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Abstract: Spatial distribution of soil organic carbon (SOC) is the result of a combination of various
factors related to both the natural environment and anthropogenic activities. The aim of this study
was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest,
(ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic
position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to
lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility
to compaction. The study area was the vineyard region of Nis, which represents a medium-sized
vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil
erosion. However, according to the mean annual soil loss rate, the total area is classified as having
tolerable erosion risk. Land use was shown to be an important factor that controls SOC content.
The vineyards contained less SOC than forest land. The SOC content was affected by topographic
position. The interactive effect of topographic position and land use on SOC was significant. The
SOC of forest land was significantly higher at the upper position than at the middle and lower
positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but
occurred as a consequence of different soil management practices. The deep tillage at 60-80 cm,
along with application of organic amendments, showed the potential to preserve SOC in the subsoil
and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum
soil compaction in the surface layer of the soil, while low permeability was observed in deeper
layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides.
Knowledge of soil carbon distribution as a function of topographic position, land use and soil
management is important for sustainable production and climate change mitigation.

Keywords: soil organic carbon; viticulture; topography; land use; management

1. Introduction

Soil organic carbon (SOC) is key constituent of soil organic matter (SOM), which is an
essential component of soils as it supports soil structure, fertility and a range of physical
and chemical properties. Soil organic carbon stocks comprise the largest carbon pool in
terrestrial ecosystems and act as a major source or sink for atmospheric CO; [1,2]. SOC
sequestration is regarded as an option to mitigate climate change and is based on positive
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SOC budgets for specific land use and management systems, whereby the input of C
into soils exceeds the losses of SOC through erosion, mineralization/volatilization and
leaching [3]. Small changes in the SOC stock impact the carbon cycle and may significantly
increase or decrease the carbon concentrations in the atmosphere [4]. Batjes [5] estimated
the global SOC stock up to a 2 m depth to be 2060 + 215 Pg. C. Scharlemann et al. [6]
reviewed the SOC estimations published in 27 studies from 1951 to 2014 and pointed out
that there was a very considerable range of variation, between 504 and 3000 Pg. Responding
to the current capacities for soil carbon sequestration, the initiative “4 per Thousand” (4
p1000) was formed in Paris in 2015, with the aim of increasing awareness about land use
responsibility and climate change [7].

Spatial distribution of SOC is the result of a combination of various factors related
to both the natural environment and human activities, with heterogeneity observed at
different spatial scales [8].

Land use is one of the main factors that control the distribution of SOC [9]. Changes
in land use are the second most important source of greenhouse gas (GHG) emissions into
the atmosphere after fossil fuel burning [10,11]. The replacement of forest and natural
grassland by cropland may cause a reduction of SOC [12]. SOC loss after deforestation
is between 30% and 42% and conversion from grassland to cropland caused a decline of
24-59% of total SOC [13,14]. Deng et al. [15] stated that cropland has lower SOC content
compared to undisturbed natural soil due to the continual harvest of aboveground biomass.
In contrast, improved soil management, like conversion from cropland into grassland and
afforested land, can reduce emissions through SOC sequestration, since plant residues and
roots are accumulated in the soil as soil organic matter [13].

Soil management can change the content and distribution of SOC. Tillage operations
strongly control the soil environment. These effects influence many physical, chemical
and biological properties of soil [16]. Conventional tillage has been shown to enhance
short-term CO, evolution and microbial biomass turnover, as well as accelerate organic
C oxidation to CO;, not only by improving soil aeration but also by increasing contact
between soil and crop residues and by exposing aggregate-protected organic matter to
microbial attack [17].

