

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

A FRAMEWORK FOR CORRELATION AND

AGGREGATION OF SECURITY ALERTS IN

COMMUNICATION NETWORKS

F. ALSERHANI

PhD

UNIVERSITY OF BRADFORD

2011

ii

A FRAMEWORK FOR CORRELATION AND

AGGREGATION OF SECURITY ALERTS IN

COMMUNICATION NETWORKS

A reasoning correlation and aggregation approach to detect multi-stage attack scenarios

using elementary alerts generated by Network Intrusion Detection Systems (NIDS) for a

global security perspective

FAEIZ ALSERHANI

Submitted for the Degree of

Doctor of Philosophy

School of Computing, Informatics and Media

University of Bradford

2011

iii

Acknowledgements

It takes a long time to complete a PhD thesis, though not as long as it takes to lay some

rail track, surprisingly. I would here like to express my thanks to the people who have

been very helpful to me during the time it took me to write this thesis. First and

foremost, I would like to thank my supervisors, Dr. Andrea Cullen and Prof. Irfan

Awan, for the time and effort they put into helping me along the way. Their insight was

extremely valuable and I have learned much from their feedback. The good advice,

support and friendship of Prof. Irfan has been invaluable on both an academic and a

personal level, for which I am extremely grateful. I also would like to show my

gratitude to the people of Syphan technologies, Mr. Pravin Merchandi, Dr. Jules Dissos

and Mr. Shakeel Ali , for their comments and support during the initial phase of the

research.

The years spent in Bradford would not have been as wonderful without my colleague

Mr. Monis Akhlaq. I am sincerely and heartily grateful to Monis for his personal and

scientific support which has made a great impact on completion of this work. We have

spent unforgettable times in our lab discussing issues and solving problems related to

our research. I also would like to thank my colleague Dr. Rasha Osman for her

assistance and interesting feedback during the research years.

Finally, I am forever indebted to my parents and my family for their understanding,

endless patience and encouragement when it was most required. They have given me

their unequivocal support throughout, as always, for which my mere expression of

thanks likewise does not suffice.

iv

Abstract

The tremendous increase in usage and complexity of modern communication and

network systems connected to the Internet, places demands upon security management

to protect organisations’ sensitive data and resources from malicious intrusion.

Malicious attacks by intruders and hackers exploit flaws and weakness points in

deployed systems through several sophisticated techniques that cannot be prevented by

traditional measures, such as user authentication, access controls and firewalls.

Consequently, automated detection and timely response systems are urgently needed to

detect abnormal activities by monitoring network traffic and system events. Network

Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS)

are technologies that inspect traffic and diagnose system behaviour to provide improved

attack protection.

The current implementation of intrusion detection systems (commercial and open-

source) lacks the scalability to support the massive increase in network speed, the

emergence of new protocols and services. Multi-giga networks have become a standard

installation posing the NIDS to be susceptible to resource exhaustion attacks. The

research focuses on two distinct problems for the NIDS: missing alerts due to packet

loss as a result of NIDS performance limitations; and the huge volumes of generated

alerts by the NIDS overwhelming the security analyst which makes event observation

tedious.

A methodology for analysing alerts using a proposed framework for alert correlation

has been presented to provide the security operator with a global view of the security

perspective. Missed alerts are recovered implicitly using a contextual technique to

detect multi-stage attack scenarios. This is based on the assumption that the most

serious intrusions consist of relevant steps that temporally ordered. The pre- and post-

condition approach is used to identify the logical relations among low level alerts. The

alerts are aggregated, verified using vulnerability modelling, and correlated to construct

multi-stage attacks. A number of algorithms have been proposed in this research to

support the functionality of our framework including: alert correlation, alert aggregation

and graph reduction. These algorithms have been implemented in a tool called Multi-

stage Attack Recognition System (MARS) consisting of a collection of integrated

components. The system has been evaluated using a series of experiments and using

different data sets i.e. publicly available datasets and data sets collected using real-life

experiments. The results show that our approach can effectively detect multi-stage

attacks. The false positive rates are reduced due to implementation of the vulnerability

and target host information.

v

Figures

NIDS and NIPS deployment ... 23

Axelsson’s classification of Intrusion Detection Systems (IDSs) 24

Architecture of hybrid systems .. 35

Snort sub-systems .. 37

Snort rule header ... 40

Relationship between packet loss & missing alerts ... 64

Test Bench-1 .. 67

Results – Scenario Alpha ... 70

Results – Scenario Bravo .. 70

Results – Scenario Charlie .. 71

Results – Scenario Delta ... 71

Results – Scenario Echo .. 72

Test-bench 2 – Host configuration ... 73

Results: packet dropped, UDP traffic – 750 Mbps ... 74

Results: packets dropped, UDP traffic – 1.0 Gbps .. 75

Results: packets dropped, UDP traffic – 1.5 Gbps ... 75

Results: packets dropped, UDP Traffic – 2.0 Gbps ... 76

Test-bench 3 – Virtual Configuration .. 78

Snort packets received (%) – UDP traffic (128 Bytes & 256 Bytes) 80

Snort packets received (%) – UDP traffic (512 Bytes & 1024 Bytes) 81

Snort packets Rx (%) – UDP (1460 Bytes) and TCP (50 connections) 83

Snort packets received (%) – TCP Traffic (100 & 200 connections) 84

Packets dropped .. 85

vi

Alerts and logs (success rate) ... 85

Comparison – Snort on Linux and Win .. 87

CPU and memory usage ... 88

Snort Packet Received (%) – Free BSD on Three/Two virtual platforms ……...... 90

Virtualization concept .. 91

Statistics the I/O system (SATA 300) hard drive ... 92

Disk queue (SATA 300) hard drive ... 93

Multi-stage Attack Recognition System (MARS) framework …..…...………….. 100

Abstraction levels of attack classification ……..………………….……………... 110

Attack classification ………………..………………………………….………… 110

Examples of attack class inheritance ……………………………………..……... 111

Matching of alert pre-and post-conditions in the correlation function …….…..… 113

Correlation of two alerts …………………………………..…………………….. 115

Alert verification algorithm .……………………………..……………………… 118

Relationships between alert correlation and aggregation …………..…………… 119

Algorithm of initialization of pre- and post-conditions …..……………………... 121

Algorithm of knowledge initialization ………………………………………….. 122

Construction of an event title ………………………………..…………………... 123

Alert correlation algorithm ……………………………………………………….. 124

Algorithm of two combined events …………………………………..…………. 125

Aggregation analysis algorithm ………………………………..………………... 128

Aggregation of zero in-degree alerts algorithm ……………………………..…... 129

Aggregation of zero in-degree alerts algorithm (continued) ………………..…... 130

Aggregation of zero in-degree alerts algorithm (continued) ………………..…... 131

Transitive edges in graph ……………………………..………………................. 131

vii

Example of graph reduction ……………………..…………..……..…………… 132

Online reduction algorithm …………………………..………………………….. 134

Online reduction algorithm (continued) ……………………..………………….. 135

Offline reduction algorithm …………………………..…………………………. 136

Offline reduction algorithm (continued) ………………………………….……... 137

Reasoning about missed alerts ……………..…………………………................. 138

Reasoning about missed alerts by generalised capability formalization ………… 140

System process flow ……………………………..……………………………… 144

An example of the capability knowledge base specification …………………….. 146

MARS architecture ……………………………..……………………………….. 151

Main database tables …………………………..……………………………….... 153

Example of implicit correlation ………………………………..………............... 158

Confusion matrix …………………………………………..……………………. 163

Relations between the confusion matrix measures ………………………………. 164

Detected events in the functional test ………………………………..………….. 172

Attack graph of the three detected events .. 173

Attack graph of non-critical events detected by MARS ... 174

Attack graph of the events detected in INSIDE.2.0 ... 174

The main evaluation metrics of MARS and TIAA .. 176

Recall rate (%) of the DARPA dataset ... 179

Precision rate (%) of the DARPA dataset .. 179

Overall accuracy rate (%) of the DARPA dataset .. 180

Alert reduction rate (%) of DARPA dataset ... 180

Test bench .. 181

Botnet lifecycle ... 182

viii

First attack stage ... 185

The second, third and fourth attack stages ... 187

The fifth attack stage .. 187

Graph of the extracted Botnet scenario .. 188

The first triggering event .. 192

The second and third events ... 194

Extracted SQLIA scenario graph .. 195

Comparison of resource usage by Snort and MARS (offline test) 197

Alert processing time of Snort and MARS .. 198

Comparison of resource usage by Snort and MARS (online test) 199

ix

Tables

Pattern-matching algorithm performance .. 39

Summary of test benches .. 66

Network Description – Test-bench 1 ... 68

Test-bench 1 scenarios ... 79

Network description – Test-bench 2 and Test-bench 3 72

Host-based configuration results(packets dropped(%)) – UDP traffic 74

Host-based configuration results – mixed traffic ... 77

Packets received at host OS ... 79

Examples of pre- and post-conditions ... 114

Description of alert attributes ... 145

Events information .. 149

Description of the attack ……………….…………………………………….. 169

DARPA2000 dataset statistics ……..…………………………………………. 169

Functional test results .. 171

Comparative results to evaluate MARS effectiveness 175

Evaluation results of the DARPA datasets – accuracy test 178

Accuracy and reduction evaluation for Botnet and SQLIA experiments 196

x

Table of Contents

Chapter 1: Introduction ……………………………………… ……. 1

 1.1 Introduction ……….……………………………………………... 1

 1.2 Security status ………………..……………………………..…..... 1

 1.3 The limitations of NIDSs …………….….……………………….. 3

 1.4 Alert correlation systems ……………….……………………….. 6

 1.5 Motivation ……………………………….……………………….. 9

 1.6 Contribution ……………………………,……………………….. 13

 1.7 Thesis outline …………………………………………………….. 16

 1.8 Publications ……………………………….……………………… 18

Chapter 2: Background and related research …………………….. 21

 2.1 Intrusion Detection Systems (IDSs) ……………………………. 21

 2.2 Intrusion Detection Systems: methodologies ………….……….. 25

 2.2.1 Anomaly-based detection …………………..………………... 25

 2.2.1.1 Statistical techniques ……….……………………………. 26

 2.2.1.2 Expert systems ………………………………………….... 27

 2.2.1.3 Machine learning …………………………………….…... 28

 2.2.1.4 Data-mining techniques ……………………………..…… 30

 2.2.2 Signature-based detection …………………………….………. 31

 2.3 Hybrid IDSs ……………………………………………………… 35

 2.4 Snort ……………………………………………………………… 36

 2.4.1 Pre-processor …………………………………………………. 37

 2.4.2 Detection engine ……………………………………………… 38

xi

 2.4.3 Snort with Artificial Intelligence (SnortAI) ………………….. 40

 2.5 Bro ………………………………………………………………… 40

 2.6 Host-based vs. network-based IDSs …………………………….. 41

 2.7 Alert correlation …………………………………………………. 42

 2.7.1 Similarity-based approaches …………………………………. 43

 2.7.2 Scenario-based approaches …………………………………… 45

 2.7.3 Pre- and post-condition approaches ………………………….. 47

 2.7.4 Probabilistic approaches ……………………………………… 50

 2.8 Alert verification …………………………………………………. 51

 2.9 Alert correlation system requirements …………………………. 53

 2.10 Conclusion ………………………………………………………. 54

Chapter 3: Performance evaluation of Network Intrusion

 Detection Systems (NIDS) ……………………………..

56

 3.1 Introduction ……………………………………………………… 56

 3.2 NIDS evaluation ………………………………………………….. 57

 3.3 Background traffic ………………………………………………. 59

 3.4 Motivation ………………………………………………………... 62

 3.5 Evaluation methodology ………………………………………… 65

 3.6 Test-bench 1 ……………………………………………………… 67

 3.6.1 Hardware Description ………………………………………… 67

 3.6.2 Results ………………………………………………………... 69

 3.6.2.1 Scenario Alpha …………………………………………… 69

 3.6.2.2 Scenario Bravo …………………………………………… 69

xii

 3.6.2.3 Scenario Charlie ………………………………………….. 70

 3.6.2.4 Scenario Delta ……………………………………………. 71

 3.6.2.5 Scenario Echo …………………………………………….. 71

 3.7 Test-bench 2 …………………………………..…………………. 72

 3.7.1 Evaluation methodology ……………………………………... 73

 3.7.2 Results ……………………………………….……………….. 74

 3.7.2.1 UDP traffic …………………………………………………. 74

 3.7.2.2 Mixed traffic ……………………………………………….. 76

 3.8 Test-bench 3 …………………………………..…………………. 77

 3.8.1 Evaluation methodology ………………………………….….. 78

 3.8.2 Results ………………….…………………………………….. 79

 3.8.2.1 UDP traffic …………………….…………………………. 80

 3.8.2.2 TCP traffic ……………………….……………………….. 82

 3.9 Analysis ……………………..……………………………………. 84

 3.9.1 Test-bench 1 ……………………….…………………………. 84

 3.9.2 Test-bench 2 …….……………………………………………. 87

 3.9.3 Test-bench 3 ….………………………………………………. 88

 3.10 Discussion of Snort performance …………………………….. 93

 3.10.1 Packet processing ………………………………………….. 93

 3.10.2 Multi-core processing ……………………………………… 94

 3.10.3 PCI bus and disk input/ output (I/O) operations …………… 94

 3.9.4 Packet loss in NIDSs …………………………………………. 95

 3.11 Conclusion ….…………………………………………………… 96

Chapter 4: A reasoning framework for alert correlation ………... 98

xiii

 4.1 Introduction ……………………………………………………... 98

 4.2 Multi-stage Attack Recognition System (MARS) framework … 99

 4.3 Requires/provides model ………………………………………... 102

 4.4 Knowledge-base modelling………………………………………. 107

 4.4.1 Attack classification ………………………………..………… 109

 4.4.2 Knowledge-base representation ……………………………… 111

 4.4.3 Alert modelling ………………………………………………. 112

 4.5 Vulnerability modelling .. 115

 4.6 Alert correlation algorithm ……………………………………... 118

 4.6.1 Initialization of instances of pre- and post-conditions ……….. 120

 4.6.2 Knowledge initialization ……………………………………... 121

 4.6.3 Correlation algorithm ………………………………………… 122

 4.7 Alert aggregation ………………………………………………… 125

 4.8 Graph reduction …………………………………………………. 131

 4.9 Prediction of undetected intrusion ……………………………… 137

 4.9.1 Alerts missed by IDSs ………………………………………... 138

 4.9.2 Intruder intention recognition ………………………………… 141

 4.10 Conclusion ………………………………………………………. 143

Chapter 5: MARS framework implementation …………………... 144

 5.1 Introduction ……………………………………………………… 144

 5.2 MARS components ………………………………………………. 144

 5.2.1 Alert collection ……………………………………………….. 145

 5.2.2 Adding pre- and post-conditions ……………………………... 146

 5.2.3 Alert verification ……………………………………………... 146

xiv

 5.2.4 Alert correlation ……………………………………………… 147

 5.2.5 Graph reduction ………………………………………………. 148

 5.2.6 Event generation ……………………………………………… 148

 5.2.7 Alert aggregation ……………………………………………... 149

 5.2.8 Attack scenario construction …………………………………. 150

 5.2.9 Interactive tools ………………………………………………. 150

 5.3 MARS architecture ……………………………………………… 151

 5.4 Real-time and near real-time implementation …………………. 155

 5.5 Implicit correlation ………………………………………………. 157

 5.6 Conclusion ………………………………………………………... 159

Chapter 6: Experiments and evaluation …………………………... 160

 6.1 Introduction ……………………………………………………… 160

 6.2 Evaluation methodology ………………………………………… 160

 6.3 Evaluation metrics ……………………………………………….. 162

 6.4 Datasets …………………………………………………………… 164

 6.5 DARPA 2000 datasets …………………………………………… 166

 6.5.1 Dataset description …………………………………………… 167

 6.5.2 Functional test ……………………………………………….. 171

 6.5.3 Accuracy reduction evaluation ……………………………….. 174

 6.6 Real-life experiments in a controlled setup …………………….. 180

 6.6.1 Botnet attack experiment ……………………………………... 182

 6.6.2 The basic functionality test for Botnet experiment …………... 184

 6.6.3 SQL injection attack (SQLIA) experiment …………………... 189

 6.6.4 The basic functional test of the SQLIA experiment …………. 191

xv

 6.6.5 Accuracy and reduction evaluation …………………………... 195

 6.7 Performance evaluation …………………………………………. 196

 6.8 Conclusion ………………………………………………………... 199

Chapter 7: Conclusion and avenues for future research ………… 201

 7.1 Introduction ……………………………………………………… 201

 7.2 Evaluation of NIDSs in high-speed environments …………….. 203

 7.2.1 Avenues for future research ………………………………….. 204

 7.3 A reasoning framework for alert correlation ………………….. 205

 7.3.1 Avenues for future research ………………………………….. 209

 7.4 Implementation and evaluation of our framework ……………. 210

Bibliography …………………………………………………………………….. 212

Appendix I Snort signatures ………………………………………………….. 233

Appendix II MARS interface ………………………………………………….. 234

Acronyms ………………………………………………………………………... 239

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

This recent era has witnessed a massive growth in the use of computer network

applications. More hosts are connected to the Internet to speed up business processes

and to provide more accessibility. This has increased reliance on e-business paradigms

providing dynamic and complex environments with interconnections of critical

infrastructure elements. The inherently invisible nature of Internet usage, in most cases

due to political reasons and the absence of legislation, has made these systems targets

for hackers and intruders [1]. Traditionally, firewalls have been used as perimeter

guards for organizational networks to filter incoming and outgoing traffic [2]. However,

the number of sophisticated attack methods is growing, such as multi-vector, multi-

stage and insider attacks, in addition to data leakage threats as more sensitive data is

stored in open-mode networks. Hence, an extra layer of defence is needed for deep

packet inspection and context-aware detection.

1.2 Security status

In spite of the existence of security mechanisms, incidents of attacks are still occurring

because attackers make use of flaws in implemented applications and services [3].

There are plenty of methods for bypassing traditional security systems, such as buffer

overflow, application layer attacks to trick users, and insider threats. Most of these

behaviours are considered legitimate because they do not violate the applied security

policies, though they are in fact malicious. In addition, from a business point of view, a

trade-off has to be made between strict security policies and productivity [4].

To provide protection mechanisms against the new trends in intrusion techniques,

advanced and intelligent intrusion detection and protection systems are required [5].

2

Firewalls and software patches can no longer be regarded as reliable means of providing

a defence against well-defined and novel attacks. Network traffic data has to be

inspected and analysed in depth in order to detect malicious behaviour. Stateless

analysis relying on packet-level observation does not improve the efficiency of the

protection systems. Furthermore, different data sources and incorporated detection

techniques have to be used in order to achieve higher level protective systems.

In this respect, Network Intrusion Detection Systems (NIDSs) have been proposed as

complementary security tools providing sensors to observe network traffic for any

malicious activities. Several approaches with different capabilities have been developed

to achieve this functionality, such as signature-based and anomaly-based mechanisms.

Pre-defined attack patterns are supplied to signature-based approaches to detect any

matching between these patterns and the received traffic data. In anomaly-based

mechanisms, generated normal profiles are compared with the incoming activities to

judge abnormalities. However, the common purpose of NIDSs is to detect potential

intrusions in network traffic, generating security alarms. NIDSs can perform in

detective mode or proactive mode, but immediate response may affect the usability of

the protected systems, particularly if alarms are false.

Recent advances in CPU processing power, memory and network speed have "stressed"

the performance of NIDSs [6]. The difference between advances in networking speed

and processing speed has created what has been called a performance gap, because

communication speed has developed far in advance of processing speed [7]. This has

imposed challenges for NIDSs, as they have to process multi-Giga traffic inline. Several

methods have been developed for load balancing, distributed sensors [8] and parallel

processing, but another challenge has emerged in the coordination of these sub-system

units.

3

1.3 The limitations of NIDSs

NIDSs can be considered a second line of defence in the protection of production

networks, and they can cooperate with firewalls and antivirus systems to achieve

maximal protection coverage. Both research communities and commercial vendors have

been working for several years to improve the functionality of NIDSs. However, these

systems still suffer from limitations that can generally be summarized as follow:

1) High volume of generated low-level alerts [9], which makes it impractical for human

analysts to pursue such an amount of information. Even worse, the quality of the

observed data varies between certain intrusions and activities with a low degree of

confidence. Typically, NIDSs produce alerts which are mapped to atomic detected

events, but are not capable of determining to which incidents the detected alerts belong.

The administrator has to analyse the data manually or use simple analysis tools based on

statistical methods. Moreover, hostile actions are assumed to be infrequent compared to

legitimate activities, so the analysis of a large amount of data in order to observe rare

information is a cumbersome.

2) A high rate of false positives is a major limitation of NIDSs and one that makes their

effectiveness questionable. [10] states that more than 99% of the alerts generated by

NIDSs are false positives. False positives are produced because the NIDS believes,

based on its detection mechanism, that the detected activity is malicious. This weakness

is mainly due to the fact that the system is unable to precisely determine the ultimate

goal of the intrusion. Essentially, there is only a slight distinction between legitimate

and malicious behaviour, as even malicious behaviour makes use of the facilities

offered by the target system. For instance, in signature-based methods, there must be a

balance between the level of specificity and the generality of a signature. A very

4

specific definition keeps the rate of false positives to a minimum, whereas general

signatures broaden the detection space but increase the false positive rate.

3) A high rate of false negatives is also another critical issue, where the NIDS is not

able to detect malicious behaviour. That is due to the unavailability of pattern

descriptions in signature-based methods or the fact that the behaviour is similar to a

normal one in anomaly-based methods. However, skilful attackers use known attacks

but combine them with available evasion techniques [11, 12] to deceive the NIDS and

to pass undetected. Moreover, 0-day attacks are not identified, as they are unknown and

their definitions are unavailable to the NIDS.

4) The difficulty in handling a huge amount of traffic packets, diverse network

protocols and sophisticated Web services. Deep inspection and comprehensive analysis

have to be done for higher-degree detection and protection. And that requires massive

processing capabilities and intelligent algorithms. The typical deployment of a NIDS is

at the network edge, where the aggregation of organizational traffic passes. In inline

mode, this has made the achievement of acceptable connectivity without any latency a

challenge. Many approaches have been developed to cope with these problems, such as

traffic splitting [13, 14] across a number of sensors to balance the load. Other

techniques involve shifting from software-based to hardware-based solutions [15-17].

5) The sophistication and complexity of modern attacks exploiting new emerging

services, such as Web application technologies [18]. Simple attacks to violate security

policies are no longer used, particularly after years of security patches to protect core

systems. Current trends in intrusion techniques are to employ hidden attacks that are

difficult to be recognised by traditional security means. Multi steps of normal-type

activities incorporate an attack and after breaking into the system, the intruder remains

5

silent for the longest possible time. Identifying this type of behaviour is not a

straightforward matter without intensive observation and behavioural analysis. Most

implementations of NIDSs, both commercial [19] and open source [20, 21], rely on

stateless signature-based methodologies. Basic statistical approaches are implemented

to detect anomalous behaviour using anomaly-based methods. Moreover, NIDSs need

to be supplied with enough information from network traffic and from the end systems

[12] to obtain the full picture of the protected systems. Such cooperation between

security systems rarely exists and is still in a developmental phase. Efficient correlation

techniques have to be implemented in order to differentiate between benign and

malicious behaviour.

6) Scalability to support the points mentioned above, as networks nowadays are

changing in respect to bandwidth and diversity of services available. The

implementation of NIDSs may be sufficient for a certain time, but they need adaptive

mechanisms in order to react to different situations.

7) Testing NIDSs to evaluate their operations is cumbersome [22]. There are no

efficient approved methodologies to evaluate such systems due to the complexity of

NIDS and the operational environments in which they are deployed. Ad hoc approaches

have been developed and will be discussed in detail in Chapter 3.

8) Statefulness analysis in order to build an accurate behaviour profile remains a

stressing demand for NIDSs. For instance, Snort [23, 24] performs analyses on a

connection basis only, so the need for higher levels of context analysis is crucial. This is

based on the assumption that each occurring event may be connected with other events,

and the correlation is useful in understanding the target of the event in question. Several

NIDS claim they perform stateful analyses, but the concept of this type of analysis is

6

sometimes unclear. Stateful analysis does not only consist of performing TCP

reassembly or IP de-fragmentation, but also the analysis of the semantic of multiple

activities, including levels of connection, applications and services.

9) Evasion techniques [11, 12, 25, 26] have been used to exploit the implementation

ambiguities of protocols and services. Moreover, the gap between application

developers and security experts has led to the production of programs with bugs

exploited creatively by hackers. Malicious data distributed over fragmented packets to

confuse detection systems or session slicing are examples of such evasion methods, or it

can also take the form of obfuscation of Web application requests to break into

vulnerable applications.

1.4 Alert correlation systems

Principally, Intrusion Detection Systems (IDSs) in general are useful only if their

detection results are reviewed and analysed to derive current system security. Some

difficulties affecting IDS operations have been stated, and to alleviate some of these

limitations alert management systems have been proposed. Alert correlation systems as

complementary tools deployed in a typical scenario separately from IDS, as the latter

are performance sensitive [27]. The objective of these approaches is to receive alert

streams from the IDS, create logical relationships between alerts, link each alert to its

related contextual information, and provide a high-level view of the system's security

situation. In prime, the receiving audit data is obtained from various IDS so it is used in

alert correlation process. However, alert correlation can be also applied on individual

IDSs to detect coordinated attacks and to reduce alarm volumes. It is worth mentioning

that alert correlation is not an isolated process, and that several components are involved

in achieving correlation, aggregation, alert reduction and alert verification.

7

It has been identified in the cyber security field that well-planned attacks consist of a

number of stages conducted in a temporal order. True alerts belonging to intrusions

generated by the IDS are not isolated; they also reflect the sequential pattern of the

attacker. However, IDSs consider these alerts as individual events and report this to the

administrator with a huge amount of alerts, most of them false positives or ones not

critical to the protected system. A high-level view of these incidents can assist in

recognizing the attacker’s plan and taking rapid action to protect the network.

Moreover, IDSs, due to their limitations, cannot detect all variations of unseen attacks.

However, alert correlation systems can predict the upcoming attack based on the

pervious behaviours of attackers. Also, false alarms can be excluded because they are

often of isolated and non-critical events.

As a motivating example of a multi-stage attack, the Botnet attack scenario is

considered as follows: the attacker performs scanning activities looking for a vulnerable

host in a target network in order to install a backdoor. The IDS can detect the scanning

behaviour, rating it as a low-risk activity, and also detects the shellcode installation but

it is not as a part of the Botnet attack. Then the infected machine sends a connection

request to the C&C (command-and-control) server in order to download the

configuration file, which is typically encrypted. The IDS in this case can detect the URL

of the C&C server as a blacklist. Note that the second phase does not necessarily need

to be linked to the first phase, particularly if they occur far away from each other. The

second stage can pass undetected using some obfuscation techniques; however, the

server response containing some abnormal data in HTML format is detected. After that,

maintenance and update activities are performed by downloading some binaries. The

infected machine consequently performs a fast scan for other machines and sends a

large number of DNS requests. Hence, if these stages are treated individually, they may

8

be considered isolated activities with low priority. Alert correlation systems process the

resulting alerts to discover the connection between them based on causal relationships

and to provide a global picture for the administrator.

Alert correlation systems are intended to fill the semantic gap between high-level

abstracted events and low-level elementary alerts. The security administrator’s

requirements include: reduction of data redundancy, intelligent correlation of IDS alerts,

recognition of attack scenarios, and a visualised attack scene. To achieve these tasks,

different correlation mechanisms are employed, including alert similarities [28-30],

attack scenario specifications [31], pre- and post-conditions [32-35], and data-mining

techniques [36-38]. These mechanisms vary in their requirements and inner workings,

but their common function is to build an abstracted knowledge about different attacks.

Despite several efforts made to achieve the objectives of alert correlation systems, only

a limited part of the correlation function has been addressed. Correlation tasks cannot be

implemented alone, but require some other cooperative system components, such as

aggregation, verification and data reduction. It has been mentioned that the main

motivation behind the notion of alert correlation is to identify the connection between

alerts. However this task, without removing data redundancy, will make it more

complex and the information size will be increased considerably. In addition, the

practice of correlation is processing-intensive and the typical deployment is connected

to the IDS. It is impractical to rely on a single component for a complex function such

as alert correlation; instead, a framework consisting of various components should be

used. Each sub-system is responsible for certain tasks and all system parts are integrated

in a systematic manner.

9

1.5 Motivation

With the rapid advances in communication networks and the increase in the number of

incidents of detected attacks [39], NIDSs have become a major component of security

systems. However, NIDS have two major problems: first, missed attacks due to

unknown attack patterns or because packets carrying attack evidence are dropped due to

performance limitations. Second, the huge volume of irrelevant alerts overwhelming

security analysts makes event observation tedious. This thesis has addressed these two

practical problems through two phases:

1) NIDS (software-based) evaluations in high-speed environments to characterise the

problem of missed alerts caused by packet loss.

2) Alert correlation systems to mitigate the two previous problems using a contextual

recovery technique that provides the security analyst with a global view of the security

perspective.

The motivation behind this work inspired from the two phases above can be

summarized as:

a) Performance evaluation of NIDSs (software-based) in high-speed networks: The

typical deployment of software-based NIDSs is installation on a dedicated server with

minimum active services. This setup is quite susceptible to resource-exhaustion attacks,

especially in high-speed environments. Sending a large amount of traffic or using

computationally expensive techniques like fragmentation can compromise a NIDS or

make it start dropping packets. Few efforts have been made to measure the performance

of NIDSs, and most of the evaluation methodologies are based on moderate traffic flow

[40]. This is because generating traffic in high volumes requires a sophisticated test-

bench, which is not always available to most researchers. A test-bench has been built in

10

our lab using various machines and switches to simulate real-life network traffic. In

addition, the evaluation of NIDSs is elusive and there is no typical methodology to test,

as few vendors [41] offer it and it is not available to researchers.

b) Alerts missed by NIDSs: As mentioned above, NIDSs may miss some alerts due to

unavailable attack descriptions or packet loss in Gig networks. The missing of such

alerts is very dangerous, as serious attacks can pass undetected. Several works have

been carried out to deal with this issue [27, 42] and to characterise NIDS performance.

NIDS vendors recommend the application of conservative engine detection

configurations to minimise resource consumption. This can affect the effectiveness of

NIDSs as the detection space may be narrowed. Other efforts have been made to

distribute traffic making use of balancers [13, 14, 43]; however, these may add extra

complexities. The implementation of NIDS on hardware is potentially the optimal

solution for this issue [16, 44, 45]. However, hardware is expensive, difficult to

configure and tedious to maintain. In addition, the problem of missed alerts caused by a

lack of signatures will not be alleviated. For this reason, recovery techniques are needed

to reason about missed alerts, whether solely or contextually.

c) Overwhelming administrators with irrelevant alerts: Typically, IDSs continuously

generate vast amounts of alerts, and most of them are either false or low-level risk

alerts. These data have to be analysed to obtain security status. This flood of

information may end up hiding serious activities that could end up being overlooked.

Simple analysis tools based on statistics provide certain details but do not reduce the

resulting data. Hence, a mechanism needs to be devised to reduce alert flooding without

losing critical details focusing on serious and coordinated activities.

11

d) False positives: It has been identified that approximately 99% of alerts reported by

IDS are false positives [10, 46]. This is the result of the reduced quality in the

description of current signatures and the imprecise determination of the borderline

between legitimate and malicious activities. There are mainly three levels of solution to

deal with this issue: 1) at the IDS sensor level, 2) at the protected system level, and 3) at

the IDS log level. The first technique is to enhance the IDS detection algorithm to

produce a very small number of false alerts. The main focus of these solutions is to

build multiple special-purpose IDS [47, 48]. However, this could possibly affect the

attack coverage and create compatibility and integration issues. The other two

approaches [10, 29, 35, 49-51] are promising in terms of extending the IDS detection

domain and focusing on attack-related alerts. Alerts are generated and then post-

processed to identify only important information believed to relate to true positives.

Vulnerability and protected system information are obtained and supplied to alert

correlation systems to identify whether the attack is successful or the alert is a false

positive. In addition, the alert correlation system itself performs its functions to discover

the relationships between the alerts and aggregate them, ignoring isolated alerts which

are most likely false positives.

e) Multi-stage attack recognition: It has been identified in practice [29, 35, 49] that

most skilful attacker activities consist of multiple steps (attack scenarios) and occur in a

certain time (attack window). An attack is performed using different vectors to gain

access to the target system. IDS treat these steps individually, reporting isolated alerts

while each step prepares for the next one to complete the intended attack. Identification

of such a strategy can lead to the recognition of attack intentions, as well as the

prediction of unknown attacks.

12

f) Slow-and-low attack detection: The new intrusion trend is to be slow [52], while the

stages are distributed over a long period of time so as to avoid notice. Another feature is

that it is performed with minimum noise, exploiting very small amounts of traffic in

order to defeat any anomaly-based technique. Most alert correlation systems,

particularly the ones implemented for real time [53], rely on the observation of

incoming data during a pre-defined windows size. Memory requirements increase

dramatically with the window size and the system becomes a target for state explosion

attacks. The only available solution is to remove the detected states from memory in a

periodic fashion. This leads to the loss of some of the attack stages if they are

temporally diverged. All detected attack phases should be recorded, as the relationship

may be discovered after a while.

g) Alert correlation approaches:

- Algorithms: The proposed algorithms vary between alert aggregation, data fusion, data

reduction and alert correlation. The current trend is to create a cooperative system

environment that provides complementary components to achieve practical solutions.

Knowledge base modelling: The core of the correlation systems consists of the

supported knowledge bases. Knowledge acquisition methods and the considered

features are different, some of them being based on security expert analyses and others

relying on pure statistical and machine learning approaches. Knowledge representation

plays a major role in the effectiveness of the developed system. The supported data

should be formalized in a systematic manner, taking into account specific and general

concepts.

Alert verification: One of the main causes of false positives is the knowledge gap

between the IDS and the network it protects. The IDS is not capable of identifying the

13

target system's response after the attack. To bridge this gap, vulnerability, host and

network details should be supplied to the correlation system to verify logged alerts. If an

alert is assigned low priority, it can be used to extend the attack knowledge without

having to consider it a critical element in the attack strategy. Instead of obtaining the

target response, which adds more complexity, it is preferable to store an updated

knowledge base about the required information.

System implementation to provide a practical ground: The development of required

algorithms for alert correlation functions becomes useless if these algorithms are not

implemented. The evaluation of the system's effectiveness cannot be carried out without

a practical tool. Most proposed approaches have been implemented in an ad hoc manner

to show the main functionalities.

Evaluation of alert correlation systems: Generally, the evaluation of IDSs is not an easy

task due to the heterogeneous nature of such systems, and alert correlation systems

inherit this property. Most evaluation methodologies only focus on a particular part of

the system without considering other conditions. Moreover, some researchers validate

their work with one or two datasets, some of which do not suit the case. For instance,

some datasets consist of attack traffic only [54], which makes the test basic and simple.

Others are not originally intended to test alert correlation algorithms. Therefore an

intensive evaluation methodology with clear metrics is required, and it needs to be

applied to different categories of datasets.

1.6 Contribution

1) Comprehensive performance evaluation of NIDS in a high-speed environment

We have carried out a comprehensive performance evaluation of NIDSs to identify their

limitations in high-speed environments. We have designed and implemented a state-of-

14

the-art, high-speed test lab so as to be able to replicate current and potential threats. This

facility has been specifically designed to simulate realistic network traffic conditions

comprising different scenarios of background and malicious network traffic. We then

evaluated Snort [23], an open-source NIDS, on account of it being a de facto standard.

Two broader approaches have been selected to determine the performance of Snort:

host-based and virtual-based analyses. This is further supplemented by gauging the

performance of the system on different operating system (OS) platforms.

2) A proposed framework for alert correlation

We have proposed a framework for alert correlation consisting of a collection of

integrated components to utilize the capabilities of different approaches. This is to

formalize a comprehensive solution for correlation, aggregation, data reduction and

multi-stage attack recognition. We have presented a Multi-stage Attack Recognition

System (MARS) as an alert correlation system to receive alerts from the IDS. The attack

scenario is presented as evolving events over time bringing the attack strategy as a

graph of connected aggregated phases. The graph explosions in other approaches have

been avoided, which typically result in unmanageable attack graphs.

3) Set of proposed algorithms for the framework components:

- Alert correlation: We have developed an algorithm for alert correlation functions

based on the partial satisfaction of the pre- and post-conditions of each attack. The

logical connections are based on hierarchical multilayer specifications of attack

capabilities. The correlation is performed for all elementary alerts before aggregation,

and then any further correlations can be obtained implicitly for performance purposes.

- Alert aggregation: To complement the alert correlation algorithm, an aggregation

algorithm has been developed to eliminate data redundancy. The aggregation

mechanism assigns a master alert for each group of similar alerts. Thus the main

15

objective of this algorithm is to minimise the number of nodes in the resulting attack

graph. A pre-defined time threshold is used to determine aggregation probability.

- Graph reduction: In cooperation with the aggregation algorithm, an algorithm has

been also developed to reduce the number of graph links. An online graph-reduction

algorithm is proposed for the deletion of transitive graph edges starting from root to leaf

nodes. It is executed during the initial phase of correlation to eliminate graph

complexity. A further graph reduction is performed by an offline algorithm starting

from leaf to root nodes.

- Event generation: The ultimate goal of the proposed system is to generate security

events; hence an event-generation algorithm has been presented. An event refers to the

description of an attack scenario reflecting a global view of intrusion. Each event has a

title and two events can be combined if they are related to the same scenario. We have

also provided facilities to interact with the detected events through administrative tools.

- Prediction of undetected intrusion: Other approaches have dealt with broken scenarios

caused by missed alerts by repairing them based on building a potentially large amount

of links. However, the attack may be missed due to being a 0-day attack, where no

pattern is known. An implicit mechanism has been proposed to estimate undetected

activities using a generalized formalization of attack capabilities and intrusion

categories. The missed attacks are not described specifically; instead a possible attack

plan is predicted.

4) Knowledge modelling:

 Two knowledge bases have been proposed: internal and external. We have made a

distinction of abstracted attack concepts and their capabilities from dynamic

information, such as vulnerability and host details. In the internal base, capabilities have

been modelled using a hierarchical method based on attack classes and inheritance

16

between these classes. The external base represents an extendable collection containing

vulnerabilities, services, OSs and host information.

5) Implementation of the proposed algorithms in a tool:

In order to evaluate the proposed algorithms in a practical manner, we have

implemented these algorithms and the knowledge bases in the MARS tool. The MARS

core is an engine that is capable of analysing the receipt of alerts from IDS sensors and

automatically constructing security events. The attack scenario is visualised in the form

of nodes and edges and the administrator is able to navigate each element for further

details. The resulting attack graph is kept as simple as possible, whilst at the same time

providing rich information can be obtained by request.

6) Comprehensive evaluation methodology to test the developed tool:

We have evaluated our system using a collection of different datasets. A test-bench has

been set up and we have conducted a series of experiments exploiting various situations.

A set of evaluation criteria has been presented including functionality, accuracy and

completeness, reduction, and performance tests. We have evaluated our approach not

only on the basis of the number of correlated alerts, but also using the number of

correlation instances for each alert in order to achieve precise results.

1.7 Thesis outline

Chapter 2 presents background information as an introduction to the topics of the thesis,

namely intrusion detection systems (IDSs) and alert correlation systems. We start with a

summary of the principle concepts of IDSs, discussing models, architectures and

deployment scenarios. Then, state-of-the-art alert correlation and management

approaches are reviewed, including similarity-based, pre- and post-conditions based,

17

and probabilistic approaches. The requirements of the design and implementation of a

practical alert correlation system are also discussed.

Chapter 3 lays out this study's initial research phase to carry out a performance

evaluation of NIDSs. The evaluation methodologies of IDS performance have been

investigated to provide a background to our preliminary testing. Extensive testing

scenarios are implemented on a highly sophisticated test-bench using various platforms

and configurations. A detailed performance investigation of Snort as a de facto IDS

standard is given using different traffic conditions. The tests are conducted on host and

virtual system configurations to explore the system response in different deployments.

We also discuss packet dropping as an identified limitation of software-based IDS in

high-speed environments. The chapter concludes with how the problem of missed

attacks can be mitigated regardless of the reason with the use of alert correlation

mechanisms.

Chapter 4 describes the core concepts proposed in this thesis: the alert correlation

framework and its algorithms. The underlying requires/provides model with our

definitions of capabilities and concepts are presented. We explain in detail the design

and representation of our knowledge bases and how IDS signatures are modelled. Then,

a set of proposed algorithms are described including: alert correlation, alert aggregation,

event combination, event generation, and graph reduction. Therefore, issues in relation

to attacks missed by the IDS have been discussed and our approach for predicting the

security status.

In Chapter 5, the implementation and design specifications of the proposed framework

are presented. We illustrate the MARS tool architecture, its integrated components and

the system process flow.

18

In Chapter 6 the effectiveness of our implemented approach is demonstrated using a

series of experiments. The evaluation methodology and testing criteria are discussed and

the evaluation metrics are explained. We then continue to provide complete information

about the datasets and experiment steps. We start with the DARPA [55] dataset

evaluation for comparative purposes, incorporating the dataset description and analysis

of obtained results. We then conduct two lab experiments reflecting real-life attacks to

measure system functionality and performance. At the end of this chapter, a

performance evaluation is presented comparing MARS and the IDS in respect to

resource consumption.

Chapter 7 summarizes the thesis, reviewing our main observations and contributions.

We conclude with a discussion of related research directions and promising avenues for

future research.

1.8 Publications

The record in this section describes the publications presented in this thesis and group

research.

Year 2009

Papers Published in Refereed Journal

 Multi-Tier Evaluation of Network Intrusion Detection Systems, Journal for

Information Assurance and Security (JIAS), pp. 301 – 310, Dec. 2009. ISSN: 1554-

1010.

19

Papers Published in Refereed Conferences

 Evaluating Intrusion Detection Systems in High Speed Networks, In Proc. of IEEE

Fifth International Conference of Information Assurance and Security (IAS 2009),

China, 2009, pp. 454 – 459. ISBN 978-0-7695-3744-3.

 Snort Performance Evaluation, In Proc. of Twenty Fifth UK Performance

Engineering Workshop (UKPEW 2009), Leeds, 2009, pp. 136 – 143. ISBN 978-0-

9559703-1-3.

