 0.37 2.07 0.0049 0.0006 

12 304x1k 20-03-07 15:51:41 2.220 638 5.23 231.4 631 0.38 3.72 583 0.37 3.68 0.0015 0.0003 
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13 304x1k 20-03-07 00:51:41 2.181 695 2.19 132.9 691 0.65 7.57 634 0.38 4.59 0.0014 0.0003 

14 304x1k 20-03-07 12:31:41 2.211 731 2.56 204.7 724 1.55 9.59 681 0.38 2.12 0.0026 0.0003 

15 195x1k 15-03-07 18:06:40 1.925 98 0.45 1.54 98 0.45 1.54 84 0.39 1.63 0.0105 0.0077 

16 304x1k 20-03-07 05:51:41 2.194 721 3.88 106.8 716 1.83 12.45 656 0.39 2.55 0.0013 0.0003 

17 195x1k 10-05-07 01:31:20 7.274 62 7.34 40.85 61 0.48 2.71 47 0.40 2.13 0.0149 0.0063 

18 195x1k 15-03-07 20:55:40 1.932 76 0.38 2.01 76 0.38 2.01 69 0.40 2.03 0.0158 0.0102 

19 304x1k 20-03-07 00:01:41 2.179 713 1.18 50.84 710 0.39 9.35 644 0.40 9.37 0.0013 0.0003 

20 304x1k 20-03-07 02:31:41 2.185 730 3.18 148.3 722 0.38 3.15 678 0.40 3.31 0.0028 0.0003 

21 304x1k 20-06-07 01:36:15 13.942 273 7.62 102.1 268 1.08 5.46 254 0.40 2.73 0.0019 0.0015 

22 171x2k 01-02-07 02:05:51 0.624 582 1.68 193.8 579 1.01 7.20 433 0.42 4.02 0.0032 0.0006 

23 304x1k 20-03-07 06:41:41 2.197 737 2.22 226.3 732 1.96 11.55 719 0.42 3.17 0.0032 0.0003 

24 304x1k 20-03-07 11:41:41 2.209 710 2.65 96.64 704 1.68 34.86 689 0.42 4.21 0.0040 0.0006 

25 171x2k 01-02-07 02:25:51 0.624 576 1.26 8.30 576 1.26 8.30 488 0.43 4.28 0.0032 0.0011 

26 195x1k 15-03-07 22:55:40 1.936 75 0.39 1.69 75 0.39 1.69 67 0.43 1.84 0.0158 0.0110 

27 304x1k 20-03-07 10:01:41 2.205 687 3.34 214.0 680 0.69 7.72 655 0.43 6.21 0.0043 0.0003 

28 304x1k 20-03-07 14:11:41 2.216 773 3.97 259.5 764 1.34 10.98 747 0.43 3.78 0.0013 0.0010 

29 304x1k 20-06-07 23:56:15 14.114 348 9.22 192.6 331 3.56 22.94 317 0.44 2.33 0.0018 0.0024 

30 171x2k 01-02-07 02:15:51 0.624 581 0.98 5.52 579 0.44 7.23 449 0.45 5.17 0.0034 0.0006 

31 304x2k 01-06-07 23:56:15 10.765 1698 12.19 801.3 1661 1.67 21.50 1502 0.47 4.110 0.0004 0.0002 

32 304x1k 20-03-07 09:11:41 2.203 786 9.99 389.6 773 0.97 8.59 716 0.47 5.03 0.0091 0.0002 

33 195x1k 10-05-07 01:21:20 7.273 68 0.58 3.79 68 0.58 3.79 53 0.48 3.26 0.0115 0.0050 
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34 195x2k 01-04-07 23:32:00 3.111 128 0.52 2.89 128 0.52 2.89 73 0.49 2.68 0.0276 0.0138 

35 304x1k 20-06-07 03:16:15 13.955 334 9.50 272.7 322 0.77 14.34 301 0.49 2.00 0.0020 0.0012 

