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Abstract

The tremendous increase in usage and complexity of modern communication and
network systems connected to the Internet, places demands upon security management
to protect organisations’ sensitive data and resources from malicious intrusion.
Malicious attacks by intruders and hackers exploit flaws and weakness points in
deployed systems through several sophisticated techniques that cannot be prevented by
traditional measures, such as user authentication, access controls and firewalls.
Consequently, automated detection and timely response systems are urgently needed to
detect abnormal activities by monitoring network traffic and system events. Network
Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS)
are technologies that inspect traffic and diagnose system behaviour to provide improved
attack protection.

The current implementation of intrusion detection systems (commercial and open-
source) lacks the scalability to support the massive increase in network speed, the
emergence of new protocols and services. Multi-giga networks have become a standard
installation posing the NIDS to be susceptible to resource exhaustion attacks. The
research focuses on two distinct problems for the NIDS: missing alerts due to packet
loss as a result of NIDS performance limitations; and the huge volumes of generated
alerts by the NIDS overwhelming the security analyst which makes event observation
tedious.

A methodology for analysing alerts using a proposed framework for alert correlation
has been presented to provide the security operator with a global view of the security
perspective. Missed alerts are recovered implicitly using a contextual technique to
detect multi-stage attack scenarios. This is based on the assumption that the most
serious intrusions consist of relevant steps that temporally ordered. The pre- and post-
condition approach is used to identify the logical relations among low level alerts. The
alerts are aggregated, verified using vulnerability modelling, and correlated to construct
multi-stage attacks. A number of algorithms have been proposed in this research to
support the functionality of our framework including: alert correlation, alert aggregation
and graph reduction. These algorithms have been implemented in a tool called Multi-
stage Attack Recognition System (MARS) consisting of a collection of integrated
components. The system has been evaluated using a series of experiments and using
different data sets i.e. publicly available datasets and data sets collected using real-life
experiments. The results show that our approach can effectively detect multi-stage
attacks. The false positive rates are reduced due to implementation of the vulnerability
and target host information.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

This recent era has witnessed a massive growth in the use of computer network
applications. More hosts are connected to the Internet to speed up business processes
and to provide more accessibility. This has increased reliance on e-business paradigms
providing dynamic and complex environments with interconnections of critical
infrastructure elements. The inherently invisible nature of Internet usage, in most cases
due to political reasons and the absence of legislation, has made these systems targets
for hackers and intruders [1]. Traditionally, firewalls have been used as perimeter
guards for organizational networks to filter incoming and outgoing traffic [2]. However,
the number of sophisticated attack methods is growing, such as multi-vector, multi-
stage and insider attacks, in addition to data leakage threats as more sensitive data is
stored in open-mode networks. Hence, an extra layer of defence is needed for deep

packet inspection and context-aware detection.

1.2 Security status

In spite of the existence of security mechanisms, incidents of attacks are still occurring
because attackers make use of flaws in implemented applications and services [3].
There are plenty of methods for bypassing traditional security systems, such as buffer
overflow, application layer attacks to trick users, and insider threats. Most of these
behaviours are considered legitimate because they do not violate the applied security
policies, though they are in fact malicious. In addition, from a business point of view, a

trade-off has to be made between strict security policies and productivity [4].

To provide protection mechanisms against the new trends in intrusion techniques,
advanced and intelligent intrusion detection and protection systems are required [5].

1



Firewalls and software patches can no longer be regarded as reliable means of providing
a defence against well-defined and novel attacks. Network traffic data has to be
inspected and analysed in depth in order to detect malicious behaviour. Stateless
analysis relying on packet-level observation does not improve the efficiency of the
protection systems. Furthermore, different data sources and incorporated detection

techniques have to be used in order to achieve higher level protective systems.

In this respect, Network Intrusion Detection Systems (NIDSs) have been proposed as
complementary security tools providing sensors to observe network traffic for any
malicious activities. Several approaches with different capabilities have been developed
to achieve this functionality, such as signature-based and anomaly-based mechanisms.
Pre-defined attack patterns are supplied to signature-based approaches to detect any
matching between these patterns and the received traffic data. In anomaly-based
mechanisms, generated normal profiles are compared with the incoming activities to
judge abnormalities. However, the common purpose of NIDSs is to detect potential
intrusions in network traffic, generating security alarms. NIDSs can perform in
detective mode or proactive mode, but immediate response may affect the usability of

the protected systems, particularly if alarms are false.

Recent advances in CPU processing power, memory and network speed have "stressed”
the performance of NIDSs [6]. The difference between advances in networking speed
and processing speed has created what has been called a performance gap, because
communication speed has developed far in advance of processing speed [7]. This has
imposed challenges for NIDSs, as they have to process multi-Giga traffic inline. Several
methods have been developed for load balancing, distributed sensors [8] and parallel
processing, but another challenge has emerged in the coordination of these sub-system

units.



1.3 The limitations of NIDSs

NIDSs can be considered a second line of defence in the protection of production
networks, and they can cooperate with firewalls and antivirus systems to achieve
maximal protection coverage. Both research communities and commercial vendors have
been working for several years to improve the functionality of NIDSs. However, these
systems still suffer from limitations that can generally be summarized as follow:

1) High volume of generated low-level alerts [9], which makes it impractical for human
analysts to pursue such an amount of information. Even worse, the quality of the
observed data varies between certain intrusions and activities with a low degree of
confidence. Typically, NIDSs produce alerts which are mapped to atomic detected
events, but are not capable of determining to which incidents the detected alerts belong.
The administrator has to analyse the data manually or use simple analysis tools based on
statistical methods. Moreover, hostile actions are assumed to be infrequent compared to
legitimate activities, so the analysis of a large amount of data in order to observe rare

information is a cumbersome.

2) A high rate of false positives is a major limitation of NIDSs and one that makes their
effectiveness questionable. [10] states that more than 99% of the alerts generated by
NIDSs are false positives. False positives are produced because the NIDS believes,
based on its detection mechanism, that the detected activity is malicious. This weakness
is mainly due to the fact that the system is unable to precisely determine the ultimate
goal of the intrusion. Essentially, there is only a slight distinction between legitimate
and malicious behaviour, as even malicious behaviour makes use of the facilities
offered by the target system. For instance, in signature-based methods, there must be a

balance between the level of specificity and the generality of a signature. A very



specific definition keeps the rate of false positives to a minimum, whereas general

signatures broaden the detection space but increase the false positive rate.

3) A high rate of false negatives is also another critical issue, where the NIDS is not
able to detect malicious behaviour. That is due to the unavailability of pattern
descriptions in signature-based methods or the fact that the behaviour is similar to a
normal one in anomaly-based methods. However, skilful attackers use known attacks
but combine them with available evasion techniques [11, 12] to deceive the NIDS and
to pass undetected. Moreover, 0-day attacks are not identified, as they are unknown and

their definitions are unavailable to the NIDS.

