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Abstract: On 2 June 2014, at about 13 UTC, a dust storm arrived in Tehran as a severe hazard that
caused injures, deaths, failures in power supply, and traffic disruption. Such an extreme event is
not considered as common for the Tehran area, which has raised the question of the dust storm’s
origin and the need for increasing citizens’ preparedness during such events. The analysis of the
observational data and numerical simulations using coupled dust-atmospheric models showed that
intensive convective activity occurred over the south and southwest of Tehran, which produced cold
downdrafts and, consequently, high-velocity surface winds. Different dust source masks were used
as an input for model hindcasts of the event (forecasts of the past event) to show the capability of the
numerical models to perform high-quality forecasts in such events and to expand the knowledge on
the storm’s formation and progression. In addition to the proven capability of the models, if engaged
in operational use to contribute to the establishment of an early warning system for dust storms,
another conclusion appeared as a highlight of this research: abandoned agricultural areas south of
Tehran were responsible for over 50% of the airborne dust concentration within the dust storm that
surged through Tehran. Such a dust source in the numerical simulation produced a PM10 surface
dust concentration of several thousand µm/m3, which classifies it as a dust source hot-spot. The
produced evidence indivisibly links issues of land degradation, extreme weather, environmental
protection, and health and safety.
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1. Introduction

Increasing demand for food production has led to increased land consumption and
the implementation of cultivation practices targeting higher gains and lower costs of land
management. Unsustainable land management of agricultural land reduces the fertility
of the soil and thereby its productive capacity. While soil restoration demands time and
additional investment, the abandonment of cultivation and its migration to another area
is a faster and more productive solution in short-term planned agricultural production.
Abandoned agricultural surfaces are left as bare lands with poor topsoil structure, which
are severely exposed to wind erosion during lower topsoil moisture conditions [1]. Such
surfaces act as sources of dust storms in cases of high-velocity winds. Agricultural lands
are considered to be anthropogenic (man-made) dust sources and can generate airborne
dust hazards. Among others, dust storms have a significant impact on human health and
safety [2–4].

The scale of airborne dust transport ranges from close-to-surface processes that last a
few seconds to the global scale with significant climate impacts [5,6]. Dust storms which
last several hours have impacts over several hundred kilometers far from the sources.
During such dust storms, intensive emission of dust particles occurs, and the measured
PM10 values are on the order of magnitude of 10000 µg/m3, and within urban areas, where
most of the observation sites are situated; recorded values in such cases are on the order of
magnitude of 1000 s µg/m3 [7].

Due to the relatively small spatial scales of agricultural sources, the highest impacts are
usually restricted to areas in the vicinity of the sources. Since agricultural lands are usually
relatively near populated areas or roads, compared to desert dust sources, their impacts can
have large socio-economic impacts. Dust storms originating from local agricultural sources
during dry periods impose very high risks to human safety, especially in highway transport,
as presented by the example of one impressive case of a pileup involving 164 vehicles on
Interstate 5 in California [8]. Severe dust emission from dried-up farmlands can travel
far from the sources and cause high PM10 concentrations in remote areas. Such an event
happened in 2007 when dust emitted from southern Ukraine reached Central Europe
(Slovakia, the Czech Republic, Poland, and Germany) with maximum PM10 concentrations
over 1000 µg/m3 [9]. To improve the understanding of this dust storm, a modeling approach
was used to fill the knowledge gaps and reconstruct the dust pathway [10]. Nevertheless,
the most recognizable case of man-made land degradation impact on the air quality, health,
and weather conditions on a large scale is that of the American dust bowl in the 1930s. In
addition to scarce available observations and information during this period, the GCM
(General Circulation Model) was used to reconstruct the atmospheric conditions during
this period [11]. The results showed that land degradation induced by humans caused a
severe dust storm period and, most likely, also amplified the drought. These two major
consequences of land degradation probably caused modest drought (if no human factor
was involved) to turn into one of the worst environmental disasters in USA.

Iran suffers significant impacts from dust storms in the western, south-western, and
southern parts from the intrusion of dust storms of larger scales formed from dust sources
outside of the country, with some contribution by local sources. Two more areas (Tabas
and Sistan, located in the eastern parts of the Iran) have been shown to suffer from a
larger impact of dust storms, but they are formed from sources in the interior of the
Iran [12]. Land degradation has a large impact on the transformation of land surfaces into
dust-producing areas. In the area of southwest Iran and southeast Iraq during the period
2005–2015, 12% of the land cover classes were transformed into barren land, which act
as dust sources. Such change in land cover caused higher airborne dust production and
impacted atmospheric conditions in this area by changing radiative balance (by about 10%)
and consequently temperature conditions [13]. Another study for southwest Iran provided
a methodology for land degradation modeling and found that the major land cover changes
contributing to land degradation were wetland to barren, wetland to cropland, wetland to
grassland, and cropland to barren. Severe land cover changes detected in the study area
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were recognized as being hot-spots, where human activities have significantly contributed
to the degradation process. Such surfaces should be considered as surfaces with a high risk
of acting as or becoming dust storm sources in the future [14].

Tehran Province, located in the north of Iran (south of the Caspian Sea) is not considered
an area with high vulnerability to dust storms because of the relatively rare or weak airborne
dust events compared to other areas analyzed in [13,14]. The capital of Iran, Tehran city, is
located in Tehran Province, which is a highly populated area of about 15.5 million citizens
in the metropolitan area (https://www.citypopulation.de/en/world/agglomerations/,
accessed on 10 July 2021). Thereby, this province has a high exposure level and, consequently,
dust storm risk can be high, despite being a lower frequency of dust events. The case of
a Tehran dust storm presented in this study can serve as an example in which high dust
storm risk was evident in Tehran.

A dust storm on 2 June 2014 that surged through Tehran was a kind of short-lived
hazard that reduced visibility to zero, disabled traffic, caused power shutdowns, and
caused deaths and injuries. The unpreparedness of the citizens and emergency response
teams has raised the issue of making improvements to early warning systems since, for this
event, a warning was issued just prior to its arrival [15]. From an extensive observational
study [16], the main features of the atmospheric conditions that led to the Tehran dust storm
formation were defined, and this dust storm was classified as a ‘haboob’. However, this
analysis of the storm relying on the limited observations left uncertainties in understanding
the main causes of such extreme weather events, such as the origins of the airborne dust,
as indicated by the authors, highlighting the need for high-resolution numerical dust
modeling of this event.