36 304x1k 20-03-07 15:01:41 2.218 670 5.39 184.0 663 2.07 30.85 648 0.50 23.25 0.0035 0.0006 

37 304x1k 20-03-07 04:11:41 2.189 735 3.68 425.4 724 3.89 49.09 709 0.54 4.27 0.0046 0.0007 

38 304x1k 20-03-07 13:21:41 2.214 737 9.80 161.6 728 1.99 21.70 712 0.59 6.70 0.0051 0.0007 

39 195x1k 10-05-07 02:01:20 7.277 68 4.64 22.34 68 4.64 22.34 55 0.61 4.26 0.0146 0.0047 

40 284x1k 09-05-07 00:41:55 7.133 124 4.41 68.98 122 0.87 3.86 114 0.61 3.510 0.0180 0.0102 

41 195x2k 01-04-07 23:22:00 3.110 91 0.78 3.62 91 0.78 3.62 58 0.62 2.95 0.0301 0.0147 

42 195x1k 15-03-07 19:35:40 1.928 43 0.37 1.64 43 0.37 1.64 37 0.63 2.23 0.0297 0.0183 

43 195x1k 10-05-07 01:11:20 7.272 70 0.48 3.64 70 0.48 3.64 60 0.65 3.56 0.0131 0.0060 

44 195x1k 10-05-07 01:51:20 7.276 69 0.62 4.48 69 0.62 4.48 62 0.65 4.43 0.0132 0.0057 

45 171x1k 09-05-07 04:40:45 7.155 116 8.45 37.04 115 1.19 9.25 95 0.66 4.67 0.0084 0.0033 

46 284x1k 09-05-07 06:41:55 7.166 162 5.66 51.31 158 0.79 7.51 145 0.69 3.640 0.0155 0.0072 

47 171x1k 09-05-07 18:40:45 7.235 153 9.91 51.91 150 0.69 5.57 126 0.71 4.97 0.0071 0.0027 

48 284x1k 20-06-07 16:46:30 14.059 106 9.80 163.7 102 2.94 12.44 81 0.74 4.65 0.0092 0.0171 

49 304x1k 20-03-07 03:21:41 2.187 693 2.62 20.18 690 0.67 4.57 647 0.75 4.46 0.0013 0.0003 

50 284x1k 20-06-07 08:26:30 13.995 79 11.19 140.4 75 1.45 12.68 68 0.76 2.45 0.0191 0.0216 

51 195x1k 10-05-07 01:41:20 7.275 61 6.77 40.28 59 0.70 4.49 52 0.78 5.07 0.0149 0.0057 

52 171x2k 01-02-07 01:35:51 0.624 476 1.17 8.60 475 0.78 9.37 431 0.78 9.45 0.0005 0.0059 

53 195x1k 15-03-07 20:15:40 1.930 94 1.97 12.40 94 1.97 12.40 79 0.80 3.47 0.0123 0.0078 

54 195x1k 10-05-07 02:11:20 7.277 77 0.82 5.15 77 0.82 5.15 61 0.82 4.02 0.0125 0.0044 
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55 284x1k 20-06-07 18:26:30 14.072 84 8.78 80.75 83 1.74 8.92 63 0.86 5.02 0.0097 0.0134 

56 171x1k 09-05-07 06:40:45 7.166 133 8.80 39.00 132 1.09 6.79 108 0.88 5.44 0.0075 0.0030 

57 195x1k 10-05-07 01:01:20 7.271 75 0.77 4.75 75 0.77 4.75 61 0.93 4.52 0.0112 0.0045 

58 171x1k 09-05-07 00:40:45 7.132 141 3.22 23.70 139 0.75 4.55 125 0.94 4.88 0.0076 0.0042 

59 304x1k 25-05-07 23:56:15 9.629 462 10.73 323.2 451 0.72 17.54 441 0.98 18.40 0.0024 0.0080 