4) The difficulty in handling a huge amount of traffic packets, diverse network
protocols and sophisticated Web services. Deep inspection and comprehensive analysis
have to be done for higher-degree detection and protection. And that requires massive
processing capabilities and intelligent algorithms. The typical deployment of a NIDS is
at the network edge, where the aggregation of organizational traffic passes. In inline
mode, this has made the achievement of acceptable connectivity without any latency a
challenge. Many approaches have been developed to cope with these problems, such as
traffic splitting [13, 14] across a number of sensors to balance the load. Other

techniques involve shifting from software-based to hardware-based solutions [15-17].

5) The sophistication and complexity of modern attacks exploiting new emerging
services, such as Web application technologies [18]. Simple attacks to violate security
policies are no longer used, particularly after years of security patches to protect core
systems. Current trends in intrusion techniques are to employ hidden attacks that are
difficult to be recognised by traditional security means. Multi steps of normal-type

activities incorporate an attack and after breaking into the system, the intruder remains



silent for the longest possible time. ldentifying this type of behaviour is not a
straightforward matter without intensive observation and behavioural analysis. Most
implementations of NIDSs, both commercial [19] and open source [20, 21], rely on
stateless signature-based methodologies. Basic statistical approaches are implemented
to detect anomalous behaviour using anomaly-based methods. Moreover, NIDSs need
to be supplied with enough information from network traffic and from the end systems
[12] to obtain the full picture of the protected systems. Such cooperation between
security systems rarely exists and is still in a developmental phase. Efficient correlation
techniques have to be implemented in order to differentiate between benign and

malicious behaviour.

6) Scalability to support the points mentioned above, as networks nowadays are
changing in respect to bandwidth and diversity of services available. The
implementation of NIDSs may be sufficient for a certain time, but they need adaptive

mechanisms in order to react to different situations.

7) Testing NIDSs to evaluate their operations is cumbersome [22]. There are no
efficient approved methodologies to evaluate such systems due to the complexity of
NIDS and the operational environments in which they are deployed. Ad hoc approaches

have been developed and will be discussed in detail in Chapter 3.

8) Statefulness analysis in order to build an accurate behaviour profile remains a
stressing demand for NIDSs. For instance, Snort [23, 24] performs analyses on a
connection basis only, so the need for higher levels of context analysis is crucial. This is
based on the assumption that each occurring event may be connected with other events,
and the correlation is useful in understanding the target of the event in question. Several

NIDS claim they perform stateful analyses, but the concept of this type of analysis is



sometimes unclear. Stateful analysis does not only consist of performing TCP
reassembly or IP de-fragmentation, but also the analysis of the semantic of multiple

activities, including levels of connection, applications and services.

9) Evasion techniques [11, 12, 25, 26] have been used to exploit the implementation
ambiguities of protocols and services. Moreover, the gap between application
developers and security experts has led to the production of programs with bugs
exploited creatively by hackers. Malicious data distributed over fragmented packets to
confuse detection systems or session slicing are examples of such evasion methods, or it
can also take the form of obfuscation of Web application requests to break into

vulnerable applications.

1.4 Alert correlation systems

Principally, Intrusion Detection Systems (IDSs) in general are useful only if their
detection results are reviewed and analysed to derive current system security. Some
difficulties affecting IDS operations have been stated, and to alleviate some of these
limitations alert management systems have been proposed. Alert correlation systems as
complementary tools deployed in a typical scenario separately from IDS, as the latter
are performance sensitive [27]. The objective of these approaches is to receive alert
streams from the IDS, create logical relationships between alerts, link each alert to its
related contextual information, and provide a high-level view of the system's security
situation. In prime, the receiving audit data is obtained from various IDS so it is used in
alert correlation process. However, alert correlation can be also applied on individual
IDSs to detect coordinated attacks and to reduce alarm volumes. It is worth mentioning
that alert correlation is not an isolated process, and that several components are involved

in achieving correlation, aggregation, alert reduction and alert verification.



It has been identified in the cyber security field that well-planned attacks consist of a
number of stages conducted in a temporal order. True alerts belonging to intrusions
generated by the IDS are not isolated; they also reflect the sequential pattern of the
attacker. However, IDSs consider these alerts as individual events and report this to the
administrator with a huge amount of alerts, most of them false positives or ones not
critical to the protected system. A high-level view of these incidents can assist in
recognizing the attacker’s plan and taking rapid action to protect the network.
Moreover, IDSs, due to their limitations, cannot detect all variations of unseen attacks.
However, alert correlation systems can predict the upcoming attack based on the
pervious behaviours of attackers. Also, false alarms can be excluded because they are

often of isolated and non-critical events.

As a motivating example of a multi-stage attack, the Botnet attack scenario is
considered as follows: the attacker performs scanning activities looking for a vulnerable
host in a target network in order to install a backdoor. The IDS can detect the scanning
behaviour, rating it as a low-risk activity, and also detects the shellcode installation but
it is not as a part of the Botnet attack. Then the infected machine sends a connection
request to the C&C (command-and-control) server in order to download the
configuration file, which is typically encrypted. The IDS in this case can detect the URL
of the C&C server as a blacklist. Note that the second phase does not necessarily need
to be linked to the first phase, particularly if they occur far away from each other. The
second stage can pass undetected using some obfuscation techniques; however, the
server response containing some abnormal data in HTML format is detected. After that,
maintenance and update activities are performed by downloading some binaries. The
infected machine consequently performs a fast scan for other machines and sends a

large number of DNS requests. Hence, if these stages are treated individually, they may



be considered isolated activities with low priority. Alert correlation systems process the
resulting alerts to discover the connection between them based on causal relationships

and to provide a global picture for the administrator.

Alert correlation systems are intended to fill the semantic gap between high-level
abstracted events and low-level elementary alerts. The security administrator’s
requirements include: reduction of data redundancy, intelligent correlation of IDS alerts,
recognition of attack scenarios, and a visualised attack scene. To achieve these tasks,
different correlation mechanisms are employed, including alert similarities [28-30],
attack scenario specifications [31], pre- and post-conditions [32-35], and data-mining
techniques [36-38]. These mechanisms vary in their requirements and inner workings,

but their common function is to build an abstracted knowledge about different attacks.