Topographic position influences accumulation of SOC mainly by altering the input
and output of carbon via hydrological processes [18,19], and it affects soil erosion and sedi-
ment deposition [20], temperature regime, vegetation distribution, and soil processes [14].
Surface SOC concentration has been found to correlate negatively with annual mean
temperature and correlate positively with annual mean precipitation and altitude [21].
However, in soils located on steeper terrain, organic matter accumulation often occurs at
the bottom of the slope. There are two reasons for this accumulation: conditions are wetter,
and organic matter is transported to the lowest point in the landscape through runoff and
erosion [22]. Increases in SOM content at mid- or upper-slope positions may decrease soil
erodibility and reduce risks of soil erosion [23].

Soil loss caused by erosion, with various categories of degradation, is a serious
problem in the Republic of Serbia [24]. In the Ni$ region, which mainly belongs to the hilly,
mountainous area of the country, a part of the surface is under the influence of high and
severe intensity erosion, which requires the application of protective measures. Some of the
measures include no-till farming, reduced tillage, terrace construction and maintenance,
cover crops, continuous plant cover and crop rotation and shelterbelts. Also, in recent
years, the trend for soil use changes has been very pronounced, especially the replacement
of perennial crops with annual ones, which brings an additional risk of soil erosion and loss
of organic matter. However, perennial plants are also endangered by these processes. In
vineyards, erosion processes can be very pronounced because vineyards are usually based
on steep and hilly terrain, as well as on mountains with southern exposure due to the better
quality of grapes obtained [25,26]. Besides, due to specific soil properties in vineyards,
such as limited soil development, coarse texture and low capacity to protect SOM binding
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to soil minerals, these soils are sensitive to degradation [27-29] and lose potentially more
SOC than other agricultural soils.

To ensure sustainable land management and to protect the land from degradation, it
is necessary to achieve a satisfactory level of SOC and maintain it. Thus, understanding
soil carbon distribution as a function of topographic position, land use, soil management
and their interaction is important for designing sustainable production and climate change
mitigation that also contribute to food security [30,31]. These effects have not been studied
enough in the soils of Serbia, especially not with regard to multiannual plantations like
vineyards. This study represents a continuation of soil examination in vineyards. Previous
research covered the vineyard region of Tri Morava in Serbia, examining the state of SOC
and the impact of soil type and fertilization strategy on the organic carbon content of the
soil [32].

The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of
vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii)
the variation of SOC content with topographic position, (iv) soil erosion intensity in order
to estimate the significance of SOC leaching from upper to lower topographic positions, (v)
the significance of SOC for reducing the susceptibility of soil to compaction.

2. Materials and Methods
2.1. Study Area

The study area was the vineyard region of Ni$ (Figure 1), which represents a medium-
sized vineyard region in Serbia with a surface area of 1040.84 km?. This region is located
between 43°41’ N and 43°13’ N.

The Nis region includes vineyards located in the valley of the lower Nisava river basin
and the lower basins of the Juzna Morava and Moravica rivers. Although in previous
periods the areas used for vineyards in the Ni$ region were much larger, currently there
are 13.12 km? of vineyards [33].

There are six vine growing districts in this region (Figure 1a): Sokobanja, Aleksinac,
Zitkovac, Cegar, Kutina and Svrljig [34]. The relief characteristics of the region are visible at
three general altitudes (Figure 1b): (1) plains around the rivers in the southeast/northwest
directions—lower level; (2) areas with hills and ridges on both sides of the valleys (except
in the southwestern part of the region)—higher level; and (3) the ends of the mentioned
mountains in the northeast and a small part in the west (near the mountain Jastrebac)—the
highest mountain level. Most of the plots (48.11%) are located at altitudes between 200 and
300 m; 28.11% are located at altitudes of 300 to 400 m, while 13.02% are located at altitudes
of 400 to 500 m. At other altitudes, there are significantly lower shares of the plots.

Viticultural plots in the Ni$ region are mostly located on flat and slightly steep terrains:
43.39% of the plots are located on terrain with a slope greater than 0 to 5° (Figure 1c). The
share of vineyard plots in the Ni$ region on slopes greater than 5 to 10° is 26.42%, while
16.04% of plots are located on very steep terrain (slopes greater than 10 to 15°) [34].

