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Abstract 

The tremendous increase in usage and complexity of modern communication and 

network systems connected to the Internet, places demands upon security management 

to protect organisations’ sensitive data and resources from malicious intrusion. 

Malicious attacks by intruders and hackers exploit flaws and weakness points in 

deployed systems through several sophisticated techniques that cannot be prevented by 

traditional measures, such as user authentication, access controls and firewalls. 

Consequently, automated detection and timely response systems are urgently needed to 

detect abnormal activities by monitoring network traffic and system events. Network 

Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS) 

are technologies that inspect traffic and diagnose system behaviour to provide improved 

attack protection.  

The current implementation of intrusion detection systems (commercial and open-

source) lacks the scalability to support the massive increase in network speed, the 

emergence of new protocols and services. Multi-giga networks have become a standard 

installation posing the NIDS to be susceptible to resource exhaustion attacks. The 

research focuses on two distinct problems for the NIDS: missing alerts due to packet 

loss as a result of NIDS performance limitations; and the huge volumes of generated 

alerts by the NIDS overwhelming the security analyst which makes event observation 

tedious.  

A methodology for analysing alerts using a proposed framework for alert correlation 

has been presented to provide the security operator with a global view of the security 

perspective. Missed alerts are recovered implicitly using a contextual technique to 

detect multi-stage attack scenarios. This is based on the assumption that the most 

serious intrusions consist of relevant steps that temporally ordered. The pre- and post- 

condition approach is used to identify the logical relations among low level alerts. The 

alerts are aggregated, verified using vulnerability modelling, and correlated to construct 

multi-stage attacks. A number of algorithms have been proposed in this research to 

support the functionality of our framework including: alert correlation, alert aggregation 

and graph reduction. These algorithms have been implemented in a tool called Multi-

stage Attack Recognition System (MARS) consisting of a collection of integrated 

components. The system has been evaluated using a series of experiments and using 

different data sets i.e. publicly available datasets and data sets collected using real-life 

experiments. The results show that our approach can effectively detect multi-stage 

attacks. The false positive rates are reduced due to implementation of the vulnerability 

and target host information.        
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CHAPTER 1: INTRODUCTION 

1.1  Introduction 

This recent era has witnessed a massive growth in the use of computer network 

applications. More hosts are connected to the Internet to speed up business processes 

and to provide more accessibility. This has increased reliance on e-business paradigms 

providing dynamic and complex environments with interconnections of critical 

infrastructure elements. The inherently invisible nature of Internet usage, in most cases 

due to political reasons and the absence of legislation, has made these systems targets 

for hackers and intruders [1]. Traditionally, firewalls have been used as perimeter 

guards for organizational networks to filter incoming and outgoing traffic [2]. However, 

the number of sophisticated attack methods is growing, such as multi-vector, multi-

stage and insider attacks, in addition to data leakage threats as more sensitive data is 

stored in open-mode networks. Hence, an extra layer of defence is needed for deep 

packet inspection and context-aware detection. 

1.2  Security status 

In spite of the existence of security mechanisms, incidents of attacks are still occurring 

because attackers make use of flaws in implemented applications and services [3]. 

There are plenty of methods for bypassing traditional security systems, such as buffer 

overflow, application layer attacks to trick users, and insider threats. Most of these 

behaviours are considered legitimate because they do not violate the applied security 

policies, though they are in fact malicious. In addition, from a business point of view, a 

trade-off has to be made between strict security policies and productivity [4].  

To provide protection mechanisms against the new trends in intrusion techniques, 

advanced and intelligent intrusion detection and protection systems are required [5]. 
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Firewalls and software patches can no longer be regarded as reliable means of providing 

a defence against well-defined and novel attacks. Network traffic data has to be 

inspected and analysed in depth in order to detect malicious behaviour. Stateless 

analysis relying on packet-level observation does not improve the efficiency of the 

protection systems. Furthermore, different data sources and incorporated detection 

techniques have to be used in order to achieve higher level protective systems. 

In this respect, Network Intrusion Detection Systems (NIDSs) have been proposed as 

complementary security tools providing sensors to observe network traffic for any 

malicious activities. Several approaches with different capabilities have been developed 

to achieve this functionality, such as signature-based and anomaly-based mechanisms. 

Pre-defined attack patterns are supplied to signature-based approaches to detect any 

matching between these patterns and the received traffic data. In anomaly-based 

mechanisms, generated normal profiles are compared with the incoming activities to 

judge abnormalities. However, the common purpose of NIDSs is to detect potential 

intrusions in network traffic, generating security alarms. NIDSs can perform in 

detective mode or proactive mode, but immediate response may affect the usability of 

the protected systems, particularly if alarms are false.  

Recent advances in CPU processing power, memory and network speed have "stressed" 

the performance of NIDSs [6]. The difference between advances in networking speed 

and processing speed has created what has been called a performance gap, because 

communication speed has developed far in advance of processing speed [7]. This has 

imposed challenges for NIDSs, as they have to process multi-Giga traffic inline. Several 

methods have been developed for load balancing, distributed sensors [8] and parallel 

processing, but another challenge has emerged in the coordination of these sub-system 

units. 



3 
 

1.3  The limitations of NIDSs 

NIDSs can be considered a second line of defence in the protection of production 

networks, and they can cooperate with firewalls and antivirus systems to achieve 

maximal protection coverage. Both research communities and commercial vendors have 

been working for several years to improve the functionality of NIDSs. However, these 

systems still suffer from limitations that can generally be summarized as follow: 

1) High volume of generated low-level alerts [9], which makes it impractical for human 

analysts to pursue such an amount of information. Even worse, the quality of the 

observed data varies between certain intrusions and activities with a low degree of 

confidence. Typically, NIDSs produce alerts which are mapped to atomic detected 

events, but are not capable of determining to which incidents the detected alerts belong. 

The administrator has to analyse the data manually or use simple analysis tools based on 

statistical methods. Moreover, hostile actions are assumed to be infrequent compared to 

legitimate activities, so the analysis of a large amount of data in order to observe rare 

information is a cumbersome.  

2) A high rate of false positives is a major limitation of NIDSs and one that makes their 

effectiveness questionable. [10] states that more than 99% of the alerts generated by 

NIDSs are false positives. False positives are produced because the NIDS believes, 

based on its detection mechanism, that the detected activity is malicious. This weakness 

is mainly due to the fact that the system is unable to precisely determine the ultimate 

goal of the intrusion. Essentially, there is only a slight distinction between legitimate 

and malicious behaviour, as even malicious behaviour makes use of the facilities 

offered by the target system. For instance, in signature-based methods, there must be a 

balance between the level of specificity and the generality of a signature. A very 
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specific definition keeps the rate of false positives to a minimum, whereas general 

signatures broaden the detection space but increase the false positive rate.  

3) A high rate of false negatives is also another critical issue, where the NIDS is not 

able to detect malicious behaviour. That is due to the unavailability of pattern 

descriptions in signature-based methods or the fact that the behaviour is similar to a 

normal one in anomaly-based methods. However, skilful attackers use known attacks 

but combine them with available evasion techniques [11, 12] to deceive the NIDS and 

to pass undetected. Moreover, 0-day attacks are not identified, as they are unknown and 

their definitions are unavailable to the NIDS. 

4) The difficulty in handling a huge amount of traffic packets, diverse network 

protocols and sophisticated Web services. Deep inspection and comprehensive analysis 

have to be done for higher-degree detection and protection. And that requires massive 

processing capabilities and intelligent algorithms. The typical deployment of a NIDS is 

at the network edge, where the aggregation of organizational traffic passes. In inline 

mode, this has made the achievement of acceptable connectivity without any latency a 

challenge. Many approaches have been developed to cope with these problems, such as 

traffic splitting [13, 14] across a number of sensors to balance the load. Other 

techniques involve shifting from software-based to hardware-based solutions [15-17]. 

5) The sophistication and complexity of modern attacks exploiting new emerging 

services, such as Web application technologies [18]. Simple attacks to violate security 

policies are no longer used, particularly after years of security patches to protect core 

systems. Current trends in intrusion techniques are to employ hidden attacks that are 

difficult to be recognised by traditional security means. Multi steps of normal-type 

activities incorporate an attack and after breaking into the system, the intruder remains 



5 
 

silent for the longest possible time. Identifying this type of behaviour is not a 

straightforward matter without intensive observation and behavioural analysis. Most 

implementations of NIDSs, both commercial [19] and open source [20, 21], rely on 

stateless signature-based methodologies. Basic statistical approaches are implemented 

to detect anomalous behaviour using anomaly-based methods. Moreover, NIDSs need 

to be supplied with enough information from network traffic and from the end systems 

[12] to obtain the full picture of the protected systems. Such cooperation between 

security systems rarely exists and is still in a developmental phase. Efficient correlation 

techniques have to be implemented in order to differentiate between benign and 

malicious behaviour. 

6) Scalability to support the points mentioned above, as networks nowadays are 

changing in respect to bandwidth and diversity of services available. The 

implementation of NIDSs may be sufficient for a certain time, but they need adaptive 

mechanisms in order to react to different situations. 

7) Testing NIDSs to evaluate their operations is cumbersome [22]. There are no 

efficient approved methodologies to evaluate such systems due to the complexity of 

NIDS and the operational environments in which they are deployed. Ad hoc approaches 

have been developed and will be discussed in detail in Chapter 3. 

8) Statefulness analysis in order to build an accurate behaviour profile remains a 

stressing demand for NIDSs. For instance, Snort [23, 24] performs analyses on a 

connection basis only, so the need for higher levels of context analysis is crucial. This is 

based on the assumption that each occurring event may be connected with other events, 

and the correlation is useful in understanding the target of the event in question. Several 

NIDS claim they perform stateful analyses, but the concept of this type of analysis is 
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sometimes unclear. Stateful analysis does not only consist of performing TCP 

reassembly or IP de-fragmentation, but also the analysis of the semantic of multiple 

activities, including levels of connection, applications and services. 

9) Evasion techniques [11, 12, 25, 26] have been used to exploit the implementation 

ambiguities of protocols and services. Moreover, the gap between application 

developers and security experts has led to the production of programs with bugs 

exploited creatively by hackers. Malicious data distributed over fragmented packets to 

confuse detection systems or session slicing are examples of such evasion methods, or it 

can also take the form of obfuscation of Web application requests to break into 

vulnerable applications. 

1.4  Alert correlation systems 

Principally, Intrusion Detection Systems (IDSs) in general are useful only if their 

detection results are reviewed and analysed to derive current system security. Some 

difficulties affecting IDS operations have been stated, and to alleviate some of these 

limitations alert management systems have been proposed. Alert correlation systems as 

complementary tools deployed in a typical scenario separately from IDS, as the latter 

are performance sensitive [27]. The objective of these approaches is to receive alert 

streams from the IDS, create logical relationships between alerts, link each alert to its 

related contextual information, and provide a high-level view of the system's security 

situation. In prime, the receiving audit data is obtained from various IDS so it is used in 

alert correlation process. However, alert correlation can be also applied on individual 

IDSs to detect coordinated attacks and to reduce alarm volumes. It is worth mentioning 

that alert correlation is not an isolated process, and that several components are involved 

in achieving correlation, aggregation, alert reduction and alert verification.  
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It has been identified in the cyber security field that well-planned attacks consist of a 

number of stages conducted in a temporal order. True alerts belonging to intrusions 

generated by the IDS are not isolated; they also reflect the sequential pattern of the 

attacker. However, IDSs consider these alerts as individual events and report this to the 

administrator with a huge amount of alerts, most of them false positives or ones not 

critical to the protected system. A high-level view of these incidents can assist in 

recognizing the attacker’s plan and taking rapid action to protect the network. 

Moreover, IDSs, due to their limitations, cannot detect all variations of unseen attacks. 

However, alert correlation systems can predict the upcoming attack based on the 

pervious behaviours of attackers. Also, false alarms can be excluded because they are 

often of isolated and non-critical events. 

As a motivating example of a multi-stage attack, the Botnet attack scenario is 

considered as follows: the attacker performs scanning activities looking for a vulnerable 

host in a target network in order to install a backdoor. The IDS can detect the scanning 

behaviour, rating it as a low-risk activity, and also detects the shellcode installation but 

it is not as a part of the Botnet attack. Then the infected machine sends a connection 

request to the C&C (command-and-control) server in order to download the 

configuration file, which is typically encrypted. The IDS in this case can detect the URL 

of the C&C server as a blacklist. Note that the second phase does not necessarily need 

to be linked to the first phase, particularly if they occur far away from each other. The 

second stage can pass undetected using some obfuscation techniques; however, the 

server response containing some abnormal data in HTML format is detected. After that, 

maintenance and update activities are performed by downloading some binaries. The 

infected machine consequently performs a fast scan for other machines and sends a 

large number of DNS requests. Hence, if these stages are treated individually, they may 
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be considered isolated activities with low priority. Alert correlation systems process the 

resulting alerts to discover the connection between them based on causal relationships 

and to provide a global picture for the administrator.  

Alert correlation systems are intended to fill the semantic gap between high-level 

abstracted events and low-level elementary alerts. The security administrator’s 

requirements include: reduction of data redundancy, intelligent correlation of IDS alerts, 

recognition of attack scenarios, and a visualised attack scene. To achieve these tasks, 

different correlation mechanisms are employed, including alert similarities [28-30], 

attack scenario specifications [31], pre- and post-conditions [32-35], and data-mining 

techniques [36-38]. These mechanisms vary in their requirements and inner workings, 

but their common function is to build an abstracted knowledge about different attacks. 

Despite several efforts made to achieve the objectives of alert correlation systems, only 

a limited part of the correlation function has been addressed. Correlation tasks cannot be 

implemented alone, but require some other cooperative system components, such as 

aggregation, verification and data reduction. It has been mentioned that the main 

motivation behind the notion of alert correlation is to identify the connection between 

alerts. However this task, without removing data redundancy, will make it more 

complex and the information size will be increased considerably. In addition, the 

practice of correlation is processing-intensive and the typical deployment is connected 

to the IDS. It is impractical to rely on a single component for a complex function such 

as alert correlation; instead, a framework consisting of various components should be 

used. Each sub-system is responsible for certain tasks and all system parts are integrated 

in a systematic manner. 
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1.5  Motivation 

With the rapid advances in communication networks and the increase in the number of 

incidents of detected attacks [39], NIDSs have become a major component of security 

systems. However, NIDS have two major problems: first, missed attacks due to 

unknown attack patterns or because packets carrying attack evidence are dropped due to 

performance limitations. Second, the huge volume of irrelevant alerts overwhelming 

security analysts makes event observation tedious. This thesis has addressed these two 

practical problems through two phases:  

1) NIDS (software-based) evaluations in high-speed environments to characterise the 

problem of missed alerts caused by packet loss. 

2) Alert correlation systems to mitigate the two previous problems using a contextual 

recovery technique that provides the security analyst with a global view of the security 

perspective.  

The motivation behind this work inspired from the two phases above can be 

summarized as: 

a) Performance evaluation of NIDSs (software-based) in high-speed networks: The 

typical deployment of software-based NIDSs is installation on a dedicated server with 

minimum active services. This setup is quite susceptible to resource-exhaustion attacks, 

especially in high-speed environments. Sending a large amount of traffic or using 

computationally expensive techniques like fragmentation can compromise a NIDS or 

make it start dropping packets. Few efforts have been made to measure the performance 

of NIDSs, and most of the evaluation methodologies are based on moderate traffic flow 

[40]. This is because generating traffic in high volumes requires a sophisticated test-

bench, which is not always available to most researchers. A test-bench has been built in 
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our lab using various machines and switches to simulate real-life network traffic. In 

addition, the evaluation of NIDSs is elusive and there is no typical methodology to test, 

as few vendors [41] offer it and it is not available to researchers.  

b) Alerts missed by NIDSs: As mentioned above, NIDSs may miss some alerts due to 

unavailable attack descriptions or packet loss in Gig networks. The missing of such 

alerts is very dangerous, as serious attacks can pass undetected. Several works have 

been carried out to deal with this issue [27, 42] and to characterise NIDS performance. 

NIDS vendors recommend the application of conservative engine detection 

configurations to minimise resource consumption. This can affect the effectiveness of 

NIDSs as the detection space may be narrowed. Other efforts have been made to 

distribute traffic making use of balancers [13, 14, 43]; however, these may add extra 

complexities. The implementation of NIDS on hardware is potentially the optimal 

solution for this issue [16, 44, 45]. However, hardware is expensive, difficult to 

configure and tedious to maintain. In addition, the problem of missed alerts caused by a 

lack of signatures will not be alleviated. For this reason, recovery techniques are needed 

to reason about missed alerts, whether solely or contextually.  

c) Overwhelming administrators with irrelevant alerts: Typically, IDSs continuously 

generate vast amounts of alerts, and most of them are either false or low-level risk 

alerts. These data have to be analysed to obtain security status. This flood of 

information may end up hiding serious activities that could end up being overlooked. 

Simple analysis tools based on statistics provide certain details but do not reduce the 

resulting data. Hence, a mechanism needs to be devised to reduce alert flooding without 

losing critical details focusing on serious and coordinated activities.  
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d) False positives: It has been identified that approximately 99% of alerts reported by 

IDS are false positives [10, 46]. This is the result of the reduced quality in the 

description of current signatures and the imprecise determination of the borderline 

between legitimate and malicious activities. There are mainly three levels of solution to 

deal with this issue: 1) at the IDS sensor level, 2) at the protected system level, and 3) at 

the IDS log level. The first technique is to enhance the IDS detection algorithm to 

produce a very small number of false alerts. The main focus of these solutions is to 

build multiple special-purpose IDS [47, 48]. However, this could possibly affect the 

attack coverage and create compatibility and integration issues. The other two 

approaches [10, 29, 35, 49-51] are promising in terms of extending the IDS detection 

domain and focusing on attack-related alerts. Alerts are generated and then post-

processed to identify only important information believed to relate to true positives. 

Vulnerability and protected system information are obtained and supplied to alert 

correlation systems to identify whether the attack is successful or the alert is a false 

positive. In addition, the alert correlation system itself performs its functions to discover 

the relationships between the alerts and aggregate them, ignoring isolated alerts which 

are most likely false positives.  

e) Multi-stage attack recognition: It has been identified in practice [29, 35, 49] that 

most skilful attacker activities consist of multiple steps (attack scenarios) and occur in a 

certain time (attack window). An attack is performed using different vectors to gain 

access to the target system. IDS treat these steps individually, reporting isolated alerts 

while each step prepares for the next one to complete the intended attack. Identification 

of such a strategy can lead to the recognition of attack intentions, as well as the 

prediction of unknown attacks. 
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f) Slow-and-low attack detection: The new intrusion trend is to be slow [52], while the 

stages are distributed over a long period of time so as to avoid notice. Another feature is 

that it is performed with minimum noise, exploiting very small amounts of traffic in 

order to defeat any anomaly-based technique. Most alert correlation systems, 

particularly the ones implemented for real time [53], rely on the observation of 

incoming data during a pre-defined windows size. Memory requirements increase 

dramatically with the window size and the system becomes a target for state explosion 

attacks. The only available solution is to remove the detected states from memory in a 

periodic fashion. This leads to the loss of some of the attack stages if they are 

temporally diverged. All detected attack phases should be recorded, as the relationship 

may be discovered after a while.  

g) Alert correlation approaches: 

- Algorithms: The proposed algorithms vary between alert aggregation, data fusion, data 

reduction and alert correlation. The current trend is to create a cooperative system 

environment that provides complementary components to achieve practical solutions.  

Knowledge base modelling: The core of the correlation systems consists of the 

supported knowledge bases. Knowledge acquisition methods and the considered 

features are different, some of them being based on security expert analyses and others 

relying on pure statistical and machine learning approaches. Knowledge representation 

plays a major role in the effectiveness of the developed system. The supported data 

should be formalized in a systematic manner, taking into account specific and general 

concepts. 

Alert verification: One of the main causes of false positives is the knowledge gap 

between the IDS and the network it protects. The IDS is not capable of identifying the 
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target system's response after the attack. To bridge this gap, vulnerability, host and 

network details should be supplied to the correlation system to verify logged alerts. If an 

alert is assigned low priority, it can be used to extend the attack knowledge without 

having to consider it a critical element in the attack strategy. Instead of obtaining the 

target response, which adds more complexity, it is preferable to store an updated 

knowledge base about the required information. 

System implementation to provide a practical ground: The development of required 

algorithms for alert correlation functions becomes useless if these algorithms are not 

implemented. The evaluation of the system's effectiveness cannot be carried out without 

a practical tool. Most proposed approaches have been implemented in an ad hoc manner 

to show the main functionalities.  

Evaluation of alert correlation systems: Generally, the evaluation of IDSs is not an easy 

task due to the heterogeneous nature of such systems, and alert correlation systems 

inherit this property. Most evaluation methodologies only focus on a particular part of 

the system without considering other conditions. Moreover, some researchers validate 

their work with one or two datasets, some of which do not suit the case. For instance, 

some datasets consist of attack traffic only [54], which makes the test basic and simple. 

Others are not originally intended to test alert correlation algorithms. Therefore an 

intensive evaluation methodology with clear metrics is required, and it needs to be 

applied to different categories of datasets.  

1.6  Contribution 

1) Comprehensive performance evaluation of NIDS in a high-speed environment 

We have carried out a comprehensive performance evaluation of NIDSs to identify their 

limitations in high-speed environments.  We have designed and implemented a state-of-
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the-art, high-speed test lab so as to be able to replicate current and potential threats. This 

facility has been specifically designed to simulate realistic network traffic conditions 

comprising different scenarios of background and malicious network traffic. We then 

evaluated Snort [23], an open-source NIDS, on account of it being a de facto standard. 

Two broader approaches have been selected to determine the performance of Snort: 

host-based and virtual-based analyses. This is further supplemented by gauging the 

performance of the system on different operating system (OS) platforms.  

2) A proposed framework for alert correlation 

We have proposed a framework for alert correlation consisting of a collection of 

integrated components to utilize the capabilities of different approaches. This is to 

formalize a comprehensive solution for correlation, aggregation, data reduction and 

multi-stage attack recognition. We have presented a Multi-stage Attack Recognition 

System (MARS) as an alert correlation system to receive alerts from the IDS. The attack 

scenario is presented as evolving events over time bringing the attack strategy as a 

graph of connected aggregated phases. The graph explosions in other approaches have 

been avoided, which typically result in unmanageable attack graphs.  

3) Set of proposed algorithms for the framework components: 

- Alert correlation: We have developed an algorithm for alert correlation functions 

based on the partial satisfaction of the pre- and post-conditions of each attack. The 

logical connections are based on hierarchical multilayer specifications of attack 

capabilities. The correlation is performed for all elementary alerts before aggregation, 

and then any further correlations can be obtained implicitly for performance purposes.  

- Alert aggregation: To complement the alert correlation algorithm, an aggregation 

algorithm has been developed to eliminate data redundancy. The aggregation 

mechanism assigns a master alert for each group of similar alerts. Thus the main 
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objective of this algorithm is to minimise the number of nodes in the resulting attack 

graph. A pre-defined time threshold is used to determine aggregation probability.  

- Graph reduction: In cooperation with the aggregation algorithm, an algorithm has 

been also developed to reduce the number of graph links. An online graph-reduction 

algorithm is proposed for the deletion of transitive graph edges starting from root to leaf 

nodes. It is executed during the initial phase of correlation to eliminate graph 

complexity. A further graph reduction is performed by an offline algorithm starting 

from leaf to root nodes.  

- Event generation: The ultimate goal of the proposed system is to generate security 

events; hence an event-generation algorithm has been presented. An event refers to the 

description of an attack scenario reflecting a global view of intrusion. Each event has a 

title and two events can be combined if they are related to the same scenario. We have 

also provided facilities to interact with the detected events through administrative tools.  

- Prediction of undetected intrusion: Other approaches have dealt with broken scenarios 

caused by missed alerts by repairing them based on building a potentially large amount 

of links. However, the attack may be missed due to being a 0-day attack, where no 

pattern is known. An implicit mechanism has been proposed to estimate undetected 

activities using a generalized formalization of attack capabilities and intrusion 

categories. The missed attacks are not described specifically; instead a possible attack 

plan is predicted. 

4) Knowledge modelling:  

  Two knowledge bases have been proposed: internal and external. We have made a 

distinction of abstracted attack concepts and their capabilities from dynamic 

information, such as vulnerability and host details. In the internal base, capabilities have 

been modelled using a hierarchical method based on attack classes and inheritance 
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between these classes. The external base represents an extendable collection containing 

vulnerabilities, services, OSs and host information. 

5) Implementation of the proposed algorithms in a tool:  

In order to evaluate the proposed algorithms in a practical manner, we have 

implemented these algorithms and the knowledge bases in the MARS tool. The MARS 

core is an engine that is capable of analysing the receipt of alerts from IDS sensors and 

automatically constructing security events. The attack scenario is visualised in the form 

of nodes and edges and the administrator is able to navigate each element for further 

details. The resulting attack graph is kept as simple as possible, whilst at the same time 

providing rich information can be obtained by request.  

6) Comprehensive evaluation methodology to test the developed tool:  

We have evaluated our system using a collection of different datasets. A test-bench has 

been set up and we have conducted a series of experiments exploiting various situations. 

A set of evaluation criteria has been presented including functionality, accuracy and 

completeness, reduction, and performance tests. We have evaluated our approach not 

only on the basis of the number of correlated alerts, but also using the number of 

correlation instances for each alert in order to achieve precise results. 

1.7  Thesis outline  

Chapter 2 presents background information as an introduction to the topics of the thesis, 

namely intrusion detection systems (IDSs) and alert correlation systems. We start with a 

summary of the principle concepts of IDSs, discussing models, architectures and 

deployment scenarios. Then, state-of-the-art alert correlation and management 

approaches are reviewed, including similarity-based, pre- and post-conditions based, 
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and probabilistic approaches. The requirements of the design and implementation of a 

practical alert correlation system are also discussed. 

Chapter 3 lays out this study's initial research phase to carry out a performance 

evaluation of NIDSs. The evaluation methodologies of IDS performance have been 

investigated to provide a background to our preliminary testing. Extensive testing 

scenarios are implemented on a highly sophisticated test-bench using various platforms 

and configurations. A detailed performance investigation of Snort as a de facto IDS 

standard is given using different traffic conditions. The tests are conducted on host and 

virtual system configurations to explore the system response in different deployments. 

We also discuss packet dropping as an identified limitation of software-based IDS in 

high-speed environments. The chapter concludes with how the problem of missed 

attacks can be mitigated regardless of the reason with the use of alert correlation 

mechanisms. 

Chapter 4 describes the core concepts proposed in this thesis: the alert correlation 

framework and its algorithms. The underlying requires/provides model with our 

definitions of capabilities and concepts are presented. We explain in detail the design 

and representation of our knowledge bases and how IDS signatures are modelled. Then, 

a set of proposed algorithms are described including: alert correlation, alert aggregation, 

event combination, event generation, and graph reduction. Therefore, issues in relation 

to attacks missed by the IDS have been discussed and our approach for predicting the 

security status. 

In Chapter 5, the implementation and design specifications of the proposed framework 

are presented. We illustrate the MARS tool architecture, its integrated components and 

the system process flow.  
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In Chapter 6 the effectiveness of our implemented approach is demonstrated using a 

series of experiments. The evaluation methodology and testing criteria are discussed and 

the evaluation metrics are explained. We then continue to provide complete information 

about the datasets and experiment steps. We start with the DARPA [55] dataset 

evaluation for comparative purposes, incorporating the dataset description and analysis 

of obtained results. We then conduct two lab experiments reflecting real-life attacks to 

measure system functionality and performance. At the end of this chapter, a 

performance evaluation is presented comparing MARS and the IDS in respect to 

resource consumption. 

Chapter 7 summarizes the thesis, reviewing our main observations and contributions. 

We conclude with a discussion of related research directions and promising avenues for 

future research.  
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CHAPTER 2: BACKGROUND AND RELATED RESEARCH 

2.1  Intrusion Detection Systems (IDSs) 

The widespread use of corporate networks with sophisticated technologies, e.g. Web 

services, distributed databases and remote access, has raised concerns in terms of 

security issues. Network Intrusion Detection Systems (NIDSs) are one of the major 

techniques used to protect such networks against well-planned penetration. 

Conventionally, to secure computer systems, network services and running applications, 

resort was made to the creation of protective ―shields‖. Security mechanisms such as 

firewalls [2], authentication mechanisms and Virtual Private Networks (VPN) have 

been developed in order to protect the systems of organizations. However, these security 

mechanisms have almost inevitable vulnerabilities and are usually insufficient in 

ensuring the complete security of the infrastructure. Attacks are continually being 

adapted to exploit the system’s weaknesses, often caused by careless design and 

implementation flaws. This accounts for the need for security technology that can 

monitor systems and identify security policy violations. This is called intrusion 

detection, and complements conventional security mechanisms [56].  

Understandably, intrusion is popularly defined as a malicious and externally or 

internally induced operational fault. Nowadays, computer intrusions and attacks are 

often regarded as synonymous. But more technically, an attack is an attempt to intrude 

(into what is supposedly a secure network), while an intrusion is actually the result of an 

attack that has been partially or completely successful [57]. ―Intrusions in the computer 

systems are usually caused by attackers accessing the systems from the Internet, or by 

authorized users of the systems who attempt to misuse the privileges given to them 

and/or to gain additional privileges for which they are not authorized‖ [57]. Hence, the 
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difference that intrusion is a consequence of attack, however, unsuccessful attack is not 

necessary to result in an intrusion. Therefore, throughout this thesis, both terms are used 

from the viewpoint of the defender, and thus preventing an attack is inclusive of 

stopping an intrusion.  

An IDS is a system for detecting and preventing such intrusions. A technical definition 

provided by the National Institute of Standards and Technology [58] is that it is ―the 

process of monitoring the events occurring in a computer system or network and 

analyzing them for signs of intrusions, defined as attempts to compromise the 

confidentiality, integrity, availability, or to bypass the security mechanisms of a 

computer network‖. An IDS satisfies its reason for being by observing the network 

traffic or looking at OS events [59]. An IDS can be defined as ―a combination of 

software and/or hardware components that monitors computer systems and raises an 

alarm when an intrusion happens‖ [59]. 

Thus, the concept of a NIDS is to observe activities among network links to detect 

anomalous and misuse behaviour by acquiring information from traffic and inspecting 

data packets in an inline or offline fashion. Then, these systems notify administrators or 

respond to detected threats by blocking any malicious packets or sessions. Hence, 

proactive systems that identify the violation of security policies are called NIDSs, 

whereas reactive systems that respond and stop any misuse behaviour are called 

Network Intrusion Prevention Systems (NIPS). However, most of these systems can be 

switched between the two modes based on organizational needs. 

Despite both systems NIDS and NIPS perform the same analysis looking for signs of 

intrusion, they differ in how to provide protection for network environment. NIDS is a 

passive device watching the traversed packets from a monitoring port or SPAN port 
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(Switched Port Analyzer), matching the traffic to a set of configured rules, and 

triggering an alarm in case of suspicious activities. The ideal deployment of NIDS is to 

be connected to a monitoring port of a backbone switch as shown in Figure 2.1. A copy 

of network packets seen on any switch port is sent to the monitoring port to be analyzed 

by the NIDS. NIDS cannot block the connection and need the administrator response to 

deal with the detected events. NIPS have all features of the NIDS but it can block 

malicious traffic immediately by terminating the network connection, attacking user 

session, or by blocking the access to victim machines or services. Therefore, NIPS 

needs more tuning to keep the false positive rate to the minimum which affect the 

legitimate traffic. NIPS are typically deployed inline behind the firewall to limit the 

inspected traffic in order to improve the efficiency as shown in Figure 2.1.  

The Internet

Internal 

Network
Network Tap

NIDS

The Internet

Internal Network

NIPS

Firewall
Router

Firewall

Router

NIDS Deployment

NIPS Deployment

 
Figure 2.1 NIDS and NIPS deployment. 

The notion of the IDS was first introduced in 1980 by James Anderson [60], who 

proposed an anomaly detection approach based on the distinction between the 
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characteristics of normal and anomalous behaviour. A threat model was presented that 

classified threats as external penetrations, internal penetrations and misfeasance. 

Denning [61] in 1987 introduced a general model for IDSs, which is the basis of many 

system prototypes have been developed since then. Denning’s model includes an 

identification of two different models of intrusion detection systems: 1) the misuse (or 

signature) model, when an attack is detected based on previous knowledge of its 

signature; and 2) the anomaly model, when an attacker is detected based on its abnormal 

behaviour. This notion, based on the assumption that the normal behaviour of users and 

systems can be characterised, enables automatic profiling. Debar [62] proposed the first 

IDS taxonomy based on different criteria:  

(1) Detection method: behaviour-based, knowledge-based. 

(2) Behaviour on detection: passive, active. 

(3) Audit source location: host log files, network packets. 

(4) Usage frequency: continues monitoring, periodic analysis. 

(5) Detection paradigm: state-based, transition-based. 

 

Figure 2.2  Axelsson’s classification of Intrusion Detection Systems (IDSs). 
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Axelsson [46] proposed a generalisation model of IDSs as an alternative taxonomy, as 

shown in Figure 2.2. The classification is mainly based on detection principles and 

operational aspects  

Even though several methodologies have arisen to classify IDSs since 1980, these fall 

into three general approaches: 1) anomaly- (behaviour) based, 2) signature- 

(knowledge) based, and 3) hybrid systems (anomaly and signature). 

2.2  Intrusion Detection Systems: methodologies 

2.2.1  Anomaly-based detection 

 Anomaly-based detection methods are based on a deviation of abnormal activities from 

the normal or expected behaviour of the system. A set of characteristics of the system 

are observed and analyzed to create a model of normal behaviour using collections of 

information about the system over a particular time interval. IDSs can detect anomalies 

when they compare current behaviour to the normal system model in order to identify, 

report and block any violation. Moreover, anomaly-based methodologies are based on 

the assumption that any anomaly is an indication of a potential attack.  

Normal behaviour is learned by the system during an online/offline training phase 

(heuristic systems). Collected data from the learning stage is analysed, pre-processed 

and processed; then the normal model is built according to these observations. 

Therefore, audit data is inspected for any abnormal patterns deviating from the normal 

model baseline, and these are considered malicious. The effectiveness of these 

methodologies depends on the selected variables and parameters to build the model of 

the system profile [63]. These parameters vary from simple statistical data to 

comprehensive measures. Therefore, robustness of these systems is proportional to the 

amount and accuracy of measured data. In addition, these sorts of systems should be 
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adaptable due to the complex and changing nature of protected environments, such as 

communication networks. [64] summarizes the anomaly-based IDS process into three 

stages: 1) a parameterization stage to collect the observed instances of normal system 

behaviour; 2) a training stage to characterize the normal and abnormal models, which 

can be achieved either manually or automatically; and 3) a detection stage to detect any 

deviation exceeding a pre-defined threshold. These systems are theoretically able to 

detect novel and 0-day attacks [65]. However, their efficiency is strongly dependent on 

model construction and threshold selection. Several techniques are used to build 

anomaly-based systems. 

2.2.1.1  Statistical techniques 

The objective of statistical techniques is to observe the system's activities in order to 

determine its behaviour, and then to generate system profiles. Selected variables are 

sampled over a specific period of time to measure the normal behaviour of the system. 

The observed activities can be system logs, spatial and temporal characteristics of 

network traffic, or system calls. Two models are built: a model stored or programmed 

and a current model; and detection is based on the degree of abnormality in the 

comparison of the two models considering a threshold metric. The advantage of these 

approaches is that they do not require prior knowledge of the observed systems. 

However, one of the biggest drawbacks of these techniques is determining the threshold 

in order to achieve a balance between false positives and false negatives, which is 

difficult in the presence of different situations and requirements. In addition, intruders 

can deceive the protection system to send malicious data by training the target system 

itself.  