Despite several efforts made to achieve the objectives of alert correlation systems, only
a limited part of the correlation function has been addressed. Correlation tasks cannot be
implemented alone, but require some other cooperative system components, such as
aggregation, verification and data reduction. It has been mentioned that the main
motivation behind the notion of alert correlation is to identify the connection between
alerts. However this task, without removing data redundancy, will make it more
complex and the information size will be increased considerably. In addition, the
practice of correlation is processing-intensive and the typical deployment is connected
to the IDS. It is impractical to rely on a single component for a complex function such
as alert correlation; instead, a framework consisting of various components should be
used. Each sub-system is responsible for certain tasks and all system parts are integrated

in a systematic manner.



1.5 Motivation

With the rapid advances in communication networks and the increase in the number of
incidents of detected attacks [39], NIDSs have become a major component of security
systems. However, NIDS have two major problems: first, missed attacks due to
unknown attack patterns or because packets carrying attack evidence are dropped due to
performance limitations. Second, the huge volume of irrelevant alerts overwhelming
security analysts makes event observation tedious. This thesis has addressed these two

practical problems through two phases:

1) NIDS (software-based) evaluations in high-speed environments to characterise the

problem of missed alerts caused by packet loss.

2) Alert correlation systems to mitigate the two previous problems using a contextual
recovery technique that provides the security analyst with a global view of the security

perspective.

The motivation behind this work inspired from the two phases above can be

summarized as:

a) Performance evaluation of NIDSs (software-based) in high-speed networks: The
typical deployment of software-based NIDSs is installation on a dedicated server with
minimum active services. This setup is quite susceptible to resource-exhaustion attacks,
especially in high-speed environments. Sending a large amount of traffic or using
computationally expensive techniques like fragmentation can compromise a NIDS or
make it start dropping packets. Few efforts have been made to measure the performance
of NIDSs, and most of the evaluation methodologies are based on moderate traffic flow
[40]. This is because generating traffic in high volumes requires a sophisticated test-
bench, which is not always available to most researchers. A test-bench has been built in

9



our lab using various machines and switches to simulate real-life network traffic. In
addition, the evaluation of NIDSs is elusive and there is no typical methodology to test,

as few vendors [41] offer it and it is not available to researchers.

b) Alerts missed by NIDSs: As mentioned above, NIDSs may miss some alerts due to
unavailable attack descriptions or packet loss in Gig networks. The missing of such
alerts is very dangerous, as serious attacks can pass undetected. Several works have
been carried out to deal with this issue [27, 42] and to characterise NIDS performance.
NIDS vendors recommend the application of conservative engine detection
configurations to minimise resource consumption. This can affect the effectiveness of
NIDSs as the detection space may be narrowed. Other efforts have been made to
distribute traffic making use of balancers [13, 14, 43]; however, these may add extra
complexities. The implementation of NIDS on hardware is potentially the optimal
solution for this issue [16, 44, 45]. However, hardware is expensive, difficult to
configure and tedious to maintain. In addition, the problem of missed alerts caused by a
lack of signatures will not be alleviated. For this reason, recovery techniques are needed

to reason about missed alerts, whether solely or contextually.

¢) Overwhelming administrators with irrelevant alerts: Typically, IDSs continuously
generate vast amounts of alerts, and most of them are either false or low-level risk
alerts. These data have to be analysed to obtain security status. This flood of
information may end up hiding serious activities that could end up being overlooked.
Simple analysis tools based on statistics provide certain details but do not reduce the
resulting data. Hence, a mechanism needs to be devised to reduce alert flooding without

losing critical details focusing on serious and coordinated activities.
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d) False positives: It has been identified that approximately 99% of alerts reported by
IDS are false positives [10, 46]. This is the result of the reduced quality in the
description of current signatures and the imprecise determination of the borderline
between legitimate and malicious activities. There are mainly three levels of solution to
deal with this issue: 1) at the IDS sensor level, 2) at the protected system level, and 3) at
the IDS log level. The first technique is to enhance the IDS detection algorithm to
produce a very small number of false alerts. The main focus of these solutions is to
build multiple special-purpose IDS [47, 48]. However, this could possibly affect the
attack coverage and create compatibility and integration issues. The other two
approaches [10, 29, 35, 49-51] are promising in terms of extending the IDS detection
domain and focusing on attack-related alerts. Alerts are generated and then post-
processed to identify only important information believed to relate to true positives.
Vulnerability and protected system information are obtained and supplied to alert
correlation systems to identify whether the attack is successful or the alert is a false
positive. In addition, the alert correlation system itself performs its functions to discover
the relationships between the alerts and aggregate them, ignoring isolated alerts which

are most likely false positives.

e) Multi-stage attack recognition: It has been identified in practice [29, 35, 49] that
most skilful attacker activities consist of multiple steps (attack scenarios) and occur in a
certain time (attack window). An attack is performed using different vectors to gain
access to the target system. IDS treat these steps individually, reporting isolated alerts
while each step prepares for the next one to complete the intended attack. Identification
of such a strategy can lead to the recognition of attack intentions, as well as the

prediction of unknown attacks.

11



f) Slow-and-low attack detection: The new intrusion trend is to be slow [52], while the
stages are distributed over a long period of time so as to avoid notice. Another feature is
that it is performed with minimum noise, exploiting very small amounts of traffic in
order to defeat any anomaly-based technique. Most alert correlation systems,
particularly the ones implemented for real time [53], rely on the observation of
incoming data during a pre-defined windows size. Memory requirements increase
dramatically with the window size and the system becomes a target for state explosion
attacks. The only available solution is to remove the detected states from memory in a
periodic fashion. This leads to the loss of some of the attack stages if they are
temporally diverged. All detected attack phases should be recorded, as the relationship

may be discovered after a while.

g) Alert correlation approaches:
- Algorithms: The proposed algorithms vary between alert aggregation, data fusion, data
reduction and alert correlation. The current trend is to create a cooperative system

environment that provides complementary components to achieve practical solutions.

Knowledge base modelling: The core of the correlation systems consists of the
supported knowledge bases. Knowledge acquisition methods and the considered
features are different, some of them being based on security expert analyses and others
relying on pure statistical and machine learning approaches. Knowledge representation
plays a major role in the effectiveness of the developed system. The supported data
should be formalized in a systematic manner, taking into account specific and general

concepts.

Alert verification: One of the main causes of false positives is the knowledge gap

between the IDS and the network it protects. The IDS is not capable of identifying the
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target system's response after the attack. To bridge this gap, vulnerability, host and
network details should be supplied to the correlation system to verify logged alerts. If an
alert is assigned low priority, it can be used to extend the attack knowledge without
having to consider it a critical element in the attack strategy. Instead of obtaining the
target response, which adds more complexity, it is preferable to store an updated

knowledge base about the required information.

System implementation to provide a practical ground: The development of required
algorithms for alert correlation functions becomes useless if these algorithms are not
implemented. The evaluation of the system's effectiveness cannot be carried out without
a practical tool. Most proposed approaches have been implemented in an ad hoc manner

to show the main functionalities.