 Virtualization in Network Intrusion Detection Systems, In Proc. of 4th Intl

Symposium on Info Security (IS'09), Vilamoura, 2009, pp. 6 – 8. Springer Verlag

ISBN 978-3-642-05289-7.

Year 2010

Papers Published in a Book

 Virtualization Efficacy for NIDS in High Speed Environments, In Information

Security & Digital Forensics, vol. 41, Dasun Weerasinghe, Ed, Springer Verlag,

2010, pp. 26 – 41. ISSN 1867-211 ISBN 978-3-642-3-11529-5.

 Smart Logic - Preventing Packet Drop in High Speed Network Intrusion Detection

Systems, In Information Security & Digital Forensics, vol. 41, Dasun Weerasinghe,

Ed, Springer Verlag, 2010, pp. 57 - 65. ISSN 1867-211 ISBN 978-3-642-3-11529-5.

Papers Published in Refereed Conferences

 MARS: Multi Stage Attack Recognition System, In Proc. of the International

Conference on Advanced Information Networking and Applications (AINA), Perth,

2010, pp. 753-759, ISSN: 1550-445X (Attained Best Paper Award).

 High Speed NIDS using Dynamic Cluster and Comparator Logic, In IEEE 10th

International Conference on Computer and Information Technology (CIT 2010), 29

June - 01 July, 2010, Bradford, UK.

20

 Detection of Coordinated Attacks using Alert Correlation Model, In Proc. of IEEE

Conference on Progress in Informatics & Computing held from 10-12 Dec, in

Shanghai, China, 2010.

Year 2011

Papers Accepted in a Book Awaiting Publication

 Implementation and Evaluation of Network Intrusion Detection System on

Commodity Hardware, Performance handbook, Next Generation Internet:

Performance Evaluation & Applications, Springer, SPIN 12440030, LNCS 5233.

ISBN 978-3-540-99500-5.

Papers Submitted in Refereed Journal

 Intelligent Anomaly Detection Filter in High Speed Network Intrusion Detection

Systems, submitted in the proceedings of Elsevier Journal of System and Software

Engineering.

Papers Published in Refereed Conferences

 Event-based Correlation Systems To Detect SQLI Activities, submitted in the

International Conference on Advanced Information Networking and Applications

(AINA), Bioplois, Singapore, March, 2011.

21

CHAPTER 2: BACKGROUND AND RELATED RESEARCH

2.1 Intrusion Detection Systems (IDSs)

The widespread use of corporate networks with sophisticated technologies, e.g. Web

services, distributed databases and remote access, has raised concerns in terms of

security issues. Network Intrusion Detection Systems (NIDSs) are one of the major

techniques used to protect such networks against well-planned penetration.

Conventionally, to secure computer systems, network services and running applications,

resort was made to the creation of protective ―shields‖. Security mechanisms such as

firewalls [2], authentication mechanisms and Virtual Private Networks (VPN) have

been developed in order to protect the systems of organizations. However, these security

mechanisms have almost inevitable vulnerabilities and are usually insufficient in

ensuring the complete security of the infrastructure. Attacks are continually being

adapted to exploit the system’s weaknesses, often caused by careless design and

implementation flaws. This accounts for the need for security technology that can

monitor systems and identify security policy violations. This is called intrusion

detection, and complements conventional security mechanisms [56].

Understandably, intrusion is popularly defined as a malicious and externally or

internally induced operational fault. Nowadays, computer intrusions and attacks are

often regarded as synonymous. But more technically, an attack is an attempt to intrude

(into what is supposedly a secure network), while an intrusion is actually the result of an

attack that has been partially or completely successful [57]. ―Intrusions in the computer

systems are usually caused by attackers accessing the systems from the Internet, or by

authorized users of the systems who attempt to misuse the privileges given to them

and/or to gain additional privileges for which they are not authorized‖ [57]. Hence, the

22

difference that intrusion is a consequence of attack, however, unsuccessful attack is not

necessary to result in an intrusion. Therefore, throughout this thesis, both terms are used

from the viewpoint of the defender, and thus preventing an attack is inclusive of

stopping an intrusion.

An IDS is a system for detecting and preventing such intrusions. A technical definition

provided by the National Institute of Standards and Technology [58] is that it is ―the

process of monitoring the events occurring in a computer system or network and

analyzing them for signs of intrusions, defined as attempts to compromise the

confidentiality, integrity, availability, or to bypass the security mechanisms of a

computer network‖. An IDS satisfies its reason for being by observing the network

traffic or looking at OS events [59]. An IDS can be defined as ―a combination of

software and/or hardware components that monitors computer systems and raises an

alarm when an intrusion happens‖ [59].

Thus, the concept of a NIDS is to observe activities among network links to detect

anomalous and misuse behaviour by acquiring information from traffic and inspecting

data packets in an inline or offline fashion. Then, these systems notify administrators or

respond to detected threats by blocking any malicious packets or sessions. Hence,

proactive systems that identify the violation of security policies are called NIDSs,

whereas reactive systems that respond and stop any misuse behaviour are called

Network Intrusion Prevention Systems (NIPS). However, most of these systems can be

switched between the two modes based on organizational needs.

Despite both systems NIDS and NIPS perform the same analysis looking for signs of

intrusion, they differ in how to provide protection for network environment. NIDS is a

passive device watching the traversed packets from a monitoring port or SPAN port

23

(Switched Port Analyzer), matching the traffic to a set of configured rules, and

triggering an alarm in case of suspicious activities. The ideal deployment of NIDS is to

be connected to a monitoring port of a backbone switch as shown in Figure 2.1. A copy

of network packets seen on any switch port is sent to the monitoring port to be analyzed

by the NIDS. NIDS cannot block the connection and need the administrator response to

deal with the detected events. NIPS have all features of the NIDS but it can block

malicious traffic immediately by terminating the network connection, attacking user

session, or by blocking the access to victim machines or services. Therefore, NIPS

needs more tuning to keep the false positive rate to the minimum which affect the

legitimate traffic. NIPS are typically deployed inline behind the firewall to limit the

inspected traffic in order to improve the efficiency as shown in Figure 2.1.

The Internet

Internal

Network
Network Tap

NIDS

The Internet

Internal Network

NIPS

Firewall
Router

Firewall

Router

NIDS Deployment

NIPS Deployment

Figure 2.1 NIDS and NIPS deployment.

The notion of the IDS was first introduced in 1980 by James Anderson [60], who

proposed an anomaly detection approach based on the distinction between the

24

characteristics of normal and anomalous behaviour. A threat model was presented that

classified threats as external penetrations, internal penetrations and misfeasance.

Denning [61] in 1987 introduced a general model for IDSs, which is the basis of many

system prototypes have been developed since then. Denning’s model includes an

identification of two different models of intrusion detection systems: 1) the misuse (or

signature) model, when an attack is detected based on previous knowledge of its

signature; and 2) the anomaly model, when an attacker is detected based on its abnormal

behaviour. This notion, based on the assumption that the normal behaviour of users and

systems can be characterised, enables automatic profiling. Debar [62] proposed the first

IDS taxonomy based on different criteria:

(1) Detection method: behaviour-based, knowledge-based.

(2) Behaviour on detection: passive, active.

(3) Audit source location: host log files, network packets.

(4) Usage frequency: continues monitoring, periodic analysis.

(5) Detection paradigm: state-based, transition-based.

Figure 2.2 Axelsson’s classification of Intrusion Detection Systems (IDSs).

Intrusion Detection System

Signature Anomaly

self-learning Programmed
programmed

State-modelling

Expert-system

String-matching

Simple rule-based

non time series

time series

Descriptive state

Default deny

25

Axelsson [46] proposed a generalisation model of IDSs as an alternative taxonomy, as

shown in Figure 2.2. The classification is mainly based on detection principles and

operational aspects

Even though several methodologies have arisen to classify IDSs since 1980, these fall

into three general approaches: 1) anomaly- (behaviour) based, 2) signature-

(knowledge) based, and 3) hybrid systems (anomaly and signature).

2.2 Intrusion Detection Systems: methodologies

2.2.1 Anomaly-based detection

 Anomaly-based detection methods are based on a deviation of abnormal activities from

the normal or expected behaviour of the system. A set of characteristics of the system

are observed and analyzed to create a model of normal behaviour using collections of

information about the system over a particular time interval. IDSs can detect anomalies

when they compare current behaviour to the normal system model in order to identify,

report and block any violation. Moreover, anomaly-based methodologies are based on

the assumption that any anomaly is an indication of a potential attack.

Normal behaviour is learned by the system during an online/offline training phase

(heuristic systems). Collected data from the learning stage is analysed, pre-processed

and processed; then the normal model is built according to these observations.

Therefore, audit data is inspected for any abnormal patterns deviating from the normal

model baseline, and these are considered malicious. The effectiveness of these

methodologies depends on the selected variables and parameters to build the model of

the system profile [63]. These parameters vary from simple statistical data to

comprehensive measures. Therefore, robustness of these systems is proportional to the

amount and accuracy of measured data. In addition, these sorts of systems should be

26

adaptable due to the complex and changing nature of protected environments, such as

communication networks. [64] summarizes the anomaly-based IDS process into three

stages: 1) a parameterization stage to collect the observed instances of normal system

behaviour; 2) a training stage to characterize the normal and abnormal models, which

can be achieved either manually or automatically; and 3) a detection stage to detect any

deviation exceeding a pre-defined threshold. These systems are theoretically able to

detect novel and 0-day attacks [65]. However, their efficiency is strongly dependent on

model construction and threshold selection. Several techniques are used to build

anomaly-based systems.

2.2.1.1 Statistical techniques

The objective of statistical techniques is to observe the system's activities in order to

determine its behaviour, and then to generate system profiles. Selected variables are

sampled over a specific period of time to measure the normal behaviour of the system.

The observed activities can be system logs, spatial and temporal characteristics of

network traffic, or system calls. Two models are built: a model stored or programmed

and a current model; and detection is based on the degree of abnormality in the

comparison of the two models considering a threshold metric. The advantage of these

approaches is that they do not require prior knowledge of the observed systems.

However, one of the biggest drawbacks of these techniques is determining the threshold

in order to achieve a balance between false positives and false negatives, which is

difficult in the presence of different situations and requirements. In addition, intruders

can deceive the protection system to send malicious data by training the target system

itself.

Haystack's prototype [66] was developed as one of the earliest statistical anomaly-based

IDSs. The detection system considers a combination of two models: user behaviour and

27

generic group behaviour. It takes into account a range of normal behaviour events

between two limits and each event has a score, with a high score indicating an anomaly.

However, normal system features are extracted offline only. The early proposed

techniques in this respect were based on univariate models such as [61]; however, the

trend lately has become toward multivariate models that consider more than one single

variables [67]. Using a combination of metrics rather than only one provides more

accurate discrimination between the observed models.

2.2.1.2 Expert systems

Expert systems [68, 69]are knowledge-based and used to build the profile of a system or

its users based on rules obtained from statistical measures of normal behaviour over a

period of time. Primarily, these approaches are intended for data classification

according to the extracted rules. In the first stage, training data is used to define certain

variables and classes, and then classification rules are inferred and applied to audit data.

The W&S (Wisdom & Sense) [70] expert system was proposed to detect anomalies in

user behaviour. The IDES (Intrusion Detection Expert System) [69], developed at the

Stanford Research Institute (SRI), is a system that summarises user behaviour and

calculates interrelated statistics, and then compares the current activities with the user

profiles. The next generation of NIDES (Next-generation IDES) was designed to

operate online to monitor system activities. The SPADE (Statistical Packet Anomaly

Detection Engine) [71] is a Snort pre-processor plug-in, developed to use the concept of

anomaly score to detect stealthy port scans. It consists of two sub-systems: an anomaly

monitoring sensor and a correlation engine. An alarm is triggered if the assigned score

of each event exceeds a specific threshold. The main advantage of these approaches is

flexibility and accuracy; however, constructing the required knowledge is not an easy

task and is a time-consuming process.

28

2.2.1.3 Machine learning

Learning is a process to learn the dependency between two sets of information to

generate an unknown input-output model based on a limited number of observations

[72]. An accurate observation that describes the constructed model requires an accurate

problem definition. Machine learning techniques have been used widely in computer

systems to provide intelligence in the automatic process. The tasks of machine learning

include: classification, acting and planning, and interpretation. IDSs can be identified as

a classification problem (with two classes: normal and abnormal) [72]. Training data

captured from the normal usage of the system are used to build the model and then

classify behaviours as either normal or anomalous. These systems are either generative

(profiling) to learn the normal behaviour and to detect intrusion deviating from the

learned profile, or discriminative to learn the distinction between normal and abnormal

activities [72].

Generally, learning methods can be classified into two broad categories: supervised and

unsupervised learning systems. In supervised learning, training data (labelled data) is

used to generate normal and abnormal behaviour. Each training pattern is weighted to

construct a detection model and the weights are adaptive to obtain a feasible and

accurate system. It is required to predict model behaviour variables for any input

variables after the training phase. Formally, given variables (x,y), x X, y Y, the

objective is to find a function f :X→Y which represents the intrusion detection model.

The degree of mismatch between X and Y represents the cost function of the prediction

algorithm.

On the other hand, in unsupervised learning (unlabeled data approach), anomalous data

is not needed; instead, a normal model is constructed from normal system patterns. For

anomaly detection systems, unsupervised methods are more effective for building the

29

model by observation without any prior knowledge of intrusive behaviour. However,

machine learning is not limited to these approaches; semi-supervised learning, active

learning and deep learning are widely used in researches. Examples of machine learning

systems are Y-means, neural networks and support vector machines (SVMs) [73].

Machine learning techniques for system calls analyses have been used for host-based

IDSs to learn program behaviour so as to detect irregularity. Forrest et al. [74]

discovered that sequences of system calls were very consistent and a normal model

could be built and used to detect abnormal activities. Their work was based on

similarity function to compare the human immune system and IDSs. [75] proposed

multiple detection models for the system calls to be evaluated from different points of

view. Weighted scores for events are accumulated to construct the detection model.

Bayesian methodology has been conducted by several researchers due to its unique

features. It is based on probabilistic relationships among events to find or predict the

cause of actions by moving back in time. [76-78] used a Bayesian network to create

models for anomaly detection. In addition, Principle Component Analysis (PCA) is a

technique used to reduce massive and multi-dimensional datasets to lower dimensions

for analysis. Large and complex datasets are difficult to understand and process. A large

number of correlated variables are transformed to a smaller number of uncorrelated

variables. [79] proposed an anomaly-based detection system using PCA to reduce the

audit data. [79-81] present a model that is suitable for high-speed processing, where the

dataset is collected from system calls, shell commands and network traffic. Markov

models are also used to detect anomalies based on sequence of events, where the system

is examined at some particular time. [82] developed an anomaly detection system for

systems calls based on Markov models. A hidden Markov model is also employed in

anomaly-based systems where the system is assumed to be a Markov process but with

http://en.wikipedia.org/wiki/Data_set

30

hidden parameters. [83, 84] used a hidden Markov chain to develop host-based

detection systems. [85] developed several methods for network-based anomaly

detection systems. In practice, these techniques generate flexible and adjustable

systems, as they discover the interrelations between system variables. However, they

rely on assumptions drawn about the observed system and require training data.

2.2.1.4 Data-mining techniques

Data-mining techniques have also been employed in anomaly detection systems in

many researches to extract a knowledge model from a large number of patterns.

Association rules from the system patterns are utilized to create features that construct

the detection system. Two types of methods applied in data mining are 1) predictive

methods involving certain variables to predict unknown variables; and 2) descriptive

methods where human interpretation are used to detect unknown patterns. Data-mining

approaches are generally applied to three main tasks: classification, clustering and

association. Classification is intended to extract class attributes from training data and

learn the model using the training data, and then to use the constructed model to detect

the anomalous events. An example of classification techniques are: inductive rule

generation techniques, fuzzy logic, genetic algorithms and neural networks. RIPPER

[86] used inductive rule generation techniques to induce rules from data to classify audit

data and detect intrusions. Dickerson et al. [87] developed the Fuzzy Intrusion

Recognition Engine (FIRE) to derive rules for every observed event. Other approaches

[88, 89] have used genetic algorithms to extract classification rules.

In the clustering and outlier detection task, patterns in unlabeled multi-dimensional

datasets and the number of dimensions equal to the number of attributes are identified.

[90, 91] presented outlier detection techniques to create clusters and apply rules on audit

data. The MINDS (Minnesota Intrusion Detection System) [92] is considered a

31

clustering-based anomaly detection system. Association rule discovery mechanisms are

used to correlate events usually occurring at the same time. ADAM (Audit Data

Analysis and Mining) [93] is an association rule and classification based anomaly

detection.

2.2.2 Signature-based detection

Signature-based detection methods are knowledge-based techniques where well-defined

attack patterns are used to detect malicious security violations. A novel attack has to be

studied and analysed to identify its features and then generate its accurate signatures.

The detection system observes and analyses activities amongst audit data, and the

detection mechanism is based on the comparison between attack signatures and

observed patterns. Signatures can be defined as a set of conditions characterizing the

direct manifestation of intrusion activities in terms of system calls and network data

[94], which is to say that when these conditions are met, a type of intrusion event is

indicated. In networks, unauthorized behaviour is detected by sniffing packets and using

the sniffed packets for analysis [95].

This intrusive model is more accurate than the normal behaviour model and it does not

need to observe the system's normal behaviours. In addition, it can be efficiently applied

in heterogonous environments, while its detection process works independently from

the normal system behaviour. The detection mechanism is based on a pattern-matching

process performed on audit events.

In these systems, the collection of signatures describing malicious activities is stored in

a database similar to an anti-virus system. The observed events extracted from captured

data, such as network traffic packets, are compared with the pattern database, and then

an alarm is triggered in case of matching. The database has to be up-to-date and the

32

signatures have to be accurately defined to achieve an acceptable balance between false

positives and false negatives. If the signature descriptions are very specific, this will

result in false negatives and missed attacks. In contrast, if the signature descriptions are

very general, a large number of false positives will be generated. Snort [23, 24] is the de

facto standard for IDSs, which is categorized as a signature-based detection and

prevention system. However, it employs protocol anomaly inspection as well as many

commercial and open-source detection systems using Snort signatures. Snort will be

explained in detail later in this chapter.

Typically, these types of systems consist of two sub-systems: a sensor to collect data

from its sources, and an engine to perform pattern matching. However, in an ideal

scenario, signature systems are incorporated with a pre-processing mechanism such as

protocol analysis to remove ambiguities from the collected data. The most expensive

process in such systems is the pattern-matching process, particularly in high-speed

environments. For this reason, many algorithms have been proposed in the research

community to enhance the functionality of the pattern matcher [96-98].

Software-based pattern matcher systems have been used for several years, but with the

evolution of Gig networks these systems have become bottlenecks. Therefore other

areas of research and certain commercial products are implementing hardware-based

pattern-matcher systems to utilize their high-speed processing [17, 45, 99]. Generally,

the most well-known algorithms for pattern matching are Boyer-Moore [100] for single

pattern matching and Aho-Corasick [101] for multiple pattern matching. For hardware-

based solutions, FPGA (Field Programmable Array Gates) and TCAM (Ternary Content

Addressable Memory) are implemented for their parallelism capabilities [102]. [44]

found that 87% of Snort rules have patterns, so he proposed a hardware accelerator for

33

pattern matching. [99] proposed a high packet processing system using TCAM. An

Extended TCAM was proposed by [103] to reduce data structures.

Certain efforts have dealt with software-based solutions to enhance performance. [104]

proposed a method to process each packet once it arrives without reassembly and to

integrate pattern matching in protocol analysis to reduce execution time and memory

use. [105] integrated pattern matching, normalization and protocol analysis in pro-to-

matching techniques to improve Snort functionality.

Each signature-based and anomaly-based IDS has its advantages and disadvantages.

The signature-based IDS is more practical and widely deployed because the intrusive

model is easier to develop to meet security policies in heterogeneous environments.

More precise definitions of signatures lead to more precise detection and reduced

potential of missing attacks (false negatives). Comparatively, false positives in such

systems are considered lower than in anomaly-based systems because the detection

mechanism is based on matching patterns of activities to knowledge of attack patterns.

In addition, alarms generated by these systems provide the administrator with detailed

and precise information about the intrusion and the attack actions. On the other hand,

signature-based systems cannot recognise 0-day attacks due to the absence of

corresponding signature definitions. The system can also be evaded by altering

signature patterns in a way that does not affect the ultimate goal of the attack, such as

mutant exploits or polymorphic behaviour (self-modifying behaviour). Keeping up-to-

date with new vulnerabilities along with the maintenance burden are further drawbacks

of these systems.

In contrast, the anomaly-based system has the ability of detecting novel attacks without

prior knowledge and without the need to create new signatures for each unforeseen

34

exploit. This can be efficient in the detection of Internet worms and similar stealthy

attacks. Vulnerability updates are not required as a result of considering any suspicious

activity as potentially malicious. On the other hand, anomaly-based systems suffer from

difficulties in precisely characterising normal behaviour models in order to create

baselines of detection. Determining the degree of deviation from the norm to provide

reasonable detection accuracy is another obstacle. Moreover, these types of systems

require a training phase including intensive analysis of the target environment. And any

development fault in this phase can cause the generation of a large number of false

positives. Furthermore, modern methodologies of attack tend to be slow-and-low,

without creating a noticeable deviation from the normal model of the typical system,

thus such malicious activities cannot be detected. Moreover certain emerging attacks,

such as cross-site scripting (XSS) [106] and code injection, are categorised under the

normal usage of any system, which makes them difficult to detect. The changing nature

of network systems (burst networks) may result in high false alarms, even though the

normal behaviour is well defined. Finally, the generated alarm reacting to abnormal

activity does not give specific information to the administrator about the attack.

In fact, neither of the two is the panacea. When used in conjunction with each other,

then each of the two become a more viable and effective means of protecting network

infrastructures [94]. The signature-based IDS still serves as a good outer layer of

defence against known attacks in the same manner as firewalls. Anomaly-based IDSs

are employed to further fortify the defence system and do not serve to function in lieu of

signature-based IDSs [107]. Today, it is being observed that numerous antivirus

packages include both signature-based and anomaly-based detection features, while

only a handful of IDSs effect an incorporation of both approaches.

35

2.3 Hybrid IDSs

The recent trend in the intrusion detection research community is to have the above

approaches to interoperate efficiently and manipulate their positive features so as to

achieve maximum levels of protection. Signature-based systems provide accuracy and

less false positives, and anomaly-based systems offer recognition of novel attacks.

Figure 2.3 shows the typical architecture of hybrid systems, where a signature-based

sub-system such as Snort receives the incoming network data and performs monitoring

using a protocol analysis unit and a pattern matching unit. If a malicious activity is

detected, an alarm is triggered and there is no need to pass the captured data to the

anomaly sub-system. Otherwise, the data is transferred to the anomaly sub-system for

further observation. Therefore, only traffic supposed to be benign is forwarded to the

receiving applications, and malicious activity is detected. Then the detected suspicious

behaviour is further analysed by experts, and potentially a corresponding signature can

be generated for future use.

signatures database rules database

Signature

based engine

Anomaly

based engine

signature generator

incoming

data

unknown activity

detected

 activity

detected

 activity

benign

activity

malicious

activity

Figure 2.3 Architecture of hybrid systems.

36

2.4 Snort

Open-source software has gained tremendous popularity and acceptance amongst

academia and the research community. Apart from being free of costs, there are several

other qualities that have made them popular. Some of the advantages of open-source

software are access to source code, detailed documentation, online forum support and

rights to modify/use. Our research has focused on a widely accepted open-source

software tool, Snort [20]. Snort has received great acceptance in the IDS market and has

been widely recognized as the reliable open-source tool.

Snort is capable of performing real-time traffic analyses and packet logging on the

network. It performs protocol analysis and can detect a variety of network threats by

using content/signature matching algorithms. Snort can be configured as a packet

sniffer, packet logger and NIDS (detection mode and inline mode).

- Sniffer mode: To receive traffic packets from the traffic wire and display them

exactly the same as function of TCP dump. Snort uses a libpcap library for

packet acquisition.

- Packet logger: This is similar to the above, in addition to storing the data on a

disk.

- Network intrusion detection: The main task for Snort to perform is traffic

analysis and pattern matching against signature collections.

- Inline mode: (or network intrusion protection mode): To acquire traffic packets

from iptables instead of libpcap. Attacking packets according to Snort rules are

dropped instantly and only benign traffic will be forwarded.

Snort was introduced in 1998 by Marty Roesch [20], and was considered a signature-

based IDS. Since its early versions launched in 1999, many development efforts have

37

been implemented to improve its capabilities. The current version is 2.8.6, and more

than 8,000 certified rules are included. SnortSP 3.0 [23] is the beta version with new

architecture introducing a new shell-based user interface. The Snort system consists of

four sub-systems working sequentially, as shown in Figure 2.4.

sn

if
fe

r

traffic

packets

P
re

-p
ro

ce
ss

o
rs

d
e

te
ct

io
n

 e
n

g
in

e

a
le

rt
 a

n
d

 l
o

g
g

in
g

Signatures database

Figure 2.4 Snort sub-systems.

Snort has five components: 1) a packet decoder, 2) a pre-processor, 3) a detection

engine, 4) a logging and alerting system, and 5) an output model. Incoming packets are

prepared for processing before being modified if required, e.g. de-fragmentation before

sessions are then reassembled. Snort rules are applied in detection engines, where they

are examined against signatures to detect recognised attack patterns.

2.4.1 Pre-processor

Pre-processors have been introduced to run before detection engines to improve Snort

protection speed and efficiency. They are intended to perform traffic normalization to

detect protocol anomaly behaviour. They are based on a target-based technique inspired

from Patcek and Newsham's paper on evasion of attacks [11], and Vern Paxon and

Umesh Shankar's paper [12] on traffic normalization. The heterogeneous nature of

communication network infrastructures has posed ambiguities due to various

interpretations of the RFCs [108]. The target-based analysis [23] involves identifying

the actual target characterisation in order to provide the IDS with additional information

38

about the protected network so as to defend against attack evasions. Different OSs can

behave in different ways in terms of handling network traffic, and the IDS must

understand how these OSs are functioning. Intruders may manipulate these ambiguities

in protocol implementations by fragmentation and session-splicing techniques. Pre-

processors in Snort consist of:

- Packet de-fragmentation to reassemble traffic data spread over multiple packets.

- Session reassembly to provide a stateful TCP analysis by using state records of

previous TCP connections.

- An application pre-processor to normalize ambiguities in application-level

protocols, such as Telnet, HTTP, SMTP, FTP and RPC protocols.

Dynamic pre-processors are plug-in pre-processors dynamically loaded and separately

developed, and compiled without the need for full Snort compilation.

2.4.2 Detection engine

The main task of a detection engine is to perform the pattern-matching task. It receives

the data from pre-processors and matches the packet header and content against Snort

signature rules. Snort, being a signature-based IDS, uses rules to check for hostile

packets in the network. Rules are sets of requirements used to generate an alert and have

a particular syntax. For example, one rule that checks for peer-to-peer file sharing

services looks for the string ―GET‖ in connection with the service running on any port

other than TCP port 80. If a packet matches the rule, an alert is generated. Once an alert

is triggered, it can be sent to multiple places, such as a log file or a database, or it

generates a Simple Network Management Protocol (SNMP) trap [109]. On successful

detection of a hostile attempt, the detection engine sends an alert to a log file through a

network connection into the required storage (output) [24]. Snort can also be used as an

39

Intrusion Prevention System (IPS) [24]. Snort 2.3.0 RC1 integrated this facility via

Snort-inline into the official Snort project [23].

The main objective of Snort and other NIDSs is to effectively analyze all packets

passing through the network without any loss. The performance of the majority of

running applications depends upon memory and processing power. In the context of

NIDSs, this performance dependency includes NIC cards, I/O disk speed, and OS. In

recent years, technologies have advanced in both hardware and software domains.

Multi-core systems have been introduced to offer powerful processing functionality.

However, these multi-processing implementations support applications using concurrent

programming. The number of CPU cycles in such systems has increased to execute

multiple tasks simultaneously.

It has been identified that Snort does not support multithreading [24]. The detection

engine component of Snort constitutes the critical part where the pattern matching

function is performed. Recent VRT rule libraries contain more than 8,000 rules; this

augments the need for an effective pattern matcher. Snort uses three different pattern

matching algorithms: Aho-Corasick [101], modified Wu-Manber [110], and low-

memory key-word tire [24, 96]. Modifications have been made for these algorithms to

provide various performance characteristics. We have conducted comparative memory

usage and performance tests for different pattern-matching algorithms. The results are

shown in Table 2.1.

Table 2.1 Pattern-matching algorithm performance (based on 1.5 GB pcap file).

Algorithms (8,296 rules) Memory usage (MB) Packet processing time (seconds)

Aho-Corasick (full) 640 620

Aho-Corasick (sparse) 240 714

Aho-Corasick (standard) 1,080 665

Wu-Manber 130 635

Wu-Manber (low) 75 655

40

In addition, Snort uses Perl Computable Regular Expressions (PCRE) [24] for precise

and flexible protection capabilities. A dynamic engine is also used for complex

detection functionalities where shared objects are dynamically loaded. Instead of

plaintext rules, rules can be written in C language and compiled and loaded for fast

processing and to deal with certain complicated attack vectors. Snort rules consist of

rule headers and rule options. The structure of rule headers is shown in Figure 2.5 and

multiple rule options are enclosed in parentheses. An example of a Snort rule is

provided below:

alert tcp 192.168.2.0/24 23 -> any any \
(content: "confidential"; msg: "Detected confidential";)

Action Protocol Src. Address Port Direction Dest. Address Port

Figure 2.5 Snort rule header.

2.4.3 Snort with Artificial Intelligence (SnortAI)

SnortAI [111] has been introduced to integrate Snort methodology with the intelligence

of anomaly-detection methods represented by Artificial Intelligence plug-ins. Currently,

portscan-AI pre-processors function with Snort version 2.8.3.2 and the development of

other plug-ins, such as XSS-AI and SQL-AI pre-processors, is in the planning.

2.5 Bro

Bro [21] is also an open-source IDS to parse network traffic in real-time focusing on

extracting application-level semantics and event observations. It was developed at ICST

and LBNL [112] in 1996. The detection of a specific attack is implemented by

comparing activities against a set of rules and policies. However, Bro does not look

only at pre-defined signatures, but analyses network connections and correlates between

events. Moreover, it uses regular expression matching and a DFA (Deterministic Finite

Automaton) [113], where one active state is used at a time.

41

Bro system architecture consists of three main sub-systems: 1) a sniffer to capture

traffic, 2) an event engine, and 3) a policy script interpreter. When network packets are

captured, different levels of events are generated by the event engine (the core). Streams

of produced events are transferred to the policy script interpreter to be processed.

Polices are either supplied by the administrator or acquired from the connection context

analysis. Events are handled by the event handler following rules specified by policy

scripts. Policy scripts have to be written in Bro script language. However, Bro suffers

from a shortage of good documentation, slow development and the need for writing

complex scripts.

2.6 Host-based vs. network-based IDSs

IDSs can be categorised based on the source of gathered information for observation

and analysis. Host-based IDSs were introduced before network-based IDSs to monitor

the activities on a single host. These activities include file access and modifications and

the detection is achieved by checking file integrity, kernel activities such as system

calls, and root privilege behaviour. Furthermore, connection attempts can be observed

such as suspicious port connections and failed logon attempts, as well as application-

level interaction. Records of information are collected and analysed against any

intrusion attempt. Examples of such systems are: tripwire [114] – a software for security

and data integrity, and OSSEC[115] – an open-source host-based IDS.

In contrast, network-based IDSs (NIDSs) monitor local network activities by analyzing

inbound and outbound traffic in real-time. All traffic packets – captured from network

interface on a promiscuous mode – are reassembled and analyzed using different

mechanisms. Certain network-based attacks, such as distributed denial of service

(DDoS), Botnet and worms, cannot be detected by host-based IDSs. Thus, NIDSs are

42

efficient because they protect the network elements, including host machines, largely

without having to rely on frequent OS patches and user awareness. They also reduce the

cumbersome task of installing and updating protection software on every single host.

The main concerns about such systems are when they become a bottleneck for network

communications, particularly with the massive speed of modern switches. The other

concern is the difference in understanding of the received data between the NIDS and

the end application. Also, application-level attacks, which need application-layer

inspections, have posed another challenge for such systems. The research trends in this

area are to enhance NIDSs to be more intelligent in understanding attacker behaviour.

This is achieved by incorporating certain functionalities implemented in host-based

tools.

2.7 Alert correlation

The widespread deployment of IDSs, both network-based and host-based, has imposed

a demand for sophisticated alert management systems. Simple analyses including

statistical information about IDS alarms are not helpful in the detection of connections

between alerts, in reducing alarm-data size and in distinguishing false alarms. A high-

level view of system security status is required by analysing low-level alerts produced

by IDSs to characterize attack actions. Alert correlation techniques provide the facility

to observe beyond the receipt of IDS alarms themselves. It has been identified that real

intrusion consists of multiple and coordinated steps that are logically connected. In

addition, the huge amount of elementary alerts received constantly can cause the human

administrator to ignore them if they consist mostly of false positives.

Alert correlation has been an active research area for many years and the concept has

been explored in several efforts. Approaches have been developed for Network

43

Monitoring Systems (NMSs) to diagnose faults in complex communication networks,

and have also been applied to some extent in alert correlation. However, the nature of

network faults is different from adversarial behaviour, as the later is more dynamic and

complex. In NMSs, the objective is to find out the fault location, whereas in the

correlation of IDS alerts, the goal is to discover the attacking strategy.

In recent years, alert clustering and correlation techniques have been employed to

provide a global view of attacking behaviour by analyzing low-level alerts produced by

the IDS sensors. The main objective of alert correlation is to build an abstract modelling

of alerts by generalizing the detected events, instead of the current specific modelling.

The constructed inference will progress even in cases of unforeseen attacks. Previous

research efforts in the field of alert correlation have mainly concentrated on a particular

aspect of the problem domain. It is not possible to provide an efficient alert correlation

system in a single phase or study the system components as isolated elements. Overall

functionality is only achieved by the integration of the system's modules and all the

system parts should be evaluated together.

Different approaches have been utilized to build the correlation models and can be

categorized into four main disciplines: 1) similarity-based approaches, 2) scenario-based

approaches, 3) pre- and post-condition approaches, and 4) probabilistic approaches.

2.7.1 Similarity-based approaches

In similarity-based techniques, certain selected features (e.g. source IP address,

destination IP address, port number and attack class) are used to compute the similarity

degree. Some approaches rely on exact similarity between two alerts to be grouped, e.g.

the same source and destination IP address, whilst others utilize a similarity function.

This function represents similarity confidence and is based on a defined threshold. Two

44

alerts are considered similar if they satisfy the defined confidence degree and occur

within a defined sliding window time. The similarity confidence is calculated using the

overall similarity between alerts based on their attributes. In principle, these techniques

are mainly applied to alert fusion, alert clustering and alert aggregation. The Alert

clustering process plays an important role in alarm reduction and as well as reducing

false positive rates. Data mining, artificial intelligence, machine learning and clustering

using association-rules techniques are widely implemented in this respect.

[50] has proposed an algorithm for alert aggregation and correlation which is

implemented in the Tivoli Enterprise Console (TEC). It is a tool for risk management to

address the problems of alarm flooding and discovery of attack context. It has two

different components: one to remove duplicated instances of alerts using rules saved in

a configuration file, and the other to assign alerts to their associated attack scenario. An

exact similarity of three common attributes (attack class, source address and destination

address) are used to group alerts. It is useful for some initial alert processing but is not

capable of detecting complex scenarios. It is also vulnerable for attack flooding and the

use of different IP addresses for the same attack. However, their alert model has been

revised and is now the de facto standard format for intrusion detection alerts, which is

the Intrusion Detection Message Exchange Format (IDMEF) [116]. An alert correlation

framework was presented by [51] using exact feature similarity. Two out of ten of the

proposed components are implemented. Thread reconstruction is used to cluster alerts

with equal source and destination IP addresses within a window size. This is to

represent the activity of attacking a single host from a single attacker. Another

component called focus reconstruction is used to show a single attacker targeting

multiple machines.

45

In other respects, approximate features similarity is used by [28], who presented a

probabilistic approach to provide a unified mathematical framework that performs a

partial matching of features. Features are extracted and minimum similarities are

computed and weighted. A similarity metric is employed using EMERLAND

architecture [28] in three phases. In the first phase, an attack thread concept and

similarity metric (sensor, attack class, source and destination) are used to aggregate low-

level events. The second phase involves the aggregation of alerts generated from

multiple sensors ignoring sensor field information. Then the third phase provides a

higher aggregation level by relaxing the similarity requirements using attack class.

 Although these methods are useful for alert fusion and statistical purposes, they fail to

discover the causal connections between alerts. Moreover, it is hard to find a

justification for calculating the overall similarity function using a weighted measure and

sliding window time.

Additionally, a conceptual alarm clustering technique was proposed by [10] to discover

root causes of different alarms. The aim was to reduce the volume of the alarms to a

manageable size. A generalization hierarchy structure of attributes was utilized to define

similarities between alerts and to support root cause analyses. The similarity function is

computed using the proximity between alerts and the features' taxonomy [10]. In

essence, the generalisation concept is promising, but not in certain features, such as IP

addresses if spoofed ones are considered. The concept of generalisation has been

utilized but for attack class classification and capabilities modelling.

2.7.2 Scenario-based approaches

Scenario-based or pre-defined scenario approaches utilize the concept of the real attack

consisting of a series of steps to achieve the attacker's ultimate goal. Attacks occur

46

typically in groups of actions (multi-stage attacks) represented by IDS alerts. Each

attack scenario is specified by its corresponding steps, which are required for it to be

successful. Attack scenario modelling is essentially based on rules stored in a

knowledge base that states attack stages. The knowledge rules are built either manually

by experts or using machine learning approaches. The knowledge base is generally

intended to characterize the casual relationships between observed attack activities. In

manual knowledge acquisition, formal detection models using attack languages [33,

117, 118] are used to construct attack libraries. On the other hand, in machine learning

approaches, correlation rules can be obtained using a training stage and labelled data.

LAMBDA [33] is an intrusion specification language to describe the conditions and

effects of an intrusion in connection to the variable state of the target system.

Descriptions of the relationships between attack steps are constructed based on three

components. The first component is termed the state description, which is to specify the

conditions of the target system that are required for the attack to be successful. The

other components are termed transition description and event combining, to state the

conditions in order to combine two events into a single scenario. ADele [118] was

presented at the same time of development as LAMBDA. However, it is a procedural

approach rather than the declarative mechanisms utilized in LAMBDA. A database of

known attack scenarios is modelled in a high-level description. Similarly, STATL [117]

language is a formal language to describe scenario patterns in terms of states and

transitions. Hence, a sequence of events conducted by the attacker can be described to

express a multi-stage attack. However, these approaches need a manual description of

potential attacker behaviour, and if a single step is missed the whole behaviour goes

undetected.

47

Besides, [119] used predictive data-mining techniques to learn correlation algorithms

from labelled scenarios. The training data is obtained from real scenario examples and

labelled manually. A user-defined threshold is used to determine the highest probability

score, stating whether the incoming alert corresponds to a particular scenario or

otherwise to initialize a new one. [120] applied chronicle formalism to alert correlation

to provide fewer alarms of higher quality. The proposed approach is based on known

sequences of malicious scenarios and temporal logic formalism. The chronicle model

incorporates a formal data model M2D2 [120], which is also proposed by the authors to

federate the context information required for alert correlation systems. In practice, these

approaches involve data labelling, which is labour intensive and error prone.

Furthermore, the training data which can be relied on and which reflects real scenarios

is not available.

2.7.3 Pre- and post-condition approaches

The basis for these approaches is the assumption that real attacks involving related

stages can be represented by alerts as a system diagnoses. The objective is recognition

of attack scenarios, and potentially the identification of unknown attack steps. Domain

knowledge of intrusion pre- and post-conditions is used to detect alert correlation even

with the existence of partial condition formalisation. Two alerts can be logically

correlated if some of the post-conditions for the first one match some of the pre-

conditions of the later one. It can be said that these techniques are a special case of

scenario-based approaches; however, complete scenario description is not required.

Hence, if some steps are missing due to not be detected by the IDS, the correlation

system can perform a correlation to detect the so-called attack sub-goal. This provides

more tolerant techniques than the hard-coded scenario templates used in scenario-based

methods.

48

The provides/requires model was initially proposed by [121] to characterize the causal

relationships among alerts using JIGSAW language [121]. Attack scenarios are

modelled in terms of capabilities and concepts. Concepts are abstractions of attacks,

and capabilities are the required and provided conditions associated with each attack

concept. The correlation task is performed if a match is detected between the conditions

of two alerts ordered temporally. Hence, each received alert is modelled to a concept

with its related required and provided capabilities. Instead of representing attack

scenarios as series of states, they are considered as sets of concepts and capabilities.

Even though it is limited to known attacks, the formalization of concepts and

capabilities can be generalized in a hierarchical manner to uncover unknown atomic

activity. Several efforts have been proposed based on this model in the literature, but

they have used various definitions and knowledge representations [35, 38, 49]. We have

used this model as the basis of our correlation framework because of its extensibility

and flexibility.

[49] proposed the Cooperative Intrusion Detection (CID) framework based on pre- and

post-conditions. Explicit correlation of events based on security experts is used to

express the logical or topological links between events. The framework consists of five

components: 1) alert management, 2) clustering, 3) merging, 4) correlation, and 5)

intent recognition. Alert clustering and merging functions are performed using a

similarity function, and intent recognition is not implemented. The attack is specified in

the language of LAMBDA [33] and partial matching techniques are adopted to

construct attack scenarios. In addition to explicit correlation, semi-explicit correlation is

used to overcome the possibly missing attack descriptions. Moreover, the authors of

[34, 35] have proposed an alert correlation framework based on the prerequisites and

consequences of individual detected alerts. A Hyper-alert Type Dictionary knowledge

49

database contains rules that describe the conditions where prior actions prepare for later

ones. The attack strategy is represented as a Directed Attack Graph (DAG) with

constraints on the attack attributes considering the temporal order of the occurring

alerts. The nodes of the DAG represent attacks and the edges represent causal and

temporal relations. Similarities between these strategies are measured to reduce the

redundancy. A technique of hypothesizing and reasoning about missed attacks by IDSs

is presented to repair broken scenarios. This is done by matching instances of

prerequisites and consequences of similar attack nodes. The main objective of these

authors' work is the reduction of the huge number of redundant alerts and to report a

high-level view for the administrator. However, the proposed system is useful as a

forensic tool where it performs offline analysis. In addition, building the knowledge

database containing rules of the applied conditions is burdensome. However, the authors

have not provided a mechanism to build the Hyper-alert Type Dictionary. Moreover, the

generated graph is huge, even with medium-sized datasets.