Haystack's prototype [66] was developed as one of the earliest statistical anomaly-based 

IDSs. The detection system considers a combination of two models: user behaviour and 
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generic group behaviour. It takes into account a range of normal behaviour events 

between two limits and each event has a score, with a high score indicating an anomaly. 

However, normal system features are extracted offline only. The early proposed 

techniques in this respect were based on univariate models such as [61]; however, the 

trend lately has become toward multivariate models that consider more than one single 

variables [67]. Using a combination of metrics rather than only one provides more 

accurate discrimination between the observed models.  

2.2.1.2  Expert systems 

Expert systems [68, 69]are knowledge-based and used to build the profile of a system or 

its users based on rules obtained from statistical measures of normal behaviour over a 

period of time. Primarily, these approaches are intended for data classification 

according to the extracted rules. In the first stage, training data is used to define certain 

variables and classes, and then classification rules are inferred and applied to audit data. 

The W&S (Wisdom & Sense) [70] expert system was proposed to detect anomalies in 

user behaviour. The IDES (Intrusion Detection Expert System) [69], developed at the 

Stanford Research Institute (SRI), is a system that summarises user behaviour and 

calculates interrelated statistics, and then compares the current activities with the user 

profiles. The next generation of NIDES (Next-generation IDES) was designed to 

operate online to monitor system activities. The SPADE (Statistical Packet Anomaly 

Detection Engine) [71] is a Snort pre-processor plug-in, developed to use the concept of 

anomaly score to detect stealthy port scans. It consists of two sub-systems: an anomaly 

monitoring sensor and a correlation engine. An alarm is triggered if the assigned score 

of each event exceeds a specific threshold. The main advantage of these approaches is 

flexibility and accuracy; however, constructing the required knowledge is not an easy 

task and is a time-consuming process.  
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2.2.1.3  Machine learning 

Learning is a process to learn the dependency between two sets of information to 

generate an unknown input-output model based on a limited number of observations 

[72]. An accurate observation that describes the constructed model requires an accurate 

problem definition. Machine learning techniques have been used widely in computer 

systems to provide intelligence in the automatic process. The tasks of machine learning 

include: classification, acting and planning, and interpretation. IDSs can be identified as 

a classification problem (with two classes: normal and abnormal) [72]. Training data 

captured from the normal usage of the system are used to build the model and then 

classify behaviours as either normal or anomalous. These systems are either generative 

(profiling) to learn the normal behaviour and to detect intrusion deviating from the 

learned profile, or discriminative to learn the distinction between normal and abnormal 

activities [72]. 

Generally, learning methods can be classified into two broad categories: supervised and 

unsupervised learning systems. In supervised learning, training data (labelled data) is 

used to generate normal and abnormal behaviour. Each training pattern is weighted to 

construct a detection model and the weights are adaptive to obtain a feasible and 

accurate system. It is required to predict model behaviour variables for any input 

variables after the training phase. Formally, given variables (x,y), x   X, y  Y, the 

objective is to find a  function f :X→Y which represents the intrusion detection model. 

The degree of mismatch between X and Y represents the cost function of the prediction 

algorithm. 

On the other hand, in unsupervised learning (unlabeled data approach), anomalous data 

is not needed; instead, a normal model is constructed from normal system patterns. For 

anomaly detection systems, unsupervised methods are more effective for building the 
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model by observation without any prior knowledge of intrusive behaviour. However, 

machine learning is not limited to these approaches; semi-supervised learning, active 

learning and deep learning are widely used in researches. Examples of machine learning 

systems are Y-means, neural networks and support vector machines (SVMs) [73].  

Machine learning techniques for system calls analyses have been used for host-based 

IDSs to learn program behaviour so as to detect irregularity. Forrest et al. [74] 

discovered that sequences of system calls were very consistent and a normal model 

could be built and used to detect abnormal activities. Their work was based on 

similarity function to compare the human immune system and IDSs. [75] proposed 

multiple detection models for the system calls to be evaluated from different points of 

view. Weighted scores for events are accumulated to construct the detection model. 

Bayesian methodology has been conducted by several researchers due to its unique 

features. It is based on probabilistic relationships among events to find or predict the 

cause of actions by moving back in time. [76-78] used a Bayesian network to create 

models for anomaly detection. In addition, Principle Component Analysis (PCA) is a 

technique used to reduce massive and multi-dimensional datasets to lower dimensions 

for analysis. Large and complex datasets are difficult to understand and process. A large 

number of correlated variables are transformed to a smaller number of uncorrelated 

variables. [79] proposed an anomaly-based detection system using PCA to reduce the 

audit data. [79-81] present a model that is suitable for high-speed processing, where the 

dataset is collected from system calls, shell commands and network traffic. Markov 

models are also used to detect anomalies based on sequence of events, where the system 

is examined at some particular time. [82] developed an anomaly detection system for 

systems calls based on Markov models. A hidden Markov model is also employed in 

anomaly-based systems where the system is assumed to be a Markov process but with 

http://en.wikipedia.org/wiki/Data_set
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hidden parameters. [83, 84] used a hidden Markov chain to develop host-based 

detection systems. [85] developed several methods for network-based anomaly 

detection systems. In practice, these techniques generate flexible and adjustable 

systems, as they discover the interrelations between system variables. However, they 

rely on assumptions drawn about the observed system and require training data.  

2.2.1.4  Data-mining techniques  

Data-mining techniques have also been employed in anomaly detection systems in 

many researches to extract a knowledge model from a large number of patterns. 

Association rules from the system patterns are utilized to create features that construct 

the detection system. Two types of methods applied in data mining are 1) predictive 

methods involving certain variables to predict unknown variables; and 2) descriptive 

methods where human interpretation  are used to detect unknown patterns. Data-mining 

approaches are generally applied to three main tasks: classification, clustering and 

association. Classification is intended to extract class attributes from training data and 

learn the model using the training data, and then to use the constructed model to detect 

the anomalous events. An example of classification techniques are: inductive rule 

generation techniques, fuzzy logic, genetic algorithms and neural networks. RIPPER 

[86] used inductive rule generation techniques to induce rules from data to classify audit 

data and detect intrusions. Dickerson et al. [87] developed the Fuzzy Intrusion 

Recognition Engine (FIRE) to derive rules for every observed event. Other approaches 

[88, 89] have used genetic algorithms to extract classification rules. 

In the clustering and outlier detection task, patterns in unlabeled multi-dimensional 

datasets and the number of dimensions equal to the number of attributes are identified. 

[90, 91] presented outlier detection techniques to create clusters and apply rules on audit 

data. The MINDS (Minnesota Intrusion Detection System) [92] is considered a 
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clustering-based anomaly detection system. Association rule discovery mechanisms are 

used to correlate events usually occurring at the same time. ADAM (Audit Data 

Analysis and Mining) [93] is an association rule and classification based anomaly 

detection. 

2.2.2  Signature-based detection 

Signature-based detection methods are knowledge-based techniques where well-defined 

attack patterns are used to detect malicious security violations. A novel attack has to be 

studied and analysed to identify its features and then generate its accurate signatures. 

The detection system observes and analyses activities amongst audit data, and the 

detection mechanism is based on the comparison between attack signatures and 

observed patterns. Signatures can be defined as a set of conditions characterizing the 

direct manifestation of intrusion activities in terms of system calls and network data 

[94], which is to say that when these conditions are met, a type of intrusion event is 

indicated. In networks, unauthorized behaviour is detected by sniffing packets and using 

the sniffed packets for analysis [95].  

This intrusive model is more accurate than the normal behaviour model and it does not 

need to observe the system's normal behaviours. In addition, it can be efficiently applied 

in heterogonous environments, while its detection process works independently from 

the normal system behaviour. The detection mechanism is based on a pattern-matching 

process performed on audit events. 

In these systems, the collection of signatures describing malicious activities is stored in 

a database similar to an anti-virus system. The observed events extracted from captured 

data, such as network traffic packets, are compared with the pattern database, and then 

an alarm is triggered in case of matching. The database has to be up-to-date and the 
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signatures have to be accurately defined to achieve an acceptable balance between false 

positives and false negatives. If the signature descriptions are very specific, this will 

result in false negatives and missed attacks. In contrast, if the signature descriptions are 

very general, a large number of false positives will be generated. Snort [23, 24] is the de 

facto standard for IDSs, which is categorized as a signature-based detection and 

prevention system. However, it employs protocol anomaly inspection as well as many 

commercial and open-source detection systems using Snort signatures. Snort will be 

explained in detail later in this chapter. 

Typically, these types of systems consist of two sub-systems: a sensor to collect data 

from its sources, and an engine to perform pattern matching. However, in an ideal 

scenario, signature systems are incorporated with a pre-processing mechanism such as 

protocol analysis to remove ambiguities from the collected data. The most expensive 

process in such systems is the pattern-matching process, particularly in high-speed 

environments. For this reason, many algorithms have been proposed in the research 

community to enhance the functionality of the pattern matcher [96-98].  

Software-based pattern matcher systems have been used for several years, but with the 

evolution of Gig networks these systems have become bottlenecks. Therefore other 

areas of research and certain commercial products are implementing hardware-based 

pattern-matcher systems to utilize their high-speed processing [17, 45, 99]. Generally, 

the most well-known algorithms for pattern matching are Boyer-Moore [100] for single 

pattern matching and Aho-Corasick [101] for multiple pattern matching. For hardware-

based solutions, FPGA (Field Programmable Array Gates) and TCAM (Ternary Content 

Addressable Memory) are implemented for their parallelism capabilities [102]. [44] 

found that 87% of Snort rules have patterns, so he proposed a hardware accelerator for 
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pattern matching. [99] proposed a high packet processing system using TCAM. An 

Extended TCAM was proposed by [103] to reduce data structures. 

Certain efforts have dealt with software-based solutions to enhance performance. [104] 

proposed a method to process each packet once it arrives without reassembly and to 

integrate pattern matching in protocol analysis to reduce execution time and memory 

use. [105] integrated pattern matching, normalization and protocol analysis in pro-to-

matching techniques to improve Snort functionality. 

Each signature-based and anomaly-based IDS has its advantages and disadvantages. 

The signature-based IDS is more practical and widely deployed because the intrusive 

model is easier to develop to meet security policies in heterogeneous environments. 

More precise definitions of signatures lead to more precise detection and reduced 

potential of missing attacks (false negatives). Comparatively, false positives in such 

systems are considered lower than in anomaly-based systems because the detection 

mechanism is based on matching patterns of activities to knowledge of attack patterns. 

In addition, alarms generated by these systems provide the administrator with detailed 

and precise information about the intrusion and the attack actions. On the other hand, 

signature-based systems cannot recognise 0-day attacks due to the absence of 

corresponding signature definitions. The system can also be evaded by altering 

signature patterns in a way that does not affect the ultimate goal of the attack, such as 

mutant exploits or polymorphic behaviour (self-modifying behaviour). Keeping up-to-

date with new vulnerabilities along with the maintenance burden are further drawbacks 

of these systems. 

In contrast, the anomaly-based system has the ability of detecting novel attacks without 

prior knowledge and without the need to create new signatures for each unforeseen 
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exploit. This can be efficient in the detection of Internet worms and similar stealthy 

attacks. Vulnerability updates are not required as a result of considering any suspicious 

activity as potentially malicious. On the other hand, anomaly-based systems suffer from 

difficulties in precisely characterising normal behaviour models in order to create 

baselines of detection. Determining the degree of deviation from the norm to provide 

reasonable detection accuracy is another obstacle. Moreover, these types of systems 

require a training phase including intensive analysis of the target environment. And any 

development fault in this phase can cause the generation of a large number of false 

positives. Furthermore, modern methodologies of attack tend to be slow-and-low, 

without creating a noticeable deviation from the normal model of the typical system, 

thus such malicious activities cannot be detected. Moreover certain emerging attacks, 

such as cross-site scripting (XSS) [106] and code injection, are categorised under the 

normal usage of any system, which makes them difficult to detect. The changing nature 

of network systems (burst networks) may result in high false alarms, even though the 

normal behaviour is well defined. Finally, the generated alarm reacting to abnormal 

activity does not give specific information to the administrator about the attack. 

In fact, neither of the two is the panacea. When used in conjunction with each other, 

then each of the two become a more viable and effective means of protecting network 

infrastructures [94]. The signature-based IDS still serves as a good outer layer of 

defence against known attacks in the same manner as firewalls. Anomaly-based IDSs 

are employed to further fortify the defence system and do not serve to function in lieu of 

signature-based IDSs [107]. Today, it is being observed that numerous antivirus 

packages include both signature-based and anomaly-based detection features, while 

only a handful of IDSs effect an incorporation of both approaches. 
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2.3  Hybrid IDSs 

The recent trend in the intrusion detection research community is to have the above 

approaches to interoperate efficiently and manipulate their positive features so as to 

achieve maximum levels of protection. Signature-based systems provide accuracy and 

less false positives, and anomaly-based systems offer recognition of novel attacks. 

Figure 2.3 shows the typical architecture of hybrid systems, where a signature-based 

sub-system such as Snort receives the incoming network data and performs monitoring 

using a protocol analysis unit and a pattern matching unit. If a malicious activity is 

detected, an alarm is triggered and there is no need to pass the captured data to the 

anomaly sub-system. Otherwise, the data is transferred to the anomaly sub-system for 

further observation. Therefore, only traffic supposed to be benign is forwarded to the 

receiving applications, and malicious activity is detected. Then the detected suspicious 

behaviour is further analysed by experts, and potentially a corresponding signature can 

be generated for future use.   
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Figure 2.3  Architecture of hybrid systems. 
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2.4  Snort 

Open-source software has gained tremendous popularity and acceptance amongst 

academia and the research community. Apart from being free of costs, there are several 

other qualities that have made them popular. Some of the advantages of open-source 

software are access to source code, detailed documentation, online forum support and 

rights to modify/use. Our research has focused on a widely accepted open-source 

software tool, Snort [20]. Snort has received great acceptance in the IDS market and has 

been widely recognized as the reliable open-source tool.  

Snort is capable of performing real-time traffic analyses and packet logging on the 

network. It performs protocol analysis and can detect a variety of network threats by 

using content/signature matching algorithms. Snort can be configured as a packet 

sniffer, packet logger and NIDS (detection mode and inline mode). 

- Sniffer mode: To receive traffic packets from the traffic wire and display them 

exactly the same as function of TCP dump. Snort uses a libpcap library for 

packet acquisition. 

- Packet logger: This is similar to the above, in addition to storing the data on a 

disk. 

- Network intrusion detection: The main task for Snort to perform is traffic 

analysis and pattern matching against signature collections. 

- Inline mode: (or network intrusion protection mode): To acquire traffic packets 

from iptables instead of libpcap. Attacking packets according to Snort rules are 

dropped instantly and only benign traffic will be forwarded. 

Snort was introduced in 1998 by Marty Roesch [20], and was considered a signature-

based IDS. Since its early versions launched in 1999, many development efforts have 



37 
 

been implemented to improve its capabilities. The current version is 2.8.6, and more 

than 8,000 certified rules are included. SnortSP 3.0 [23] is the beta version with new 

architecture introducing a new shell-based user interface. The Snort system consists of 

four sub-systems working sequentially, as shown in Figure 2.4. 
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Figure 2.4 Snort sub-systems. 

Snort has five components: 1) a packet decoder, 2) a pre-processor, 3) a detection 

engine, 4) a logging and alerting system, and 5) an output model. Incoming packets are 

prepared for processing before being modified if required, e.g. de-fragmentation before 

sessions are then reassembled. Snort rules are applied in detection engines, where they 

are examined against signatures to detect recognised attack patterns. 

2.4.1 Pre-processor 

Pre-processors have been introduced to run before detection engines to improve Snort 

protection speed and efficiency. They are intended to perform traffic normalization to 

detect protocol anomaly behaviour. They are based on a target-based technique inspired 

from Patcek and Newsham's paper on evasion of attacks [11], and Vern Paxon and 

Umesh Shankar's paper [12] on traffic normalization. The heterogeneous nature of 

communication network infrastructures has posed ambiguities due to various 

interpretations of the RFCs [108]. The target-based analysis [23] involves identifying 

the actual target characterisation in order to provide the IDS with additional information 
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about the protected network so as to defend against attack evasions. Different OSs can 

behave in different ways in terms of handling network traffic, and the IDS must 

understand how these OSs are functioning. Intruders may manipulate these ambiguities 

in protocol implementations by fragmentation and session-splicing techniques. Pre-

processors in Snort consist of: 

- Packet de-fragmentation to reassemble traffic data spread over multiple packets. 

- Session reassembly to provide a stateful TCP analysis by using state records of 

previous TCP connections. 

- An application pre-processor to normalize ambiguities in application-level 

protocols, such as Telnet, HTTP, SMTP, FTP and RPC protocols. 

Dynamic pre-processors are plug-in pre-processors dynamically loaded and separately 

developed, and compiled without the need for full Snort compilation. 

2.4.2 Detection engine 

The main task of a detection engine is to perform the pattern-matching task. It receives 

the data from pre-processors and matches the packet header and content against Snort 

signature rules. Snort, being a signature-based IDS, uses rules to check for hostile 

packets in the network. Rules are sets of requirements used to generate an alert and have 

a particular syntax. For example, one rule that checks for peer-to-peer file sharing 

services looks for the string ―GET‖ in connection with the service running on any port 

other than TCP port 80. If a packet matches the rule, an alert is generated. Once an alert 

is triggered, it can be sent to multiple places, such as a log file or a database, or it 

generates a Simple Network Management Protocol (SNMP) trap [109]. On successful 

detection of a hostile attempt, the detection engine sends an alert to a log file through a 

network connection into the required storage (output) [24]. Snort can also be used as an 
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Intrusion Prevention System (IPS) [24]. Snort 2.3.0 RC1 integrated this facility via 

Snort-inline into the official Snort project [23].  

The main objective of Snort and other NIDSs is to effectively analyze all packets 

passing through the network without any loss. The performance of the majority of 

running applications depends upon memory and processing power. In the context of 

NIDSs, this performance dependency includes NIC cards, I/O disk speed, and OS. In 

recent years, technologies have advanced in both hardware and software domains. 

Multi-core systems have been introduced to offer powerful processing functionality. 

However, these multi-processing implementations support applications using concurrent 

programming. The number of CPU cycles in such systems has increased to execute 

multiple tasks simultaneously. 

It has been identified that Snort does not support multithreading [24]. The detection 

engine component of Snort constitutes the critical part where the pattern matching 

function is performed. Recent VRT rule libraries contain more than 8,000 rules; this 

augments the need for an effective pattern matcher. Snort uses three different pattern 

matching algorithms: Aho-Corasick [101], modified Wu-Manber [110], and low-

memory key-word tire [24, 96]. Modifications have been made for these algorithms to 

provide various performance characteristics. We have conducted comparative memory 

usage and performance tests for different pattern-matching algorithms. The results are 

shown in Table 2.1. 

Table 2.1 Pattern-matching algorithm performance (based on 1.5 GB pcap file). 

Algorithms (8,296 rules) Memory usage (MB) Packet processing time (seconds) 

Aho-Corasick (full) 640 620 

Aho-Corasick (sparse) 240 714 

Aho-Corasick (standard) 1,080 665 

Wu-Manber 130 635 

Wu-Manber (low) 75 655 
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In addition, Snort uses Perl Computable Regular Expressions (PCRE) [24] for precise 

and flexible protection capabilities. A dynamic engine is also used for complex 

detection functionalities where shared objects are dynamically loaded. Instead of 

plaintext rules, rules can be written in C language and compiled and loaded for fast 

processing and to deal with certain complicated attack vectors. Snort rules consist of 

rule headers and rule options. The structure of rule headers is shown in Figure 2.5 and 

multiple rule options are enclosed in parentheses. An example of a Snort rule is 

provided below: 

alert tcp 192.168.2.0/24 23 -> any any \ 
(content: "confidential"; msg: "Detected confidential";) 

Action Protocol Src. Address Port Direction Dest. Address Port 

Figure 2.5 Snort rule header. 

2.4.3 Snort with Artificial Intelligence (SnortAI) 

SnortAI [111] has been introduced to integrate Snort methodology with the intelligence 

of anomaly-detection methods represented by Artificial Intelligence plug-ins. Currently, 

portscan-AI pre-processors function with Snort version 2.8.3.2 and the development of 

other plug-ins, such as XSS-AI and SQL-AI pre-processors, is in the planning. 

2.5  Bro 

Bro [21] is also an open-source IDS to parse network traffic in real-time focusing on 

extracting application-level semantics and event observations. It was developed at ICST 

and LBNL [112] in 1996. The detection of a specific attack is implemented by 

comparing activities against a set of rules and policies. However, Bro does not look 

only at pre-defined signatures, but analyses network connections and correlates between 

events. Moreover, it uses regular expression matching and a DFA (Deterministic Finite 

Automaton) [113], where one active state is used at a time. 
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Bro system architecture consists of three main sub-systems: 1) a sniffer to capture 

traffic, 2) an event engine, and 3) a policy script interpreter. When network packets are 

captured, different levels of events are generated by the event engine (the core). Streams 

of produced events are transferred to the policy script interpreter to be processed. 

Polices are either supplied by the administrator or acquired from the connection context 

analysis. Events are handled by the event handler following rules specified by policy 

scripts. Policy scripts have to be written in Bro script language. However, Bro suffers 

from a shortage of good documentation, slow development and the need for writing 

complex scripts. 

2.6  Host-based vs. network-based IDSs 

IDSs can be categorised based on the source of gathered information for observation 

and analysis. Host-based IDSs were introduced before network-based IDSs to monitor 

the activities on a single host. These activities include file access and modifications and 

the detection is achieved by checking file integrity, kernel activities such as system 

calls, and root privilege behaviour. Furthermore, connection attempts can be observed 

such as suspicious port connections and failed logon attempts, as well as application-

level interaction. Records of information are collected and analysed against any 

intrusion attempt. Examples of such systems are: tripwire [114] – a software for security 

and data integrity, and OSSEC[115] – an open-source host-based IDS. 

In contrast, network-based IDSs (NIDSs) monitor local network activities by analyzing 

inbound and outbound traffic in real-time. All traffic packets – captured from network 

interface on a promiscuous mode – are reassembled and analyzed using different 

mechanisms. Certain network-based attacks, such as distributed denial of service 

(DDoS), Botnet and worms, cannot be detected by host-based IDSs. Thus, NIDSs are 
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efficient because they protect the network elements, including host machines, largely 

without having to rely on frequent OS patches and user awareness. They also reduce the 

cumbersome task of installing and updating protection software on every single host. 

The main concerns about such systems are when they become a bottleneck for network 

communications, particularly with the massive speed of modern switches. The other 

concern is the difference in understanding of the received data between the NIDS and 

the end application. Also, application-level attacks, which need application-layer 

inspections, have posed another challenge for such systems. The research trends in this 

area are to enhance NIDSs to be more intelligent in understanding attacker behaviour. 

This is achieved by incorporating certain functionalities implemented in host-based 

tools.  

2.7  Alert correlation 

The widespread deployment of IDSs, both network-based and host-based, has imposed 

a demand for sophisticated alert management systems. Simple analyses including 

statistical information about IDS alarms are not helpful in the detection of connections 

between alerts, in reducing alarm-data size and in distinguishing false alarms. A high-

level view of system security status is required by analysing low-level alerts produced 

by IDSs to characterize attack actions. Alert correlation techniques provide the facility 

to observe beyond the receipt of IDS alarms themselves. It has been identified that real 

intrusion consists of multiple and coordinated steps that are logically connected. In 

addition, the huge amount of elementary alerts received constantly can cause the human 

administrator to ignore them if they consist mostly of false positives.  

Alert correlation has been an active research area for many years and the concept has 

been explored in several efforts. Approaches have been developed for Network 
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Monitoring Systems (NMSs) to diagnose faults in complex communication networks, 

and have also been applied to some extent in alert correlation. However, the nature of 

network faults is different from adversarial behaviour, as the later is more dynamic and 

complex. In NMSs, the objective is to find out the fault location, whereas in the 

correlation of IDS alerts, the goal is to discover the attacking strategy. 

In recent years, alert clustering and correlation techniques have been employed to 

provide a global view of attacking behaviour by analyzing low-level alerts produced by 

the IDS sensors. The main objective of alert correlation is to build an abstract modelling 

of alerts by generalizing the detected events, instead of the current specific modelling. 

The constructed inference will progress even in cases of unforeseen attacks. Previous 

research efforts in the field of alert correlation have mainly concentrated on a particular 

aspect of the problem domain. It is not possible to provide an efficient alert correlation 

system in a single phase or study the system components as isolated elements. Overall 

functionality is only achieved by the integration of the system's modules and all the 

system parts should be evaluated together.  

Different approaches have been utilized to build the correlation models and can be 

categorized into four main disciplines: 1) similarity-based approaches, 2) scenario-based 

approaches, 3) pre- and post-condition approaches, and 4) probabilistic approaches.  

2.7.1  Similarity-based approaches  

In similarity-based techniques, certain selected features (e.g. source IP address, 

destination IP address, port number and attack class) are used to compute the similarity 

degree. Some approaches rely on exact similarity between two alerts to be grouped, e.g. 

the same source and destination IP address, whilst others utilize a similarity function. 

This function represents similarity confidence and is based on a defined threshold. Two 
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alerts are considered similar if they satisfy the defined confidence degree and occur 

within a defined sliding window time. The similarity confidence is calculated using the 

overall similarity between alerts based on their attributes. In principle, these techniques 

are mainly applied to alert fusion, alert clustering and alert aggregation. The Alert 

clustering process plays an important role in alarm reduction and as well as reducing 

false positive rates. Data mining, artificial intelligence, machine learning and clustering 

using association-rules techniques are widely implemented in this respect.  

[50] has proposed an algorithm for alert aggregation and correlation which is 

implemented in the Tivoli Enterprise Console (TEC). It is a tool for risk management to 

address the problems of alarm flooding and discovery of attack context. It has two 

different components: one to remove duplicated instances of alerts using rules saved in 

a configuration file, and the other to assign alerts to their associated attack scenario. An 

exact similarity of three common attributes (attack class, source address and destination 

address) are used to group alerts. It is useful for some initial alert processing but is not 

capable of detecting complex scenarios. It is also vulnerable for attack flooding and the 

use of different IP addresses for the same attack. However, their alert model has been 

revised and is now the de facto standard format for intrusion detection alerts, which is 

the Intrusion Detection Message Exchange Format (IDMEF) [116]. An alert correlation 

framework was presented by [51] using exact feature similarity. Two out of ten of the 

proposed components are implemented. Thread reconstruction is used to cluster alerts 

with equal source and destination IP addresses within a window size. This is to 

represent the activity of attacking a single host from a single attacker. Another 

component called focus reconstruction is used to show a single attacker targeting 

multiple machines.  
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In other respects, approximate features similarity is used by [28], who presented a 

probabilistic approach to provide a unified mathematical framework that performs a 

partial matching of features. Features are extracted and minimum similarities are 

computed and weighted. A similarity metric is employed using EMERLAND 

architecture [28] in three phases. In the first phase, an attack thread concept and 

similarity metric (sensor, attack class, source and destination) are used to aggregate low-

level events. The second phase involves the aggregation of alerts generated from 

multiple sensors ignoring sensor field information. Then the third phase provides a 

higher aggregation level by relaxing the similarity requirements using attack class.  

 Although these methods are useful for alert fusion and statistical purposes, they fail to 

discover the causal connections between alerts. Moreover, it is hard to find a 

justification for calculating the overall similarity function using a weighted measure and 

sliding window time.  

Additionally, a conceptual alarm clustering technique was proposed by [10] to discover 

root causes of different alarms. The aim was to reduce the volume of the alarms to a 

manageable size. A generalization hierarchy structure of attributes was utilized to define 

similarities between alerts and to support root cause analyses. The similarity function is 

computed using the proximity between alerts and the features' taxonomy [10]. In 

essence, the generalisation concept is promising, but not in certain features, such as IP 

addresses if spoofed ones are considered. The concept of generalisation has been 

utilized but for attack class classification and capabilities modelling. 

2.7.2  Scenario-based approaches 

Scenario-based or pre-defined scenario approaches utilize the concept of the real attack 

consisting of a series of steps to achieve the attacker's ultimate goal. Attacks occur 
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typically in groups of actions (multi-stage attacks) represented by IDS alerts. Each 

attack scenario is specified by its corresponding steps, which are required for it to be 

successful. Attack scenario modelling is essentially based on rules stored in a 

knowledge base that states attack stages. The knowledge rules are built either manually 

by experts or using machine learning approaches. The knowledge base is generally 

intended to characterize the casual relationships between observed attack activities. In 

manual knowledge acquisition, formal detection models using attack languages [33, 

117, 118] are used to construct attack libraries. On the other hand, in machine learning 

approaches, correlation rules can be obtained using a training stage and labelled data. 

LAMBDA [33] is an intrusion specification language to describe the conditions and 

effects of an intrusion in connection to the variable state of the target system. 

Descriptions of the relationships between attack steps are constructed based on three 

components. The first component is termed the state description, which is to specify the 

conditions of the target system that are required for the attack to be successful. The 

other components are termed transition description and event combining, to state the 

conditions in order to combine two events into a single scenario. ADele [118] was 

presented at the same time of development as LAMBDA. However, it is a procedural 

approach rather than the declarative mechanisms utilized in LAMBDA. A database of 

known attack scenarios is modelled in a high-level description. Similarly, STATL [117] 

language is a formal language to describe scenario patterns in terms of states and 

transitions. Hence, a sequence of events conducted by the attacker can be described to 

express a multi-stage attack. However, these approaches need a manual description of 

potential attacker behaviour, and if a single step is missed the whole behaviour goes 

undetected.  
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Besides, [119] used predictive data-mining techniques to learn correlation algorithms 

from labelled scenarios. The training data is obtained from real scenario examples and 

labelled manually. A user-defined threshold is used to determine the highest probability 

score, stating whether the incoming alert corresponds to a particular scenario or 

otherwise to initialize a new one. [120] applied chronicle formalism to alert correlation 

to provide fewer alarms of higher quality. The proposed approach is based on known 

sequences of malicious scenarios and temporal logic formalism. The chronicle model 

incorporates a formal data model M2D2 [120], which is also proposed by the authors to 

federate the context information required for alert correlation systems. In practice, these 

approaches involve data labelling, which is labour intensive and error prone. 

Furthermore, the training data which can be relied on and which reflects real scenarios 

is not available. 

2.7.3  Pre- and post-condition approaches  

The basis for these approaches is the assumption that real attacks involving related 

stages can be represented by alerts as a system diagnoses. The objective is recognition 

of attack scenarios, and potentially the identification of unknown attack steps. Domain 

knowledge of intrusion pre- and post-conditions is used to detect alert correlation even 

with the existence of partial condition formalisation. Two alerts can be logically 

correlated if some of the post-conditions for the first one match some of the pre-

conditions of the later one. It can be said that these techniques are a special case of 

scenario-based approaches; however, complete scenario description is not required. 

Hence, if some steps are missing due to not be detected by the IDS, the correlation 

system can perform a correlation to detect the so-called attack sub-goal. This provides 

more tolerant techniques than the hard-coded scenario templates used in scenario-based 

methods.  
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The provides/requires model was initially proposed by [121] to characterize the causal 

relationships among alerts using JIGSAW language [121]. Attack scenarios are 

modelled in terms of capabilities and concepts. Concepts are abstractions of attacks, 

and capabilities are the required and provided conditions associated with each attack 

concept. The correlation task is performed if a match is detected between the conditions 

of two alerts ordered temporally. Hence, each received alert is modelled to a concept 

with its related required and provided capabilities. Instead of representing attack 

scenarios as series of states, they are considered as sets of concepts and capabilities. 

Even though it is limited to known attacks, the formalization of concepts and 

capabilities can be generalized in a hierarchical manner to uncover unknown atomic 

activity. Several efforts have been proposed based on this model in the literature, but 

they have used various definitions and knowledge representations [35, 38, 49]. We have 

used this model as the basis of our correlation framework because of its extensibility 

and flexibility.  

[49] proposed the Cooperative Intrusion Detection (CID) framework based on pre- and 

post-conditions. Explicit correlation of events based on security experts is used to 

express the logical or topological links between events. The framework consists of five 

components: 1) alert management, 2) clustering, 3) merging, 4) correlation, and 5) 

intent recognition. Alert clustering and merging functions are performed using a 

similarity function, and intent recognition is not implemented. The attack is specified in 

the language of LAMBDA [33] and partial matching techniques are adopted to 

construct attack scenarios. In addition to explicit correlation, semi-explicit correlation is 

used to overcome the possibly missing attack descriptions. Moreover, the authors of 

[34, 35] have proposed an alert correlation framework based on the prerequisites and 

consequences of individual detected alerts. A Hyper-alert Type Dictionary knowledge 
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database contains rules that describe the conditions where prior actions prepare for later 

ones. The attack strategy is represented as a Directed Attack Graph (DAG) with 

constraints on the attack attributes considering the temporal order of the occurring 

alerts. The nodes of the DAG represent attacks and the edges represent causal and 

temporal relations. Similarities between these strategies are measured to reduce the 

redundancy. A technique of hypothesizing and reasoning about missed attacks by IDSs 

is presented to repair broken scenarios. This is done by matching instances of 

prerequisites and consequences of similar attack nodes. The main objective of these 

authors' work is the reduction of the huge number of redundant alerts and to report a 

high-level view for the administrator. However, the proposed system is useful as a 

forensic tool where it performs offline analysis. In addition, building the knowledge 

database containing rules of the applied conditions is burdensome. However, the authors 

have not provided a mechanism to build the Hyper-alert Type Dictionary. Moreover, the 

generated graph is huge, even with medium-sized datasets. 

In spite of the fact that pre- and post-condition approaches have alleviated some of the 

recognised drawbacks of scenario-based approaches, they also share the difficulty of 

defining the required knowledge. Pre- and post-conditions have to be modelled for 

every known attack and this is typically done manually by security experts. The quality 

of correlation results is highly dependent on how attack elements, attack implications, 

attack domains and the target system response are expressed. Attack concepts have to be 

formalized in a certain way to provide maximum coverage with less false positives. 

Furthermore, some implementations of these techniques consider uncorrelated alerts as 

false positives, and that is not the case if the actual related description is missing. 

Moreover, knowledge representation of pre- and post-conditions in most works is done 

in an ad hoc manner.  
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2.7.4  Probabilistic approaches  

These approaches are referred to as statistical analysis models, where alerts are 

correlated if they are statistically related. They are inspired from anomaly-based IDSs, 

where prior knowledge is not required. In this category, relationships between incurred 

events are computed statistically, providing automatic knowledge acquisition. In 

general, implementation of these approaches is performed using machine learning 

techniques. [29] proposed a combination of statistical and knowledge-base correlation 

techniques. Three algorithms are integrated based on the assumption that some attack 

stages have statistical and temporal relationships even though direct reasoning links are 

non-existent. A Bayesian-based correlation engine is used to identify the direct relations 

amongst alerts based on prior knowledge. In contrast to previous approaches, 

knowledge of attack steps is used as a constraint to the probabilistic inference. An 

engine based on Causal Discovery Theory is developed to discover the statistical of 

one-way dependence among alerts. In addition, a Granger Causality based algorithm is 

used by applying statistical and temporal correlation to identify mutual dependency. 

However, the problem of the selection of a time window for temporal correlation is still 

an unresolved problem. Attackers can exploit the slow-and-low attack to avoid 

detection. Attack prediction also relies on prior knowledge, and so 0-day attacks are not 

detected.  

Recently, [37, 122-124] employed different data-mining algorithms for real-time 

correlation to discover multi-stage attacks. An offline attack graph is constructed using 

manual or automatic knowledge acquisition and then attack scenarios are recognized by 

correlating the collected alerts in real-time. The incoming step of an attack can be 

predicted after the detection of few attack steps in progress. In [122], an association rule 

mining algorithm is used to generate the attack graph from different attack classes based 
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on historical data. Candidate attack sequences are determined using a sliding window. 