Evaluation of alert correlation systems: Generally, the evaluation of IDSs is not an easy
task due to the heterogeneous nature of such systems, and alert correlation systems
inherit this property. Most evaluation methodologies only focus on a particular part of
the system without considering other conditions. Moreover, some researchers validate
their work with one or two datasets, some of which do not suit the case. For instance,
some datasets consist of attack traffic only [54], which makes the test basic and simple.
Others are not originally intended to test alert correlation algorithms. Therefore an
intensive evaluation methodology with clear metrics is required, and it needs to be

applied to different categories of datasets.

1.6 Contribution

1) Comprehensive performance evaluation of NIDS in a high-speed environment
We have carried out a comprehensive performance evaluation of NIDSs to identify their

limitations in high-speed environments. We have designed and implemented a state-of-
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the-art, high-speed test lab so as to be able to replicate current and potential threats. This
facility has been specifically designed to simulate realistic network traffic conditions
comprising different scenarios of background and malicious network traffic. We then
evaluated Snort [23], an open-source NIDS, on account of it being a de facto standard.
Two broader approaches have been selected to determine the performance of Snort:
host-based and virtual-based analyses. This is further supplemented by gauging the

performance of the system on different operating system (OS) platforms.

2) A proposed framework for alert correlation

We have proposed a framework for alert correlation consisting of a collection of
integrated components to utilize the capabilities of different approaches. This is to
formalize a comprehensive solution for correlation, aggregation, data reduction and
multi-stage attack recognition. We have presented a Multi-stage Attack Recognition
System (MARS) as an alert correlation system to receive alerts from the IDS. The attack
scenario is presented as evolving events over time bringing the attack strategy as a
graph of connected aggregated phases. The graph explosions in other approaches have

been avoided, which typically result in unmanageable attack graphs.

3) Set of proposed algorithms for the framework components:

- Alert correlation: We have developed an algorithm for alert correlation functions
based on the partial satisfaction of the pre- and post-conditions of each attack. The
logical connections are based on hierarchical multilayer specifications of attack
capabilities. The correlation is performed for all elementary alerts before aggregation,
and then any further correlations can be obtained implicitly for performance purposes.

- Alert aggregation: To complement the alert correlation algorithm, an aggregation
algorithm has been developed to eliminate data redundancy. The aggregation

mechanism assigns a master alert for each group of similar alerts. Thus the main
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objective of this algorithm is to minimise the number of nodes in the resulting attack
graph. A pre-defined time threshold is used to determine aggregation probability.

- Graph reduction: In cooperation with the aggregation algorithm, an algorithm has
been also developed to reduce the number of graph links. An online graph-reduction
algorithm is proposed for the deletion of transitive graph edges starting from root to leaf
nodes. It is executed during the initial phase of correlation to eliminate graph
complexity. A further graph reduction is performed by an offline algorithm starting
from leaf to root nodes.

- Event generation: The ultimate goal of the proposed system is to generate security
events; hence an event-generation algorithm has been presented. An event refers to the
description of an attack scenario reflecting a global view of intrusion. Each event has a
title and two events can be combined if they are related to the same scenario. We have
also provided facilities to interact with the detected events through administrative tools.
- Prediction of undetected intrusion: Other approaches have dealt with broken scenarios
caused by missed alerts by repairing them based on building a potentially large amount
of links. However, the attack may be missed due to being a 0-day attack, where no
pattern is known. An implicit mechanism has been proposed to estimate undetected
activities using a generalized formalization of attack capabilities and intrusion
categories. The missed attacks are not described specifically; instead a possible attack

plan is predicted.

4) Knowledge modelling:

Two knowledge bases have been proposed: internal and external. We have made a
distinction of abstracted attack concepts and their capabilities from dynamic
information, such as vulnerability and host details. In the internal base, capabilities have

been modelled using a hierarchical method based on attack classes and inheritance
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between these classes. The external base represents an extendable collection containing

vulnerabilities, services, OSs and host information.

5) Implementation of the proposed algorithms in a tool:

In order to evaluate the proposed algorithms in a practical manner, we have
implemented these algorithms and the knowledge bases in the MARS tool. The MARS
core is an engine that is capable of analysing the receipt of alerts from IDS sensors and
automatically constructing security events. The attack scenario is visualised in the form
of nodes and edges and the administrator is able to navigate each element for further
details. The resulting attack graph is kept as simple as possible, whilst at the same time

providing rich information can be obtained by request.

6) Comprehensive evaluation methodology to test the developed tool:

We have evaluated our system using a collection of different datasets. A test-bench has
been set up and we have conducted a series of experiments exploiting various situations.
A set of evaluation criteria has been presented including functionality, accuracy and
completeness, reduction, and performance tests. We have evaluated our approach not
only on the basis of the number of correlated alerts, but also using the number of

correlation instances for each alert in order to achieve precise results.

1.7 Thesis outline

Chapter 2 presents background information as an introduction to the topics of the thesis,
namely intrusion detection systems (IDSs) and alert correlation systems. We start with a
summary of the principle concepts of IDSs, discussing models, architectures and
deployment scenarios. Then, state-of-the-art alert correlation and management

approaches are reviewed, including similarity-based, pre- and post-conditions based,
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and probabilistic approaches. The requirements of the design and implementation of a

practical alert correlation system are also discussed.

Chapter 3 lays out this study's initial research phase to carry out a performance
evaluation of NIDSs. The evaluation methodologies of IDS performance have been
investigated to provide a background to our preliminary testing. Extensive testing
scenarios are implemented on a highly sophisticated test-bench using various platforms
and configurations. A detailed performance investigation of Snort as a de facto IDS
standard is given using different traffic conditions. The tests are conducted on host and
virtual system configurations to explore the system response in different deployments.
We also discuss packet dropping as an identified limitation of software-based IDS in
high-speed environments. The chapter concludes with how the problem of missed
attacks can be mitigated regardless of the reason with the use of alert correlation

mechanisms.

Chapter 4 describes the core concepts proposed in this thesis: the alert correlation
framework and its algorithms. The underlying requires/provides model with our
definitions of capabilities and concepts are presented. We explain in detail the design
and representation of our knowledge bases and how IDS signatures are modelled. Then,
a set of proposed algorithms are described including: alert correlation, alert aggregation,
event combination, event generation, and graph reduction. Therefore, issues in relation
to attacks missed by the IDS have been discussed and our approach for predicting the

security status.