Haboobs, as intensive, relatively local and short-lived dust storms, are considered
a challenge for forecasting systems with embedded dust-related processes since a high
resolution is required that is able to recognize dust-source hot-spots and has the ability
to simulate strong convective activity. For high-quality dust storm forecasts that can be
used for warning announcements, the expected level of accuracy should take into account
good representation of the dust wall’s movement, its timing and spatial scale, and dust
concentration levels. Due to the large spatial variability of the PM10 concentrations during
such events [17], accurate in-point forecasts of PM10 are not possible to be reproduced by
the model, and quantitative verification of the PM10 dust concentration forecast for this
reason is avoided.

Obstacles for currently available dust forecasts within the WMO SDS-WAS (World
Meteorological Organization Sand and Dust Storms Warning Advisory and Assessment Sys-
tem; https://sds-was.aemet.es/forecast-products/dust-forecasts, accessed on 10 July 2021)
to predict dust storms, such as those that occurred in Tehran, in general, include their
relatively coarse resolution and a lack of information on dust sources. The occurrence of
Tehran dust storm was recognized as a good case study to assess the necessary capacities
for operational forecast and warning system developments on national or sub-national
levels. This work was initiated by the SDS-WAS, indicating the need for the development of
such dust warning systems on national and sub-national levels [18]. Two modeling groups
responded to such initiative, and simulation experiments were carried out with coupled
dust–atmospheric regional non-hydrostatic numerical models: DREAM (Dust REgional
Atmospheric Model) and WRF-Chem (Weather Research and Forecasting with Chemistry
model). Both models performed well in simulation of the Phoenix 2 July 2011 haboob type
of dust storm [17,19]. The models were set for the same domain and resolution, initial and
boundary conditions, forecast initialization, and duration. The difference was in the input
data on dust source masks. Additional DREAM experiments were performed to show
the necessity of model resolution requirements and to explore origin of the airborne dust
which swept through Tehran city.

https://www.citypopulation.de/en/world/agglomerations/
https://sds-was.aemet.es/forecast-products/dust-forecasts
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2. Materials and Methods

Data used in this study include meteorological and air quality observations, as well
as the results of numerical simulations and input data required by the models. Analysis
of the data in this study includes: the analysis of collected observational data for defining
the main characteristics of the dust storm (reconstructing the main features of atmospheric
conditions and the dust storm), and analysis of the data obtained by numerical simulation
of the dust storm to better understand the event and to assess the required model set-up to
obtain a high-quality forecast of such events.

2.1. Case Study Area

Figure 1 presents the models’ domain of the numerical simulation of the dust storm
(31◦ N–39◦ N, 46◦ E–56◦ E) and the case study area for which analysis of the results is
presented. The models’ domain is much larger than the area of interest because thermody-
namic atmospheric processes that occur over a larger area, which could have contributed to
the formation of such storm, need to be covered by a high-resolution numerical simulation.
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Figure 1. Domain of the numerical simulations (model domain), the case study area, and locations of
Tehran Province and Tehran city; background data are the orography of the domain represented on
the models’ high-resolution set-up (0.025◦ × 0.025◦).

2.2. Observed Data

The initial analysis of the Tehran dust storm on 2 June 2014 was published in the news
and later in [15], providing a qualitative description of the storm, its timing, duration, and
impacts, which will be given in the following section where analysis is carried out.

Measurements collected later provided more detailed information on the weather and
air quality conditions, which gave a quantitative measure of the storm parameters and justi-
fied its classification as a ‘haboob’ storm. The stations from which the meteorological data
were collected are presented in Table 1 and Figure 2a. The relevant available data analyzed
for this event were: 2 m air temperature, dew point, atmospheric pressure, visibility, and
wind direction. Regular observations were available every 3 h, but some of the stations have
missing data during the period of interest.
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Table 1. Meteorological stations in Tehran province, with 3-h data frequency: station code, name, acronym, location (latitude,
longitude and elevation), and data availability.

Code Name Acr. Lat. (◦ N) Lon. (◦ E) El. (m) Data

40751 Tehran (Shemiran) TETG 35.78 51.62 1549 every 3 h
40754 Tehran (Mehrabad) * OIII 35.68 51.32 1191 every 3 h
40755 Abali TETB 35.75 51.88 2465 every 3 h
40756 Firoozkooh TETF 35.92 52.83 1976 available 03–15 UTC
40777 Imam Khomeini Airport * OIIE 35.42 51.17 990 every 3 h
99320 Chitgar TETC 35.70 51.13 1305 missing 15 h (2 June)–06 h (3 June) UTC
99331 Tehran (Geophysics) TETO 35.73 51.38 1419 available 03–15 UTC
99366 Lavasan TETA 35.83 51.64 1863 every 3 h; visibility available 03–15 h UTC
99369 Damavand TETD 35.72 50.83 2051 available 03–15 UTC

99370 Firoozkooh Aminabad
(GAW station) TETL 35.72 52.40 2986 available 03–15 UTC

99372 Saveh OIIV 35.05 50.33 1112 available 03–15 UTC
99375 Shahryar TETS 35.67 51.03 1163 available 03–15 UTC
99406 Varamin TETV 35.32 51.65 973 available 03–15 UTC

* METAR data available.
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Figure 2. Locations of the stations from which the ground measurements were collected: (a) meteorological stations in
Tehran province, listed in Table 1, divided into three groups (purple, blue, pink) for later analysis and (b) air quality stations
in Tehran city, from which the PM10 measurements were collected; locations of airports (OIIE and OIII) and the approximate
distance between them are also marked.