In [124], an AprioriAll algorithm, which is a sequential pattern-matching technique, is 

used to generate correlation rules based on temporal and content constraints. [124] 

adopted a classical sequential mining method GSP (generalised sequential patterns) 

[125] to find the maximal alerts sequence and then to discover the attack strategy. The 

limitation of their work is the use of only attack class and temporal data as features. 

Nevertheless, although these approaches do not require the construction of scenario 

rules by experts, a training dataset is needed. The dataset has to be collected and 

validated in order to obtain high-quality correlations. Therefore the required efforts to 

maintain a dataset are similar to the manual labour required to construct rules in other 

approaches. In addition, the false positives issue is another concern has to be taken in 

account; thus, these approaches can be utilized to support other techniques.  

2.8  Alert verification 

Generally, alert verification mechanisms are intended to distinguish successful from 

failed attacks. In typical deployments, the IDS device performs its detection producing a 

number of irrelevant alerts that have no effect on the target machine. That is because the 

host is not running the corresponding service or the service is not vulnerable. This 

knowledge gap between the IDS device and the protected system creates the issue of 

false positives [12]. The alert verification and vulnerability analysis problem has been 

investigated in several efforts at the IDS level [23, 126, 127]. Snort developers have 

brought up this point and have extended Snort to include facilities for adding 

configurable information about the target system. Target-based analysis has been 

introduced in Snort.2.8 [23] to model the targets rather than just the protocols. However, 
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this mechanism is limited to configurations based on information from OSs and these 

details have to be updated manually.  

To deal with this issue, different techniques have been presented according to the 

context requirements. For instance, one direction is to compare a configuration file for 

the protected machines against the conditions required for the attack to be successful. 

The gathering of system configurations can be performed automatically and updated 

periodically using vulnerability scanners such as Nessus [128]. Other techniques are 

based on the analysis of the target system response after the attack occurs. This is 

typically performed as a further investigation required for forensics purposes.  

[129] proposed M-Correlator to analyse and prioritize a stream of alerts and to verify 

relevant security incidents. The system is based on a knowledge base that contains a 

description for the protected network (topology and vulnerability) collected by the 

Nmap [130] tool. Three stages have been considered: 1) low-priority alerts are 

eliminated without preventing the IDS from generating them; 2) alerts are ranked using 

a relevance score based on a comparisons between topology and vulnerability 

information; and 3) alert priority is calculated according the significance of the target 

machine or service. 

It should be noted that alert verification functionality should be employed as a 

lightweight process to avoid affecting overall system performance. Automatic and 

periodic knowledge acquisition is required to update stored data. This mechanism 

should be implemented as a complementary function to the IDS, and not integrated into 

the IDS itself. The reason behind this is to maximise the input data to the correlation 

system for deeper and more accurate analysis. Attack attempts should be recorded even 

if they are not successful because it may uncover some undetected activities.  
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2.9  Alert correlation system requirements 

Although past techniques have dealt with reducing the massive number of collected data 

by NIDSs, there are many limitations. First, the analysis of attack strategy recognition is 

too complex, especially if the task is broadened to the prediction of unknown steps. 

Knowledge-based approaches are more accurate due to rule-matching mechanisms 

which are built based on expert knowledge, but they require more effort to provide 

precise rules. Statistical and temporal analysis techniques are unable to detect causal 

relations among events, but they do not require prior defined rules. The adoption of 

such systems in real-time is still an open question, where most proposed systems have 

been tested in an offline fashion or in a low-volume traffic environment. The huge 

number of detected events leads to graph explosion, as in [34, 35]. Moreover, missed 

attacks by the IDS can result in separate scenarios related to the same attack. Attackers 

also exploit the attack sliding window used in most approaches by performing slow-

and-low attacks. 

Alert correlation modelling has to provide a type of intelligence for attack strategy 

recognition. A framework consists of several components needed to make use of the 

capabilities of different approaches. Attack strategy recognition cannot be implemented 

in a single stage or by using a single component. In order to achieve this task, the 

correlation approach must consider: 

• Real-time (or at least near real-time) correlation that inspects the incoming alerts 

and correlates them to the older ones. However, it is a challenging task, particularly if 

we consider the scalability, the huge amount of alerts and the speed of the current 

implementation of communication networks. [35] developed the TIAA system that 

performs the correlation in memory using a nested-loop mechanism, and [131] proposed 
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a queue graph mechanism. However, they have not provided any evaluation in high-

speed networks to assess the system's scalability. 

• Recognition of missed attack by the IDS, which will cause a division of a 

scenario or graph into separate ones. The correlation system has to be able to correlate 

isolated scenarios using implicit correlation. This mechanism can also be used to predict 

unknown attacks by hypothesizing about the expected step, which can consist of 

variations of known attacks.  

• Slow-and-low attacks conducted by skilful attackers to avoid detection. Most of 

the implemented systems use a sliding window to avoid graph explosion, and hence 

very old events are ignored. However, determination of the value of the sliding window 

is also critical in order to provide a higher detection rate. Ignoring old events can result 

in the success of a dangerous intrusion attempt.  

• Alert verification, where not all alerts are critical and where they have different 

effects on the system. This mechanism will reduce the huge number of correlated alerts 

by focusing on the significant ones. 

• The configuration of the protected system can be incorporated in order to reduce 

false positives and to provide more meaningful and accurate results. Host response can 

also be involved to shift the focus to the critical events. 

2.10  Conclusion 

In this chapter, an overview of past and recent works in the field of IDSs and alert 

correlation techniques have been provided. A number of IDSs approaches have been 

discussed providing a historical summary to show the evolution achieved since this 

technology started. The two main IDSs methodologies have been investigated in details 

throughout this chapter presenting their advantages and disadvantages. We have also 

discussed the opportunity to exploit the capabilities of each approach by developing a 
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cooperative technique to employ both signature-based and anomaly-based IDSs. 

Moreover, host-based IDSs can be used to support the functionality of network-based 

IDS by providing further details about the protected system.  

Alert correlation approaches have been employed to analyse alerts produced by IDSs to 

facilitate the detection of multi-stage attack. These mechanisms are used to reduce the 

huge amount of IDSs alarms and false positives. Different methodologies have been 

described in this respect including scenario-based, pre- and post-condition, and 

statistical methods. Then, we have stated the main requirements for alert correlation 

systems that have to be satisfied in order to develop a practical detection system.                   
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CHAPTER 3: PERFORMANCE EVALUATION OF NETWORK 

INTRUSION DETECTION SYSTEMS (NIDS) 
 

3.1  Introduction 

Intrusion Detection Systems (IDSs) are designed for the security needs of networks. 

Existing Network Intrusion Detection Systems (NIDSs) are found to be limited in 

performance and utility, especially once subjected to heavy traffic conditions. An 

optimal methodology for the evaluation of NIDSs does not exist due to the 

heterogeneous nature of the operational environments. One aspect of NIDS evaluation is 

performance evaluation to measure the scalability of such systems in high-traffic 

environments. It has been observed that NIDS become less effective even when 

presented with a bandwidth of a few hundred megabits per second. 

In this chapter, we have endeavoured to identify the causes leading to the unsatisfactory 

performance of NIDS. In this regard, an extensive performance evaluation of an open-

source intrusion detection system (Snort) has been conducted. This has been done on a 

highly sophisticated test-bench with different traffic conditions. Host-based analysis and 

virtual-based analysis approaches have been selected to determine the performance of 

Snort. The performance of the system has been evaluated on different OS platforms 

(Windows, Linux and Free BSD) utilizing multi-core hardware. Our test methodology is 

also based on the concept of stressing the system and degrading its performance in 

terms of its packet-handling capacity. This has been achieved by: normal traffic 

generation, fuzzing, traffic saturation, parallel dissimilar attacks, manipulation of 

background traffic (e.g. fragmentation), packet sequence disturbance, and illegal packet 

insertion. Our results identified the performance limitations of Snort on both host and 

virtual platforms. We have also identified the factors responsible for the limited 
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performance of the system. Finally, we have discussed the factors involved in the 

limitation of IDSs performance.  

3.2  NIDS evaluation 

The design of a comprehensive approach to test and evaluate NIDS has been a debatable 

issue for many years. This is as a result of the nature of these systems running in 

heterogeneous environments and employing different detection methodologies. Host-

based IDSs have testing requirements that are different from network-based IDS, and 

NIDSs themselves vary based on the employed operational techniques. However, 

several efforts in the literature review have been proposed to test and evaluate the 

performance and accuracy of these systems. Authors in [132] have presented a review 

of IDS evaluation methodologies by rendering available measurable characteristics of 

IDS testing. They have summarized criteria for IDS evaluation as follows: 

1- Detection coverage: This measurement indicates the detection abilities of IDSs to 

recognise all known as well as potentially unknown attacks. IDS capabilities are 

measured by the maximum number of detected events – for instance, in signature-

based methods, by performing a comparison between the number of signatures and 

known intrusive events. It is difficult to compare the different signature databases of 

various IDSs. In addition, a single database containing all known attacks does not 

exist. However, the Common Vulnerabilities and Exposures (CVE) [39] is a 

repository of publicly known vulnerabilities to enable information exchange between 

research and commercial products. However, the same vulnerability can be exploited 

by a set of attacks, and the value of detection varies from one environment to 

another. 
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2- False positive and false negative rates: While the detection capability is vital for 

IDSs, the false positive rate is also important, because overwhelming the system with 

a huge number of false alarms is impractical. False alarms can be produced by 

benign traffic such as network monitoring tools or by a signature that is not well 

defined. Various environments imply different network standards and different 

protocols and services, which cause difficulties in measuring the false positive rate. 

On the other hand, false negatives are caused by inability of NIDS to detect true 

attacks which are more serious than false positives. False negatives can be caused by 

improper written signatures, unpublicized vulnerability information, NIDS device is 

overloaded and cannot properly process all data, or poor NIDS device management. 

Reduction of false positives is not necessarily introducing false negatives if the 

implemented mechanism does not affect the detection coverage. Moreover, it is 

imperative to achieve a balance between false positives and false negatives. False 

positives affect productivity and false negatives affect security. Hence, it is essential 

to properly quantify risk and the NIDS role in risk reduction. False positives can be 

suppressed by different techniques: configuring the IDS to rely on the operational 

environment by tuning the signatures to only watch for specific services and 

operating systems, placing the NIDS behind the firewall, and alert analysis systems. 

The later one is the most secure and reliable technique that does not introduce in 

raise in false negatives rate. All signatures are enabled and the NIDS in configured 

with the maximum detection coverage. Alert correlation systems are the typical 

implementation of these techniques.  

3- Detection rate: This measurement represents the detection accuracy; in other words, 

the IDS triggers a true alarm for the correct attack. In comparative evaluations, all 
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tested IDSs have to be configured in the same way and run in the same environment 

in order to obtain an accurate testing. 

4- Resistance to attacks: Smart attackers can exploit weaknesses in the IDS itself to 

avoid detection with the use of several methods. They can stress the system by high-

volume normal traffic to force the IDS to drop packets, or mutant crafted traffic 

packets can be injected to confuse signature-based systems and as a result, a huge 

number of false positives are generated. 

5- High-volume traffic handling: The IDS's ability to handle higher traffic volumes is a 

critical issue in IDS evaluation. Sending a large amount of traffic – or even worse, 

high traffic with fragmentation, which is computationally expensive – can lead the 

IDS to collapse or at least drop packets. If the IDS starts to drop packets, this means 

that intrusive data can be passed to the protected system. Hardware-based NIDSs are 

more scalable than software-based systems for higher traffic. 

6- Event correlation abilities: This is related to the context-based protection system, 

where the IDS is able to correlate information gathered from different sources. This 

information is valuable for building a state record for every event, and that allows the 

IDS to understand complex attacks such as multi-stage and hidden attacks.  

7- Detection of novel attacks: This measurement is to determine IDS's ability to detect 

unknown or never-seen attacks. It suits anomaly-based approaches, which are 

capable of recognising novel attacks, but not signature-based approaches. 

3.3  Background traffic 

Despite having the criteria for the evaluation of IDS, the need for attack and realistic 

background traffic information remains in great demand. There are several approaches 

for obtaining attack and background traffic data. First, the most common and useful 

methodology is to build a test bed consisting of a number of connected machines and 
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other elements of a typical network infrastructure. This will simulate the real network 

despite the use of a limited number of hosts. The minimum number of hosts is three 

machines: 1) an attacker machine, containing a collection of exploit scripts or attacking 

tools, 2) a victim machine running vulnerable services, and 3) a monitoring machine 

running the IDS under testing. After the installation of the test bed, three kinds of traffic 

are required: normal traffic, background traffic and malicious traffic. The first type can 

be real traffic obtained from a production environment, or synthetic traffic generated by 

traffic generators [133-136], whether software-based or hardware-based. Malicious 

traffic is injected into the background network traffic, and this can be obtained from 

automated systems such as Metsploit [26] or the manual use of attack scripts. The 

advantage of this approach is the ease of traffic generation, the ability to repeat the test 

many times, and the fact that the traffic can be recorded and distributed publicly. On the 

other hand, this method is expensive and time consuming, particularly if commercial 

traffic generators [135, 136] are considered, as they perform better than the few, not 

well documented open-source software ones. Moreover, the use of a limited number of 

hosts implies less running services, less implemented protocols and the absence of huge 

number of concurrent connections. Synthetic traffic is generated based on random 

variables, and some IDSs consider this type of traffic abnormal and may ignore it.  

Second, real traffic obtained from a production network infrastructure can be used for 

IDS evaluation to offer a more realistic approach. The IDS system is connected to a tap 

or a mirrored port on the edge of a network. This method is less common for reasons of 

privacy and due to the difficulty in identifying potential unlabeled attacks. Some traffic 

generators such as Harpoon [137] have been developed as intelligent generators by 

obtaining real traffic characteristics from live networks.  
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Third, real traffic can be modified to remove all sensitive data and used for testing of 

IDS systems, which is called sanitised traffic. However, the main task for the IDS is to 

inspect content and attacks usually residing in packet payload, so this is not the optimal 

approach for testing IDSs, but can be suitable for other network components. 

The first well-documented IDS evaluation methodology to be introduced was the 

DARPA evaluation 1998 (UNIX dataset) developed in the labs of MIT [55], followed 

by another dataset in 1999 (Windows NT dataset). Data used in their experiments are 

labelled and distributed publicly. DARPA datasets have been criticised for not being 

updated since 1999, for some of the attack types used having become obsolete, and for 

not covering new emerging attacks [22]. The Lincoln Adaptable Real-time Information 

Assurance Test-bed (LARIAT) [138] is another evaluation methodology providing a 

tool for simulation and testing. DEFCON [54] is the worldwide hacker and security 

expert conference and competition. Malicious traffic can be obtained from DEFCON 

CTF (Capture The Flag), which contains a huge number of attacking traffic used for 

IDS testing. NSS Labs [41] is a commercial group that provides a comprehensive 

methodology for the evaluation of NIDSs. Their approach includes security 

effectiveness, performance, resistance to evasion techniques, stateful operation, latency, 

reliability and usability [41]. Background traffic is generated from hardware-based 

traffic generators such as Spirent SmartBit [136]. Malicious traffic is obtained from 

automatic tools such as Metasploit [26] and CANVAS [139], or manually defined 

attacks. 

Other efforts have been made to test signature-based IDSs by analysing the collection of 

attack signatures and then generating mutant patterns to hide the actual attacks. The 

authors in [25] have developed a cross-testing approach to generate synthetic events to 
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test IDS ability and identify real attacks from modified ones similar to the signatures. 

[140] addressed the need for publicly well-documented datasets for IDS testing. He 

presents a set of tools that generate malicious traffic using a virtual network 

infrastructure. Different platforms were used to create attack traces against various OSs 

and violating different system services. [141] proposed a framework for offline and 

online testing to evaluate NIDS resistance to evasion techniques. A comparative 

evaluation methodology was presented to test Snort and Bro by generating ambiguities 

in traffic traces. 

3.4 Motivation 

A typical scenario of employing a NIDS in a network is its implementation on the 

server with minimum active services. This setup is quite susceptible to insider attacks, 

especially in high-speed environments. The current NIDSs are also threatened by 

resource crunch attempts such as DDoS, which has increased from a few megabits in 

the year 2000 to 40 Gbps in 2008 [142]. The performance criteria of NIDSs demand 

that every single packet (header, payload) passing through the network needs to be 

evaluated with the same link speed; however, the massive increase in network speed has 

generated many concerns. Sending a large amount of traffic or using computationally 

expensive techniques like fragmentation can compromise a NIDS or make it to start 

dropping packets. 

NIDSs can be implemented as software-based or hardware-based. Software-based 

NIDSs are more configurable, easy to update and need less maintenance; however, their 

performance is quite slow. On the other hand, hardware-based NIDSs can handle a 

larger volume of traffic, but they are expensive, require more maintenance and are hard 

to update. The choice between the two is a trade-off between cost and performance. 
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This has created the need to evaluate the current software-based systems. This is 

especially so in current-day high-speed conditions using different implementation 

scenarios.  

We have identified that quite few efforts have been made to measure the performance of 

NIDSs. Most of the evaluation methodologies are based on testing in moderate traffic 

conditions. Furthermore, some of these approaches have used previously saved datasets 

rather than real traffic. These seem unrealistic, as actual system performance was 

gauged under limited conditions with non-realistic network flow. The results obtained 

under these conditions could not portray the actual performance output. We have 

endeavoured to evaluate the system against realistic network conditions, providing the 

application with different tiers of hardware support in order to analyze its performance 

more practically. The recent development of multi-core systems has also added a few 

more opportunities for deploying a software-based system; these shall also be 

investigated in this chapter.  

Our aim in this chapter is to provide answers to the following questions: 

 Is it possible to deploy a current software-based NIDS such as Snort at a rate above 

500 Mbps using commodity hardware? Also to identify the limits of incoming 

traffic, a system can handle effectively in terms of packet loss. 

 Does the use of different OSs (normal desktop, server), hardware capabilities 

(single, multi-core) and configurations (host, virtual) affect NIDS performance? 

 Identification of mechanisms to improve NIDS performance in high-speed traffic 

before shifting to hardware solutions. 

It is essential that the NIDS is capable to process packets traverse the protected network 

with speed of the communication link [6, 13, 14]. When the network traffic load 
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becomes higher than the peak processing throughput the NIDS can sustain, the CPU 

becomes saturated, and the Operating System inevitably starts dropping packets before 

delivering them to the NIDS, impeding its detection ability [15-17]. Since these packets 

are not inspected, if they are part of an attack or other malicious activity, then that event 

will be missed[27, 45].  

Assuming a uniform distribution of packets across the network traffic, any packet loss 

results in a proportional loss in NIDS effectiveness [11]. This relationship has been 

widely identified in NIDS research [143-146]. Figure 3.1 illustrates the relationship 

between packet loss and missed alert rate which consequently cause missing attacks and 

affect the NIDS precision. The scatter plot shows a direct and nearly a linear 

relationship between the two parameters. The number of missed alerts approaches zero 

if the packet loss percentage becomes small. The network traffic used in this experiment 

consists of 530,000 packets containing 521 attacks (1000 packets/alert).  

 

Figure 3.1 Relationship between packet loss & missing alerts 

 

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

A
le

rt
 L

o
ss

 (
%

)

Packet Loss (%)



65 
 

Our research has focused on signature-based IDSs with an emphasis on evaluating their 

performance in high-speed traffic conditions. Snort has been selected as a test platform 

because of its popularity and status as a de facto IDS standard. We are confident that the 

results obtained in this research would be equally applicable to other IDSs available on 

the market. The test environments selected for the research have a significant edge over 

[40], and our results develop a new understanding of IDS performance limitations. 

3.5 Evaluation Methodology 

Our evaluation methodology is based on the concept of analyzing the system capacity in 

terms of its packet-handling capability by implementing it into different hardware 

configurations and testing platforms. This has been achieved by establishing three 

different test-benches, where every test-bench has been assigned a specific evaluation 

task. Test-bench 1 implements the Snort on mid-range commodity hardware (limited 

processing power and system memory). The results obtained on this platform describe 

the efficacy of NIDS implementation at this level. Test-benches 2 and 3 utilize high-

range commodity hardware built on an Intel Xeon Dual Quad-Core processor using 4.0 

GB RAM. These test-benches analyzed the system performance on host and virtual 

configurations respectively. The system capability has been also analyzed by observing 

its response to known attacks in Test-bench 1; however, this criterion has not been 

considered for other test-benches due to lack of space. Table 3.1 summarizes the three 

test benches and the parameters set for each test bench.  

In the initial phase of the research, the aim was to measure the performance of Snort 

installed on normal machine and using host and virtual configuration. Both normal and 

attack traffic are injected in the testing network to evaluate the detection coverage. The 

obtained results from test bench 1 have showed a proportional relationship between 
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capability of packet processing and detection coverage. The inability of Snort to handle 

all received packets online is a direct cause to the low rate in detection capacity. 

Consequently, the focus has been shifted from evaluating the detection coverage to the 

capacity of packet handling. For this reason, in test bench 2 and test bench 3 , attack 

traffic is not considered because missing a packet carrying attack evidence leads to 

missing the corresponding alert. In addition, to provide a precise measurement of 

detection coverage of any IDS, it is necessary to insure that all other related factors have 

no effect.   

Table 3.1  Summary of test benches. 
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Test bench 1 Yes Yes No Yes Yes 

Test bench 2 Yes No Yes Yes No 

Test bench 3 No Yes Yes Yes No 

 

Snort IDS has been selected for our testing for being an open source and the de facto 

standard for IDS/IPS. It is the most widely deployed intrusion detection and prevention 

technology worldwide. It has the most numerous and active community in the open 

source NIDS field today. In addition, several commercial products use Snort as their 

core technology and Snort signatures are included in many industry security systems. 

As a network device, Snort has been developed to be a lightweight system and fast in 

order to keep up with increasing network bandwidths. Moreover, Snort is flexible and 

can be used in different ways from a simple network sniffer to true gateway IDS. It is 

configurable, its signatures can be customized and developed easily, and its inner 

working can be modified according to the operation environment. In contrast, other 



67 
 

open sources IDS platforms such as Bro, lack of an up-to-date set of signatures and lack 

of full support and product documentation. 

3.6  Test-bench 1 

The network is composed of six machines using a Pro-Curve Series 2900 switch [147], 

as shown in Figure 3.2. The test-bench comprises a number of high-performance PCs 

running open-source tools to generate background traffic, run attack signatures and 

monitor network performance.  

Win XP SP2

Win XP SP2Win XP SP2

Win XP SP2

Linux 2.6

Linux 2.6 Linux 2.6

Attacking Hosts Receiving Hosts  

Traffic Generation Hosts

Virtual Platforms

Linux 2.6

 
Figure 3.2  Test Bench-1. 

3.6.1 Hardware description 

The hardware description of the network is shown in Table 3.2. The network 

components are described as follows: 

Traffic generators 

Two machines are configured to generate network traffic on Windows XP SP 2 and 

Linux 2.6, respectively, as shown in Figure 3.2. The distribution of network traffic is 

TCP (70%), UDP (20%) and ICMP (10%).  

Attacking host 

Two machines are configured to generate attacks/exploits on Windows XP SP 2 and 

Linux 2.6, as shown in Figure 3.2. 
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IDS machine (Snort) 

In the test-bench, Snort is operated on both host and virtual machines for both Windows 

and Linux platforms. This has been done to analyze the performance of Snort using the 

limited resources of a virtual machine as well as with the full processing capability of a 

host computer. Snort version 2.8.3 [23] has been selected for evaluation. 

Table 3.2 Network Description – Test-bench 1. 

Machine Type Hardware Description  Tools Used 

Network traffic/ back ground 

traffic generator (Win XP SP2)  

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbps RJ45, Network Card 

(Broadcom NetXtremo Gigabit Ethernet). 

Traffic Generators: NetCPS [148], 

Tfgen[149], Http Traffic Gen [150], 

LAN Traffic Version 2 [134] and D-

ITG Version 2.6 [133]  

Network traffic/ back ground 

traffic generator (Linux 2.6)  

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbpss RJ45, Network Card 

(Broadcom NetXtremo Gigabit Ethernet). 

Traffic Generators: D-ITG Version 

2.6 [133] and hping Version 2 [151]  

Attack Machine 

•  Win XP SP2 

•  Linux 2.6  

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbps RJ45, Network Card 

(Broadcom NetXtremo Gigabit Ethernet). 

Attacking tool: Metasploit 

framework [26]  

IDS Machines 

•  Snort – Win XP SP2  

•  Snort – Linux 2.6   

   

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbps RJ45, Network Card 

(Broadcom NetXtremo Gigabit Ethernet). 

•  IDS:Snort [23], Traffic Monitor: 

Bandwidth Monitor [152] on 

Win XP SP2  

•  IDS:Snort and Traffic Monitor: 

nload [153] on Linux 2.6.  

Switch ProCurve Series 2900 , 10 Gbps switch with 24x1 Gbps ports and 2x10 Gbps 3CR17762-91-UK 

ports. 

 

 Snort was also tested for its accuracy on the different OS platforms (Windows and 

Linux). The platforms were tested by injecting a mixture of heavy network traffic and 

scripted attacks through the Snort host. Snort.conf file in its default configuration was 

selected for evaluation. The performance of Snort was also evaluated under the 

following variant conditions: 

  Generating attacks from different OS hosts. 

  Varying traffic payload, protocol and attack traffic in different scenarios, as shown 

in Table 3.3.  

  Subjecting it to hardware constraints of virtual machine configurations. 
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Table 3.3  Test-bench 1 scenarios. 

Scenario

Network Traffic

(PC 1)

Network Traffic

(PC 2)

Attack

Machine

(Metasploit)

IDS Machine 

(Snort)

Alpha Host Windows Host Windows Host Linux 2.6 Virtual Windows

Bravo Host Windows Host Windows Host Linux 2.6 Virtual Linux 2.6

Charlie Host Windows Host Windows Host Linux 2.6 Host Windows

Delta Host Windows Host Windows Host Linux 2.6 Host Linux 2.6

Echo Host Windows Host Windows Host Win Host Linux 2.6

 

3.6.2  Results 

Snort was evaluated on the basis of network traffic ranging from 100 Mbps to 1.0 Gbps 

(divided into five different test scenarios). The other parameters selected for evaluation 

include network utilization, CPU usage and Snort CPU usage. Snort performance in 

terms of packets analyzed, packets dropped, alerts/logs and detection statuses have also 

been considered for critical evaluation. 

3.6.2.1 Scenario Alpha 

Snort was configured to run using the performance-limiting configuration of a Windows 

XP SP 2 virtual machine. It was subjected to heavy background traffic and attack 

exploits (from a well-resourced Linux host). The results obtained are shown in Figure 

3.3. They demonstrate that the performance of Snort deteriorates markedly as network 

traffic load increases.  

3.6.2.2 Scenario Bravo  

Snort was configured to run using the performance-limiting configuration of a Linux 

virtual machine and the attacker was a well-resourced Linux host. The results obtained, 

as shown in Figure 3.4, identify similar performance limitations as found in Scenario 

Alpha. However, an improvement can be observed when Snort runs on the same OS as 

that of the attacking host.  
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Attack Platform: Host Linux 2.6 vs Snort Platform: Virtual Windows

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 12 % 56% 90%

CPU Usage 50 – 70% 90 – 100% 95 – 100%

Snort CPU Usage 40 – 50% 80 – 90% 90%

Packets Analysed 72.5% 66% 38 %

Packets Dropped 27.5% 34% 62 %

Alerts & Logged 83% 62% 28%
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Figure 3.3 Results – Scenario Alpha. 

Attack Platform: Host Linux 2.6 vs Snort Platform: Virtual Linux 2.6

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 12 % 54 % 90%

CPU Usage 50 – 70% 88 - 95% 90 – 100%

Snort CPU Usage 40 – 50% 75 - 85% 90-95%

Packets Analysed 75 % 62 % 45%

Packets Dropped 25 % 38 % 55 %

Alerts & Logged 85% 64 % 36 %
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Figure 3.4 Results – Scenario Bravo. 

3.6.2.3  Scenario Charlie  

Snort was configured to run using a well-resourced Windows platform with the attacker 

on a Linux host. The results obtained are shown in Figure 3.5. Snort performance 

declines as a result of being run on a different OS platform to that of the attacker. 

However, an improvement can be observed in comparison to the equivalent virtual 

scenario. 
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Attack Platform: Host Linux 2.6 vs Snort Platform: Host Windows

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 13% 53% 90%

CPU Usage 20 – 30% 30 - 35% 35 – 40%

Snort CPU Usage 15 – 20% 20 - 25% 25-30%

Packets Analysed 98.2 % 38 % 27 %

Packets Dropped 1.8 % 62 % 73 %

Alerts & Logged 100% 47 % 24 %
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Figure 3.5  Results – Scenario Charlie. 

3.6.2.4   Scenario Delta 

Snort and the attacker were both configured using a well-resourced Linux platform as 

host. The results obtained are shown in Figure 3.6. Comparatively, an improved 

performance for Snort can be observed in this scenario, as both attacker and Snort are 

using the same OS (Linux).  

Attack Platform: Host Linux 2.6 vs Snort Platform: Host Linux 2.6

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 21% 55% 95%

CPU Usage 18 – 25% 29 - 36% 38 – 43%

Snort CPU Usage 15 – 20% 22 - 27% 29-36%

Packets Analysed 98.5% 47 % 39 %

Packets Dropped 1.5% 53 % 61 %

Alerts & Logged 100% 67 % 33 %
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Figure 3.3 Results – Scenario Delta. 

3.6.2.5  Scenario Echo 

Snort is configured to run on a well-resourced Linux platform and the attacker on a 

Windows host. The results obtained are shown in Figure 3.7. Similar results were 
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obtained to those in Scenario Charlie, where the OS platform used Snort and attacker are 

reversed.  

Attack Platform: Host Windows vs Snort Platform: Host Linux 2.6

Parameter 100 – 200 Mbps 500 – 700 Mbps 800 Mbps – 1.0 Gbps

Network Utilization 15% 54 % 96%

CPU Usage 25 – 30% 32 - 35% 38 – 45 %

Snort CPU Usage 18 – 22% 22 - 26% 27-35%

Packets Analysed 99 % 42 % 35 %

Packets Dropped 1 % 58 % 65 %

Alerts & Logged 100% 65 % 35 %
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Figure 3.7  Results – Scenario Echo. 

3.7  Test-bench 2 

Snort has been implemented on a fully resourceful host machine built on a dual quad-

core processor using 4.0 Gb RAM. The configuration of the network machines are 

shown in Table 3.4.  

Table.3.4 Network description – Test-bench 2 and Test-bench 3. 

Machine Type Hardware Description  Tools Used 

Network traffic/ back ground 

traffic generator 

 (Win XP SP2)  

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbps RJ45, Network Card 

(Broadcom NetXtremo Gigabit Ethernet), L2 Cache 2 x 

4.0 MB, FSB 1066 MHz.  

Traffic Generators: NetCPS [148], 

Tfgen [149], Http Traffic Gen [150], 

LAN Traffic Version 2 [134] and D-

ITG Version 2.6 [133]  

Network traffic/ back ground 

traffic generator 

(Linux 2.6)  

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbps RJ45, Network Card 

(Broadcom NetXtremo Gigabit Ethernet), L2 Cache 2 x 

4.0 MB, FSB 1066 MHz.  

Traffic Generators: D-ITG Version 

2.6 [133] and hping Version 2 [151]  

IDS Machine  Dell Precision T5400, Intel Xeon Dual Quad-Core 2.0 

GHz, 4 GB RAM, L2 cache 2x6 MB, FSB 1066 MHz,  

PCIe, Network Interface Card, 10 Gbps Chelsio, HD: 

1000 GB, Buffer 32 MB, SATA.  

IDS: Snort[23]  

Receiving Hosts 

•  Win XP SP2  

•  Linux 2.6   

   

Dell Precision T3400, Intel Quad-Core, Q6600 2.40 GHz. 

2 GB RAM,  PCIe, 1.0 Gbps RJ45, NIC 10 Gbps Chelsio 

on Win XP SP2 host and Linux 2.6 host has Broadcom 

NetXtremo Gigabit Ethernet.  

•  Win XP SP2 – LAN Traffic 

Generator  

•  Linux 2.6 – D-ITG Traffic 

Generator  

Switch ProCurve Series 2900 , 10 Gbps Switch with 24x1 Gbps ports and 2x10 Gbps 3CR17762-91-UK 

ports. 
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Figure 3.8 describes the test-bench where Snort been respectively evaluated on the fully 

resourceful platforms built on Windows Server 2008, Linux Server 2.6 and Free BSD 

7.0. The system's performance is gauged in terms of its packet-handling capacity of the 

application built on respective platforms for different types of network traffic. 

Win XP SP2

Win XP SP2

Win XP SP2

Linux 2.6

Free BSD 7.0

Linux 2.6

Receiving Hosts  

Traffic Generation Hosts

Respective Snort Hosts 

Linux 2.6

 
Figure 3.8 Test-bench 2 – Host configuration 

3.7.1 Evaluation methodology 

 Different packet sizes (128, 256, 512, 1024 and 1514 bytes) were generated, and 

Snort’s performance at the following traffic loads was evaluated: 750Mbps, 1.0 

Gbps, 1.5 Gbps and 2.0 Gbps, respectively. 

 Varying traffic payload: UDP and mixed TCP, UDP and ICMP traffic. 

 Snort’s performance characteristics were evaluated – packets received, packets 

analysed, packets dropped and CPU usage – at various packet sizes and bandwidth 

levels. 

 Duration of test: 1, 5 and 10 minutes, where the average value of the results 

obtained has been taken. 
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3.7.2  Results 

The response of the IDS (Snort), i.e. dropped packets, on UDP traffic injected in various 

packet sizes and bandwidths is shown in Table 3.5; each scenario is discussed in the 

following paragraphs:  

Table 3.5 Host-based configuration results (Packets dropped(%)) – UDP traffic. 

traffic OS 128B 256B 512B 1024B 1514B 

 

750 

MB 

FreeBsd 15.4 9.45 3.29 6.64 6.26 

Linux 56.91 52.67 27.83 6.72 6.4 

Windows 51.76 50.62 25.32 6.83 6.35 

 

1 G 

FreeBsd 52.6 32.15 28.4 25.04 24.89 

Linux 72.7 69.04 65.88 55.26 53.35 

Windows 68.05 66.82 61.97 53.6 52.9 

 

1.5 G 

FreeBsd 66.7 62.03 46.22 41.6 40.8 

Linux 77.6 71.5 67.32 57.1 55.5 

Windows 80.6 74.7 70.23 68.31 64.6 

 

2 G 

FreeBsd 74.07 69.8 65.3 50.54 49.4 

Linux 78.04 75.8 69.6 59.3 57.3 

Windows 93.5 91.0 88.85 77.5 70.8  

3.7.2.1  UDP traffic 

i.  UDP traffic – 750 Mbps. The Performance of all OSs linearly improved from 

smaller packet sizes (128 Bytes) to larger ones (1514 Bytes); however, Free BSD shows 

a significant edge over the others in all ranges of packet sizes, as shown in Figure 3.9.  

 

Figure 3.9  Results: packet dropped, UDP traffic – 750 Mbps. 

ii.  UDP traffic– 1.0 Gbps. Increase in the bandwidth shows a decline in the 

performance of the system, resulting in more packet loss. A considerably uniform 

response has been observed in all categories of packet sizes from all platforms tested. 
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This scenario also showed a comparatively improved (though not ideal) performance for 

Free BSD as shown in Figure 3.10 . 

 
Figure 3.10  Results: packets dropped, UDP traffic – 1.0 Gbps. 

iii.  UDP traffic – 1.5 Gbps. A further increase in the traffic bandwidth resulted in 

higher packet loss by the system. Approximately similar performances were observed 

for all packet sizes, the response indicating that Free BSD performed better, followed by 

Linux, and then by Windows in last place as shown in Figure 3.11. 