In Chapter 5, the implementation and design specifications of the proposed framework
are presented. We illustrate the MARS tool architecture, its integrated components and

the system process flow.
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In Chapter 6 the effectiveness of our implemented approach is demonstrated using a
series of experiments. The evaluation methodology and testing criteria are discussed and
the evaluation metrics are explained. We then continue to provide complete information
about the datasets and experiment steps. We start with the DARPA [55] dataset
evaluation for comparative purposes, incorporating the dataset description and analysis
of obtained results. We then conduct two lab experiments reflecting real-life attacks to
measure system functionality and performance. At the end of this chapter, a
performance evaluation is presented comparing MARS and the IDS in respect to

resource consu mption.

Chapter 7 summarizes the thesis, reviewing our main observations and contributions.
We conclude with a discussion of related research directions and promising avenues for

future research.
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CHAPTER 2: BACKGROUND AND RELATED RESEARCH

2.1 Intrusion Detection Systems (IDSs)

The widespread use of corporate networks with sophisticated technologies, e.g. Web
services, distributed databases and remote access, has raised concerns in terms of
security issues. Network Intrusion Detection Systems (NIDSs) are one of the major
techniques used to protect such networks against well-planned penetration.
Conventionally, to secure computer systems, network services and running applications,
resort was made to the creation of protective “shields”. Security mechanisms such as
firewalls [2], authentication mechanisms and Virtual Private Networks (VPN) have
been developed in order to protect the systems of organizations. However, these security
mechanisms have almost inevitable vulnerabilities and are usually insufficient in
ensuring the complete security of the infrastructure. Attacks are continually being
adapted to exploit the system’s weaknesses, often caused by careless design and
implementation flaws. This accounts for the need for security technology that can
monitor systems and identify security policy violations. This is called intrusion

detection, and complements conventional security mechanisms [56].

Understandably, intrusion is popularly defined as a malicious and externally or
internally induced operational fault. Nowadays, computer intrusions and attacks are
often regarded as synonymous. But more technically, an attack is an attempt to intrude
(into what is supposedly a secure network), while an intrusion is actually the result of an
attack that has been partially or completely successful [57]. “Intrusions in the computer
systems are usually caused by attackers accessing the systems from the Internet, or by
authorized users of the systems who attempt to misuse the privileges given to them

and/or to gain additional privileges for which they are not authorized” [57]. Hence, the
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difference that intrusion is a consequence of attack, however, unsuccessful attack is not
necessary to result in an intrusion. Therefore, throughout this thesis, both terms are used
from the viewpoint of the defender, and thus preventing an attack is inclusive of

stopping an intrusion.

An IDS is a system for detecting and preventing such intrusions. A technical definition
provided by the National Institute of Standards and Technology [58] is that it is “the
process of monitoring the events occurring in a computer system or network and
analyzing them for signs of intrusions, defined as attempts to compromise the
confidentiality, integrity, availability, or to bypass the security mechanisms of a
computer network”. An IDS satisfies its reason for being by observing the network
traffic or looking at OS events [59]. An IDS can be defined as “a combination of
software and/or hardware components that monitors computer systems and raises an

alarm when an intrusion happens” [59].

Thus, the concept of a NIDS is to observe activities among network links to detect
anomalous and misuse behaviour by acquiring information from traffic and inspecting
data packets in an inline or offline fashion. Then, these systems notify administrators or
respond to detected threats by blocking any malicious packets or sessions. Hence,
proactive systems that identify the violation of security policies are called NIDSs,
whereas reactive systems that respond and stop any misuse behaviour are called
Network Intrusion Prevention Systems (NIPS). However, most of these systems can be

switched between the two modes based on organizational needs.

Despite both systems NIDS and NIPS perform the same analysis looking for signs of
intrusion, they differ in how to provide protection for network environment. NIDS is a

passive device watching the traversed packets from a monitoring port or SPAN port
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(Switched Port Analyzer), matching the traffic to a set of configured rules, and
triggering an alarm in case of suspicious activities. The ideal deployment of NIDS is to
be connected to a monitoring port of a backbone switch as shown in Figure 2.1. A copy
of network packets seen on any switch port is sent to the monitoring port to be analyzed
by the NIDS. NIDS cannot block the connection and need the administrator response to
deal with the detected events. NIPS have all features of the NIDS but it can block
malicious traffic immediately by terminating the network connection, attacking user
session, or by blocking the access to victim machines or services. Therefore, NIPS
needs more tuning to keep the false positive rate to the minimum which affect the
legitimate traffic. NIPS are typically deployed inline behind the firewall to limit the

inspected traffic in order to improve the efficiency as shown in Figure 2.1.
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Figure 2.1 NIDS and NIPS deployment.

The notion of the IDS was first introduced in 1980 by James Anderson [60], who
proposed an anomaly detection approach based on the distinction between the
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characteristics of normal and anomalous behaviour. A threat model was presented that
classified threats as external penetrations, internal penetrations and misfeasance.
Denning [61] in 1987 introduced a general model for IDSs, which is the basis of many
system prototypes have been developed since then. Denning’s model includes an
identification of two different models of intrusion detection systems: 1) the misuse (or
signature) model, when an attack is detected based on previous knowledge of its
signature; and 2) the anomaly model, when an attacker is detected based on its abnormal
behaviour. This notion, based on the assumption that the normal behaviour of users and
systems can be characterised, enables automatic profiling. Debar [62] proposed the first

IDS taxonomy based on different criteria:

(1) Detection method: behaviour-based, knowledge-based.
(2) Behaviour on detection: passive, active.

(3) Audit source location: host log files, network packets.

(4) Usage frequency: continues monitoring, periodic analysis.

(5) Detection paradigm: state-based, transition-based.
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Figure 2.2 Axelsson’s classification of Intrusion Detection Systems (IDSS).
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Axelsson [46] proposed a generalisation model of IDSs as an alternative taxonomy, as
shown in Figure 2.2. The classification is mainly based on detection principles and

operational aspects

Even though several methodologies have arisen to classify IDSs since 1980, these fall
into three general approaches: 1) anomaly- (behaviour) based, 2) signature-

(knowledge) based, and 3) hybrid systems (anomaly and signature).

2.2 Intrusion Detection Systems: methodologies

2.2.1 Anomaly-based detection

Anomaly-based detection methods are based on a deviation of abnormal activities from
the normal or expected behaviour of the system. A set of characteristics of the system
are observed and analyzed to create a model of normal behaviour using collections of
information about the system over a particular time interval. IDSs can detect anomalies
when they compare current behaviour to the normal system model in order to identify,
report and block any violation. Moreover, anomaly-based methodologies are based on

the assumption that any anomaly is an indication of a potential attack.