Observations from the airports (METAR data) have data available for every half hour,
which are more usable for the analysis of such sudden and short-lived dust storms, or any
severe local weather hazard with a duration of less than the data frequency of the collected
observations in meteorological stations. They also provide information on the nature of
the atmospheric condition that caused the visibility reduction, which is the observational
proof, as well as public photos and other public evidence, that a high dust concentration
was present. Data from two airports were collected: OIIE (Imam Khomeini) and OIII
(Mehrabad). Both locations are listed in the list of meteorological stations, but METAR data
will provide added values for this analysis.
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PM10 measurements can be useful for the quantification of dust concentration, which
cannot be carried out from visibility or satellite data. They include all airborne particles
with diameter up to 10 µm, but, in the case of severe local dust storms, an immediate
significant increase in PM10 occurs (up to several 1000 µm/m3 or 10000 µm/m3 near
sources), and it can be assumed this is actually the PM10 concentration of the dust particles.
Unfortunately, PM measurement stations are mostly in highly populated urban areas,
far from the source regions, where dust storms are rare or where they weaken. Another
problem is the frequency of the data. For this study, the available PM10 data provided are
hourly averaged values. Averaging the values for one hour does not represent peaking
PM10 values during the passing of the dust storm, which lasts about 10 min. Table 2
and Figure 2b present the locations of the stations with the collected PM10 measures and
information on data availability for 2 June 2014. Table 2 includes all PM10 measurement
stations that were available to the authors (besides the fact that data are missing for the
period of interest) to show the availability of PM10 measurements for this case study
compared to the available measurement sites.

Table 2. Air quality stations with PM10 measurements in Tehran city: station name, acronym, location
(latitude, longitude), and data availability.

Name Acr. Lat. (◦ N) Lon. (◦ E) Data

Aghdasyeh AG 35.79587 51.48414 data available
Darous DA 35.77000 51.45416 no data

Fath FA 35.67882 51.33753 data available
Golbarg GO 35.73103 51.50613 no data
Poonak PO 35.76230 51.33168 no data

Region 2 RE 35.77709 51.36818 data available
Shahre Rey SR 35.60363 51.42571 no data

Sharif University SU 35.70227 51.35094 data available
Rose Park RO 35.73989 51.26789 no data after 17 h l.t.

EUMETSAT RGB composites built from three infrared channels of the SEVIRI (Spin-
ning Enhanced Visible and InfraRed Imager) radiometer travelling onboard METEOSAT
satellites are the most common tool used to detect and monitor dust plumes. However, in
this case, such a product did not allow observation of the dust storm that passed through
Tehran since it occurred under convective clouds, but the detected convective activity
visible from satellite data provided proof that the region was under high convective ac-
tivity that was able to produce cold downdrafts, high-velocity surface winds, and high
concentration of airborne dust along the frontal zone. The development and movement of
the convective cells provided information about the area of convective cell formation.

2.3. Numerical Simulation

Hindcasts (forecasts of the past event) of the 2 June 2014 Tehran dust storm event
were performed over the domain presented in Figure 1. The start time of the forecast was
12 UTC 1 June, and it ended at 00 UTC 3 June 2014 (forecast time: 36 h). The initial and
boundary conditions for the regional forecast were used from the ECMWF IFS (Integrated
Forecasting System) global forecast. Forecast global fields, rather than reanalysis, were
chosen in order to have better assessment of regional forecast quality in case it is employed
in an operational forecast system, and its potential for the use in warning systems. The
resolution of the models was 0.025◦ (about 3 km) with 60 vertical levels.

The model used for this case study was DREAM (Dust REgional Atmospheric Model),
which performed well in another haboob case study in Phoenix, Arizona, on 5 July 2011 [17].
It is a fully coupled atmospheric-dust non-hydrostatic numerical weather prediction model
including prediction of dust concentrations (for example, [20,21]). In this version, dust
transport is driven in-line with the NOAA/NCEP (National Centers for Environmental
Prediction) atmospheric numerical weather prediction model NMME (Non-hydrostatic
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Mesoscale Model on E-grid). The dust particle size distribution contains eight size cate-
gories of dust particle sizes (radii of 0.15, 0.25, 0.45, 0.78, 1.3, 2.2, 3.8, and 7.1 µm). Dust
transport includes a viscous sublayer between the surface and the lowest model layer [22],
which is the main feature that distinguishes DREAM from other dust-atmospheric mod-
els. More details on the DREAM version used in this study can be found in [17] and the
references within.

The mask of the potential dust source areas (referred to below as ‘dust source mask—DSM’)
represents the map of the bare land fractions over the model domain and is a necessary
input for dust-atmospheric models. It indicates the areas where soil particles are available
for emission in the case of a drier topsoil layer and higher surface velocity winds. For
this case study, such a mask was obtained using the approach from [17], where NDVI
(Normalized Difference Vegetation Index) MODIS data representative for the beginning
of the June 2014 and MODIS land cover data were used to parametrize the bare land
fraction. Soil texture is information already included in numerical weather prediction
models (in this case from hybrid database STATSGO-FAO: State soil geographic database of
US Department of Agriculture (STATSGO) and Food and Agriculture Organization database
(FAO)) and contains data on the soil particle size distribution. In this case study, forecast
of PM10 (contribution from PM10 dust concentration) is presented, meaning that clay and
silt size particles are contributors to the PM10 concentration. In addition to the already
mentioned surface conditions and bare land fraction information needed for dust emission,
dust emission rates also depend on the clay and silt content in the topsoil. Figure 3 presents
soil texture data from DREAM and a potential dust source mask designed from MODIS
data (indicated as DSM1) for this case study.
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The DREAM forecast was also carried out with a coarser resolution of 0.1◦, using
DSM1, to compare the quality of the results with a high-resolution run and to assess the
necessity of the dynamical downscaling of such event forecasts to a high resolution.

DREAM dust forecasts were carried out with two more versions of DSM. The map of
dust sources in Iran, provided by Geological Survey of Iran, was implemented as DSM2 in
DREAM, instead of DSM1, and the simulation was carried out with the same model set-up.
Finally, from DSM2, we selected only agricultural surfaces (dry farming and abandoned
agricultural surfaces), and DSM3 was created as an input for another simulation experiment.
The source map and derived DSM2 and DSM3 are presented in Figure 4.