In spite of the fact that pre- and post-condition approaches have alleviated some of the

recognised drawbacks of scenario-based approaches, they also share the difficulty of

defining the required knowledge. Pre- and post-conditions have to be modelled for

every known attack and this is typically done manually by security experts. The quality

of correlation results is highly dependent on how attack elements, attack implications,

attack domains and the target system response are expressed. Attack concepts have to be

formalized in a certain way to provide maximum coverage with less false positives.

Furthermore, some implementations of these techniques consider uncorrelated alerts as

false positives, and that is not the case if the actual related description is missing.

Moreover, knowledge representation of pre- and post-conditions in most works is done

in an ad hoc manner.

50

2.7.4 Probabilistic approaches

These approaches are referred to as statistical analysis models, where alerts are

correlated if they are statistically related. They are inspired from anomaly-based IDSs,

where prior knowledge is not required. In this category, relationships between incurred

events are computed statistically, providing automatic knowledge acquisition. In

general, implementation of these approaches is performed using machine learning

techniques. [29] proposed a combination of statistical and knowledge-base correlation

techniques. Three algorithms are integrated based on the assumption that some attack

stages have statistical and temporal relationships even though direct reasoning links are

non-existent. A Bayesian-based correlation engine is used to identify the direct relations

amongst alerts based on prior knowledge. In contrast to previous approaches,

knowledge of attack steps is used as a constraint to the probabilistic inference. An

engine based on Causal Discovery Theory is developed to discover the statistical of

one-way dependence among alerts. In addition, a Granger Causality based algorithm is

used by applying statistical and temporal correlation to identify mutual dependency.

However, the problem of the selection of a time window for temporal correlation is still

an unresolved problem. Attackers can exploit the slow-and-low attack to avoid

detection. Attack prediction also relies on prior knowledge, and so 0-day attacks are not

detected.

Recently, [37, 122-124] employed different data-mining algorithms for real-time

correlation to discover multi-stage attacks. An offline attack graph is constructed using

manual or automatic knowledge acquisition and then attack scenarios are recognized by

correlating the collected alerts in real-time. The incoming step of an attack can be

predicted after the detection of few attack steps in progress. In [122], an association rule

mining algorithm is used to generate the attack graph from different attack classes based

51

on historical data. Candidate attack sequences are determined using a sliding window.

In [124], an AprioriAll algorithm, which is a sequential pattern-matching technique, is

used to generate correlation rules based on temporal and content constraints. [124]

adopted a classical sequential mining method GSP (generalised sequential patterns)

[125] to find the maximal alerts sequence and then to discover the attack strategy. The

limitation of their work is the use of only attack class and temporal data as features.

Nevertheless, although these approaches do not require the construction of scenario

rules by experts, a training dataset is needed. The dataset has to be collected and

validated in order to obtain high-quality correlations. Therefore the required efforts to

maintain a dataset are similar to the manual labour required to construct rules in other

approaches. In addition, the false positives issue is another concern has to be taken in

account; thus, these approaches can be utilized to support other techniques.

2.8 Alert verification

Generally, alert verification mechanisms are intended to distinguish successful from

failed attacks. In typical deployments, the IDS device performs its detection producing a

number of irrelevant alerts that have no effect on the target machine. That is because the

host is not running the corresponding service or the service is not vulnerable. This

knowledge gap between the IDS device and the protected system creates the issue of

false positives [12]. The alert verification and vulnerability analysis problem has been

investigated in several efforts at the IDS level [23, 126, 127]. Snort developers have

brought up this point and have extended Snort to include facilities for adding

configurable information about the target system. Target-based analysis has been

introduced in Snort.2.8 [23] to model the targets rather than just the protocols. However,

52

this mechanism is limited to configurations based on information from OSs and these

details have to be updated manually.

To deal with this issue, different techniques have been presented according to the

context requirements. For instance, one direction is to compare a configuration file for

the protected machines against the conditions required for the attack to be successful.

The gathering of system configurations can be performed automatically and updated

periodically using vulnerability scanners such as Nessus [128]. Other techniques are

based on the analysis of the target system response after the attack occurs. This is

typically performed as a further investigation required for forensics purposes.

[129] proposed M-Correlator to analyse and prioritize a stream of alerts and to verify

relevant security incidents. The system is based on a knowledge base that contains a

description for the protected network (topology and vulnerability) collected by the

Nmap [130] tool. Three stages have been considered: 1) low-priority alerts are

eliminated without preventing the IDS from generating them; 2) alerts are ranked using

a relevance score based on a comparisons between topology and vulnerability

information; and 3) alert priority is calculated according the significance of the target

machine or service.

It should be noted that alert verification functionality should be employed as a

lightweight process to avoid affecting overall system performance. Automatic and

periodic knowledge acquisition is required to update stored data. This mechanism

should be implemented as a complementary function to the IDS, and not integrated into

the IDS itself. The reason behind this is to maximise the input data to the correlation

system for deeper and more accurate analysis. Attack attempts should be recorded even

if they are not successful because it may uncover some undetected activities.

53

2.9 Alert correlation system requirements

Although past techniques have dealt with reducing the massive number of collected data

by NIDSs, there are many limitations. First, the analysis of attack strategy recognition is

too complex, especially if the task is broadened to the prediction of unknown steps.

Knowledge-based approaches are more accurate due to rule-matching mechanisms

which are built based on expert knowledge, but they require more effort to provide

precise rules. Statistical and temporal analysis techniques are unable to detect causal

relations among events, but they do not require prior defined rules. The adoption of

such systems in real-time is still an open question, where most proposed systems have

been tested in an offline fashion or in a low-volume traffic environment. The huge

number of detected events leads to graph explosion, as in [34, 35]. Moreover, missed

attacks by the IDS can result in separate scenarios related to the same attack. Attackers

also exploit the attack sliding window used in most approaches by performing slow-

and-low attacks.

Alert correlation modelling has to provide a type of intelligence for attack strategy

recognition. A framework consists of several components needed to make use of the

capabilities of different approaches. Attack strategy recognition cannot be implemented

in a single stage or by using a single component. In order to achieve this task, the

correlation approach must consider:

• Real-time (or at least near real-time) correlation that inspects the incoming alerts

and correlates them to the older ones. However, it is a challenging task, particularly if

we consider the scalability, the huge amount of alerts and the speed of the current

implementation of communication networks. [35] developed the TIAA system that

performs the correlation in memory using a nested-loop mechanism, and [131] proposed

54

a queue graph mechanism. However, they have not provided any evaluation in high-

speed networks to assess the system's scalability.

• Recognition of missed attack by the IDS, which will cause a division of a

scenario or graph into separate ones. The correlation system has to be able to correlate

isolated scenarios using implicit correlation. This mechanism can also be used to predict

unknown attacks by hypothesizing about the expected step, which can consist of

variations of known attacks.

• Slow-and-low attacks conducted by skilful attackers to avoid detection. Most of

the implemented systems use a sliding window to avoid graph explosion, and hence

very old events are ignored. However, determination of the value of the sliding window

is also critical in order to provide a higher detection rate. Ignoring old events can result

in the success of a dangerous intrusion attempt.

• Alert verification, where not all alerts are critical and where they have different

effects on the system. This mechanism will reduce the huge number of correlated alerts

by focusing on the significant ones.

• The configuration of the protected system can be incorporated in order to reduce

false positives and to provide more meaningful and accurate results. Host response can

also be involved to shift the focus to the critical events.

2.10 Conclusion

In this chapter, an overview of past and recent works in the field of IDSs and alert

correlation techniques have been provided. A number of IDSs approaches have been

discussed providing a historical summary to show the evolution achieved since this

technology started. The two main IDSs methodologies have been investigated in details

throughout this chapter presenting their advantages and disadvantages. We have also

discussed the opportunity to exploit the capabilities of each approach by developing a

55

cooperative technique to employ both signature-based and anomaly-based IDSs.

Moreover, host-based IDSs can be used to support the functionality of network-based

IDS by providing further details about the protected system.

Alert correlation approaches have been employed to analyse alerts produced by IDSs to

facilitate the detection of multi-stage attack. These mechanisms are used to reduce the

huge amount of IDSs alarms and false positives. Different methodologies have been

described in this respect including scenario-based, pre- and post-condition, and

statistical methods. Then, we have stated the main requirements for alert correlation

systems that have to be satisfied in order to develop a practical detection system.

56

CHAPTER 3: PERFORMANCE EVALUATION OF NETWORK

INTRUSION DETECTION SYSTEMS (NIDS)

3.1 Introduction

Intrusion Detection Systems (IDSs) are designed for the security needs of networks.

Existing Network Intrusion Detection Systems (NIDSs) are found to be limited in

performance and utility, especially once subjected to heavy traffic conditions. An

optimal methodology for the evaluation of NIDSs does not exist due to the

heterogeneous nature of the operational environments. One aspect of NIDS evaluation is

performance evaluation to measure the scalability of such systems in high-traffic

environments. It has been observed that NIDS become less effective even when

presented with a bandwidth of a few hundred megabits per second.

In this chapter, we have endeavoured to identify the causes leading to the unsatisfactory

performance of NIDS. In this regard, an extensive performance evaluation of an open-

source intrusion detection system (Snort) has been conducted. This has been done on a

highly sophisticated test-bench with different traffic conditions. Host-based analysis and

virtual-based analysis approaches have been selected to determine the performance of

Snort. The performance of the system has been evaluated on different OS platforms

(Windows, Linux and Free BSD) utilizing multi-core hardware. Our test methodology is

also based on the concept of stressing the system and degrading its performance in

terms of its packet-handling capacity. This has been achieved by: normal traffic

generation, fuzzing, traffic saturation, parallel dissimilar attacks, manipulation of

background traffic (e.g. fragmentation), packet sequence disturbance, and illegal packet

insertion. Our results identified the performance limitations of Snort on both host and

virtual platforms. We have also identified the factors responsible for the limited

57

performance of the system. Finally, we have discussed the factors involved in the

limitation of IDSs performance.

3.2 NIDS evaluation

The design of a comprehensive approach to test and evaluate NIDS has been a debatable

issue for many years. This is as a result of the nature of these systems running in

heterogeneous environments and employing different detection methodologies. Host-

based IDSs have testing requirements that are different from network-based IDS, and

NIDSs themselves vary based on the employed operational techniques. However,

several efforts in the literature review have been proposed to test and evaluate the

performance and accuracy of these systems. Authors in [132] have presented a review

of IDS evaluation methodologies by rendering available measurable characteristics of

IDS testing. They have summarized criteria for IDS evaluation as follows:

1- Detection coverage: This measurement indicates the detection abilities of IDSs to

recognise all known as well as potentially unknown attacks. IDS capabilities are

measured by the maximum number of detected events – for instance, in signature-

based methods, by performing a comparison between the number of signatures and

known intrusive events. It is difficult to compare the different signature databases of

various IDSs. In addition, a single database containing all known attacks does not

exist. However, the Common Vulnerabilities and Exposures (CVE) [39] is a

repository of publicly known vulnerabilities to enable information exchange between

research and commercial products. However, the same vulnerability can be exploited

by a set of attacks, and the value of detection varies from one environment to

another.

58

2- False positive and false negative rates: While the detection capability is vital for

IDSs, the false positive rate is also important, because overwhelming the system with

a huge number of false alarms is impractical. False alarms can be produced by

benign traffic such as network monitoring tools or by a signature that is not well

defined. Various environments imply different network standards and different

protocols and services, which cause difficulties in measuring the false positive rate.

On the other hand, false negatives are caused by inability of NIDS to detect true

attacks which are more serious than false positives. False negatives can be caused by

improper written signatures, unpublicized vulnerability information, NIDS device is

overloaded and cannot properly process all data, or poor NIDS device management.

Reduction of false positives is not necessarily introducing false negatives if the

implemented mechanism does not affect the detection coverage. Moreover, it is

imperative to achieve a balance between false positives and false negatives. False

positives affect productivity and false negatives affect security. Hence, it is essential

to properly quantify risk and the NIDS role in risk reduction. False positives can be

suppressed by different techniques: configuring the IDS to rely on the operational

environment by tuning the signatures to only watch for specific services and

operating systems, placing the NIDS behind the firewall, and alert analysis systems.

The later one is the most secure and reliable technique that does not introduce in

raise in false negatives rate. All signatures are enabled and the NIDS in configured

with the maximum detection coverage. Alert correlation systems are the typical

implementation of these techniques.

3- Detection rate: This measurement represents the detection accuracy; in other words,

the IDS triggers a true alarm for the correct attack. In comparative evaluations, all

59

tested IDSs have to be configured in the same way and run in the same environment

in order to obtain an accurate testing.

4- Resistance to attacks: Smart attackers can exploit weaknesses in the IDS itself to

avoid detection with the use of several methods. They can stress the system by high-

volume normal traffic to force the IDS to drop packets, or mutant crafted traffic

packets can be injected to confuse signature-based systems and as a result, a huge

number of false positives are generated.

5- High-volume traffic handling: The IDS's ability to handle higher traffic volumes is a

critical issue in IDS evaluation. Sending a large amount of traffic – or even worse,

high traffic with fragmentation, which is computationally expensive – can lead the

IDS to collapse or at least drop packets. If the IDS starts to drop packets, this means

that intrusive data can be passed to the protected system. Hardware-based NIDSs are

more scalable than software-based systems for higher traffic.

6- Event correlation abilities: This is related to the context-based protection system,

where the IDS is able to correlate information gathered from different sources. This

information is valuable for building a state record for every event, and that allows the

IDS to understand complex attacks such as multi-stage and hidden attacks.

7- Detection of novel attacks: This measurement is to determine IDS's ability to detect

unknown or never-seen attacks. It suits anomaly-based approaches, which are

capable of recognising novel attacks, but not signature-based approaches.

3.3 Background traffic

Despite having the criteria for the evaluation of IDS, the need for attack and realistic

background traffic information remains in great demand. There are several approaches

for obtaining attack and background traffic data. First, the most common and useful

methodology is to build a test bed consisting of a number of connected machines and

60

other elements of a typical network infrastructure. This will simulate the real network

despite the use of a limited number of hosts. The minimum number of hosts is three

machines: 1) an attacker machine, containing a collection of exploit scripts or attacking

tools, 2) a victim machine running vulnerable services, and 3) a monitoring machine

running the IDS under testing. After the installation of the test bed, three kinds of traffic

are required: normal traffic, background traffic and malicious traffic. The first type can

be real traffic obtained from a production environment, or synthetic traffic generated by

traffic generators [133-136], whether software-based or hardware-based. Malicious

traffic is injected into the background network traffic, and this can be obtained from

automated systems such as Metsploit [26] or the manual use of attack scripts. The

advantage of this approach is the ease of traffic generation, the ability to repeat the test

many times, and the fact that the traffic can be recorded and distributed publicly. On the

other hand, this method is expensive and time consuming, particularly if commercial

traffic generators [135, 136] are considered, as they perform better than the few, not

well documented open-source software ones. Moreover, the use of a limited number of

hosts implies less running services, less implemented protocols and the absence of huge

number of concurrent connections. Synthetic traffic is generated based on random

variables, and some IDSs consider this type of traffic abnormal and may ignore it.

Second, real traffic obtained from a production network infrastructure can be used for

IDS evaluation to offer a more realistic approach. The IDS system is connected to a tap

or a mirrored port on the edge of a network. This method is less common for reasons of

privacy and due to the difficulty in identifying potential unlabeled attacks. Some traffic

generators such as Harpoon [137] have been developed as intelligent generators by

obtaining real traffic characteristics from live networks.

61

Third, real traffic can be modified to remove all sensitive data and used for testing of

IDS systems, which is called sanitised traffic. However, the main task for the IDS is to

inspect content and attacks usually residing in packet payload, so this is not the optimal

approach for testing IDSs, but can be suitable for other network components.

The first well-documented IDS evaluation methodology to be introduced was the

DARPA evaluation 1998 (UNIX dataset) developed in the labs of MIT [55], followed

by another dataset in 1999 (Windows NT dataset). Data used in their experiments are

labelled and distributed publicly. DARPA datasets have been criticised for not being

updated since 1999, for some of the attack types used having become obsolete, and for

not covering new emerging attacks [22]. The Lincoln Adaptable Real-time Information

Assurance Test-bed (LARIAT) [138] is another evaluation methodology providing a

tool for simulation and testing. DEFCON [54] is the worldwide hacker and security

expert conference and competition. Malicious traffic can be obtained from DEFCON

CTF (Capture The Flag), which contains a huge number of attacking traffic used for

IDS testing. NSS Labs [41] is a commercial group that provides a comprehensive

methodology for the evaluation of NIDSs. Their approach includes security

effectiveness, performance, resistance to evasion techniques, stateful operation, latency,

reliability and usability [41]. Background traffic is generated from hardware-based

traffic generators such as Spirent SmartBit [136]. Malicious traffic is obtained from

automatic tools such as Metasploit [26] and CANVAS [139], or manually defined

attacks.

Other efforts have been made to test signature-based IDSs by analysing the collection of

attack signatures and then generating mutant patterns to hide the actual attacks. The

authors in [25] have developed a cross-testing approach to generate synthetic events to

62

test IDS ability and identify real attacks from modified ones similar to the signatures.

[140] addressed the need for publicly well-documented datasets for IDS testing. He

presents a set of tools that generate malicious traffic using a virtual network

infrastructure. Different platforms were used to create attack traces against various OSs

and violating different system services. [141] proposed a framework for offline and

online testing to evaluate NIDS resistance to evasion techniques. A comparative

evaluation methodology was presented to test Snort and Bro by generating ambiguities

in traffic traces.

3.4 Motivation

A typical scenario of employing a NIDS in a network is its implementation on the

server with minimum active services. This setup is quite susceptible to insider attacks,

especially in high-speed environments. The current NIDSs are also threatened by

resource crunch attempts such as DDoS, which has increased from a few megabits in

the year 2000 to 40 Gbps in 2008 [142]. The performance criteria of NIDSs demand

that every single packet (header, payload) passing through the network needs to be

evaluated with the same link speed; however, the massive increase in network speed has

generated many concerns. Sending a large amount of traffic or using computationally

expensive techniques like fragmentation can compromise a NIDS or make it to start

dropping packets.

NIDSs can be implemented as software-based or hardware-based. Software-based

NIDSs are more configurable, easy to update and need less maintenance; however, their

performance is quite slow. On the other hand, hardware-based NIDSs can handle a

larger volume of traffic, but they are expensive, require more maintenance and are hard

to update. The choice between the two is a trade-off between cost and performance.

63

This has created the need to evaluate the current software-based systems. This is

especially so in current-day high-speed conditions using different implementation

scenarios.

We have identified that quite few efforts have been made to measure the performance of

NIDSs. Most of the evaluation methodologies are based on testing in moderate traffic

conditions. Furthermore, some of these approaches have used previously saved datasets

rather than real traffic. These seem unrealistic, as actual system performance was

gauged under limited conditions with non-realistic network flow. The results obtained

under these conditions could not portray the actual performance output. We have

endeavoured to evaluate the system against realistic network conditions, providing the

application with different tiers of hardware support in order to analyze its performance

more practically. The recent development of multi-core systems has also added a few

more opportunities for deploying a software-based system; these shall also be

investigated in this chapter.

Our aim in this chapter is to provide answers to the following questions:

 Is it possible to deploy a current software-based NIDS such as Snort at a rate above

500 Mbps using commodity hardware? Also to identify the limits of incoming

traffic, a system can handle effectively in terms of packet loss.

 Does the use of different OSs (normal desktop, server), hardware capabilities

(single, multi-core) and configurations (host, virtual) affect NIDS performance?

 Identification of mechanisms to improve NIDS performance in high-speed traffic

before shifting to hardware solutions.

It is essential that the NIDS is capable to process packets traverse the protected network

with speed of the communication link [6, 13, 14]. When the network traffic load

64

becomes higher than the peak processing throughput the NIDS can sustain, the CPU

becomes saturated, and the Operating System inevitably starts dropping packets before

delivering them to the NIDS, impeding its detection ability [15-17]. Since these packets

are not inspected, if they are part of an attack or other malicious activity, then that event

will be missed[27, 45].

Assuming a uniform distribution of packets across the network traffic, any packet loss

results in a proportional loss in NIDS effectiveness [11]. This relationship has been

widely identified in NIDS research [143-146]. Figure 3.1 illustrates the relationship

between packet loss and missed alert rate which consequently cause missing attacks and

affect the NIDS precision. The scatter plot shows a direct and nearly a linear

relationship between the two parameters. The number of missed alerts approaches zero

if the packet loss percentage becomes small. The network traffic used in this experiment

consists of 530,000 packets containing 521 attacks (1000 packets/alert).

Figure 3.1 Relationship between packet loss & missing alerts

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

A
le

rt
 L

o
ss

 (
%

)

Packet Loss (%)

65

Our research has focused on signature-based IDSs with an emphasis on evaluating their

performance in high-speed traffic conditions. Snort has been selected as a test platform

because of its popularity and status as a de facto IDS standard. We are confident that the

results obtained in this research would be equally applicable to other IDSs available on

the market. The test environments selected for the research have a significant edge over

[40], and our results develop a new understanding of IDS performance limitations.

3.5 Evaluation Methodology

Our evaluation methodology is based on the concept of analyzing the system capacity in

terms of its packet-handling capability by implementing it into different hardware

configurations and testing platforms. This has been achieved by establishing three

different test-benches, where every test-bench has been assigned a specific evaluation

task. Test-bench 1 implements the Snort on mid-range commodity hardware (limited

processing power and system memory). The results obtained on this platform describe

the efficacy of NIDS implementation at this level. Test-benches 2 and 3 utilize high-

range commodity hardware built on an Intel Xeon Dual Quad-Core processor using 4.0

GB RAM. These test-benches analyzed the system performance on host and virtual

configurations respectively. The system capability has been also analyzed by observing

its response to known attacks in Test-bench 1; however, this criterion has not been

considered for other test-benches due to lack of space. Table 3.1 summarizes the three

test benches and the parameters set for each test bench.

In the initial phase of the research, the aim was to measure the performance of Snort

installed on normal machine and using host and virtual configuration. Both normal and

attack traffic are injected in the testing network to evaluate the detection coverage. The

obtained results from test bench 1 have showed a proportional relationship between

66

capability of packet processing and detection coverage. The inability of Snort to handle

all received packets online is a direct cause to the low rate in detection capacity.

Consequently, the focus has been shifted from evaluating the detection coverage to the

capacity of packet handling. For this reason, in test bench 2 and test bench 3 , attack

traffic is not considered because missing a packet carrying attack evidence leads to

missing the corresponding alert. In addition, to provide a precise measurement of

detection coverage of any IDS, it is necessary to insure that all other related factors have

no effect.

Table 3.1 Summary of test benches.

Test bench

H
o

st
 c

o
n

fi
g

.

V
ir

tu
a

l

C
o

n
fi

g
.

R
es

o
u

rc
e
fu

l

m
a

ch
in

es

Traffic

N
o

rm
a

l

A
tt

a
ck

Test bench 1 Yes Yes No Yes Yes

Test bench 2 Yes No Yes Yes No

Test bench 3 No Yes Yes Yes No

Snort IDS has been selected for our testing for being an open source and the de facto

standard for IDS/IPS. It is the most widely deployed intrusion detection and prevention

technology worldwide. It has the most numerous and active community in the open

source NIDS field today. In addition, several commercial products use Snort as their

core technology and Snort signatures are included in many industry security systems.

As a network device, Snort has been developed to be a lightweight system and fast in

order to keep up with increasing network bandwidths. Moreover, Snort is flexible and

can be used in different ways from a simple network sniffer to true gateway IDS. It is

configurable, its signatures can be customized and developed easily, and its inner

working can be modified according to the operation environment. In contrast, other

67

open sources IDS platforms such as Bro, lack of an up-to-date set of signatures and lack

of full support and product documentation.

3.6 Test-bench 1

The network is composed of six machines using a Pro-Curve Series 2900 switch [147],

as shown in Figure 3.2. The test-bench comprises a number of high-performance PCs

running open-source tools to generate background traffic, run attack signatures and

monitor network performance.

Win XP SP2

Win XP SP2Win XP SP2

Win XP SP2

Linux 2.6

Linux 2.6 Linux 2.6

Attacking Hosts Receiving Hosts

Traffic Generation Hosts

Virtual Platforms

Linux 2.6

Figure 3.2 Test Bench-1.

3.6.1 Hardware description

The hardware description of the network is shown in Table 3.2. The network

components are described as follows:

Traffic generators

Two machines are configured to generate network traffic on Windows XP SP 2 and

Linux 2.6, respectively, as shown in Figure 3.2. The distribution of network traffic is

TCP (70%), UDP (20%) and ICMP (10%).

Attacking host

Two machines are configured to generate attacks/exploits on Windows XP SP 2 and

Linux 2.6, as shown in Figure 3.2.

68

IDS machine (Snort)

In the test-bench, Snort is operated on both host and virtual machines for both Windows

and Linux platforms. This has been done to analyze the performance of Snort using the

limited resources of a virtual machine as well as with the full processing capability of a

host computer. Snort version 2.8.3 [23] has been selected for evaluation.

Table 3.2 Network Description – Test-bench 1.

Machine Type Hardware Description Tools Used

Network traffic/ back ground

traffic generator (Win XP SP2)

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbps RJ45, Network Card

(Broadcom NetXtremo Gigabit Ethernet).

Traffic Generators: NetCPS [148],

Tfgen[149], Http Traffic Gen [150],

LAN Traffic Version 2 [134] and D-

ITG Version 2.6 [133]

Network traffic/ back ground

traffic generator (Linux 2.6)

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbpss RJ45, Network Card

(Broadcom NetXtremo Gigabit Ethernet).

Traffic Generators: D-ITG Version

2.6 [133] and hping Version 2 [151]

Attack Machine

• Win XP SP2

• Linux 2.6

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbps RJ45, Network Card

(Broadcom NetXtremo Gigabit Ethernet).

Attacking tool: Metasploit

framework [26]

IDS Machines

• Snort – Win XP SP2

• Snort – Linux 2.6

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbps RJ45, Network Card

(Broadcom NetXtremo Gigabit Ethernet).

• IDS:Snort [23], Traffic Monitor:

Bandwidth Monitor [152] on

Win XP SP2

• IDS:Snort and Traffic Monitor:

nload [153] on Linux 2.6.

Switch ProCurve Series 2900 , 10 Gbps switch with 24x1 Gbps ports and 2x10 Gbps 3CR17762-91-UK

ports.

 Snort was also tested for its accuracy on the different OS platforms (Windows and

Linux). The platforms were tested by injecting a mixture of heavy network traffic and

scripted attacks through the Snort host. Snort.conf file in its default configuration was

selected for evaluation. The performance of Snort was also evaluated under the

following variant conditions:

 Generating attacks from different OS hosts.

 Varying traffic payload, protocol and attack traffic in different scenarios, as shown

in Table 3.3.

 Subjecting it to hardware constraints of virtual machine configurations.

69

Table 3.3 Test-bench 1 scenarios.

Scenario

Network Traffic

(PC 1)

Network Traffic

(PC 2)

Attack

Machine

(Metasploit)

IDS Machine

(Snort)

Alpha Host Windows Host Windows Host Linux 2.6 Virtual Windows

Bravo Host Windows Host Windows Host Linux 2.6 Virtual Linux 2.6

Charlie Host Windows Host Windows Host Linux 2.6 Host Windows

Delta Host Windows Host Windows Host Linux 2.6 Host Linux 2.6

Echo Host Windows Host Windows Host Win Host Linux 2.6

3.6.2 Results

Snort was evaluated on the basis of network traffic ranging from 100 Mbps to 1.0 Gbps

(divided into five different test scenarios). The other parameters selected for evaluation

include network utilization, CPU usage and Snort CPU usage. Snort performance in

terms of packets analyzed, packets dropped, alerts/logs and detection statuses have also

been considered for critical evaluation.

3.6.2.1 Scenario Alpha

Snort was configured to run using the performance-limiting configuration of a Windows

XP SP 2 virtual machine. It was subjected to heavy background traffic and attack

exploits (from a well-resourced Linux host). The results obtained are shown in Figure

3.3. They demonstrate that the performance of Snort deteriorates markedly as network

traffic load increases.

3.6.2.2 Scenario Bravo

Snort was configured to run using the performance-limiting configuration of a Linux

virtual machine and the attacker was a well-resourced Linux host. The results obtained,

as shown in Figure 3.4, identify similar performance limitations as found in Scenario

Alpha. However, an improvement can be observed when Snort runs on the same OS as

that of the attacking host.

70

Attack Platform: Host Linux 2.6 vs Snort Platform: Virtual Windows

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 12 % 56% 90%

CPU Usage 50 – 70% 90 – 100% 95 – 100%

Snort CPU Usage 40 – 50% 80 – 90% 90%

Packets Analysed 72.5% 66% 38 %

Packets Dropped 27.5% 34% 62 %

Alerts & Logged 83% 62% 28%

0

20

40

60

80

100

Network
Utilization

CPU Usage Snort CPU
Usage

Packets
Analysed

Packets
Dropped

Alerts & Log

100-200 Mbps

500-700 Mbps

800Mbps - 1.0 Gbps

Figure 3.3 Results – Scenario Alpha.

Attack Platform: Host Linux 2.6 vs Snort Platform: Virtual Linux 2.6

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 12 % 54 % 90%

CPU Usage 50 – 70% 88 - 95% 90 – 100%

Snort CPU Usage 40 – 50% 75 - 85% 90-95%

Packets Analysed 75 % 62 % 45%

Packets Dropped 25 % 38 % 55 %

Alerts & Logged 85% 64 % 36 %

0

20

40

60

80

100

Network
Utilization

CPU Usage Snort CPU
Usage

Packets
Analysed

Packets
Dropped

Alers &
Logged

100 -200 Mbps

500 - 700 Mbps

800 Mbps - 1.0 Gbps

Figure 3.4 Results – Scenario Bravo.

3.6.2.3 Scenario Charlie

Snort was configured to run using a well-resourced Windows platform with the attacker

on a Linux host. The results obtained are shown in Figure 3.5. Snort performance

declines as a result of being run on a different OS platform to that of the attacker.

However, an improvement can be observed in comparison to the equivalent virtual

scenario.

71

Attack Platform: Host Linux 2.6 vs Snort Platform: Host Windows

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 13% 53% 90%

CPU Usage 20 – 30% 30 - 35% 35 – 40%

Snort CPU Usage 15 – 20% 20 - 25% 25-30%

Packets Analysed 98.2 % 38 % 27 %

Packets Dropped 1.8 % 62 % 73 %

Alerts & Logged 100% 47 % 24 %

0

20

40

60

80

100

Network
Utilization

CPU Usage Snort CPU
Usage

Packets
Analysed

Packets
Dropped

Alerts & Log

200 - 400 Mbps

500 - 700 Mbps

800 Mbps - 1.0 Gbps

Figure 3.5 Results – Scenario Charlie.

3.6.2.4 Scenario Delta

Snort and the attacker were both configured using a well-resourced Linux platform as

host. The results obtained are shown in Figure 3.6. Comparatively, an improved

performance for Snort can be observed in this scenario, as both attacker and Snort are

using the same OS (Linux).

Attack Platform: Host Linux 2.6 vs Snort Platform: Host Linux 2.6

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 21% 55% 95%

CPU Usage 18 – 25% 29 - 36% 38 – 43%

Snort CPU Usage 15 – 20% 22 - 27% 29-36%

Packets Analysed 98.5% 47 % 39 %

Packets Dropped 1.5% 53 % 61 %

Alerts & Logged 100% 67 % 33 %

0

20

40

60

80

100

Network
Utilization

CPU Usage Snort CPU
Usage

Packets
Analysed

Packets
Dropped

Alerts & Log

100 - 200 Mbps

500 - 700 Mbps

800 Mbps - 1.0 Gbps

Figure 3.3 Results – Scenario Delta.

3.6.2.5 Scenario Echo

Snort is configured to run on a well-resourced Linux platform and the attacker on a

Windows host. The results obtained are shown in Figure 3.7. Similar results were

72

obtained to those in Scenario Charlie, where the OS platform used Snort and attacker are

reversed.

Attack Platform: Host Windows vs Snort Platform: Host Linux 2.6

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 15% 54 % 96%

CPU Usage 25 – 30% 32 - 35% 38 – 45 %

Snort CPU Usage 18 – 22% 22 - 26% 27-35%

Packets Analysed 99 % 42 % 35 %

Packets Dropped 1 % 58 % 65 %

Alerts & Logged 100% 65 % 35 %

0

20

40

60

80

100

Network
Utilization

CPU Usage Snort CPU
Usage

Packets
Analysed

Packets
Dropped

Alerts & Log

100 - 200 Mbps

500-700 Mbps

800Mbps - 1.0 Gbps

Figure 3.7 Results – Scenario Echo.

3.7 Test-bench 2

Snort has been implemented on a fully resourceful host machine built on a dual quad-

core processor using 4.0 Gb RAM. The configuration of the network machines are

shown in Table 3.4.

Table.3.4 Network description – Test-bench 2 and Test-bench 3.

Machine Type Hardware Description Tools Used

Network traffic/ back ground

traffic generator

 (Win XP SP2)

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbps RJ45, Network Card

(Broadcom NetXtremo Gigabit Ethernet), L2 Cache 2 x

4.0 MB, FSB 1066 MHz.

Traffic Generators: NetCPS [148],

Tfgen [149], Http Traffic Gen [150],

LAN Traffic Version 2 [134] and D-

ITG Version 2.6 [133]

Network traffic/ back ground

traffic generator

(Linux 2.6)

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbps RJ45, Network Card

(Broadcom NetXtremo Gigabit Ethernet), L2 Cache 2 x

4.0 MB, FSB 1066 MHz.

Traffic Generators: D-ITG Version

2.6 [133] and hping Version 2 [151]

IDS Machine Dell Precision T5400, Intel Xeon Dual Quad-Core 2.0

GHz, 4 GB RAM, L2 cache 2x6 MB, FSB 1066 MHz,

PCIe, Network Interface Card, 10 Gbps Chelsio, HD:

1000 GB, Buffer 32 MB, SATA.

IDS: Snort[23]

Receiving Hosts

• Win XP SP2

• Linux 2.6

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz.

2 GB RAM, PCIe, 1.0 Gbps RJ45, NIC 10 Gbps Chelsio

on Win XP SP2 host and Linux 2.6 host has Broadcom

NetXtremo Gigabit Ethernet.

• Win XP SP2 – LAN Traffic

Generator

• Linux 2.6 – D-ITG Traffic

Generator

Switch ProCurve Series 2900 , 10 Gbps Switch with 24x1 Gbps ports and 2x10 Gbps 3CR17762-91-UK

ports.

73

Figure 3.8 describes the test-bench where Snort been respectively evaluated on the fully

resourceful platforms built on Windows Server 2008, Linux Server 2.6 and Free BSD

7.0. The system's performance is gauged in terms of its packet-handling capacity of the

application built on respective platforms for different types of network traffic.

Win XP SP2

Win XP SP2

Win XP SP2

Linux 2.6

Free BSD 7.0

Linux 2.6

Receiving Hosts

Traffic Generation Hosts

Respective Snort Hosts

Linux 2.6

Figure 3.8 Test-bench 2 – Host configuration

3.7.1 Evaluation methodology

 Different packet sizes (128, 256, 512, 1024 and 1514 bytes) were generated, and

Snort’s performance at the following traffic loads was evaluated: 750Mbps, 1.0

Gbps, 1.5 Gbps and 2.0 Gbps, respectively.

 Varying traffic payload: UDP and mixed TCP, UDP and ICMP traffic.

 Snort’s performance characteristics were evaluated – packets received, packets

analysed, packets dropped and CPU usage – at various packet sizes and bandwidth

levels.

 Duration of test: 1, 5 and 10 minutes, where the average value of the results

obtained has been taken.

74

3.7.2 Results

The response of the IDS (Snort), i.e. dropped packets, on UDP traffic injected in various

packet sizes and bandwidths is shown in Table 3.5; each scenario is discussed in the

following paragraphs:

Table 3.5 Host-based configuration results (Packets dropped(%)) – UDP traffic.

traffic OS 128B 256B 512B 1024B 1514B

750

MB

FreeBsd 15.4 9.45 3.29 6.64 6.26

Linux 56.91 52.67 27.83 6.72 6.4

Windows 51.76 50.62 25.32 6.83 6.35

1 G

FreeBsd 52.6 32.15 28.4 25.04 24.89

Linux 72.7 69.04 65.88 55.26 53.35

Windows 68.05 66.82 61.97 53.6 52.9

1.5 G

FreeBsd 66.7 62.03 46.22 41.6 40.8

Linux 77.6 71.5 67.32 57.1 55.5

Windows 80.6 74.7 70.23 68.31 64.6

2 G

FreeBsd 74.07 69.8 65.3 50.54 49.4

Linux 78.04 75.8 69.6 59.3 57.3

Windows 93.5 91.0 88.85 77.5 70.8

3.7.2.1 UDP traffic

i. UDP traffic – 750 Mbps. The Performance of all OSs linearly improved from

smaller packet sizes (128 Bytes) to larger ones (1514 Bytes); however, Free BSD shows

a significant edge over the others in all ranges of packet sizes, as shown in Figure 3.9.

Figure 3.9 Results: packet dropped, UDP traffic – 750 Mbps.

ii. UDP traffic– 1.0 Gbps. Increase in the bandwidth shows a decline in the

performance of the system, resulting in more packet loss. A considerably uniform

response has been observed in all categories of packet sizes from all platforms tested.

0

20

40

60

80

100

128B 256B 512B 1024B 1514B

FreeBsd

Linux

Windows

75

This scenario also showed a comparatively improved (though not ideal) performance for

Free BSD as shown in Figure 3.10 .

Figure 3.10 Results: packets dropped, UDP traffic – 1.0 Gbps.

iii. UDP traffic – 1.5 Gbps. A further increase in the traffic bandwidth resulted in

higher packet loss by the system. Approximately similar performances were observed

for all packet sizes, the response indicating that Free BSD performed better, followed by

Linux, and then by Windows in last place as shown in Figure 3.11.

Figure 3.11 Results: packets dropped, UDP traffic – 1.5 Gbps.

iv. UDP traffic – 2.0 Gbps. At 2.0 Gbps of traffic input, the performance of Windows

seemed totally compromised at 128 Bytes of packet sizes. The platform lost virtually all

the input traffic and performed no evaluation. The performance gradually increases for

higher packet sizes, in a similar pattern as that observed for the lower traffic bandwidths

as shown in Figure 3.12. This, however, displayed a highly compromised performance

for all platforms, identifying strong limitations in handling input traffic reaching 2.0

0

20

40

60

80

100

128B 256B 512B 1024B 1514B

FreeBsd

Linux

Windows

0

20

40

60

80

100

128B 256B 512B 1024B 1514B

FreeBsd

Linux

Windows

76

Gbps. In practice, system built on Free BSD, Linux and Windows platforms once

subjected to 2.0 Gbps of input traffic suffer heavy packet loss.

Figure 3.12 Results: packets dropped, UDP Traffic – 2.0 Gbps

3.7.2.2 Mixed traffic

The mixture of TCP (70%), UDP (20%) and ICMP (10%) traffic was generated

replicating realistic network flow as follows:

 Generating random packet sizes and observing system response – packet handling

capacity.

 Traffic bandwidth limited to 1.0 Gbps – supporting commodity hardware on account

of system implementation as a test-bench.

 Recording packet drop statistics for all three Snort platforms built on Free BSD,

Linux and Windows respectively.

The main reason to conduct this test is to ascertain the performance of a system under

realistic network conditions. The results here also followed quite similar patterns of

system response. Table 3.6 describes the results obtained. Free BSD showed quite good

performance in terms of handling mixed traffic for the bandwidth of 1.0 Gbps on a

multi-core implementation.

0

20

40

60

80

100

128B 256B 512B 1024B 1514B

FreeBsd

Linux

Windows

77

Table 3.6 Host-based configuration results – mixed traffic

Operating System Dropped Packets%

FreeBSD 21.7

Linux 27.2

Windows 26.3

3.8 Test-bench 3

Virtualization is a framework for abstracting the resources of a computer into multiple

execution platforms by creating multiple machines on a single computer. Each machine

operates on the allocated hardware and can afford multiple instances of applications

[154]. This concept has been successfully incepted within the industry/business

community. The mechanics of system virtualization for the implementation of network

security tools have been considered appropriate by academics in the field of information

security [155].

The concept has been developed to address issues relating to the reliability, security,

costs and complexity of the network/systems. It has successfully been used for the

processing of legacy applications, ensuring load balancing requirements, resource

sharing and tasking among virtual machines by using autonomic computing techniques.

The technique has also shown merits in the situation where an application failure on one

machine does not affect the other. In addition, ease of isolation allows multiple OS

platforms to be built on one machine running variable instances of applications. This

has made the concept quite fascinating for the research community [156]. The test-

bench is distributed into three parts and configured around a ProCurve series 2900

switch, as shown in Figure 3.13.

78

Win XP SP2

Win XP SP2

Win XP SP2

Linux 2.6

Linux 2.6

Linux 2.6

Receiving Hosts

Traffic Generation Hosts

Snort on Virtual Hosts

Virtual Platform – Win Sever 2008

Free BSD07.0

Figure 3.13 Test-bench 3 – Virtual configuration.

The basic idea of the evaluation process revolves around packet capturing and

evaluation by virtual platforms and Snort. Two machines for traffic generation have

been selected: Linux 2.6 and Windows XP SP2 platforms. Similarly, the traffic

reception machines were also deployed to fulfil network requirements. Details of the

traffic generation tools are shown in Table 3.4.

The virtual platform running Snort has been configured on a dual quad-core processor.

The machine hardware details are listed in Table 3.4. The system is built on the

Windows 2008 Server platform and three separate virtual platforms have been created

Windows XP SP2, Linux 2.6 and Free BSD 7.1. Snort is running simultaneously on all

the virtual machines and similar traffic loads and types are injected onto all platforms.

3.8.1 Evaluation methodology

In order to ascertain the capability of Snort to handle high-speed network traffic on

virtual platforms, we proceeded as follows:

 Parallel Snort sessions were run on all virtual machines.