Figure 1d shows that the plots in the Ni$ region are mostly located in the south (S)
(31.5%), southwest (SW) (19.16%) and southeast (SE) (14.04%) and in western (W) (11.95%)
and eastern (I) exposures (7.40%) [34].

Significant pedological diversity, i.e., the diversity of soil types, is expressed in the Ni§
viticultural region (Figure 2). The Ni$ wine-growing region consists of fourteen different
types of soil represented by larger or smaller areas, and the most common soil types are
vertisol, eutric cambisol and luvisol.
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Figure 1. The vineyard region of Ni$, Serbia: (a) vine-growing districts; (b) elevation (m.a.s.1.); (c) slope (°); (d) aspect ([33],
modified by the authors).
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Figure 2. Pedological map of the wine-growing region of Ni$ and borders of vine-growing districts,
according to the World Reference Base (WRB) soil classification; based on a digitalized primary
pedological map of the Republic of Serbia, 1:50,000.

2.2. Climate Characteristics

Climatological data were obtained from four meteorological stations: Ni$ (Jasenovik,
Maléa, Si¢evo and Gornji Barbes localities), Aleksinac (Jasenje, Suri¢, Beli Breg and Vele
Polje localities), Sokobanja (Beli Potok locality) and RC Nis (Svrljig locality).

For the last 20 years, the mean annual air temperatures were 12.4, 9.3, 13 and 11.2 °C
at the Ni$ (204 m.a.s.l.), RC Ni§ (807 m.a.s.l.), Aleksinac (180 m.a.s.l.) and Sokobanja
(300 m.a.s.l.) meteorological stations, respectively (Figure 3). The heat summation period
(April-October), also known as the Winkler index, is 1713.8, placing this region in zone III
according to Winkler [34].
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Figure 3. Mean annual temperatures in the Ni$§ region from 1997 to 2016, obtained from four
meteorological stations.



Agronomy 2021, 11, 1438

6 of 19

Huglin’s (heliothermic) index (HI) (April-September) for the Ni$ region is 2259.7,
which puts the lower parts of the region in the HI + 1 group of regions, in the interval >
2100 < 2400 with the climate type moderate-warm [35]. The value of the drought index
for the Nis region is 138.0 mm, which classifies this region as a DI-1 sub-humid (medium
humid) region, with typical absence of drought [36].

For the last 20 years, the mean annual precipitation levels were 629, 746, 624 and
700 mm at the Ni§, RC Nis, Aleksinac and Sokobanja meteorological stations, respectively
(Figure 4).

1200

1000

600 Ni§
RC Nis
200 Aleksinac
W Sokobanja
200
0

O PO PD DO OD DD DO O
N
R IR BRSNS

Mean Precipitation {mm)

Year

Figure 4. Mean annual precipitation levels in the Nis$ region from 1997 to 2016, obtained from four
meteorological stations.

2.3. Soil Management Practices

The soil management data were derived from long-term management records for the
period 1997-2016. Soil management practices usually involve ameliorative fertilization
with large amounts of mineral fertilizers (300-500 kg P,Os ha~! and 200-300 kg K;O ha™1)
with the addition of organic amendments, most often manure (3040 t ha~!), when planting
vineyards. Common practice also includes deep tillage to an average depth of 60-80 cm,
mixing of soil horizons and placing of organic materials into deeper soil layers. Some
wine producers avoid deep tillage and plow at 30-40 cm. In the first years of the vineyard
plantation, no fertilization is carried out, or smaller amounts of mineral fertilizer are
applied. During the following years of exploitation, mineral fertilizers are applied, while
opinions are divided on the issue of applying organic fertilizers. Some wine producers
avoid using organic fertilizers for grape production, because they fear there will be a
negative impact on the quality of the grapes. Winegrowers generally do not bring grape
pomace back to the soils. Other growers apply organic fertilizers, usually manure, every
fourth year. Frequent tillage between the rows is a common practice during exploitation to
keep the soil free of weeds.