Another contribution to the modeling assessments was performed with the widely
used WRF-Chem model version 3.7.1, which has embedded dust transport and other dust-
related processes. WRF-Chem has been validated for its ability to realistically forecast dust
AOD in the broader region of northern Africa, the Middle East, and the Mediterranean [23].
It is operationally used by the METEO unit at the National Observatory of Athens (NOA),
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and its model outputs are provided to the WMO SDS-WAS initiative. The forecast carried
out for the case study of the Tehran dust storm was performed with the same model set-up
as DREAM (domain, initial and boundary input fields, resolution, forecast start time, and
resolution). A potential dust source mask was defined using the information on land
cover already embedded in the model, selecting bare land, grassland, open shrubland, and
cropland as potential emission areas. The selected land cover types can be dust sources
in the case that they are bare or sparsely vegetated, with low soil moisture. In the model
domain, they cover the majority of the area. This choice was made in order to assess the
ability of the WRF-Chem model performance in forecasting atmospheric conditions and
dust forecasting performance in general if using only already available information from
the model itself. The GOCART (Goddard Chemistry Aerosol Radiation and Transport
model) dust emission scheme was used in this study [24] modified as in [23]. This emission
scheme is used in an operational model version in NOA.
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Figure 4. Dust source masks for additional high-resolution DREAM simulation experiments: (a) source mask, (b) derived
DSM2, which represents the source mask prepared as an input for the model, and (c) DSM3, which includes only agricultural
sources from the source mask; the model domain in (a) and the case study area in (a–c) are approximately marked with
black-lined squares; original source mask in (a): Shahbazi, R.; Sheikh, M.; Ahmadi, N. Potential Sources of Aerosols and
Dust, National Project Ref. Code: 140031213307), 2017, GSI, Tehran, Iran (http://webgis.ngdir.ir/management/Guest/,
accessed on 10 July 2021).

3. Results

The analysis of the collected observations provided the necessary information to assess
the atmospheric conditions during the dust storm event. The dust forecast with the coupled
dust-atmospheric numerical models provided more information about the atmospheric
conditions in a wider area that led to the formation of the dust storm, the dust storm’s
origins, and its progression. Model data analysis also provided reasoning for the necessity

http://webgis.ngdir.ir/management/Guest/
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of high-resolution modeling implementation in the forecast of such events and the capacities
of the models to give high-quality dust forecasts that may serve as inputs for improvements
of dust warning systems.

3.1. Description of the Dust Storm from Public Evidence

According to public evidence, the dust storm reached Tehran at 5:30 p.m., local time
(13:00 UTC). The passing of the dust wall over the fixed site lasted about 15 min, which
indicates the speed of dust storm movement. The estimated duration of the whole event
was about 2 h. The dust storm caused a reduction in visibility to about 10 m in Tehran
city; wind gusts reached 110 km/h (30.5 m/s), and measured temperature dropped from
33 ◦C to 18 ◦C. The damage the storm caused in Tehran, besides demolition, was 5 deaths,
82 injured, multiple vehicle collisions, and about 50,000 residential units lost power. Over
7000 emergency workers were deployed within the hour for field interventions and transport
of the injured to hospitals [15]. A photo of the dust storm when it entered the Tehran city is
given in Figure 5. The estimated height of the visible dust wall was about 1500–2000 m.
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Figure 5. Photo of the Tehran dust storm on 2 June 2014; the photo was taken by Alireza Naseri (at the time, a photography
student) from Tehran’s Aghdasieh neighborhood (northern part of Tehran at a higher altitude area of the city); the image is
from: https://news.yahoo.com/deadly-wall-dust-devours-tehran-photo-182346241.html, accessed on 10 July 2021).

3.2. Analysis of the Observed Data
3.2.1. Analysis of the Meteorological Stations Data

The availability of meteorological station data is given in Table 1. The period 03 UTC
2 June—00 UTC 4 June 2014 is presented in Figure 6 (with surface air temperature, atmospheric
pressure, wind direction). Visibility data are not presented, only commented upon. Due to
the low frequency of data, some visibility reduction was only noted in few stations.

At the OIIV station located in the southwest, a drop in temperature of over 10 ◦C was
detected at 12 UTC 2 June Year, and the next measurement at 15 UTC showed an increase,
which means the storm had passed. The other two stations in the south of Tehran, OIIE
and TETV, detected a drop in temperature of about 15 ◦C at 15 UTC. The other stations
also showed a drop in temperature at 15 UTC, and afterwards the temperature stayed low
since it was the nighttime. Going further to the northeast, the signal of the storm weakened
and did not reach the TETF station. In the visibility data (not shown here), the first signal
of the storm was detected at 12 UTC, when visibility at OIIV dropped to 3000 m (during
other hours when no visibility reduction was noted, the values were equal to 10000 m), and
stayed somewhat lower (7000 m) at 15 UTC. At OIIE station, a decrease in visibility in these
data was not detected. Another station, TETS, detected a drop in visibility at 12 UTC, and
most of the others at 15 UTC, but none of them showed a decrease in visibility near zero, as
reported during the dust storm. In the surface atmospheric pressure data, the values at

https://news.yahoo.com/deadly-wall-dust-devours-tehran-photo-182346241.html
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most of the stations showed an increase in pressure at 15 UTC. The most pronounced was
at TETD, over 10 mb. The measurements of dew point (not shown here) also showed an
increase in values at 15 UTC, except in OIIV, where an increase was detected at 12 UTC.
Wind direction data at the southern stations, OIIV and TETV, showed similar values, with
the wind changing from 9 to 12 UTC from south to west, and later at 15 UTC to the north
wind. The stations in Tehran, OIII, and TETO showed that the wind direction remained
with a dominant south direction until 12 UTC, and an observation at 15 UTC showed a
dominant north direction. The stations in the northeast largely did not observe this type of
direction change during these hours.
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Figure 6. Observed data in meteorological stations listed in Table 1, divided into three groups (purple, blue, and pink)
according to their location, as shown in Figure 2a. Available data are given for the period 2–3 June in a UTC time scale (and
for wind from 6–18 UTC 2 June): air surface temperature (a–c), surface atmospheric pressure (d–f), and wind direction (g–i);
in the wind direction graphs (g–i), the stations have the same markers as in the temperature and pressure graphs, and time
(UTC) is given at the radii of the polar diagrams.