 The machines were injected with similar traffic-load characteristics (UDP and TCP

traffic) for 10 minutes.

79

 Different packet sizes (128, 256, 512, 1024 and 1460 bytes) were generated and

Snort’s performance at the following traffic loads was evaluated: 100 Mbps, 250

Mbps, 500 Mbps, 750 Mbps, 1.0 Gbps and 2.0 Gbps, respectively.

 Snort’s performance characteristics were evaluated – packets received, packets

analysed, packets dropped, and CPU usage at various packet sizes and bandwidth

levels.

 Packets received were compared at both the host OS and the virtual platforms

running the Snort applications.

 During the course of the tests, no changes were made in OS implementation,

specifically Linux using NAPI- MMMP
1
 and Free BSD using PF-RING -BPF

2
 [156].

3.8.2 Results

The results are distributed over UDP and TCP traffic types respectively. It was observed

that the total packets transmitted from the traffic-generating PCs was equivalent to the

number of packets received at the host machine/OS running virtual platforms, as shown

in Table 3.7; however this was not the case once the system was found
3
non-responsive.

Table 3.7 Packets received at host OS.

Bandwidth 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 1460 Bytes

100 MB 60 35.82 17.77 10.56 6.96

250 MB 178.1 94.14 48.00 18.34 20.22

500 MB 358.3 148.29 92.56 46.2 39.00

750 MB System Non Responsive 144.72 91.56 45.23

1.0 GB System Non Responsive 167.40 78.00

2.0 GB System Non Responsive

Total Packets Received at OS (Millions) – UDP

Total Packets Received at OS (Millions) – TCP

Bandwidth 50 Connections 100 Connections 200 Connections

100 MB 10 26.7 21.60

250 MB 31.86 39.763 48.69

500 MB 67.90 108.56 84.098

750 MB 80.29 113.72 124.58

1.0 GB 102.51 118.144 148.982

2.0 GB 147.54 170.994 221.28

1 Modified device driver packet handling procedures.
2 Berkley Packet Filter.
3 In non-responsive situations we consider 100% packet loss.

80

3.8.2.1 UDP traffic

The results below are described in relation to packet size, bandwidth (i.e. traffic load),

and the virtual OS platform running the Snort application:

i. Snort response for packet sizes of 128 and 256 Bytes

 Linux shows quite good performance for these packet sizes up to 250 Mbps of

traffic load; its performance declined at higher bandwidth levels, as shown in

Figure 3.14. The system was found non-responsive at traffic loads of 750 Mbps

and above.

 Windows shows good performance for 128 Bytes packet sizes at 100 Mbps

loading only. Its performance is compromised at higher loading levels, as shown

in Figure 3.14. The system was also found non-responsive at traffic loads of 750

Mbps and above.

 Free BSD performs slightly better than Windows, as shown in Figure 3.14. The

system was also found non-responsive at traffic loads of 750 Mbps and above.

Packet Size – 128 Bytes

%
 -

P
k

ts
R

x
b

y
S

n
or

t

Packet Size – 256 Bytes

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

%
 -

P
k

ts
R

x
b

y
S

n
or

t

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

UDP Traffic

UDP Traffic

Figure 3.14 Snort packets received (%) – UDP traffic (128 Bytes & 256 Bytes).

81

ii. Snort response for packet sizes of 512 and 1024 Bytes

 Linux shows quite good performance for traffic loads of up to 500 Mbps for all

packet sizes, as shown in Figure 3.15. However, the Linux system was found

non-responsive at traffic loads of 1.0 Gbps and above for 512 Byte packet sizes,

and at 2.0 Gbps for packet sizes of 1024 Bytes.

 Windows also performed satisfactorily at traffic loads of 250 Mbps and 500

Mbps for packet sizes of 512 Bytes and 1024 Bytes respectively, as shown in

Figure 3.15. The system found non-responsive at traffic loads of 1.0 Gbps and

above for packet sizes of 512 Bytes, and 2.0 Gbps for packet sizes of 1024

Bytes.

 Free BSD responds a bit better than Windows, as shown in Figure 3.15. The

system was found non-responsive at traffic loads greater than 1.0 Gbps for

packet sizes of 512 Bytes, and 2.0 Gbps for packet sizes of 1024 Bytes.

Packet Size – 512 Bytes

%
 -

P
k

ts
R

x
 b

y
 S

n
o
rt

Packet Size – 1024 Bytes

%
 -

P
k

ts
R

x
 b

y
 S

n
o
rt

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

UDP Traffic

UDP Traffic

Figure 3.15 Snort packets received (%) – UDP traffic (512 Bytes & 1024 Bytes)

82

iii. Snort response for packet sizes of 1460 Bytes

 Linux shows significantly better performance for packet sizes of 1460 Bytes for

traffic loads up to 1.0 Gbps. However, the system found non-responsive at 2.0

Gbps of loading, as shown in Figure 3.16.

 Windows also showed good performance up to 750 Mbps of loading. The

system was found non-responsive at 2.0 Gbps traffic loads, as shown in Figure

3.16.

 Free BSD responded a bit better than Windows. The system was found non-

responsive at 2.0 GB traffic loads, as shown in Figure 3.16.

3.8.2.2 TCP traffic

The results of 512 Byte packet sizes have been included in this section due to lack of

space. The results have been accumulated on the basis of successful connections (50,

100 and 200 respectively). Packets received at the host platform/OS are shown in Table

3.7.

i. Snort response for 50 connections – 512 Bytes

 Linux exhibits quite good performance up to 750 Mbps of loading; however, its

performance declined at higher traffic loads, as shown in Figure 3.16.

 Windows was acceptable up to 250 Mbps of loading but its performance was

reduced for higher traffic loads, as shown in Figure 3.16.

 Free BSD performed a bit better than Windows, as shown in Figure 3.16.

83

Packet Size – 1460 Bytes

%
 -

P
k

ts
R

x
 b

y
 S

n
o
r
t

Packet Size – 512 Bytes

%
 -

P
k

ts
R

x
 b

y
 S

n
o
r
t

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

UDP Traffic

TCP Traffic

50 Connections

Figure 3.16 Snort packets Rx (%) – UDP (1460 Bytes) and TCP (50 connections).

ii. Snort response for 100/200 connections – 512 Bytes

 Linux exhibited quite good performance up to 250 Mbps of loading with

minimum packet loss. However, its response linearly declined for higher traffic

loads, as shown in Figure 3.17.

 Windows also exhibited a similar performance level up to 250 Mbps loading

levels, but its performance declined for higher traffic loads, as shown in Figure

3.17.

 Free BSD performs a bit better than Windows, as shown in Figure 3.17.

84

Packet Size – 512 Bytes

%
 -

P
k

ts
R

x
 b

y
 S

n
o

r
t

Packet Size – 512 Bytes

%
 -

P
k

ts
R

x
 b

y
 S

n
o

r
t TCP Traffic

200 Connections

TCP Traffic

100 Connections

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

Figure 3.17 Snort packets received (%) – TCP Traffic (100 & 200 connections).

3.9 Analysis

3.9.1 Test-bench 1

As expected, Snort's performance was found to be dependent on its supporting hardware

components (CPU, memory, NIC etc.). In the virtual scenarios, Snort was found to be

less accurate for all categories of background traffic. Conversely, the performance of

Snort improved when run natively on its host machine by utilizing all of the available

hardware resources.

Resource constraints in the virtual machine have affected the overall performance of

Snort, resulting in a high number of packets dropped and a reduction of alerts logged.

The statistics for percentages of dropped packets are shown in Figure 3.18.

85

Packets Dropped Statistics

0

20

40

60

80

100

100 Mbps - 200 Mbps 500 - 700 Mbps 800 Mbps - 1.0 Gbps

Alpha

Bravo

Charlie

Delta

Echo

Figure 3.18 Packets dropped.

 Background traffic plays a significant role in the performance of Snort. The

higher the traffic, the lower Snort's performance. The impact of background

traffic can be ascertained by analyzing the statistics of alerts generated in

different categories, as shown in Figure 3.19.

Alerts & Logged Statistics

0

20

40

60

80

100

100 - 200 Mbps 500 - 700 Mbps 800 Mbps - 1.0 Gbps

Alpha

Bravo

Charlie

Delta

Echo

Figure 3.19 Alerts and logs (success rate).

 Traffic within the range of 100–400 Mbps has no significant impact on Snort's

performance when run natively on host machines. However, its performance

declines in a virtual setup. Snort was found to be accurate in all scenarios.

86

 A slight increase in background traffic, in the range of 500–700 Mbps, causes

deterioration in Snort's performance. This degradation is approximately the same

in all scenarios.

 With high background traffic levels, ranging from 800 Mbps–1.0 Gbps, Snort

starts bleeding. The number of alerts and log entries suffers significant

reduction, thus identifying an evident limitation in Snort’s detection capability.

 In general, Snort was found to be inaccurate when handling traffic levels above

500 Mbps. There was also a significant performance decline when the traffic

load exceeded 500 Mbps.

 Snort was found to be more effective in the configuration where both attacker

and host are on the same OS.

 Snort's performance is significantly reduced in the 1.0 Gbps scenarios.

 System performance in relation to packet capture capabilities was also found to

be dependent on CPU usage. The higher the CPU usage, the lower the number

of packets captured for analysis by the Snort application. Packets received at the

virtual platform for evaluation by Snort are significantly less than the packets

captured at the host platform. However, lower amounts of packets received by

virtual platforms result in improved packet analysis statistics by Snort. For

example, in the Windows virtual platform, Snort analyzed 38% of the total

packets received at system level, whereas in the host Windows configuration,

this value was reduced to 27%. The better packet analysis percentage produced

by the virtual platform is due to the fact that Snort analyzed a considerably

lower amount of packets, whereas the packets captured for analysis at host level

were significantly more. Thus, it can by no means be concluded that the virtual

platform performed better than the fully resourced host.

87

 The performance of Snort on a Linux platform was observed to be

comparatively better than that of Windows. The results shown in Figure 3.20 are

based on the scenarios in which the Snort and attacker are on well-resourced

host machines.

Linux vs Windows

0

20

40

60

80

100

Network
Utilization

CPU Usage Snort CPU
Usage

Packets
Analysed

Packets
Dropped

Alerts & Log

Charlie (100 -200 Mbps)

Delta (100 -200 Mbps))

Charlie (500 - 700 Mbps)

Delta (500 - 700 Mbps)

Charlie (800 Mbps - 1.0 Gbps)

Delta (800 Mbps - 1.0 Gbps)

Figure 3.20 Comparison – Snort on Linux and Win.

3.9.2 Test-bench 2

The shaded cells in Table 3.4 indicate the case of the I/O disk bottleneck, when the

queue for I/O reading and writing exceeds an acceptable limit and the hosting machine

is no longer able to process all the traffic (as discussed in detail below). The overall

assessment of system performance indicates following:

 Snort running on Free BSD has achieved the greatest performance in

comparison to other OSs for all traffic volumes and packet sizes.

 Windows and Linux showed quite similar performances in all scenarios.

 Small sizes of UDP packets are computationally expensive and the performance

of Snort declines in proportion to the increase in traffic bandwidth.

88

 Considering 1024 Bytes as an average packet size for normal real-life traffic, the

raw processing rate of the Snort application showed acceptable performance up

to a bandwidth of 750 Mbps for all OSs and 1.0 Gbps for Free BSD.

 The CPU and memory usage of the system for packet sizes of 1024 Bytes (UDP

traffic) have been recorded, as shown in Figure 3.21. It has been observed that

more than 60% of the hardware strength is available for traffic ranging from 100

Mbps to 2.0 Gbps.

Figure 3.21 CPU and memory usage.

3.9.3 Test-bench 3

We have identified two basic factors that contribute to the packet-drop limitation in

virtual platforms running NIDS in high-speed environments.

 OS and application incompatibility

 The results have identified different packet capture performance levels by the

respective OS platforms. The packets received by virtual platforms are actually the

packets received by the Snort application. Overall Linux performed quite well in

comparison to Windows and Free BSD for both UDP and TCP traffic. The results lead

to the following conclusions:

0

20

40

60

80

100

100 250 500 750 1000 1500 2000

U
sa

g
e

%

Traffic speed in MB

CPU

Memory

89

i. UDP Traffic

 All platforms respond well for packet sizes greater than 512 Bytes.

 For packet sizes of 128 Bytes and 256 Bytes, Linux performs significantly better

than others; however its performance declines above 250 Mbps loading. Windows

and Free BSD performed well for 128 Bytes at 100 Mbps trffic-load only.

 All OS platforms hanged at packet sizes of 128 Bytes and 256 Bytes above 500

Mbps of traffic-load.

 There were practically no measurable results from all the platforms at 2.0 Gbps

loading for all packet sizes.

 The overall performance standing measured was Linux, followed by Free BSD, with

Windows in last position.

ii. TCP Traffic

 The systems remain alive for all packet sizes and number of connections for traffic-

loads upto 2.0 Gbps.

 The performance of the systems linearly declined in response to increases in the

number of connections and traffic-load.

 Linux outperforms Windows and Free BSD in all the tested scenarios.

iii. Evaluating OS packet handling competency

In order to reach a definite conclusion concerning OS incompatibility as regards the

virtualization of NIDS in high-speed networks environments, the research has been

extended to conduct some additional tests. These tests comprised of three virtual

machines built on the same OS platform (Free BSD). The Snort application was

activated on all platforms and similar tests were conducted as described in section 3.8.1.

90

In the first scenario, with Free BSD configured on three parallel virtual platforms

similar performance metrics were observed. As such the performance of Free BSD was

found to be quite similar to the previously executed test-bench scenario and only a small

amount of variation was observed. In the second two-machine scenario, an

improvement in performance was observed; however performance levels declined at

higher traffic-loads. Due to a paucity of space the results of 512 Bytes of packet size for

UDP Traffic have been only included as shown in Figure 3.22. The graph shows the

average performance of systems in each scenario.

0

20

40

60

80

100

100 Mbps250 Mbps500 Mbps750 Mbps1.0 Gbps2.0 Gbps

Scenario 1 (Three

Machines Active)

Scenario 2 (Two

Machines Active)

%
 -

P
kt

s
R

x
by

 S
no

rt

Figure.3.22 Snort Packet Received (%) – Free BSD on Three/ Two virtual platforms

The performance of Free BSD in the two scenarios has identified a direct link between

packet capturing ability of the system and the use of hardware resource sharing. The

results shows that two platforms perform significantly well in comparison to the use of

three virtual machines. Thus, it can be concluded that the packet capturing performance

for NIDS when run as multiple virtual instances is limited due to the impact of hardware

resource sharing and there is no direct relationship to OS itself. Similar tests were also

conducted on Linux and Windows platforms; due to space restrictions the results have

not been included. Both platforms behaved in a similar pattern as that of Free BSD thus

confirming the drawn conclusion.

91

Hardware incompatibility in virtualization

The dynamics of virtualization requires the host OS and the virtual machine software

(VMware Server) to be stored in the physical memory (RAM) of the host machine. The

virtual machines (Windows XP SP 2, Linux 2.6 and Free BSD 7.0) running on a

VMware Server have been respectively allocated virtual RAM and disk space on the

physical hard drive of the host machine. The processes/applications running on the

virtual machines use these simulated virtual RAMs and hard disks for the various

operations shown in Figure 3.23.

Virtualization Concept

Parameters
• Host OS – Win Sever 2008

• Physical RAM – 4.0 GB

• Hard Drive – 1.0 TB,

SATA 300 MB

• PCIe – 4/8 GB

• Virtual Machine - VM Ware

Server

• Virtual OS – Win XP SP2,

Linux 2.6 & Free BSD 7.1

•Traffic Injected – 2.0 Gbps (max)

• Buffer to host data transfer rate -

300 MB/s

• NIC – 10 GB PCI-X, PCIe (Chelsio)

NIC

2.0 Gb

Traffic

Host OS

Virtual Machine, VMware Server

Free BSDLinux2Win SP 2

Buffer (16 MB)

2.0 Gb

Virtual

Window

s
Memory

Hard Disk

Virtual

Linux

Memory

Hard Disk

Virtual

BSD

Memory

Hard Disk

Host Hard Drive

Limitations - Packet Drop
• Context switching between

virtual machines

• Less buffer to host data transfer

rate

• Asynchronous write mechanism

for available storage device

Figure.3.23 Virtualization concept.

Our test-bench has multiple instances of Snort and packet-capture libraries running on

different virtual platforms each with a different OS. The packets captured by each

virtual machine are less than the packets received by the NIC, thus identifying packet

loss. The basic cause of packet loss at each OS, apart from the losses incurred by Snort

during evaluation, is the bottleneck caused by a low disk data transfer rate. The disk I/O

statistics as shown in Figure 3.24 reflect the hardware limitations in handling multiple

read/write operations. At 300 MB/sec of traffic load, the disk I/O capacity touches

100%, thus its performance at higher loads can be easily ascertained.

92

The memory and storage for each virtual machine has actually been allocated on the

physical storage resources (i.e. hard disk) of the host machine. Packets received by the

NIC without any loss are transferred to the hard-disk buffer at the PCI rate (4/8 Gbps).

From this buffer, these packets are required to be written to the disk at the buffer-to-host

transfer rate of 300 MB/sec (SATA Hard Drive) [157]; thus a huge gap between the

disk-transfer rate and the incoming traffic load exists. In addition, when traffic is fed to

all virtual machines simultaneously (in parallel mode), the disk is physically only able

to write to one location at a time. Thus any disk-write instance to a virtual machine will

cause packet drops on another. There are also some additional packet losses due to

context switching within the hard disk.

25 %

50 %

75 %

100 %

100 MB

Statistics I/O Disk System (SATA 300) Supporting Virtual Platform

25 %

50 %

75 %

100 %

No Traffic

25 %

50 %

75 %

100 %

25 %

50 %

75 %

100 %

400 MB 300 MB

Disk Write Bytes/ s Disk Transfer Bytes/ s Disk Read Bytes/ s

Figure.3.24 Statistics the I/O system (SATA 300) hard drive.

In order to augment our analytical stance showing that hardware is one of the major

bottlenecks for the efficacy of the virtualization concept for NIDS in high-speed

networks, the disk queue length counter has been utilized as shown in Figure 3.25. In

normal circumstances, the average disk queue length should be three or less (its ideal

value) [158]. However, in our test network it is observed to be always greater than the

93

ideal value for the traffic ranges measured at 2.0 Gbps [159].

Disk Queue (SATA 300) Supporting Virtual Platform

100 %

25 %

50 %

75 %

Normal Range

(2 to 4 %)

2.0 GB Traffic

Figure.3.25 Disk queue (SATA 300) hard drive.

3.10 Discussion of Snort performance

3.10.1 Packet processing

Network IDSs and other network monitoring systems are packet-based systems that

require packet acquisition from the network wire. A good packet capturing response by

the NIDS towards variant traffic reduces the probability of a system becoming

compromised. Factors that affect the packet capturing performance of a NIDS in a

Gigabit Ethernet environment include i) host configuration (hardware and software)

parameters and ii) application-specific parameters (NIDS).

Processing packets can result in a bottleneck for such systems, particularly with high-

speed traffic. When these systems become unable to process incoming packets inline,

the packets are dropped in order to release system resources (e.g. buffer). The serial

packet processing paradigm of Snort implies that a single packet can be processed at a

time. The other packets are queued in a buffer, and if the waiting time exceeds a

threshold, Snort starts dropping packets for performance reasons. If Snort runs in

passive mode, it causes attacks to be missed and violates the coverage requirement.

94

Furthermore, Snort performs a stateful analysis for packet processing (e.g. TCP

reassembly), and if a packet is dropped, this impacts resource utilisation (e.g. CPU and

memory).

3.10.2 Multi-core processing

Multi-processing has been introduced using a combination of two or more cores

(processors) integrated into a single chip (integrated circuit) to improve performance.

However, most legacy applications do not utilise this higher capability because they

have been developed for a single processor even if they are run on multi-core systems.

The core of Snort, for example, has been developed based on a uniprocessor

architecture [24]. In order to exploit current optimization, these applications have to be

redesigned to support multithreading. A packet-processing mechanism is one of the

critical processes that needs to be enhanced with the existence of multi-core processors.

[143] proposed pipelining and flow-pining approaches to improve packet processing in

Snort by exploiting multi-core processors. He has shown that running Snort on a multi-

core processor does not add any improvement in performance. Modifications on Snort

have been implemented to allow multithreading mechanisms. The parallelism concept

has been employed to spread Snort functions over four cores, which achieves

considerable enhancement. [144] also presented strategies for parallel packet processing

on multi-core systems by making Snort multithreaded. Several methods have been

implemented by separating threads (e.g. a thread is allocated for packet processing and

another one for event handling). However, this mechanism has an impact on CPU cache

performance and imposes an extra overhead.

3.10.3 PCI bus and disk input/ output (I/O) operations

PCI bus architecture directly influences the operational efficiency of memory and

storage devices. Current system architectures identify two bottlenecks in packet-

95

capturing accuracy: bus traffic load and disk throughput. When writing to a disk, packet

capture libraries pass data to the system bus twice, once from the network interface card

to memory, and a second time from memory to disk. Thus the actual traffic load

available to the PCI bus is half that of the traffic load [145]. Data-intensive applications

and the huge amounts of data required to be stored in enterprise networks demand

highly efficient I/O operations to avoid performance bottlenecks. The invention of

multi-core processors has enhanced the capability of systems to support multiple virtual

machines, yet system performance in relation to disk I/O operations remains limited.

3.10.4 Packet loss in NIDSs

Packet loss in high-speed networks is one of the fundamental problems in the

implementation of NIDSs. Effectiveness of intrusion detection relies on analysis of the

received packets and any loss results in attacks missed. Numerous efforts have been

made to address the issues relating to packet loss in high-speed networks. A number of

techniques focus on securing a balance between the detection capacity of the system and

the input traffic. A few substantially competent techniques make use of load-balancing

concepts. These involve the use of a traffic-splitting mechanism where input traffic is

distributed across the set of detection engines for evaluation and filtering to block the

traffic destined for unpublished ports. [13] explored a parallel architecture to increase

the system capacity by splitting traffic into manageable sized slices. The parallel

architecture for stateful detection described in [146] also bases its logic on splitting the

traffic and distributing it to detection sensors in a round-robin fashion.

However, attacks can be also missed due to the nonexistence of related signatures. It has

been observed early in this chapter the relationship between the percentage of packet

losses and missed attacks. Hence, a different approach has been adopted to deal with

missed attacks in a generic approach. We base our mechanism on the correlation

96

concept to obtain a global security perspective instead of avoidance strategies. This is

based on assumptions that real attack attempts in typical scenarios consist of coherent

stages. A framework for alert correlation will be introduced in Chapter 4 to reduce the

impact of packet loss and missed attacks.

3.11 Conclusion

This chapter has focused on ways of determining the efficacy of the widely deployed

open-source NIDSs, namely Snort, in high-speed network environments. The current

development in hardware technologies has opened broad prospects for legacy

applications, particularly software-based ones deployed at network edges. Multi-core

systems are available and widely used to offer intensive computational opportunities.

The test scenarios employed involve the evaluation of the application under different

traffic conditions, and observing the response of the system to known attack signatures.

The results obtained have shown a number of significant limitations to Snort, on both

host and virtual configurations. We have confirmed that the underlying host hardware

plays a prominent role in determining overall system performance. We have further

shown that performance is further degraded as the number of virtual instances of NIDSs

is increased, irrespective of the virtual OS used.

This hardware dependency is exacerbated when running Snort as a virtual machine, and

it is to be anticipated that running a large number of Snort instances would lead to major

degradations in performance and detection levels. In general, any limitations in system

configuration would result in poor performance of the NIDS. The results obtained have

shown a number of significant limitations in the use of virtual NIDSs, where both

packet-handling and processing capabilities at different traffic loads were used as the

primary criteria for defining system performance. Furthermore, It has been

97

demonstrated a number of significant differences in the performance characteristics of

the three different virtual OS environments in which Snort was run.

In the pursuit of our objective, the performance of Snort has been analyzed under

realistic network conditions in contrast to simulated testing environments. The results

obtained identify a strong dependency from Snort on the host-machine configuration. It

can be ascertained that Snort is not suitable for all network implementations with high

volumes of traffic, e.g. more than 750 Mbps.

It has also been identified the impact of packet loss caused by performance degradation

upon the overall effectiveness of NIDSs. We intend to introduce a dual solution for both

packet loss and missed attacks using alert correlation, as will be shown in the following

chapters.

98

CHAPTER 4: A REASONING FRAMEWORK FOR ALERT

CORRELATION

4.1 Introduction

In an intrusion detection context, none of the main detection approaches (signature-

based and anomaly-based) are fully satisfactory. False positives (detected non-attacks)

and false negatives (non-detected attacks) are the major limitations of such systems. The

generated alerts are elementary and in huge numbers. In addition, It has been identified

in Chapter 3 that even though the attack signature is defined in the attack database, it

can be missed in high-speed environments. This has made the issue more complicated,

reducing the attack detection rate. A promising approach is to incorporate a collection of

security detection systems to increase the detection coverage whilst at the same time

suppressing the volume of false positives. Hence, alert correlation techniques are used

to provide a complementary analysis to link elementary alerts and provide a more global

intrusion view. On the other hand, alerts generated by a single IDS also overwhelm the

administrator and contain a high percentage of insignificant or irrelevant information. It

has been widely recognised that real cyber attacks consists of phases that are temporally

ordered and logically connected. In this thesis, the focus is on the correlation function of

the alerts sourced from the same IDS. The objective is to discover the logical

relationships between atomic alerts potentially incorporated in multi-stage attacks. An

alert correlation and aggregation framework is presented based on requires/provides

model [121].

This chapter explains the fundamental concepts of the proposed alert correlation

framework. The correlation process is essentially modularized based on an extension of

the properties and characteristics of the requires/provides model [121]. The description

99

of the knowledge base modelling is based on the capability concept to abstract alerts

sets to their pre- and post-conditions. Capability conditions formalization is also

explained, which is mainly based on a proposed hierarchical abstraction of attack

classes. Algorithms of alert correlation, alert aggregation and graph reduction are

presented. And finally, the prediction of undetected attack action is discussed.

4.2 Multi-stage Attack Recognition System (MARS) framework

The MARS framework is a logical framework supported by various components for

alert correlation, aggregation, reduction and multi-stage attack recognition, as shown in

Figure 4.1. Despite the differences between alert correlation approaches, they require

some common modelling. A knowledge-base that contains attack characteristics is

either abstracted or using actual attack details. Information acquisition for a knowledge

base is based on the model employed (e.g. expert systems, artificial intelligence). The

main drawback of the previous approaches is that they do not provide knowledge

representation in a systematic way. For instance, requires/provides is a general alarm

management model that has been used widely in the alert correlation field, but most of

the proposed paradigms are based on ad hoc methods of knowledge representation. In

our framework, knowledge elements are designed using a formal knowledge

formalization exploiting available information provided by IDSs, vulnerability scanners

and environment configurations. It also allows interactive communication between the

administrator and the core system engine. Generated events reflecting the detected

security situation are produced after a series of processing functions to reduce the data

size. The implementation of the MARS framework will be discussed in Chapter 5. In

this chapter, the underlying principles of the proposed framework are introduced.

100

Figure 4.1 Multi-stage Attack Recognition System (MARS) framework.

Figure 4.1 gives a graphical representation of the framework components that

implemented in MARS system. The first task is performed on all received alerts from

the IDS sensor e.g. Snort. Alert Collection contains normalized alerts presented in a

standardized format that are understood by all correlation components. Also, a pre-

processing function is carried out to normalize all required alert attributes such as time

stamp, source, and destination addresses. The final results of this process are stored in

Alert Collection which represents the main data input for the MARS engine. MARS

engine consists of four components: 1) Alert Verification 2) Correlation 3) Aggregation

and 4) Event generation. The task of Alert Verification component is to take a single

alert and determine the success of the attack that corresponds to this alert. Failed attack

should be assigned as a low level of importance. However, these failed attacks are not

ignored and saved in the database which can be used as evidence to support other

correlation instances. The Aggregation component is responsible for combining a series

of alerts that refer to attacks related to the same activity. IDS sensor produces number of

101

alerts corresponding to the same attack which are conducted at the same time. Similar

alerts are aggregated and a representative alert is assigned based on a temporal

relationship. These aggregated alerts are saved in the aggregation collection and are

used to generate multi-stage attack events. The main task of the Correlation component

is identifying the logical connection between received alerts based on the used

correlation algorithm. If any link between two alerts is recognized, they are correlated

and stored in a temporary collection and then transferred to the correlation collection

after performing the aggregation process. The task of the Event Generation component

is identifying and constructing multi-stage attack patterns which are composed of a

sequence of individual alerts. A new event is generated if at least two alerts are

correlated and then the generated events are stored in the Events collection.

Two knowledge bases are used by MARS engine to support the correlation process: 1)

Capabilities Knowledge base and 2) Vulnerabilities knowledge base. The capabilities

database contains modelled attacks and the relationships between different attacks based

on pre and post conditions of each modelled attack. Snort signatures are used in the

current implementation and this can be extended to include attack definitions from other

sources. Vulnerabilities database contains network and host configuration of the

protected system in addition to the detected vulnerability information by the available

scanner.

The initial task executed by the MARS engine is obtaining alerts from the alert

collection and then creating encoded capabilities corresponding to each alert. Alerts

attributes and the information supplied by the used capabilities knowledge base are used

to build the encoded capabilities collection. Thus, the encoded data is utilized to

produce the initial correlation information and then it is stored in the Temporary

Correlated Alerts collection. This collection contains atomic logical connections

102

between alerts which are consequently aggregated to obtain the aggregated collection.

The generated events (Multi-stage attack instances) are constructed based on the

aggregated alerts in order to minimize the resulting graph.

4.3 Requires/provides model

This model is a general attack model that has been proposed by [121] and is inspired

from network management systems to deal with network faults. A cyber attack is

described according to two components: 1) capabilities, and 2) concepts. The idea

behind this model is that multi-stage intrusions consist of a sequence of steps performed

by an attacker, and that the later steps are prepared by the early ones. The target system

information collected from scanning or port mapping are advantages acquired and used

in order to choose which exploit can be successful. Attacks are modelled in terms of

abstract concepts and each concept requires certain capabilities (conditions) to occur

and provides others to be used by another concept. Capabilities are defined as general

descriptions of the conditions required or provided by each stage of the intrusion i.e. the

system state that must be satisfied in order to launch an attack. For instance, a

successful Trojan injection requires particular services to be running in the target system

and the presence of certain vulnerabilities.

Formally, capabilities are a higher level of intrusion abstraction that specifies the system

state after each attack attempt. The attacker uses the capabilities acquired through some

of its early actions to generate certain new capabilities. The system state is incorporated

in attack scenarios if instances of concepts have matched ―required‖ and ―provided‖

conditions.

The capability model proposed by[160] is also based on a requires/provides model for

logical alert correlation, though the authors used different properties of capabilities. An

103

attack model was presented to build blocks of capabilities in a multi-layer fashion and

with more expressive definition. [35, 49] have employed a requires/provides model

using the concept of predicates, which are similar to capabilities.

Both models mentioned above are reasoning models that aim to discover the causal

relationships between elementary alerts. Attacker states are abstracted to describe the

gained privileges and what level of access is obtained. Moreover, the system states are

modelled into a higher level of abstraction to specify the impact of the attack.

Relationships between these states are defined to generate rules that determine the

dependency between alerts.

Requires/provides model has been selected because it fits our purpose to correlate alerts

in the same intrusion. It has some advantages over other models:

1- Ability to uncover the causal relationships between alerts and it is not restricted to

known attack scenarios.

2- Ability to characterize complex scenarios or to generalize to unknown attacks.

3- Attack is represented as a set of capabilities that provides support for the abstract

attack concepts.

4- Flexibility and extensibility as the abstract attack concept are defined locally.

5- It does not require a priori knowledge of a particular scenario.

6- Numerous attacks can be described implicitly and unknown attack can be defined by

generalisation.

Our approach is a variation of the requires/provides model, but differs in the following

aspects:

 Different definitions for capabilities and concepts are employed to overcome the

limitations expressed in other approaches. The work in [121] used a very detailed

104

specification language called JIGSAW to describe attack scenarios. A complete

satisfaction of ―required‖ and ―provided‖ conditions is necessary to correlate two

alerts, which will fail in case of broken scenarios. However, the authors in [35]

have adopted a partial satisfaction technique which is also implemented into our

framework. The main concern with their approach is the high rate of false

positives, and the possibility of a huge graph being created. We have managed to

overcome this limitation by using certain techniques: hierarchical multi-layer

capabilities, accumulated aggregation, alert verification and alert maintenance.

 A near real-time processing approach for correlation, aggregation and event

generation. The security officer can monitor the attack progress which is displayed

as an intrusion graph. An event is triggered once at the minimum of two alerts

being correlated, and any additional related alert based on its attributes will join

the same event.

 Online and offline graph reduction algorithms during the correlation process in

addition to alert aggregation in order to provide a smaller manageable graph.

 We have modelled IDS signatures as abstracted attack concepts instead of defining

new concepts locally. In requires/provides models, IDS signatures are considered

complementary external concepts.

 Separation of the concepts and their capabilities from other dynamic information.

Two different types of capabilities have been used: internal and external. The first

type denotes abstract attack modelling consisting of IDS signatures and associated

capabilities. The second type refers to dynamic details, including system

configuration, services and vulnerabilities. This provides more flexibility to the

model whilst at the same time allowing utilization of other knowledge resources.

105

 A capability modelling has been made using a hierarchical methodology based on

attack classes and inheritance between these classes.

Our approach is based on the assumption that the attack scenario consists of a sequence

of related actions and that early stages can incorporate later ones. The link between

these stages is determined using five factors:

1- Temporal relationships (e.g. alert timestamps).

2- Spatial relationships (e.g. source IP addresses, destination IP addresses and port

numbers).

3- Pre- and post-conditions of each attack.

4- Vulnerability assessment of the target system.

5- Target system configuration.

Capabilities are formalized in term of pre- and post-conditions by grouping conditions

that share similar characteristics into a broad definition. Knowledge about elementary

alerts is mapped to instantiate the attacker and the system states according to their

temporal characteristics:

- Pre-conditions: are logical capabilities that characterize the system state to be

satisfied in order to launch an attack. These capabilities are derived from the

attack description. A hierarchical approach is adopted based on an attack

classification to provide coarse-grained definitions of different alerts related to the

same behaviour.

- Post-conditions: are logical capabilities that characterize the system state after

the attack succeeds. In other words, specifications of the effects of intrusions on

the system, such as the knowledge gained and the access level of the attacker.

106

Moreover, attack classification incorporates the definitions of these capabilities in

a hierarchical manner.

To formulize the capability sets as pre- and post-conditions of higher quality, certain

requirements must be satisfied:

1- Capabilities must be expressive in order to achieve a true logical relationship.

2- Avoidance of ambiguity in defining capabilities.

3- Use of multi-layers of abstraction to achieve scalability.

4- Reduction of the number of elements in the capability sets without affecting

attack coverage.

5- Inference rules should be separated from the capability set.

6- The set should also be constant and independent of variable information such as

vulnerability and system-configuration knowledge.

Hence, capabilities are formulized based on two criteria:

1) Level of abstraction

1- Generic capabilities which illustrate a broad aspect of a certain attacks, such as

access, local access and remote access.

2- Capabilities which illustrate a lower level of attack abstraction, but not a specific

one, such as server buffer overflow or client upload file.

3- Specific capabilities for each single alert in IDSs, such as TFTP Get.

2) Properties of the system and the attacker state

1- Access level of the attacker (remote, local, user or administrator).

2- Impact of the intrusion upon the victim machine, such as DOS and

implementation of the system commands.

3- Knowledge gained by the attacker, such as disclosure of host or of service.

107

The elements in the two criteria above are mutually inclusive; for instance, disclosure of

host is considered as a generic capability and at the same time is a system state

description. In addition, attack classification, which will be presented in the next

section, is also involved in defining capabilities.

Examples: generic capabilities are mainly a description of the intrusion's general

objective, such as:

- Disclosure of host

- Disclosure of running service

- Disclosure of port number

- Access

- Read or write files

However, a buffer overflow attack is a general attack that can target the server, the Web

server and the client, and the required and provided conditions are not the same for each

category. The capability client access attempt is a specific capability for client attacks,

because some attacks are client specific, such as ActiveX attacks. Snort documentation

contains a description for each signature, including the attack class type, the affected

system, and the impact of the attack. This information is valuable in defining attack

capabilities if other sources of intrusion analysis are considered. Appendix I contains an

example of a Snort signature description.

4.4 Knowledge-base modelling

Two knowledge bases are used, one for attack concepts and the other for vulnerability

details. In the attack knowledge base, IDS signatures (e.g. Snort) are modelled to the

attack abstractions and their defined capabilities. The knowledge library specifies the

relationship between low-level alerts and the attack abstraction. Thus, a knowledge base

108

can be considered a broad template and each element can be instantiated to instances of

specific conditions. A generalization mechanism has been used to specify a higher level

of specification of attack concepts and capabilities.

The proposed model for the attack knowledge base consists of three sets:

1) Capability C: This specifies a higher level of abstraction of the ―required‖ and

―provided‖ conditions of the intrusion model. Intrusion attempts are expressed in terms

of a set of ―required‖ or ―provided‖ conditions, and vulnerability constraints of a given

alert where:

- Required conditions R are a set of pre-conditions specified in the form of

capabilities with variable arguments.

- Provided conditions P is a set of post-conditions specified in the form of

capabilities with variable arguments.

- Vulnerability V is a description of the state of the target host or network with

variable arguments.

2) Attack concept AC specifies the constructor of a given attack and its related

capabilities. ―required‖ and ―provided‖ conditions for each attack are coded in a

language of capabilities.

3) Arguments [r1 ,r2 ,…ri]→r are a set of associated attributes such as source IP addresses,

destination IP addresses and port numbers.

 Definition 4.1: Attack concept AC is an abstraction of elementary alerts generated by

the IDS, defined by a set of arguments, required conditions and provided conditions.

Definition 4.2: An attack instance ai is defined as a set of instances of attack concept AC

by substituting the associated values in arguments tuple considering the time constraints

(start-time and end-time).

109

Definition 4.3: Given an attack concept AC, the R(AC), P(AC) and V(AC) sets are the

sets of all capabilities C. Given an attack instance a, the R(a), P(a) and V(a) sets are the

capabilities by mapping the values to the corresponding arguments in AC considering

the time constraints.

4.4.1 Attack classification

Several attempts have been made to propose a different attack taxonomy or ontology;

however, they are diverse and there is no common methodology for the categorization

of security intrusions. The majority of the proposed classifications are entirely based on

the analysis of published vulnerabilities. For instance, NIDS vendors such as Snort use

attack classes that describe the attacker's methods in exploiting these vulnerabilities. We

have obtained our classification based on:

 Vulnerability analysis

 Generalized description of the target system (server, client, Web, etc.)

Elementary alerts generated by NIDS sensors are mapped to generalized descriptions of

intrusion in a hierarchical representation. The classification is built in the form of a

graph with nodes and edges. The nodes specify the attack class and the edges denote the

inheritance relationship between attack classes. The classes are mutually exclusive and

each alert belongs to only a single class horizontally, but to different classes vertically

based on the inheritance relationship. This structural abstraction mechanism is to

minimise redundancy and maximize diversity. Hence, even though some alerts are new

and unknown, they can be predicted from the results of situation analyses. If an attack is

in progress consisting of certain elementary alerts, these atomic alerts are mapped to a

general attack description. For any suspicious or unknown actions not detected by the

IDS, the probability of their being related to the detected attack is very high. The level

110

of the abstraction progresses from general to specific in a top-down design of the

classification graph as shown in Figure 4.2.

 Figure.4.2 Abstraction levels of attack classification.

Figure.4.3 Attack classification.

High-level generic attack

Generic attack

.

.

.

Specific

attack

- a -

- b -

High - level generic attack
categories

1 Server attack
2 Client attack
3 Web attack
4 Malicious software activity
5 Suspicious behaviour
6 Policy violation
7 Other

Generic attack categories
1 Buffer overflow
2 Brute
3 Download
4 Information Gathering
5 Implementation of the system commands
6 Landing behaviour
7 Bypass authentication
8 Bypass authorization
9 Upload
10 DOS
10 Cross - site scripting
11 File modification
12 File Inclusion
13 Penetration testing
14 SQL injection
15 Webshell install
16 DDOS client activity
17 Webshell activity
18 Rouge software
19 Trojan
20 Attack response
21 Session Hijacking
22 Scanning

111

In Figure 4.3 (a), the high-level generic attack classes are shown and each class can be

linked to one or more other generic class in Figure 4.3 (b). For instance, the buffer

overflow class can be classified under server, client or Web classes, as this type of

attack can target different types of systems. However, some other classes are only

categorized as specific system classes, such as DDoS client activity, which is a client-

specific attack. Hence, each alert generated by the IDS will be categorized top-down in

a hierarchical manner. Figure 4.4 shows three examples of how sub-classes inherit

attack features from upper classes and how alerts are classified based on these

relationships. In Figure 4.4 (a), the lower class denotes the exact Snort signature TFTP

Get, id:1444, while this signature is classified as TFTP buffer overflow. Similarly, in

Figure 4.4 (b), any IDS signature of type of ACTIVEX attack can be classified under this

class which is in turn classified as a client buffer overflow. Figure 4.4 (c) shows that a

stored procedure attack is described as a Web PHP injection attack. It should be noted

that these are only abstract classes and do not denote instances of actual attacks.

 Server attack Client attack Web attack

Buffer overflow attack Buffer overflow attack SQL injection

TFTP buffer overflow ACTIVEX attack PHP injection

 TFTP Get Stored Procedure

 -a- -b- -c-

Figure.4.4 Examples of attack class inheritance.

4.4.2 Knowledge-base representation

A capability set consists of all the derived elements of capabilities encoded to integer

numbers. All alerts are represented in the form of three sections:

112

1- IDS signature ID to describe the attack by its elementary alert.

2- Pre-conditions set which consists of n capabilities where n>=0.

3- Post-conditions set which consists of n capabilities where n>=0.

The knowledge library of the alerts and their corresponding capabilities are defined into

the form shown below:

sid:xxxx;pre:k1(n);pre:k2(n);………pre:ki(n); pos:l1(n);pos:l2(n);…..pos:lj, where

xxxx is the signature ID number, pre denotes pre-conditions, pos denotes post-

conditions, k is the capability unique number, and n is a variable argument to

specify the attack attributes as follow:

1: source IP address

2: source port

3: destination IP address

4: destination port

4.4.3 Alert modelling

IDS alerts are the basic units that represent the occurrence of intrusion as a time series.