 
Figure 3.11  Results: packets dropped, UDP traffic – 1.5 Gbps. 

iv.  UDP traffic – 2.0 Gbps. At 2.0 Gbps of traffic input, the performance of Windows 

seemed totally compromised at 128 Bytes of packet sizes. The platform lost virtually all 

the input traffic and performed no evaluation. The performance gradually increases for 

higher packet sizes, in a similar pattern as that observed for the lower traffic bandwidths 

as shown in Figure 3.12. This, however, displayed a highly compromised performance 

for all platforms, identifying strong limitations in handling input traffic reaching 2.0 
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Gbps. In practice, system built on Free BSD, Linux and Windows platforms once 

subjected to 2.0 Gbps of input traffic suffer heavy packet loss. 

 
Figure 3.12  Results: packets dropped, UDP Traffic – 2.0 Gbps 

3.7.2.2  Mixed traffic 

The mixture of TCP (70%), UDP (20%) and ICMP (10%) traffic was generated 

replicating realistic network flow as follows: 

 Generating random packet sizes and observing system response – packet handling 

capacity. 

 Traffic bandwidth limited to 1.0 Gbps – supporting commodity hardware on account 

of system implementation as a test-bench. 

 Recording packet drop statistics for all three Snort platforms built on Free BSD, 

Linux and Windows respectively.  

The main reason to conduct this test is to ascertain the performance of a system under 

realistic network conditions. The results here also followed quite similar patterns of 

system response. Table 3.6 describes the results obtained. Free BSD showed quite good 

performance in terms of handling mixed traffic for the bandwidth of 1.0 Gbps on a 

multi-core implementation. 
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Table 3.6  Host-based configuration results – mixed traffic 

Operating System Dropped Packets% 

FreeBSD 21.7 

Linux 27.2 

Windows 26.3  

3.8 Test-bench 3 

Virtualization is a framework for abstracting the resources of a computer into multiple 

execution platforms by creating multiple machines on a single computer. Each machine 

operates on the allocated hardware and can afford multiple instances of applications 

[154]. This concept has been successfully incepted within the industry/business 

community. The mechanics of system virtualization for the implementation of network 

security tools have been considered appropriate by academics in the field of information 

security [155]. 

The concept has been developed to address issues relating to the reliability, security, 

costs and complexity of the network/systems. It has successfully been used for the 

processing of legacy applications, ensuring load balancing requirements, resource 

sharing and tasking among virtual machines by using autonomic computing techniques. 

The technique has also shown merits in the situation where an application failure on one 

machine does not affect the other. In addition, ease of isolation allows multiple OS 

platforms to be built on one machine running variable instances of applications. This 

has made the concept quite fascinating for the research community [156]. The test-

bench is distributed into three parts and configured around a ProCurve series 2900 

switch, as shown in Figure 3.13. 
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Win XP SP2

Win XP SP2
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Linux 2.6

Linux 2.6

Linux 2.6

Receiving Hosts  

Traffic Generation Hosts

Snort on Virtual Hosts 

Virtual Platform – Win Sever 2008

Free BSD07.0 

 

Figure 3.13  Test-bench 3 – Virtual configuration. 

The basic idea of the evaluation process revolves around packet capturing and 

evaluation by virtual platforms and Snort. Two machines for traffic generation have 

been selected: Linux 2.6 and Windows XP SP2 platforms. Similarly, the traffic 

reception machines were also deployed to fulfil network requirements. Details of the 

traffic generation tools are shown in Table 3.4. 

The virtual platform running Snort has been configured on a dual quad-core processor. 

The machine hardware details are listed in Table 3.4. The system is built on the 

Windows 2008 Server platform and three separate virtual platforms have been created 

Windows XP SP2, Linux 2.6 and Free BSD 7.1. Snort is running simultaneously on all 

the virtual machines and similar traffic loads and types are injected onto all platforms.  

3.8.1  Evaluation methodology 

In order to ascertain the capability of Snort to handle high-speed network traffic on  

virtual platforms, we proceeded as follows: 

 Parallel Snort sessions were run on all virtual machines. 

 The machines were injected with similar traffic-load characteristics (UDP and TCP 

traffic) for 10 minutes.  
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 Different packet sizes (128, 256, 512, 1024 and 1460 bytes) were generated and 

Snort’s performance at the following traffic loads was evaluated: 100 Mbps, 250 

Mbps, 500 Mbps, 750 Mbps, 1.0 Gbps and 2.0 Gbps, respectively. 

 Snort’s performance characteristics were evaluated – packets received, packets 

analysed, packets dropped, and CPU usage at various packet sizes and bandwidth 

levels. 

 Packets received were compared at both the host OS and the virtual platforms 

running the Snort applications.  

 During the course of the tests, no changes were made in OS implementation, 

specifically Linux using NAPI- MMMP
1
 and Free BSD using PF-RING -BPF

2
 [156]. 

3.8.2  Results  

The results are distributed over UDP and TCP traffic types respectively. It was observed 

that the total packets transmitted from the traffic-generating PCs was equivalent to the 

number of packets received at the host machine/OS running virtual platforms, as shown 

in Table 3.7; however this was not the case once the system was found
3
non-responsive.  

Table 3.7  Packets received at host OS. 

Bandwidth 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 1460 Bytes

100 MB 60 35.82 17.77 10.56 6.96

250 MB 178.1 94.14 48.00 18.34 20.22

500 MB 358.3 148.29 92.56 46.2 39.00

750 MB System Non Responsive 144.72 91.56 45.23

1.0 GB System Non Responsive 167.40 78.00

2.0 GB System Non Responsive

Total Packets Received at OS (Millions) – UDP 

Total Packets Received at OS (Millions) – TCP 

Bandwidth 50 Connections 100 Connections 200 Connections

100 MB 10 26.7 21.60

250 MB 31.86 39.763 48.69

500 MB 67.90 108.56 84.098

750 MB 80.29 113.72 124.58

1.0 GB 102.51 118.144 148.982

2.0 GB 147.54 170.994 221.28

 

                                                           
1 Modified device driver packet handling procedures. 
2 Berkley Packet Filter. 
3 In non-responsive situations we consider 100% packet loss. 
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3.8.2.1 UDP traffic 

The results below are described in relation to packet size, bandwidth (i.e. traffic load), 

and the virtual OS platform running the Snort application:  

i.  Snort response for packet sizes of 128 and 256 Bytes 

 Linux shows quite good performance for these packet sizes up to 250 Mbps of 

traffic load; its performance declined at higher bandwidth levels, as shown in 

Figure 3.14. The system was found non-responsive at traffic loads of 750 Mbps 

and above.  

 Windows shows good performance for 128 Bytes packet sizes at 100 Mbps 

loading only. Its performance is compromised at higher loading levels, as shown 

in Figure 3.14. The system was also found non-responsive at traffic loads of 750 

Mbps and above. 

 Free BSD performs slightly better than Windows, as shown in Figure 3.14. The 

system was also found non-responsive at traffic loads of 750 Mbps and above.  

Packet Size – 128 Bytes

%
 -

P
k

ts
R

x 
b

y 
S

n
or

t

Packet Size – 256 Bytes

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

%
 -

P
k

ts
R

x 
b

y 
S

n
or

t

0

20

40

60

80

100

100 Mbps 250 Mbps 500 Mbps 750 Mbps 1.0 Gbps 2.0 Gbps

Windows SP 2

Linux 2.6

Free BSD 7.1

UDP Traffic

UDP Traffic

 

Figure 3.14  Snort packets received (%) – UDP traffic (128 Bytes & 256 Bytes). 
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ii.  Snort response for packet sizes of 512 and 1024 Bytes 

 Linux shows quite good performance for traffic loads of up to 500 Mbps for all 

packet sizes, as shown in Figure 3.15. However, the Linux system was found 

non-responsive at traffic loads of 1.0 Gbps and above for 512 Byte packet sizes, 

and at 2.0 Gbps for packet sizes of 1024 Bytes.  

 Windows also performed satisfactorily at traffic loads of 250 Mbps and 500 

Mbps for packet sizes of 512 Bytes and 1024 Bytes respectively, as shown in 

Figure 3.15. The system found non-responsive at traffic loads of 1.0 Gbps and 

above for packet sizes of 512 Bytes, and 2.0 Gbps for packet sizes of 1024 

Bytes.  

 Free BSD responds a bit better than Windows, as shown in Figure 3.15. The 

system was found non-responsive at traffic loads greater than 1.0 Gbps for 

packet sizes of 512 Bytes, and 2.0 Gbps for packet sizes of 1024 Bytes.  
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Figure 3.15  Snort packets received (%) – UDP traffic (512 Bytes & 1024 Bytes) 
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iii. Snort response for packet sizes of 1460 Bytes 

 Linux shows significantly better performance for packet sizes of 1460 Bytes for 

traffic loads up to 1.0 Gbps. However, the system found non-responsive at 2.0 

Gbps of loading, as shown in Figure 3.16.  

 Windows also showed good performance up to 750 Mbps of loading. The 

system was found non-responsive at 2.0 Gbps traffic loads, as shown in Figure 

3.16.  

 Free BSD responded a bit better than Windows. The system was found non-

responsive at 2.0 GB traffic loads, as shown in Figure 3.16.  

3.8.2.2  TCP traffic 

The results of 512 Byte packet sizes have been included in this section due to lack of 

space. The results have been accumulated on the basis of successful connections (50, 

100 and 200 respectively). Packets received at the host platform/OS are shown in Table 

3.7. 

i. Snort response for 50 connections – 512 Bytes 

 Linux exhibits quite good performance up to 750 Mbps of loading; however, its 

performance declined at higher traffic loads, as shown in Figure 3.16.  

 Windows was acceptable up to 250 Mbps of loading but its performance was 

reduced for higher traffic loads, as shown in Figure 3.16. 

 Free BSD performed a bit better than Windows, as shown in Figure 3.16.  
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Figure  3.16  Snort packets Rx (%) – UDP (1460 Bytes) and TCP (50 connections). 

ii. Snort response for 100/200 connections – 512 Bytes  

 Linux exhibited quite good performance up to 250 Mbps of loading with 

minimum packet loss. However, its response linearly declined for higher traffic 

loads, as shown in Figure 3.17. 

 Windows also exhibited a similar performance level up to 250 Mbps loading 

levels, but its performance declined for higher traffic loads, as shown in Figure 

3.17. 

 Free BSD performs a bit better than Windows, as shown in Figure 3.17. 
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Figure 3.17  Snort packets received (%) – TCP Traffic (100 & 200 connections). 

3.9  Analysis 

3.9.1  Test-bench 1 

As expected, Snort's performance was found to be dependent on its supporting hardware 

components (CPU, memory, NIC etc.). In the virtual scenarios, Snort was found to be 

less accurate for all categories of background traffic. Conversely, the performance of 

Snort improved when run natively on its host machine by utilizing all of the available 

hardware resources.  

Resource constraints in the virtual machine have affected the overall performance of 

Snort, resulting in a high number of packets dropped and a reduction of alerts logged. 

The statistics for percentages of dropped packets are shown in Figure 3.18. 
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Figure 3.18  Packets dropped. 

 Background traffic plays a significant role in the performance of Snort. The 

higher the traffic, the lower Snort's performance. The impact of background 

traffic can be ascertained by analyzing the statistics of alerts generated in 

different categories, as shown in Figure 3.19. 
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Figure 3.19  Alerts and logs (success rate). 

 Traffic within the range of 100–400 Mbps has no significant impact on Snort's 

performance when run natively on host machines. However, its performance 

declines in a virtual setup. Snort was found to be accurate in all scenarios.  
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 A slight increase in background traffic, in the range of 500–700 Mbps, causes 

deterioration in Snort's performance. This degradation is approximately the same 

in all scenarios.  

 With high background traffic levels, ranging from 800 Mbps–1.0 Gbps, Snort 

starts bleeding. The number of alerts and log entries suffers significant 

reduction, thus identifying an evident limitation in Snort’s detection capability. 

 In general, Snort was found to be inaccurate when handling traffic levels above 

500 Mbps. There was also a significant performance decline when the traffic 

load exceeded 500 Mbps. 

 Snort was found to be more effective in the configuration where both attacker 

and host are on the same OS. 

 Snort's performance is significantly reduced in the 1.0 Gbps scenarios.  

 System performance in relation to packet capture capabilities was also found to 

be dependent on CPU usage. The higher the CPU usage, the lower the number 

of packets captured for analysis by the Snort application. Packets received at the 

virtual platform for evaluation by Snort are significantly less than the packets 

captured at the host platform. However, lower amounts of packets received by 

virtual platforms result in improved packet analysis statistics by Snort. For 

example, in the Windows virtual platform, Snort analyzed 38% of the total 

packets received at system level, whereas in the host Windows configuration, 

this value was reduced to 27%. The better packet analysis percentage produced 

by the virtual platform is due to the fact that Snort analyzed a considerably 

lower amount of packets, whereas the packets captured for analysis at host level 

were significantly more. Thus, it can by no means be concluded that the virtual 

platform performed better than the fully resourced host. 
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 The performance of Snort on a Linux platform was observed to be 

comparatively better than that of Windows. The results shown in Figure 3.20 are 

based on the scenarios in which the Snort and attacker are on well-resourced 

host machines.  
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Figure 3.20  Comparison – Snort on Linux and Win. 

3.9.2  Test-bench 2 

The shaded cells in Table 3.4 indicate the case of the I/O disk bottleneck, when the 

queue for I/O reading and writing exceeds an acceptable limit and the hosting machine 

is no longer able to process all the traffic (as discussed in detail below). The overall 

assessment of system performance indicates following: 

 Snort running on Free BSD has achieved the greatest performance in 

comparison to other OSs for all traffic volumes and packet sizes. 

 Windows and Linux showed quite similar performances in all scenarios.  

 Small sizes of UDP packets are computationally expensive and the performance 

of Snort declines in proportion to the increase in traffic bandwidth.  
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 Considering 1024 Bytes as an average packet size for normal real-life traffic, the 

raw processing rate of the Snort application showed acceptable performance up 

to a bandwidth of 750 Mbps for all OSs and 1.0 Gbps for Free BSD.  

 The CPU and memory usage of the system for packet sizes of 1024 Bytes (UDP 

traffic) have been recorded, as shown in Figure 3.21. It has been observed that 

more than 60% of the hardware strength is available for traffic ranging from 100 

Mbps to 2.0 Gbps.  

 

Figure 3.21  CPU and memory usage. 

3.9.3  Test-bench 3 

We have identified two basic factors that contribute to the packet-drop limitation in 

virtual platforms running NIDS in high-speed environments.  

 OS and application incompatibility  

 The results have identified different packet capture performance levels by the 

respective OS platforms. The packets received by virtual platforms are actually the 

packets received by the Snort application. Overall Linux performed quite well in 

comparison to Windows and Free BSD for both UDP and TCP traffic.  The results lead 

to the following conclusions: 

 

0

20

40

60

80

100

100 250 500 750 1000 1500 2000

U
sa

g
e 

%

Traffic speed  in MB

CPU

Memory



89 
 

i.  UDP Traffic 

 All platforms respond well for packet sizes greater than 512 Bytes. 

 For packet sizes of 128 Bytes and 256 Bytes, Linux performs significantly better 

than others; however its performance declines above 250 Mbps loading. Windows 

and Free BSD performed well for 128 Bytes at 100 Mbps trffic-load only. 

 All OS platforms hanged at packet sizes of 128 Bytes and 256 Bytes above 500 

Mbps of traffic-load. 

 There were practically no measurable results from all the platforms at 2.0 Gbps 

loading for all packet sizes. 

 The overall performance standing measured was Linux, followed by Free BSD, with 

Windows in last position. 

ii. TCP Traffic 

 The systems remain alive for all packet sizes and number of connections for traffic-

loads upto 2.0 Gbps.   

 The performance of the systems linearly declined in response to increases in the 

number of connections and traffic-load.   

 Linux outperforms Windows and Free BSD in all the tested scenarios.   

iii. Evaluating OS packet handling competency 

In order to reach a definite conclusion concerning OS incompatibility as regards the 

virtualization of NIDS in high-speed networks environments, the research has been 

extended to conduct some additional tests. These tests comprised of three virtual 

machines built on the same OS platform (Free BSD). The Snort application was 

activated on all platforms and similar tests were conducted as described in section 3.8.1.   
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In the first scenario, with Free BSD configured on three parallel virtual platforms 

similar performance metrics were observed. As such the performance of Free BSD was 

found to be quite similar to the previously executed test-bench scenario and only a small 

amount of variation was observed. In the second two-machine scenario, an 

improvement in performance was observed; however performance levels declined at 

higher traffic-loads. Due to a paucity of space the results of 512 Bytes of packet size for 

UDP Traffic have been only included as shown in Figure 3.22. The graph shows the 

average performance of systems in each scenario.  
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Figure.3.22 Snort Packet Received (%) – Free BSD on Three/ Two virtual platforms 

The performance of Free BSD in the two scenarios has identified a direct link between 

packet capturing ability of the system and the use of hardware resource sharing. The 

results shows that two platforms perform significantly well in comparison to the use of 

three virtual machines. Thus, it can be concluded that the packet capturing performance 

for NIDS when run as multiple virtual instances is limited due to the impact of hardware 

resource sharing and there is no direct relationship to OS itself. Similar tests were also 

conducted on Linux and Windows platforms; due to space restrictions the results have 

not been included. Both platforms behaved in a similar pattern as that of Free BSD thus 

confirming the drawn conclusion.   
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Hardware incompatibility in virtualization   

The dynamics of virtualization requires the host OS and the virtual machine software 

(VMware Server) to be stored in the physical memory (RAM) of the host machine. The 

virtual machines (Windows XP SP 2, Linux 2.6 and Free BSD 7.0) running on a 

VMware Server have been respectively allocated virtual RAM and disk space on the 

physical hard drive of the host machine. The processes/applications running on the 

virtual machines use these simulated virtual RAMs and hard disks for the various 

operations shown in Figure 3.23. 

Virtualization Concept

Parameters
• Host OS – Win Sever 2008

• Physical RAM – 4.0 GB

• Hard Drive – 1.0 TB,    

SATA 300 MB

• PCIe – 4/8 GB

• Virtual Machine - VM Ware  

Server

• Virtual OS – Win XP SP2,     

Linux 2.6 & Free BSD 7.1

•Traffic Injected – 2.0 Gbps (max)

• Buffer to host data transfer rate -

300 MB/s

• NIC – 10 GB PCI-X, PCIe (Chelsio)

NIC

2.0 Gb

Traffic

Host OS

Virtual Machine, VMware Server

Free BSDLinux2Win SP 2

Buffer (16 MB)

2.0 Gb

Virtual

Window

s
Memory

Hard Disk

Virtual

Linux

Memory

Hard Disk

Virtual

BSD 

Memory

Hard Disk

Host Hard Drive

Limitations - Packet Drop
• Context switching between 

virtual machines

• Less buffer to host data transfer 

rate

• Asynchronous write mechanism 

for available storage device

 

Figure.3.23  Virtualization concept. 

Our test-bench has multiple instances of Snort and packet-capture libraries running on 

different virtual platforms each with a different OS. The packets captured by each 

virtual machine are less than the packets received by the NIC, thus identifying packet 

loss. The basic cause of packet loss at each OS, apart from the losses incurred by Snort 

during evaluation, is the bottleneck caused by a low disk data transfer rate. The disk I/O 

statistics as shown in Figure 3.24 reflect the hardware limitations in handling multiple 

read/write operations. At 300 MB/sec of traffic load, the disk I/O capacity touches 

100%, thus its performance at higher loads can be easily ascertained.  
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The memory and storage for each virtual machine has actually been allocated on the 

physical storage resources (i.e. hard disk) of the host machine. Packets received by the 

NIC without any loss are transferred to the hard-disk buffer at the PCI rate (4/8 Gbps). 

From this buffer, these packets are required to be written to the disk at the buffer-to-host 

transfer rate of 300 MB/sec (SATA Hard Drive) [157]; thus a huge gap between the 

disk-transfer rate and the incoming traffic load exists. In addition, when traffic is fed to 

all virtual machines simultaneously (in parallel mode), the disk is physically only able 

to write to one location at a time. Thus any disk-write instance to a virtual machine will 

cause packet drops on another. There are also some additional packet losses due to 

context switching within the hard disk.  

25 %

50 %

75 %

100 %

100 MB 

Statistics I/O Disk System (SATA 300) Supporting Virtual Platform

25 %

50 %

75 %

100 %

No Traffic

25 %

50 %

75 %

100 %

25 %

50 %

75 %

100 %

400 MB 300 MB 

Disk Write Bytes/ s Disk Transfer Bytes/ s Disk Read Bytes/ s

 

Figure.3.24  Statistics the I/O system (SATA 300) hard drive. 

In order to augment our analytical stance showing that hardware is one of the major 

bottlenecks for the efficacy of the virtualization concept for NIDS in high-speed 

networks, the disk queue length counter has been utilized as shown in Figure 3.25. In 

normal circumstances, the average disk queue length should be three or less (its ideal 

value) [158]. However, in our test network it is observed to be always greater than the 
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ideal value for the traffic ranges measured at 2.0 Gbps [159].  
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Figure.3.25  Disk queue (SATA 300) hard drive. 

3.10  Discussion of Snort performance 

3.10.1  Packet processing 

Network IDSs and other network monitoring systems are packet-based systems that 

require packet acquisition from the network wire. A good packet capturing response by 

the NIDS towards variant traffic reduces the probability of a system becoming 

compromised. Factors that affect the packet capturing performance of a NIDS in a 

Gigabit Ethernet environment include i) host configuration (hardware and software) 

parameters and ii) application-specific parameters (NIDS). 

Processing packets can result in a bottleneck for such systems, particularly with high-

speed traffic. When these systems become unable to process incoming packets inline, 

the packets are dropped in order to release system resources (e.g. buffer). The serial 

packet processing paradigm of Snort implies that a single packet can be processed at a 

time. The other packets are queued in a buffer, and if the waiting time exceeds a 

threshold, Snort starts dropping packets for performance reasons. If Snort runs in 

passive mode, it causes attacks to be missed and violates the coverage requirement. 
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Furthermore, Snort performs a stateful analysis for packet processing (e.g. TCP 

reassembly), and if a packet is dropped, this impacts resource utilisation (e.g. CPU and 

memory).  

3.10.2  Multi-core processing 

Multi-processing has been introduced using a combination of two or more cores 

(processors) integrated into a single chip (integrated circuit) to improve performance. 

However, most legacy applications do not utilise this higher capability because they 

have been developed for a single processor even if they are run on multi-core systems. 

The core of Snort, for example, has been developed based on a uniprocessor 

architecture [24]. In order to exploit current optimization, these applications have to be 

redesigned to support multithreading. A packet-processing mechanism is one of the 

critical processes that needs to be enhanced with the existence of multi-core processors. 

[143] proposed pipelining and flow-pining approaches to improve packet processing in 

Snort by exploiting multi-core processors. He has shown that running Snort on a multi-

core processor does not add any improvement in performance. Modifications on Snort 

have been implemented to allow multithreading mechanisms. The parallelism concept 

has been employed to spread Snort functions over four cores, which achieves 

considerable enhancement. [144] also presented strategies for parallel packet processing 

on multi-core systems by making Snort multithreaded. Several methods have been 

implemented by separating threads (e.g. a thread is allocated for packet processing and 

another one for event handling). However, this mechanism has an impact on CPU cache 

performance and imposes an extra overhead.  

3.10.3  PCI bus and disk input/ output (I/O) operations 

PCI bus architecture directly influences the operational efficiency of memory and 

storage devices. Current system architectures identify two bottlenecks in packet-
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capturing accuracy: bus traffic load and disk throughput. When writing to a disk, packet 

capture libraries pass data to the system bus twice, once from the network interface card 

to memory, and a second time from memory to disk. Thus the actual traffic load 

available to the PCI bus is half that of the traffic load [145]. Data-intensive applications 

and the huge amounts of data required to be stored in enterprise networks demand 

highly efficient I/O operations to avoid performance bottlenecks. The invention of 

multi-core processors has enhanced the capability of systems to support multiple virtual 

machines, yet system performance in relation to disk I/O operations remains limited.  

3.10.4  Packet loss in NIDSs 

Packet loss in high-speed networks is one of the fundamental problems in the 

implementation of NIDSs. Effectiveness of intrusion detection relies on analysis of the 

received packets and any loss results in attacks missed. Numerous efforts have been 

made to address the issues relating to packet loss in high-speed networks. A number of 

techniques focus on securing a balance between the detection capacity of the system and 

the input traffic. A few substantially competent techniques make use of load-balancing 

concepts. These involve the use of a traffic-splitting mechanism where input traffic is 

distributed across the set of detection engines for evaluation and filtering to block the 

traffic destined for unpublished ports. [13] explored a parallel architecture to increase 

the system capacity by splitting traffic into manageable sized slices. The parallel 

architecture for stateful detection described in [146] also bases its logic on splitting the 

traffic and distributing it to detection sensors in a round-robin fashion. 

However, attacks can be also missed due to the nonexistence of related signatures. It has 

been observed early in this chapter the relationship between the percentage of packet 

losses and missed attacks. Hence,  a different approach has been adopted to deal with 

missed attacks in a generic approach. We base our mechanism on the correlation 
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concept to obtain a global security perspective instead of avoidance strategies. This is 

based on assumptions that real attack attempts in typical scenarios consist of coherent 

stages. A framework for alert correlation will be introduced in Chapter 4 to reduce the 

impact of packet loss and missed attacks.  

3.11  Conclusion 

This chapter has focused on ways of determining the efficacy of the widely deployed 

open-source NIDSs, namely Snort, in high-speed network environments. The current 

development in hardware technologies has opened broad prospects for legacy 

applications, particularly software-based ones deployed at network edges. Multi-core 

systems are available and widely used to offer intensive computational opportunities.  

The test scenarios employed involve the evaluation of the application under different 

traffic conditions, and observing the response of the system to known attack signatures. 

The results obtained have shown a number of significant limitations to Snort, on both 

host and virtual configurations. We have confirmed that the underlying host hardware 

plays a prominent role in determining overall system performance. We have further 

shown that performance is further degraded as the number of virtual instances of NIDSs 

is increased, irrespective of the virtual OS used. 

This hardware dependency is exacerbated when running Snort as a virtual machine, and 

it is to be anticipated that running a large number of Snort instances would lead to major 

degradations in performance and detection levels. In general, any limitations in system 

configuration would result in poor performance of the NIDS. The results obtained have 

shown a number of significant limitations in the use of virtual NIDSs, where both 

packet-handling and processing capabilities at different traffic loads were used as the 

primary criteria for defining system performance. Furthermore, It has been 
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demonstrated a number of significant differences in the performance characteristics of 

the three different virtual OS environments in which Snort was run. 

In the pursuit of our objective, the performance of Snort has been analyzed under 

realistic network conditions in contrast to simulated testing environments. The results 

obtained identify a strong dependency from Snort on the host-machine configuration. It 

can be ascertained that Snort is not suitable for all network implementations with high 

volumes of traffic, e.g. more than 750 Mbps.  

It has also been identified the impact of packet loss caused by performance degradation 

upon the overall effectiveness of NIDSs. We intend to introduce a dual solution for both 

packet loss and missed attacks using alert correlation, as will be shown in the following 

chapters.  
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CHAPTER 4: A REASONING FRAMEWORK FOR ALERT 

CORRELATION 
 

4.1  Introduction 

In an intrusion detection context, none of the main detection approaches (signature-

based and anomaly-based) are fully satisfactory. False positives (detected non-attacks) 

and false negatives (non-detected attacks) are the major limitations of such systems. The 

generated alerts are elementary and in huge numbers. In addition, It has been identified 

in Chapter 3 that even though the attack signature is defined in the attack database, it 

can be missed in high-speed environments. This has made the issue more complicated, 

reducing the attack detection rate. A promising approach is to incorporate a collection of 

security detection systems to increase the detection coverage whilst at the same time 

suppressing the volume of false positives. Hence, alert correlation techniques are used 

to provide a complementary analysis to link elementary alerts and provide a more global 

intrusion view. On the other hand, alerts generated by a single IDS also overwhelm the 

administrator and contain a high percentage of insignificant or irrelevant information. It 

has been widely recognised that real cyber attacks consists of phases that are temporally 

ordered and logically connected. In this thesis, the focus is on the correlation function of 

the alerts sourced from the same IDS. The objective is to discover the logical 

relationships between atomic alerts potentially incorporated in multi-stage attacks. An 

alert correlation and aggregation framework is presented based on requires/provides 

model [121]. 

This chapter explains the fundamental concepts of the proposed alert correlation 

framework. The correlation process is essentially modularized based on an extension of 

the properties and characteristics of the requires/provides model [121]. The description 
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of the knowledge base modelling is based on the capability concept to abstract alerts 

sets to their pre- and post-conditions. Capability conditions formalization is also 

explained, which is mainly based on a proposed hierarchical abstraction of attack 

classes. Algorithms of alert correlation, alert aggregation and graph reduction are 

presented. And finally, the prediction of undetected attack action is discussed.  

4.2  Multi-stage Attack Recognition System (MARS) framework 

The MARS framework is a logical framework supported by various components for 

alert correlation, aggregation, reduction and multi-stage attack recognition, as shown in 

Figure 4.1. Despite the differences between alert correlation approaches, they require 

some common modelling. A knowledge-base that contains attack characteristics is 

either abstracted or using actual attack details. Information acquisition for a knowledge 

base is based on the model employed (e.g. expert systems, artificial intelligence). The 

main drawback of the previous approaches is that they do not provide knowledge 

representation in a systematic way. For instance, requires/provides is a general alarm 

management model that has been used widely in the alert correlation field, but most of 

the proposed paradigms are based on ad hoc methods of knowledge representation. In 

our framework, knowledge elements are designed using a formal knowledge 

formalization exploiting available information provided by IDSs, vulnerability scanners 

and environment configurations. It also allows interactive communication between the 

administrator and the core system engine. Generated events reflecting the detected 

security situation are produced after a series of processing functions to reduce the data 

size. The implementation of the MARS framework will be discussed in Chapter 5. In 

this chapter, the underlying principles of the proposed framework are introduced. 
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Figure 4.1 Multi-stage Attack Recognition System (MARS) framework. 

Figure 4.1 gives a graphical representation of the framework components that 

implemented in MARS system. The first task is performed on all received alerts from 

the IDS sensor e.g. Snort. Alert Collection contains normalized alerts presented in a 

standardized format that are understood by all correlation components. Also, a pre-

processing function is carried out to normalize all required alert attributes such as time 

stamp, source, and destination addresses. The final results of this process are stored in 

Alert Collection which represents the main data input for the MARS engine. MARS 

engine consists of four components: 1) Alert Verification 2) Correlation 3) Aggregation 

and 4) Event generation. The task of Alert Verification component is to take a single 

alert and determine the success of the attack that corresponds to this alert. Failed attack 

should be assigned as a low level of importance. However, these failed attacks are not 

ignored and saved in the database which can be used as evidence to support other 

correlation instances. The Aggregation component is responsible for combining a series 

of alerts that refer to attacks related to the same activity. IDS sensor produces number of 
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alerts corresponding to the same attack which are conducted at the same time. Similar 

alerts are aggregated and a representative alert is assigned based on a temporal 

relationship. These aggregated alerts are saved in the aggregation collection and are 

used to generate multi-stage attack events. The main task of the Correlation component 

is identifying the logical connection between received alerts based on the used 

correlation algorithm. If any link between two alerts is recognized, they are correlated 

and stored in a temporary collection and then transferred to the correlation collection 

after performing the aggregation process. The task of the Event Generation component 

is identifying and constructing multi-stage attack patterns which are composed of a 

sequence of individual alerts. A new event is generated if at least two alerts are 

correlated and then the generated events are stored in the Events collection.  

Two knowledge bases are used by MARS engine to support the correlation process: 1) 

Capabilities Knowledge base and 2) Vulnerabilities knowledge base. The capabilities 

database contains modelled attacks and the relationships between different attacks based 

on pre and post conditions of each modelled attack. Snort signatures are used in the 

current implementation and this can be extended to include attack definitions from other 

sources. Vulnerabilities database contains network and host configuration of the 

protected system in addition to the detected vulnerability information by the available 

scanner.  

The initial task executed by the MARS engine is obtaining alerts from the alert 

collection and then creating encoded capabilities corresponding to each alert. Alerts 

attributes and the information supplied by the used capabilities knowledge base are used 

to build the encoded capabilities collection. Thus, the encoded data is utilized to 

produce the initial correlation information and then it is stored in the Temporary 

Correlated Alerts collection. This collection contains atomic logical connections 
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between alerts which are consequently aggregated to obtain the aggregated collection. 

The generated events (Multi-stage attack instances) are constructed based on the 

aggregated alerts in order to minimize the resulting graph. 

4.3 Requires/provides model 

This model is a general attack model that has been proposed by [121] and is inspired 

from network management systems to deal with network faults. A cyber attack is 

described according to two components: 1) capabilities, and 2) concepts. The idea 

behind this model is that multi-stage intrusions consist of a sequence of steps performed 

by an attacker, and that the later steps are prepared by the early ones. The target system 

information collected from scanning or port mapping are advantages acquired and used 

in order to choose which exploit can be successful. Attacks are modelled in terms of 

abstract concepts and each concept requires certain capabilities (conditions) to occur 

and provides others to be used by another concept. Capabilities are defined as general 

descriptions of the conditions required or provided by each stage of the intrusion i.e. the 

system state that must be satisfied in order to launch an attack. For instance, a 

successful Trojan injection requires particular services to be running in the target system 

and the presence of certain vulnerabilities. 

Formally, capabilities are a higher level of intrusion abstraction that specifies the system 

state after each attack attempt.  The attacker uses the capabilities acquired through some 

of its early actions to generate certain new capabilities. The system state is incorporated 

in attack scenarios if instances of concepts have matched ―required‖ and ―provided‖ 

conditions.  

The capability model proposed by[160] is also based on a requires/provides model for 

logical alert correlation, though the authors used different properties of capabilities. An 
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attack model was presented to build blocks of capabilities in a multi-layer fashion and 

with more expressive definition. [35, 49] have employed a requires/provides model 

using the concept of predicates, which are similar to capabilities. 

Both models mentioned above are reasoning models that aim to discover the causal 

relationships between elementary alerts. Attacker states are abstracted to describe the 

gained privileges and what level of access is obtained. Moreover, the system states are 

modelled into a higher level of abstraction to specify the impact of the attack. 

Relationships between these states are defined to generate rules that determine the 

dependency between alerts.  

Requires/provides model has been selected because it fits our purpose to correlate alerts 

in the same intrusion. It has some advantages over other models: 

1- Ability to uncover the causal relationships between alerts and it is not restricted to 

known attack scenarios. 

2- Ability to characterize complex scenarios or to generalize to unknown attacks. 

3- Attack is represented as a set of capabilities that provides support for the abstract 

attack concepts. 

4- Flexibility and extensibility as the abstract attack concept are defined locally. 

5- It does not require a priori knowledge of a particular scenario.  

6- Numerous attacks can be described implicitly and unknown attack can be defined by 

generalisation. 

Our approach is a variation of the requires/provides model, but differs in the following 

aspects: 

 Different definitions for capabilities and concepts are employed to overcome the 

limitations expressed in other approaches. The work in [121] used a very detailed 
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specification language called JIGSAW to describe attack scenarios. A complete 

satisfaction of ―required‖ and ―provided‖ conditions is necessary to correlate two 

alerts, which will fail in case of broken scenarios. However, the authors in [35] 

have adopted a partial satisfaction technique which is also implemented into our 

framework. The main concern with their approach is the high rate of false 

positives, and the possibility of a huge graph being created. We have managed to 

overcome this limitation by using certain techniques: hierarchical multi-layer 

capabilities, accumulated aggregation, alert verification and alert maintenance. 