2.4. Soil Sampling

The study was carried out in 10 representative vineyard localities (Table 1). Some
localities are shown in Figure 5 and Supplementary Materials, Figure S1. Field work took
place during 2016. In each topographic position samples were taken from the vineyard and
forest soils. The total analyzed area included 20 production vineyard plots and 10 forest
soils in the close vicinity of the vineyard plots. These plots exhibited uniform micro-relief
and slope in their terrain, as well as having the same cultivation practices. The size of the
plots (subplots) varied from 1400 to 34,500 m?.
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Table 1. Locations, vine growing districts, global positioning system (GPS) coordinates and soil types of the vineyards.

Locality Vine Growing District GPS (E) GPS (N) Soil Type (FAO-WRB)
Jasenje Aleksinac 21.575951 43.629562 Haplic vertisol (ochric), VR-ha-oh
Suri¢ Zitkovac 21.644822 43.453924 Haplic vertisol (ochric), VR-ha-oh
Beli Breg Aleksinac 21.814915 43.478903 Haplic vertisol (ochric), VR-ha-oh
Beli Potok Sokobanja 21.859135 43.674641 Haplic vertisol (ochric), VR-ha-oh
Vele Polje Cegar 21.827743 43.450464 Haplic vertisol (ochric), VR-ha-oh
Svrljig Svrljig 22.069715 43.414675 Abruptic luvisol (clayic), LV-ap-ce
Jasenovik Cegar 22.030862 43.355521 Haplic vertisol (ochric), VR-ha-oh
Malca éegar 22.010568 43.316971 Haplic vertisol, VR-ha-oh
Sicevo Cegar 22 081987 43.346480 Skeletic, dolomitic, eutric leptosol (clayic, ochric),

Gornji Barbes

LP-sk.do.eu-ce.oh

Kutina 21.950723 43.188976 Vertic, eutric cambisol (ochric), CM-vr.eu-oh

(a) (b) (0

Figure 5. Some localities of the vine-growing region of Nis: (a) Svrljig—abruptic luvisol (clayic), LV-ap-ce; (b) Beli

Breg—haplic vertisol (ochric), VR-ha-oh; (c) Si¢evo—skeletic, dolomitic, eutric leptosol (clayic, ochric), LP-sk.do.eu-ce.oh.

The soil was sampled from two depths, 0-30 cm and 30-60 cm. Composite soil
samples amounted to about 20 individual samples. The total number of these composite
soil samples was 60.

In order to determine the indigenous soil type of the vineyard, i.e., the soil that had
not been altered by powerful ameliorative measures (deep tillage) during the vineyard
establishment and turned into an anthrosol (eutric, clayic, regic; AT-eu.ce.rg), soil profiles
were analyzed at a nondisturbed site in the vineyards or near the vineyards (Figure 6).

Soil profiles were analyzed at 10 representative locations, up to a maximum depth
of 200 cm or to the parent material. Samples for soil profile description and classification
were taken in disturbed state using an Eijkelkamp Edelman auger. The total number of this
soil samples was 45.

Georeferencing of soil and parcel samples in this study was performed using GPS
receivers (Trimble GPS GeoXH 3000, Trimble GPS Juno SC, Terrasync Professional software;
Trimble, Inc., Sunnyvale, CA, USA). Data processing was carried out using the ESRI
ArcEditor 10 geographic information system (GIS).

2.5. Soil Compaction Measurement

Soil compaction was determined using an Eijkelkamp penetrologger by measuring
resistance to penetration in all plots. The measurement depth was 80 cm. The threshold
values of soil compaction are shown in Table 2.

Table 2. Threshold values of soil compaction [37].