60 171x2k 25-04-07 22:41:30 5.480 276 3.70 168.2 274 3.33 18.49 221 0.98 19.52 0.0044 0.0033 

61 171x1k 25-04-07 22:41:30 5.480 184 4.93 66.31 181 2.90 27.45 161 0.99 14.68 0.0051 0.0017 

62 284x1k 20-06-07 13:26:30 14.033 85 9.09 86.12 82 1.80 8.43 68 1.01 8.35 0.0094 0.0184 

63 304x1k 20-03-07 01:41:41 2.183 746 6.71 183.8 739 1.93 16.96 723 1.04 7.87 0.0039 0.0007 

64 284x1k 20-06-07 15:06:30 14.046 63 1.15 4.93 62 1.22 5.25 53 1.16 4.55 0.0134 0.0199 

65 304x1k 15-04-07 23:51:45 4.392 703 4.40 261.1 695 0.59 7.38 651 1.19 45.10 0.0014 0.0012 

66 171x1k 09-05-07 22:40:45 7.257 131 5.92 26.49 129 0.91 7.43 106 1.20 5.48 0.0092 0.0031 

67 284x1k 20-06-07 23:26:30 14.110 96 22.72 203.5 91 4.21 25.14 76 1.20 7.00 0.0210 0.0141 

68 284x1k 20-06-07 11:46:30 14.021 70 14.10 113.8 65 2.58 16.82 52 1.23 8.29 0.0165 0.0204 

69 304x1k 25-05-07 00:06:15 9.473 499 3.61 75.34 495 0.96 5.59 463 1.29 6.140 0.0044 0.0011 

70 171x1k 19-05-07 00:06:30 8.554 133 3.85 60.62 130 1.18 5.92 110 1.35 5.91 0.0973 0.0060 

71 171x1k 09-05-07 08:40:45 7.178 120 0.83 7.28 120 0.83 7.28 100 1.38 6.50 0.0085 0.0030 

72 171x1k 15-06-07 00:06:00 13.020 108 5.73 26.67 95 2.21 14.52 91 1.43 8.560 0.0089 0.0042 

73 304x1k 20-06-07 04:56:15 13.968 333 12.65 354.3 317 1.38 14.71 294 1.59 13.55 0.0016 0.0011 

74 171x1k 09-05-07 14:40:45 7.212 156 8.07 77.17 153 1.27 7.09 128 1.75 20.36 0.0060 0.0024 

75 171x2k 01-07-07 00:08:30 16.006 138 16.17 329.7 132 8.84 37.30 100 4.37 19.37 0.0036 0.0045 
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76 171x1k 15-06-07 00:08:30 13.020 117 22.33 132.8 111 1.82 11.45 90 2.92 16.76 0.0080 0.0038 

77 195x2k 01-09-07 23:45:30 28.588 15 34.21 195.0 15 34.21 195.0 10 1.88 5.18 0.0146 0.1156 

78 171x1k 05-07-07 00:06:00 16.780 85 7.55 81.69 82 1.11 8.82 66 2.52 9.23 0.0084 0.0084 

79 171x1k 09-05-07 16:40:45 7.223 151 8.63 44.87 149 2.58 14.40 119 2.08 13.69 0.0075 0.0028 

80 171x1k 09-05-07 20:40:45 7.246 126 7.68 45.14 123 7.95 35.64 107 2.12 20.23 0.0097 0.0037 

81 171x1k 15-06-07 00:11:00 13.021 108 4.10 53.17 102 1.75 10.23 85 2.22 18.04 0.0083 0.0038 

82 171x1k 09-05-07 02:40:45 7.144 130 2.72 55.05 127 1.92 10.16 103 2.24 10.69 0.0084 0.0031 

83 171x2k 01-07-07 00:11:00 16.006 148 24.57 447.6 137 5.98 38.43 89 1.66 7.53 0.0055 0.0058 