Considering the presented meteorological observations with the available data in
3-h intervals, it can be concluded that the event’s main characteristics were a significant
drop in temperature, a change in wind direction, a rise in air humidity and atmospheric
pressure, and a drop in visibility. The listed features indicate that the nature of the event
was a haboob as reported in [16]. The frequency of the observations does not allow a clear
depiction of all features, but the data point out that the storm originated somewhere in
the south or southwest of the Tehran over the dry and barren areas before 12 UTC, and it
reached Tehran between 12 and 15 UTC.
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3.2.2. Analysis of the Airport METAR Data

Airport measurements are available in half-hour intervals, which additionally con-
tributed to the determination of the dust storm’s progression. METAR data from two
airports were considered: Imam Khomeini (OIIE) and Mehrabad (OIII). The location of
these stations and their distance are shown in Figure 2. In addition to the higher frequency
of data, compared to already discussed data from the meteorological stations, the METAR
data include information on the cause of visibility reduction; in both stations, the dust
storm was marked as the cause.

Figure 7 presents the 2 m air temperature, dew point, mean sea level pressure, and
visibility, and Figure 8 presents wind direction and velocity data for 2 June 2014 for both
airports (some of the presented graphs were made to be the same or similar to those
presented in [16]). The main evidence from these data is that the passage of the dust storm
was registered at 12:30 UTC at OIIE, and at OIII at 13:00 UTC according to the visibility data,
with a significant drop in temperature, rise in humidity, and rise in atmospheric pressure.
More pronounced changes were recorded at the southern airport, OIIE, where visibility
dropped to 20 m. The distance between the observations is about 30 km, which gives
information on the speed of the dust storm’s movement. The storm impacted the conditions
for about an hour to an hour and a half over one station. The wind speed increased up to
50 knots (~25 m/s, ~93 km/h) at 12:30 UTC at OIIE and at 13:00 UTC. The wind direction
changed from a south direction until 12 UTC at OIIE, and 12:30 at OIII, to a west direction
(half an hour to an hour later), and after, it changed to winds blowing from the north.
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Figure 7. METAR data at the OIIE (Imam Khomeini, left) and OIIE (Mehrabad, right) airports on 2 June 2014: (a,b) 2 m air
temperature, dew point, mean sea level pressure, and (c,d) visibility.

These data confirm that the storm arrived from drylands south/southwest of Tehran
and reached the southern airport at about 12:30, travelled toward the center of the town for
half an hour, and weakened. When the dust storm reached the town, at about 13:00–13:30,
the wind changed to a west direction, which probably pushed the dust toward the east and
cleared the air in the town. After, north winds prevailed and fully cleared the city air of the
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dust. This evidence additionally confirms it was a haboob-like storm, but raises the idea of
a multicell storm, with some originating in the south and some in the west, according to
the wind direction change.
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direction and (c,d) wind speed (knots).

3.2.3. Analysis of EUMETSAT Images

The satellite images for the day of the event were provided by the EUMETSAT SEVIRI,
as a wider domain than ground observations was collected (Figure 9). Within the case
study area, high convective activity (in red color) is visible, forming in the southwest of the
area, continuing toward the northeast, and, after 13 UTC, moving toward the east. A local
dust storm should be detected as a strong pink color, but it was beneath the clouds and not
visible in this case within the case study area.

The satellite data complement the conclusions derived from the meteorological ob-
servations, providing evidence that there was strong convective activity in the south and
southwest of Tehran, related to the strong heating of the soil during the day in the dry-
lands. This multicell storm, which was moving toward the north and northeast, had cold
downdrafts followed by the strong surface winds, which swept over the dry and barren
soil picking up dust and carrying it toward Tehran. In the northern parts of Tehran, the
storm intensity was probably reduced because the wind changed to a westerly direction.
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convective activity, and pink should represent airborne particles.

3.2.4. Analysis of PM Data

The list of stations from which PM data were collected are given in Table 2, and their
locations in Tehran are shown in Figure 2. The data are hourly averaged values and PM10,
presented in Figure 10.

The highest values of the hourly averaged PM10 at 18 h local time (13:30 UTC)
were detected in the stations in northern part of Tehran (stations RE—Region 2 and AG—
Aghdasyeh). The values were over 400 µm/m3 in the RE station and over 250 µm/m3 in
the AG station. The values in FA (Fath) and SU (Sharif University) were about 100 µm/m3,
while for the other stations during and after the storm, data are not available. At 19 h, higher
PM10 was also detected in the RE station and was about 150 µm/m3 in the FA and SU
stations. In [16], it is reported that the PM10 measurements from Mehrabad airport (not
available here) were over 900 µm/m3 at the time, which took into account the measurements
during the dust storm passing. Since the FA and SU stations are near the airport but showed
significantly lower values, the measurements’ quality during this event may be questioned.
Nevertheless, the overall conclusion derived from the PM10 data is that the dust storm
passed through the city and caused a sudden increase in PM10. After its passing, a fast
decrease was recorded. This indicates that the dust storm was short-lived event but with
very high dust concentrations, which also confirms the sudden and short-lived visibility
reduction over the airports. This conclusion, derived from the PM10 data, will be adopted
for a comparison with the models’ results in a qualitative (descriptive) way, rather than a
quantitative way because the values (hourly averaged) are not comparable with the results
from the models (values simulated for a specific time moment), and in-point comparison of
station and model data (due to the high temporal and spatial variability of dust concentra-
tions in these events) can cause a double penalty problem (even with the better performance
of high-resolution model simulations and scores derived from in-point verification drops,
discussed in [17]); the quality of the PM10 measurements is questioned and the data are, in
large part, missing for the time period of the event.
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3.3. Analysis of the Numerical Simulations Data

In total, five experiments were carried out for the Tehran dust storm case:

1. Experiment DHR1: DREAM high-resolution (0.025◦, ~3 km) forecast with dust source
mask defined using MODIS data (DSM1);

2. Experiment DLR1: DREAM low-resolution (0.1◦) forecast with dust source mask
defined using MODIS data (DSM1);

3. Experiment DHR2: DREAM high-resolution (~3 km) forecast with dust source mask
defined from dust source map created by Iranian institutions (DSM2);

4. Experiment DHR3: DREAM high-resolution (~3 km) forecast with dust source mask
defined from dust source map created by Iranian institutions but with selected agricul-
tural surfaces only such as dry farming and abandoned agricultural surfaces (DSM3);

5. Experiment WHR: WRF-Chem high-resolution (~3 km) forecast using information on
land cover from the model in defining dust source areas.