Normal behaviour is learned by the system during an online/offline training phase
(heuristic systems). Collected data from the learning stage is analysed, pre-processed
and processed; then the normal model is built according to these observations.
Therefore, audit data is inspected for any abnormal patterns deviating from the normal
model baseline, and these are considered malicious. The effectiveness of these
methodologies depends on the selected variables and parameters to build the model of
the system profile [63]. These parameters vary from simple statistical data to
comprehensive measures. Therefore, robustness of these systems is proportional to the

amount and accuracy of measured data. In addition, these sorts of systems should be
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adaptable due to the complex and changing nature of protected environments, such as
communication networks. [64] summarizes the anomaly-based IDS process into three
stages: 1) a parameterization stage to collect the observed instances of normal system
behaviour; 2) a training stage to characterize the normal and abnormal models, which
can be achieved either manually or automatically; and 3) a detection stage to detect any
deviation exceeding a pre-defined threshold. These systems are theoretically able to
detect novel and 0-day attacks [65]. However, their efficiency is strongly dependent on
model construction and threshold selection. Several techniques are used to build

anomaly-based systems.

2.2.1.1 Statistical techniques

The objective of statistical techniques is to observe the system's activities in order to
determine its behaviour, and then to generate system profiles. Selected variables are
sampled over a specific period of time to measure the normal behaviour of the system.
The observed activities can be system logs, spatial and temporal characteristics of
network traffic, or system calls. Two models are built: a model stored or programmed
and a current model; and detection is based on the degree of abnormality in the
comparison of the two models considering a threshold metric. The advantage of these
approaches is that they do not require prior knowledge of the observed systems.
However, one of the biggest drawbacks of these techniques is determining the threshold
in order to achieve a balance between false positives and false negatives, which is
difficult in the presence of different situations and requirements. In addition, intruders
can deceive the protection system to send malicious data by training the target system

itself.

Haystack's prototype [66] was developed as one of the earliest statistical anomaly-based

IDSs. The detection system considers a combination of two models: user behaviour and
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generic group behaviour. It takes into account a range of normal behaviour events
between two limits and each event has a score, with a high score indicating an anomaly.
However, normal system features are extracted offline only. The early proposed
techniques in this respect were based on univariate models such as [61]; however, the
trend lately has become toward multivariate models that consider more than one single
variables [67]. Using a combination of metrics rather than only one provides more

accurate discrimination between the observed models.

2.2.1.2 EXxpert systems

Expert systems [68, 69]are knowledge-based and used to build the profile of a system or
its users based on rules obtained from statistical measures of normal behaviour over a
period of time. Primarily, these approaches are intended for data classification
according to the extracted rules. In the first stage, training data is used to define certain
variables and classes, and then classification rules are inferred and applied to audit data.
The W&S (Wisdom & Sense) [70] expert system was proposed to detect anomalies in
user behaviour. The IDES (Intrusion Detection Expert System) [69], developed at the
Stanford Research Institute (SRI), is a system that summarises user behaviour and
calculates interrelated statistics, and then compares the current activities with the user
profiles. The next generation of NIDES (Next-generation IDES) was designed to
operate online to monitor system activities. The SPADE (Statistical Packet Anomaly
Detection Engine) [71] is a Snort pre-processor plug-in, developed to use the concept of
anomaly score to detect stealthy port scans. It consists of two sub-systems: an anomaly
monitoring sensor and a correlation engine. An alarm is triggered if the assigned score
of each event exceeds a specific threshold. The main advantage of these approaches is
flexibility and accuracy; however, constructing the required knowledge is not an easy

task and is a time-consuming process.
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2.2.1.3 Machine learning

Learning is a process to learn the dependency between two sets of information to
generate an unknown input-output model based on a limited number of observations
[72]. An accurate observation that describes the constructed model requires an accurate
problem definition. Machine learning techniques have been used widely in computer
systems to provide intelligence in the automatic process. The tasks of machine learning
include: classification, acting and planning, and interpretation. IDSs can be identified as
a classification problem (with two classes: normal and abnormal) [72]. Training data
captured from the normal usage of the system are used to build the model and then
classify behaviours as either normal or anomalous. These systems are either generative
(profiling) to learn the normal behaviour and to detect intrusion deviating from the
learned profile, or discriminative to learn the distinction between normal and abnormal

activities [72].

Generally, learning methods can be classified into two broad categories: supervised and
unsupervised learning systems. In supervised learning, training data (labelled data) is
used to generate normal and abnormal behaviour. Each training pattern is weighted to
construct a detection model and the weights are adaptive to obtain a feasible and
accurate system. It is required to predict model behaviour variables for any input
variables after the training phase. Formally, given variables (x,y), X € X, y €Y, the
objective is to find a function f :X—Y which represents the intrusion detection model.
The degree of mismatch between X and Y represents the cost function of the prediction

algorithm.

On the other hand, in unsupervised learning (unlabeled data approach), anomalous data
is not needed; instead, a normal model is constructed from normal system patterns. For

anomaly detection systems, unsupervised methods are more effective for building the
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model by observation without any prior knowledge of intrusive behaviour. However,
machine learning is not limited to these approaches; semi-supervised learning, active
learning and deep learning are widely used in researches. Examples of machine learning

systems are Y-means, neural networks and support vector machines (SVMs) [73].

Machine learning techniques for system calls analyses have been used for host-based
IDSs to learn program behaviour so as to detect irregularity. Forrest et al. [74]
discovered that sequences of system calls were very consistent and a normal model
could be built and used to detect abnormal activities. Their work was based on
similarity function to compare the human immune system and IDSs. [75] proposed
multiple detection models for the system calls to be evaluated from different points of

view. Weighted scores for events are accumulated to construct the detection model.

Bayesian methodology has been conducted by several researchers due to its unique
features. It is based on probabilistic relationships among events to find or predict the
cause of actions by moving back in time. [76-78] used a Bayesian network to create
models for anomaly detection. In addition, Principle Component Analysis (PCA) is a
technique used to reduce massive and multi-dimensional datasets to lower dimensions
for analysis. Large and complex datasets are difficult to understand and process. A large
number of correlated variables are transformed to a smaller number of uncorrelated
variables. [79] proposed an anomaly-based detection system using PCA to reduce the
audit data. [79-81] present a model that is suitable for high-speed processing, where the
dataset is collected from system calls, shell commands and network traffic. Markov
models are also used to detect anomalies based on sequence of events, where the system
is examined at some particular time. [82] developed an anomaly detection system for
systems calls based on Markov models. A hidden Markov model is also employed in

anomaly-based systems where the system is assumed to be a Markov process but with
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hidden parameters. [83, 84] used a hidden Markov chain to develop host-based
detection systems. [85] developed several methods for network-based anomaly
detection systems. In practice, these techniques generate flexible and adjustable
systems, as they discover the interrelations between system variables. However, they

rely on assumptions drawn about the observed system and require training data.