Soil Compaction Threshold Values
Optimal 1.0-2.5 MPa
Moderate compaction 2.5-3.0 MPa

High compaction 3.0-5.0 MPa
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(b)

Figure 6. Some of the soil profiles: (a) Svrljig locality—abruptic luvisol (clayic), LV-ap-ce; (b) Mal¢a

locality—haplic vertisol, VR-ha-oh.

2.6. Laboratory Analysis

All laboratory analyses were performed at the Laboratory for Soil and Agroecology of
the Institute of Field and Vegetable Crops, accredited according to the standard ISO/IEC
17025:2017 [38].

The soil samples collected were naturally air-dried, milled and passed through a
2.0 mm sieve, following ISO 11464:2006 [39]. Soil pH value was determined with the
potentiometric method following ISO 10390:2005 [40] in a 1:5 suspension of soil in 1 M KC1
using a Mettler Toledo SevenCompact pH meter with glass electrode (Mettler Toledo, LLC,
Columbus, OH, USA). The carbonate content (as CaCO3) was determined according to
the ISO 10693:1995 [41] volumetric method. SOC was determined by elementary analysis
using a CHNSO VarioEL III Elementar (Elementar Analysensysteme GmbH, Langensel-
bold, Germany) after dry combustion and carbonate removal, in accordance with ISO
10694:1995 [42]. The particle size distribution was determined in the <2 mm fraction using
the pipette method [43]. The size fractions were defined as clay (<2 um), silt (2-20 pum),
fine sand (20200 um) and coarse sand (200-2000 pum).

2.7. Soil Erosion Intensity Assessment

Soil erosion intensity assessment was carried out using the Universal Soil Loss Equa-
tion (USLE) model [44]:
A=R-K-LS-C-P

where A (t ha™! yr’l) is the mean annual soil loss, R (M] mm h~! ha™! y’l) is the
rainfall erosivity factor, K (t ha h ha=! MJ~! mm™1) is the soil erodibility factor, LS is the
topographic factor, C is the land use/cover factor, and P is the practice factor (conversational
measures, because erosion measures in the examined area were not taken into account).

Climatic data from the measuring stations around the studied territory were used
to calculate the R factor. In this study, a simplified GJRM model was used to obtain the
value of this factor [45,46]. The K factor was calculated using the Wischmeier and Smith
equations [44]. In generating the LS factor of the study area, the SAGA GIS module was
used, calculated from the ratio developed by Desmet and Govers [47], while the CLC
database was used to calculate the C factor.



Agronomy 2021, 11, 1438

90f19

The classification of soil erosion risk categories according to the Organization for
Economic Cooperation and Development (OECD) [48] uses the following ranges: tolerable
(<6.0 t ha=! yr71), low (6.1-10.0 t ha~! yr~!), moderate (10.1-22.0 t ha~! yr~1'), high
(22.1-33.0 tha—! yr~1!) and severe erosion (>33.1 tha ! yr‘l).

2.8. Statistical Analyses

Study data were processed using the methods of descriptive statistics. A general linear
mixed model was fitted for SOC data. All factors, including the main effects of land use,
topographic position and soil depth, as well as the corresponding interactions in the model,
were considered as fixed. Additionally to this base model, several alternative candidate
models with diagonal structures for the main effects and interactions were fitted. The best
model based on the AIC value criterion was selected for further discussion and for least
squares means comparisons. The differences were tested when significant effects were
detected. Correlation analysis between SOC content and resistance to penetration of soil,
as well as between mean annual soil loss and altitude, was explored by using the Pearson
correlation at a significance level of p < 0.05. All statistical analyses were performed using
SAS software and Statistica 12.6 (StatSoft, Inc. Corporation, Tulsa, OK, USA).