  A near real-time processing approach for correlation, aggregation and event 

generation. The security officer can monitor the attack progress which is displayed 

as an intrusion graph. An event is triggered once at the minimum of two alerts 

being correlated, and any additional related alert based on its attributes will join 

the same event. 

 Online and offline graph reduction algorithms during the correlation process in 

addition to alert aggregation in order to provide a smaller manageable graph. 

 We have modelled IDS signatures as abstracted attack concepts instead of defining 

new concepts locally. In requires/provides models, IDS signatures are considered 

complementary external concepts.  

 Separation of the concepts and their capabilities from other dynamic information. 

Two different types of capabilities have been used: internal and external. The first 

type denotes abstract attack modelling consisting of IDS signatures and associated 

capabilities. The second type refers to dynamic details, including system 

configuration, services and vulnerabilities. This provides more flexibility to the 

model whilst at the same time allowing utilization of other knowledge resources. 
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 A capability modelling has been made using a hierarchical methodology based on 

attack classes and inheritance between these classes.  

Our approach is based on the assumption that the attack scenario consists of a sequence 

of related actions and that early stages can incorporate later ones. The link between 

these stages is determined using five factors: 

1- Temporal relationships (e.g. alert timestamps). 

2- Spatial relationships (e.g. source IP addresses, destination IP addresses and port 

numbers). 

3- Pre- and post-conditions of each attack. 

4- Vulnerability assessment of the target system. 

5- Target system configuration. 

Capabilities are formalized in term of pre- and post-conditions by grouping conditions 

that share similar characteristics into a broad definition. Knowledge about elementary 

alerts is mapped to instantiate the attacker and the system states according to their 

temporal characteristics: 

- Pre-conditions: are logical capabilities that characterize the system state to be 

satisfied in order to launch an attack. These capabilities are derived from the 

attack description. A hierarchical approach is adopted based on an attack 

classification to provide coarse-grained definitions of different alerts related to the 

same behaviour. 

- Post-conditions: are logical capabilities that characterize the system state after 

the attack succeeds. In other words, specifications of the effects of intrusions on 

the system, such as the knowledge gained and the access level of the attacker. 
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Moreover, attack classification incorporates the definitions of these capabilities in 

a hierarchical manner. 

To formulize the capability sets as pre- and post-conditions of higher quality, certain 

requirements must be satisfied: 

1- Capabilities must be expressive in order to achieve a true logical relationship. 

2- Avoidance of ambiguity in defining capabilities. 

3- Use of multi-layers of abstraction to achieve scalability. 

4- Reduction of the number of elements in the capability sets without affecting 

attack coverage. 

5- Inference rules should be separated from the capability set. 

6- The set should also be constant and independent of variable information such as 

vulnerability and system-configuration knowledge.  

Hence, capabilities are formulized based on two criteria: 

1) Level of abstraction 

1- Generic capabilities which illustrate a broad aspect of a certain attacks, such as 

access, local access and remote access. 

2- Capabilities which illustrate a lower level of attack abstraction, but not a specific 

one, such as server buffer overflow or client upload file. 

3- Specific capabilities for each single alert in IDSs, such as TFTP Get. 

2) Properties of the system and the attacker state 

1- Access level of the attacker (remote, local, user or administrator). 

2- Impact of the intrusion upon the victim machine, such as DOS and 

implementation of the system commands. 

3- Knowledge gained by the attacker, such as disclosure of host or of service. 
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The elements in the two criteria above are mutually inclusive; for instance, disclosure of 

host is considered as a generic capability and at the same time is a system state 

description. In addition, attack classification, which will be presented in the next 

section, is also involved in defining capabilities. 

Examples: generic capabilities are mainly a description of the intrusion's general 

objective, such as: 

- Disclosure of host 

- Disclosure of running service  

- Disclosure of port number 

- Access  

- Read or write files 

However, a buffer overflow attack is a general attack that can target the server, the Web 

server and the client, and the required and provided conditions are not the same for each 

category. The capability client access attempt is a specific capability for client attacks, 

because some attacks are client specific, such as ActiveX attacks. Snort documentation 

contains a description for each signature, including the attack class type, the affected 

system, and the impact of the attack. This information is valuable in defining attack 

capabilities if other sources of intrusion analysis are considered. Appendix I contains an 

example of a Snort signature description. 

4.4  Knowledge-base modelling 

Two knowledge bases are used, one for attack concepts and the other for vulnerability 

details. In the attack knowledge base, IDS signatures (e.g. Snort)  are modelled to the 

attack abstractions and their defined capabilities. The knowledge library specifies the 

relationship between low-level alerts and the attack abstraction. Thus, a knowledge base 
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can be considered a broad template and each element can be instantiated to instances of 

specific conditions. A generalization mechanism has been used to specify a higher level 

of specification of attack concepts and capabilities. 

The proposed model for the attack knowledge base consists of three sets:  

1) Capability C: This specifies a higher level of abstraction of the ―required‖ and 

―provided‖ conditions of the intrusion model. Intrusion attempts are expressed in terms 

of a set of ―required‖ or ―provided‖ conditions, and vulnerability constraints of a given 

alert where: 

- Required conditions R are a set of pre-conditions specified in the form of 

capabilities with variable arguments. 

- Provided conditions P is a set of post-conditions specified in the form of 

capabilities with variable arguments. 

- Vulnerability V is a description of the state of the target host or network with 

variable arguments. 

2) Attack concept AC specifies the constructor of a given attack and its related 

capabilities. ―required‖ and ―provided‖ conditions for each attack are coded in a 

language of capabilities. 

3) Arguments [r1 ,r2 ,…ri ]→r are a set of associated attributes such as source IP addresses, 

destination IP addresses and port numbers. 

 Definition 4.1: Attack concept AC is an abstraction of elementary alerts generated by 

the IDS, defined by a set of arguments, required conditions and provided conditions. 

Definition 4.2: An attack instance ai is defined as a set of instances of attack concept AC 

by substituting the associated values in arguments tuple considering the time constraints 

(start-time and end-time).  
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Definition 4.3: Given an attack concept AC, the R(AC), P(AC) and V(AC) sets are the 

sets of all capabilities C. Given an attack instance a, the R(a), P(a) and V(a) sets are the 

capabilities by mapping the values to the corresponding arguments in AC considering 

the time constraints. 

4.4.1  Attack classification  

Several attempts have been made to propose a different attack taxonomy or ontology; 

however, they are diverse and there is no common methodology for the categorization 

of security intrusions. The majority of the proposed classifications are entirely based on 

the analysis of published vulnerabilities. For instance, NIDS vendors such as Snort use 

attack classes that describe the attacker's methods in exploiting these vulnerabilities. We 

have obtained our classification based on:  

 Vulnerability analysis 

 Generalized description of the target system (server, client, Web, etc.) 

Elementary alerts generated by NIDS sensors are mapped to generalized descriptions of 

intrusion in a hierarchical representation. The classification is built in the form of a 

graph with nodes and edges. The nodes specify the attack class and the edges denote the 

inheritance relationship between attack classes. The classes are mutually exclusive and 

each alert belongs to only a single class horizontally, but to different classes vertically 

based on the inheritance relationship. This structural abstraction mechanism is to 

minimise redundancy and maximize diversity. Hence, even though some alerts are new 

and unknown, they can be predicted from the results of situation analyses. If an attack is 

in progress consisting of certain elementary alerts, these atomic alerts are mapped to a 

general attack description. For any suspicious or unknown actions not detected by the 

IDS, the probability of their being related to the detected attack is very high. The level 
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of the abstraction progresses from general to specific in a top-down design of the 

classification graph as shown in Figure 4.2. 

                        

                                         Figure.4.2 Abstraction levels of attack classification. 

 

 

 

Figure.4.3 Attack classification. 

High-level generic attack

Generic attack

.
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Specific
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- a -   
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#   High - level generic attack  
categories   

1   Server attack   
2   Client attack   
3   Web attack   
4   Malicious software activity    
5   Suspicious behaviour   
6   Policy violation   
7   Other   

#   Generic attack categories   
1   Buffer overflow   
2   Brute   
3   Download   
4   Information Gathering   
5   Implementation of the system commands   
6   Landing behaviour   
7   Bypass authentication   
8   Bypass authorization   
9   Upload   
10   DOS   
10   Cross - site scripting   
11   File modification   
12   File Inclusion   
13   Penetration testing   
14   SQL  injection   
15   Webshell install   
16   DDOS client activity   
17   Webshell activity   
18   Rouge software   
19   Trojan   
20   Attack response   
21   Session Hijacking   
22   Scanning    
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In Figure 4.3 (a), the high-level generic attack classes are shown and each class can be 

linked to one or more other generic class in Figure 4.3 (b). For instance, the buffer 

overflow class can be classified under server, client or Web classes, as this type of 

attack can target different types of systems. However, some other classes are only 

categorized as specific system classes, such as DDoS client activity, which is a client-

specific attack. Hence, each alert generated by the IDS will be categorized top-down in 

a hierarchical manner. Figure 4.4 shows three examples of how sub-classes inherit 

attack features from upper classes and how alerts are classified based on these 

relationships. In Figure 4.4 (a), the lower class denotes the exact Snort signature TFTP 

Get, id:1444, while this signature is classified as TFTP buffer overflow. Similarly, in 

Figure 4.4 (b), any IDS signature of type of ACTIVEX attack can be classified under this 

class which is in turn classified as a client buffer overflow. Figure 4.4 (c) shows that a 

stored procedure attack is described as a Web PHP injection attack. It should be noted 

that these are only abstract classes and do not denote instances of actual attacks. 

       Server attack                                Client attack                           Web attack 

 

Buffer overflow attack                   Buffer overflow attack               SQL injection 

 

TFTP buffer overflow                      ACTIVEX attack                     PHP injection 

 

      TFTP Get                                                                                     Stored Procedure 

          -a-                                                      -b-                                           -c-  

 

Figure.4.4  Examples of attack class inheritance. 

4.4.2  Knowledge-base representation 

A capability set consists of all the derived elements of capabilities encoded to integer 

numbers. All alerts are represented in the form of three sections: 
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1- IDS signature ID to describe the attack by its elementary alert. 

2- Pre-conditions set which consists of n capabilities where n>=0. 

3- Post-conditions set which consists of n capabilities where n>=0. 

The knowledge library of the alerts and their corresponding capabilities are defined into 

the form shown below: 

sid:xxxx;pre:k1(n);pre:k2(n);………pre:ki(n); pos:l1(n);pos:l2(n);…..pos:lj, where 

xxxx is the signature ID number, pre denotes pre-conditions, pos denotes post-

conditions, k is the capability unique number, and n is a variable argument to 

specify the attack attributes as follow: 

1: source IP address 

2: source port 

3: destination IP address 

4: destination port  

4.4.3  Alert modelling 

IDS alerts are the basic units that represent the occurrence of intrusion as a time series. 

Essential attack knowledge is derived from signature fields triggered by the IDS in case 

of any security violation. It should be noted that the alert generated by the IDS is not 

necessarily connected to a security attack, as sometimes a legitimate activity can cause 

some alarms. Moreover, the information in the signature does not contain any sign of 

whether the attack succeeded or not. However, the abstraction of these alerts to 

capabilities in respect to temporal and spatial details can give a true view of the security 

perspective. 

Each received alert is mapped to its pre- and post-conditions. It is assumed that the alert 

is generated because some conditions have to be satisfied and that it will cause some 
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impact on the target system. The relationship between different alerts is identified by 

matching these conditions, as shown in Figure 4.5.  

 

  

 

  
Figure 4.5  Matching of alert pre-and post-conditions in the correlation function. 

In Figure 4.5, Alert 1 has some pre-conditions and post-conditions and one of its post-

conditions match the pre-conditions of Alert 2 and Alert3, hence they are correlated. In 

addition, the temporal order of Alert 2 and Alert 3 is taken in account. For example, the 

following alerts (Snort-generated signatures) are obtained from DARPA LLDDOS.1.0 

[161] to clarify the correlation concept considering the following Snort signature: 

RPC sadmind UDP PING 

This signature is generated as result of attempts to test if the sadmind demon is running. 

A sadmind RPC service is used to perform administrative activities remotely. The 

impact of the signature includes disclosure of the running service and system access 

attempt:  

RPC portmap sadmind request UDP 
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This signature is generated due to the use of a portmap GETPORT request to discover 

the port number of the RPC service, and consequently which port is used by the 

sadmind service.  

RPC sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt 

This signature is generated as a result of an attempt to exploit a buffer overflow to 

obtain a root access. 

RPC sadmind query with root credentials attempt UDP 

This signature is generated due to the use of root credentials and is an indication of 

potential arbitrary command executions with root privilege. 

RSERVICES rsh root 

This signature is generated due to an attempt to login as a root user using rsh, and this is 

an indication of full control of the attacker. 

Table 4.1 Examples of pre- and post-conditions. 

# Signature Pre-conditions Post-conditions 
1 RPC sadmind UDP PING Disclosure of host Disclosure of running service 

System access 

2 RPC portmap sadmind request UDP Disclosure of host 

 

Disclosure of port number 

Disclosure of running service 

System access 
Remote Access 

3 RPC sadmind UDP NETMGT_PROC_SERVICE 

CLIENT_DOMAIN overflow attempt 
 

Disclosure of host 

Disclosure of port number 
Disclosure of running service 

 

System access 

Remote access 
Admin access 

 

4 RPC sadmind query with root credentials attempt 
UDP 

Disclosure of host 
Disclosure of port number 

Disclosure of running service 

System access 
Remote access 

 

Remote access 
Admin access 

 

 

From Table 4.1, it can be seen that the signatures have some pre- and post-condition and 

if a match between these conditions is detected the two alerts are linked as a part of the 

attack scenario, as shown in Figure 4.6. The two signatures share at least one common 

capability, disclosure of running service, hence they are correlated. It should be noted 

that the correlation process does not simply consist of matching these capabilities – 

there are other factors involved, as explained in the rest of this chapter. 
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Figure 4.6  Correlation of two alerts. 

4.5  Vulnerability modelling 

Several efforts have been made to correlate IDS signatures with vulnerability 

information. The aim is to reduce the false positives, which can be a major drawback of 

such systems. Moreover, these verification mechanisms are incorporated in the IDS to 

provide a higher quality of alerts, and hence more confidence. The origin of the problem 

of false positives is that IDSs have no information about the systems they protect. 

Therefore they are not certain about the success of the attack, simply because the 

vulnerabilities of the target system are not available. Two trends have emerged in 

overcoming the false positives issue in IDS performance: 

1- Tuning the IDS based on knowledge of the internal policy of the protected 

environment to operate with a lower number of signatures [47,48]. Knowledge of 

network configuration, running services and installed applications is used to 

disable all the unrelated signatures of the IDS. The advantage of this technique is 

that the IDS performance is improved significantly. However, some of the 

information on the activities of the attacker, which may be useful in tracking its 

behaviour, will be discarded. It should also be noted that real cyber attackers 

(persistent attackers) try to break into systems using different methods, and these 

attempts may be not in connection with a particular vulnerability. Moreover, some 

dangerous attacks in cyber crime do not require any system vulnerability, such as 



116 
 

DDoS. In addition, this approach requires intensive and updated vulnerability 

assessment.  

2- The other trend is not suppressing the IDS detection coverage, but instead 

aggregating, correlating and verifying the generated alerts in a systematic way 

[10,29,49]. Summarized data of occurring events are displayed to the security 

manager according to their priorities and criticalness. If further details are 

required to support a specific situation, they can be retrieved by request. A 

repository of collected information is maintained to support the decision of the 

IDS management system. Vulnerability scanners are the main candidate to supply 

this type of data in a periodical manner.  

In accordance with the nature of the developed correlation systems, which require full 

description of any activity in the protected environment, the second mechanism is 

adopted in our research. In the previous sections, the attacks are generalized to obtain a 

global view of the security situation. This generalization may increase the false positive 

rate; hence, a suppression technique is needed to reduce the false positive rate without 

losing any details. This suppression mechanism does not imply any reduction in the IDS 

coverage, but the consideration of only success attacks. 

Snort signatures are supported by two useful fields: 

 Vulnerability reference, referring to the major vulnerability standards such as 

CVE [39], bugtraq [162], and Nessus [128]. 

 Service to denote a list of the affected services, such as telnet, ftp and 

MSSQL. 

A vulnerability knowledge base is maintained to store the vulnerability situation of each 

element of the protected network based on the collecting agent (e.g. Nessus). The 

scanner will also gather the network configuration details such as IP addresses of live 
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hosts and running services, so manual configuration is not considered. In this respect, 

vulnerability information is considered as external capabilities.  

The scope of vulnerability testing is limited to only investigate the presence of the 

vulnerability and the affected service. An extension can be carried out to consider the 

target host response; however, there are performance issues (e.g. communication 

overheads). Nessus is used to extract the following information, which can be used to 

support the vulnerability component: 

- IP addresses of all hosts connected to the target network. 

- Operating systems and their versions. 

- Open ports and running services. 

- Related vulnerability references (e.g. CVE). 

When an alert is received from the IDS, its message contains the vulnerability reference 

and the affected system. Therefore, a logical formula is obtained by searching the 

vulnerability knowledge to find any matches, as follow: 

- If the reference is found and the associated service is running, then the 

vulnerability is true with high priority. 

-  If the reference is found and the associated service is not running, then the 

vulnerability is true with low priority. 

- If the reference is not found, then the vulnerability is unknown. 

The complete algorithm of alert verification using vulnerability knowledge is shown in 

Figure 4.7. 
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Algorithm :Alert verification 

Input: elementary alerts generated by IDS  A(IP,SV,VR) 

           Host vulnerability information generated by scanner VN(IP,OS,SV,VR) 

Output: Vulnerable host VH(IP,V,P) 

Methods: 

             // IP: IP address,  SV: service, VR: vulnerability, OS operating system 

             for i←0 to length[VN]  

                do  

                    if A.IP = VN[i].IP  get VN(IP,OS,SV,VR) 

                    in case of 

                             A.VR=VN.VR and A.SV=VN.SV then VH.V←true , VH.P←high 

                             A.VR=VN.VR and A.SV≠VN.SV then VH.V←true ,VH.P←low 

                             A.VR≠VN.VR then VH.V←false , VH.P←unknown 
 

Figure 4.7 Alert verification algorithm. 

4.6   Alert correlation algorithm 

The principle objective of the proposed framework is to identify the causal relationships 

between a series of attacker actions that are temporally ordered. The concept of alert 

correlation should not be confused with alert aggregation or alert fusion, as the latter 

group alerts based on clustering regardless of their temporal relations in some 

approaches. Alert correlation is the process of identifying a sequence of distinguished 

alerts that fall in the same generalized attack pattern. Figure 4.8 shows the relationship 

between alert correlation and alert aggregation. Correlation functions are performed 

across the x-axis and aggregation functions along the y-axis. In this regard, we do not 

need to define explicitly the attack scenario, and instead the logical rules are generated 

using the pre- and post-conditions of each activity. Attributes provided by elementary 

alerts are used to define instances of alerts. Instances of system conditions are 

instantiated with time constraints, and correlation rules are created.  
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Figure 4.8 Relationships between alert correlation and aggregation. 

Definition 4.4 Given a pair of attack instances a : a1, a2 ordered temporally in the 

following time slots respectively: 

a1: ts1 and te1  

a2: ts2 and te2  

where ts is the start time, and te is the end time. 

a1 is correlated with for a2 if: 

1- There exists at least one common capability C in R(a2), and P(a1). 

2- Satisfaction of V(a2) constraints. 

3- P(a1).te1 ≤ R(a2).ts2  

The proposed correlation approach consists of a series of complementary phases 

discussed in the following sections. A complete description of the related algorithms is 

given to show the system's functioning.  
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4.6.1  Initialization of instances of pre- and post-conditions 

The objective of this procedure is to create instances of pre- and post-conditions for 

each alert received. Encoded conditions are in the form of corresponding capabilities 

based on the arguments obtained from the in-memory knowledge dictionary. Pre-

condition details of previous processed alerts are deleted because they are no longer 

used. In other words, the remaining possible causal links of any alert are ignored as the 

time constraints are not satisfied.  

Consider alert a1 detected between the times t1 and t2, and another alert a2 observed 

between t3 and t4, where t1 ≤ t2 ≤ t3 ≤ t4. Even though a2 has some post-conditions that 

match a1 pre-conditions, they will not be correlated as a1 is detected before a2.  

A matching between the signatures IDs in the knowledge library and those of the 

sequence of the received raw alert is performed. Therefore, lists of pre- and post-

condition identifiers are obtained. The argument of each condition is identified and the 

encoded capabilities information is stored in corresponding collections in the database. 

Figure 4.9 shows the implemented algorithm of the creation of pre- and post-conditions 

details.  
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Algorithm: Pre and Post conditions initialization 

Inputs: Sequence of raw alerts R, knowledge lib KLB 

Output: Encoded Capability EC 

Methods: 

                //KLB an object of knowledge library  

               // PreC :collection of Pre conditions Pre, PosC : collection of Post conditions  Pos      

              for i←1 to length[PreC]  

                    do DELETE (PreC, Pre) 

              for i←1 to length[R]  

                do 

                    if  KLB.id= R.sigId 

                        get KLB.id, KLB.id.Pre(arg), KLB.id.Pos(arg) 

               for i←1 to length[KLB] 

                 do 

                     In case of  

                          arg=1 

                                     INSERT (PreC, EC(srcIPAddress)) 

                                     INSERT (PosC, EC(srcIPAddress))            

                         arg=2 

                                     INSERT (PreC, EC(srcPort)) 

                                     INSERT (PosC, EC(srcPort))            

                         arg=3 

                                     INSERT (PreC, EC(destIPAddress)) 

                                     INSERT (PosC, EC(destIPAddress))            

                         arg=4 

                                     INSERT (PreC, EC(destPort)) 

                                     INSERT (PosC, EC(destPort))   
 

Figure 4.9  Algorithm of initialization of pre- and post-conditions. 

4.6.2  Knowledge initialization 

A complete knowledge is initialized in memory when the MARS server starts. The total 

memory space of a knowledge base of 15,000 signatures does not exceed a few 

kilobytes. The initialization process incorporates parsing of the knowledge text file 

(instead of a text file, an XML representation can be used for faster processing). A 
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dictionary data structure is created to store knowledge details. The initialization 

algorithm is shown in Figure 4.10.  

 

Algorithm: Knowledge Dictionary Initialization 

Inputs: Text Knowledge TK 

Output: Knowledge Dictionary KD 

Methods: 

                create KD as a Dictionary 

               // KD.id  is the Id number of each entry= Snort SigId 

              // KD.id.Pre is the list of preconditions associated with SigId   

              // KD.id.Pos is the list of postconditions associated with SigId   

              // create KL as array of TK lines  

               KL ← SPLIT TK in lines separated by (;) 

               for i←0 to length[KL]  

                    do 

                         In case of KL[i]  

                            start with (―sid‖) then KD.id ←KL[i].id) 

                            start with (―pre‖)  

                                      then 

                                               KLI←SPLIT KL[i] separated by (,) 

                                                j←0 

                                               for j←0 to length[KLI]    

                                                     KD.id.Pre(arg) ←KLI[j](arg) 

                            start with (―pos‖)  

                                      then 

                                                KLI←SPLIT KL[i] separated by (,) 

                                                j←0 

                                               for j←0 to length[KLI]    

                                                       KD.id.Pos(arg) ←KLI[j](arg) 

 
Figure 4.10  Algorithm of knowledge initialization. 

4.6.3  Correlation algorithm 

The encoded capabilities stored in a collection of pre- and post-conditions are used to 

create the initial correlation graph, called a temporary correlated collection. In this 
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collection, all correlated elementary alerts are stored for further processing, reflecting 

atomic correlations. The size of the information in temporary collections may be huge, 

and hence graph reduction and alert aggregation functionality are performed to obtain 

the final graph. The correlation process is based on the satisfaction of: 

- Causal relationship based on pre- and post-conditions of each detected alert. 

- Temporal and spatial constrains such as IP address, port and detected time. 

- Service configuration and vulnerability details. 

Each correlated alert must belong to what we have called in this research generated 

events. Complete details of events are stored in a separate collection designated 

InfallEventsC. Initially, an in-memory hash table called a correlated map is created, and 

then the details are transferred to a temporary correlated collection. The detected event 

takes the earliest start time and the latest end time among the start and end times of all 

corresponding alerts. An event is detected if at least two correlated alerts are detected. 

However, every new event is evaluated if it can be combined with other detected events 

on the basis of common characteristics. If there is a casual link between previous 

aggregated alerts and one of the detected alerts associated with the new event, the two 

events can be combined. In case of a connection between two events, the original event 

will become a master event and the new one will be considered a slave event during the 

process until they become a single accumulated event. The resulting event title is a 

concatenation of the intrusion category names of each group of events, as shown in 

Figure 4.11, where Attack A, B, and C are general descriptions of the attack. 

 

a1 a2 an 

Attack A 

b1 b2 

Attack B 

bn c1 c2 

Attack C 

cn 

Event Title:        Attack A → attack B → Attack C 

                                              Figure.4.11  Construction of an event title. 
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Algorithm: Alert Correlation 

Inputs: Encoded Capabilities EC , Vulnerability VH(IP,V,P) 

Output: Correlated alerts 

Methods:  // Temporary Correlated Collection TempCorrelated 

                 // Pre conditions  Collection PreC ,  Post conditions Collection PosC             

               DELETE all rows in  TempCorrelated 

               get lastAnalysisId,  lastEventId   

               set   CorrelatedAlerts←  

                   SELECT AlertId from PreC, PosC 

                         WHERE PreC.AlertId = PosC.AlertId 

                             AND  PreC.IPaddress = PosC.IPaddress 

                              AND  PreC.Port = PosC.Port 

                              AND PosC.endTime≤ PreC.startTime  

                              AND  VH.V is true 

                    If length[CorrelatedAlerts] >0 

                      analysiId ← analysiId+1 

                         /cMap: Correlated Map  :hash table 

                          cMap ←null 

                                     for i←0 to length[correlatedAlerts] 

                                         do 

                                       // the first alert will be the causing alert causingA 

                                      // the second alert will be the caused alert causedA 

                                      INSERT (cMap, causingA[i]) 

                                      INSERT (cMap, causedA[i]) 

                newEvent←lastEvent+1 

                      for j←0 to length[cMap] 

                              do 

                          INSERT (TempCorrelated, cMap[j]. causingA) 

                          INSERT (TempCorrelated, cMap[j]. causedA) 

                          INSERT (TempCorrelated, cMap[j]. newEvent)  

                 newEvent.startTime← MIN(cMap.startTime) 

                  newEvent.endTime← MAX(cMap.startTime)     

                  // InfallEvent Collection inafallEventC 

                 INSERT (inafallEventC, newEvent.fields) 

               combineInfallEvent 
 

Figure 4.12  Alert correlation algorithm. 
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Once all received alerts are processed and each alert is assigned to a specific intrusion 

event, the original alert collection is updated in order to perform alert aggregation. The 

algorithms of alert correlation and event generation are shown in Figures 4.12-4.13.  

Algorithm: combineInfallEvent 

SET canBeCombinedEvents← 

                     SELECT  infallEventId from infallEventC and aggregatedC 

                     WHERE infallEventC.infallEventId= aggregatedC. infallEventId 

                    AND  infallEvent.AlertId IN   

                          (SELECT  causingAlertId from TempCorrelated 

                              WHERE TempCorrelated.infallEventId= newInfallEventId  ) 

                              UNION  

                        (SELECT   causedAlertId from TempCorrelated 

                               WHERE TempCorrelated.infallEventId= newInfallEventId  )     

              If length[canBeCombinedEvents] >0 then 

                  // update the existing event 

                  updateCorrelated(canBeCombinedEvents[1..n], newEventId) 

                else 

               // create a new record in infallEventCollection 

                        INSERT (infallEventC, newInfallevent)  

    updateInfallEvent(newInfallEventId) 
 

Figure 4.13  Algorithm of two combined events 

 

4.7 Alert aggregation 

A common problem among alert correlation systems is the huge amount of atomic alerts 

generated by an IDS and possibly by several IDSs. An IDS may trigger a large quantity 

of the same alerts at close time intervals that are related to the same security violation. 

Alert aggregation is proposed to remove duplicated alerts, e.g. the same alerts 

corresponding to the same signature description or attack class. A pre-defined window 

is used to determine whether two alerts are close enough to be aggregated into a single 

alert. In addition, our aggregation approach is based on graph reduction techniques that 

remove duplication in vertex set and migrating connecting edges to the nominated node. 
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The resulting graph will only contain alerts that are in fact representing different 

security events. 

Definition 4.5: Given a cyclic directed graph G(V,E) where V is the vertex set and E is 

the edges set, the in-degree of a vertex is the number of edges entering it. A vertex with 

zero in-degree values indicates a vertex with no edges entering it (e.g. root nodes).  

In the attack graph, the node’s in-degree is the number of how many times the alert 

appears in caused alert group. The aggregation algorithm begins with defining the in-

degree value of each node which is not aggregated in the graph. A list of zero in-degree 

values are identified to represent the first layer of the graph nodes; in other words, the 

alerts that are not caused by others. The zero in-degree list will contain groups of similar 

alerts occur at different times. Each group is treated as follows: 

1- Nominate a master alert, which is the first alert in the temporally sorted list.  

2- The aggregation process for the other alerts in the same group is based on: 

- Similarity of signature IDs; this can be generalized to consider attack classes 

for a coarse granularity.  

- Equality of source and destination IP addresses of the parties involved. 

- The time difference between the detection of the two alerts does not exceed a 

defined value, e.g. 1 second. 

3- If the above conditions are satisfied, the processed alert is added to the 

aggregated alerts corresponding to its master alert. 

4- Change all the relationships between the aggregated alert and other alerts in the 

whole graph by replacing it with its master alert. Hence, the master alert will 

represent the aggregated alerts without losing the causal connections in the 

primary correlated collection. 
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5- Since all aggregated alerts are represented by a single alert, the corresponding 

time should cover the actual detection time for any further correlation. Thus, the 

start time of the master alert is the earliest time among the aggregated start 

times, and the end time is the latest one.  

6- Remove the aggregated alert from the graph; however, the original information 

is not ignored as the graph can be disaggregated when required. Each master 

alert has its own counter of related aggregated alerts and graph layer. 

After aggregating each group, the first graph layer, zero in-degree of all aggregated 

groups, is decremented by 1 to obtain the next layer. This is an opposite method to 

creating zero in-degree values. The second level will also have zero in-degree nodes and 

the same procedure is executed in an iterated fashion until all the graph nodes are 

treated. The algorithms shown in Figures 4.14-4.17 are describing the complete steps of 

the aggregation process.  
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Algorithm: AggregationAnalyzer 

Input: Temporary Correlated Alerts 

Output: Aggregated alerts collection 

Declaration: Graph : NameValueCollection,  Indegree: hashtable,  

                      aggregatedAlertList:ArrayList , allRawAlerts: Hashtable   

Methods: 

Create a queue aggregatedZeroIndegreeAlertsCollection 

Get zeroIndegreeAlertsList 

Layer← 1    // the first level in the graph , initial alerts not caused by other alerts 

aggregateZeroIndegreeAlertsId(zeroIndegreeAlertsList, 

aggregatedZeroIndegreeAlertsCollection, Layer) 

if  length [aggregatedZeroIndegreeAlertsCollection]>0 

       then  

        zeroIndegreeAlertsList←null 

        Count← length [aggregatedZeroIndegreeAlertsCollection] 

              for i←1 to Count 

                 do  // count denote how many groups have been aggregated 

             sameAlertType← DEQUEUE  aggregatedZeroIndegreeAlertsCollection 

                    n←0 

                    while AlertId=sameAlertType[n]  

                         do 

                       if NOT (Graph[AlertId].values=null) 

                            get Graph[AlertId].values 

                                  for m←1 to length[Graph.values] 

                                   do 

                                 Indegree(values.AlertId) ←  Indegree(values.AlertId)-1 

                                 if Indegree(values.AlertId)=0 then  

                                           INSERT (zeroIndegreeAlertList, values.AlertId) 

                             n←n+1 

i←i+1   

      Layer←Layer+1  

if  length[aggregateZeroIndegreeAlertsId]>0 

     then 

         aggregateZeroIndegreeAlertsId(zeroIndegreeAlertsList,                

aggregatedZeroIndegreeAlertsCollection, Layer) 

                                                Figure.4.14 Aggregation analysis algorithm. 
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Function:AggregateZeroIndegreeAlertsId (zeroIndegreeAlertsList, 

                                  aggregatedZeroIndegreeAlertsCollection, Layer) 

if length[zeroIndegreeAlertsList]=1 

    then    // in case of a single zero indegree node 

                 aggregatedZeroIndegreeAlerts:Array[] 

                 INSERT (aggregatedZeroIndegreeAlerts,zeroIndegreeAlertsList[0]) 

                 ENQUEUE (aggregatedZeroIndegreeAlertsCollection, 

                                                             aggregatedZeroIndgreeAlerts) 

                  saveAggrAlert(zeroIndegreeAlertsList[0],1,Layer) 

                  UpdateRawAlertCollection(zeroIndegreeAlertsList[0], 

                                                                    zeroIndegreeAlertsList[0]) 

       else    // in case of zero indegree contains more than one element 

              for i←0 to length[zeroIndegreeAlertsList] 

                    do 

                         if zeroIndegreeAlertsList[i]<0  // has been already aggregated 

                             continue 

                                aggregatedZeroIndegreeAlerts:Array[] 

                                INSERT (aggregatedZeroIndegreeAlerts, zeroIndegreeAlertsList[i])   

                                 IndexalertId← zeroIndegreeAlertsList[i] 

                                appointedRawAlert: RawAlert   // nominated as a master alert 

                                allRawAlerts←null                            

                      if allRawAlerts contains IndexalertId 

                           then 

                               appointedRawAlert=allRawAlert[IndexalertId] 

                          else  // create a new one 

                                 appointedRawAlert← new RawAlert[IndexalertId] 

                                 ADD (allRawAlerts, appointedRawAlert) 

                                 UpdateRawAlertCollection(appointedRawAlert, 

                                   appointedRawAlert) 

rawCollectionCount: integer 

                   // internal loop 

                        for j←i+1 to length[zeroIndegreeAlertsList] 

                              if zeroIndegreeAlertsList[j]<0 

                                  continue 

                                  Figure.4.15  Aggregation of zero in-degree alerts algorithm. 
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                            // new alert in the same aggregated group 

                              indexRawAlert:RawAlert 

                              internalAlertId :int 

                               if allRawAlerts contains  zeroIndegreeAlertsList[j] 

                                  then 

                                         indexRawAlert←allRawAlerts[internalAlertId] 

                                    else 

                                         indexRawAlert←new RawAlert[zeroIndegreeAlertsList[j]) 

                                         ADD (allRawAlerts, indexRawAlert) 

                                        if appointedRawAlert.sigId =indexRawAlert.sigId  

                                            AND appointedRawAlert.srcIPAddress=  

                                                                            indexRawAlert.srcIPAddress  

                                            AND appointedRawAlert.desIPAddress = 

                                                                            indexRawAlert. desIPAddress 

                                    AND DIFF (appointedRawAlert.endTime, 

                                                                  indexRawAlert.endTime)≤1 

                        then 

                                INSERT (aggregatedZeroIndegreeAlerts, zeroIndegreeAlertsList[j]) 

// relationships will be shifted to the new master alert  

                  if NOT(Graph.zeroIndegreeAlertsList[j])=null 

                      then 

                              values← get Grpah.zeroIndegreeAlertsList[j] 

                 for k←0 to length[values] 

                      do 

                              INSERT (Graph.values, indexAlertId) 

                             // remove the aggregated alert from the Grpah 

                              DELETE (Graph.values , zeroIndegreeAlertsList[k]) 

                            // add the aggregated alert to the aggregated list 

                             INSERT (aggregatedAlertIdList, zeroIndegreeAlertsList[k]) 

                           // make this Id as a negative value in the zero indegree  

                            zeroIndegreeAlertsList[k] ← zeroIndegreeAlertsList[k] × (-1) 

                           // increase the alert count for the associated master alert 

                           rawCollectionCount ← rawCollectionCount+1 

                          Figure.4.16 Aggregation of zero in-degree alerts algorithm (continued). 
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                             // the aggregated group of alerts takes the start time of the earliest alert  

                             // and the end time at the latest end time   

                          if appointedRawAlert.startTime > indexRawAlert.startTime 

                               then 

                                    appointedRawAlert.startTime← indexRawAlert.startTime 

                           if appointedRawAlert.endTime < indexRawAlert.endTime 

                               then 

                                     appointedRawAlert.endTime← indexRawAlert.endTime 

                                // delete the post conditions of the aggregated alert 

                                DELETE  (postConditionTable, indexRawAlert) 

                                ENQUEUE (aggregatedZeroIndegreeAlertsCollection, 

                                                        aggregatedZeroIndgreeAlerts) 

                   Figure.4.17  Aggregation of zero in-degree alerts algorithm (continued). 