All experiments have a cold start (no airborne dust in the initial fields) and passive
dust transport (no impact of the airborne dust on the atmospheric conditions).

3.3.1. Analysis of DREAM High-Resolution Forecasts Using Three Versions of Dust Source
Masks (Experiments DHR1, DHR2, and DHR3)

The data analysis presented in this section is the core of this study. We aimed to assess
the model performance in forecasting atmospheric conditions which led to the formation of
the Tehran dust storm and the dust forecast quality, as well as the contribution of agricultural
surfaces to the airborne dust concentration in this event.

Figure 11 presents wind velocity and direction over the case study area from 10 UTC to
13 UTC. The frontal area formed from several downdrafts from convective clouds is marked
with a black line. In the frontal area, the wind direction changed, and after its passing, the wind
velocity significantly increased and had values over 20 m/s. The movement of the frontal zone
was from the southwest to the northeast and passed through Tehran at 12–13 UTC.

To additionally validate the wind patterns in the southwestern part of Tehran Province
over the Imam Khomeini airport (OIIE station) where the storm signal was the strongest
(presented in Figure 8), in Figure 12, wind data are presented only for this area at 12, 13, and
14 UTC. At 12 UTC, the wind direction over OIIE was the strongest and had a southwest
direction; at 14 UTC, the wind was blowing from the west, and at 14 UTC from the northern
side. Compared to the observations, the model well represented the wind patterns.



Atmosphere 2021, 12, 1054 15 of 26

Atmosphere 2021, 12, x FOR PEER REVIEW 15 of 25 
 

 

southwest direction; at 14 UTC, the wind was blowing from the west, and at 14 UTC from 

the northern side. Compared to the observations, the model well represented the wind 

patterns. 

 

Figure 11. DREAM wind velocity (m/s) and direction over the case study area and line of the front (black line) during the 

period 10–13 UTC, at (a–d) with one hour interval. 

 

Figure 11. DREAM wind velocity (m/s) and direction over the case study area and line of the front (black line) during the
period 10–13 UTC, at (a–d) with one hour interval.

Atmosphere 2021, 12, x FOR PEER REVIEW 15 of 25 
 

 

southwest direction; at 14 UTC, the wind was blowing from the west, and at 14 UTC from 

the northern side. Compared to the observations, the model well represented the wind 

patterns. 

 

Figure 11. DREAM wind velocity (m/s) and direction over the case study area and line of the front (black line) during the 

period 10–13 UTC, at (a–d) with one hour interval. 

 

Figure 12. DREAM high-resolution simulation: wind patterns during the period 12–14 UTC, (a–c) with one hour interval,
over Tehran Province; approximate location of the OIIE station is marked with a grey square.



Atmosphere 2021, 12, 1054 16 of 26

High winds on their path provoke the emission of dust particles from the bare fractions
of the soil surface. From the experiment DHR1, the PM10 dust surface concentration for the
period 10–13 UTC is presented in Figure 13. The formation of the three main downdrafts
that seemed to be responsible for the majority of dust emissions and transport are marked
with squares. The formation of these downdrafts happened consecutively at 10 UTC and
11 UTC. Two of them happened south of Tehran Province, and the frontal area and dust
movement were predominantly from south to north. At 12 UTC, a strong downdraft
occurred in the southwest from Tehran and impacted the movement of the storm in a way
to change its direction to SW–NE. Maximum PM10 values were near the southern border
of Tehran Province (over 8000 µm/m3), but a change in dust movement and dominant
westerly winds at 13 UTC caused the southern part of Tehran Province to be most affected
by the dust storm, while the northern part was relatively protected. After 13 UTC, it started
to clear from the area. North winds started to blow and cleared the area of dust.
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To show the intensity of the cold downdraft from a supercell simulated with DREAM,
a vertical cross-section that approximately cuts through the area of the third marked down-
draft and that goes over the southern side of Tehran is given. Figure 14 presents vertical
cross-sections of the temperature field and the vertical component of the wind velocity
with streamlines. The timing of the images is 12 UTC. In the temperature cross-section,
it can be seen that in the first couple of hundred meters, the near-surface temperature is
over 35 ◦C, but where the downdraft happened, cold air fell from the heights and caused
the temperatures near the surface to be about 15–20 ◦C, which corresponds to the air
temperature at about a 1500–2000 m altitude in the surrounding area. The velocity of the
cold air downdraft reached over 10 m/s (locally over 20 m/s), and when the air with a
strong vertical velocity hit the ground, it produced a high-velocity horizontal component
of the surface winds.
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Figure 14. Vertical cross-section of temperature field (a) and vertical component of wind velocity with streamlines (b),
obtained by DREAM high-resolution run at 12 UTC; on the x-axis is the latitude; on the y-axis are the model levels; black
lines are the heights above land surface.

Using the same model set-up, which gave the same atmospheric conditions during the
forecast but with implemented dust mask versions DSM2 (experiment DHR2) and DSM3
(experiment DHR3), the PM10 dust surface concentrations are presented in Figure 15. The
data are presented for 12 UTC and 13 UTC.

Implementing DSM2 (experiment DHR2), which has lesser area coverage with dust
sources, produced a smaller area affected by the airborne dust. Near and over the Tehran
area, the concentrations were up to about 4000 µm/m3.