Essential attack knowledge is derived from signature fields triggered by the IDS in case

of any security violation. It should be noted that the alert generated by the IDS is not

necessarily connected to a security attack, as sometimes a legitimate activity can cause

some alarms. Moreover, the information in the signature does not contain any sign of

whether the attack succeeded or not. However, the abstraction of these alerts to

capabilities in respect to temporal and spatial details can give a true view of the security

perspective.

Each received alert is mapped to its pre- and post-conditions. It is assumed that the alert

is generated because some conditions have to be satisfied and that it will cause some

113

impact on the target system. The relationship between different alerts is identified by

matching these conditions, as shown in Figure 4.5.

Figure 4.5 Matching of alert pre-and post-conditions in the correlation function.

In Figure 4.5, Alert 1 has some pre-conditions and post-conditions and one of its post-

conditions match the pre-conditions of Alert 2 and Alert3, hence they are correlated. In

addition, the temporal order of Alert 2 and Alert 3 is taken in account. For example, the

following alerts (Snort-generated signatures) are obtained from DARPA LLDDOS.1.0

[161] to clarify the correlation concept considering the following Snort signature:

RPC sadmind UDP PING

This signature is generated as result of attempts to test if the sadmind demon is running.

A sadmind RPC service is used to perform administrative activities remotely. The

impact of the signature includes disclosure of the running service and system access

attempt:

RPC portmap sadmind request UDP

114

This signature is generated due to the use of a portmap GETPORT request to discover

the port number of the RPC service, and consequently which port is used by the

sadmind service.

RPC sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt

This signature is generated as a result of an attempt to exploit a buffer overflow to

obtain a root access.

RPC sadmind query with root credentials attempt UDP

This signature is generated due to the use of root credentials and is an indication of

potential arbitrary command executions with root privilege.

RSERVICES rsh root

This signature is generated due to an attempt to login as a root user using rsh, and this is

an indication of full control of the attacker.

Table 4.1 Examples of pre- and post-conditions.

Signature Pre-conditions Post-conditions
1 RPC sadmind UDP PING Disclosure of host Disclosure of running service

System access

2 RPC portmap sadmind request UDP Disclosure of host

Disclosure of port number

Disclosure of running service

System access
Remote Access

3 RPC sadmind UDP NETMGT_PROC_SERVICE

CLIENT_DOMAIN overflow attempt

Disclosure of host

Disclosure of port number
Disclosure of running service

System access

Remote access
Admin access

4 RPC sadmind query with root credentials attempt
UDP

Disclosure of host
Disclosure of port number

Disclosure of running service

System access
Remote access

Remote access
Admin access

From Table 4.1, it can be seen that the signatures have some pre- and post-condition and

if a match between these conditions is detected the two alerts are linked as a part of the

attack scenario, as shown in Figure 4.6. The two signatures share at least one common

capability, disclosure of running service, hence they are correlated. It should be noted

that the correlation process does not simply consist of matching these capabilities –

there are other factors involved, as explained in the rest of this chapter.

115

R

P
C

 s
ad

m
in

d

U
D

P
 P

IN
G

Disclosure of running service

R
P

C
 p

o
rt

m
ap

sa
d

m
in

d
 r

eq
u

es
t

U
D

P

Disclosure of running service

System Access

Disclosure of host

Figure 4.6 Correlation of two alerts.

4.5 Vulnerability modelling

Several efforts have been made to correlate IDS signatures with vulnerability

information. The aim is to reduce the false positives, which can be a major drawback of

such systems. Moreover, these verification mechanisms are incorporated in the IDS to

provide a higher quality of alerts, and hence more confidence. The origin of the problem

of false positives is that IDSs have no information about the systems they protect.

Therefore they are not certain about the success of the attack, simply because the

vulnerabilities of the target system are not available. Two trends have emerged in

overcoming the false positives issue in IDS performance:

1- Tuning the IDS based on knowledge of the internal policy of the protected

environment to operate with a lower number of signatures [47,48]. Knowledge of

network configuration, running services and installed applications is used to

disable all the unrelated signatures of the IDS. The advantage of this technique is

that the IDS performance is improved significantly. However, some of the

information on the activities of the attacker, which may be useful in tracking its

behaviour, will be discarded. It should also be noted that real cyber attackers

(persistent attackers) try to break into systems using different methods, and these

attempts may be not in connection with a particular vulnerability. Moreover, some

dangerous attacks in cyber crime do not require any system vulnerability, such as

116

DDoS. In addition, this approach requires intensive and updated vulnerability

assessment.

2- The other trend is not suppressing the IDS detection coverage, but instead

aggregating, correlating and verifying the generated alerts in a systematic way

[10,29,49]. Summarized data of occurring events are displayed to the security

manager according to their priorities and criticalness. If further details are

required to support a specific situation, they can be retrieved by request. A

repository of collected information is maintained to support the decision of the

IDS management system. Vulnerability scanners are the main candidate to supply

this type of data in a periodical manner.

In accordance with the nature of the developed correlation systems, which require full

description of any activity in the protected environment, the second mechanism is

adopted in our research. In the previous sections, the attacks are generalized to obtain a

global view of the security situation. This generalization may increase the false positive

rate; hence, a suppression technique is needed to reduce the false positive rate without

losing any details. This suppression mechanism does not imply any reduction in the IDS

coverage, but the consideration of only success attacks.

Snort signatures are supported by two useful fields:

 Vulnerability reference, referring to the major vulnerability standards such as

CVE [39], bugtraq [162], and Nessus [128].

 Service to denote a list of the affected services, such as telnet, ftp and

MSSQL.

A vulnerability knowledge base is maintained to store the vulnerability situation of each

element of the protected network based on the collecting agent (e.g. Nessus). The

scanner will also gather the network configuration details such as IP addresses of live

117

hosts and running services, so manual configuration is not considered. In this respect,

vulnerability information is considered as external capabilities.

The scope of vulnerability testing is limited to only investigate the presence of the

vulnerability and the affected service. An extension can be carried out to consider the

target host response; however, there are performance issues (e.g. communication

overheads). Nessus is used to extract the following information, which can be used to

support the vulnerability component:

- IP addresses of all hosts connected to the target network.

- Operating systems and their versions.

- Open ports and running services.

- Related vulnerability references (e.g. CVE).

When an alert is received from the IDS, its message contains the vulnerability reference

and the affected system. Therefore, a logical formula is obtained by searching the

vulnerability knowledge to find any matches, as follow:

- If the reference is found and the associated service is running, then the

vulnerability is true with high priority.

- If the reference is found and the associated service is not running, then the

vulnerability is true with low priority.

- If the reference is not found, then the vulnerability is unknown.

The complete algorithm of alert verification using vulnerability knowledge is shown in

Figure 4.7.

118

Algorithm :Alert verification

Input: elementary alerts generated by IDS A(IP,SV,VR)

 Host vulnerability information generated by scanner VN(IP,OS,SV,VR)

Output: Vulnerable host VH(IP,V,P)

Methods:

 // IP: IP address, SV: service, VR: vulnerability, OS operating system

 for i←0 to length[VN]

 do

 if A.IP = VN[i].IP get VN(IP,OS,SV,VR)

 in case of

 A.VR=VN.VR and A.SV=VN.SV then VH.V←true , VH.P←high

 A.VR=VN.VR and A.SV≠VN.SV then VH.V←true ,VH.P←low

 A.VR≠VN.VR then VH.V←false , VH.P←unknown

Figure 4.7 Alert verification algorithm.

4.6 Alert correlation algorithm

The principle objective of the proposed framework is to identify the causal relationships

between a series of attacker actions that are temporally ordered. The concept of alert

correlation should not be confused with alert aggregation or alert fusion, as the latter

group alerts based on clustering regardless of their temporal relations in some

approaches. Alert correlation is the process of identifying a sequence of distinguished

alerts that fall in the same generalized attack pattern. Figure 4.8 shows the relationship

between alert correlation and alert aggregation. Correlation functions are performed

across the x-axis and aggregation functions along the y-axis. In this regard, we do not

need to define explicitly the attack scenario, and instead the logical rules are generated

using the pre- and post-conditions of each activity. Attributes provided by elementary

alerts are used to define instances of alerts. Instances of system conditions are

instantiated with time constraints, and correlation rules are created.

119

A
le

rt
 a

g
g

re
g

at
io

n

Alert correlation

a31 a21

a12

a11

aij

ai1

a3j

a23

a22

a2j a1j

a13

m1

m2

m2

mi

Attack stages

Figure 4.8 Relationships between alert correlation and aggregation.

Definition 4.4 Given a pair of attack instances a : a1, a2 ordered temporally in the

following time slots respectively:

a1: ts1 and te1

a2: ts2 and te2

where ts is the start time, and te is the end time.

a1 is correlated with for a2 if:

1- There exists at least one common capability C in R(a2), and P(a1).

2- Satisfaction of V(a2) constraints.

3- P(a1).te1 ≤ R(a2).ts2

The proposed correlation approach consists of a series of complementary phases

discussed in the following sections. A complete description of the related algorithms is

given to show the system's functioning.

120

4.6.1 Initialization of instances of pre- and post-conditions

The objective of this procedure is to create instances of pre- and post-conditions for

each alert received. Encoded conditions are in the form of corresponding capabilities

based on the arguments obtained from the in-memory knowledge dictionary. Pre-

condition details of previous processed alerts are deleted because they are no longer

used. In other words, the remaining possible causal links of any alert are ignored as the

time constraints are not satisfied.

Consider alert a1 detected between the times t1 and t2, and another alert a2 observed

between t3 and t4, where t1 ≤ t2 ≤ t3 ≤ t4. Even though a2 has some post-conditions that

match a1 pre-conditions, they will not be correlated as a1 is detected before a2.

A matching between the signatures IDs in the knowledge library and those of the

sequence of the received raw alert is performed. Therefore, lists of pre- and post-

condition identifiers are obtained. The argument of each condition is identified and the

encoded capabilities information is stored in corresponding collections in the database.

Figure 4.9 shows the implemented algorithm of the creation of pre- and post-conditions

details.

121

Algorithm: Pre and Post conditions initialization

Inputs: Sequence of raw alerts R, knowledge lib KLB

Output: Encoded Capability EC

Methods:

 //KLB an object of knowledge library

 // PreC :collection of Pre conditions Pre, PosC : collection of Post conditions Pos

 for i←1 to length[PreC]

 do DELETE (PreC, Pre)

 for i←1 to length[R]

 do

 if KLB.id= R.sigId

 get KLB.id, KLB.id.Pre(arg), KLB.id.Pos(arg)

 for i←1 to length[KLB]

 do

 In case of

 arg=1

 INSERT (PreC, EC(srcIPAddress))

 INSERT (PosC, EC(srcIPAddress))

 arg=2

 INSERT (PreC, EC(srcPort))

 INSERT (PosC, EC(srcPort))

 arg=3

 INSERT (PreC, EC(destIPAddress))

 INSERT (PosC, EC(destIPAddress))

 arg=4

 INSERT (PreC, EC(destPort))

 INSERT (PosC, EC(destPort))

Figure 4.9 Algorithm of initialization of pre- and post-conditions.

4.6.2 Knowledge initialization

A complete knowledge is initialized in memory when the MARS server starts. The total

memory space of a knowledge base of 15,000 signatures does not exceed a few

kilobytes. The initialization process incorporates parsing of the knowledge text file

(instead of a text file, an XML representation can be used for faster processing). A

122

dictionary data structure is created to store knowledge details. The initialization

algorithm is shown in Figure 4.10.

Algorithm: Knowledge Dictionary Initialization

Inputs: Text Knowledge TK

Output: Knowledge Dictionary KD

Methods:

 create KD as a Dictionary

 // KD.id is the Id number of each entry= Snort SigId

 // KD.id.Pre is the list of preconditions associated with SigId

 // KD.id.Pos is the list of postconditions associated with SigId

 // create KL as array of TK lines

 KL ← SPLIT TK in lines separated by (;)

 for i←0 to length[KL]

 do

 In case of KL[i]

 start with (―sid‖) then KD.id ←KL[i].id)

 start with (―pre‖)

 then

 KLI←SPLIT KL[i] separated by (,)

 j←0

 for j←0 to length[KLI]

 KD.id.Pre(arg) ←KLI[j](arg)

 start with (―pos‖)

 then

 KLI←SPLIT KL[i] separated by (,)

 j←0

 for j←0 to length[KLI]

 KD.id.Pos(arg) ←KLI[j](arg)

Figure 4.10 Algorithm of knowledge initialization.

4.6.3 Correlation algorithm

The encoded capabilities stored in a collection of pre- and post-conditions are used to

create the initial correlation graph, called a temporary correlated collection. In this

123

collection, all correlated elementary alerts are stored for further processing, reflecting

atomic correlations. The size of the information in temporary collections may be huge,

and hence graph reduction and alert aggregation functionality are performed to obtain

the final graph. The correlation process is based on the satisfaction of:

- Causal relationship based on pre- and post-conditions of each detected alert.

- Temporal and spatial constrains such as IP address, port and detected time.

- Service configuration and vulnerability details.

Each correlated alert must belong to what we have called in this research generated

events. Complete details of events are stored in a separate collection designated

InfallEventsC. Initially, an in-memory hash table called a correlated map is created, and

then the details are transferred to a temporary correlated collection. The detected event

takes the earliest start time and the latest end time among the start and end times of all

corresponding alerts. An event is detected if at least two correlated alerts are detected.

However, every new event is evaluated if it can be combined with other detected events

on the basis of common characteristics. If there is a casual link between previous

aggregated alerts and one of the detected alerts associated with the new event, the two

events can be combined. In case of a connection between two events, the original event

will become a master event and the new one will be considered a slave event during the

process until they become a single accumulated event. The resulting event title is a

concatenation of the intrusion category names of each group of events, as shown in

Figure 4.11, where Attack A, B, and C are general descriptions of the attack.

a1 a2 an

Attack A

b1 b2

Attack B

bn c1 c2

Attack C

cn

Event Title: Attack A → attack B → Attack C

 Figure.4.11 Construction of an event title.

124

Algorithm: Alert Correlation

Inputs: Encoded Capabilities EC , Vulnerability VH(IP,V,P)

Output: Correlated alerts

Methods: // Temporary Correlated Collection TempCorrelated

 // Pre conditions Collection PreC , Post conditions Collection PosC

 DELETE all rows in TempCorrelated

 get lastAnalysisId, lastEventId

 set CorrelatedAlerts←

 SELECT AlertId from PreC, PosC

 WHERE PreC.AlertId = PosC.AlertId

 AND PreC.IPaddress = PosC.IPaddress

 AND PreC.Port = PosC.Port

 AND PosC.endTime≤ PreC.startTime

 AND VH.V is true

 If length[CorrelatedAlerts] >0

 analysiId ← analysiId+1

 /cMap: Correlated Map :hash table

 cMap ←null

 for i←0 to length[correlatedAlerts]

 do

 // the first alert will be the causing alert causingA

 // the second alert will be the caused alert causedA

 INSERT (cMap, causingA[i])

 INSERT (cMap, causedA[i])

 newEvent←lastEvent+1

 for j←0 to length[cMap]

 do

 INSERT (TempCorrelated, cMap[j]. causingA)

 INSERT (TempCorrelated, cMap[j]. causedA)

 INSERT (TempCorrelated, cMap[j]. newEvent)

 newEvent.startTime← MIN(cMap.startTime)

 newEvent.endTime← MAX(cMap.startTime)

 // InfallEvent Collection inafallEventC

 INSERT (inafallEventC, newEvent.fields)

 combineInfallEvent

Figure 4.12 Alert correlation algorithm.

125

Once all received alerts are processed and each alert is assigned to a specific intrusion

event, the original alert collection is updated in order to perform alert aggregation. The

algorithms of alert correlation and event generation are shown in Figures 4.12-4.13.

Algorithm: combineInfallEvent

SET canBeCombinedEvents←

 SELECT infallEventId from infallEventC and aggregatedC

 WHERE infallEventC.infallEventId= aggregatedC. infallEventId

 AND infallEvent.AlertId IN

 (SELECT causingAlertId from TempCorrelated

 WHERE TempCorrelated.infallEventId= newInfallEventId)

 UNION

 (SELECT causedAlertId from TempCorrelated

 WHERE TempCorrelated.infallEventId= newInfallEventId)

 If length[canBeCombinedEvents] >0 then

 // update the existing event

 updateCorrelated(canBeCombinedEvents[1..n], newEventId)

 else

 // create a new record in infallEventCollection

 INSERT (infallEventC, newInfallevent)

 updateInfallEvent(newInfallEventId)

Figure 4.13 Algorithm of two combined events

4.7 Alert aggregation

A common problem among alert correlation systems is the huge amount of atomic alerts

generated by an IDS and possibly by several IDSs. An IDS may trigger a large quantity

of the same alerts at close time intervals that are related to the same security violation.

Alert aggregation is proposed to remove duplicated alerts, e.g. the same alerts

corresponding to the same signature description or attack class. A pre-defined window

is used to determine whether two alerts are close enough to be aggregated into a single

alert. In addition, our aggregation approach is based on graph reduction techniques that

remove duplication in vertex set and migrating connecting edges to the nominated node.

126

The resulting graph will only contain alerts that are in fact representing different

security events.

Definition 4.5: Given a cyclic directed graph G(V,E) where V is the vertex set and E is

the edges set, the in-degree of a vertex is the number of edges entering it. A vertex with

zero in-degree values indicates a vertex with no edges entering it (e.g. root nodes).

In the attack graph, the node’s in-degree is the number of how many times the alert

appears in caused alert group. The aggregation algorithm begins with defining the in-

degree value of each node which is not aggregated in the graph. A list of zero in-degree

values are identified to represent the first layer of the graph nodes; in other words, the

alerts that are not caused by others. The zero in-degree list will contain groups of similar

alerts occur at different times. Each group is treated as follows:

1- Nominate a master alert, which is the first alert in the temporally sorted list.

2- The aggregation process for the other alerts in the same group is based on:

- Similarity of signature IDs; this can be generalized to consider attack classes

for a coarse granularity.

- Equality of source and destination IP addresses of the parties involved.

- The time difference between the detection of the two alerts does not exceed a

defined value, e.g. 1 second.

3- If the above conditions are satisfied, the processed alert is added to the

aggregated alerts corresponding to its master alert.

4- Change all the relationships between the aggregated alert and other alerts in the

whole graph by replacing it with its master alert. Hence, the master alert will

represent the aggregated alerts without losing the causal connections in the

primary correlated collection.

127

5- Since all aggregated alerts are represented by a single alert, the corresponding

time should cover the actual detection time for any further correlation. Thus, the

start time of the master alert is the earliest time among the aggregated start

times, and the end time is the latest one.

6- Remove the aggregated alert from the graph; however, the original information

is not ignored as the graph can be disaggregated when required. Each master

alert has its own counter of related aggregated alerts and graph layer.

After aggregating each group, the first graph layer, zero in-degree of all aggregated

groups, is decremented by 1 to obtain the next layer. This is an opposite method to

creating zero in-degree values. The second level will also have zero in-degree nodes and

the same procedure is executed in an iterated fashion until all the graph nodes are

treated. The algorithms shown in Figures 4.14-4.17 are describing the complete steps of

the aggregation process.

128

Algorithm: AggregationAnalyzer

Input: Temporary Correlated Alerts

Output: Aggregated alerts collection

Declaration: Graph : NameValueCollection, Indegree: hashtable,

 aggregatedAlertList:ArrayList , allRawAlerts: Hashtable

Methods:

Create a queue aggregatedZeroIndegreeAlertsCollection

Get zeroIndegreeAlertsList

Layer← 1 // the first level in the graph , initial alerts not caused by other alerts

aggregateZeroIndegreeAlertsId(zeroIndegreeAlertsList,

aggregatedZeroIndegreeAlertsCollection, Layer)

if length [aggregatedZeroIndegreeAlertsCollection]>0

 then

 zeroIndegreeAlertsList←null

 Count← length [aggregatedZeroIndegreeAlertsCollection]

 for i←1 to Count

 do // count denote how many groups have been aggregated

 sameAlertType← DEQUEUE aggregatedZeroIndegreeAlertsCollection

 n←0

 while AlertId=sameAlertType[n]

 do

 if NOT (Graph[AlertId].values=null)

 get Graph[AlertId].values

 for m←1 to length[Graph.values]

 do

 Indegree(values.AlertId) ← Indegree(values.AlertId)-1

 if Indegree(values.AlertId)=0 then

 INSERT (zeroIndegreeAlertList, values.AlertId)

 n←n+1

i←i+1

 Layer←Layer+1

if length[aggregateZeroIndegreeAlertsId]>0

 then

 aggregateZeroIndegreeAlertsId(zeroIndegreeAlertsList,

aggregatedZeroIndegreeAlertsCollection, Layer)

 Figure.4.14 Aggregation analysis algorithm.

129

Function:AggregateZeroIndegreeAlertsId (zeroIndegreeAlertsList,

 aggregatedZeroIndegreeAlertsCollection, Layer)

if length[zeroIndegreeAlertsList]=1

 then // in case of a single zero indegree node

 aggregatedZeroIndegreeAlerts:Array[]

 INSERT (aggregatedZeroIndegreeAlerts,zeroIndegreeAlertsList[0])

 ENQUEUE (aggregatedZeroIndegreeAlertsCollection,

 aggregatedZeroIndgreeAlerts)

 saveAggrAlert(zeroIndegreeAlertsList[0],1,Layer)

 UpdateRawAlertCollection(zeroIndegreeAlertsList[0],

 zeroIndegreeAlertsList[0])

 else // in case of zero indegree contains more than one element

 for i←0 to length[zeroIndegreeAlertsList]

 do

 if zeroIndegreeAlertsList[i]<0 // has been already aggregated

 continue

 aggregatedZeroIndegreeAlerts:Array[]

 INSERT (aggregatedZeroIndegreeAlerts, zeroIndegreeAlertsList[i])

 IndexalertId← zeroIndegreeAlertsList[i]

 appointedRawAlert: RawAlert // nominated as a master alert

 allRawAlerts←null

 if allRawAlerts contains IndexalertId

 then

 appointedRawAlert=allRawAlert[IndexalertId]

 else // create a new one

 appointedRawAlert← new RawAlert[IndexalertId]

 ADD (allRawAlerts, appointedRawAlert)

 UpdateRawAlertCollection(appointedRawAlert,

 appointedRawAlert)

rawCollectionCount: integer

 // internal loop

 for j←i+1 to length[zeroIndegreeAlertsList]

 if zeroIndegreeAlertsList[j]<0

 continue

 Figure.4.15 Aggregation of zero in-degree alerts algorithm.

130

 // new alert in the same aggregated group

 indexRawAlert:RawAlert

 internalAlertId :int

 if allRawAlerts contains zeroIndegreeAlertsList[j]

 then

 indexRawAlert←allRawAlerts[internalAlertId]

 else

 indexRawAlert←new RawAlert[zeroIndegreeAlertsList[j])

 ADD (allRawAlerts, indexRawAlert)

 if appointedRawAlert.sigId =indexRawAlert.sigId

 AND appointedRawAlert.srcIPAddress=

 indexRawAlert.srcIPAddress

 AND appointedRawAlert.desIPAddress =

 indexRawAlert. desIPAddress

 AND DIFF (appointedRawAlert.endTime,

 indexRawAlert.endTime)≤1

 then

 INSERT (aggregatedZeroIndegreeAlerts, zeroIndegreeAlertsList[j])

// relationships will be shifted to the new master alert

 if NOT(Graph.zeroIndegreeAlertsList[j])=null

 then

 values← get Grpah.zeroIndegreeAlertsList[j]

 for k←0 to length[values]

 do

 INSERT (Graph.values, indexAlertId)

 // remove the aggregated alert from the Grpah

 DELETE (Graph.values , zeroIndegreeAlertsList[k])

 // add the aggregated alert to the aggregated list

 INSERT (aggregatedAlertIdList, zeroIndegreeAlertsList[k])

 // make this Id as a negative value in the zero indegree

 zeroIndegreeAlertsList[k] ← zeroIndegreeAlertsList[k] × (-1)

 // increase the alert count for the associated master alert

 rawCollectionCount ← rawCollectionCount+1

 Figure.4.16 Aggregation of zero in-degree alerts algorithm (continued).

131

 // the aggregated group of alerts takes the start time of the earliest alert

 // and the end time at the latest end time

 if appointedRawAlert.startTime > indexRawAlert.startTime

 then

 appointedRawAlert.startTime← indexRawAlert.startTime

 if appointedRawAlert.endTime < indexRawAlert.endTime

 then

 appointedRawAlert.endTime← indexRawAlert.endTime

 // delete the post conditions of the aggregated alert

 DELETE (postConditionTable, indexRawAlert)

 ENQUEUE (aggregatedZeroIndegreeAlertsCollection,

 aggregatedZeroIndgreeAlerts)

 Figure.4.17 Aggregation of zero in-degree alerts algorithm (continued).

4.8 Graph reduction

In order to reduce the complexity of the resulting graph, data redundancy should be

eliminated. The graph consists of nodes representing aggregated alerts and edges

representing the casual relationships. The number of nodes is not affected while the

number of edges is minimised without affecting reachability. Hence, the target is to find

a minimal DAG with the least number of arcs and which is equivalent to the original

DAG. Consider the case shown in Figure 4.18, with four alerts: a, b, c, and d. If Alert a

is causing Alert b and b is causing c, there is no need for the transitive edge between a

and c, and similarly the edges between a-d and b-d. The removal of the transitive

optional edges does not have any effect on connectivity between the original nodes.

a b c d

Figure 4.18 Transitive edges in graph.

132

This is based on the assumption that the relationships between nodes can propagate and

the removed edges are considered optional.

Definition 4.6: given a DAG G=(V,E), V=X is the vertex set, E=R is the set of arcs of

the graph, let n=#V, V={1,….,n}, the reduced graph G′(V,E′) is a DAG with the

following properties:

(1) The vertex set (#V) of G(V,E) is equal to the vertex set (#V) of G′(V,E′).

(2) The directed paths between the vertex in G(V,E) and G′(V,E′) are similar.

(3) G′(V,E′) has the smallest number of edges E′=R′ between vertex sets without

affecting the connectivity, R′<=R.

Two algorithms have been developed: online graph reduction for edge deletion on the

left side of the graph, and offline graph reduction for edge deletion on the right side of

the graph. The online algorithm removes the transitive edges at the real-time when

every node joins the graph. This procedure is performed at the first stage of correlation

and before alert aggregation in order to minimise the system's processing time. The

offline algorithm results in a further graph reduction if any redundant connection exists

after the graph is built, starting from the leaf nodes to the root nodes. To clarify the idea,

consider the alerts correlated by the system in the initial stage shown in Figure 4.19

below:

Figure 4.19 Example of graph reduction.

1

1

1

2

2 3

4

5

3

4

2

3

4

5

5

5

1

2

3

4
5

-a- -b-

133

There are five nodes and eight edges connecting these nodes to represent the causal

relationship. In Figure 4.19 (a), the number of the representing nodes n is half the

number connecting arcs #V. The edges 1→5 and 2→5 can be deleted because they are

redundant and the description of the intrusion sequence will not be affected. In the

proposed reduction algorithm, each node has two lists of children and parents, and the

aim is to remove the duplicates in these lists as shown in the following two algorithms

displayed in Figures 4.20-4.23

134

Algorithm: OnlineGraphReducer

Input: Correlated Graph

Output: Reduced Correlated Graph

Declaration: GraphNode: <id, value>

 Parents , Childs,Roots: List of GraphNodes

 Ancestors: Dictionary of GrpahNodes<GraphNode,List of GraphNode>

 NodeSet,: Dictionary of GrpahNodes<int, GraphNode)

 node1, node2 : GrpahNode

Methods:

// perform for each edge, if the n is the nodes number, the edge will be n/2

for i←0 to length[nodes]/2

 do

 // the node on the left side, causing alert

 node1id←nodes[i]

 //the node on the right, caused alert

 node2id←nodes[i+1]

 node1←null

 //nodeSet is the resulting set after reduction

 if nodeSet contains node1id

 then

 // if it is already added to the nodeSet

 node1←nodeSet[node1id]

 else

 //otherwise create a new GraphNode and ancestors list for node1

 node1← new GraphNode(node1id) ;

 ancestors[node1] ←new List of GraphNode

 //node2 is processed similarly

 Node2←null

 if nodeSet contains node2id

 then

 // if it is already added to the nodeSet

 Node2←nodeSet[node2id]

 else

 //otherwise create a new GraphNode and ancestors list for node2

Figure 4.20 Online reduction algorithm.

135

node2← new GraphNode(node2id) ;

 ancestors[node2] ←new List of GraphNode

//check all parents of node2, if one exists in node1’s parents, remove it from

node2’s parents to avoid duplicates (transitive relationships)

for k←0 to length[node2.parents]

 do

 if ancestors[node1] contains node2.parents[j]

 then

 DELETE (node2, node2.parents[j])

//add node2 as a child of node1

INSERT (node1.child,node2)

//add node1 to node2’s ancestors if it is not already existent

if NOT (ancestors[node2] contains node1)

 then

 INSERT (ancestors[node2], node1);

// add all ancestors of node1 to ancestors of node2

for j←0 to length[node1.ancestors]

 do

 n: GraphNode

 n←node1.ancestors

 if NOT (node2.ancestors contains n)

 INSERT (node2.ancestors,n)

 // if node2 is a root node remove it from roots because it is not root anymore

//after being a child of another node

if node2 roots then DELETE (roots, node2)

// if node1 is not already in roots add it to roots

if length[node1.parents]=0 AND NOT (node1roots)

 then

 INSERT (roots, node1)

Figure 4.21 Online reduction algorithm (continued).

136

Algorithm: OfflineGraphReducer

Input: Correlated Graph

Output: Reduced Correlated Graph

Declaration:

 GraphNode: <id, value>

 Parents , Childs, Roots, n, grandson: List of GraphNodes

 indirectedOffSprings : Dictionary of GrpahNodes<GraphNode,List of GraphNode>

Methods:

for i←0 to length[roots]

 do

 // if the root node is already existent in sons group return the group

 if n indirectedOffSprings

 then return indirectedOffSprings.n

// if the root node does not have any child create a new list

if length[n.child] =0

 then

 return new list of GraphNode

 for i←0 to length[n.child]

 do

 //check the sons of the sons of each node in roots

 for j←0 to length[n.child[i].child]

 do

 if grandson n.child[i].child

 then

 // if this son is not a member of the sons group add it

 if NOT grandson indirectedOffSprings

 INSERT (currentIndirectedOffSprings, grandson)

 indirectedOffSprings.n=currentIndirectedOffSprings

for k←0 to length[indirectedOffSprings]

 do

 if n indirectedOffSprings

 then

 // remove duplicates in sons of the nodes on the same sequence

Figure 4.22 Offline reduction algorithm.

137

 l←0

 while l<length[n.child]

 do

 if n.child[l] indirectedOffSprings.n

 then

 DELETE (n.child,n.child[l])

 else

 l← l +1

Figure 4.23 Offline reduction algorithm (continued).

4.9 Prediction of undetected intrusion

Beyond the correlation function's primary role of reducing information complexity, it

may also handle unobserved attack activities and estimate the attacker's planned path to

achieve its goal. Intrusion activity is considered a planning activity, because the

planning actions are explained by their pre-conditions and effects. In this sense,

correlation functionality is used in discovering unobserved alerts (false negatives) and

predicting intrusion intention. Missed alerts have been one of the major limitations of

IDSs, particularly signature-based ones, and this is caused by three reasons:

-The intrusion action is unknown (e.g. 0-day attack), and the IDS has no knowledge

of the attack.

-The attacker performs certain evasion techniques to deceive signature-based IDSs,

which may only be other variations of known existing attacks.

-In high-speed network environments, as is the case in current systems, the IDS is

unable to keep up with the received traffic. As has been observed in Chapter 3, IDSs

drop traffic packets when they are overloaded.

In an alert correlation context, missed alerts can result in broken attack scenarios,

dividing the attack graph into different sub-graphs. Furthermore, unobserved attacking

138

sequences can lead to an incomplete graph if the IDS misses some alerts comprising late

attack stages. Hence, the objective of the attacker will be uncertain for the observer. In

such cases, alert correlation generally uses abduction techniques [49] to estimate the

missing data and the intruder's intention in partial attack sequences.

4.9.1 Alerts missed by IDSs

Several efforts have been presented to overcome the limitation of alerts missed by IDSs.

Most of them focus on how to repair the broken scenario by constructing all possible

actions using attack libraries [35, 131]. Consider Attack 1 and Attack 2 in Figure 4.24,

where Attack 1 consists of three alerts (a1, a2 and a3) and Attack 2 involves two alerts

(a5 and a6). The two attacks actually belong to the same intrusion sequence. The IDS

misses alert a4, causing two separate attack scenarios. In order to reason about the

missing middle alert and connect the two attacks, certain virtual nodes are created along

the attack path between a3 and a5. In our correlation approach, the causal link between

the nodes is based on the equality constrains of the capabilities in the pre-conditions of

node a5 and any possible node with similar capabilities in its post-conditions. Similarly,

a match between capabilities defined in the post-conditions of a4 and capabilities

defined in the pre-conditions of any possible nodes, is determined to link these nodes to

a3.

a1 a2 a3 a5 a6

a41

a42

a43

a4i

Attack1 Attack2

Figure.4.24 Reasoning about missed alerts.

139

Definition 4.7: a sequence of actions a1,a2,......,an comprising an attack plan and two

sub-sequences of observed actions a1,a2,.....,ak and al, al+1,....., an are linked virtually

as candidates of the same attack scenario if:

a. There is at least one action node (virtual node) sharing at least one capability

in the post-conditions of ak and pre-conditions of al

b. Satisfaction of temporal, spatial and vulnerability constrains.

The missed alerts can be more than a single action node, so all possible matched nodes

are searched forwards starting from ak and backwards starting from al. The algorithm

progresses until a match is identified to link the two attacks. The virtual nodes can be a

series of nodes in a sequence starting from the last action node in the first half of the

broken attack scenario to the first action node of the consequent other half. However,

the number of estimated nodes can be large and this will add more complexity to the

resulting graph.

In fact, the repair of broken-scenario approaches may add more complications. A

considerable amount of processing power is consumed and this is critical for online

applications. The idea of attack generalization presented in section 4.4 can give the

administrator a general view of the actual attack without having to rely on identifying

the exact missed alerts. We have adopted the idea of reasoning about missed alerts by

generally giving the attack category instead of a potentially infinite number of virtual

alerts. Some of the reasons behind this are:

1- As stated earlier in this section, alerts can be missed as a result of one of two

reasons: unknown attacks or missed attacks due to performance issues. The

second category can be estimated using virtual nodes and edges based on a

knowledge library. However, if the attack is a 0-day or a new variation of a

known attack, the specific reasoning about unobserved alerts will not give the

140

details of the exact intended attack actions. Hence, virtual nodes do not represent

the actual alerts but similar alerts, which can mislead the administrator by

producing false positives.

2- Based on the initial assumptions of this thesis, coordinated attacks consist of a

number of steps that are not isolated. The absence of some of these irrelevant

steps, which are usually much less compared to the related steps observed, does

not affect the correlation approach. Once again, the generalized formalisation of

capabilities can assist in building the attack graph even with the use of

incomplete attack knowledge. For instance, consider the attack stages associated

with the scenario shown in Figure 4.25. The link shown in red denotes a

generalized capability in the capabilities set. To be more specific, assuming the

attack steps are for SQL injection (SQLI) stages, all alerts involved in this attack

share the SQL injection capability, coloured in red. The other capabilities coded

in different colours are specific to certain other conditions. Hence, even if alert

a3 is missing or not covered by the operating IDS, the causal link is still

established using the general specified condition.

a1

a2

a3

a4

Figure 4.25 Reasoning about missed alerts by generalised capability formalisation.

3- The main aim of the alert correlation and aggregation function is to build an

attack graph with minimal data and to reduce the false positive rate. Therefore,

the process of generating further information, which could result in false

positives, conflicts with the main concept of alert correlation. Therefore, our

141

reasoning revolves around the attack scenario rather than specific potential

alerts. In other words, the focus is on discovering the intention of the attack and

recognizing the intrusion plan.

4.9.2 Intruder intention recognition

Intruder intention recognition is the task of inferring intrusion goals from the

observation of intruder actions or the consequences of these actions [49]. Intrusion

actions are described in terms of conditions required to achieve actions and the

conditions provided as a result. Observed actions are ordered temporally to constitute an

intrusion plan. Hence, intention recognition is a prediction task to identify intrusion

goals from a partial set of observed actions. Taking the case of certain alerts constituting

an intrusion plan detected by an IDS, the aim of the system would be to predict future

incoming alerts along the intrusion path.

Plan recognition in an intrusion context is different, because attackers try to hide their

activities and identities [163]. The general form of plan recognition assumes that the

actor follows a series of complete and ordered sets of actions to achieve a specific goal,

which is not the case in intrusion behaviour [164]. Adversarial recognition involves

dynamic actions and goal changes based on identified effects. For example, an attacker

intending to break into a system for a specific vulnerability may change to another

intention if a new vulnerability is discovered that may provide more control over the

attacked system. However, in general the ultimate goal of the attacker can be predicted

– i.e. full access to the target system, even if the behaviour is dynamic.

Typically, the prediction process is based on the same notion discussed in the previous

section. Estimated virtual causal edges and virtual nodes are created based on the pre-

and post-conditions of the observed actions. However, a large number of attack paths

can be recognised, building a huge attack graph. The virtual node creation is limited to

142

the first malicious activity detected if some of the related actions have already been

detected. For instance, scanning behaviour is considered suspicious activity, so it cannot

be predicted what will come next as there is a large number of paths. However, from the

target system knowledge the attack paths can be bounded to a lesser number. Therefore

the algorithm progresses to construct virtual paths until a malicious activity is

recognised. The determination of the malicious level of an activity is based on the

priority information provided by the rules.

However, as mentioned in the previous section, our approach of defining a layered

structure of capabilities and an attack classification assists in recognizing intrusion

intention. Identified capabilities associated with malicious actions are used directly to

express the intrusion goal, while suspicious actions can contribute to the achievement of

the intrusion goal. For example, an alert has three post-conditions represented in the

form of capabilities as follows: stored procedure, PHP injection and SQL injection. The

most generic capability, SQL injection, is used to recognise the intrusion goal and is

classified as an SQLI attack plan. In this context, the administrator can take a reactive

response to prevent this attack before it can achieve its final goal, such as modification

of the database in the target server. Recognition of attack intention is considered as

identifying that a group of actions is a subset of another group. It is assumed that the

attacker has completed all attack stages, and that the task is to find any subset of these

stages that represents a potential attack.

Definition 4.8 : let a is an attack consisting of a series of candidate steps a1,a2,.....,an,

and aˈ is an attack consisting a subset a1, a2,,am. aˈ, which is to say a subset of a if

at least one action from aˈ shares the same generic capability of at least one action from

a and satisfies the temporal, spatial and vulnerability constraints.

143

Example: suppose attack a consists of five aggregated alerts, with the first two alerts

belonging to scanning behaviour and the remaining alerts relating to an SQLI attempt.

Another attack, aˈ, consists of three alerts, the first two being a sign of scanning and the

third classified as an SQLI attack (SQLIA). Both attacks share the same temporal and

spatial attributes. It can be predicted that aˈ is a subset of a, as they share at least one

generic capability. However, the disadvantage of this approach is that two different

attackers not cooperating will be considered one and the same.

4.10 Conclusion

The main objective of alert correlation systems is the identification of the multi-stage

attack which may be discovered from analysis of the IDS alerts. These alerts have

certain features that can be used to detect causal relationships between temporally

distributed activities. In this chapter we have presented the core concept of our

reasoning framework for alert correlation to address the problem of detection of

coordinated attacks. MARS framework has been detailed involving multiple

cooperative components.

We have defined the underlying principles of our framework based on provides/requires

model. A combined analysis of IDS’s alerts and description of attack classes are used to

derive the pre- and post- conditions of each received alerts. A scheme to represent our

knowledge base has been described using a hierarchal and a multilayer classification.

Vulnerability modelling is used to support alert verification in order to reduce the

generated attack graph. The generalisation concept is utilised to predict attack intention.

A detailed description of the algorithms involved has been presented as well as the

relationships between the system components. Aggregation and graph reduction

approaches are also used to obtain the resulting attack events in a manageable graph.

144

CHAPTER 5: MARS FRAMEWORK IMPLEMENTATION

5.1 Introduction

The previous chapter has presented the fundamental basis of the proposed framework

for the multi-stage attack recognition system. In this chapter, the MARS framework is

practically implemented to evaluate the proposed algorithms discussed in Chapter 4. In

this chapter, the general architecture of the system is described. Multi-stage attack

recognition as an alert correlation functionality is a multi-task process. Each task is

performed by a corresponding component in a sequential manner. Moreover, the design

details are presented to illustrate how the algorithms are elaborated to obtain the results.

5.2 MARS components

The objective of the proposed system is to construct an overview of the security status

of the system under attack. This functionality consists of a sequence of components,

with each component responsible for a task and the result of each task supplied to the

next component. Figure 4.1 in the previous chapter presented the design components

and the communication between these components. Figure 5.1 shows the workflow of

the system process starting with the receipt of alerts from the IDS sensors and ending

with the administrative console.

Figure 5.1 System process flow.

145

5.2.1 Alert collection

Since the main input of the system is the alert stream generated by an IDS sensor, these

alerts need to be translated to a generic format. The alert collection component can

receive alerts from different sensors in various formats. The typical format used in this

respect is the Intrusion Detection Message Exchange Format (IDMEF) [116], which is

considered the industry standard. In this thesis, multiple sensors to feed the system with

alerts are not considered due to space limitations and because the implementation of

such a system is straightforward. Alerts are converted to the standard format and stored

in the MARS database for effective information search. The standardization is

performed by an IDS interface (e.g. Snort interface). If a different IDS sensor is used, a

corresponding interface is required, but the details of this are beyond the scope of this

thesis.

In our framework, sensor-specific information is converted into attributes and values

usable by the framework components. The alert names are taken from Snort database

which are based on vulnerability standards such as CVE and Bugtraq. Each raw alert is

translated into a standardized alert format and copied to the appropriate fields. The

attributes contained in the resulting format are shown in Table 5.1

Table 5.1 Description of alert attributes.