 

4.8  Graph reduction 

In order to reduce the complexity of the resulting graph, data redundancy should be 

eliminated. The graph consists of nodes representing aggregated alerts and edges 

representing the casual relationships. The number of nodes is not affected while the 

number of edges is minimised without affecting reachability. Hence, the target is to find 

a minimal DAG with the least number of arcs and which is equivalent to the original 

DAG. Consider the case shown in Figure 4.18, with four alerts: a, b, c, and d. If Alert a 

is causing Alert b and b is causing c, there is no need for the transitive edge between a 

and c, and similarly the edges between a-d and b-d. The removal of the transitive 

optional edges does not have any effect on connectivity between the original nodes. 

 

 

 

 

a b c d 

 

Figure 4.18 Transitive edges in graph. 
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This is based on the assumption that the relationships between nodes can propagate and 

the removed edges are considered optional.  

Definition 4.6: given a DAG G=(V,E), V=X is the vertex set, E=R is the set of arcs of 

the graph, let n=#V, V={1,….,n}, the reduced graph G′(V,E′) is a DAG with the 

following properties: 

(1) The vertex set (#V) of G(V,E) is equal to the vertex set (#V) of G′(V,E′). 

(2) The directed paths between the vertex in G(V,E) and G′(V,E′) are similar. 

(3) G′(V,E′) has the smallest number of edges E′=R′ between vertex sets without 

affecting the connectivity, R′<=R. 

Two algorithms have been developed: online graph reduction for edge deletion on the 

left side of the graph, and offline graph reduction for edge deletion on the right side of 

the graph. The online algorithm removes the transitive edges at the real-time when 

every node joins the graph. This procedure is performed at the first stage of correlation 

and before alert aggregation in order to minimise the system's processing time. The 

offline algorithm results in a further graph reduction if any redundant connection exists 

after the graph is built, starting from the leaf nodes to the root nodes. To clarify the idea, 

consider the alerts correlated by the system in the initial stage shown in Figure 4.19 

below:  

 

Figure 4.19  Example of graph reduction. 
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There are five nodes and eight edges connecting these nodes to represent the causal 

relationship. In Figure 4.19 (a), the number of the representing nodes n is half the 

number connecting arcs #V. The edges 1→5 and 2→5 can be deleted because they are 

redundant and the description of the intrusion sequence will not be affected. In the 

proposed reduction algorithm, each node has two lists of children and parents, and the 

aim is to remove the duplicates in these lists as shown in the following two algorithms 

displayed in Figures 4.20-4.23 
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Algorithm: OnlineGraphReducer 

Input: Correlated Graph 

Output: Reduced Correlated Graph 

Declaration: GraphNode: <id, value> 

                      Parents , Childs,Roots: List of GraphNodes 

                      Ancestors: Dictionary of GrpahNodes<GraphNode,List of  GraphNode> 

                      NodeSet,: Dictionary of GrpahNodes<int, GraphNode) 

                      node1, node2 : GrpahNode 

Methods: 

// perform for each edge, if the n is the nodes number, the edge will be n/2  

for i←0 to length[nodes]/2 

       do 

        // the node on the left side, causing alert  

         node1id←nodes[i] 

        //the node on the right, caused alert 

         node2id←nodes[i+1] 

        node1←null  

       //nodeSet is the resulting set after reduction  

        if nodeSet contains node1id 

         then   

                // if it is already added to the nodeSet 

                node1←nodeSet[node1id] 

          else 

              //otherwise create a new GraphNode and ancestors list for node1  

               node1← new GraphNode(node1id) ; 

              ancestors[node1] ←new List of GraphNode 

           //node2 is processed similarly 

         Node2←null 

        if nodeSet contains node2id 

           then   

                  // if it is already added to the nodeSet 

                Node2←nodeSet[node2id] 

          else 

              //otherwise create a new GraphNode and ancestors list for node2  

 
Figure 4.20 Online reduction algorithm. 
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node2← new GraphNode(node2id) ; 

              ancestors[node2] ←new List of GraphNode 

//check all parents of node2, if one exists in node1’s parents, remove it from  

node2’s parents to avoid duplicates (transitive relationships) 

for k←0 to length[node2.parents] 

       do 

             if ancestors[node1] contains node2.parents[j] 

               then 

                      DELETE (node2, node2.parents[j])      

//add node2 as a child of node1 

INSERT (node1.child,node2) 

//add node1 to node2’s ancestors if it is not already existent  

if  NOT (ancestors[node2] contains node1) 

   then 

          INSERT (ancestors[node2], node1); 

// add all ancestors of node1 to ancestors of node2 

for j←0 to length[node1.ancestors] 

       do 

            n: GraphNode 

            n←node1.ancestors        

           if NOT (node2.ancestors contains n)    

           INSERT (node2.ancestors,n)       

 // if node2 is a root node remove it from roots because it is not root anymore  

//after being  a child of another node 

if node2 roots then DELETE (roots, node2) 

// if node1 is not already in roots add it to roots 

if  length[node1.parents]=0 AND NOT (node1roots) 

  then 

         INSERT (roots, node1) 

 
Figure 4.21 Online reduction algorithm (continued). 
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Algorithm: OfflineGraphReducer 

Input: Correlated Graph 

Output: Reduced Correlated Graph 

Declaration:  

 GraphNode: <id, value> 

 Parents , Childs, Roots, n, grandson: List of GraphNodes 

 indirectedOffSprings : Dictionary of GrpahNodes<GraphNode,List of  GraphNode> 

Methods: 

for i←0 to length[roots] 

       do 

           // if the root node is already existent in sons group return the group   

           if n indirectedOffSprings 

              then  return indirectedOffSprings.n 

// if the root node does not have any child create a new list 

if  length[n.child] =0  

   then 

          return new list of GraphNode   

 for i←0 to length[n.child] 

       do 

          //check the sons of the sons of each node in roots 

           for j←0 to length[n.child[i].child] 

              do 

                    if grandson  n.child[i].child     

                      then 

                             // if this son is not a member of the sons group add it 

                            if NOT grandson  indirectedOffSprings 

                            INSERT (currentIndirectedOffSprings, grandson) 

              indirectedOffSprings.n=currentIndirectedOffSprings 

for k←0 to length[indirectedOffSprings] 

       do 

           if n indirectedOffSprings 

              then 

                    // remove duplicates in sons of the nodes on the same sequence 
 

Figure 4.22 Offline reduction algorithm. 

 

  



137 
 

 

                 l←0 

                    while l<length[n.child]   

                          do 

                              if n.child[l]  indirectedOffSprings.n 

                                   then 

                                         DELETE (n.child,n.child[l]) 

                                    else 

                                           l← l +1 
  

Figure 4.23  Offline reduction algorithm (continued). 

4.9   Prediction of undetected intrusion 

Beyond the correlation function's primary role of reducing information complexity, it 

may also handle unobserved attack activities and estimate the attacker's planned path to 

achieve its goal. Intrusion activity is considered a planning activity, because the 

planning actions are explained by their pre-conditions and effects. In this sense, 

correlation functionality is used in discovering unobserved alerts (false negatives) and 

predicting intrusion intention. Missed alerts have been one of the major limitations of 

IDSs, particularly signature-based ones, and this is caused by three reasons: 

-The intrusion action is unknown (e.g. 0-day attack), and the IDS has no knowledge 

of the attack. 

-The attacker performs certain evasion techniques to deceive signature-based IDSs, 

which may only be other variations of known existing attacks.  

-In high-speed network environments, as is the case in current systems, the IDS is 

unable to keep up with the received traffic. As has been observed in Chapter 3, IDSs 

drop traffic packets when they are overloaded. 

In an alert correlation context, missed alerts can result in broken attack scenarios, 

dividing the attack graph into different sub-graphs. Furthermore, unobserved attacking 
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sequences can lead to an incomplete graph if the IDS misses some alerts comprising late 

attack stages. Hence, the objective of the attacker will be uncertain for the observer. In 

such cases, alert correlation generally uses abduction techniques [49] to estimate the 

missing data and the intruder's intention in partial attack sequences. 

4.9.1  Alerts missed by IDSs 

Several efforts have been presented to overcome the limitation of alerts missed by IDSs. 

Most of them focus on how to repair the broken scenario by constructing all possible 

actions using attack libraries [35, 131]. Consider Attack 1 and Attack 2 in Figure 4.24, 

where Attack 1 consists of three alerts (a1, a2 and a3) and Attack 2 involves two alerts 

(a5 and a6). The two attacks actually belong to the same intrusion sequence. The IDS 

misses alert a4, causing two separate attack scenarios. In order to reason about the 

missing middle alert and connect the two attacks, certain virtual nodes are created along 

the attack path between a3 and a5. In our correlation approach, the causal link between 

the nodes is based on the equality constrains of the capabilities in the pre-conditions of 

node a5 and any possible node with similar capabilities in its post-conditions. Similarly, 

a match between capabilities defined in the post-conditions of a4 and capabilities 

defined in the pre-conditions of any possible nodes, is determined to link these nodes to 

a3.  

 

a1 a2 a3 a5 a6 

a41 

a42 

a43 

a4i 

Attack1 Attack2 

Figure.4.24  Reasoning about missed alerts. 
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Definition 4.7: a sequence of actions a1,a2,......,an comprising an attack plan and two 

sub-sequences of observed actions a1,a2,.....,ak and al, al+1,....., an are linked virtually 

as candidates of the same attack scenario if: 

a.  There is at least one action node (virtual node) sharing at least one capability 

in the post-conditions of ak and pre-conditions of al 

b.  Satisfaction of temporal, spatial and vulnerability constrains.  

The missed alerts can be more than a single action node, so all possible matched nodes 

are searched forwards starting from ak and backwards starting from al. The algorithm 

progresses until a match is identified to link the two attacks. The virtual nodes can be a 

series of nodes in a sequence starting from the last action node in the first half of the 

broken attack scenario to the first action node of the consequent other half. However, 

the number of estimated nodes can be large and this will add more complexity to the 

resulting graph.  

In fact, the repair of broken-scenario approaches may add more complications. A 

considerable amount of processing power is consumed and this is critical for online 

applications. The idea of attack generalization presented in section 4.4 can give the 

administrator a general view of the actual attack without having to rely on identifying 

the exact missed alerts. We have adopted the idea of reasoning about missed alerts by 

generally giving the attack category instead of a potentially infinite number of virtual 

alerts. Some of the reasons behind this are: 

1- As stated earlier in this section, alerts can be missed as a result of one of two 

reasons: unknown attacks or missed attacks due to performance issues. The 

second category can be estimated using virtual nodes and edges based on a 

knowledge library. However, if the attack is a 0-day or a new variation of a 

known attack, the specific reasoning about unobserved alerts will not give the 
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details of the exact intended attack actions. Hence, virtual nodes do not represent 

the actual alerts but similar alerts, which can mislead the administrator by 

producing false positives.  

2- Based on the initial assumptions of this thesis, coordinated attacks consist of a 

number of steps that are not isolated. The absence of some of these irrelevant 

steps, which are usually much less compared to the related steps observed, does 

not affect the correlation approach. Once again, the generalized formalisation of 

capabilities can assist in building the attack graph even with the use of 

incomplete attack knowledge. For instance, consider the attack stages associated 

with the scenario shown in Figure 4.25. The link shown in red denotes a 

generalized capability in the capabilities set. To be more specific, assuming the 

attack steps are for SQL injection (SQLI) stages, all alerts involved in this attack 

share the SQL injection capability, coloured in red. The other capabilities coded 

in different colours are specific to certain other conditions. Hence, even if alert 

a3 is missing or not covered by the operating IDS, the causal link is still 

established using the general specified condition.  

 

 

 

 

 

 

a1 

 

a2 

 

a3 

 

a4 

  

Figure 4.25 Reasoning about missed alerts by generalised capability formalisation. 

3- The main aim of the alert correlation and aggregation function is to build an 

attack graph with minimal data and to reduce the false positive rate. Therefore, 

the process of generating further information, which could result in false 

positives, conflicts with the main concept of alert correlation. Therefore, our 
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reasoning revolves around the attack scenario rather than specific potential 

alerts. In other words, the focus is on discovering the intention of the attack and 

recognizing the intrusion plan.  

4.9.2  Intruder intention recognition 

Intruder intention recognition is the task of inferring intrusion goals from the 

observation of intruder actions or the consequences of these actions [49]. Intrusion 

actions are described in terms of conditions required to achieve actions and the 

conditions provided as a result. Observed actions are ordered temporally to constitute an 

intrusion plan. Hence, intention recognition is a prediction task to identify intrusion 

goals from a partial set of observed actions. Taking the case of certain alerts constituting 

an intrusion plan detected by an IDS, the aim of the system would be to predict future 

incoming alerts along the intrusion path.  

Plan recognition in an intrusion context is different, because attackers try to hide their 

activities and identities [163]. The general form of plan recognition assumes that the 

actor follows a series of complete and ordered sets of actions to achieve a specific goal, 

which is not the case in intrusion behaviour [164]. Adversarial recognition involves 

dynamic actions and goal changes based on identified effects. For example, an attacker 

intending to break into a system for a specific vulnerability may change to another 

intention if a new vulnerability is discovered that may provide more control over the 

attacked system. However, in general the ultimate goal of the attacker can be predicted 

– i.e. full access to the target system, even if the behaviour is dynamic. 

Typically, the prediction process is based on the same notion discussed in the previous 

section. Estimated virtual causal edges and virtual nodes are created based on the pre- 

and post-conditions of the observed actions. However, a large number of attack paths 

can be recognised, building a huge attack graph. The virtual node creation is limited to 
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the first malicious activity detected if some of the related actions have already been 

detected. For instance, scanning behaviour is considered suspicious activity, so it cannot 

be predicted what will come next as there is a large number of paths. However, from the 

target system knowledge the attack paths can be bounded to a lesser number. Therefore 

the algorithm progresses to construct virtual paths until a malicious activity is 

recognised. The determination of the malicious level of an activity is based on the 

priority information provided by the rules. 

However, as mentioned in the previous section, our approach of defining a layered 

structure of capabilities and an attack classification assists in recognizing intrusion 

intention. Identified capabilities associated with malicious actions are used directly to 

express the intrusion goal, while suspicious actions can contribute to the achievement of 

the intrusion goal. For example, an alert has three post-conditions represented in the 

form of capabilities as follows: stored procedure, PHP injection and SQL injection. The 

most generic capability, SQL injection, is used to recognise the intrusion goal and is 

classified as an SQLI attack plan. In this context, the administrator can take a reactive 

response to prevent this attack before it can achieve its final goal, such as modification 

of the database in the target server. Recognition of attack intention is considered as 

identifying that a group of actions is a subset of another group. It is assumed that the 

attacker has completed all attack stages, and that the task is to find any subset of these 

stages that represents a potential attack.  

Definition 4.8 : let a is an attack consisting of a series of candidate steps a1,a2,.....,an, 

and aˈ is an attack consisting a subset a1, a2, ....,am. aˈ, which is to say a subset of a if 

at least one action from aˈ shares the same generic capability of at least one action from 

a and satisfies the temporal, spatial and vulnerability constraints.  
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Example: suppose attack a consists of five aggregated alerts, with the first two alerts 

belonging to scanning behaviour and the remaining alerts relating to an SQLI attempt. 

Another attack, aˈ, consists of three alerts, the first two being a sign of scanning and the 

third classified as an SQLI attack (SQLIA). Both attacks share the same temporal and 

spatial attributes. It can be predicted that aˈ is a subset of a, as they share at least one 

generic capability. However, the disadvantage of this approach is that two different 

attackers not cooperating will be considered one and the same.  

4.10  Conclusion 

The main objective of alert correlation systems is the identification of the multi-stage 

attack which may be discovered from analysis of the IDS alerts. These alerts have 

certain features that can be used to detect causal relationships between temporally 

distributed activities. In this chapter we have presented the core concept of our 

reasoning framework for alert correlation to address the problem of detection of 

coordinated attacks. MARS framework has been detailed involving multiple 

cooperative components. 

We have defined the underlying principles of our framework based on provides/requires 

model. A combined analysis of IDS’s alerts and description of attack classes are used to 

derive the pre- and post- conditions of each received alerts. A scheme to represent our 

knowledge base has been described using a hierarchal and a multilayer classification. 

Vulnerability modelling is used to support alert verification in order to reduce the 

generated attack graph. The generalisation concept is utilised to predict attack intention. 

A detailed description of the algorithms involved has been presented as well as the 

relationships between the system components. Aggregation and graph reduction 

approaches are also used to obtain the resulting attack events in a manageable graph.         
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CHAPTER 5: MARS FRAMEWORK IMPLEMENTATION 

5.1  Introduction 

The previous chapter has presented the fundamental basis of the proposed framework 

for the multi-stage attack recognition system. In this chapter, the MARS framework is 

practically implemented to evaluate the proposed algorithms discussed in Chapter 4. In 

this chapter, the general architecture of the system is described. Multi-stage attack 

recognition as an alert correlation functionality is a multi-task process. Each task is 

performed by a corresponding component in a sequential manner. Moreover, the design 

details are presented to illustrate how the algorithms are elaborated to obtain the results.  

5.2  MARS components 

The objective of the proposed system is to construct an overview of the security status 

of the system under attack. This functionality consists of a sequence of components, 

with each component responsible for a task and the result of each task supplied to the 

next component. Figure 4.1 in the previous chapter presented the design components 

and the communication between these components. Figure 5.1 shows the workflow of 

the system process starting with the receipt of alerts from the IDS sensors and ending 

with the administrative console.  

 
Figure 5.1 System process flow. 
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5.2.1 Alert collection 

Since the main input of the system is the alert stream generated by an IDS sensor, these 

alerts need to be translated to a generic format. The alert collection component can 

receive alerts from different sensors in various formats. The typical format used in this 

respect is the Intrusion Detection Message Exchange Format (IDMEF) [116], which is 

considered the industry standard. In this thesis, multiple sensors to feed the system with 

alerts are not considered due to space limitations and because the implementation of 

such a system is straightforward. Alerts are converted to the standard format and stored 

in the MARS database for effective information search. The standardization is 

performed by an IDS interface (e.g. Snort interface). If a different IDS sensor is used, a 

corresponding interface is required, but the details of this are beyond the scope of this 

thesis.  

In our framework, sensor-specific information is converted into attributes and values 

usable by the framework components. The alert names are taken from Snort database 

which are based on vulnerability standards such as CVE and Bugtraq. Each raw alert is 

translated into a standardized alert format and copied to the appropriate fields. The 

attributes contained in the resulting format are shown in Table 5.1 

Table 5.1 Description of alert attributes. 

Alert attribute Description 

Alert ID A unique ID identifying the alert 

Sensor ID A unique ID identifying the IDS sensor 

Start Time The time when the attack occurs 

End Time The time when the attack ends 

Source IP Address The source IP address of the detected activity 

Source Port The source port of the detected activity 

Destination IP Address The destination IP address of the detected activity 

Destination Port The destination port of the detected activity 

Signature ID A unique ID identifying the IDS signature 

Signature Priority The severity level of the detected signature 
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Protocol Type The protocol name used in the attacking activity 

Master ID The representative alert ID that represents some aggregated alerts 

Infall Event ID The ID of the corresponding generated event 

 

5.2.2  Adding pre- and post-conditions 

The core of the alert correlation mechanism is the mapping of an elementary alert to its 

pre- and post-conditions. This is to discover any possible relationships between the 

alerts in order to identify the attack patterns. Instances of alerts are created in the 

database with their attributes (IP address, port number and timestamp). All alerts from 

the previous component are processed, as they all are candidates for involvement in the 

alert correlation task. 

The collection of encoded capabilities is constructed using the capability knowledge by 

assigning each alert to its pre and post conditions. For example, the alert 123 shown in 

Figure 5.2 as specified in the knowledge base, has two pre conditions i.e. 100 and 101, 

and two post conditions i.e. 200 and 201. 

Sid:123; pre:100(3);pre:101(3);pos:200(3);pos:201(3) 

Figure 5.2An example of the capability knowledge base specification. 

Two lists are created for each condition set with the format: 

Capability ID (IP Address) , for example: 100(192.0.0.1) 

The initialization of capabilities sets ( pre and post conditions) is implemented to make 

the linking between related alerts faster. 

5.2.3  Alert verification 

IDSs cannot determine whether the occurring attack is likely to be successful. Failed 

attacks in typical cases do not provide further information, because the attacker will find 

another vulnerability to exploit. Running services and vulnerability details gathered by 
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scanners such as Nessus [128] are used to filter alerts. Hence, the amount of processed 

alerts will be reduced to achieve more accuracy. The administrator feedback concerning 

certain attacks can be considered in this respect to achieve more accuracy. Furthermore, 

the false positive rate is the main concern of such systems, so alert verification 

contributes to achieving lower rates of this measure.  

When the correlation process receives false positives as input, the quality of the results 

can be degraded significantly. The goal of the alert verification component is to remove 

alerts that do not represent true attacks. Hence the correlation rules are extended with 

the success of the occurring attack. In the implementation of MARS, a passive 

verification technique is used to provide a higher performance. This is based on the 

assumption of being network and hosts states don’t change frequently over short period 

of time. Nessus scanner is used to scan the protected network to collect all required 

information such as: network configuration, host configuration, running services, and 

detected vulnerabilities. These data is stored in the vulnerability knowledge base to be 

applied in cooperation with the correlation algorithm.     

5.2.4  Alert correlation 

This is the component that implements the proposed correlation algorithm based on the 

pre- and post-conditions of alert instances. The correlation function is performed only 

for alerts that satisfy the conditions. Isolated alerts which are not logically connected are 

saved in the primary correlation container for any further observation. 

Alerts with equivalent attributes and occurring in a certain temporal proximity are 

linked if they satisfy the matching between encoded capabilities. Alert a can be 

considered as causing alert for alert b if a occurs before b and a matching between a 

post conditions and b pre conditions. The matching criteria are more relaxed to 
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maximize detection coverage and that using the generalisation concept in attack 

modelling.  Furthermore, there is no restricted time window to correlate pair of alerts in 

contrast to other proposed systems that are defeated easily by slow-and-low attack. 

However, the administrator has the facility to close any detected event when he/she 

makes sure that there is no further related activities e.g. running service is stopped. The 

correlated alerts which are actually the correlated master alerts (representative of 

aggregated alerts) are saved in the correlation collection. 

5.2.5  Graph reduction 

Generally, the process of graph complexity reduction involves removing some 

redundant graph nodes and edges while keeping the structure of the sequences of the 

attacks. The objective of this component is to remove the transitive edges that represent 

duplicates in the correlation process. The hierarchical approach, which involves 

generalization in relationship discovery, can cause additional links between alerts.  

To keep alert processing to minimum, removing redundant edges is performed during 

the initial sage of the correlation process. This is based on the concept that the 

relationship propagate form parent to children nodes.  However, the removal of edges 

does not affect any loss of data, as the logical connections are specified in layers. 

5.2.6  Event generation 

This is the main component that describes the multi-stage intrusion details. Based on the 

output of alert correlation, a new entry is created for each detected event. However, its 

data is updatable based on the aggregation results of both alerts and events. Any 

upcoming event is compared with previous ones to check for any merging opportunity. 

New events are generated as independent event if at least two alerts are correlated. 

Then, the system checks for any attribute matching with the previous event in addition 
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to any detected logical link based on capabilities information. If a matching is detected 

the two events are combined as single event and the previous event is identified as a 

master event. The event remains open until it is closed either by the administrator or a 

defined time window. The interactive administrative tools provided by the system allow 

the administrator to update or close any open events. Table 5.2 shows the information 

included in each event. 

Table 5.2 Events information. 

Field  Description 

Event ID A unique event identifier 

Start time The earliest start time among involved alerts  

End time The latest end time among involved alerts 

Title The event title constructed by the names of the involved attacks 

Alert count Number of involved alerts 

Priority Importance level of the event based on the severity of involved alerts 

Closed To identify if the event has been identified and closed 

Master ID The ID of the master event if this event has been combined with other event 

 

5.2.7  Alert aggregation 

The alert aggregator component maintains the resulting correlated alerts to minimise the 

redundancy. If a group of alerts share the same source and attack class, it is practical to 

keep only a representative alert and remove any duplicates. This task is done after 

correlation so as not to overload the system by aggregating isolated alerts. The main 

task of this component is to remove redundancy in graph nodes which are representing 

the same attack. There are two levels of aggregation: one is based on the attack 

signature and the other is to extend the aggregation to include all alerts classified as the 

same attack types.  

The aggregation task is performed for all correlated alerts by assigning the first detected 

alert as a master alert. The links between the other alerts (the aggregated ones) are 
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replaced links to the master alert. The start and the end times of the master alert are 

changed to become the earliest and latest times among the aggregated alerts.  However, 

no data will be lost as all the information is saved in the database and the disaggregation 

function is available.   

5.2.8  Attack scenario construction 

The purpose of the attack scenario construction component is to identify high level 

attack patterns that are composed of several individual attacks. For example, consider an 

intruder who first scans a victim host, then breaks into a user account on that host, and 

finally escalates privileges to become the root user. The three steps should be identified 

as belonging to one attack scenario. The attack scenarios are generated as graphs 

composed of nodes and edges: nodes represent the attack name and edges represent the 

logical relationships. The scenario graph is displayed as a summary of the attacker 

activities after performing aggregation and graph reduction to remove redundancy.  

Hence, the final goal of the developed system is to recognise attack stages connected in 

a temporal sequence. The results of event generation and aggregation are expressed in 

an attack graph to describe the attack scenario. An overview of the attack situation is 

displayed for the administrator in the form of an interactive graph. The detailed 

information of each entity in the attack graph can be navigated by the provided 

administrative tools. 

5.2.9  Interactive tools 

The interactive administrative tools are used to provide a dynamic platform. The attack 

scenario is presented as a graph of nodes. To save space, the nodes only show the alert 

name, and other details can be retrieved using the available tools. Reports and results of 

statistical analyses can be also accessed using these tools. Examples of some functions 

can be executed through this component: 
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- Close the open events and that after the administrator makes sure that these events 

will not be used any longer to be combined with other events. This mechanism is 

more reliable than using time windows in addition that the multistage attack 

activities are not frequent to overwhelm the administrator with huge amount of 

administrative tasks. 

- Support the knowledge base with the administrator experience. For example, 

some new unknown attacks which are not identified in the knowledge base can be 

added as temporary or permanent rules.  

- Provide the facility to combine similar events which are not aggregated by the 

system. For example, some attackers try different attack attempts looking for 

some holes in the victim machine.  

- Block IP addresses and send notification about suspicious activities. 

5.3  MARS architecture 

This system is composed of four major sub-systems: a MARS server, a MARS client, 

sensor interfaces (e.g. Snort or Nessus) and a MARS database, as shown in Figure 5.3.  

 
Figure 5.3 MARS architecture. 
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These sub-systems can be installed on different machines to take advantage of 

distribution. It has been observed in Chapter 3 the limitations of the performance of 

IDSs, as they require plenty of computational resources. Hence, the MARS system has 

been designed as a stand-alone system running separately from the IDS to avoid any 

impact on the IDS performance. In addition, the database storage to record all alerts 

provides the system with the ability to function as a forensic tool. The server is running 

as a daemon or a service in the background. 

The diagram also shows the communications between the sub-systems. When the 

system starts, two in-memory knowledge bases are created: the capabilities knowledge 

obtained from the attack-defined knowledge, and the vulnerability knowledge supplied 

by the vulnerability scanners, such as Nessus. These details are kept in-memory to allow 

for faster communication and also because they are used frequently. The whole system 

is implemented as an object-oriented design to provide modularity and dynamic data-

structure instantiation. We have made use of C++ programming language to manipulate 

its efficiency.  

The MARS database is the core system storage where the received alerts are handled 

and stored. The correlation, aggregation and event generation results are also saved in 

the database. The interaction with the database is kept to the minimum, as we have 

manipulated the data structures provided by C++ for memory execution. Indexing is 

used for faster access and SQL queries are hardcoded using C++ commands to improve 

execution. The structure of the main database tables and related fields is shown in 

Figure 5.4. 
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Figure.5.4  Main database tables. 

- RulesCollection is a container of all available Snort VRT signatures, bleeding edge 

signatures, community signatures and our developed signatures. Signature ID and 

signature name is a mapping of the information in the original Snort signatures. Each 

signature has a priority field for assigning the degree of severity of the detected attack. 
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The main purpose of the rules collection is the classification of each received alert based 

on the techniques described in Chapter 4. The intrusion category details play a main role 

in specifying the attack scenario and in predicting the possible undetected behaviour. 

Signature direction denotes attack direction, where 0: source address, 1: destination 

address, and 2: bidirectional.  

- InfallEventCollection contains the history of all detected events. An initial record is 

created once a new event is observed. The title of the event is constructed from the 

sequence of intrusion categories. The event remains open for any further joining alert 

until it is closed based on either administrative action or a configurable time period. To 

detect slow-and-low attacks, this period of time can be maximised without affecting the 

system's performance.  

- The final correlation results are stored in the CorrelatedAlerts container, which holds a 

record for each correlated and aggregated events. If the alert belongs to combined 

events, the details of the master and slave events are recorded. Any further aggregation 

will be presented in the AggrCorrelatedAlerts container.  

MARS Client is a sub-system that provides tools offering interactive administrative 

tasks. The graphical user interface is implemented here using the aid of commercial 

tools, namely DevExpress [165], to save on implementation time. Once an event is 

detected, it is directly displayed and the administrator can navigate to obtain detailed 

information. Sensor interfaces are adapters providing communication between the 

MARS system and other tools. For instance, the Snort interface performs alert 

normalization to be compatible with the database formats. A typical deployment of 

these sensors is on different machines.  
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The incoming alerts are directed to the system memory and replicated to the storage 

database. The data format is mostly similar to IDMEF in addition to a few fields 

updated by the system during correlation analysis. For example, the aggregation process 

assigns a master alert for each aggregated group, the MasterID field will be updated 

each time the algorithm executes. Appendix II shows the graphical interface of the 

MARS server and client with some attack graph examples. 

5.4  Real-time and near real-time implementation  

As discussed in Chapter 2, there are two main algorithms for building an attack graph 

for alert correlation 1) scenario graph algorithms that require complete descriptions of 

all potential combinations of attacks. These approaches suit real-time application, 

though any missing information or different variations of scenarios received will cause 

the correlation function to fail; 2) the other algorithms, of which ours is one, are based 

on an attack type graph such as approaches to model cause and effect conditions, 

vulnerabilities and host information. These approaches are promising as they are more 

dynamic and tolerant of missing descriptions. However, they are mainly implemented in 

offline designs because of high computational requirements. Some efforts have been 

made to implement real-time correlation but most of them rely on a time sliding 

window, which consequently renders the system vulnerable to ―slow-and-low‖ or alert 

flooding attacks.  

Typically, event-driven applications are designed using either relational databases or 

real-time messaging systems [166]. The former approaches are cost-effective and 

provide deep analysis through data history without deadline constraints, but they mostly 

operate in an offline fashion. The latter approaches are capable of functioning in real-
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time processing but experience difficulties in keeping up with inherent complexities in 

correlation systems. 

The main advantage of real-time implementation is the instant detection of attack 

scenarios and a potentially rapid reaction. The disadvantage of these systems is the 

processing of alert streams, which requires the in-memory storage maintenance of a 

large amount of states. In addition, acquired alert data need to be stable for long enough 

so as to obtain an accurate correlation. And that requires a maximum time sliding 

window that is definite even though it is considered large enough. On the other hand, 

offline implementation lacks fast response, which could potentially lead to undetected 

scenarios in the right time to avoid system corruption. However, the usage of a database 

allows for the storage of a huge amount of data, reliable data reduction, dynamic 

updates, and definitely more chance of a comprehensive analysis to achieve higher 

accuracy. 

Hence, we have made a trade-off between responsiveness and reliability by relaxing the 

real-time constraints and restricting the offline requirements. We have defined a small 

constant t seconds, e.g. 10 seconds, as the required interval in which to wait until a very 

small batch of alerts arrive to be processed. The system executes its functionalities on 

the database periodically and this offers a more thorough analysis. This near real-time 

mechanism is to avoid performance problems and the limited available data in real-time 

systems.  

The proposed mechanism is based on the following assumptions: 

1- Even though IDSs generate thousands of alerts per day, the serious attack 

activities are slow-and-low. Persistent attackers will not cause a large noise so as 

avoid notice by the operators. The conducted steps are spaced out over long 

intervals of days or even weeks. Sometimes, in order to defeat time sliding 
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windows in real-time systems, attackers flood the system with huge amounts of 

alerts hiding the real attack. Besides, all techniques used to prevent this type of 

behaviour perform a memory erasure, which certainly causes data loss.  

2- Typically, for the analysis systems to be more accurate, they must be fed by a 

maximum amount of information. Database facilities provide a large amount of 

stored data.  

3- The incremental aggregation mechanism and the database maintenance to ignore 

any redundant and already used data have minimised the performance penalty. 

Every time the system processes a small group of alerts, these are only analyzed 

using the results of the previous stages, without processing all the information in 

the database. 

4- Alert correlation systems are implemented as complementary functions to the 

IDS. Hence, the delay between an alert being reported by the IDS and its 

analysis by the alert correlation system must be small. Extending this delay with 

a small time slot in order to obtain a precise view will not affect the whole 

process. 

5- Alert correlation is not a single task, but a multi-stage functionality: correlation, 

alert aggregation, event aggregation and graph reduction. This complexity 

requires flexible memory and data storage. 

We have implemented a near real-time operation for the proposed alert correlation 

system using a very small time for periodic database access. This will not affect the 

system performance, as shown in the next chapter.  

5.5  Implicit correlation 

Implicit correlation of alerts is used when data analysis brings out some mapping 

between alerts which are indirectly correlated. This approach is mainly based on 
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observing groups of alerts and extracts implicit correlation between them. Other works 

focus on creating an extra layer of relationships between capabilities which can extend 

the algorithm complexity. The multilayer attack classification mechanism refers each 

alert to different layers of attack categories. The alerts share the same generic attack 

class are correlated implicitly to bridge the gap which can be caused by missing alerts. 

However, the increase in number of the graph edges can be reduced using graph 

reduction techniques.  

The implicit correlation is also used in our implementation for performance purposes. 

The aggregation mechanism is used to eliminate the number of redundant alerts as well 

as to reduce the search complexity. The representative alert is treated on behalf of the 

other aggregated alerts in the database. 