84 284x1k 09-05-07 02:41:55 7.144 141 8.80 87.66 138 1.03 20.06 128 2.33 14.32 0.0167 0.0091 

85 284x1k 20-06-07 01:46:30 13.944 100 11.91 76.05 97 2.01 14.29 79 2.35 9.85 0.0100 0.0258 

86 171x2k 01-07-07 00:06:00 16.006 135 17.89 169.0 129 12.80 112.3 65 2.39 9.27 0.0085 0.0065 

87 284x1k 20-06-07 05:06:30 13.969 79 20.23 205.7 73 1.27 7.08 66 2.42 14.94 0.0128 0.0175 

88 304x1k 20-06-07 06:36:15 13.981 328 9.63 142.8 316 3.13 19.34 304 2.55 13.97 0.0024 0.0013 

89 195x2k 01-09-07 23:25:30 28.586 30 32.39 138.6 25 5.95 37.32 10 3.44 11.09 0.0129 0.1196 

90 171x1k 09-05-07 12:40:45 7.200 117 2.71 41.41 115 2.64 30.52 107 3.51 18.16 0.0100 0.0046 

91 171x1k 05-09-07 00:06:00 29.169 41 21.13 147.9 38 3.03 11.84 20 2.94 11.29 0.0170 0.0168 

92 284x1k 09-05-07 04:41:55 7.155 172 6.44 111.3 166 2.98 20.88 157 4.77 30.06 0.0117 0.0071 

93 171x1k 09-05-07 10:40:45 7.189 148 15.61 226.9 143 6.98 32.34 118 4.81 26.52 0.0070 0.0027 

94 284x1k 20-06-07 03:26:30 13.956 101 4.92 51.49 96 3.86 16.02 81 4.84 20.80 0.0093 0.0154 

95 284x1k 20-06-07 21:46:30 14.098 71 6.06 60.00 67 3.85 19.29 59 5.04 27.94 0.0124 0.0216 

96 284x1k 20-06-07 06:46:30 13.982 87 9.04 53.31 86 1.82 9.31 69 5.32 20.79 0.0088 0.0198 
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97 284x1k 20-06-07 10:06:30 14.008 109 9.45 107.5 99 3.78 23.87 87 5.4 31.38 0.0107 0.0212 

98 284x1k 20-06-07 20:06:30 14.085 55 12.10 111.0 51 7.07 34.32 45 6.55 37.81 0.0151 0.0189 

99 171x2k 01-07-07 00:13:30 16.006 117 17.52 233.6 11 3.14 15.01 80 3.19 8.47 0.0068 0.0076 

100 195x2k 01-09-07 23:15:30 28.584 23 305.8 1256 18 21.38 198.1 6 null null 0.0816 0.0992 

101 171x1k 05-10-07 00:06:00 34.560 25 75.32 219.1 16 8.32 30.63 5 null null 0.1575 0.0753 

102 171x1k 05-11-07 00:06:00 39.088 25 80.20 190.5 15 57.35 147.0 4 null null 0.1725 0.1186 
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APPENDIX B. CONTENTS OF ENCLOSED CD-ROM  

The CD-ROM attached to this thesis contains useful resources related to the addressed 

research work. The following is an index of the attached CD-ROM: 

Folder Contents 

Source Code This folder includes the source code for all methods presented 

in the thesis and integrated under one MDI form. 

STEREO This folder contains images provided by STEREO-Ahead and 

STEREO-Behind. The structure of the subfolders is organized to 

show the provided spacecraft and the resolution. For instance, 

STEREO\Ahead\2048. 

SDO This folder contains the images provided by SDO. The included 

subfolders also are organized to show the type of telescope 

and the resolution, e.g. SDO\0094\512. 

FITS This folder includes some of FITS files extracted from UKSSDC. 

Some of them were used as ground truth data. 

SOLARSTUDIO Includes the setup package for the SOLARSTUDIO application. 
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