Alert attribute Description

Alert ID A unique ID identifying the alert

Sensor ID A unique ID identifying the IDS sensor

Start Time The time when the attack occurs

End Time The time when the attack ends

Source IP Address The source IP address of the detected activity

Source Port The source port of the detected activity

Destination IP Address The destination IP address of the detected activity

Destination Port The destination port of the detected activity

Signature ID A unique ID identifying the IDS signature

Signature Priority The severity level of the detected signature

146

Protocol Type The protocol name used in the attacking activity

Master ID The representative alert ID that represents some aggregated alerts

Infall Event ID The ID of the corresponding generated event

5.2.2 Adding pre- and post-conditions

The core of the alert correlation mechanism is the mapping of an elementary alert to its

pre- and post-conditions. This is to discover any possible relationships between the

alerts in order to identify the attack patterns. Instances of alerts are created in the

database with their attributes (IP address, port number and timestamp). All alerts from

the previous component are processed, as they all are candidates for involvement in the

alert correlation task.

The collection of encoded capabilities is constructed using the capability knowledge by

assigning each alert to its pre and post conditions. For example, the alert 123 shown in

Figure 5.2 as specified in the knowledge base, has two pre conditions i.e. 100 and 101,

and two post conditions i.e. 200 and 201.

Sid:123; pre:100(3);pre:101(3);pos:200(3);pos:201(3)

Figure 5.2An example of the capability knowledge base specification.

Two lists are created for each condition set with the format:

Capability ID (IP Address) , for example: 100(192.0.0.1)

The initialization of capabilities sets (pre and post conditions) is implemented to make

the linking between related alerts faster.

5.2.3 Alert verification

IDSs cannot determine whether the occurring attack is likely to be successful. Failed

attacks in typical cases do not provide further information, because the attacker will find

another vulnerability to exploit. Running services and vulnerability details gathered by

147

scanners such as Nessus [128] are used to filter alerts. Hence, the amount of processed

alerts will be reduced to achieve more accuracy. The administrator feedback concerning

certain attacks can be considered in this respect to achieve more accuracy. Furthermore,

the false positive rate is the main concern of such systems, so alert verification

contributes to achieving lower rates of this measure.

When the correlation process receives false positives as input, the quality of the results

can be degraded significantly. The goal of the alert verification component is to remove

alerts that do not represent true attacks. Hence the correlation rules are extended with

the success of the occurring attack. In the implementation of MARS, a passive

verification technique is used to provide a higher performance. This is based on the

assumption of being network and hosts states don’t change frequently over short period

of time. Nessus scanner is used to scan the protected network to collect all required

information such as: network configuration, host configuration, running services, and

detected vulnerabilities. These data is stored in the vulnerability knowledge base to be

applied in cooperation with the correlation algorithm.

5.2.4 Alert correlation

This is the component that implements the proposed correlation algorithm based on the

pre- and post-conditions of alert instances. The correlation function is performed only

for alerts that satisfy the conditions. Isolated alerts which are not logically connected are

saved in the primary correlation container for any further observation.

Alerts with equivalent attributes and occurring in a certain temporal proximity are

linked if they satisfy the matching between encoded capabilities. Alert a can be

considered as causing alert for alert b if a occurs before b and a matching between a

post conditions and b pre conditions. The matching criteria are more relaxed to

148

maximize detection coverage and that using the generalisation concept in attack

modelling. Furthermore, there is no restricted time window to correlate pair of alerts in

contrast to other proposed systems that are defeated easily by slow-and-low attack.

However, the administrator has the facility to close any detected event when he/she

makes sure that there is no further related activities e.g. running service is stopped. The

correlated alerts which are actually the correlated master alerts (representative of

aggregated alerts) are saved in the correlation collection.

5.2.5 Graph reduction

Generally, the process of graph complexity reduction involves removing some

redundant graph nodes and edges while keeping the structure of the sequences of the

attacks. The objective of this component is to remove the transitive edges that represent

duplicates in the correlation process. The hierarchical approach, which involves

generalization in relationship discovery, can cause additional links between alerts.

To keep alert processing to minimum, removing redundant edges is performed during

the initial sage of the correlation process. This is based on the concept that the

relationship propagate form parent to children nodes. However, the removal of edges

does not affect any loss of data, as the logical connections are specified in layers.

5.2.6 Event generation

This is the main component that describes the multi-stage intrusion details. Based on the

output of alert correlation, a new entry is created for each detected event. However, its

data is updatable based on the aggregation results of both alerts and events. Any

upcoming event is compared with previous ones to check for any merging opportunity.

New events are generated as independent event if at least two alerts are correlated.

Then, the system checks for any attribute matching with the previous event in addition

149

to any detected logical link based on capabilities information. If a matching is detected

the two events are combined as single event and the previous event is identified as a

master event. The event remains open until it is closed either by the administrator or a

defined time window. The interactive administrative tools provided by the system allow

the administrator to update or close any open events. Table 5.2 shows the information

included in each event.

Table 5.2 Events information.

Field Description

Event ID A unique event identifier

Start time The earliest start time among involved alerts

End time The latest end time among involved alerts

Title The event title constructed by the names of the involved attacks

Alert count Number of involved alerts

Priority Importance level of the event based on the severity of involved alerts

Closed To identify if the event has been identified and closed

Master ID The ID of the master event if this event has been combined with other event

5.2.7 Alert aggregation

The alert aggregator component maintains the resulting correlated alerts to minimise the

redundancy. If a group of alerts share the same source and attack class, it is practical to

keep only a representative alert and remove any duplicates. This task is done after

correlation so as not to overload the system by aggregating isolated alerts. The main

task of this component is to remove redundancy in graph nodes which are representing

the same attack. There are two levels of aggregation: one is based on the attack

signature and the other is to extend the aggregation to include all alerts classified as the

same attack types.

The aggregation task is performed for all correlated alerts by assigning the first detected

alert as a master alert. The links between the other alerts (the aggregated ones) are

150

replaced links to the master alert. The start and the end times of the master alert are

changed to become the earliest and latest times among the aggregated alerts. However,

no data will be lost as all the information is saved in the database and the disaggregation

function is available.

5.2.8 Attack scenario construction

The purpose of the attack scenario construction component is to identify high level

attack patterns that are composed of several individual attacks. For example, consider an

intruder who first scans a victim host, then breaks into a user account on that host, and

finally escalates privileges to become the root user. The three steps should be identified

as belonging to one attack scenario. The attack scenarios are generated as graphs

composed of nodes and edges: nodes represent the attack name and edges represent the

logical relationships. The scenario graph is displayed as a summary of the attacker

activities after performing aggregation and graph reduction to remove redundancy.

Hence, the final goal of the developed system is to recognise attack stages connected in

a temporal sequence. The results of event generation and aggregation are expressed in

an attack graph to describe the attack scenario. An overview of the attack situation is

displayed for the administrator in the form of an interactive graph. The detailed

information of each entity in the attack graph can be navigated by the provided

administrative tools.

5.2.9 Interactive tools

The interactive administrative tools are used to provide a dynamic platform. The attack

scenario is presented as a graph of nodes. To save space, the nodes only show the alert

name, and other details can be retrieved using the available tools. Reports and results of

statistical analyses can be also accessed using these tools. Examples of some functions

can be executed through this component:

151

- Close the open events and that after the administrator makes sure that these events

will not be used any longer to be combined with other events. This mechanism is

more reliable than using time windows in addition that the multistage attack

activities are not frequent to overwhelm the administrator with huge amount of

administrative tasks.

- Support the knowledge base with the administrator experience. For example,

some new unknown attacks which are not identified in the knowledge base can be

added as temporary or permanent rules.

- Provide the facility to combine similar events which are not aggregated by the

system. For example, some attackers try different attack attempts looking for

some holes in the victim machine.

- Block IP addresses and send notification about suspicious activities.

5.3 MARS architecture

This system is composed of four major sub-systems: a MARS server, a MARS client,

sensor interfaces (e.g. Snort or Nessus) and a MARS database, as shown in Figure 5.3.

Figure 5.3 MARS architecture.

152

These sub-systems can be installed on different machines to take advantage of

distribution. It has been observed in Chapter 3 the limitations of the performance of

IDSs, as they require plenty of computational resources. Hence, the MARS system has

been designed as a stand-alone system running separately from the IDS to avoid any

impact on the IDS performance. In addition, the database storage to record all alerts

provides the system with the ability to function as a forensic tool. The server is running

as a daemon or a service in the background.

The diagram also shows the communications between the sub-systems. When the

system starts, two in-memory knowledge bases are created: the capabilities knowledge

obtained from the attack-defined knowledge, and the vulnerability knowledge supplied

by the vulnerability scanners, such as Nessus. These details are kept in-memory to allow

for faster communication and also because they are used frequently. The whole system

is implemented as an object-oriented design to provide modularity and dynamic data-

structure instantiation. We have made use of C++ programming language to manipulate

its efficiency.

The MARS database is the core system storage where the received alerts are handled

and stored. The correlation, aggregation and event generation results are also saved in

the database. The interaction with the database is kept to the minimum, as we have

manipulated the data structures provided by C++ for memory execution. Indexing is

used for faster access and SQL queries are hardcoded using C++ commands to improve

execution. The structure of the main database tables and related fields is shown in

Figure 5.4.

153

RawCollection

AlertID

SensorID

StartTime

EndTime

SrcIPAddress

SrcPort

SrcIPSID

DestIPAddress

DestPort

DestIPSID

SigID

SigPriority

ProtocolType

StatusID

MasterID

InfallEventID

Rules

RuleBasedID

SigID

SigName

SigProtocol

SigPriority

SigCategoryTypeID

SigDirection

PostCon Set

AlertID

EncodedCapability

StartTime

EndTime

Arguments

StatusID

IPSID

Port

IPAddress

CapabilityID

PreConSet

AlertID

EncodedCapability

StartTime

EndTime

Arguments

StatusID

IPSID

Port

IPAddress

CapabilityID

CorrelatedAlertsTemp

CorrelatedAlertID

CausingAlertID

CausedAlertID

AnalysisID

VirtualEdge

InfallEventID

SlaveInfallEventID

InfallEvent

InfallEvent ID

StartTime

EndTime

Title

Treated

TreatedTime

AlertCount

Priority

Description

Closed

ClosedTime

Supervisor

AnalysisID

MasterID

PostAnalysisID

HistoryCount

CorrelatedCount

TypeID

AggrRawCollection

AlertID

SensorID

StartTime

EndTime

SrcIPAddress

SrcPort

SrcIPSID

DestIPAddress

DestPort

DestIPSID

SigID

SigPriority

StatusID

RawCollectionCount

InfallEventID

PostAnalysisID

Layer

NodeCategeory

CorrelatedAlerts

CorrelatedAlertID

CausingAlertID

CausedAlertID

AnalysisID

VirtualEdge

InfallEventID

SlaveInfallEventID

AggrCorrelatedAlerts

CorrelatedAlertID

CausingAlertID

CausedAlertID

AnalysisID

VirtualEdge

InfallEventID

Figure.5.4 Main database tables.

- RulesCollection is a container of all available Snort VRT signatures, bleeding edge

signatures, community signatures and our developed signatures. Signature ID and

signature name is a mapping of the information in the original Snort signatures. Each

signature has a priority field for assigning the degree of severity of the detected attack.

154

The main purpose of the rules collection is the classification of each received alert based

on the techniques described in Chapter 4. The intrusion category details play a main role

in specifying the attack scenario and in predicting the possible undetected behaviour.

Signature direction denotes attack direction, where 0: source address, 1: destination

address, and 2: bidirectional.

- InfallEventCollection contains the history of all detected events. An initial record is

created once a new event is observed. The title of the event is constructed from the

sequence of intrusion categories. The event remains open for any further joining alert

until it is closed based on either administrative action or a configurable time period. To

detect slow-and-low attacks, this period of time can be maximised without affecting the

system's performance.

- The final correlation results are stored in the CorrelatedAlerts container, which holds a

record for each correlated and aggregated events. If the alert belongs to combined

events, the details of the master and slave events are recorded. Any further aggregation

will be presented in the AggrCorrelatedAlerts container.

MARS Client is a sub-system that provides tools offering interactive administrative

tasks. The graphical user interface is implemented here using the aid of commercial

tools, namely DevExpress [165], to save on implementation time. Once an event is

detected, it is directly displayed and the administrator can navigate to obtain detailed

information. Sensor interfaces are adapters providing communication between the

MARS system and other tools. For instance, the Snort interface performs alert

normalization to be compatible with the database formats. A typical deployment of

these sensors is on different machines.

155

The incoming alerts are directed to the system memory and replicated to the storage

database. The data format is mostly similar to IDMEF in addition to a few fields

updated by the system during correlation analysis. For example, the aggregation process

assigns a master alert for each aggregated group, the MasterID field will be updated

each time the algorithm executes. Appendix II shows the graphical interface of the

MARS server and client with some attack graph examples.

5.4 Real-time and near real-time implementation

As discussed in Chapter 2, there are two main algorithms for building an attack graph

for alert correlation 1) scenario graph algorithms that require complete descriptions of

all potential combinations of attacks. These approaches suit real-time application,

though any missing information or different variations of scenarios received will cause

the correlation function to fail; 2) the other algorithms, of which ours is one, are based

on an attack type graph such as approaches to model cause and effect conditions,

vulnerabilities and host information. These approaches are promising as they are more

dynamic and tolerant of missing descriptions. However, they are mainly implemented in

offline designs because of high computational requirements. Some efforts have been

made to implement real-time correlation but most of them rely on a time sliding

window, which consequently renders the system vulnerable to ―slow-and-low‖ or alert

flooding attacks.

Typically, event-driven applications are designed using either relational databases or

real-time messaging systems [166]. The former approaches are cost-effective and

provide deep analysis through data history without deadline constraints, but they mostly

operate in an offline fashion. The latter approaches are capable of functioning in real-

156

time processing but experience difficulties in keeping up with inherent complexities in

correlation systems.

The main advantage of real-time implementation is the instant detection of attack

scenarios and a potentially rapid reaction. The disadvantage of these systems is the

processing of alert streams, which requires the in-memory storage maintenance of a

large amount of states. In addition, acquired alert data need to be stable for long enough

so as to obtain an accurate correlation. And that requires a maximum time sliding

window that is definite even though it is considered large enough. On the other hand,

offline implementation lacks fast response, which could potentially lead to undetected

scenarios in the right time to avoid system corruption. However, the usage of a database

allows for the storage of a huge amount of data, reliable data reduction, dynamic

updates, and definitely more chance of a comprehensive analysis to achieve higher

accuracy.

Hence, we have made a trade-off between responsiveness and reliability by relaxing the

real-time constraints and restricting the offline requirements. We have defined a small

constant t seconds, e.g. 10 seconds, as the required interval in which to wait until a very

small batch of alerts arrive to be processed. The system executes its functionalities on

the database periodically and this offers a more thorough analysis. This near real-time

mechanism is to avoid performance problems and the limited available data in real-time

systems.

The proposed mechanism is based on the following assumptions:

1- Even though IDSs generate thousands of alerts per day, the serious attack

activities are slow-and-low. Persistent attackers will not cause a large noise so as

avoid notice by the operators. The conducted steps are spaced out over long

intervals of days or even weeks. Sometimes, in order to defeat time sliding

157

windows in real-time systems, attackers flood the system with huge amounts of

alerts hiding the real attack. Besides, all techniques used to prevent this type of

behaviour perform a memory erasure, which certainly causes data loss.

2- Typically, for the analysis systems to be more accurate, they must be fed by a

maximum amount of information. Database facilities provide a large amount of

stored data.

3- The incremental aggregation mechanism and the database maintenance to ignore

any redundant and already used data have minimised the performance penalty.

Every time the system processes a small group of alerts, these are only analyzed

using the results of the previous stages, without processing all the information in

the database.

4- Alert correlation systems are implemented as complementary functions to the

IDS. Hence, the delay between an alert being reported by the IDS and its

analysis by the alert correlation system must be small. Extending this delay with

a small time slot in order to obtain a precise view will not affect the whole

process.

5- Alert correlation is not a single task, but a multi-stage functionality: correlation,

alert aggregation, event aggregation and graph reduction. This complexity

requires flexible memory and data storage.

We have implemented a near real-time operation for the proposed alert correlation

system using a very small time for periodic database access. This will not affect the

system performance, as shown in the next chapter.

5.5 Implicit correlation

Implicit correlation of alerts is used when data analysis brings out some mapping

between alerts which are indirectly correlated. This approach is mainly based on

158

observing groups of alerts and extracts implicit correlation between them. Other works

focus on creating an extra layer of relationships between capabilities which can extend

the algorithm complexity. The multilayer attack classification mechanism refers each

alert to different layers of attack categories. The alerts share the same generic attack

class are correlated implicitly to bridge the gap which can be caused by missing alerts.

However, the increase in number of the graph edges can be reduced using graph

reduction techniques.

The implicit correlation is also used in our implementation for performance purposes.

The aggregation mechanism is used to eliminate the number of redundant alerts as well

as to reduce the search complexity. The representative alert is treated on behalf of the

other aggregated alerts in the database.

The requires/provides model [121] is primarily based on semi-explicit correlation

between logical attack conditions, unlike scenario-based approaches where logical and

temporal relations are hardcoded explicitly. Thus, the semi-explicit mechanism is

extended to consider implicit correlations between attacks. Relaxing the attack

definitions from specific to general provides the facility for implicit correlation, as

shown in Chapter 4. Moreover, we assume that attack conditions propagate from an

attack to others that classified in the same intrusion category. As discussed in the

previous chapter, graph reduction techniques are not intended to drop information;

instead, they are intended to make use of implicit connections.

 a b c d

time

Figure 5.5 Example of implicit correlation.

159

Consider the four alerts shown in Figure 5.5, which are related to the same scenario

detected in a temporal order. Alert a has implicit logical connections with alerts c and

d. There is no need to create a link between c, d and a, as the attack conditions

propagate from a to c, d and through to b. However, if c is missed, a link is created

between d and b. Section 4.4 of Chapter 4 shows how the knowledge representation

mechanism produces such a relationship. Most generic capabilities used to create a

causal relation between two alerts are not supposed to be correlated directly in the same

way as b and d. Moreover, the aggregation algorithm provides alert representatives for

implicit correlations, and hence produces less computational complexity. In [33], alerts

are classified first, hence more generic attack descriptions are produced, and then if two

classes are correlated, all their elements can be correlated. This mechanism can increase

the false positive rate and consume the system's resources. The capabilities themselves

are classified to provide this generalization concept.

5.6 Conclusion

This chapter describes the development and the implementation details of our MARS

framework. A system comprising several components has been developed to provide an

evaluation for the proposed algorithms in chapter 4. The MARS architecture has been

presented involving the MARS server, the MARS client and the administrator

interactive tools. The system has been implemented to work as a near real time system

providing a thoroughly analysis and at the same time responding with a short latency.

We have also discussed our method of the implicit correlation to keep the process of the

alerts to the minimum.

160

CHAPTER 6: EXPERIMENTS AND EVALUATION

6.1 Introduction

The implementation and design of our framework have been illustrated in the previous

chapter. To test and validate our approach, we have implemented various experiments in

a variety of test situations. A test-bench has been set up to examine system response and

to measure the accuracy and performance of the algorithms and their underlying

modules. A series of experiments have been conducted starting with DARPA2000, a

benchmark for testing alert correlation approaches. Then a dataset collected from a

controlled environment is used to measure system functionality. We have demonstrated

the system's detection accuracy using two of the most common attacks in cyber crimes:

SQLIA and Botnet attacks. And finally, a performance evaluation of our system in high

speed networks has been conducted.

6.2 Evaluation methodology

It has been discussed in Chapter 3 the evaluation of IDS issues. The evaluation of alert

correlation systems shares the same difficulties, as these are complement systems to

IDS.

- Detection Coverage: Alert correlation systems rely entirely on the coverage

detection capability of IDSs. Incomplete signature descriptions will lead to

undetected activities. In addition, coverage of knowledge-base information

affects the correlation process. Hence, it is essential to have attack signatures

and correlation rules to achieve maximum coverage. However, correlation

systems are more flexible in terms of the impact of missed descriptions. In

contrast, if the IDS misses an alert, there is no way to recover it. If generalized

techniques are considered, they usually result in a high rate of false positives in

161

IDSs. However, in alert correlation systems, generalized techniques maximize

the coverage of the correlation process with minimum impact of false positive

rates.

- False positives: An essential requirement of alert correlation systems is to

reduce false positive rates, as these affect IDS function. The false positives

generated by alert correlation are considered inconsistent and will be ignored.

The impact of this rate is less, as the construction of attack scenarios requires

only real persistent attacks. Some extra edges will be attached to the resulting

graph due to the broad knowledge description. However, the level of consistency

of these relations is low and only few nodes are involved along the attack path.

- Detection Accuracy: This measure indicates the detection rate of the true attack.

It is required to expand the detection accuracy rate while false positive rates are

kept to a minimum.

- Performance in high speed networks: The separation of the alert correlation

system from the IDS distributes the required processing power and offers higher

performance. Some measures are considered in this respect, such as CPU usage

and memory requirements. In typical deployment, the functions that have to be

performed by the correlation system require less than the IDS itself if the IDS

software implementation is considered. In real-time systems, the memory

limitation is the main concern, though near real-time implementation provides

higher performance.

The typical IDS evaluation methodology [62, 132, 167, 168] is to run the system under

test against a labelled dataset. The results obtained are analysed and evaluation

measures are calculated. In most evaluation approaches, the aim is to accomplish a high

rate of accuracy (soundness) and broader coverage (completeness). Soundness is the

162

capability of distinguishing between legitimate and attack traffic. Completeness is the

ability to achieve maximum detection coverage to include attacks and their variations.

In an alert correlation context, accuracy is measured using the system's ability to

provide a precise recognition of causal relationships between alerts. The completeness

criterion is determined by assessing the maximum correlation rate that the system can

achieve. In other words, the aim is to detect diversity of complex multi-stage attacks

with a minimum level of false positives rates.

In this respect, four types of criteria are considered to evaluate our alert correlation

system:

 Functional characteristics: to evaluate the basic functionality to perform the

correlation objective.

 Accuracy and completeness characteristics: to evaluate the quality of the

correlation function.

 Reduction characteristics: to evaluate the system's capability of eliminating data

redundancies.

 Performance characteristics: to evaluate system efficiency, including system

capacity under different traffic conditions and resource consumption (CPU,

memory, disk utilization).

6.3 Evaluation metrics

In signal processing, Receiver Operating Characteristics (ROC) [169] curves are in use

to assess the quality of a receiver. Similarly, ROC curves have been used to evaluate

IDSs, such as [170, 171]. The typical metrics used to illustrate IDS assessment are

detection rate (the average of detected actions to the observable ones) and the false

positive rate (1-detection rate). For signature-based IDSs as non-parametric IDSs, a

163

single point is used to represent the ROC instead of a curve. Furthermore, IDS measures

are non-binary, in contrast with signal processing metrics. For this reason, more generic

metrics are considered to assess our correlation system, which are inspired from

Information Retrieval (IR) systems [172]. The four measures used are:

 True positives (TP): denotes the correctly correlated alerts.

 True negatives (TN): denotes the correctly uncorrelated alerts.

 False positives (FP): denotes the incorrectly correlated alerts.

 False negatives (FN): denotes the incorrectly uncorrelated alerts.

In IR, the confusion matrix is used to measure precision and recall rate. In an alert

correlation context, precision is used to measure the soundness of the results and recall

is used to measure the completeness of the results. Figure 6.1 shows the measurement

terms applied to the correlation problem.

True Positives (TP)

Correctly correlated

alert rates

False Positives (FP)

Incorrectly correlated

alert rates

False Negatives (FN)

Incorrectly uncorrelated

alert rates

True Negatives (TN)

Correctly

uncorrelated alert

rates

Figure 6.1. Confusion matrix.

The recall rate denotes the proportion of TP (correctly correlated alerts) to the total

number of TP and FN (incorrectly uncorrelated alerts).

The true positive rate is the correctly correlated alert rate which is denoted by the recall

rate, and the optimal measure is 100%.

164

The precision rate denotes the proportion of TP (correctly correlated alerts) to the total

number of TP and FP (incorrectly correlated alerts).

Hence, the true alerts correlated by the system (assigned to be related but could be not

related) are the total of TP and FP. On the other hand, the related alerts (known to be

related and must be correlated) are the total of TP and FN. The optimal result is to

achieve a higher recall rate with a higher precision rate, which means maximum

precision and detection coverage. Figure 6.2 illustrates the relationships between the

confusion matrix measurements.

Irrelevant alerts

– correlated

(FP) Relevant alerts

– correlated

(TP)

Relevant alerts

– uncorrelated

(FN)

Detected

correlated

alerts

Relevant

alerts

Irrelevant alerts –

uncorrelated (TN)

Figure 6.2. Relations between the confusion matrix measures.

The overall system accuracy can be identified by calculating the percentage of correct

results (true positives and true negatives) to the total of all identified results.

6.4 Datasets

It has been identified that the unavailability of enough benchmarking datasets is the

major difficulty in evaluating IDSs in general [132]. However, there are some available

165

datasets have been used to evaluate alert correlation systems, such as DARPA2000

[161], Defcon [54] and honeypot datasets. However, the DARPA2000 dataset is still a

reference point in the evaluation process for the comparison of results. The DARPA

dataset was originally created to assess IDS sensors and is not designed for alert

correlation systems. Even though it has received a high volume of criticism [22] for lack

of realism of background traffic, being old and not reflecting the real attack scenarios, it

is the only well-documented available dataset. The Defcon dataset, a network capture of

a competition for hackers, is also commonly used to assess the correlation process.

However, it is different from real-world traffic because it contains a huge volume of

attack traffic only and with very limited IP addresses. The offline nature of such

recorded traces creates some problems: first, the sensor alerts are not included and we

have to use a certain sensor to regenerate the actual alerts, which may be different from

others based on the sensor coverage. Second, the verification process is typically

obtained from the status of the target at the attack time, and that has to be done

manually if using capture files. Furthermore, most of these traces are synthetically

created and lack a mix of the normal and anomalous traffic existing in real-life traffic.

On the other hand, the real traces recorded from real-life networks lack necessary

ground truth. And the attack traffic in these data does not contain enough activities to

represent successful multi-stage attacks [173]. In the main, datasets can be collected

using five different methods:

1- A purely attack dataset with no background traffic, which is very simple to

produce and is only used for basic validation of detection functionalities.

2- A dataset consisting of real background traffic obtained from production

networks and synthetic attacks, which is similar to real-life traffic to some

166

extent. However, it is not fully controlled, has privacy concerns and is not for

public use.

3- A dataset similar to 2- above but where the background traffic is sanitised to

provide semi-real life traffic. However, traffic data sanitation is a cumbersome

and error-prone task.

4- An entirely pure real dataset with real background traffic and real attacks

captured from a production network environment. This method requires

comprehensive analysis and data labelling, which is difficult, in addition to

privacy concerns and being unrestrained dataset. Moreover, collected attacks are

not only insufficient but require lengthy observation, which makes analysis

difficult.

5- A dataset with both synthetic attacks and background traffic. The main

advantage of this method is that the test environment is totally controlled and

there is no potential for non-identified variables. Consequently, the results

attained are more reliable and accurate. The drawbacks of this mechanism are

that it is very costly because various pieces of hardware and software as well as

services have to be installed, and the fact that it naturally does not reflect real-

life traffic.

Our evaluation methodology is to use different datasets as follows:

- Datasets traces from .pcap files using the same timestamp for comparison

purposes.

- Datasets obtained from a controlled setup to simulate real-life traffic.

6.5 DARPA 2000 datasets

DARPA 2000 datasets, including LLDDOS 1.0 and LLDDOS 2.0 [55], are often used

167

to evaluate IDSs and alert correlation systems. They consist of two multi-stage attack

scenarios to launch Distributed Denial of Service attacks (DDoS). The evaluation goal

is to test the effectiveness of our approach to recognize attack scenarios, to correctly

correlate the alerts, and to minimize the false positives. This experiment is carried out

mainly for functional testing to see how the system reconstructs attack stages. A

reduction test is also studied in this respect; however, the background traffic in this

dataset is limited. We have used these datasets for their available ground truth to assess

our correlation approach and to compare our results with those of other researchers.

These datasets do not contain the actual alerts from the IDS sensors, and hence we have

generated them using a Snort sensor. The resulting alerts can be slightly different from

others, but the generalized steps are similar.

Both DARPA 2000 datasets contains attacks conducted in stages. The attacker first

probes the target system to identify the live machines, then tries to breaks into the

system, then installs the DDoS software, and finally launches the DDoS attack to an off-

side network. The difference between the two datasets is that the LLDDOS2.0 includes

more sophisticated stages and stealthy attacks. In LLDDOS 2.0 a HINFO query has

been used instead of ICMP PING for scanning live hosts. We have tested our methods

on both, using the traces of the DMZ and the INSIDE network. We have used a player

[174] to replay the .pcap files using the same delay between packets in the original

traces. Snort 2.8.3, with maximum coverage configuration, has been used to generate

elementary alerts that are saved in an MSSQL database connected to the MARS engine.

6.5.1 Dataset description

To evaluate the basic functionality of our systems, we replay the individual .pcap files

corresponding to each attack phase as given by the dataset documentation. These .pcap

files are replayed in a series based on their temporal order to be analysed by the MARS

168

engine. The main file containing background traffic is also replayed to obtain other

necessary measurements. However, different researchers use different IDS sensors or

different configurations of the same sensor to generate alerts from these datasets. In

addition, the actual alerts collected during the simulation in the DARPA2000 dataset are

not recorded. For this reason, we had to present the detailed description of the received

alerts. Moreover, to understand how the correlation method identifies the causal

relationships between Snort’s alerts, the related alerts generated by Snort during the five

phases of the attack of INSIDE1.0 and INSIDE2.0 are summarized in Table 6.1. Each

phase has triggered certain groups of alerts according to the attacker’s activities. In

addition, Table 6.2 gives some traffic statistics of the four dataset captures. As

mentioned in early chapters of this thesis, the performance of any alert correlation

system relies entirely on the underlying IDS performance. In other words, if the IDS

sensor misses some attacks, the correlation system will consequently miss the attack.

However, missed attacks can be predicted implicitly by our generalized knowledge

presented in Chapter 4.

In Phase 1, the attacker performed ICMP PING from a single outside IP address

(202.77.162.213) to multiple class C subnets to discover live hosts in the target network

and 10 hosts were live. In our knowledge-base, the alerts ICMP PING and ICMP Echo

Replay have no pre-conditions, but they have a post-condition of Disclosure of a Live

Host. Therefore, when MARS detects these two alerts, it creates a potential relation

edge with corresponding attributes. And any other alert has a pre-condition of

Disclosure of a Live Host targeting the same IP address considering the time

constraints; it will therefore be correlated to the first detected alert.

169

Table 6.1 Description of the attack.
Phase Dataset Alert name #

Phase 1: Probing

INSIDE1.0

ICMP PING

ICMP Echo Reply

20

20

INSIDE2.0 No alerts

Phase 2:
Service mapping

INSIDE1.0

RPC portmap sadmind request UDP

RPC portmap Solaris sadmind port query

udp request

RPC sadmind UDP PING

ICMP Destination Unreachable Port

Unreachable

76

76

3

72

INSIDE2.0

RPC portmap sadmind request UDP

RPC portmap Solaris sadmind port query

udp request

RPC sadmind query with root credentials

attempt UDP

RPC sadmind UDP

NETMGT_PROC_SERVICE

CLIENT_DOMAIN overflow attempt

2

4

2

2

2

Phase 3:
Break-ins

INSIDE1.0

RPC portmap Solaris sadmind port query

udp request

RPC portmap sadmind request UDP

RPC sadmind UDP

NETMGT_PROC_SERVICE

CLIENT_DOMAIN overflow attempt

RPC sadmind query with root credentials

attempt UDP

INFO TELNET Access

28

14

14

14

4

INSIDE2.0 No alerts

Phase 4:
Installation of

mainstream software

INSIDE1.0
RSERVICES rsh root 8

INSIDE2.0
The same as in Phase 2 with different

source IP address

Phase 5:

Launching DDoS

attack

INSIDE1.0

SNMP AgentX/tcp request

BAD-TRAFFIC tcp port 0 traffic

SNMP trap tcp

SNMP request tcp

4

3

1

1

INSIDE2.0
ICMP Destination Unreachable Port

Unreachable

1

Table 6.2 DARPA2000 dataset statistics.

Dataset INSIDE 1.0 DMZ 1.0 INSIDE 2.0 DMZ 2.0

Snort Alerts 369 1262 25 12

#Alerts types 15 14 6 6

Protocol distribution TCP 9% 5% 9% 17%

UDP 61% 33% 91% 83%

ICMP 30% 62% 0% 0%

Src IP addresses 16 20 3 2

Dest IP addresses 22 769 3 2

In Phase 2, the hosts that are identified they are live, they are port mapped to determine

the running services. The attacker looks for a sadmind daemon running on Solaris live

hosts. Three hosts are running a sadmind service (172.16.115.20, 172.16.112.50, and

172.16.112.10), which are potential targets, creating a number of alerts by Snort.

170

According to our knowledge-base, these alerts have a pre-condition of Disclosure of a

Live Host capability and a post-condition of Disclosure of running service capability

sharing the same destination IP addresses of the alerts detected in Phase 1 and with later

timestamps. Hence, a correlation has been detected between these alerts and the two

alerts reported in Phase 1. Other activities associated with the discovery of the port

number connected to the sadmind service generate other alerts, which also are

correlated.

In Phase 3, the attacker has already gained the knowledge of the running sadmind

daemons, and vulnerabilities trials are performed in order to break into the system.

Remote-to-root attempts against each identified host are executed to cause buffer

overflow attacks. The detected alerts are shown in Table 6.1, including overflow

attempts and queries with root credentials. These alerts are consequences of the

disclosure of a running service and associated port number. The impacts of these alerts

on the target machine are potential System Access, Remote Access and Admin Access.

The attacker then tries to verify the level of achieved access using TELNET ACCESS,

creating the corresponding response from the IDS sensor.

In Phase 4, a .rhosts file is installed in /tmp directory in order to start up the mstream-

sol software on the victim hosts.

In Phase 5, the attacker manually launches the DDoS using TELNET login on the

victim machines running the master daemons of the mstream software. These activities

are not detected by the IDS sensor; however, they can be detected as bad traffic

behaviour if Snort is configured to do so. All related packets have spoofed source IP

addresses using random TCP ports on the victim machines.

171

LLDDOS2.0 is also a DDoS multi-stage attack using a stealthy behaviour to avoid

detection. Instead of ICMP PING, a DNS HINFO query is used to find out which hosts

are Solaris. HINFO records contain information regarding running OSs, only sadmind

query is performed, and those hosts are reported as Solaris. As shown in Table 6.1, there

are undetected activities in Phase 1. In Phase 2, the same alerts detected in INSIDE1.0

are detected, including port mapping and overflow attempts. The victim machine

(172.16.115.20) is broken into and is used to launch the attack. For this reason, it is not

necessary to consider DMZ capture. In LLDDOS1.0, the attack is accomplished from

outside the network, so DMZ and INSIDE captures should be considered.

We have conducted our test to evaluate the functionality of MARS by replaying the

individual .pcap files of each phase. Then, the whole traffic capture is used in order to

evaluate the reduction functionality.

6.5.2 Functional test

The five .pcap files are replayed in a temporal order using the same timestamps to

simulate the real attack. An interval of approximately three hours of traffic is analyzed

by Snort using our test-bench, and alerts are sent to the MARS server where the

database is located. The detected events evolve over time instead of by batch analysis.

The results obtained are shown in Table 6.3, both with and without the alert verification

mechanism.

Table 6.3 Functional test results, DE: detected events, RA: related alerts, CRBAG: Correlation

Rate Before Aggregation, CRAAG: Correlation Rate After Aggregation.

Dataset Alert verification disabled Alert verification enabled

DE RA CRBAG CRAAG DE RA CRBAG CRAAG

INSIDE1.0 10 325 2164 84 3 91 661 48

DMZ1.0 18 984 1464 138 3 91 439 52

INSIDE2.0 2 16 24 16 2 16 16 16

DMZ2.0 1 8 12 8 1 8 8 12

172

The number of detected events are shown in Figure 6.3, and it is clear that this number

is reduced using the verification techniques. Only three events associated with

successful attacks are identified. For the datasets INSIDE2.0 and DMZ2.0, there is no

reduction because the attacker has only targeted Solaris systems.

 Figure.6.3 Detected events in the functional test.

- INSIDE1.0: the system has detected a total of 10 events evolved over time. All events

are related to the actual attack; however, only three events are related to successful

attacks associated with the IP addresses (172.16.112.10, 172.16.112.50, and

172.16.115.20). This is determined by the vulnerability model to verify the potential of

successful attacks. The three events are similar in stages as the attacker

(202.77.162.213) has performed the same sequence of attack attempts, as shown in

Figure 6.4.

0

2

4

6

8

10

12

14

16

18

20

DMZ 1.0 INSIDE 1.0 DMZ 2.0 INSIDE 2.0

N
u

m
b

e
r

o
f

d
e

te
ct

e
d

 e
v

e
n

ts

Data sets

Events (Alert

verfication disabled)

#Events(Alert verfication

enabled)

173

Figure 6.4. Attack graph of the three detected events.

It should be noted that the alerts displayed in Figure 6.4 are aggregated alerts based on

our aggregation algorithm discussed in Chapter 4. Phase 5 is not detected because Snort

itself does not detect any activity explicitly said to be a DDoS attack. However, if Snort

decoders are enabled, 502 alerts classified as bad traffic are detected, which could be a

sign of DDoS behaviour. It is not reliable to correlate these alerts, as spoofed IP

addresses are used and this will have a negative impact on system performance,

producing a high volume of false positives in real life. Detecting the installation of

suspicious software in a protected network is more important than detecting actual

DDoS activities because the attack source will be under control in its initial stages.

Certain other events are detected if the alert verification is disabled reflecting

unsuccessful attacks, such as the host (172.16.115.87) shown in Figure 6.5. The attacker

has carried out the scanning stage and then a sadmind service discovery has been

performed; however, the target host has not responded and the attack attempt is ended

after two stages. This behaviour is considered a medium-priority event by MARS, as the

target host is not running a sadmind service.

174

Figure 6.5. Attack graph of non-critical events(INSIDE1.0) detected by MARS.

- INSIDE2.0: The nature of the LLDDOS2.0 multi-stage attack is to be stealthy,

reducing the noise amount over the target network. MARS has detected two events

associated with the hosts (172.16.115.20, and 172.16.112.50) and there is no

scanning stage. Only eight alerts (five aggregated alerts) are involved in each event

and three out of five stages are detected, as shown in Figure 6.6.

Figure 6.6. Attack graph of the events detected in INSIDE.2.0.

The alert verification technique does not reduce the number of detected events, as the

attacker only targets Solaris hosts where a sadmind daemon is running.

6.5.3 Accuracy reduction evaluation

In our initial work [175], certain experiments with DARPA 2000 datasets have been

performed to comparatively validate our approach. The goal of this initial evaluation

was to test the effectiveness of MARS in recognizing attack scenarios, correctly

correlating alerts, and minimizing false positives. In addition to our system, the system

175

developed by [35] (TIAA) is used for comparative evaluation. Table 6.4 shows the

results obtained, and a few main points can be summarized:

- Snort has not detected the behaviour of launching the DDoS attack itself;

however, the sequence of the attack has been detected.

- Certain different alerts are related to the same attack, such as sadmind daemon

attempts. However, these alerts are not ignored because the correlation system should

identify such cases.

- In the second scenario of the attack, a large amount of behaviour went undetected

due to the stealthy nature of the attack. However, the correlation system has to

recognize the security situation by discovering the causal relationships between alerts.

It is clear from Table 6.4 that the rate of both false positives and false negatives in

LLDDOS1.0 have been improved. However, the unsatisfactory results from the

experiment of the second dataset LLDDOS2.0 are similar to the TIAA system due to the

inability of Snort to detect all the attack activities. To measure the effectiveness of the

proposed system, the false positives and the false negatives are calculated according to

the definition of the confusion matrix presented in section 6.2.

Table 6.4 Comparative results to evaluate MARS effectiveness.
 LLDDOS1.0 LLDDOS2.0

 DMZ Inside DMZ Inside

Elementary alerts 3684 720 1214 199

Related alerts 1262 369 12 25

correlated alerts (relevant) 206 182 8 7

correlated alerts (detected)
TIAA 275 235 13 11

MARS 223 198 11 11

correctly correlated alerts

(TP)

TIAA 174 155 3 6

MARS 184 165 3 6

Incorrectly uncorrelated

alerts (FN)

TIAA 32 27 5 1

MARS 22 17 5 1

False positive rate
TIAA 25.1% 22.5% 38.5% 36.4%

MARS 8.25% 8.1% 27.3% 36.4%

False negative rate
TIAA 15.5% 14.8% 62.5% 14.3%

MARS 10.7% 7.23% 62.5% 14.3%

176

The graph in Figure 6.7 shows the main evaluation metrics, which are the false positives

and false negatives of both systems. It is clear that MARS achieved better performance

in all dataset traces. However, the high level of false positives for DMZ2.0 traces is

justifiable because most of the attack activities have been conducted from inside the

local network. The outside attacker has broken into a vulnerable host and continued

attacking other hosts locally.

 Figure.6.7 The main evaluation metrics of MARS and TIAA.

In the other previous works, the accuracy measurements are mainly based on the

number of correlated alerts regardless of how many correlation instances are associated

with the same alert. For example, there is no difference between two situations when

alert a is correlated with alert b, and the same alert a is correlated three times with b, c

and d. This case in our evaluation is considered to provide a more accurate assessment.

To achieve more accuracy, the number of relationships between alerts is considered

instead of only the number of correlated alerts. Providing a ground truth for a dataset

based on correlation instances is not an easy task and can be very difficult for huge

0

10

20

30

40

50

60

70

80

90

100

DMZ 1.0 INSIDE 1.0 DMZ 2.0 INSIDE 2.0

p
e

rc
e

n
ta

g
e

 (
%

)

Data sets

TIAA(FP)

MARS(FP)

TIAA(FN)

MARS(FN)

177

datasets. Our system has been evaluated using this mechanism on the DARPA dataset

because of extensive data description available. In addition, the dataset has been

comprehensively analyzed, assigning each single packet to its associated behaviour.

This has been achieved by a manual effort in addition to automatic analysis using

certain tools, such as BASE [176]. For each alert received from the Snort sensor, all

possible correlation chances are computed and are categorized according to whether or

not they are related to the main scenario. It should be noted that this process focused on

the four stages of the DDoS attack detected by the sensor.