The requires/provides model [121] is primarily based on semi-explicit correlation 

between logical attack conditions, unlike scenario-based approaches where logical and 

temporal relations are hardcoded explicitly. Thus, the semi-explicit mechanism is 

extended to consider implicit correlations between attacks. Relaxing the attack 

definitions from specific to general provides the facility for implicit correlation, as 

shown in Chapter 4. Moreover, we assume that attack conditions propagate from an 

attack to others that classified in the same intrusion category. As discussed in the 

previous chapter, graph reduction techniques are not intended to drop information; 

instead, they are intended to make use of implicit connections.  

 a b c d 

time 

 
Figure 5.5  Example of implicit correlation. 
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Consider the four alerts shown in Figure 5.5, which are related to the same scenario 

detected in a temporal order. Alert a has implicit logical connections with alerts c and 

d. There is no need to create a link between c, d and a, as the attack conditions 

propagate from a to c, d and through to b. However, if c is missed, a link is created 

between d and b. Section 4.4 of Chapter 4 shows how the knowledge representation 

mechanism produces such a relationship. Most generic capabilities used to create a 

causal relation between two alerts are not supposed to be correlated directly in the same 

way as b and d. Moreover, the aggregation algorithm provides alert representatives for 

implicit correlations, and hence produces less computational complexity. In [33], alerts 

are classified first, hence more generic attack descriptions are produced, and then if two 

classes are correlated, all their elements can be correlated. This mechanism can increase 

the false positive rate and consume the system's resources. The capabilities themselves 

are classified to provide this generalization concept. 

5.6  Conclusion 

This chapter describes the development and the implementation details of our MARS 

framework. A system comprising several components has been developed to provide an 

evaluation for the proposed algorithms in chapter 4. The MARS architecture has been 

presented involving the MARS server, the MARS client and the administrator 

interactive tools. The system has been implemented to work as a near real time system 

providing a thoroughly analysis and at the same time responding with a short latency. 

We have also discussed our method of the implicit correlation to keep the process of the 

alerts to the minimum.      
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CHAPTER 6: EXPERIMENTS AND EVALUATION 

6.1   Introduction 

The implementation and design of our framework have been illustrated in the previous 

chapter. To test and validate our approach, we have implemented various experiments in 

a variety of test situations. A test-bench has been set up to examine system response and 

to measure the accuracy and performance of the algorithms and their underlying 

modules. A series of experiments have been conducted starting with DARPA2000, a 

benchmark for testing alert correlation approaches. Then a dataset collected from a 

controlled environment is used to measure system functionality. We have demonstrated 

the system's detection accuracy using two of the most common attacks in cyber crimes: 

SQLIA and Botnet attacks. And finally, a performance evaluation of our system in high 

speed networks has been conducted.  

6.2  Evaluation methodology 

It has been discussed in Chapter 3 the evaluation of IDS issues. The evaluation of alert 

correlation systems shares the same difficulties, as these are complement systems to 

IDS.  

- Detection Coverage: Alert correlation systems rely entirely on the coverage 

detection capability of IDSs. Incomplete signature descriptions will lead to 

undetected activities. In addition, coverage of knowledge-base information 

affects the correlation process. Hence, it is essential to have attack signatures 

and correlation rules to achieve maximum coverage. However, correlation 

systems are more flexible in terms of the impact of missed descriptions. In 

contrast, if the IDS misses an alert, there is no way to recover it. If generalized 

techniques are considered, they usually result in a high rate of false positives in 
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IDSs. However, in alert correlation systems, generalized techniques maximize 

the coverage of the correlation process with minimum impact of false positive 

rates.  

- False positives: An essential requirement of alert correlation systems is to 

reduce false positive rates, as these affect IDS function. The false positives 

generated by alert correlation are considered inconsistent and will be ignored. 

The impact of this rate is less, as the construction of attack scenarios requires 

only real persistent attacks. Some extra edges will be attached to the resulting 

graph due to the broad knowledge description. However, the level of consistency 

of these relations is low and only few nodes are involved along the attack path.  

- Detection Accuracy: This measure indicates the detection rate of the true attack. 

It is required to expand the detection accuracy rate while false positive rates are 

kept to a minimum.  

- Performance in high speed networks: The separation of the alert correlation 

system from the IDS distributes the required processing power and offers higher 

performance. Some measures are considered in this respect, such as CPU usage 

and memory requirements. In typical deployment, the functions that have to be 

performed by the correlation system require less than the IDS itself if the IDS 

software implementation is considered. In real-time systems, the memory 

limitation is the main concern, though near real-time implementation provides 

higher performance. 

The typical IDS evaluation methodology [62, 132, 167, 168] is to run the system under 

test against a labelled dataset. The results obtained are analysed and evaluation 

measures are calculated. In most evaluation approaches, the aim is to accomplish a high 

rate of accuracy (soundness) and broader coverage (completeness). Soundness is the 
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capability of distinguishing between legitimate and attack traffic. Completeness is the 

ability to achieve maximum detection coverage to include attacks and their variations. 

In an alert correlation context, accuracy is measured using the system's ability to 

provide a precise recognition of causal relationships between alerts. The completeness 

criterion is determined by assessing the maximum correlation rate that the system can 

achieve. In other words, the aim is to detect diversity of complex multi-stage attacks 

with a minimum level of false positives rates.  

In this respect, four types of criteria are considered to evaluate our alert correlation 

system: 

 Functional characteristics: to evaluate the basic functionality to perform the 

correlation objective.  

 Accuracy and completeness characteristics: to evaluate the quality of the 

correlation function. 

 Reduction characteristics: to evaluate the system's capability of eliminating data 

redundancies.  

 Performance characteristics: to evaluate system efficiency, including system 

capacity under different traffic conditions and resource consumption (CPU, 

memory, disk utilization).  

6.3  Evaluation metrics 

In signal processing, Receiver Operating Characteristics (ROC) [169] curves are in use 

to assess the quality of a receiver. Similarly, ROC curves have been used to evaluate 

IDSs, such as [170, 171]. The typical metrics used to illustrate IDS assessment are 

detection rate (the average of detected actions to the observable ones) and the false 

positive rate (1-detection rate). For signature-based IDSs as non-parametric IDSs, a 
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single point is used to represent the ROC instead of a curve. Furthermore, IDS measures 

are non-binary, in contrast with signal processing metrics. For this reason, more generic 

metrics are considered to assess our correlation system, which are inspired from 

Information Retrieval (IR) systems [172]. The four measures used are: 

 True positives (TP): denotes the correctly correlated alerts. 

 True negatives (TN): denotes the correctly uncorrelated alerts. 

 False positives (FP): denotes the incorrectly correlated alerts. 

 False negatives (FN): denotes the incorrectly uncorrelated alerts. 

In IR, the confusion matrix is used to measure precision and recall rate. In an alert 

correlation context, precision is used to measure the soundness of the results and recall 

is used to measure the completeness of the results. Figure 6.1 shows the measurement 

terms applied to the correlation problem. 

 

True Positives (TP) 

Correctly correlated 

alert rates 
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Incorrectly correlated 

alert rates  

 

False Negatives (FN) 
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Figure 6.1. Confusion matrix. 

The recall rate denotes the proportion of TP (correctly correlated alerts) to the total 

number of TP and FN (incorrectly uncorrelated alerts). 

The true positive rate is the correctly correlated alert rate which is denoted by the recall 

rate, and the optimal measure is 100%. 
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The precision rate denotes the proportion of TP (correctly correlated alerts) to the total 

number of TP and FP (incorrectly correlated alerts). 

          
  

     
 

Hence, the true alerts correlated by the system (assigned to be related but could be not 

related) are the total of TP and FP. On the other hand, the related alerts (known to be 

related and must be correlated) are the total of TP and FN. The optimal result is to 

achieve a higher recall rate with a higher precision rate, which means maximum 

precision and detection coverage. Figure 6.2 illustrates the relationships between the 

confusion matrix measurements. 
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Figure 6.2. Relations between the confusion matrix measures. 

The overall system accuracy can be identified by calculating the percentage of correct 

results (true positives and true negatives) to the total of all identified results. 

 

         
     

           
 

6.4   Datasets 

It has been identified that the unavailability of enough benchmarking datasets is the 

major difficulty in evaluating IDSs in general [132]. However, there are some available 
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datasets have been used to evaluate alert correlation systems, such as DARPA2000 

[161], Defcon [54] and honeypot datasets. However, the DARPA2000 dataset is still a 

reference point in the evaluation process for the comparison of results. The DARPA 

dataset was originally created to assess IDS sensors and is not designed for alert 

correlation systems. Even though it has received a high volume of criticism [22] for lack 

of realism of background traffic, being old and not reflecting the real attack scenarios, it 

is the only well-documented available dataset. The Defcon dataset, a network capture of 

a competition for hackers, is also commonly used to assess the correlation process. 

However, it is different from real-world traffic because it contains a huge volume of 

attack traffic only and with very limited IP addresses. The offline nature of such 

recorded traces creates some problems: first, the sensor alerts are not included and we 

have to use a certain sensor to regenerate the actual alerts, which may be different from 

others based on the sensor coverage. Second, the verification process is typically 

obtained from the status of the target at the attack time, and that has to be done 

manually if using capture files. Furthermore, most of these traces are synthetically 

created and lack a mix of the normal and anomalous traffic existing in real-life traffic.  

On the other hand, the real traces recorded from real-life networks lack necessary 

ground truth. And the attack traffic in these data does not contain enough activities to 

represent successful multi-stage attacks [173]. In the main, datasets can be collected 

using five different methods: 

1- A purely attack dataset with no background traffic, which is very simple to 

produce and is only used for basic validation of detection functionalities. 

2- A dataset consisting of real background traffic obtained from production 

networks and synthetic attacks, which is similar to real-life traffic to some 
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extent. However, it is not fully controlled, has privacy concerns and is not for 

public use. 

3- A dataset similar to 2- above but where the background traffic is sanitised to 

provide semi-real life traffic. However, traffic data sanitation is a cumbersome 

and error-prone task.  

4- An entirely pure real dataset with real background traffic and real attacks 

captured from a production network environment. This method requires 

comprehensive analysis and data labelling, which is difficult, in addition to 

privacy concerns and being unrestrained dataset. Moreover, collected attacks are 

not only insufficient but require lengthy observation, which makes analysis 

difficult.  

5- A dataset with both synthetic attacks and background traffic. The main 

advantage of this method is that the test environment is totally controlled and 

there is no potential for non-identified variables. Consequently, the results 

attained are more reliable and accurate. The drawbacks of this mechanism are 

that it is very costly because various pieces of hardware and software as well as 

services have to be installed, and the fact that it naturally does not reflect real-

life traffic.  

Our evaluation methodology is to use different datasets as follows: 

- Datasets traces from .pcap files using the same timestamp for comparison 

purposes. 

- Datasets obtained from a controlled setup to simulate real-life traffic. 

6.5  DARPA 2000 datasets 

DARPA 2000 datasets, including LLDDOS 1.0 and LLDDOS 2.0 [55], are often used 
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to evaluate IDSs and alert correlation systems. They consist of two multi-stage attack 

scenarios to launch Distributed Denial of Service attacks (DDoS). The evaluation goal 

is to test the effectiveness of our approach to recognize attack scenarios, to correctly 

correlate the alerts, and to minimize the false positives. This experiment is carried out 

mainly for functional testing to see how the system reconstructs attack stages. A 

reduction test is also studied in this respect; however, the background traffic in this 

dataset is limited. We have used these datasets for their available ground truth to assess 

our correlation approach and to compare our results with those of other researchers. 

These datasets do not contain the actual alerts from the IDS sensors, and hence we have 

generated them using a Snort sensor. The resulting alerts can be slightly different from 

others, but the generalized steps are similar. 

Both DARPA 2000 datasets contains attacks conducted in stages. The attacker first 

probes the target system to identify the live machines, then tries to breaks into the 

system, then installs the DDoS software, and finally launches the DDoS attack to an off-

side network. The difference between the two datasets is that the LLDDOS2.0 includes 

more sophisticated stages and stealthy attacks. In LLDDOS 2.0 a HINFO query has 

been used instead of ICMP PING for scanning live hosts. We have tested our methods 

on both, using the traces of the DMZ and the INSIDE network. We have used a player 

[174] to replay the .pcap files using the same delay between packets in the original 

traces. Snort 2.8.3, with maximum coverage configuration, has been used to generate 

elementary alerts that are saved in an MSSQL database connected to the MARS engine. 

6.5.1  Dataset description 

To evaluate the basic functionality of our systems, we replay the individual .pcap files 

corresponding to each attack phase as given by the dataset documentation. These .pcap 

files are replayed in a series based on their temporal order to be analysed by the MARS 
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engine. The main file containing background traffic is also replayed to obtain other 

necessary measurements. However, different researchers use different IDS sensors or 

different configurations of the same sensor to generate alerts from these datasets. In 

addition, the actual alerts collected during the simulation in the DARPA2000 dataset are 

not recorded. For this reason, we had to present the detailed description of the received 

alerts. Moreover, to understand how the correlation method identifies the causal 

relationships between Snort’s alerts, the related alerts generated by Snort during the five 

phases of the attack of INSIDE1.0 and INSIDE2.0 are summarized in Table 6.1. Each 

phase has triggered certain groups of alerts according to the attacker’s activities. In 

addition, Table 6.2 gives some traffic statistics of the four dataset captures. As 

mentioned in early chapters of this thesis, the performance of any alert correlation 

system relies entirely on the underlying IDS performance. In other words, if the IDS 

sensor misses some attacks, the correlation system will consequently miss the attack. 

However, missed attacks can be predicted implicitly by our generalized knowledge 

presented in Chapter 4. 

In Phase 1, the attacker performed ICMP PING from a single outside IP address 

(202.77.162.213) to multiple class C subnets to discover live hosts in the target network 

and 10 hosts were live. In our knowledge-base, the alerts ICMP PING and ICMP Echo 

Replay have no pre-conditions, but they have a post-condition of Disclosure of a Live 

Host. Therefore, when MARS detects these two alerts, it creates a potential relation 

edge with corresponding attributes. And any other alert has a pre-condition of 

Disclosure of a Live Host targeting the same IP address considering the time 

constraints; it will therefore be correlated to the first detected alert. 
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Table 6.1 Description of the attack. 
Phase Dataset Alert name # 

Phase 1: Probing 

INSIDE1.0 

 

ICMP PING 

ICMP Echo Reply 

20 

20 

INSIDE2.0 No alerts  

Phase 2: 
Service mapping 

INSIDE1.0 

 

RPC portmap sadmind request UDP 

RPC portmap Solaris sadmind port query 

udp request 

RPC sadmind UDP PING 

ICMP Destination Unreachable Port 

Unreachable 

76 

76 

 

3 

72 

INSIDE2.0 

RPC portmap sadmind request UDP 

RPC portmap Solaris sadmind port query 

udp request 

RPC sadmind query with root credentials 

attempt UDP 

RPC sadmind UDP 

NETMGT_PROC_SERVICE 

CLIENT_DOMAIN overflow attempt 

2 

4 

 

2 

 

 

2 

 

2 

Phase 3: 
Break-ins 

INSIDE1.0 

 

RPC portmap Solaris sadmind port query 

udp request 

RPC portmap sadmind request UDP 

RPC sadmind UDP 

NETMGT_PROC_SERVICE 

CLIENT_DOMAIN overflow attempt 

RPC sadmind query with root credentials 

attempt UDP 

INFO TELNET Access 

28 

 

14 

14 

 

 

14 

 

4 

INSIDE2.0 No alerts  

Phase 4: 
Installation of 

mainstream software 

INSIDE1.0 
RSERVICES rsh root 8 

INSIDE2.0 
The same as in Phase 2 with different 

source IP address 

 

Phase 5: 

Launching DDoS 

attack 

INSIDE1.0 

SNMP AgentX/tcp request 

BAD-TRAFFIC tcp port 0 traffic 

SNMP trap tcp 

SNMP request tcp 

4 

3 

1 

1 

INSIDE2.0 
ICMP Destination Unreachable Port 

Unreachable 

1 

 

Table 6.2 DARPA2000 dataset statistics. 

Dataset INSIDE 1.0 DMZ 1.0 INSIDE 2.0 DMZ 2.0 

# Snort Alerts 369 1262 25 12 

#Alerts types 15 14 6 6 

Protocol distribution TCP 9% 5% 9% 17% 

UDP 61% 33% 91% 83% 

ICMP 30% 62% 0% 0% 

# Src IP addresses 16 20 3 2 

# Dest IP addresses 22 769 3 2 

 

In Phase 2, the hosts that are identified they are live, they are port mapped to determine 

the running services. The attacker looks for a sadmind daemon running on Solaris live 

hosts. Three hosts are running a sadmind service (172.16.115.20, 172.16.112.50, and 

172.16.112.10), which are potential targets, creating a number of alerts by Snort. 
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According to our knowledge-base, these alerts have a pre-condition of Disclosure of a 

Live Host capability and a post-condition of Disclosure of running service capability 

sharing the same destination IP addresses of the alerts detected in Phase 1 and with later 

timestamps. Hence, a correlation has been detected between these alerts and the two 

alerts reported in Phase 1. Other activities associated with the discovery of the port 

number connected to the sadmind service generate other alerts, which also are 

correlated. 

In Phase 3, the attacker has already gained the knowledge of the running sadmind 

daemons, and vulnerabilities trials are performed in order to break into the system. 

Remote-to-root attempts against each identified host are executed to cause buffer 

overflow attacks. The detected alerts are shown in Table 6.1, including overflow 

attempts and queries with root credentials. These alerts are consequences of the 

disclosure of a running service and associated port number. The impacts of these alerts 

on the target machine are potential System Access, Remote Access and Admin Access. 

The attacker then tries to verify the level of achieved access using TELNET ACCESS, 

creating the corresponding response from the IDS sensor. 

In Phase 4, a .rhosts file is installed in /tmp directory in order to start up the mstream-

sol software on the victim hosts.  

In Phase 5, the attacker manually launches the DDoS using TELNET login on the 

victim machines running the master daemons of the mstream software. These activities 

are not detected by the IDS sensor; however, they can be detected as bad traffic 

behaviour if Snort is configured to do so. All related packets have spoofed source IP 

addresses using random TCP ports on the victim machines.  
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LLDDOS2.0 is also a DDoS multi-stage attack using a stealthy behaviour to avoid 

detection. Instead of ICMP PING, a DNS HINFO query is used to find out which hosts 

are Solaris. HINFO records contain information regarding running OSs, only sadmind 

query is performed, and those hosts are reported as Solaris. As shown in Table 6.1, there 

are undetected activities in Phase 1. In Phase 2, the same alerts detected in INSIDE1.0 

are detected, including port mapping and overflow attempts. The victim machine 

(172.16.115.20) is broken into and is used to launch the attack. For this reason, it is not 

necessary to consider DMZ capture. In LLDDOS1.0, the attack is accomplished from 

outside the network, so DMZ and INSIDE captures should be considered.  

We have conducted our test to evaluate the functionality of MARS by replaying the 

individual .pcap files of each phase. Then, the whole traffic capture is used in order to 

evaluate the reduction functionality. 

6.5.2 Functional test 

The five .pcap files are replayed in a temporal order using the same timestamps to 

simulate the real attack. An interval of approximately three hours of traffic is analyzed 

by Snort using our test-bench, and alerts are sent to the MARS server where the 

database is located. The detected events evolve over time instead of by batch analysis. 

The results obtained are shown in Table 6.3, both with and without the alert verification 

mechanism.  

Table 6.3 Functional test results, DE: detected events, RA: related alerts, CRBAG: Correlation 

Rate Before Aggregation, CRAAG: Correlation Rate After Aggregation. 

Dataset Alert verification disabled Alert verification enabled 

DE RA CRBAG CRAAG DE RA CRBAG CRAAG 

INSIDE1.0 10 325 2164 84 3 91 661 48 

DMZ1.0 18 984 1464 138 3 91 439 52 

INSIDE2.0 2 16 24 16 2 16 16 16 

DMZ2.0 1 8 12 8 1 8 8 12 
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The number of detected events are shown in Figure 6.3, and it is clear that this number 

is reduced using the verification techniques. Only three events associated with 

successful attacks are identified. For the datasets INSIDE2.0 and DMZ2.0, there is no 

reduction because the attacker has only targeted Solaris systems.  

                               Figure.6.3 Detected events in the functional test. 

- INSIDE1.0: the system has detected a total of 10 events evolved over time. All events 

are related to the actual attack; however, only three events are related to successful 

attacks associated with the IP addresses (172.16.112.10, 172.16.112.50, and 

172.16.115.20). This is determined by the vulnerability model to verify the potential of 

successful attacks. The three events are similar in stages as the attacker 

(202.77.162.213) has performed the same sequence of attack attempts, as shown in 

Figure 6.4. 
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Figure 6.4. Attack graph of the three detected events. 

It should be noted that the alerts displayed in Figure 6.4 are aggregated alerts based on 

our aggregation algorithm discussed in Chapter 4. Phase 5 is not detected because Snort 

itself does not detect any activity explicitly said to be a DDoS attack. However, if Snort 

decoders are enabled, 502 alerts classified as bad traffic are detected, which could be a 

sign of DDoS behaviour. It is not reliable to correlate these alerts, as spoofed IP 

addresses are used and this will have a negative impact on system performance, 

producing a high volume of false positives in real life. Detecting the installation of 

suspicious software in a protected network is more important than detecting actual 

DDoS activities because the attack source will be under control in its initial stages. 

Certain other events are detected if the alert verification is disabled reflecting 

unsuccessful attacks, such as the host (172.16.115.87) shown in Figure 6.5. The attacker 

has carried out the scanning stage and then a sadmind service discovery has been 

performed; however, the target host has not responded and the attack attempt is ended 

after two stages. This behaviour is considered a medium-priority event by MARS, as the 

target host is not running a sadmind service. 
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Figure 6.5. Attack graph of non-critical events(INSIDE1.0) detected by MARS. 

- INSIDE2.0: The nature of the LLDDOS2.0 multi-stage attack is to be stealthy, 

reducing the noise amount over the target network. MARS has detected two events 

associated with the hosts (172.16.115.20, and 172.16.112.50) and there is no 

scanning stage. Only eight alerts (five aggregated alerts) are involved in each event 

and three out of five stages are detected, as shown in Figure 6.6. 

 
Figure 6.6. Attack graph of the events detected in INSIDE.2.0. 

The alert verification technique does not reduce the number of detected events, as the 

attacker only targets Solaris hosts where a sadmind daemon is running. 

6.5.3 Accuracy reduction evaluation 

In our initial work [175], certain experiments with DARPA 2000 datasets have been 

performed to comparatively validate our approach. The goal of this initial evaluation 

was to test the effectiveness of MARS in recognizing attack scenarios, correctly 

correlating alerts, and minimizing false positives. In addition to our system, the system 



175 
 

developed by [35] (TIAA) is used for comparative evaluation. Table 6.4 shows the 

results obtained, and a few main points can be summarized: 

- Snort has not detected the behaviour of launching the DDoS attack itself; 

however, the sequence of the attack has been detected.  

- Certain different alerts are related to the same attack, such as sadmind daemon 

attempts. However, these alerts are not ignored because the correlation system should 

identify such cases. 

- In the second scenario of the attack, a large amount of behaviour went undetected 

due to the stealthy nature of the attack. However, the correlation system has to 

recognize the security situation by discovering the causal relationships between alerts. 

It is clear from Table 6.4 that the rate of both false positives and false negatives in 

LLDDOS1.0 have been improved. However, the unsatisfactory results from the 

experiment of the second dataset LLDDOS2.0 are similar to the TIAA system due to the 

inability of Snort to detect all the attack activities. To measure the effectiveness of the 

proposed system, the false positives and the false negatives are calculated according to 

the definition of the confusion matrix presented in section 6.2. 

Table 6.4 Comparative results to evaluate MARS effectiveness. 
 LLDDOS1.0 LLDDOS2.0 

 DMZ Inside DMZ Inside 

Elementary alerts 3684 720 1214 199 

Related alerts  1262 369 12 25 

# correlated alerts (relevant) 206 182 8 7 

# correlated alerts (detected)  
TIAA 275 235 13 11 

MARS 223 198 11 11 

# correctly correlated alerts 

(TP) 

TIAA 174 155 3 6 

MARS 184 165 3 6 

# Incorrectly uncorrelated 

alerts (FN) 

TIAA 32 27 5 1 

MARS 22 17 5 1 

False positive rate 
TIAA 25.1% 22.5% 38.5% 36.4% 

MARS 8.25% 8.1% 27.3% 36.4% 

False negative rate 
TIAA 15.5% 14.8% 62.5% 14.3% 

MARS 10.7% 7.23% 62.5% 14.3% 
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The graph in Figure 6.7 shows the main evaluation metrics, which are the false positives 

and false negatives of both systems. It is clear that MARS achieved better performance 

in all dataset traces. However, the high level of false positives for DMZ2.0 traces is 

justifiable because most of the attack activities have been conducted from inside the 

local network. The outside attacker has broken into a vulnerable host and continued 

attacking other hosts locally. 

 
                       Figure.6.7 The main evaluation metrics of MARS and TIAA. 

In the other previous works, the accuracy measurements are mainly based on the 

number of correlated alerts regardless of how many correlation instances are associated 

with the same alert. For example, there is no difference between two situations when 

alert a is correlated with alert b, and the same alert a is correlated three times with b, c 

and d. This case in our evaluation is considered to provide a more accurate assessment. 

To achieve more accuracy, the number of relationships between alerts is considered 

instead of only the number of correlated alerts. Providing a ground truth for a dataset 

based on correlation instances is not an easy task and can be very difficult for huge 
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datasets. Our system has been evaluated using this mechanism on the DARPA dataset 

because of extensive data description available. In addition, the dataset has been 

comprehensively analyzed, assigning each single packet to its associated behaviour. 

This has been achieved by a manual effort in addition to automatic analysis using 

certain tools, such as BASE [176]. For each alert received from the Snort sensor, all 

possible correlation chances are computed and are categorized according to whether or 

not they are related to the main scenario. It should be noted that this process focused on 

the four stages of the DDoS attack detected by the sensor.  

The reduction functionality is vital in alert correlation systems in order to measure the 

system's capability to minimize alert redundancy and false alarm ratios. For this reason, 

experiments have been implemented on the LLDDOS traffic .pcap files using whole 

recorded packets including background traffic. This methodology gives us a broader 

evaluation context beyond detection functionality. Accuracy metrics are calculated to 

determine recall, precision and accuracy rates. Our analysis results for the DARPA 

dataset are summarized in Table 6.5  
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 Alert verification disabled  Alert verification enabled 

 LLDOS1.0 LLDOS2.0 LLDOS1.0 LLDOS2.0 

 DMZ Inside DMZ Inside DMZ Inside DMZ Inside 

# elementary alerts 3684 720 1214 199 3684 720 1214 199 

# related alerts  1262 369 12 25 131 171 12 16 

Correlation rate  

# relevant correlations 1849 2915 61 91 530 623 27 33 

# detected correlations 1788 2959 69 96 528 628 26 37 

TP 1636 2731 42 67 513 613 18 28 

FP 152 228 27 29 15 15 8 4 

FN 213 184 19 14 17 10 9 2 

TN 340 322 16 23 58 37 8 28 

Recall rate (%) 88.4% 93.7% 60.9% 73.6% 96.8% 98.4% 60.3% 87.5% 

Precision rate (%) 91.5% 92.3% 68.9% 82.7% 97.2% 97.6% 68.3% 93.3% 

Accuracy 84.4% 88.1% 55.8% 67.7% 94.7% 96.3% 63% 90.3% 

Correlations with aggregation 177 156 22 65 66 103 12 16 

# detected events 25 17 3 6 3 3 1 1 

# aggregated alerts  135 114 17 37 36 50 8 14 

Reduction rate 96.3% 84.2% 98.6% 81.4% 99.1% 93.1% 99.3% 92.9% 

Table 6.5   Evaluation results of the DARPA datasets – accuracy test. 
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Figures 6.8 to 6.11 illustrate the key results presented in Table 6.5. Our proposed 

system has achieved high levels of accuracy among the datasets in LLDDOS1.0, and 

acceptable levels in LLDDOS2.0. The only low accuracy rate recorded is from the 

analysis of the DMZ2.0 dataset, and of which we are aware because the actual attack 

was performed inside the network. The vulnerability model to verify the importance of 

alerts is also showing a considerable improvement. This is apparent from the number of 

detected events in each dataset. For instance, in DMZ1.0, the number of events has been 

reduced from 25 events to only 3 related events. The overall accuracy rates are higher if 

alert verification is used and satisfactory for other tests. In addition, the volume of alert 

information has been significantly reduced, achieving more than a 90% reduction rate in 

most test cases. 

 
Figure 6.8  Recall rate (%) of the DARPA dataset. 

 
Figure 6.9 Precision rate (%) of the DARPA dataset. 
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Figure 6.10 Overall accuracy rate (%) of the DARPA dataset. 

 
Figure 6.11  Alert reduction rate (%) of DARPA dataset. 

6.6  Real-life experiments in a controlled setup 

To mitigate the problems in the previous datasets, a controlled network setup 

environment has been used to simulate real attack stages. The proposed system has been 

evaluated in a real high-speed network composed of actual and virtualised machines 

connected via switch. Figure 6.12 shows the experimental setup, where multiple 

machines are designated to communicate with services installed on our servers. This is 

to reflect the normal background traffic that can be found in real-world scenarios. The 

false positives generating machine is to add some noise by creating different isolated 

attacks to different machines. The attacking machine is used to carry out the real attack. 

The Snort sensor is connected to the switch's monitoring port in order to analyse the 

passing traffic.  
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Background Traffic 

(Win , Linux) 

Background Traffic 

(Win , Linux) 

Attacking Machine Servers 

Victim  Machine False Positives 

Generating Machine  

  
Figure 6.12. Test bench. 

To produce a reliable evaluation test, the following conditions are considered: 

1- The traffic should contain malicious attack traffic as well as false positives, 

because in a typical case the IDS sensor generates a high amount of false alarms. 

In addition, some isolated real attacks should be injected to assess the correlation 

system’s capability.  

2- The environment should be controlled and every single action should be 

documented. In this respect, the traffic of each machine has been recorded 

individually and reanalysed it by Snort after the experiment. This is in order to 

determine the original source of each generated alert. The total alert repository is 

compared by individual alert containers in order to obtain a ground truth for our 

evaluation. 

3- The truth file is generated manually by matching individual alerts to the attack 

stages. For the sake of simplicity and accuracy, each attack stage is performed 

using different IP addresses, which are then changed to the original values. Each 

group of alerts is assigned to the corresponding attack stage.  
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We have evaluated our approaches using two common Internet attacks as case studies: 

Botnet and SQLIA. 

6.6.1  Botnet attack experiment 

The Botnet attack is a multi-stage and coordinated process, and to detect such activity 

we need to obtain the whole picture of the attacker behaviour. Network-based and host-

based IDSs can detect certain attacks based on their signatures or protocol analyses. 

However, detected events are treated as isolated activities and uncountable variations of 

Botnets are discovered every day. Attackers tend to change their fingerprints to avoid 

detection by IDS rules despite the fact that the general behaviours are similar. Even 

though the IDS misses some attacks involved in Botnet activity, the network 

administrator is still aware of the global view of a suspected Botnet behaviour. In 

addition, according to several behaviour analyses [177, 178], Botnet communications 

and activities are similar regardless of the common name of any used malicious 

software. For instance, Zeus, Kneber and Bredolab [177] are variations of the same 

malicious modular Botnets. 

BotnetMaster
victim machine

C&C server

Initial Infection stage

Second Infection satge

 

Figure 6.13. Botnet lifecycle. 
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In spite of the fact that different Botnets have been identified in the field of security 

analysis, almost all follow similar steps, which are known as Botnet lifecycles. These 

sequences are shown in Figure 6.13 and summarized as follows: 

1) Initial infection stage: This stage involves scanning for systems running vulnerable 

services or responding to backdoors. 

2) Second infection stage: Remote malicious code is loaded and software is installed in 

the target machine using one or more available attack vectors. The infected system is 

ordered to download the actual Botnet software from a dedicated Bot server. Then, 

the code is executed and the machine becomes a Botnet member. 

3) Connection to the C&C stage: The infected machine connects to the attacker and 

receives commands to be configured and updated using C&C channels over IRC or 

HTTP. In this stage, the actual Botnet activities begin. 

4) Attacking other machines stage: Scanning activities are maintained to discover un-

patched and vulnerable systems to launch further possible infections. 

5) Maintenance stage: Depending upon the capabilities of the target machine, the 

attacker commands the Botnet members to download binaries, to connect to another 

C&C server and to become involved in attacking other victims. The attacker also has 

to be certain that all members can be reached using the Fast Flux DNS technique 

[179] to hide malicious code deliveries under all dynamic network conditions. 

Zeus [177, 180] Botnet is one of the emerging modular Botnets reflecting the darkness 

of cyber crime world, first identified in 2007. It is also known as banking crimeware 

and was motivated initially to steal banking credentials and account information. Some 

of its abilities include stealing data submitted by HTTP forms, emails and FTP account 

information, stealthy injection of HTML on the fly, and all redirection activities to trap 

victims. It is a software package with GUI and its builder is responsible for creating all 
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necessary files such as executable files, PHP files and SQL templates in a straight 

forward manner.  

An older version of Zeus (as the new versions are sold by licence) has been installed on 

one of our machines in our lab and on an isolated network. We have followed the 

typical real-life scenario in simulating the traffic communications between the Bot 

master and the victim machines. The simulated network is monitored by Snort and the 

MARS engine. Snort is configured with all rules enabled including: VRT [23], 

bleeding-Edge [181], Community, and Emerging Threat rules (ET) [182]. 

6.6.2  The basic functionality test for Botnet experiment 

In this section, a simulation of the Zeus Botnet attack has been used to test the detection 

efficiency of the proposed approach. We have pursued a Botnet scenario as occurs in 

real networks, as described later in this section. Initially, the network traffic used 

consisted of attack traffic only in order to assess the effectiveness of MARS. The 

transmitted traffic has been recorded individually in .pcap files for further analysis. 

Based on the typical Botnet scenario, each attacking action is assigned to its 

corresponding stage. The attack steps and their related alerts are shown as follows: 

1)  The attacker starts scanning, looking for vulnerable systems to exploit or to install a 

backdoor in the target machine. In this scenario, the attacker will use a new identified 

application flaw, which is CVE-2010-0188 [39], Adobe Reader in versions earlier than 

9.3.1. An embedded executable code launch command can be used to infect the target 

machine. Metasploit [26] is used to perform this job by copying a malformed malicious 

PDF document to the victim machine. Snort has triggered two signatures related to 

scanning activity and three other signatures in connection to Shellcode and CVE-2010-

0188 vulnerability. As shown in Figure 6.14, the five alarms are correlated in a 
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sequence. This scenario is not necessarily Botnet activity, because it could be any other 

attempt to obtain system access.  

sid: 1394 SHELLCODE x86 inc ecx NOOP 

sid: 16490 SPECIFIC-THREATS Adobe Reader malformed TIFF remote code execution attempt  

sid: 15013 WEB-MISC Adobe Portable Document Format file download attempt 

 

 
Figure 6.14. First attack stage. 

2) The target host is infected and starts to connect to the C&C server to download 

binaries and configuration files. An HTTP GET request is sent to the C&C server to 

obtain encrypted configuration files. While these files are encrypted and their names 

and since the URLs are random, it is very difficult for Snort and all other signature-

based IDS to detect such files. However, an alarm has been triggered in this stage 

recognizing the name of the configuration file. These signatures have been added to 

Snort VRT rules in version 2.8.6.1 in July 2010 [23]. 

sid: 2008100 ET TROJAN PRG/ Zeus InfoStealer Trojan Config Download 

sid:16912 BLACKLIST URI request for known malicious URI - net/cfg2.bin 

The previous signatures are part of a group of signatures to block certain suspicious 

URI requests containing malicious websites tracked by Zeus Tracker [180]. 