3. Results and Discussion
3.1. Characteristics of the Soil

Physical and chemical soil properties of the investigated area for the soil layers at 0-30
cm and 30-60 cm and for the profile horizons (<200 cm) are given in Table 3. In topsoil and
subsoil, the pH value was highly acid to slightly alkaline, according to the classification
for vineyard soils [49]. Soil pH value comes from the pH reaction of the parent substrate
in which the soil was formed. The topsoil layer (0-30 cm) had an acidic pH value for the
most part (62% of the region’s surface area). In the soil profile horizons, the pH values of
most soils increased with depth. The most suitable soil pH in terms of vine cultivation
is neutral [50]. According to White [51], the optimum pH range for vine growth is 5.5-8.
Slightly acidic and neutral vineyard soils have a better nutrient balance for plant growth.

Table 3. Descriptive statistics of soil properties in layers: 0-30 cm, 30-60 cm and profile horizons
(<200 cm).

Soil Properties Mean =+ Standard Deviation
0-30 cm
pH (in 1 M KCI) 542 +1.15
CaCO3 (%) 2.65 +10.84
Clay (%) 36.67 £9.91
Silt (%) 22.32 + 4.86
Fine sand (%) 28.57 £7.17
Coarse sand (%) 12.44 4+ 8.26
30-60 cm
pH (in 1 M KCl) 5.46 +1.15
CaCOs3 (%) 5.01 +10.84
Clay (%) 39.92 +9.78
Silt (%) 21.35 +4.94
Fine sand (%) 26.71 £7.28
Coarse sand (%) 12.02 +8.24
Profile horizons, 0-200 cm

pH (in 1 M KCl) 5.62 +£1.13
CaCOs3 (%) 6.26 + 10.79
Clay (%) 35.12£9.93
Silt (%) 21.04 £4.85
Fine sand (%) 31.04 £7.18

Coarse sand (%) 12.80 4+ 8.00




Agronomy 2021, 11, 1438

10 of 19

Samples of topsoil and subsoil belonged to the noncalcareous to highly calcareous
soil categories [49]. The content of CaCOj3 in completely carbonate-free soils was either
uniform in terms of profile depth or a small amount of carbonates appeared at the lower
layer. In other soils, the carbonate content increased with the depth of the profile. The
content of CaCOj largely depended on the parent substrate.

Increased clay content was recorded in both soil layers and varied between 21.44% and
61.88% in topsoil and 21.56% and 51.92% in subsoil. Most of the samples were concentrated
in the classes of light clay and heavy clay. This texture is unfavorable for most cultivated
plant species. Loamy soils with high organic matter, low-water-holding capacity and
well-drained characteristics are more suitable for plant production [52].

3.2. Intensity of Soil Erosion

The mean annual soil loss in the Ni§ region was 5.42 t ha~! yr~!, determined using the
USLE model [44] (Figure 7). The average erosion intensity in the observed localities ranged
between 0.05 and 9.80 t ha~! yr~!, with a mean value of 4.43 t ha~! yr~—! (Table 4), which
classifies this area as having tolerable erosion risk according to the OECD classification [48].

. s
B 0110
10.1.22
B 2133
-

Figure 7. Mean annual soil loss in the Ni$ region (t ha=! y=1).

Table 4. Mean annual soil loss in observed localities.

Locality A
Jasenje 5.64
Suri¢ 5.83
Beli Breg 3.43
Beli Potok 9.82
Vele Polje 5.86
Svrljig 0.58
Jasenovik 1.78
Mal¢a 2.77
Si¢evo 8.81
Gornji Barbes 3.24

A—Mean annual soil loss (t ha=! yr=1).

A low risk of surface soil erosion was determined for 12.45% of the surface, while
16.52% of the territory was found to be under a moderate erosion processes. High risk of
erosion was detected for 2.73% of the territory and severe risk of soil erosion was observed
for 0.73% of the territory. The most endangered vine-growing districts were Sokobanja,
with 8.15% of the territory under high and severe risk and Cegar, with 5.92% of the territory
under high and severe risk. The highest mean annual soil loss was in the Beli Potok
(9.80 tha~! yr~1) and Si¢evo (8.81 t ha~! yr~!) localities. The lowest mean annual soil loss
was in the Svrljig locality (0.58 t ha=! yr—1).
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3.3. Effect of Topographic Position and Soil Depth on SOC Content

The effect of topographic position on SOC content is shown in Table 5 and Figure 8.
After fitting several candidate models that assumed heterogeneous error variance for the
model term, the most suitable model with a heterogeneous error variance structure for
the factors was selected based on the AIC value (data not shown). All further discussion
(throughout the study) is based on inferences from the selected model. Topographic
position was a significant factor, while soil depth was highly significant.