Using only abandoned agricultural areas and dry farming as a dust sources (dust
source mask DSM3, experiment DHR3) where the abandoned agricultural surfaces are
located south of Tehran (in this version of simulation, the only source area which emitted
dust which came to Tehran), the results for 13 UTC show that it produced PM10 dust
surface concentrations in the range of 2000–4000 µm/m3. This means that this source was
responsible for over 50% of the dust within the dust storm that reached Tehran city. The
intrusion of the airborne dust from abandoned agricultural areas in the city maybe had a
significantly greater contribution locally.



Atmosphere 2021, 12, 1054 18 of 26
Atmosphere 2021, 12, x FOR PEER REVIEW 18 of 25 
 

 

 

Figure 15. DM PM10 dust surface concentration (μm/m3) at 12 UTC using DSM2 (experiment DHR2) (a) and DSM3 (ex-

periment DHR3) (b); (c,d) same as (a,b), respectively, but for 13 UTC. 

A vertical cross-section of the dust data from the DREAM forecast DHR2 is presented 

in Figure 16. The dust, which went through the Tehran area, is visible here as a relatively 

narrow dust wall with PM10 dust concentrations in the range of 1000–4000 μm/m3 reach-

ing a height of about 2000–3000 m (Figure 16a). Due to its narrow structure, it passed 

quickly over the Tehran (according to public evidence, about 15 min over the fixed point). 

Another product generated by the model is the dust number concentration (DNC) pre-

sented in Figure 16b. This product could be more suitable in relation to visibility and a 

useful alternative to PM10 for dust forecast presentation. 

Figure 15. DM PM10 dust surface concentration (µm/m3) at 12 UTC using DSM2 (experiment DHR2) (a) and DSM3 (experiment
DHR3) (b); (c,d) same as (a,b), respectively, but for 13 UTC.

A vertical cross-section of the dust data from the DREAM forecast DHR2 is presented
in Figure 16. The dust, which went through the Tehran area, is visible here as a relatively
narrow dust wall with PM10 dust concentrations in the range of 1000–4000 µm/m3 reaching
a height of about 2000–3000 m (Figure 16a). Due to its narrow structure, it passed quickly
over the Tehran (according to public evidence, about 15 min over the fixed point). Another
product generated by the model is the dust number concentration (DNC) presented in
Figure 16b. This product could be more suitable in relation to visibility and a useful
alternative to PM10 for dust forecast presentation.
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Figure 16. Vertical cross-section of (a) PM10 dust concentration (µm/m3) and (b) dust number concentration (number of
dust particles in cm3) from DREAM forecast (experiment DHR2) at 13 UTC; x- and y-axis have the same meaning as in
Figure 14.

3.3.2. Analysis of DREAM Low-Resolution Forecast (Experiment DLR1)

The DREAM low-resolution forecast in this study was performed with the same
model set-up as the high-resolution forecasts, but with the model resolution set to 0.1◦,
using the dust source mask DSM1. This resolution was chosen as the highest resolution
of the operational dust models forecast available in SDS-WAS. The PM10 dust surface
concentration for the case study area is presented in Figure 17, including arrows which
indicate wind direction and velocity (the same arrow size set-up as in figures related to
high-resolution runs). The low-resolution run did not manage to reproduce the event; no
cold downdrafts in the study area occurred, and wind velocities were below 3 m/s. The
presence of the airborne dust of several hundred µm/m3 occurred because of the dominant
east winds, which occurred before the strong convective activity over the case study area,
meaning it was not produced by the atmospheric conditions related to event of the Tehran
dust storm.
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Atmosphere 2021, 12, 1054 20 of 26

Vertical cross-sections for the low-resolution run (DLR1), similar to the one presented
for the high-resolution forecast, are presented in Figure 18. From the vertical cross-section
of the temperature field, cold downdraft did not occur, and the vertical velocities were low.
The vertical cross-section of the dust concentration one hour later shows the presence of
the dust on the eastern side of the case study area with relatively similar values to those of
the ground up to 3000–5000 m and over the Tehran area below 1000 (µm/m3). A wall of
high dust concentrations is not visible in this cross-section, and the dust present here is of a
different origin, as already explained.

Due to the lack of strong winds, which in reality impacted the faster movement of
the dust, and of opposite direction to the observed winds in the case study area, in this
simulation the dust coming from the east went over the case study area and remained for
longer period of time.
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Figure 18. Vertical cross-section of temperature field at 12 UTC (a), vertical component of wind velocity with streamlines at
12 UTC (b), and PM10 dust concentration at 13 UTC (c), obtained by DREAM low-resolution forecast (experiment DLR1); x-
and y-axis have the same meaning as in Figure 14.

Additionally, the model set to this low resolution is not capable to properly see small-
scale dust sources (hot-spots) such as agriculture farms, or it could see them as weaker
sources because of the grid box averaging of the input information. Thus, besides the absence
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of high-velocity surface winds, as shown here, additional dumping for the reproduction of
high airborne dust concentrations would reduce the potential of hot-spots for dust emission.

In the Supplementary Material, the DREAM results for surface temperature, wind
and dust concentration for the whole model domain are provided (Video S1), as well as
surface dust concentrations from all three high-resolution runs (Video S2). The results are
given in the form of animated gifs, which show the formation, progression, and dissipation
of the storm events on 2 July 2014.