2.2.1.4 Data-mining techniques

Data-mining techniques have also been employed in anomaly detection systems in
many researches to extract a knowledge model from a large number of patterns.
Association rules from the system patterns are utilized to create features that construct
the detection system. Two types of methods applied in data mining are 1) predictive
methods involving certain variables to predict unknown variables; and 2) descriptive
methods where human interpretation are used to detect unknown patterns. Data-mining
approaches are generally applied to three main tasks: classification, clustering and
association. Classification is intended to extract class attributes from training data and
learn the model using the training data, and then to use the constructed model to detect
the anomalous events. An example of classification techniques are: inductive rule
generation techniques, fuzzy logic, genetic algorithms and neural networks. RIPPER
[86] used inductive rule generation techniques to induce rules from data to classify audit
data and detect intrusions. Dickerson et al. [87] developed the Fuzzy Intrusion
Recognition Engine (FIRE) to derive rules for every observed event. Other approaches

[88, 89] have used genetic algorithms to extract classification rules.

In the clustering and outlier detection task, patterns in unlabeled multi-dimensional
datasets and the number of dimensions equal to the number of attributes are identified.
[90, 91] presented outlier detection techniques to create clusters and apply rules on audit

data. The MINDS (Minnesota Intrusion Detection System) [92] is considered a
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clustering-based anomaly detection system. Association rule discovery mechanisms are
used to correlate events usually occurring at the same time. ADAM (Audit Data
Analysis and Mining) [93] is an association rule and classification based anomaly

detection.

2.2.2 Signature-based detection

Signature-based detection methods are knowledge-based techniques where well-defined
attack patterns are used to detect malicious security violations. A novel attack has to be
studied and analysed to identify its features and then generate its accurate signatures.
The detection system observes and analyses activities amongst audit data, and the
detection mechanism is based on the comparison between attack signatures and
observed patterns. Signatures can be defined as a set of conditions characterizing the
direct manifestation of intrusion activities in terms of system calls and network data
[94], which is to say that when these conditions are met, a type of intrusion event is
indicated. In networks, unauthorized behaviour is detected by sniffing packets and using

the sniffed packets for analysis [95].

This intrusive model is more accurate than the normal behaviour model and it does not
need to observe the system's normal behaviours. In addition, it can be efficiently applied
in heterogonous environments, while its detection process works independently from
the normal system behaviour. The detection mechanism is based on a pattern-matching

process performed on audit events.

In these systems, the collection of signatures describing malicious activities is stored in
a database similar to an anti-virus system. The observed events extracted from captured
data, such as network traffic packets, are compared with the pattern database, and then

an alarm is triggered in case of matching. The database has to be up-to-date and the
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signatures have to be accurately defined to achieve an acceptable balance between false
positives and false negatives. If the signature descriptions are very specific, this will
result in false negatives and missed attacks. In contrast, if the signature descriptions are
very general, a large number of false positives will be generated. Snort [23, 24] is the de
facto standard for IDSs, which is categorized as a signature-based detection and
prevention system. However, it employs protocol anomaly inspection as well as many
commercial and open-source detection systems using Snort signatures. Snort will be

explained in detail later in this chapter.

Typically, these types of systems consist of two sub-systems: a sensor to collect data
from its sources, and an engine to perform pattern matching. However, in an ideal
scenario, signature systems are incorporated with a pre-processing mechanism such as
protocol analysis to remove ambiguities from the collected data. The most expensive
process in such systems is the pattern-matching process, particularly in high-speed
environments. For this reason, many algorithms have been proposed in the research

community to enhance the functionality of the pattern matcher [96-98].

Software-based pattern matcher systems have been used for several years, but with the
evolution of Gig networks these systems have become bottlenecks. Therefore other
areas of research and certain commercial products are implementing hardware-based
pattern-matcher systems to utilize their high-speed processing [17, 45, 99]. Generally,
the most well-known algorithms for pattern matching are Boyer-Moore [100] for single
pattern matching and Aho-Corasick [101] for multiple pattern matching. For hardware-
based solutions, FPGA (Field Programmable Array Gates) and TCAM (Ternary Content
Addressable Memory) are implemented for their parallelism capabilities [102]. [44]

found that 87% of Snort rules have patterns, so he proposed a hardware accelerator for
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pattern matching. [99] proposed a high packet processing system using TCAM. An

Extended TCAM was proposed by [103] to reduce data structures.

Certain efforts have dealt with software-based solutions to enhance performance. [104]
proposed a method to process each packet once it arrives without reassembly and to
integrate pattern matching in protocol analysis to reduce execution time and memory
use. [105] integrated pattern matching, normalization and protocol analysis in pro-to-

matching techniques to improve Snort functionality.

Each signature-based and anomaly-based IDS has its advantages and disadvantages.
The signature-based IDS is more practical and widely deployed because the intrusive
model is easier to develop to meet security policies in heterogeneous environments.
More precise definitions of signatures lead to more precise detection and reduced
potential of missing attacks (false negatives). Comparatively, false positives in such
systems are considered lower than in anomaly-based systems because the detection
mechanism is based on matching patterns of activities to knowledge of attack patterns.
In addition, alarms generated by these systems provide the administrator with detailed
and precise information about the intrusion and the attack actions. On the other hand,
signature-based systems cannot recognise 0-day attacks due to the absence of
corresponding signature definitions. The system can also be evaded by altering
signature patterns in a way that does not affect the ultimate goal of the attack, such as
mutant exploits or polymorphic behaviour (self-modifying behaviour). Keeping up-to-
date with new vulnerabilities along with the maintenance burden are further drawbacks

of these systems.

In contrast, the anomaly-based system has the ability of detecting novel attacks without

prior knowledge and without the need to create new signatures for each unforeseen
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exploit. This can be efficient in the detection of Internet worms and similar stealthy
attacks. Vulnerability updates are not required as a result of considering any suspicious
activity as potentially malicious. On the other hand, anomaly-based systems suffer from
difficulties in precisely characterising normal behaviour models in order to create
baselines of detection. Determining the degree of deviation from the norm to provide
reasonable detection accuracy is another obstacle. Moreover, these types of systems
require a training phase including intensive analysis of the target environment. And any
development fault in this phase can cause the generation of a large number of false
positives. Furthermore, modern methodologies of attack tend to be slow-and-low,
without creating a noticeable deviation from the normal model of the typical system,
thus such malicious activities cannot be detected. Moreover certain emerging attacks,
such as cross-site scripting (XSS) [106] and code injection, are categorised under the
normal usage of any system, which makes them difficult to detect. The changing nature
of network systems (burst networks) may result in high false alarms, even though the
normal behaviour is well defined. Finally, the generated alarm reacting to abnormal

activity does not give specific information to the administrator about the attack.