The reduction functionality is vital in alert correlation systems in order to measure the

system's capability to minimize alert redundancy and false alarm ratios. For this reason,

experiments have been implemented on the LLDDOS traffic .pcap files using whole

recorded packets including background traffic. This methodology gives us a broader

evaluation context beyond detection functionality. Accuracy metrics are calculated to

determine recall, precision and accuracy rates. Our analysis results for the DARPA

dataset are summarized in Table 6.5

178

 Alert verification disabled Alert verification enabled

 LLDOS1.0 LLDOS2.0 LLDOS1.0 LLDOS2.0

 DMZ Inside DMZ Inside DMZ Inside DMZ Inside

elementary alerts 3684 720 1214 199 3684 720 1214 199

related alerts 1262 369 12 25 131 171 12 16

Correlation rate

relevant correlations 1849 2915 61 91 530 623 27 33

detected correlations 1788 2959 69 96 528 628 26 37

TP 1636 2731 42 67 513 613 18 28

FP 152 228 27 29 15 15 8 4

FN 213 184 19 14 17 10 9 2

TN 340 322 16 23 58 37 8 28

Recall rate (%) 88.4% 93.7% 60.9% 73.6% 96.8% 98.4% 60.3% 87.5%

Precision rate (%) 91.5% 92.3% 68.9% 82.7% 97.2% 97.6% 68.3% 93.3%

Accuracy 84.4% 88.1% 55.8% 67.7% 94.7% 96.3% 63% 90.3%

Correlations with aggregation 177 156 22 65 66 103 12 16

detected events 25 17 3 6 3 3 1 1

aggregated alerts 135 114 17 37 36 50 8 14

Reduction rate 96.3% 84.2% 98.6% 81.4% 99.1% 93.1% 99.3% 92.9%

Table 6.5 Evaluation results of the DARPA datasets – accuracy test.

179

Figures 6.8 to 6.11 illustrate the key results presented in Table 6.5. Our proposed

system has achieved high levels of accuracy among the datasets in LLDDOS1.0, and

acceptable levels in LLDDOS2.0. The only low accuracy rate recorded is from the

analysis of the DMZ2.0 dataset, and of which we are aware because the actual attack

was performed inside the network. The vulnerability model to verify the importance of

alerts is also showing a considerable improvement. This is apparent from the number of

detected events in each dataset. For instance, in DMZ1.0, the number of events has been

reduced from 25 events to only 3 related events. The overall accuracy rates are higher if

alert verification is used and satisfactory for other tests. In addition, the volume of alert

information has been significantly reduced, achieving more than a 90% reduction rate in

most test cases.

Figure 6.8 Recall rate (%) of the DARPA dataset.

Figure 6.9 Precision rate (%) of the DARPA dataset.

0

20

40

60

80

100

DMZ1.0 INSIDE1.0 DMZ2.0 INSIDE2.0

p
e

rc
e

n
ta

g
e

 (
%

)

Data sets

Alert Verification -disabled

Alert verification -enabled

0

20

40

60

80

100

DMZ1.0 INSIDE1.0 DMZ2.0 INSIDE2.0

p
e

rc
e

n
ta

g
e

(%
)

Data sets

Alert Verification -disabled

Alert verification -enabled

180

Figure 6.10 Overall accuracy rate (%) of the DARPA dataset.

Figure 6.11 Alert reduction rate (%) of DARPA dataset.

6.6 Real-life experiments in a controlled setup

To mitigate the problems in the previous datasets, a controlled network setup

environment has been used to simulate real attack stages. The proposed system has been

evaluated in a real high-speed network composed of actual and virtualised machines

connected via switch. Figure 6.12 shows the experimental setup, where multiple

machines are designated to communicate with services installed on our servers. This is

to reflect the normal background traffic that can be found in real-world scenarios. The

false positives generating machine is to add some noise by creating different isolated

attacks to different machines. The attacking machine is used to carry out the real attack.

The Snort sensor is connected to the switch's monitoring port in order to analyse the

passing traffic.

0

20

40

60

80

100

DMZ1.0 INSIDE1.0 DMZ2.0 INSIDE2.0

p
e

rc
e

n
ta

g
e

(%
)

Data sets

Alert Verification -disabled

Alert verification -enabled

0

20

40

60

80

100

DMZ1.0 INSIDE1.0 DMZ2.0 INSIDE2.0

p
e

rc
e

n
ta

g
e

 (
%

)

Data sets

Alert Verification -disabled

Alert verification -enabled

181

Background Traffic

(Win , Linux)

Background Traffic

(Win , Linux)

Attacking Machine Servers

Victim Machine False Positives

Generating Machine

Figure 6.12. Test bench.

To produce a reliable evaluation test, the following conditions are considered:

1- The traffic should contain malicious attack traffic as well as false positives,

because in a typical case the IDS sensor generates a high amount of false alarms.

In addition, some isolated real attacks should be injected to assess the correlation

system’s capability.

2- The environment should be controlled and every single action should be

documented. In this respect, the traffic of each machine has been recorded

individually and reanalysed it by Snort after the experiment. This is in order to

determine the original source of each generated alert. The total alert repository is

compared by individual alert containers in order to obtain a ground truth for our

evaluation.

3- The truth file is generated manually by matching individual alerts to the attack

stages. For the sake of simplicity and accuracy, each attack stage is performed

using different IP addresses, which are then changed to the original values. Each

group of alerts is assigned to the corresponding attack stage.

182

We have evaluated our approaches using two common Internet attacks as case studies:

Botnet and SQLIA.

6.6.1 Botnet attack experiment

The Botnet attack is a multi-stage and coordinated process, and to detect such activity

we need to obtain the whole picture of the attacker behaviour. Network-based and host-

based IDSs can detect certain attacks based on their signatures or protocol analyses.

However, detected events are treated as isolated activities and uncountable variations of

Botnets are discovered every day. Attackers tend to change their fingerprints to avoid

detection by IDS rules despite the fact that the general behaviours are similar. Even

though the IDS misses some attacks involved in Botnet activity, the network

administrator is still aware of the global view of a suspected Botnet behaviour. In

addition, according to several behaviour analyses [177, 178], Botnet communications

and activities are similar regardless of the common name of any used malicious

software. For instance, Zeus, Kneber and Bredolab [177] are variations of the same

malicious modular Botnets.

BotnetMaster
victim machine

C&C server

Initial Infection stage

Second Infection satge

Figure 6.13. Botnet lifecycle.

183

In spite of the fact that different Botnets have been identified in the field of security

analysis, almost all follow similar steps, which are known as Botnet lifecycles. These

sequences are shown in Figure 6.13 and summarized as follows:

1) Initial infection stage: This stage involves scanning for systems running vulnerable

services or responding to backdoors.

2) Second infection stage: Remote malicious code is loaded and software is installed in

the target machine using one or more available attack vectors. The infected system is

ordered to download the actual Botnet software from a dedicated Bot server. Then,

the code is executed and the machine becomes a Botnet member.

3) Connection to the C&C stage: The infected machine connects to the attacker and

receives commands to be configured and updated using C&C channels over IRC or

HTTP. In this stage, the actual Botnet activities begin.

4) Attacking other machines stage: Scanning activities are maintained to discover un-

patched and vulnerable systems to launch further possible infections.

5) Maintenance stage: Depending upon the capabilities of the target machine, the

attacker commands the Botnet members to download binaries, to connect to another

C&C server and to become involved in attacking other victims. The attacker also has

to be certain that all members can be reached using the Fast Flux DNS technique

[179] to hide malicious code deliveries under all dynamic network conditions.

Zeus [177, 180] Botnet is one of the emerging modular Botnets reflecting the darkness

of cyber crime world, first identified in 2007. It is also known as banking crimeware

and was motivated initially to steal banking credentials and account information. Some

of its abilities include stealing data submitted by HTTP forms, emails and FTP account

information, stealthy injection of HTML on the fly, and all redirection activities to trap

victims. It is a software package with GUI and its builder is responsible for creating all

184

necessary files such as executable files, PHP files and SQL templates in a straight

forward manner.

An older version of Zeus (as the new versions are sold by licence) has been installed on

one of our machines in our lab and on an isolated network. We have followed the

typical real-life scenario in simulating the traffic communications between the Bot

master and the victim machines. The simulated network is monitored by Snort and the

MARS engine. Snort is configured with all rules enabled including: VRT [23],

bleeding-Edge [181], Community, and Emerging Threat rules (ET) [182].

6.6.2 The basic functionality test for Botnet experiment

In this section, a simulation of the Zeus Botnet attack has been used to test the detection

efficiency of the proposed approach. We have pursued a Botnet scenario as occurs in

real networks, as described later in this section. Initially, the network traffic used

consisted of attack traffic only in order to assess the effectiveness of MARS. The

transmitted traffic has been recorded individually in .pcap files for further analysis.

Based on the typical Botnet scenario, each attacking action is assigned to its

corresponding stage. The attack steps and their related alerts are shown as follows:

1) The attacker starts scanning, looking for vulnerable systems to exploit or to install a

backdoor in the target machine. In this scenario, the attacker will use a new identified

application flaw, which is CVE-2010-0188 [39], Adobe Reader in versions earlier than

9.3.1. An embedded executable code launch command can be used to infect the target

machine. Metasploit [26] is used to perform this job by copying a malformed malicious

PDF document to the victim machine. Snort has triggered two signatures related to

scanning activity and three other signatures in connection to Shellcode and CVE-2010-

0188 vulnerability. As shown in Figure 6.14, the five alarms are correlated in a

185

sequence. This scenario is not necessarily Botnet activity, because it could be any other

attempt to obtain system access.

sid: 1394 SHELLCODE x86 inc ecx NOOP

sid: 16490 SPECIFIC-THREATS Adobe Reader malformed TIFF remote code execution attempt

sid: 15013 WEB-MISC Adobe Portable Document Format file download attempt

Figure 6.14. First attack stage.

2) The target host is infected and starts to connect to the C&C server to download

binaries and configuration files. An HTTP GET request is sent to the C&C server to

obtain encrypted configuration files. While these files are encrypted and their names

and since the URLs are random, it is very difficult for Snort and all other signature-

based IDS to detect such files. However, an alarm has been triggered in this stage

recognizing the name of the configuration file. These signatures have been added to

Snort VRT rules in version 2.8.6.1 in July 2010 [23].

sid: 2008100 ET TROJAN PRG/ Zeus InfoStealer Trojan Config Download

sid:16912 BLACKLIST URI request for known malicious URI - net/cfg2.bin

The previous signatures are part of a group of signatures to block certain suspicious

URI requests containing malicious websites tracked by Zeus Tracker [180].

3) Followed by the configuration files, an HTTP POST request was sent to the same

C&C server used in the second stage to fetch PHP files, and again the data in POST

BLEEDING-EDGE SCAN
NMAP -f -sS

SHELLCODE x86 inc ecx
NOOP

BLEEDING-EDGE SCAN
NMAP -sS

SPECIFIC-THREATS Adobe
Reader malformed TIFF remote

code execution attempt

WEB-MISC Adobe Portable
Document Format file download

attempt

186

request is encrypted. Snort fired an alarm similar to the alarms in the second stage but

with different URIs.

sid:16929 BLACKLIST URI request for known malicious URI - gate.php?guid=

4) Despite the fact that the previous two steps can be performed without a Snort

response using some obfuscation techniques, this stage can be identified. The server

response for the last step contains some recognized behaviour, which is the string

Content-Type:text/html, and the actual data are not in HTML or other legitimate

formats. Actually, there is a signature in Snort that can catch this piece of traffic, which

is sid:16460 [23], but it is deleted due to false positive concerns, as this case may exist

in normal traffic. Therefore if we have a system that recognizes false positives

generated by Snort, and this is the case with the MARS system, this alert will be

ignored if it is not involved in a real attack scenario. For this reason, the 16460 rule is

enabled to provide more information, and in case of an isolated false alarm, it will not

contribute to the attack picture. In addition, Snort has triggered other alerts based on ET

rules that identified some small binary downloads, which are suspicious behaviours that

need to be noticed. The sequence of correlated and aggregated alerts involved in this

stage and the previous two stages are shown in Figure 6.15.

sid:16460 WEB-MISC text/html content-type without HTML-possible malware C&C

sid:11192 POLICY download of executable content

sid:2003179ET POLICY exe download without User Agent

sid:2007671 ET POLICY Binary Download Smaller than 1 MB Likely Hostile

sid:2009033 ET POLICY Suspicious Executable (PE under 128)

sid: 2000419 ET POLICY PE EXE or DLL Windows file download

187

Figure 6.15. The second, third and fourth attack stages.

5) The last stage involves maintenance and update by downloading further binaries. In

addition, the infected machine participates in fast scanning and visiting malicious

websites that can be detected by policy rules. And on certain occasions, the infected

machine sends large numbers of DNS requests experiencing query failures or

redirection, which are very obvious signs of a Botnet attack. This part of the attack

scenario is shown in Figure 6.16, and the whole attack graph is shown in Figure 6.17.

sid: 2009028 ET MALWARE 404 Response with an EXE Attached - Likely Malware Drop

sid: 2009885 ET SCAN Unusually Fast 404 Error Messages (Page Not Found), Possible Web Application

Scan/Directory Guessing Attack

sid: 2011085 ET POLICY HTTP Redirect to IPv4 Address

Figure 6.16. The fifth attack stage.

It should be noted that these stages can be extended to perform the main purpose of the

infected machines, such as DDoS, spam and the distribution of malware. These

activities will also be included in the attack map if originated from the same machine.

ET TROJAN PRG/ Zeus

InfoStealer Trojan Config

Download

BLACKLIST URI request for

known malicious URI - net/cfg2.

bin

BLACKLIST URI request for

known malicious URI - gate.php?

guid=

WEB-MISC text/html content-

type without HTML - possible

malware C&C

POLICY download of executable

content

POLICY exe download without

User Agent

ET POLICY Binary Download

Smaller than 1 MB Likely Hostile

ET POLICY Suspicious

Executable (PE under 128)

ET POLICY PE EXE or DLL

Windows file download

ET MALWARE 404 Response
with an EXE Attached - Likely

Malware Drop

Error Messages (Page Not
Found), Possible Web

Application Scan/Directory
Guessing Attack

ET POLICY HTTP Redirect to
IPv4 Address

188

Figure 6.17. Graph of the extracted Botnet scenario.

BLEEDING-EDGE SCAN
NMAP -f -sS

SHELLCODE x86 inc ecx

NOOP

BLEEDING-EDGE SCAN

NMAP -sS

SPECIFIC-THREATS Adobe

Reader malformed TIFF remote

code execution attempt

WEB-MISC Adobe Portable
Document Format file download

attempt

ET TROJAN PRG/ Zeus

InfoStealer Trojan Config

Download

BLACKLIST URI request for

known malicious URI - net/cfg2.
bin

BLACKLIST URI request for

known malicious URI - gate.php?

guid=

WEB-MISC text/h tml content-

type without HTML - possible
malware C&C

POLICY download of executable

content

POLICY exe download without
User Agent

ET POLICY Binary Download

Smaller than 1 MB Likely Hostile

ET POLICY Suspicious

Executable (PE under 128)

ET POLICY PE EXE or DLL

Windows file download

Error Messages (Page Not

Found), Possible Web
Application Scan/Directory

Guessing Attack

ET POLICY HTTP Redirect to
IPv4 Address

ET MALWARE 404 Response

with an EXE Attached - Likely
Malware Drop

189

6.6.3 SQL injection attack (SQLIA) experiment

An SQLIA is also a multi-stage and coordinated process, and to detect such activities

we need to correlate the attacker’s actions. Some of these attack actions are detected by

IDSs based on available signatures. However, unlimited SQLIA variations are

discovered every day, in addition to the use of evasion techniques to deceive IDSs.

Moreover, some of the generic attack symptoms can be detected and are typically

considered isolated alerts. Hence, we need a correlation system to process different

activities over time in order to provide a global view of the attacker’s intention.

The typical SQLIA scenario is summarized as follows:

1. Application fingerprinting via input validation [183]: in this stage the attacker

tries to discover any vulnerable entry into the Web application using certain basic

techniques. This involves testing a Web page form its fields, query strings in URL

REQUEST and POST, or crafted values in cookies. A combination of strings such

as ′ , ″ ,), #, --, etc., can be sued to generate possible application errors. The attacker

has to perform this stage to fingerprint the application and the database, otherwise it

will be unclear which SQLI technique should be used. This stage can be a

combination of scanning and port mapping activities using some available fuzzing

tools.

2. Database fingerprinting: to gather information about the application and the

database incorporated in the previous stage. Analysis of different responses through

error messages is used to choose the appropriate method of injection, and this is

based on the type of the target database. Then database column numbers are

discovered and which ones are vulnerable. In this respect, different databases use

different syntax.

190

3. Attack stage: by exploiting the detected vulnerable columns to obtain extra

information, such as database version, server name, user table name, etc. A typical

injection technique is to use SELECT UNION to craft query statements in URL

requests.

4. Information disclosure: includes extracting data in user and password tables. It is

based on the available privilege levels gained by the attacker. Data modifications

can be performed, such as adding new user accounts and making deletions and

updates.

5. Advanced attack: to interact with the operating system in order to achieve full

control over the target system. Therefore, this is the most dangerous action that can

be exploited by such attack. This stage involves uploading files, such as shared

objects for Linux and Dynamic Link Library (DLL) for Windows. User-defined

functions supported by SQL databases can be used for more interaction with the OS

through direct command execution. Furthermore, the attacker can add some user

accounts and local groups to the OS.

We consider SQLIA as a multi-stage attack conducted by an attacker to compromise a

target system. PHP Web application vulnerabilities are exploited to gain access to the

MySQL database and to obtain table names, column names and stored data.

Consequently, the attacker acquires administrator privileges to upload malicious files to

control the Web server hosting the target application. We have followed the typical

scenario in real-life, simulating the traffic communications between the attacker and the

victim machine. The simulated network is monitored by Snort and the MARS engine

where Snort is configured with all the rules.

191

6.6.4 The basic functional test of the SQLIA experiment

In this section, simulating SQLIA has been used to test the detection accuracy of the

proposed approach. We have pursued the SQLIA scenario as occurs in real networks, as

described later in this section. Network traffic has been recorded in a .pcap file for

further analysis. We have used a similar technique as the one implemented in the last

experiment using attack traffic only, and then the experiment will be repeated using a

mix of real and synthetic traffic. The attack steps are as follow:

(1)The attacker starts to perform scanning and port mapping, looking for running

services; Snort has triggered two signatures related to scanning.

 sid: 2000537 BLEEDING-EDGE SCAN NMAP -sS

 sid:2000545 BLEEDING-EDGE SCAN NMAP -f -sS

(2)Discovery of vulnerabilities (basic SQLI techniques)

The attacker will initially use the basic techniques such as the symbols: ' , * , and " to

determine if the target website is vulnerable to SQLI. Also some other strings such as

1 = 1 , '1' = '1'))/*, or 1=1--, or "a"="a", can be injected.

And if an error is displayed on the target website, it means that the site is vulnerable,

e.g.: Warning: mysql_result(): supplied argument is not a valid MySQL result resource

Snort generates certain alerts related to this stage:

 sid:1000303 WebAttack PHPInjection test \' detected

 sid:1000304 WebAttack PHPInjection test 1=1 or 1=2

Figure 6.18 shows the evolving attack events generated by the MARS system based on

Snort alerts.

192

Figure 6.18. The first triggering event.

(3)Discovery of the number of columns in the target database: The attacker uses

ORDER BY to determine the total number of columns in the database. For instance, the

statement includes ORDER BY 1 to request the page to display the first column if no

error is displayed. This number is increased and decreased until the exact number of

columns is identified.

(4)Discovery of the vulnerable columns out of the identified ones in carried out in step

2. The UNION SELECT statement is used to identify which column is vulnerable that

can be exploited to get access to the database, as follows:

UNION SELECT 1,2,3,4,5,6,7,8

Then all vulnerable columns are displayed; in this experiment, 4, 6 and 7 are vulnerable.

Three types of signatures are generated by Snort in this stage.

sid:2010963 ET WEB_SERVER SELECT USER SQL Injection Attempt in URI

sid:1000302 WebAttack PHPInjection -1=select detected

sid: 1000305 WebAttack PHPInjection -union allselect

(5)Exploitation of the vulnerable columns to disclose the database information: In this

step, the attacker discovers the database name, version and usernames by substitution of

these variables in the vulnerable columns fields of the UNION SELECT statement as

follows:

UNION SELECT 1,2,3,4,5,concat(database(),version(),user()) ,7,8

BLEEDING-EDGE SCAN

NMAP -f -sS

WebAttack PHPInjection test \''

detected

WebAttack PHPInjection test 1=

1 or 1=2

BLEEDING-EDGE SCAN

NMAP -sS

193

This statement will display the requested information on the column 6 position of the

site page. This step is important because different versions of databases, MySQL in our

case, have different syntaxes. Snort responds with certain alarms.

sid:2011042 ET WEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt

sid:2011073 ET WEB_SERVER Possible Attempt to Get SQL Server Version in URI using SELECT VERSION

sid:1000302 WebAttack PHPInjection -1=select detected

sid:1000305 WebAttack PHPInjection -union allselect

(6)Disclosure of table names, usernames and passwords. The attacker will use the same

statement in step 5 to identify the names of the database tables, and to obtain the login

names and passwords from the user table. An example of this statement is shown below:

UNION SELECT 1,2,3,4,5,concat(table_name,column_name,table_schema),7,8 FROM information_schema_tables

WHERE column_name LIKE %pass%

Snort triggers similar alarms to the previous step.

(7)File privilege server path discovery: Knowledge of file privilege levels is very

important in order to read, write and upload files. An example of the statement used in

this respect is:

UNION SELECT 1,2,3,4,5,load_file(‘/’),7,8 FROM information_schema.user_privilages

In order to upload files to the target server, it is necessary to determine the server paths,

and there are different and easy techniques for this, for example:

UNION SELECT 1,2,3,4,5,@@datadir,7,8

The next action is to check the directories with write permission. Temporary directories

are the best choice in this respect, such as: /temporary/ , /temp/, /images/,/cache/, …etc.

UNION SELECT 1,2,3,4,5,load_file(‘/etc/password’),7,8 INTO OUTFILE ‘/home/www.site.com/images/passFile.txt’/*

UNION SELECT 1,2,3,4,5,’<?system($_get[‚c‛])?;>’,7,8 INTO OUTFILE ‘/home/www.site.com/images/c.php’/*

Below are some related Snort alerts:

sid:2010037 ET WEB_SERVER Possible SQL Injection INTO OUTFILE Arbitrary File Write Attempt

194

sid:1020053 WebAttack PHPInjection load_file

Figure 6.19 shows the extracted attack graph for the detected events.

Figure 6.19. The second and third events.

(8)Advanced attack stage: The attacker can list, modify, insert and delete some or all

information in the target database. In addition, files containing scripts or libraries can be

uploaded to configure the server and to provide more interaction with the operating

system. Snort reacts to some activities while others are not detected. However, the

correlation system can support discovery of the whole behaviour.

sid:1100061 WebAttack SQLInjection QueryData Domain

sid:2006443 ET WEB Possible SQL Injection Attempt -- DELETE FROM

sid:2006444 ET WEB Possible SQL Injection Attempt -- INSERT INTO

sid:2006447 ET WEB Possible SQL Injection Attempt -- UPDATE SET

Figure 6.20 shows the whole extracted attack graph consisting of a detected SQLIA

event.

195

Figure 6.20. Extracted SQLIA scenario graph.

6.6.5 Accuracy and reduction evaluation

In the last sections we have evaluated the correlation functionality for detecting Botnet

and SQLIA behaviour. Then, the same steps are repeated by mixing the original attack

with background traffic, isolated attacks and false positives. This is to determine the

recall, precision and accuracy characteristics of our approach simulating a real-life

environment. The target machine is attacked by Metasploit, with a similar behaviour to

a Botnet attack. The Nessus tool is also used for generating scanning behaviour. The

background traffic contains synthetic traffic using the traffic generator [134] and real

traffic using a communication with running services. The real traffic is limited

compared with the synthetic one, but at least it is more reliable than pure artificial

traces. It should be noted that we have intentionally avoided creating any other multi-

stage attacks than our planned attack. The multi-stage attack has been performed

carefully over a period of three hours to allow for intervals between steps. The

generated data is labelled using source IP addresses, destination IP addresses and

timestamps. We met the test requirements described earlier in this chapter to avoid

errors.

196

Table 6.6 Accuracy and reduction evaluation for Botnet and SQLIA experiments (AVd: alert verification

disabled, Ave: alert verification enabled).

 Botnet SQLIA

 AVd AVe AVd AVd

Snort alerts 1328 1186

FP (Snort) (%) 76% 73%

Correlation rate

relevant correlations 753 492 661 91

detected correlations 777 496 669 96

TP 734 489 637 67

FP 43 7 32 29

FN 19 3 24 14

TN 135 112 117 23

Recall rate (%) 97.5% 99.4% 96.4% 97.5%

Precision rate (%) 94.5% 98.6% 95.2% 96.8%

Accuracy 93.3% 98.4% 93.1% 95.8%

Correlations with aggregation 87 52 66 45

detected events 8 1 11 1

aggregated alerts 78 53 74 45

Reduction rate 94.3% 96% 93.8% 96.2%

Table 6.6 shows the results of the evaluation test for both Botnet and SQLIA

experiments. The improvement in accuracy measures over DARPA datasets is due to

the fact that all attack stages were detected by Snort. Only one high-priority event

would be detected if alert verification is used. The other events are with low priority,

and these consist mainly of scanning behaviour. In addition, in a real-world situation,

multi-stage attacks are not frequent and do not cause any noise because the attacker

must achieve its target in a stealthy manner. It is observed from these experiments that

the system has achieved significant data reduction and only one event is detected using

the alert verification component.

6.7 Performance evaluation

It has been identified in Chapter 3 that performance is a critical factor for the IDS as a

real-time system. This experiment has been performed to evaluate the performance of

the MARS engine as a complement component to IDSs. The performance

197

characteristics include resource consumption (CPU and memory usage) and processing

time of each alert. The objective of this experiment is to show that the correlation

engine will not affect the performance of the IDS's detection functionality. Two groups

of experiments have been conducted: one for offline implementation to measure alert

processing time, and the other for online implementation to assess performance under

different traffic volumes.

For the offline test, Snort and MARS are tested to process a batch of a number alerts

starting from 1,000 alerts to 100,000 under the same conditions. A pcap file contains

1,300,000 packets to generate 1000 alerts are read by Snort and thereafter processed by

MARS system. Then the pcap file is replayed to generate alerts from 1000 – 100,000

alerts. The CPU and Memory usage reading is taken from the task manager. The test has

been conducted on a Dual Quad-Core 2.0GHZ machine with RAM of 4.0 GB. Snort is

configured to log to an MSSQL database the same as MARS. The database server is

installed on the same machine to evaluate the worse performance case. Figure 6.21 and

Figure 6.22 show the results obtained for both systems.

Figure 6.21. Comparison of resource usage by Snort and MARS (offline test).

0

2

4

6

8

10

12

14

16

1 5 25 125

R
es

o
u

rc
e
s

u
sa

g
e(

%
)

No. of processed Alerts (Thousands)

Snort(CPU)

MARS(CPU)

Snort(Memory)

MARS(Memory)

198

These illustrate that the MARS correlation engine consumes less resources compared to

the Snort system for both CPU and memory usage. The alert processing time using

Snort increases proportionally with the number of alerts input. However, the MARS

engine is relatively stable even with the increase in the volume of alerts. And this is

explained by the fact that Snort inspects packet headers and content whereas MARS

inspects alert information.

Figure 6.22. Alert processing time of Snort and MARS.

A real-time evaluation has been conducted to demonstrate that the correlation system

will not affect overall performance, even with high-speed network traffic. The

performance of Snort in high-speed environments has been studied intensively in

Chapter 3, demonstrating the efficacy of Snort. It has been observed that Snort is

capable of processing incoming traffic with speeds of less than 750MB with acceptable

levels of packet dropping. Both systems have been tested with traffic ranging from

100MB to 750MB, as shown in Figure 6.23. The CPU resource demand by Snort

increases dramatically with higher traffic speeds. On the other hand, the MARS engine

1

10

100

1000

10000

1 5 25 125

P
ro

ce
ss

in
g

 t
im

e
(s

ec
)

No. of processed Alerts (Thousands)

Snort

MARS

199

continues to be stable, as the required processing power is less compared to the deep

packet inspection performed by Snort. Hence, alert correlation systems can be deployed

without requiring considerable resources.

Figure 6.23. Comparison of resource usage by Snort and MARS (online test).

It has to be mentioned that is not a comparison between Snort and MARS as equivalent

systems that perform the same functionalities. Snort processes all received packets and

inspects them against its rules to generate alerts. MARS takes these alerts and analyses

them to obtain the coordinated attacks while the number of alerts is typically less than

the number of network packets. Hence, in Figure 6.22, Snort has processed about

1,300,000 packets to produce 1000 alerts and only these alerts has been processed by

MARS. The goal of this experiment is to prove that MARS engine does not affect the

overall performance of the NIDS system.

6.8 Conclusion

In this chapter, we have discussed the evaluation issues related to the assessment of alert

correlation systems. Majority of the evaluation approaches are based on finding the

0

5

10

15

20

25

30

10 100 1000

R
es

o
u

rc
e
s

u
sa

g
e(

%
)

Transmitted Traffic (MB))

Snort(CPU)

MARS(CPU)

Snort(Memory)

MARS(Memory)

200

rates of false positives and false negatives. We have evaluated our system using

different metrics to identify the functionality, the reduction and the accuracy rates. An

experimental platform has been developed to perform different tests. The MARS tool

has been tested using DARPA 2000 data set to compare our results with others. The

obtained results have showed that the proposed system is capable to detect all attack

instances with lesser false positive rates. Then, we have implemented a real life test

using a controlled testing environment to evaluate the MARS capabilities to detect two

types of current cyber attacks i.e Botnet and SQLI attacks. It has been demonstrated that

our framework can applied to detect complex multi-stage attack. Botnet and SQLIA

traffic have been analyzed as case studies to measure accuracy and performance of

MARS tool. We have confidence that our system has achieved an improvement in

relation to identification of attack plans and reduction in graph complexity. False

positives have been reduced comparing with other approaches using vulnerability

knowledge base. We have also evaluated the performance of the MARS system using

offline and online testing. It has been demonstrated that the MARS function does not

affect the system’s overall performance as the resulting latency is mainly caused by the

NIDS system e.g Snort.

201

CHAPTER 7: CONCLUSION AND AVENUES FOR FUTURE

RESEARCH

7.1 Introduction

Network Intrusion detection systems (NIDSs) are gaining widespread interest as a

complement to traditional preventative techniques. More critical data is migrated to

online systems, which creates the need for efficient data-protection mechanisms and

monitoring tools. However, the performance of NIDSs is still debatable in terms of the

nature and amount of traffic to be processed, as well as detection accuracy. In this

thesis, we have addressed several complex issues in the field of NIDS technology in

relation to performance in high-speed networks and alert management systems.

In the initial stages of this research we implemented a comprehensive evaluation

methodology to measure the capability of software-based NIDSs in keeping up with

increasing network bandwidth. NIDSs, as network product systems, must exhibit the

same performance requirements and traffic characteristics. Furthermore, NIDSs perform

highly performance-intensive functions, such as deep packet inspection and state

maintenance. We have provided in-depth NIDS performance analyses utilizing a

representative real-life Gig network environment. The focus has been mainly on the

performance evaluation of Snort as a de facto open-source NIDSs. The results obtained

illustrate that software-based NIDSs installed on a general-purpose machine are not

capable of keeping up with traffic above 750Mbs in an ideal scenario. When the NIDS

becomes unable to handle packets in real-time, it starts to drop these, potentially

resulting in attack patterns being injected into the protected network.

The identified packet loss problem in the NIDS performance test in the initial phase of

this research has raised some considerations that have motivated the work implemented

202

in the rest of this thesis. We have found a proportional linear relationship between

packet loss and the rate of missed attacks. The missed attack limitation can be the result

of other factors, such as the absence of signatures and the use of evasion techniques.

However, we have adopted a dual-solution approach to mitigate both problems

irrespective of the root cause. Alert correlation systems have been widely used in

network management systems to localize the fault cause and to determine the

dependencies between detected events. We have proposed a reasoning alert correlation

framework consisting of several integrated components to draw an attack graph. Our

approach can build an overall view of the system's security status even with incomplete

alert information. The outcome of the proposed framework is the minimisation of the

effects of missing audit data, the reduction of the large volume of redundant alert which

are mostly false positives, and the extraction of an attack behaviour summary in the

form of a multi-stage attack scenario.

Received alerts are analysed and abstracted to a higher level of attack description using

a generalisation mechanism. Pre- and post-conditions inspired from requires/provides

models are applied to detect correlation characteristics. Supporting knowledge-bases are

formalized in a multi-level abstraction based on attack taxonomies. Generic signature

representatives in the form of attacker capabilities are constructed to obtain the

relationships between elementary alerts. To achieve an effective correlation system we

have used alert verification based on a vulnerability knowledge-base to suppress the

generalisation methods in the generalised attack concept.

The proposed alert correlation framework has been implemented in a tool called MARS

(Multi-stage Attack Recognition System) to validate our approach. A repository

contains alert data, mapped IDS signatures and detected events. Knowledge-bases reside

in-memory, where they are used by the detection engine. In addition, interactive

203

administrative tools are developed to dig in resulting events and aggregated alerts. The

developed system has been evaluated by various datasets applying different realistic

attack scenarios. Evaluation metrics have also been described in detail, and the results

obtained have been demonstrated in various forms.

7.2 Evaluation of NIDSs in high-speed environments

The main objective of this part of our research is to deal with the shortage of

information available on the evaluation of the performance of NIDSs in high-speed

networks. Most previous efforts have focused on the accuracy functions of the NIDSs

using moderate traffic loads. We have intended to provide a realistic evaluation

methodology reflecting real-life situations. We accept as true that if some packets are

not analysed by the NIDS under high traffic loads, this means that it will become

vulnerable to evasions from attackers. We have elaborated our evaluation tests using

extreme conditions under various scenarios. A multi-tier test methodology has been

utilized to investigate the system-under-test response, starting from moderate to

advanced hardware implementations. Snort performance has been evaluated on different

operating system (OS) platforms using host-based and virtual configurations. The

virtualisation test was motivated by its successful inception within the industry/business

community.

The test-bench was established using 10 Gbps network cards and supported by a Xenon

Quad-Core server and other machines with multi-processing powers. To achieve

practical results, we customised the traffic to be semi-real traffic with a range of packet

sizes, protocol distributions, number of connections and elapsed times. The outcome of

the test can be summarized as follows:

204

- It can be ascertained that Snort is not suitable for all configured implementations

with high volumes of traffic, e.g. above 750Mbps.

- There are no significant performance improvements, even with multi-core

processing configurations. In practice Snort, being a non-multithreaded design,

does not utilize the processing power provided by the hardware implementation.

- The implementation of Snort on virtualised platforms and using the current

configuration is not promising. This is realistic as virtualisation has its limitations

in terms of disk I/O performance.

- Packet drop caused by Snort performance efficacy results in the degradation of

overall system effectiveness and opens it up to overload and evasion attacks.

7.2.1 Avenues for future research

Architectural techniques to improve Snort performance are not the main focus of our

research. However, along the course of the performance evaluation, certain researches

directions have cropped up that lend themselves to recommendation.

There should be a mechanism to achieve a lower rate of packet drops by utilising the

available multi-core system. This can be done by performing an architectural re-design

of the Snort system to scale for high volumes of traffic with minimum packets loss. A

parallel concept can be employed for Snort in order to distribute the system processing.

In other words, Snort could be rebuild as a multithreaded application to run multiple

threads concurrently in order to utilise the processing power of multi-core systems. This

will increase the packet processing capabilities of Snort, and hence result in fewer

packets dropped.

Splitting traffic over multiple instances of Snort engines have been studied in some

respects [14, 43]. However, these mechanisms have not been implemented and

evaluated in a systematic manner. The received network traffic can be divided based on

205

flow level to insure that all packets related to a single flow are passed to the same

engine. The main concern is the problem of the distribution mechanism, as it adds more

burdens to the process. Efficient algorithms for light-weight processing techniques are

required to achieve cost-effectiveness.

It has been identified in the NIDSs literature that updated datasets are a necessity in

testing NIDSs, whether for performance or function evaluation. DARPA datasets are

still the benchmark in spite of being old and criticised for lack of realistic background

traffic. Moreover, there is a shortage in open-source traffic generators, and the available

tools have some limitations and cannot be relied upon.

7.3 A reasoning framework for alert correlation

The NIDS fire alerts coressponding to individual activities that are isolated from others,

leaving the prediction of incoming attacks to the adminstartor's estimation. Detection of

the actual intrusion may fail due to a variety of reasons: attacks may be missed due to

performance degregation, the corresponding signature not being provided, or the

attacker using a new variation of the intrusive behaviour. In order to provide a remedy

for missed attacks, whether caused by packet loss or the absence of signature

descriptions, we have proposed a fault-tolerant solution. The proposed system gathers

all information required to construct a context for understanding the attacker's

behaviour. A state record of each activity is built using aggregation and intellegent

correlation of detected events. Therefore, the decision is made according to a higher

level of information fusion.

A reasoning framework for alert correlation has been presented consisting of several

incorporated components. Therefore our objective is not limited to the estimation of the

security perspective, but provides a reduction in alert redundancies and false positives,

206

in addition to the detection of multi-stage attacks and attack verification. The alerts are

supplied by the IDS in real-time and then each alert is abstracted to an attack concept

based on signature modelling in the knowledge-base. Pre- and post-condition

mechanisms are applied to extract the relationships between events according to

temporal information based on time context and spatial characteristics, e.g. the location

of the detected activity and the vulnerability description.

Attack modelling: We have modelled attacks and attack capabilities on the basis of

inheritance and abstraction principles. Specific attack descriptions provided by the IDS

can reduce the detection domain and do not recognise the dependencies between alerts.

Alerts are modelled to attack concept abstractions based on the status of the system

being monitored. For example, consider two attack scenarios, m1 and m2, including the

installation of some backdoor Trojans. Scenario m1, in order to succeed, requires Trojan

x to be installed, and scenario m2 needs Trojan y to succeed. However, the IDS rules

have a signature for Trojan x, whereas Trojan y is unknown. According to the

hierarchical generalisation of attack capabilities, both scenarios will be categorized as

Trojan activities due to the similarity of their effect on the targeted system. The Trojan

installation action is just a single step among a sequence of stages in the performance of

the attack.

We have developed a set of algorithms to employ for the proposed farmework:

Alert correlation algorithm

The inputs of the algorithm are the instances of detected attack capabilities in the form

of encoded pre- and post-conditions. The intilization of these encoded conditions is

performed based on an in-memory knowledge-base of the attack concepts. The

correlation between the instances of elementary alerts is created according to partial

matching of hierarchical multi-layer capability descriptions. The matching criteria are

207

based on the rules infered from the knowledge-base. The source addresses of certain

attacks are considered whilst for others it is the destination address that is taken in

account according to the signature direction. This technique is proposed in order to

broaden the maximum detection coverage. This can result in a huge correlation of links;

however, a supression mechanism to distinguish only those connections that are related

is achieved using a vulnerabilty knowledge-base. In the intial stage, fine-grained

correlations are identified and saved in a temporay container.

Alert verfication

To avoid degradation in the correlation process quality, which can be caused by having

a false positive as an input, we have developed a filtering meachnism. A

complementory algorithm was developed to examine the oppotunity of attack success

according to vulnerability analyses and running services on the target system. This is an

opposed technique to the generalisation mechanism of abstracting alerts in order to

reduce false positives. Therefore the objective is to prioritize attacks based on their

success, where failed attacks are assigned low priority. However, the failed attack is

ignored unless it is considered as an attempt of real attack. The vulnerability knowledge

is updated in a passive fashion to minimise communication load during the detection

process.

Data reduction

The final result of the system is to produce a summarized attack graph in the form of

generlised events. In practice, this graph should be concise and meaningful,

disregarding insignificant details. The graph consists of nodes representing attack steps

and edges to specify the logical connection between these temporally ordered steps. We

have developed two algorithms for data reduction: one to minimise the number of

involved redundancy nodes and the other to remove duplicate edges.

208

Graph reduction

Two algorithms have been developed to remove transitive edges from the resulting

graph. We assume that the causal relationships propagate from root to leaf nodes.

Online graph reduction is performed throughout the first stage of the correlation

process. And offline algorithm is an optional, further reduction after the attack graph is

built to ensure that we have the minimum available graph. In addition, this technique is

used to restrain the relaxing mechanism in attack capabilities.

Alert aggregation

In contrast to graph reduction algorithms where the number of nodes is not affetcted,

here nodes are aggregated. We aggregate two alerts according to their similarity, e.g.

attack type and spatial and temporal characteristics. We also use a window time to

determine the temporal proximity of alerts that can be aggregated.

Event generation algorithm

Simultaneously during the correlation process, infall events are generated if at least two

correlated alerts are identified. Moreover, every detected infall event is examined if it

corresponds to a previous one. However, the recognized event is not reported untill the

resulting information is reduced and aggregated. The aggregated and verfied alerts are

linked to compose a new event representing the detected multi-stage attack.

Near real-time detection

Real-time correlation systems have been investigated in several research efforts. Most

of these methods tend to allocate memory space to store a bulk of states for a period of

time which is naturally finite. This can be useful for a limited time but is vulnerable to

detection avoidance. On the other hand, keeping a large amount of states in memory

becomes problematic if the number of states increases. All previous works assume that

209

related activities fall in a short time period, e.g. a few hours in the best-case scenario.

Therefore, we have developed a near real-time system to overcome the slow-and-low

attack. This technique leverages the analysis domain to include even very old activities.

However, to sustain higher performance, the alert data is maintained every time the

analysis executed.

7.3.1 Avenues for future research

Along the development of our framework, we have identified certain directions for the

improvement of the system's functioning.

1- Knowledge-based correlation approaches are precise and generate less false

positives. They require the description of every possible capability and map IDS

signatures to these capabilities. Probablistic approaches can uncover unidentified

relationships but they may produce false relationships. An amalgamation of both

techniques can be used in order to exploit their advantages. However, statistical

analyses can be employed to compute the similarities between alerts, and the

knowledge-base can be used to validate these decisions. This notion is borrowed

from the amalgamation of anomaly-based IDSs with signature-based IDSs.