3.3.3. Analysis of WRF-Chem High-Resolution Forecast

Since the WRF-Chem is widely used and accessible to interested users, with the provided
guidance and support, a WHR experiment was carried out to assess its capacity to act as a
dust forecast model for early warning purposes. The surface wind velocity and direction for
the case study area are presented in Figure 19. The front line generated by strong surface
winds that were produced by the cold downdrafts was moving across the area from the
southwest toward the northeast, and after the front passed, wind velocities increased to over
20 m/s. This model was set to produce outputs every half an hour so as to allow a better
representation of this fast-changing event. At 11:30 UTC, the front reached Tehran. At
12 UTC, the highest winds hit Tehran city.
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The results obtained for the PM10 dust surface concentration for the case study area
are presented in Figure 20. This model, using an approximation of dust sources from fixed
data on land cover, managed to reproduce the atmospheric conditions before and during
the Tehran dust storm. The arrival of the frontal line and increasing wind velocity blowing
from the southwest to the northeast over Tehran Province in the southern and western
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parts were somewhat earlier than observed (about an hour early), but the signal of the
approaching storm was strong and clear. Since the sources are widely distributed over
the model domain, higher concentrations of dust are present over the case study area,
bringing dust into the Tehran region even after the passing of the dust storm, the timing
and duration of which is evidenced from the observations. Such false dust signals can
be avoided by incorporating more representative dust source mask as input information
for the model, as was performed for the DREAM model simulation. Nevertheless, the
numerical performance of WRF-Chem in forecasting the Tehran dust storm showed that
the model is capable of forecasting intensive, short-lived dust storms and of providing
early warnings for such events.
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4. Discussion

The Tehran dust storm on 2 June 2014 had the characteristics of a haboob. Strong
convective activity occurred in the south and southwest of Tehran Province because of the
intensive heating during the day. Multiple convective cells formed with an intensive cold
downdraft, which produced strong surface winds. The frontal area of the high-velocity
winds merged and formed a storm front line, which swept through Tehran Province.
Intensive emission of dust particles occurred along the path of the high-velocity surface
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winds and created the fast-moving dust storm (approximately 60 km/h). The most affected
areas were the southern and southwestern parts of Tehran Province and Tehran city. The
modeled and observed PM10 dust surface concentrations were up to 8000 µm/m3. A
clearly visible dust wall arrived in Tehran about 13 UTC as a hazard that endangered the
lives of the citizens and caused many structural damages. Public and emergency units
were not warned sufficiently prior to its arrival.

The forecasts of the dust storm performed with the DREAM and WRF-Chem models
in this study gave high-quality results and proved that operational dust forecast can
provide information on such events at least 24 h before they happen. Both of these models
and any other coupled dust-atmospheric non-hydrostatic model—with the capability of
providing high-quality forecasts of atmospheric conditions that lead to severe local dust
storm formation, the capacity to simulate sudden emissions of high dust concentrations,
and a properly defined dust source mask—are very likely capable of being employed in
early warning systems. This finding confirms that a large contribution to the efficiency of
early warning systems is possible if a dust operational forecast is employed.

Lessons learned from the numerical simulation experiments provide guidance for
the operational model set-up if the forecast of such a local, short-lived, and intensive dust
storm is required:

(a) The resolution of the coupled dust-atmospheric model must be of several kilometers
to be able to reproduce strong convective activity, which is the essential atmospheric
initiator of such storms.

(b) The model domain should be wider than the area of interest because atmospheric
processes that lead to the formation of the event happen over a larger domain.

(c) The dust source mask should be designed based on the current information (the
bare land fraction should be defined from the latest available information on surface
coverage, derived from satellite data, and updated according to the dynamic of
land cover change within the domain); information from national (or sub-national,
depending on the domain) data on the dust sources and/or soil texture, if available,
should be included in defining the dust source masks.

(d) The dust forecast employed over a local domain will not contain information on the
intrusion of the dust outside of the model domain, and, if such intrusion is possible,
the model boundary conditions must include dust concentrations of some operational
dust model in a coarser resolution and of larger domain (for example, the SDS-WAS
operational dust forecast); an alternative is to use both forecasts as a complementary
material for early warnings.

The conclusion derived from the performed experiments that stands out is the evi-
dence for the consequences of misuse of land surface and its over-exploitation and how
that can adversely affect human livelihoods. Abandoned agricultural lands at the southern
side of Tehran city, recognized as dust sources by the relevant governmental and scientific
institutions of Iran (small-scale and highly dust-productive source, i.e., dust source hot-
spot), were responsible for the major portion of the airborne dust within the dust wall that
swept through Tehran city. While this severe impact of abandoned agricultural surfaces is
only one of the findings derived from the presented simulation experiments, we consider
it to be the most original and significant indicator for setting priorities in emergency re-
sponses for the mitigation of dust sources or for preventing the formation of man-made
dust sources. Interventions of such kind are targeted by the “land degradation neutrality”
actions, which are defined, studied, and promoted world-wide by the UNCCD (United
Nations Convention to Combat Desertification) [25]. In addition to the overexploitation
of soil surfaces by crop production, water scarcity, grazing, and deforestation can have
a direct impact on soil degradation [26] and can thereby result in the formation of SDS
sources. In this way, affected surfaces should also be included in dust source mapping
(depending on the area) because dried lakes and riverbeds, overexploited pastures, and
the removal of self-preserved vegetation coverage are surfaces potentially vulnerable to
wind erosion.
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Dust storms are globally represented in all latitudes as part of the natural dust cycle
with positive environmental impacts or as the consequence of disturbed land surface and
climate conditions [5,6,27–31].

As future socio-economic pathways indicate for the possible futures, in the case of
increasing population and food and water demands, land degradation may increase [1],
and, under climate change impacts, such man-made dust sources may increase. Existing
and potentially increasing problems in the future related to dust storms are linked to the
responsibilities of many UN agencies. For this reason, the UN Sand and Dust Storm Coali-
tion was created, including representatives from 15 UN agencies (https://unemg.org/our-
work/emerging-issues/sand-and-dust-storms/, accessed on 10 July 2021). Coordinated
work by UN agencies (which is responsible for forecast and warning system developments,
for resolving the problem of land degradation, for environmental protection, and for the
protection of human health and safety) is expected to contribute to the restoration of the
natural dust cycle and to the mitigation of negative dust storm impacts and will guide
countries and regions in resolving priority issues related to dust storms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12081054/s1. In the ppt file, the following are given: Video S1: Animated gif of the
DREAM forecast for the experiment DHR1 for the whole model domain for the period 06-20 UTC 2
June 2014: surface (2 m) air temperature (left), surface (10 m) wind direction and velocity (middle),
and PM10 surface dust concentration (right); and Video S2: Animated gif of the DREAM forecasts
of PM10 surface dust concentration, for the case study area for the period 09-18 UTC 2 June 2014:
experiment DHR1 (left), experiment DHR2 (middle), and experiment DHR3 (right).
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