In fact, neither of the two is the panacea. When used in conjunction with each other,
then each of the two become a more viable and effective means of protecting network
infrastructures [94]. The signature-based IDS still serves as a good outer layer of
defence against known attacks in the same manner as firewalls. Anomaly-based IDSs
are employed to further fortify the defence system and do not serve to function in lieu of
signature-based IDSs [107]. Today, it is being observed that numerous antivirus
packages include both signature-based and anomaly-based detection features, while

only a handful of IDSs effect an incorporation of both approaches.
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2.3 Hybrid IDSs

The recent trend in the intrusion detection research community is to have the above
approaches to interoperate efficiently and manipulate their positive features so as to
achieve maximum levels of protection. Signature-based systems provide accuracy and
less false positives, and anomaly-based systems offer recognition of novel attacks.
Figure 2.3 shows the typical architecture of hybrid systems, where a signature-based
sub-system such as Snort receives the incoming network data and performs monitoring
using a protocol analysis unit and a pattern matching unit. If a malicious activity is
detected, an alarm is triggered and there is no need to pass the captured data to the
anomaly sub-system. Otherwise, the data is transferred to the anomaly sub-system for
further observation. Therefore, only traffic supposed to be benign is forwarded to the
receiving applications, and malicious activity is detected. Then the detected suspicious
behaviour is further analysed by experts, and potentially a corresponding signature can

be generated for future use.
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Figure 2.3 Architecture of hybrid systems.
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2.4 Snort

Open-source software has gained tremendous popularity and acceptance amongst
academia and the research community. Apart from being free of costs, there are several
other qualities that have made them popular. Some of the advantages of open-source
software are access to source code, detailed documentation, online forum support and
rights to modify/use. Our research has focused on a widely accepted open-source
software tool, Snort [20]. Snort has received great acceptance in the IDS market and has

been widely recognized as the reliable open-source tool.

Snort is capable of performing real-time traffic analyses and packet logging on the
network. It performs protocol analysis and can detect a variety of network threats by
using content/signature matching algorithms. Snort can be configured as a packet
sniffer, packet logger and NIDS (detection mode and inline mode).

- Sniffer mode: To receive traffic packets from the traffic wire and display them
exactly the same as function of TCP dump. Snort uses a libpcap library for
packet acquisition.

- Packet logger: This is similar to the above, in addition to storing the data on a
disk.

- Network intrusion detection: The main task for Snort to perform is traffic
analysis and pattern matching against signature collections.

- Inline mode: (or network intrusion protection mode): To acquire traffic packets
from iptables instead of libpcap. Attacking packets according to Snort rules are

dropped instantly and only benign traffic will be forwarded.

Snort was introduced in 1998 by Marty Roesch [20], and was considered a signature-

based IDS. Since its early versions launched in 1999, many development efforts have
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been implemented to improve its capabilities. The current version is 2.8.6, and more
than 8,000 certified rules are included. SnortSP 3.0 [23] is the beta version with new
architecture introducing a new shell-based user interface. The Snort system consists of

four sub-systems working sequentially, as shown in Figure 2.4.
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Figure 2.4 Snort sub-systems.

Snort has five components: 1) a packet decoder, 2) a pre-processor, 3) a detection
engine, 4) a logging and alerting system, and 5) an output model. Incoming packets are
prepared for processing before being modified if required, e.g. de-fragmentation before
sessions are then reassembled. Snort rules are applied in detection engines, where they

are examined against signatures to detect recognised attack patterns.

2.4.1 Pre-processor

Pre-processors have been introduced to run before detection engines to improve Snort
protection speed and efficiency. They are intended to perform traffic normalization to
detect protocol anomaly behaviour. They are based on a target-based technique inspired
from Patcek and Newsham's paper on evasion of attacks [11], and Vern Paxon and
Umesh Shankar's paper [12] on traffic normalization. The heterogeneous nature of
communication network infrastructures has posed ambiguities due to various
interpretations of the RFCs [108]. The target-based analysis [23] involves identifying
the actual target characterisation in order to provide the IDS with additional information

37



about the protected network so as to defend against attack evasions. Different OSs can
behave in different ways in terms of handling network traffic, and the IDS must
understand how these OSs are functioning. Intruders may manipulate these ambiguities
in protocol implementations by fragmentation and session-splicing techniques. Pre-
processors in Snort consist of:

- Packet de-fragmentation to reassemble traffic data spread over multiple packets.

- Session reassembly to provide a stateful TCP analysis by using state records of

previous TCP connections.
- An application pre-processor to normalize ambiguities in application-level

protocols, such as Telnet, HTTP, SMTP, FTP and RPC protocols.

Dynamic pre-processors are plug-in pre-processors dynamically loaded and separately

developed, and compiled without the need for full Snort compilation.

2.4.2 Detection engine

The main task of a detection engine is to perform the pattern-matching task. It receives
the data from pre-processors and matches the packet header and content against Snort
signature rules. Snort, being a signature-based IDS, uses rules to check for hostile
packets in the network. Rules are sets of requirements used to generate an alert and have
a particular syntax. For example, one rule that checks for peer-to-peer file sharing
services looks for the string “GET” in connection with the service running on any port
other than TCP port 80. If a packet matches the rule, an alert is generated. Once an alert
is triggered, it can be sent to multiple places, such as a log file or a database, or it
generates a Simple Network Management Protocol (SNMP) trap [109]. On successful
detection of a hostile attempt, the detection engine sends an alert to a log file through a

network connection into the required storage (output) [24]. Snort can also be used as an
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Intrusion Prevention System (IPS) [24]. Snort 2.3.0 RCL1 integrated this facility via

Snort-inline into the official Snort project [23].

The main objective of Snort and other NIDSs is to effectively analyze all packets
passing through the network without any loss. The performance of the majority of
running applications depends upon memory and processing power. In the context of
NIDSs, this performance dependency includes NIC cards, 1/O disk speed, and OS. In
recent years, technologies have advanced in both hardware and software domains.
Multi-core systems have been introduced to offer powerful processing functionality.
However, these multi-processing implementations support applications using concurrent
programming. The number of CPU cycles in such systems has increased to execute

multiple tasks simultaneously.

It has been identified that Snort does not support multithreading [24]. The detection
engine component of Snort constitutes the critical part where the pattern matching
function is performed. Recent VVRT rule libraries contain more than 8,000 rules; this
augments the need for an effective pattern matcher. Snort uses three different pattern
matching algorithms: Aho-Corasick [101], modified Wu-Manber [110], and low-
memory key-word tire [24, 96]. Modifications have been made for these algori