Anomaly-based approaches have been investigated for several years but are still

immature. Even though some vendors claim that they are employing these techniques

in their products, they are considered black boxes. Therefore the use of an anomaly-

based IDS as a standalone system is impractical in terms of the high number of false

positives generated. We believe that such collaboration needs further investigation in

order to facilitate the correlation process.

2- We have adopted a passive approach to vulnerability acquisition, which is useful

in providing knowledge about protected networks. Instead, active analysis of the end-

host response for the attacker can be considered to yield more precise results. This is

210

due to the information supplied by the vulnerability scanner being insufficient for the

formulation of decisions regarding the success of attacks. The victim's point of view

about the attack can support the analysis process by providing accurate details, e.g.

whether the target port accepts the connection or not, which is not identified by the

normal scanner.

3- As the correlation accuracy can be improved with the involvement of the

maximum amount of available information, host-based IDS alerts may be used. In

addition, Web application IDS tools can also utilized to obtain reliable and true

observations. The incorporation of such systems requires a normalization stage to

unify the supplied information.

4- The problem in terms of the discrimination between different attackers attacking

the same target machine has been a debatable issue in the field of alert correlation. It

is very difficult to decide whether or not a group of attackers are cooperating.

Reliance on the source IP address is not feasible, as a single attacker can use several

spoofed IP addresses. Therefore a behaviour analysis that is not based on traditional

information is required. Analysis of only temporal characteristics is unrealistic

because, as stated on many occasions throughout this thesis, a skilful attacker's

activities can be conducted over long periods of time.

7.4 Implementation and evaluation of our framework

The proposed algorithms have been implemented in MARS tools to validate their

practical application. The MARS server represents the core of the system that performs

the functions of the collaborated components. Knowledge bases are stored in the

memory and the MARS database is interacted with periodically to handle received

211

alerts. We have also developed extensible client tools for the administrator to obtain

reports of multi-stage attacks in a visualised format.

We have evaluated the proposed system using a variety of datasets and by conducting

real-life scenarios. We have also explained the evaluation metrics and applied these to

obtain reliable results. Functional, accuracy and reduction evaluations have been

implemented on all test categories. The results obtained have shown significant progress

among all test parameters. For instance, the testing of the DARPA datasets yielded a

96.3% accuracy rate and a 99.1% reduction rate for INSIDE1.0. The alert verification

mechanism has raised the overall accuracy among all conducted scenarios. Moreover,

performance evaluation has also been elaborated using offline and online tests. The

results have illustrated that MARS consumes less resources than Snort in both tests. We

can conclude that the application of MARS does not affect the overall IDS performance.

212

Bibliography

[1]. D.S. Wall, ―Cybercrime, media and insecurity: The shaping of public perceptions

of cybercrime,‖ International Review of Law, Computers & Technology, vol. 22, no.

1, 2008, pp. 45-63.

[2]. S.W. Lodin and C.L. Schuba, ―Firewalls fend off invasions from the Net,‖ IEEE

Spectrum, vol. 35, no. 2, 1998, pp. 26-34.

[3]. J.C. Perez, ―Gartner: Security concerns to stunt e-commerce growth,‖ IDG News

Service, 2005.

[4]. K.P. Yee, ―Aligning security and usability,‖ Security & Privacy, IEEE, vol. 2, no.

5, 2004, pp. 48-55.

[5]. R. Trost, Practical intrusion analysis: prevention and detection for the twenty-first

century, Addison-Wesley Professional, 2009.

[6]. G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos and S. Ioannidis,

―Gnort: High performance network intrusion detection using graphics processors,‖

Springer, 2008, pp. 116-134.

[7]. P. Fogla, ―Improving the efficiency and robustness of intrusion detection systems,‖

PhD, Georgia Institute of Technology, Atlanta, GA, USA, 2007.

[8]. M. Akhlaq, F. Alserhani, A. Subhan, I.U. Awan, J. Mellor and P. Mirchandani,

―High Speed NIDS using Dynamic Cluster and Comparator Logic,‖ Proc. the 2010

10
th

 IEEE International Conference on Computer and Information Technology(CIT),

IEEE Computer Society, 2010, pp. 575-581.

213

[9]. A.A. Ghorbani, Network Intrusion Detection and Prevention: Concepts and

Techniques, Springer-Verlag New York Inc, 2009.

[10]. K. Julisch, ―Using Root Cause Analysis to Handle Intrusion Detection Alarms,‖

PhD, University of Dortmund, Germany, 2003.

[11]. T.H. Ptacek and T.N. Newsham, ―Insertion, evasion, and denial of service:

Eluding network intrusion detection,‖ Secure Networks, Inc., Jan, 1998.

[12]. M. Handley, V. Paxson and C. Kreibich, ―Network intrusion detection: Evasion,

traffic normalization, and end-to-end protocol semantics,‖ Proc. the 10th conference

on USENIX Security Symposium, USENIX Association, 2001, pp. 9.

[13]. C. Kruegel, F. Valeur, G. Vigna and R. Kemmerer, ―Stateful intrusion detection

for high-speed network's,‖ Proc. the IEEE symposium on Security and Privacy,

IEEE, 2005, pp. 285-293.

[14]. I. Charitakis, K. Anagnostakis and E. Markatos, ―An active traffic splitter

architecture for intrusion detection,‖ Proc. the 11
th

 IEEE/ACM International

Symposium on Modeling, Analysis and Simulation of Computer Telecommunications

Systems(MASCOTS 2003). , 2003, pp. 238-241.

[15]. M. Aldwairi, T. Conte and P. Franzon, ―Configurable string matching hardware

for speeding up intrusion detection,‖ ACM SIGARCH Computer Architecture News,

vol. 33, no. 1, 2005, pp. 99-107.

[16]. C. Clark, W. Lee, D. Schimmel, D. Contis, M. Koné and A. Thomas, ―A hardware

platform for network intrusion detection and prevention,‖ Network Processor

Design: Issues and Practices, vol. 3, 2004, pp. 99–118.

214

[17]. B.L. Hutchings, R. Franklin and D. Carver, ―Assisting network intrusion detection

with reconfigurable hardware,‖ Proc. the 10
th

 Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2002, pp. 111-120.

[18]. H. Youm and J. Lee, ―Web 2.0 Security Technology Trends and Promoting

Standardization,‖ Journal of Telecommunications Technology Association, vol. 117,

2008, pp. 21-29.

[19]. G. Young and J. Pescatore, ―Magic Quadrant for Network Intrusion Prevention

System Appliances,‖ Gartner RAS Core Research Note G, vol. 167309, 2009.

[20]. M. Roesch, ―Snort–Lightweight Intrusion Detection for Networks,‖ Proc. the 13th

USENIX conference on System administration, USENIX Association, 1999, pp. 229-

238.

[21]. V. Paxson, ―Bro: A system for detecting network intruders in real-time,‖

Computer Networks, vol. 31, no. 23, 1999, pp. 2435-2463.

[22]. J. McHugh, ―Testing intrusion detection systems: a critique of the 1998 and 1999

DARPA intrusion detection system evaluations as performed by Lincoln

Laboratory,‖ ACM Transactions on Information and System Security, vol. 3, no. 4,

2000, pp. 262-294.

[23]. ―Snort ‖; http://www.snort.org/.

[24]. J. Beale, A.R. Baker and J. Esler, Snort IDS and IPS Toolkit, Syngress Publishing,

2007.

[25]. G. Vigna, W. Robertson and D. Balzarotti, ―Testing network-based intrusion

detection signatures using mutant exploits,‖ Proc. the 11
th

 ACM conference on

http://www.snort.org/

215

Computer and communications security, ACM Press New York, NY, USA, 2004, pp.

21-30.

[26]. D. Maynor and K.K. Mookhey, Metasploit Toolkit for Penetration Testing, Exploit

Development, and Vulnerability Research, Syngress Press, 2007.

[27]. L. Schaelicke, T. Slabach, B. Moore and C. Freeland, ―Characterizing the

Performance of Network Intrusion Detection Sensors,‖ Recent Advances in Intrusion

Detection, Lecture Notes in Computer Science 2820, Springer Berlin / Heidelberg,

2003, pp. 155-172.

[28]. A. Valdes and K. Skinner, ―Probabilistic Alert Correlation,‖ Proc. the 4th

International Symposium on Recent Advances in Intrusion Detection Springer-

Verlag, 2001, pp. 54-68.

[29]. X. Qin, ―A probabilistic-based framework for infosec alert correlation,‖ PhD,

Georgia Institute of Technology, 2005.

[30]. S. Lee, B. Chung, H. Kim, Y. Lee, C. Park and H. Yoon, ―Real-time analysis of

intrusion detection alerts via correlation,‖ Computers & Security, vol. 25, no. 3,

2006, pp. 169-183.

[31]. H. Debar and A. Wespi, ―Aggregation and Correlation of Intrusion-Detection

Alerts,‖ Proc. the 4th International Symposium on Recent Advances in Intrusion

Detection Springer-Verlag, 2001, pp. 85-103.

[32]. F. Cuppens, ―Managing Alerts in a Multi-Intrusion Detection Environment,‖ Proc.

Third International Workshop on Recent Advances in Intrusion Detection, IEEE

Computer Society, 2001, pp. 197-216.

216

[33]. F. Cuppens and R. Ortalo, ―LAMBDA: A language to model a database for

detection of attacks,‖ Proc. 17th Annual Computer Security Applications Conference

Springer, 2001, pp. 197-216.

[34]. P. Ning and D. Xu, ―Toward Automated Intrusion Alert Analysis,‖ Network

Security, 2010, pp. 175-205.

[35]. P. Ning, Y. Cui, D.S. Reeves and D. Xu, ―Techniques and tools for analyzing

intrusion alerts,‖ ACM Transactions on Information and System Security (TISSEC),

vol. 7, no. 2, 2004, pp. 318.

[36]. K. Julisch and M. Dacier, ―Mining intrusion detection alarms for actionable

knowledge,‖ Proc. the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2002, pp. 366-375.

[37]. A. Zhang, Z. Li, D. Li and L. Wang, ―Discovering novel multistage attack patterns

in alert streams,‖ Proc. International Conference on Networking, Architecture, and

Storage-Cover, IEEE, 2007, pp. 115-121.

[38]. B. Zhu and A.A. Ghorbani, ―Alert correlation for extracting attack strategies,‖

International Journal of Network Security, vol. 3, no. 2, 2006, pp. 244-258.

[39]. ―Common Vulnerabilities and Exposures (CVE),‖

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0188.

[40]. N. Paulauskas and J. Skudutis, ―Investigation of the Intrusion Detection System

―Snort‖ Performance,‖ Electronics and Electrical Engineering, vol. 7, no. 87, 2008,

pp. 15-18.

[41]. ―NSS Labs,‖ http://nsslabs.com/.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0188
http://nsslabs.com/

217

[42]. W. Lee, J.B.D. Cabrera, A. Thomas, N. Balwalli, S. Saluja and Y. Zhang,

―Performance adaptation in real-time intrusion detection systems,‖ Proc. the 5th

international conference on Recent advances in intrusion detection, Springer-Verlag,

2002, pp. 252-273.

[43]. L. Schaelicke, K. Wheeler and C. Freeland, ―SPANIDS: a scalable network

intrusion detection loadbalancer,‖ Proc. the 2nd conference on Computing frontiers,

ACM, 2005, pp. 315-322.

[44]. M. Aldwairi, ―Hardware Efficient Pattern Matching Algorithms and Architectures

for Fast Intrusion Detection,‖ PhD, North Carolina State University, 2006.

[45]. V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R. Pang, R. Sommer

and N. Weaver, ―Rethinking hardware support for network analysis and intrusion

prevention,‖ Proc. the 1st USENIX Workshop on Hot Topics in Security USENIX

Association, 2006, pp. 11-11.

[46]. S. Axelsson, Intrusion detection systems: A survey and taxonomy, Technical

Report, Chalmers University of Technology, Dept. of Computer Engineering, 2000.

[47]. J. Riordan, D. Zamboni and Y. Duponchel, ―Billy goat, an accurate worm-

detection system,‖ Research Report RZ3609, IBM Research GbmH,. Zurich

Research Laboratory, 2005.

[48]. F. Valeur, D. Mutz and G. Vigna, ―A Learning-Based Approach to the Detection

of SQL Attacks,‖ Intrusion and Malware Detection and Vulnerability Assessment,

Lecture Notes in Computer Science 3548, Springer Berlin / Heidelberg, 2005, pp.

533-546.

218

[49]. F. CUPPENS and A. MIEGE, ―Alert correlation in a cooperative intrusion

detection framework,‖ Proc. the 2002 IEEE Symposium on Security and Privacy,

2002, pp. 202-215.

[50]. A. Wespi and H. Debar, ―Aggregation and Correlation of Intrusion-Detection

Alerts,‖ Recent Advances in Intrusion Detection, Lecture Notes in Computer Science

2212, Springer Berlin / Heidelberg, 2001, pp. 85-103.

[51]. F. Valeur, G. Vigna, C. Kruegel and R.A. Kemmerer, ―A Comprehensive

Approach to Intrusion Detection Alert Correlation,‖ IEEE Transactions on

Dependable and Secure Computing, vol. 1, no. 3, 2004, pp. 273--318.

[52]. A. Todd, R. Raines, R. Baldwin, B. Mullins and S. Rogers, ―Alert Verification

Evasion Through Server Response Forging,‖ Recent Advances in Intrusion

Detection, Lecture Notes in Computer Science 4637, Springer Berlin / Heidelberg,

2007, pp. 256-275.

[53]. G. Tedesco and U. Aickelin, ―Real-Time Alert Correlation with Type Graphs,‖

Information Systems Security, Lecture Notes in Computer Science 5352, Springer

Berlin / Heidelberg, 2008, pp. 173-187.

[54]. ―DEFCON : Hacking conference,‖ http://www.defcon.org/.

[55]. ―MIT Lincoln Laboratory ‖; http://www.ll.mit.edu/.

[56]. A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur and J. Srivastava, ―A comparative

study of anomaly detection schemes in network intrusion detection,‖ Proc. the Third

SIAM International Conference on Data Mining 2003, pp. 25–36.

[57]. V. Kumar, J. Srivastava and A. Lazarevic, ―Intrusion Detection: A Survey,‖

http://www.defcon.org/
http://www.ll.mit.edu/

219

Managing Cyber Threats, Massive Computing 5, Springer US, 2005, pp. 19-78.

[58]. R. Bace and P. Mell, Intrusion detection systems, US Dept. of Commerce,

Technology Administration, National Institute of Standards and Technology, 2001.

[59]. I. Ristic, Apache security, O'Reilly Media, Inc., 2005.

[60]. J.P. Anderson, Computer security threat monitoring and surveillance, Technical

Report, James P Anderson Co. FortWashington, Pennsylvania,USA, 1980.

[61]. D.E. Denning, ―An intrusion-detection model,‖ IEEE Transactions on software

engineering, vol. SE-13, no. 2, 1987, pp. 222-232.

[62]. H. Debar, M. Dacier and A. Wespi, ―Towards a taxonomy of intrusion-detection

systems,‖ Computer Networks, vol. 31, no. 8, 1999, pp. 805-822.

[63]. J.M. Estevez-Tapiador, P. Garcia-Teodoro and J.E. Diaz-Verdejo, ―Anomaly

detection methods in wired networks: a survey and taxonomy,‖ Computer

communications, vol. 27, no. 16, 2004, pp. 1569-1584.

[64]. P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez and E. Vazquez,

―Anomaly-based network intrusion detection: Techniques, systems and challenges,‖

Computers & Security, vol. 28, no. 1-2, 2009, pp. 18-28.

[65]. S. Zanero, ―Detecting 0-day attacks with learning intrusion detection system,‖

Blackhat Briefings, USA, 2004.

[66]. S.E. Smaha, T.A.S. Inc and T.X. Austin, ―Haystack: An intrusion detection

system,‖ Proc. the IEEE fourth Aerospace Computer Security Applications

Conference, IEEE Computer Society Press, 1988, pp. 37-44.

220

[67]. N. Ye, S.M. Emran, Q. Chen and S. Vilbert, ―Multivariate statistical analysis of

audit trails for host-based intrusion detection,‖ IEEE Transactions on Computers &

Security, vol. 51, no. 7, 2002, pp. 810-820.

[68]. D.E. Denning, D. Edwards, R. Jagannathan, T. Lunt and P. Neumann, ―A

Prototype IDES—A Real-Time Intrusion Detection Expert System,‖ Computer

Science Laboratory, SRI International, 1987.

[69]. T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G. Neumann and C. Jalali,

―IDES: a progress report [Intrusion-Detection Expert System],‖ Proc. the Sixth

Annual Computer Security Applications Conference, IEEE Computer Society Press,

1990, pp. 273-285.

[70]. H.S. Vaccaro and G.E. Liepins, ―Detection of anomalous computer session

activity,‖ Proc. IEEE Symposium on Security and Privacy, 1999, pp. 280-289.

[71]. S. Staniford, J.A. Hoagland and J.M. McAlerney, ―Practical automated detection

of stealthy portscans,‖ Journal of Computer Security, vol. 10, no. 1, 2002, pp. 105-

136.

[72]. M. Bishop, Introduction to computer security, Addison-Wesley Professional,

2004.

[73]. B.V. Nguyen, An application of support vector machines to anomaly detection,

Technical Report CS681, Ohio University, Athens, OH, USA, 2002.

[74]. S. Forrest, S.A. Hofmeyr and A. Somayaji, ―Intrusion detection using sequences of

system calls,‖ Journal of Computer Security, vol. 6, no. 3, 1998, pp. 151-180.

[75]. D. Mutz, F. Valeur, G. Vigna and C. Kruegel, ―Anomalous system call detection,‖

221

ACM Transactions on Information and System Security (TISSEC), vol. 9, no. 1,

2006, pp. 61-93.

[76]. C. Kruegel, D. Mutz, W. Robertson and F. Valeur, ―Bayesian event classification

for intrusion detection,‖ Proc. the 19
th

Computer Security Applications Conference,

IEEE Computer Society, 2003, pp. 14-23.

[77]. A. Valdes and K. Skinner, ―Adaptive, Model-Based Monitoring for Cyber Attack

Detection,‖ Recent Advances in Intrusion Detection, Lecture Notes in Computer

Science 1907, Springer Berlin / Heidelberg, 2000, pp. 80-93.

[78]. D. Barbara, N. Wu and S. Jajodia, ―Detecting novel network intrusions using

bayes estimators,‖ Proc. the First SIAM Conference on Data Mining, 2001.

[79]. M.L. Shyu, S.C. Chen, K. Sarinnapakorn, L.W. Chang, E. Miami Univ Coral

Gables Fl Dept Of and E. Computer, A novel anomaly detection scheme based on

principal component classifier, Defense Technical Information Center, 2003.

[80]. W. Wang, X. Guan and X. Zhang, ―Processing of massive audit data streams for

real-time anomaly intrusion detection,‖ Computer Communications, vol. 31, no. 1,

2008, pp. 58-72.

[81]. K. Dong Seong, N. Ha-Nam, T. Thandar and P. Jong Sou, ―An Optimized

Intrusion Detection System Using PCA and BNN,‖ Proc. the 6th Asia-Pacific

Symposium on Information and Telecommunication Technologies (APSITT 2005)

2005, pp. 356-359.

[82]. N. Ye, X. Li, Q. Chen, S.M. Emran and M. Xu, ―Probabilistic techniques for

intrusion detection based on computer audit data,‖ IEEE Transactions on Systems,

222

Man and Cybernetics, Part A, vol. 31, no. 4, 2001, pp. 266-274.

[83]. D.Y. Yeung and Y. Ding, ―Host-based intrusion detection using dynamic and

static behavioral models,‖ Pattern Recognition, vol. 36, no. 1, 2003, pp. 229-244.

[84]. S.B. Cho and H.J. Park, ―Efficient anomaly detection by modeling privilege flows

using hidden Markov model,‖ Computers & Security, vol. 22, no. 1, 2003, pp. 45-55.

[85]. M.V. Mahoney, ―A machine learning approach to detecting attacks by identifying

anomalies in network traffic,‖ PhD, Florida Institute of Technology, 2003.

[86]. W. Lee and S.J. Stolfo, ―A framework for constructing features and models for

intrusion detection systems,‖ ACM Transactions on Information and System Security,

vol. 3, no. 4, 2000, pp. 227-261.

[87]. J.E. Dickerson and J.A. Dickerson, ―Fuzzy network profiling for intrusion

detection,‖ Proc. the 19th International Conference of the North American on Fuzzy

Information Processing Society, 2000, pp. 301-306.

[88]. S.M. Bridges and R.B. Vaughn, ―Fuzzy data mining and genetic algorithms

applied to intrusion detection,‖ Proc. the National Information Systems Security

Conference, 2000, pp. 13-31.

[89]. C. Gates, ―Co-ordinated port scans: a model, a detector and an evaluation

methodology,‖ PhD, Dalhousie University, Halifax, Canada, 2006.

[90]. S. Ramaswamy, R. Rastogi and K. Shim, ―Efficient algorithms for mining outliers

from large data sets,‖ ACM SIGMOD Record, vol. 29, no. 2, 2000, pp. 427-438.

[91]. E.M. Knorr, ―Outliers and data mining: Finding exceptions in data,‖ PhD, The

223

University of British Columbia (Canada), 2002.

[92]. L. Ertoz, E. Eilertson, A. Lazarevic, P.N. Tan, V. Kumar, J. Srivastava and P.

Dokas, ―Minds-minnesota intrusion detection system,‖ Proc. Next Generation Data

Mining Challenges and Directions, MIT Press, 2004.

[93]. D. Barbará, J. Couto, S. Jajodia and N. Wu, ―ADAM: A testbed for exploring the

use of data mining in intrusion detection,‖ ACM SIGMOD Record, vol. 30, no. 4,

2001, pp. 15-24.

[94]. D.F. Gong, ―White Paper: Deciphering Detection Techniques: Part II Anomaly-

based Intrusion Detection,‖ Network Associates (McAfee Security), 2003.

[95]. F. Anjum, D. Subhadrabandhu and S. Sarkar, ―Signature based intrusion detection

for wireless ad-hoc networks: a comparative study of various routing protocols,‖

Proc. the IEEE 58
th

on Vehicular Technology Conference(VTC 2003), 2003, pp.

2152-2156 Vol.2153.

[96]. G.A. Stephen, String searching algorithms, World Scientific Pub Co Inc, 1994.

[97]. R.T. Liu, N.F. Huang, C.H. Chen and C.N. Kao, ―A fast string-matching algorithm

for network processor-based intrusion detection system,‖ ACM Transactions on

Embedded Computing Systems (TECS), vol. 3, no. 3, 2004, pp. 614-633.

[98]. J. Beale, A.R. Baker, J. Esler, T. Kohlenberg and S. Northcutt, Snort: IDS and IPS

toolkit, Syngress Media Inc, 2007.

[99]. F. Yu, ―High speed deep packet inspection with hardware support,‖ PhD,

University of California, 2006.

224

[100]. R.S. Boyer and J.S. Moore, ―A fast string searching algorithm,‖ Communications

of the ACM, vol. 20, no. 10, 1977, pp. 762-772.

[101]. A.V. Aho and M.J. Corasick, ―Efficient string matching: an aid to bibliographic

search,‖ Communications of the ACM, vol. 18, no. 6, 1975, pp. 333-340.

[102]. A. Barkalov and L. Titarenko, Logic synthesis for compositional microprogram

control units, Springer Verlag, 2008.

[103]. E.W. Spitznagel, ―High Performance Packet Classification,‖ PhD, Washington

University, 2005.

[104]. T. Abbes, A. Bouhoula and M. Rusinowitch, ―On the fly pattern matching for

intrusion detection with Snort,‖ Annals of telecommunications, vol. 59, no. 9, 2004,

pp. 1045-1071.

[105]. S. Rubin, S. Jha and B.P. Miller, ―Protomatching network traffic for high

throughputnetwork intrusion detection,‖ Proceedings of the 13th ACM conference on

Computer and communications security, 2006, pp. 47-58.

[106]. D. Stuttard and M. Pinto, The Web Application Hacker's Handbook: Discovering

and Exploiting Security Flaws John Wiley & Sons 2007.

[107]. E. Chickowski, ―Don’t Fear the Unknown: Behavior Analysis Intrusion

Prevention Defends Against Zero-Day Attacks.,‖ 2006;

http://www.processor.com/editorial/article.asp?article=articles%2Fp2817%2F32p17

%2F32p17.asp.

[108]. ―Request for Comments (RFC),‖ http://www.ietf.org/rfc.html.

http://www.ietf.org/rfc.html

225

[109]. J.D. Case, M. Fedor, M.L. Schoffstall and J. Davin, ―RFC1157: Simple network

management protocol (SNMP),‖ Internet RFCs, 1990.

[110]. S. Wu, U. Manber and E. Myers, ―A subquadratic algorithm for approximate

regular expression matching,‖ Journal of algorithms, vol. 19, no. 3, 1995, pp. 346-

360.

[111]. ―Snort-AI (Snort with Artificial Intellegence) ‖; http://snort-ai.sourceforge.net/.

[112]. ―The Lawrence Berkeley National Laboratory,‖ http://www.lbl.gov/.

[113]. M. Sipser, Introduction to the Theory of Computation, International Thomson

Publishing, 1996.

[114]. I.Tripwire, ―Tripwire changing monitoring and reporting solutions,‖

http://www.tripwire.com/it-compliance-products/te/ost/.

[115]. C.A.D.B. Cid, ―Ossec, open source host-based intrusion detection system,‖

http://www.ossec.net/.

[116]. H. Debar, D. Curry and B. Feinstein, ―RFC4765: The Intrusion Detection

Message Exchange Format (IDMEF),‖ IETF, 2006.

[117]. S.T. Eckmann, G. Vigna and R.A. Kemmerer, ―STATL: An attack language for

state-based intrusion detection,‖ Journal of Computer Security, vol. 10, no. 1, 2002,

pp. 71-103.

[118]. E. Michel and M. Ludovic, ―ADeLe: An attack description language for

knowledge-based intrusion detection,‖ Proc. the 16th international conference on

Information security: Trusted information: the new decade challenge Kluwer, 2001,

http://snort-ai.sourceforge.net/
http://www.lbl.gov/
http://www.tripwire.com/it-compliance-products/te/ost/
http://www.ossec.net/

226

pp. 353-368.

[119]. O. Dain and R.K. Cunningham, ―Fusing a heterogeneous alert stream into

scenarios,‖ Proc. the 2001 ACM workshop on Data Mining for Security Applications,

Citeseer, 2001, pp. 1–13.

[120]. B. Morin, L. Mé, H. Debar and M. Ducassé, ―M2D2: A formal data model for

IDS alert correlation,‖ Proc. the 5th international conference on Recent advances in

intrusion detection (RAID'02), Springer-Verlag, 2002, pp. 115-137.

[121]. S.J. Templeton and K. Levitt, ―A requires/provides model for computer attacks,‖

Proc. the 2000 workshop on New security paradigms, ACM, 2000.

[122]. Z. Li, J. Lei, L. Wang and D. Li, ―A data mining approach to generating network

attack graph for intrusion prediction,‖ Proc. Fourth International Conference on

Fuzzy Systems and Knowledge Discovery (FSKD 2007) IEEE, 2007, pp. 307-311.

[123]. J. Ma, Z. Li and W. Li, ―Real-Time Alert Stream Clustering and Correlation for

Discovering Attack Strategies,‖ Proc. the 5
th

 International Conference on Fuzzy

Systems and Knowledge Discovery, IEEE, 2008, pp. 379-384.

[124]. L. Zhitang, Z. Aifang, L. Jie and W. Li, ―Real-Time Correlation of Network

Security Alerts,‖ Proc. the IEEE International Conference on e-Business

Engineering(ICEBE 2007). 2007, pp. 73-80.

[125]. R. Agrawal and R. Srikant, ―Mining sequential patterns,‖ Proc. the Eleventh

International Conference on Data Engineering, 1995., 1995, pp. 3-14.

[126]. N. Desai, ―IDS correlation of VA data and IDS alerts,‖ Security Focus June

2003; www.securityfocus.com/infocus/1708.

http://www.securityfocus.com/infocus/1708

227

[127]. R. Gula, Correlating ids alerts with vulnerability information, Technical Report,

Tenable Network Security, 2002.

[128]. ―Nessus: Security Scanner,‖ http://www.nessus.org.

[129]. P. Porras, M. Fong and A. Valdes, ―A Mission-Impact-Based Approach to

INFOSEC Alarm Correlation,‖ Recent Advances in Intrusion Detection, Lecture

Notes in Computer Science 2516, Springer Berlin / Heidelberg, 2002, pp. 95-114.

[130]. G.F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide to

Network Discovery and Security Scanning, Insecure, USA, 2009.

[131]. L. Wang, A. Liu and S. Jajodia, ―Using attack graphs for correlating,

hypothesizing, and predicting intrusion alerts,‖ Computer communications, vol. 29,

no. 15, 2006, pp. 2917-2933.

[132]. P. Mell, V. Hu, R. Lippmann, J. Haines and M. Zissman, ―An overview of issues

in testing intrusion detection systems,‖ NIST IR, vol. 7007, 2003.

[133]. ―D-ITG V 2.6 ‖; http://www.grid.unina.it/Traffic/index.php.

[134]. ―LAN Traffic V 2 ‖; http://www.topshareware.com

[135]. ―Karalon's Traffic IQ Pro ‖; http://www.karalon.com/trafficiqpro.htm.

[136].―SmartBits,‖ http://www.spirent.com.

[137]. J. Sommers, H. Kim and P. Barford, ―Harpoon: a flow-level traffic generator for

router and network tests,‖ SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, 2004,

pp. 392-392.

[138]. L.M. Rossey, R.K. Cunningham, D.J. Fried, J.C. Rabek, R.P. Lippmann, J.W.

http://www.nessus.org/
http://www.grid.unina.it/Traffic/index.php
http://www.karalon.com/trafficiqpro.htm

228

Haines and M.A. Zissman, ―LARIAT: Lincoln adaptable real-time information

assurance testbed,‖ Proc. the IEEE Aerospace Conference 2002, pp. 2671-2676,

2678-2682.

[139]. ―CANVAS ‖; http://www.immunitysec.com/products-canvas.shtml.

[140]. F. Massicotte, F. Gagnon, Y. Labiche, L. Briand and M. Couture, ―Automatic

evaluation of intrusion detection systems,‖ Proc. the 22
nd

 Annual Computer Security

Applications Conference(ACSAC'06). 2006, pp. 361-370.

[141]. L. Juan, C. Kreibich, C.H. Lin and V. Paxson, ―A Tool for Offline and Live

Testing of Evasion Resilience in Network Intrusion Detection Systems,‖ Springer,

2008, pp. 267-278.

[142]. ―Infrastructure Security Report- ARBOR Networks,‖ 2010;

http://www.arbornetworks.com/report.

[143]. E. Verplanke, ―Understand packet-processing performance when employing

multicore processors,‖ Embedded Systems Design, vol. 20, no. 4, 2007, pp. 36.

[144]. T. Vermeiren, E. Borghs and B. Haaodorens, ―Evaluation of software techniques

for parallel packet processing on multi-core processors,‖ Proc. the First IEEE

Consumer Communications and Networking Conference(CCNC 2004). , 2004, pp.

645-647.

[145]. F. Schneider, J. Wallerich and A. Feldmann, ―Packet capture in 10-gigabit

ethernet environments using contemporary commodity hardware,‖ Lecture Notes in

Computer Science, vol. 4427, 2007, pp. 207.

[146]. L. Foschini, A. Thapliyal, L. Cavallaro, C. Kruegel and G. Vigna, ―A Parallel

http://www.immunitysec.com/products-canvas.shtml
http://www.arbornetworks.com/report

229

Architecture for Stateful, High-Speed Intrusion Detection,‖ Information Systems

Security, 2008, pp. 203-220.

[147]. ―ProCurve Series 2900 Switch,‖ http://www.hp.com

[148]. ―NetCPS. ,‖ http:// www.netchain.com/NetCPS/.

[149]. ―Tfgen.,‖ http:// www.st.rim.or.jp/~yumo/pub/tfgen.

[150]. ―Http Traffic Generator.,‖ http://www.nsauditor.com/.

[151]. ―Hping V 2,‖ http://www.hping.org/download.html.

[152]. ―Bandwidth Monitor ‖; http://sourceforge.net/projects

[153]. ―Nload ‖; http://www.sourceforge.net/projects/nload/.

[154]. A. Singh, ―An introduction to virtualization.,‖ 2004;

 http://www.kernelthread.com/publications/virtualization.

[155]. ―Business value of virtualization: Realizing the benefits of integrated solutions,‖

2009;http://h18000.www1.hp.com/products/servers/management/vse/Biz_Virtualizat

ion_WhitePaper.pdf.

[156]. J. Xu, M. Zhao, J. Fortes, R. Carpenter and M. Yousif, ―On the use of fuzzy

modeling in virtualized data center management,‖ Proc. the 4
th

International

Conference on Automotatic Computing (ICAC2007), IEEE, 2007, pp. 25.

[157]. ―SATA Technology,‖ http://www.serialata.org/.

[158]. ―Disk Queue Length Counter,‖

 http://www.windowsnetworking.com/articlestutorials/Windows-Server-2003-

230

PerfTuning.html.

[159]. M. Akhlaq, F. Alserhani, I.U. Awan, J. Mellor, A.J. Cullen and P. Mirchandani,

―Virtualization Efficacy for Network Intrusion Detection Systems in High Speed

Environment,‖ Information Security and Digital Forensics, Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering 41, Springer Berlin Heidelberg, pp. 26-41.

[160]. J. Zhou, M. Heckman, B. Reynolds, A. Carlson and M. Bishop, ―Modeling

network intrusion detection alerts for correlation,‖ ACM Transactions on Information

and System Security (TISSEC), vol. 10, no. 1, 2007, pp. 4-es.

[161]. J.W. Haines, R.P. Lippmann, D.J. Fried, E. Tran, S. Boswell and M.A. Zissman,

DARPA intrusion detection system evaluation: Design and procedures, Technical

Report, Lincoln Laboratory, Massachusetts Institute of Technology, 2000.

[162]. ―Security Focus - BugTraq.‖ http://www.securityfocus.com

[163]. X. Qin and W. Lee, ―Attack plan recognition and prediction using causal

networks,‖ Proc. the 20th Annual Computer Security Applications Conference

(ACSAC'04), IEEE, 2005, pp. 370-379.

[164]. H.A. Kautz, ―A formal theory of plan recognition and its implementation,‖

Reasoning about plans, Morgan Kaufmann Publishers Inc., 1991, pp. 69-124.

[165]. ―Developer Express,‖ http://www.devexpress.com/.

[166]. J.W.S. Liu, Real-time systems, Prentice Hall, 2000.

[167]. S. Axelsson, ―The base-rate fallacy and the difficulty of intrusion detection,‖

231

ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 3,

2000, pp. 186-205.

[168]. R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D.

Weber, S.E. Webster, D. Wyschogrod and R.K. Cunningham, ―Evaluating intrusion

detection systems: The 1998 DARPA off-line intrusion detection evaluation,‖ Proc.

DARPA Information Survivability Conference and Exposition(DISCEX'00), IEEE,

2002, pp. 12-26.

[169]. K.H. Zou, A.J. O'Malley and L. Mauri, ―Receiver-operating characteristic

analysis for evaluating diagnostic tests and predictive models,‖ Circulation, vol. 115,

no. 5, 2007, pp. 654.

[170]. D. Alessandri, ―Attack-Class-Based Analysis of Intrusion Detection Systems,‖

PhD, University of Newcastle, 2004.

[171]. R. Lippmann, E. Kirda, A. Trachtenberg, H. Dreger, A. Feldmann, V. Paxson and

R. Sommer, ―Predicting the Resource Consumption of Network Intrusion Detection

Systems,‖ Recent Advances in Intrusion Detection, Lecture Notes in Computer

Science 5230, Springer Berlin / Heidelberg, 2008, pp. 135-154.

[172]. E.M. Voorhees, D.K. Harman, N.I.o. Standards and Technology, TREC:

Experiment and evaluation in information retrieval, MIT press Boston, 2005.

[173]. ―iCAST/Acer eDC 2007 Intrusion Detection Alert Data Description,‖

http://www.chmao.idv.tw/project/acer07.html.

[174]. ―Colasoft Packet Player,‖ http://www.colasoft.com/packet_player/.

[175]. F. Alserhani, M. Akhlaq, I. Awan, A. Cullen, J. Mellor and P. Mirchandani,

232

―Multi-Tier Evaluation of Network Intrusion Detection Systems,‖ Journal for

Information Assurance and Security (JIAS), vol. 5, 2010, pp. 301 - 310.

[176]. ―Basic Analysis and Security Engine,‖ http://base.secureideas.net/.

[177]. K. Baylor and C. Brown, ―Killing Botnets: A view from the trenches,‖

October,2006; ttp://www.mcafee.com/us/local_content/white_papers/wp_botnet.pdf.

[178]. E. Stinson and J.C. Mitchell, ―Towards systematic evaluation of the evadability

of bot/botnet detection methods,‖ Proc. the 2nd Conference on USENIX Workshop

on offensive Technologies, USENIX Association, 2008, pp. 1-9.

[179]. H. Choi, H. Lee and H. Kim, ―BotGAD: detecting botnets by capturing group

activities in network traffic,‖ Proc. the Fourth International ICST Conference on

COMmunication System softWAre and middlewaRE(COMSWARE '09). , ACM,

2009.

[180]. ―Zeus Tracker,‖ https://zeustracker.abuse.ch.

[181]. ―Bleeding edge threats,‖ http://www.bleedingthreats.net/.

[182]. ―Emerging Threats,‖ www.emergingthreats.net/.

[183]. ―Open Web Application Security Project: OWASP Top Ten - Injection Flaws.,‖

2010; http://www.owasp.org/index.php/Top_10_2007-njection_Flaws.

233

Appendix I Snort signatures

An example of a Snort signature description:

Rule:

--

Sid:

610

--

Summary:

This event is generated when an attempt to login as the

superuser is attempted using rsh.

--

Impact:

Serious. If successful the attacker may have gained superuser

access to the host.

--

Detailed Information:

This rule generates an event when a connection is made using

"rsh" with the username "root". Such activity is indicative of

attempts to abuse insecure machines with a known default

configuration.

Some UNIX systems use the "rsh" daemon which permits remote

"root" logins. This may allow an attacker to connect to the

machine and establish an interactive session.

--

Attack Scenarios:

An attacker finds a machine with the "rsh" service running and

connects to it, then proceeds to guess the "root" password

--

Ease of Attack:

Simple, no exploit software required

--

False Positives:

A system administrator may be logging in to a host using the

username "root"

--

False Negatives:

If a local username is not the same as the remote one ("root"),

the rule will not generate an event.

--

Corrective Action:

Investigate logs on the target host for further details and more

signs of suspicious activity

Use ssh for remote access instead of rsh.

Deny remote root logins to the host, use a normal user and

"sudo" or give the user the ability to "su" to root where

appropriate.

234

Appendix II MARS GUI

1. MARS server interface

Figure.1 shows the MARS server interface with the following information:

Database IP : the IP address of the database server.

Server IP : the IP address and the operating port of the MARS server.

Client connections: the number of the connected MARS clients.

Analysis count: how many times the MARS server has analysed the database.

Last Analysis time: the time of the last analysis connection.

 Figure.1 MARS server interface

2. MARS client interface

The Figures 2-4 show the MARS client interface displayed to the administrator.

Evolving events are displayed as a list and old treated ones can be retrieved using events

query. The available information through this form includes:

Event ID : a unique number to identify all detected events.

Event Title: to describe the attacking activities based on the attack category.

Priority: indicates the severity level of an event (High, Medium ,and Low).

235

Start-time and End-time: to show the start and the end time of the event, these times are

not fixed as can be changed based the results of the event detection analysis.

Alert count: denotes the number of alerts involved in the detected event.

Steps: to identify the number of the attack stages.

Elapsed time: denotes the difference between the start and the end time of an event.

Confirmation: is used by the administrator if he thinks that an event is identified. If the

detected event is not clear it is left until further information is received.

Dealing : this facility is used if an event needs more vulnerability investigation and risk

analysis.

Close : when an event is identified, confirmed, and treated based on the organisation

policy, it is closed to minimise the system process.

Each events listed on the top of the main form has its related alerts information listed on

the bottom as shown in Figure.2. These alerts are aggregated and the number of

involving alert instances is displayed.

The attack graph of each event can be displayed using the menu list as shown in

Figure.4. The administrator can navigate each node to show its details. The detected

attack steps (graph nodes) are ordered temporally from left to right and the edges show

the causal relationships.

236

Figure.2 MARS client interface -1

237

Figure.3 MARS client interface -2

238

Figure.4 MARS client interface -3

239

Acronyms

BPF : Berkeley Packet Filter

CPU : Central Processing Unit

DARPA : Defence Advance Research Project Agency

DNS : Domain Name Server

DDoS : Distributed Denial of Service Attack

DoS: Denial of Service Attack

DMZ : Demilitarized Zone

FPGA : Field Programmable Graphical Array

FTP : File Transfer Protocol

GHz : Giga Hertz

GB : Giga Bytes

GUI : Graphical User Interface

Gbps : Giga bits per second

HIDS : Host based Intrusion detection System

HTTP : Hypertext Transfer Protocol

ID : Identification

IDS : Intrusion Detection Systems

IP : Internet Protocol

IP Address : Internet Protocol Address

IT : Information Technology

IDES : Intrusion Detection Expert System

IPS : Intrusion Prevention Systems

IRI : Informatics Research Institute

ICMP : Internet Control Message Protocol

I/O : Input/Output

240

IRC : Internet Relay Chat

LAN : Local Area Network

MARS: Multi-stage Attack Recognition System

Mbps : Mega bits per second

MB : Mega Bytes

NIDS : Network Intrusion Detection Systems

NSRG: Network Security Research Group

NIC : Network Interface Card

NAPI : New Application Program Interface

OS: Operating System

PCI : Peripheral Component Interconnect

PCIe : Peripheral Component Interconnect Express

RFC: Request for Comments

RPC : Remote Procedure Call

RAM : Random Access Memory

SNMP : Simple Network Management Protocol

SMTP : Simple Mail transfer Protocol

TCP: Transmission Control Protocol

UDP : User Datagram protocol

VLAN : Virtual Local Area Network

	cover_sheet_thesis
	University of Bradford eThesis

	Faeiz-Thesis-2011