3) Followed by the configuration files, an HTTP POST request was sent to the same 

C&C server used in the second stage to fetch PHP files, and again the data in POST 
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request is encrypted. Snort fired an alarm similar to the alarms in the second stage but 

with different URIs.  

sid:16929 BLACKLIST URI request for known malicious URI - gate.php?guid= 

4) Despite the fact that the previous two steps can be performed without a Snort 

response using some obfuscation techniques, this stage can be identified. The server 

response for the last step contains some recognized behaviour, which is the string 

Content-Type:text/html, and the actual data are not in HTML or other legitimate 

formats. Actually, there is a signature in Snort that can catch this piece of traffic, which 

is sid:16460 [23], but it is deleted due to false positive concerns, as this case may exist 

in normal traffic. Therefore if we have a system that recognizes false positives 

generated by Snort, and this is the case with the MARS system, this alert will be 

ignored if it is not involved in a real attack scenario. For this reason, the 16460 rule is 

enabled to provide more information, and in case of an isolated false alarm, it will not 

contribute to the attack picture. In addition, Snort has triggered other alerts based on ET 

rules that identified some small binary downloads, which are suspicious behaviours that 

need to be noticed. The sequence of correlated and aggregated alerts involved in this 

stage and the previous two stages are shown in Figure 6.15. 

sid:16460 WEB-MISC text/html content-type without HTML-possible malware C&C 

sid:11192 POLICY download of executable content 

sid:2003179ET POLICY exe download without User Agent 

sid:2007671 ET POLICY Binary Download Smaller than 1 MB Likely Hostile 

sid:2009033 ET POLICY Suspicious Executable (PE under 128) 

sid: 2000419 ET POLICY PE EXE or DLL Windows file download 
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Figure 6.15. The second, third and fourth attack stages. 

5) The last stage involves maintenance and update by downloading further binaries. In 

addition, the infected machine participates in fast scanning and visiting malicious 

websites that can be detected by policy rules. And on certain occasions, the infected 

machine sends large numbers of DNS requests experiencing query failures or 

redirection, which are very obvious signs of a Botnet attack. This part of the attack 

scenario is shown in Figure 6.16, and the whole attack graph is shown in Figure 6.17. 

sid: 2009028 ET MALWARE 404 Response with an EXE Attached - Likely Malware Drop 

sid: 2009885 ET SCAN Unusually Fast 404 Error Messages (Page Not Found), Possible Web Application 

Scan/Directory Guessing Attack 

sid: 2011085 ET POLICY HTTP Redirect to IPv4 Address 

 
Figure 6.16.  The fifth attack stage. 
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Figure 6.17. Graph of the extracted Botnet scenario. 
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6.6.3  SQL injection attack (SQLIA) experiment 

An SQLIA is also a multi-stage and coordinated process, and to detect such activities 

we need to correlate the attacker’s actions. Some of these attack actions are detected by 

IDSs based on available signatures. However, unlimited SQLIA variations are 

discovered every day, in addition to the use of evasion techniques to deceive IDSs. 

Moreover, some of the generic attack symptoms can be detected and are typically 

considered isolated alerts. Hence, we need a correlation system to process different 

activities over time in order to provide a global view of the attacker’s intention.  

The typical SQLIA scenario is summarized as follows: 

1. Application fingerprinting via input validation [183]: in this stage the attacker 

tries to discover any vulnerable entry into the Web application using certain basic 

techniques. This involves testing a Web page form its fields, query strings in URL 

REQUEST and POST, or crafted values in cookies. A combination of strings such 

as ′ , ″ , ), #, --, etc., can be sued to generate possible application errors. The attacker 

has to perform this stage to fingerprint the application and the database, otherwise it 

will be unclear which SQLI technique should be used. This stage can be a 

combination of scanning and port mapping activities using some available fuzzing 

tools.  

2. Database fingerprinting: to gather information about the application and the 

database incorporated in the previous stage. Analysis of different responses through 

error messages is used to choose the appropriate method of injection, and this is 

based on the type of the target database. Then database column numbers are 

discovered and which ones are vulnerable. In this respect, different databases use 

different syntax.  
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3. Attack stage: by exploiting the detected vulnerable columns to obtain extra 

information, such as database version, server name, user table name, etc. A typical 

injection technique is to use SELECT UNION to craft query statements in URL 

requests.  

4. Information disclosure: includes extracting data in user and password tables. It is 

based on the available privilege levels gained by the attacker. Data modifications 

can be performed, such as adding new user accounts and making deletions and 

updates.  

5. Advanced attack: to interact with the operating system in order to achieve full 

control over the target system. Therefore, this is the most dangerous action that can 

be exploited by such attack. This stage involves uploading files, such as shared 

objects for Linux and Dynamic Link Library (DLL) for Windows. User-defined 

functions supported by SQL databases can be used for more interaction with the OS 

through direct command execution. Furthermore, the attacker can add some user 

accounts and local groups to the OS.  

We consider SQLIA as a multi-stage attack conducted by an attacker to compromise a 

target system. PHP Web application vulnerabilities are exploited to gain access to the 

MySQL database and to obtain table names, column names and stored data. 

Consequently, the attacker acquires administrator privileges to upload malicious files to 

control the Web server hosting the target application. We have followed the typical 

scenario in real-life, simulating the traffic communications between the attacker and the 

victim machine. The simulated network is monitored by Snort and the MARS engine 

where Snort is configured with all the rules.  
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6.6.4  The basic functional test of the SQLIA experiment 

In this section, simulating SQLIA has been used to test the detection accuracy of the 

proposed approach. We have pursued the SQLIA scenario as occurs in real networks, as 

described later in this section. Network traffic has been recorded in a .pcap file for 

further analysis. We have used a similar technique as the one implemented in the last 

experiment using attack traffic only, and then the experiment will be repeated using a 

mix of real and synthetic traffic. The attack steps are as follow: 

(1)The attacker starts to perform scanning and port mapping, looking for running 

services; Snort has triggered two signatures related to scanning.  

 sid: 2000537 BLEEDING-EDGE SCAN NMAP -sS 

 sid:2000545 BLEEDING-EDGE SCAN NMAP -f -sS 

(2)Discovery of vulnerabilities (basic SQLI techniques)  

The attacker will initially use the basic techniques such as the symbols: ' , * , and " to 

determine if the target website is vulnerable to SQLI. Also some other strings such as 

1 = 1 , '1' = '1'))/*, or 1=1--, or "a"="a", can be injected. 

And if an error is displayed on the target website, it means that the site is vulnerable, 

e.g.:  Warning: mysql_result(): supplied argument is not a valid MySQL result resource 

Snort generates certain alerts related to this stage: 

 sid:1000303 WebAttack PHPInjection test \' detected 

 sid:1000304 WebAttack PHPInjection test 1=1 or 1=2 

Figure 6.18 shows the evolving attack events generated by the MARS system based on 

Snort alerts. 
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Figure 6.18. The first triggering event. 

 

(3)Discovery of the number of columns in the target database: The attacker uses 

ORDER BY to determine the total number of columns in the database. For instance, the 

statement includes ORDER BY 1 to request the page to display the first column if no 

error is displayed. This number is increased and decreased until the exact number of 

columns is identified. 

(4)Discovery of the vulnerable columns out of the identified ones in carried out in step 

2. The UNION SELECT statement is used to identify which column is vulnerable that 

can be exploited to get access to the database, as follows: 

UNION SELECT 1,2,3,4,5,6,7,8 

Then all vulnerable columns are displayed; in this experiment, 4, 6 and 7 are vulnerable. 

Three types of signatures are generated by Snort in this stage. 

sid:2010963 ET WEB_SERVER SELECT USER SQL Injection Attempt in URI 

sid:1000302 WebAttack PHPInjection -1=select detected 

sid: 1000305 WebAttack PHPInjection -union allselect 

(5)Exploitation of the vulnerable columns to disclose the database information: In this 

step, the attacker discovers the database name, version and usernames by substitution of 

these variables in the vulnerable columns fields of the UNION SELECT statement as 

follows: 

UNION SELECT 1,2,3,4,5,concat(database(),version(),user()) ,7,8 
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This statement will display the requested information on the column 6 position of the 

site page. This step is important because different versions of databases, MySQL in our 

case, have different syntaxes. Snort responds with certain alarms. 

sid:2011042 ET WEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt 

sid:2011073 ET WEB_SERVER Possible Attempt to Get SQL Server Version in URI using SELECT VERSION 

sid:1000302 WebAttack PHPInjection -1=select detected 

sid:1000305 WebAttack PHPInjection -union allselect 

(6)Disclosure of table names, usernames and passwords. The attacker will use the same 

statement in step 5 to identify the names of the database tables, and to obtain the login 

names and passwords from the user table. An example of this statement is shown below: 

UNION SELECT 1,2,3,4,5,concat(table_name,column_name,table_schema),7,8 FROM information_schema_tables 

WHERE column_name LIKE %pass% 

Snort triggers similar alarms to the previous step. 

(7)File privilege server path discovery: Knowledge of file privilege levels is very 

important in order to read, write and upload files. An example of the statement used in 

this respect is: 

UNION SELECT 1,2,3,4,5,load_file(‘/’),7,8 FROM information_schema.user_privilages 

In order to upload files to the target server, it is necessary to determine the server paths, 

and there are different and easy techniques for this, for example: 

UNION SELECT 1,2,3,4,5,@@datadir,7,8 

The next action is to check the directories with write permission. Temporary directories 

are the best choice in this respect, such as: /temporary/ , /temp/, /images/,/cache/, …etc. 

UNION SELECT 1,2,3,4,5,load_file(‘/etc/password’),7,8 INTO OUTFILE ‘/home/www.site.com/images/passFile.txt’/* 

UNION SELECT 1,2,3,4,5,’<?system($_get[‚c‛])?;>’,7,8 INTO OUTFILE ‘/home/www.site.com/images/c.php’/* 

Below are some related Snort alerts: 

sid:2010037 ET WEB_SERVER Possible SQL Injection INTO OUTFILE Arbitrary File Write Attempt 
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sid:1020053 WebAttack PHPInjection load_file 

Figure 6.19 shows the extracted attack graph for the detected events. 

 
Figure 6.19.  The second and third events. 

(8)Advanced attack stage: The attacker can list, modify, insert and delete some or all 

information in the target database. In addition, files containing scripts or libraries can be 

uploaded to configure the server and to provide more interaction with the operating 

system. Snort reacts to some activities while others are not detected. However, the 

correlation system can support discovery of the whole behaviour.  

sid:1100061 WebAttack SQLInjection QueryData Domain 

sid:2006443 ET WEB Possible SQL Injection Attempt -- DELETE FROM 

sid:2006444 ET WEB Possible SQL Injection Attempt -- INSERT INTO 

sid:2006447 ET WEB Possible SQL Injection Attempt -- UPDATE SET 

Figure 6.20 shows the whole extracted attack graph consisting of a detected SQLIA 

event. 
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Figure 6.20.  Extracted SQLIA scenario graph. 

6.6.5  Accuracy and reduction evaluation 

In the last sections we have evaluated the correlation functionality for detecting Botnet 

and SQLIA behaviour. Then, the same steps are repeated by mixing the original attack 

with background traffic, isolated attacks and false positives. This is to determine the 

recall, precision and accuracy characteristics of our approach simulating a real-life 

environment. The target machine is attacked by Metasploit, with a similar behaviour to 

a Botnet attack. The Nessus tool is also used for generating scanning behaviour. The 

background traffic contains synthetic traffic using the traffic generator [134] and real 

traffic using a communication with running services. The real traffic is limited 

compared with the synthetic one, but at least it is more reliable than pure artificial 

traces. It should be noted that we have intentionally avoided creating any other multi-

stage attacks than our planned attack. The multi-stage attack has been performed 

carefully over a period of three hours to allow for intervals between steps. The 

generated data is labelled using source IP addresses, destination IP addresses and 

timestamps. We met the test requirements described earlier in this chapter to avoid 

errors.  
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Table 6.6 Accuracy and reduction evaluation for Botnet and SQLIA experiments (AVd: alert verification 

disabled, Ave: alert verification enabled). 

 Botnet SQLIA 

 AVd AVe AVd AVd 

# Snort alerts 1328 1186 

FP (Snort) (%)  76% 73% 

Correlation rate  

# relevant correlations 753 492 661 91 

# detected correlations 777 496 669 96 

TP 734 489 637 67 

FP 43 7 32 29 

FN 19 3 24 14 

TN 135 112 117 23 

Recall rate (%) 97.5% 99.4% 96.4% 97.5% 

Precision rate (%) 94.5% 98.6% 95.2% 96.8% 

Accuracy 93.3% 98.4% 93.1% 95.8% 

Correlations with aggregation 87 52 66 45 

# detected events 8 1 11 1 

# aggregated alerts  78 53 74 45 

Reduction rate 94.3% 96% 93.8% 96.2% 

 

Table 6.6 shows the results of the evaluation test for both Botnet and SQLIA 

experiments. The improvement in accuracy measures over DARPA datasets is due to 

the fact that all attack stages were detected by Snort. Only one high-priority event 

would be detected if alert verification is used. The other events are with low priority, 

and these consist mainly of scanning behaviour. In addition, in a real-world situation, 

multi-stage attacks are not frequent and do not cause any noise because the attacker 

must achieve its target in a stealthy manner. It is observed from these experiments that 

the system has achieved significant data reduction and only one event is detected using 

the alert verification component. 

6.7   Performance evaluation 

It has been identified in Chapter 3 that performance is a critical factor for the IDS as a 

real-time system. This experiment has been performed to evaluate the performance of 

the MARS engine as a complement component to IDSs. The performance 
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characteristics include resource consumption (CPU and memory usage) and processing 

time of each alert. The objective of this experiment is to show that the correlation 

engine will not affect the performance of the IDS's detection functionality. Two groups 

of experiments have been conducted: one for offline implementation to measure alert 

processing time, and the other for online implementation to assess performance under 

different traffic volumes.  

For the offline test,  Snort and MARS are tested to process a batch of a number alerts 

starting from 1,000 alerts to 100,000 under the same conditions. A pcap file contains 

1,300,000 packets to generate 1000 alerts are read by Snort and thereafter processed by 

MARS system. Then the pcap file is replayed to generate alerts from 1000 – 100,000 

alerts. The CPU and Memory usage reading is taken from the task manager. The test has 

been conducted on a Dual Quad-Core 2.0GHZ machine with RAM of 4.0 GB. Snort is 

configured to log to an MSSQL database the same as MARS. The database server is 

installed on the same machine to evaluate the worse performance case. Figure 6.21 and 

Figure 6.22 show the results obtained for both systems.  

 

Figure 6.21. Comparison of resource usage by Snort and MARS (offline test). 
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These illustrate that the MARS correlation engine consumes less resources compared to 

the Snort system for both CPU and memory usage. The alert processing time using 

Snort increases proportionally with the number of alerts input. However, the MARS 

engine is relatively stable even with the increase in the volume of alerts. And this is 

explained by the fact that Snort inspects packet headers and content whereas MARS 

inspects alert information.  

 

Figure 6.22. Alert processing time of Snort and MARS. 
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continues to be stable, as the required processing power is less compared to the deep 

packet inspection performed by Snort. Hence, alert correlation systems can be deployed 

without requiring considerable resources.  

 

Figure 6.23. Comparison of resource usage by Snort and MARS (online test). 
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rates of false positives and false negatives. We have evaluated our system using 

different metrics to identify the functionality, the reduction and the accuracy rates. An 

experimental platform has been developed to perform different tests. The MARS tool 

has been tested using DARPA 2000 data set to compare our results with others. The 

obtained results have showed that the proposed system is capable to detect all attack 

instances with lesser false positive rates. Then, we have implemented a real life test 

using a controlled testing environment to evaluate the MARS capabilities to detect two 

types of current cyber attacks i.e Botnet and SQLI attacks. It has been demonstrated that 

our framework can applied to detect complex multi-stage attack. Botnet and SQLIA 

traffic have been analyzed as case studies to measure accuracy and performance of 

MARS tool.  We have confidence that our system has achieved an improvement in 

relation to identification of attack plans and reduction in graph complexity. False 

positives have been reduced comparing with other approaches using vulnerability 

knowledge base. We have also evaluated the performance of the MARS system using 

offline and online testing. It has been demonstrated that the MARS function does not 

affect the system’s overall performance as the resulting latency is mainly caused by the 

NIDS system e.g Snort. 
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CHAPTER 7: CONCLUSION AND AVENUES FOR FUTURE 

RESEARCH 

 
7.1   Introduction 

Network Intrusion detection systems (NIDSs) are gaining widespread interest as a 

complement to traditional preventative techniques. More critical data is migrated to 

online systems, which creates the need for efficient data-protection mechanisms and 

monitoring tools. However, the performance of NIDSs is still debatable in terms of the 

nature and amount of traffic to be processed, as well as detection accuracy. In this 

thesis, we have addressed several complex issues in the field of NIDS technology in 

relation to performance in high-speed networks and alert management systems.  

In the initial stages of this research we implemented a comprehensive evaluation 

methodology to measure the capability of software-based NIDSs in keeping up with 

increasing network bandwidth. NIDSs, as network product systems, must exhibit the 

same performance requirements and traffic characteristics. Furthermore, NIDSs perform 

highly performance-intensive functions, such as deep packet inspection and state 

maintenance. We have provided in-depth NIDS performance analyses utilizing a 

representative real-life Gig network environment. The focus has been mainly on the 

performance evaluation of Snort as a de facto open-source NIDSs. The results obtained 

illustrate that software-based NIDSs installed on a general-purpose machine are not 

capable of keeping up with traffic above 750Mbs in an ideal scenario. When the NIDS 

becomes unable to handle packets in real-time, it starts to drop these, potentially 

resulting in attack patterns being injected into the protected network. 

The identified packet loss problem in the NIDS performance test in the initial phase of 

this research has raised some considerations that have motivated the work implemented 
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in the rest of this thesis. We have found a proportional linear relationship between 

packet loss and the rate of missed attacks. The missed attack limitation can be the result 

of other factors, such as the absence of signatures and the use of evasion techniques. 

However, we have adopted a dual-solution approach to mitigate both problems 

irrespective of the root cause. Alert correlation systems have been widely used in 

network management systems to localize the fault cause and to determine the 

dependencies between detected events. We have proposed a reasoning alert correlation 

framework consisting of several integrated components to draw an attack graph. Our 

approach can build an overall view of the system's security status even with incomplete 

alert information. The outcome of the proposed framework is the minimisation of the 

effects of missing audit data, the reduction of the large volume of redundant alert which 

are mostly false positives, and the extraction of an attack behaviour summary in the 

form of a multi-stage attack scenario. 

Received alerts are analysed and abstracted to a higher level of attack description using 

a generalisation mechanism. Pre- and post-conditions inspired from requires/provides 

models are applied to detect correlation characteristics. Supporting knowledge-bases are 

formalized in a multi-level abstraction based on attack taxonomies. Generic signature 

representatives in the form of attacker capabilities are constructed to obtain the 

relationships between elementary alerts. To achieve an effective correlation system we 

have used alert verification based on a vulnerability knowledge-base to suppress the 

generalisation methods in the generalised attack concept. 

The proposed alert correlation framework has been implemented in a tool called MARS 

(Multi-stage Attack Recognition System) to validate our approach. A repository 

contains alert data, mapped IDS signatures and detected events. Knowledge-bases reside 

in-memory, where they are used by the detection engine. In addition, interactive 
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administrative tools are developed to dig in resulting events and aggregated alerts. The 

developed system has been evaluated by various datasets applying different realistic 

attack scenarios. Evaluation metrics have also been described in detail, and the results 

obtained have been demonstrated in various forms. 

7.2   Evaluation of NIDSs in high-speed environments  

The main objective of this part of our research is to deal with the shortage of 

information available on the evaluation of the performance of NIDSs in high-speed 

networks. Most previous efforts have focused on the accuracy functions of the NIDSs 

using moderate traffic loads. We have intended to provide a realistic evaluation 

methodology reflecting real-life situations. We accept as true that if some packets are 

not analysed by the NIDS under high traffic loads, this means that it will become 

vulnerable to evasions from attackers. We have elaborated our evaluation tests using 

extreme conditions under various scenarios. A multi-tier test methodology has been 

utilized to investigate the system-under-test response, starting from moderate to 

advanced hardware implementations. Snort performance has been evaluated on different 

operating system (OS) platforms using host-based and virtual configurations. The 

virtualisation test was motivated by its successful inception within the industry/business 

community.  

The test-bench was established using 10 Gbps network cards and supported by a Xenon 

Quad-Core server and other machines with multi-processing powers. To achieve 

practical results, we customised the traffic to be semi-real traffic with a range of packet 

sizes, protocol distributions, number of connections and elapsed times. The outcome of 

the test can be summarized as follows: 
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- It can be ascertained that Snort is not suitable for all configured implementations 

with high volumes of traffic, e.g. above 750Mbps.  

- There are no significant performance improvements, even with multi-core 

processing configurations. In practice Snort, being a non-multithreaded design, 

does not utilize the processing power provided by the hardware implementation. 

- The implementation of Snort on virtualised platforms and using the current 

configuration is not promising. This is realistic as virtualisation has its limitations 

in terms of disk I/O performance. 

- Packet drop caused by Snort performance efficacy results in the degradation of 

overall system effectiveness and opens it up to overload and evasion attacks. 

7.2.1  Avenues for future research 

Architectural techniques to improve Snort performance are not the main focus of our 

research. However, along the course of the performance evaluation, certain researches 

directions have cropped up that lend themselves to recommendation. 

There should be a mechanism to achieve a lower rate of packet drops by utilising the 

available multi-core system. This can be done by performing an architectural re-design 

of the Snort system to scale for high volumes of traffic with minimum packets loss. A 

parallel concept can be employed for Snort in order to distribute the system processing. 

In other words, Snort could be rebuild as a multithreaded application to run multiple 

threads concurrently in order to utilise the processing power of multi-core systems. This 

will increase the packet processing capabilities of Snort, and hence result in fewer 

packets dropped.  

Splitting traffic over multiple instances of Snort engines have been studied in some 

respects [14, 43]. However, these mechanisms have not been implemented and 

evaluated in a systematic manner. The received network traffic can be divided based on 
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flow level to insure that all packets related to a single flow are passed to the same 

engine. The main concern is the problem of the distribution mechanism, as it adds more 

burdens to the process. Efficient algorithms for light-weight processing techniques are 

required to achieve cost-effectiveness.  

It has been identified in the NIDSs literature that updated datasets are a necessity in 

testing NIDSs, whether for performance or function evaluation. DARPA datasets are 

still the benchmark in spite of being old and criticised for lack of realistic background 

traffic. Moreover, there is a shortage in open-source traffic generators, and the available 

tools have some limitations and cannot be relied upon.  

7.3   A reasoning framework for alert correlation  

The NIDS fire alerts coressponding to individual activities that are isolated from others, 

leaving the prediction of incoming attacks to the adminstartor's estimation. Detection of 

the actual intrusion may fail due to a variety of reasons: attacks may be missed due to 

performance degregation, the corresponding signature not being provided, or the 

attacker using a new variation of the intrusive behaviour. In order to provide a remedy 

for missed attacks, whether caused by packet loss or the absence of signature 

descriptions, we have proposed a fault-tolerant solution. The proposed system gathers 

all information required to construct a context for understanding the attacker's 

behaviour. A state record of each activity is built using aggregation and intellegent 

correlation of detected events. Therefore, the decision is made according to a higher 

level of information fusion. 

A reasoning framework for alert correlation has been presented consisting of several 

incorporated components. Therefore our objective is not limited to the estimation of the 

security perspective, but provides a reduction in alert redundancies and false positives, 
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in addition to the detection of multi-stage attacks and attack verification. The alerts are 

supplied by the IDS in real-time and then each alert is abstracted to an attack concept 

based on signature modelling in the knowledge-base. Pre- and post-condition 

mechanisms are applied to extract the relationships between events according to 

temporal information based on time context and spatial characteristics, e.g. the location 

of the detected activity and the vulnerability description.  

Attack modelling: We have modelled attacks and attack capabilities on the basis of 

inheritance and abstraction principles. Specific attack descriptions provided by the IDS 

can reduce the detection domain and do not recognise the dependencies between alerts. 

Alerts are modelled to attack concept abstractions based on the status of the system 

being monitored. For example, consider two attack scenarios, m1 and m2, including the 

installation of some backdoor Trojans. Scenario m1, in order to succeed, requires Trojan 

x to be installed, and scenario m2 needs Trojan y to succeed. However, the IDS rules 

have a signature for Trojan x, whereas Trojan y is unknown. According to the 

hierarchical generalisation of attack capabilities, both scenarios will be categorized as 

Trojan activities due to the similarity of their effect on the targeted system. The Trojan 

installation action is just a single step among a sequence of stages in the performance of 

the attack.  

We have developed a set of algorithms to employ for the proposed farmework: 

Alert correlation algorithm 

The inputs of the algorithm are the instances of detected attack capabilities in the form 

of encoded pre- and post-conditions. The intilization of these encoded conditions is 

performed based on an in-memory knowledge-base of the attack concepts. The 

correlation between the instances of elementary alerts is created according to partial 

matching of hierarchical multi-layer capability descriptions. The matching criteria are 
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based on the rules infered from the knowledge-base. The source addresses of certain 

attacks are considered whilst for others it is the destination address that is taken in 

account according to the signature direction. This technique is proposed in order to 

broaden the maximum detection coverage. This can result in a huge correlation of links; 

however, a supression mechanism to distinguish only those connections that are related 

is achieved using a vulnerabilty knowledge-base. In the intial stage, fine-grained 

correlations are identified and saved in a temporay container.  

Alert verfication 

To avoid degradation in the correlation process quality, which can be caused by having 

a false positive as an input, we have developed a filtering meachnism. A 

complementory algorithm was developed to examine the oppotunity of attack success 

according to vulnerability analyses and running services on the target system. This is an 

opposed technique to the generalisation mechanism of abstracting alerts in order to 

reduce false positives. Therefore the objective is to prioritize attacks based on their 

success, where failed attacks are assigned low priority. However, the failed attack is 

ignored unless it is considered as an attempt of real attack. The vulnerability knowledge 

is updated in a passive fashion to minimise communication load during the detection 

process.  

Data reduction 

The final result of the system is to produce a summarized attack graph in the form of 

generlised events. In practice, this graph should be concise and meaningful, 

disregarding insignificant details. The graph consists of nodes representing attack steps 

and edges to specify the logical connection between these temporally ordered steps. We 

have developed two algorithms for data reduction: one to minimise the number of 

involved redundancy nodes and the other to remove duplicate edges. 
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Graph reduction  

Two algorithms have been developed to remove transitive edges from the resulting 

graph. We assume that the causal relationships propagate from root to leaf nodes. 

Online graph reduction is performed throughout the first stage of the correlation 

process. And offline algorithm is an optional, further reduction after the attack graph is 

built to ensure that we have the minimum available graph. In addition, this technique is 

used to restrain the relaxing mechanism in attack capabilities. 

Alert aggregation  

In contrast to graph reduction algorithms where the number of nodes is not affetcted, 

here nodes are aggregated. We aggregate two alerts according to their similarity, e.g. 

attack type and spatial and temporal characteristics. We also use a window time to 

determine the temporal proximity of alerts that can be aggregated.  

Event generation algorithm 

Simultaneously during the correlation process, infall events are generated if at least two 

correlated alerts are identified. Moreover, every detected infall event is examined if it 

corresponds to a previous one. However, the recognized event is not reported untill the 

resulting information is reduced and aggregated. The aggregated and verfied alerts are 

linked to compose a new event representing the detected multi-stage attack. 

Near real-time detection 

Real-time correlation systems have been investigated in several research efforts. Most 

of these methods tend to allocate memory space to store a bulk of states for a period of 

time which is naturally finite. This can be useful for a limited time but is vulnerable to 

detection avoidance. On the other hand, keeping a large amount of states in memory 

becomes problematic if the number of states increases. All previous works assume that 
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related activities fall in a short time period, e.g. a few hours in the best-case scenario. 

Therefore, we have developed a near real-time system to overcome the slow-and-low 

attack. This technique leverages the analysis domain to include even very old activities. 

However, to sustain higher performance, the alert data is maintained every time the 

analysis executed.  

7.3.1  Avenues for future research 

Along the development of our framework, we have identified certain directions for the 

improvement of the system's functioning. 

1- Knowledge-based correlation approaches are precise and generate less false 

positives. They require the description of every possible capability and map IDS 

signatures to these capabilities. Probablistic approaches can uncover unidentified 

relationships but they may produce false relationships. An amalgamation of both 

techniques can be used in order to exploit their advantages. However, statistical 

analyses can be employed to compute the similarities between alerts, and the 

knowledge-base can be used to validate these decisions. This notion is borrowed 

from the amalgamation of anomaly-based IDSs with signature-based IDSs. 

Anomaly-based approaches have been investigated for several years but are still 

immature. Even though some vendors claim that they are employing these techniques 

in their products, they are considered black boxes. Therefore the use of an anomaly-

based IDS as a standalone system is impractical in terms of the high number of false 

positives generated. We believe that such collaboration needs further investigation in 

order to facilitate the correlation process. 

2- We have adopted a passive approach to vulnerability acquisition, which is useful 

in providing knowledge about protected networks. Instead, active analysis of the end-

host response for the attacker can be considered to yield more precise results. This is 
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due to the information supplied by the vulnerability scanner being insufficient for the 

formulation of decisions regarding the success of attacks. The victim's point of view 

about the attack can support the analysis process by providing accurate details, e.g. 

whether the target port accepts the connection or not, which is not identified by the 

normal scanner. 

3- As the correlation accuracy can be improved with the involvement of the 

maximum amount of available information, host-based IDS alerts may be used. In 

addition, Web application IDS tools can also utilized to obtain reliable and true 

observations. The incorporation of such systems requires a normalization stage to 

unify the supplied information. 

4- The problem in terms of the discrimination between different attackers attacking 

the same target machine has been a debatable issue in the field of alert correlation. It 

is very difficult to decide whether or not a group of attackers are cooperating. 

Reliance on the source IP address is not feasible, as a single attacker can use several 

spoofed IP addresses. Therefore a behaviour analysis that is not based on traditional 

information is required. Analysis of only temporal characteristics is unrealistic 

because, as stated on many occasions throughout this thesis, a skilful attacker's 

activities can be conducted over long periods of time. 

7.4  Implementation and evaluation of our framework 

The proposed algorithms have been implemented in MARS tools to validate their 

practical application. The MARS server represents the core of the system that performs 

the functions of the collaborated components. Knowledge bases are stored in the 

memory and the MARS database is interacted with periodically to handle received 
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alerts. We have also developed extensible client tools for the administrator to obtain 

reports of multi-stage attacks in a visualised format. 

We have evaluated the proposed system using a variety of datasets and by conducting 

real-life scenarios. We have also explained the evaluation metrics and applied these to 

obtain reliable results. Functional, accuracy and reduction evaluations have been 

implemented on all test categories. The results obtained have shown significant progress 

among all test parameters. For instance, the testing of the DARPA datasets yielded a 

96.3% accuracy rate and a 99.1% reduction rate for INSIDE1.0. The alert verification 

mechanism has raised the overall accuracy among all conducted scenarios. Moreover, 

performance evaluation has also been elaborated using offline and online tests. The 

results have illustrated that MARS consumes less resources than Snort in both tests. We 

can conclude that the application of MARS does not affect the overall IDS performance.  
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Appendix I  Snort signatures 

An example of a Snort signature description: 
 

Rule:  

-- 

Sid: 

610 

-- 

Summary:  

This event is generated when an attempt to login as the 

superuser is attempted using rsh. 

-- 

Impact:  

Serious. If successful the attacker may have gained superuser 

access to the host. 

-- 

Detailed Information:  

This rule generates an event when a connection is made using 

"rsh" with the username "root". Such activity is indicative of 

attempts to abuse insecure machines with a known default 

configuration.  

 

Some UNIX systems use the "rsh" daemon which permits remote 

"root" logins. This may allow an attacker to connect to the 

machine and establish an interactive session. 

-- 

Attack Scenarios:  

An attacker finds a machine with the "rsh" service running and 

connects to it, then proceeds to guess the "root" password 

-- 

Ease of Attack: 

Simple, no exploit software required 

-- 

False Positives:  

A system administrator may be logging in to a host using the 

username "root" 

-- 

False Negatives:  

If a local username is not the same as the remote one ("root"), 

the rule will not generate an event. 

-- 

Corrective Action:  

Investigate logs on the target host for further details and more 

signs of suspicious activity 

 

Use ssh for remote access instead of rsh. 

 

Deny remote root logins to the host, use a normal user and 

"sudo" or give the user the ability to "su" to root where 

appropriate. 
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Appendix II  MARS GUI 

 

1.  MARS server interface 

Figure.1 shows the MARS server interface with the following information: 

Database IP : the IP address of the database server. 

Server IP : the IP address and the operating port of the MARS server. 

Client connections: the number of the connected MARS clients. 

Analysis count: how many times the MARS server has analysed the database. 

Last Analysis time: the time of the last analysis connection.  

 

            Figure.1 MARS server interface 

 

2. MARS client interface 

The Figures 2-4 show the MARS client interface displayed to the administrator. 

Evolving events are displayed as a list and old treated ones can be retrieved using events 

query.  The available information through this form includes: 

Event ID : a unique number to identify all detected events. 

Event Title: to describe the attacking activities based on the attack category. 

Priority: indicates the severity level of an event (High, Medium ,and Low). 
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Start-time and End-time: to show the start and the end time of the event, these times are 

not fixed as can be changed based the results of the event detection analysis. 

Alert count: denotes the number of alerts involved in the detected event. 

Steps: to identify the number of the attack stages. 

Elapsed time: denotes the difference between the start and the end time of an event. 

Confirmation: is used by the administrator if he thinks that an event is identified. If the 

detected event is not clear it is left until further information is received. 

Dealing : this facility is used if an event needs more vulnerability investigation and risk 

analysis. 

Close : when an event is identified, confirmed, and treated based on the organisation 

policy, it is closed to minimise the system process. 

Each events listed on the top of the main form has its related alerts information listed on 

the bottom as shown in Figure.2. These alerts are aggregated and the number of 

involving alert instances is displayed.   

The attack graph of each event can be displayed using the menu list as shown in 

Figure.4. The administrator can navigate each node to show its details. The detected 

attack steps (graph nodes) are ordered temporally from left to right and the edges show 

the causal relationships.  
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Figure.2 MARS client interface -1 



237 
 

 
Figure.3 MARS client interface -2 
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Figure.4 MARS client interface -3
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Acronyms 

BPF : Berkeley Packet Filter 

CPU : Central Processing Unit 

DARPA : Defence Advance Research Project Agency 

DNS : Domain Name Server 

DDoS : Distributed Denial of Service Attack 

DoS: Denial of Service Attack 

DMZ : Demilitarized Zone 

FPGA : Field Programmable Graphical Array 

FTP : File Transfer Protocol 

GHz : Giga Hertz 

GB : Giga Bytes 

GUI : Graphical User Interface 

Gbps : Giga bits per second 

HIDS : Host based Intrusion detection System 

HTTP : Hypertext Transfer Protocol 

ID : Identification 

IDS : Intrusion Detection Systems 

IP : Internet Protocol  

IP Address : Internet Protocol Address 

IT : Information Technology 

IDES : Intrusion Detection Expert System 

IPS : Intrusion Prevention Systems 

IRI : Informatics Research Institute 

ICMP : Internet Control Message Protocol 

I/O : Input/Output 
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IRC : Internet Relay Chat 

LAN : Local Area Network 

MARS: Multi-stage Attack Recognition System 

Mbps : Mega bits per second 

MB : Mega Bytes 

NIDS : Network Intrusion Detection Systems 

NSRG: Network Security Research Group 

NIC : Network Interface Card 

NAPI : New Application Program Interface 

OS: Operating System 

PCI : Peripheral Component Interconnect 

PCIe : Peripheral Component Interconnect Express 

RFC: Request for Comments 

RPC : Remote Procedure Call 

RAM : Random Access Memory 

SNMP : Simple Network Management Protocol 

SMTP : Simple Mail transfer Protocol 

TCP: Transmission Control Protocol 

UDP : User Datagram protocol 

VLAN : Virtual Local Area Network 

 

 


	cover_sheet_thesis
	University of Bradford eThesis

	Faeiz-Thesis-2011