Table 5. Tests of fixed effects from the model with a suitable error variance structure.

12

= I
o N

SOC (g kg™)

©

Effect Num DF  Den DF F-Value Pr>F
Land use 1 18.2 8.57 0.0089
Soil depth 1 18.2 12.33 0.0025
Topographic position 2 18.2 5.35 0.0148
Land use x soil depth 1 18.2 0.68 0.4191
Land use x topographic position 2 18.2 5.76 0.0115
Soil depth x topographic position 2 18.2 0.01 0.9910
Land use x soil depth x topographic position 2 18.2 0.08 0.9248
12
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Figure 8. Soil organic carbon content: (a) for different topographic positions, p < 0.05; (b) in soil layers, p < 0.01 Significant

differences between soil groups are labeled with different letters, (N = 60).

The SOC content was significantly higher at the upper and the middle position than
at the lower positions. The SOC in the lower topographic position (<350 m.a.s.1.) of the
vine-growing region of Ni§ ranged between 2.55 and 13.46 g kg~!, with a mean value of
8.22 g kg~ !. At350-450 m, SOC content ranged from 3.48 g kg ! to 14.09 g kg1, with a
mean value of 9.38 g kg 1. At the highest altitudes above 450 m, the SOC content ranged
from 5.34 g kg ! to 24.13 g kg1, with a mean value of 10.45 g kg~ .

These results might be attributable to the differences in temperature and precipitation
between different topographic positions. Decreasing temperature and increasing precipita-
tion with altitude can be seen in Figures 3 and 4. The highest mean annual precipitation
(746 mm) and the lowest temperature (9.3 °C) were at the highest altitude (807 m.a.s.L.).
The lowest mean annual precipitation (624 mm) and the highest temperature (13 °C) were
at the lowest altitude (180 m.a.s.L.).

Altitude affects climatic characteristics, composition and productivity of vegeta-
tion [51], soil water balance, soil erosion, geological deposition processes, soil micro-
biological activity and other processes [52,53], thereby influencing the content of and
changes in organic carbon in the soil. At higher altitudes, SOC accumulation is higher
due to decreases in temperature and increasing levels of soil moisture [54-56]. At the,
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increasing soil temperature accelerates the rate of SOC decomposition [57,58], improves
the level of soil respiration [57] and leads to a significant decrease in SOC content [58-60].
These findings are consistent with the results obtained by Sims and Nielsen [61], who
reported that SOC had a significant relationship with altitude in Montana, USA. Also, Dai
and Huang [62] reported that SOC stocks had a linear and positive correlation with altitude.
Decreasing temperature with altitude has been shown to limit SOC turnover in forest soils,
leading to enhanced SOC storage [63]. lower positions

Previous studies in Serbian soils have shown that organic carbon content has de-
creased from 52.7 g kg’l (1450 m.a.sl) to 394 g kg’1 (500 m.a.s.1.) [21]. In the study by
Vidojevi¢ [55], SOC increased from lower to upper positions. In this study, the SOC content
was: 35.60 g kg ! at 500-1000 m.a.s.l., 18.70 g kg ! at 200-500 m.a.s.1. and 15.20 g kg !
at altitudes below 200 m.a.s.l. In the examination by Fang et al. [64], SOC in forest land
increased with altitude and levels were significantly different at 0200 and 400-800 m in
the 10-30 cm soil layer. Similar results were obtained by Abebe et al. [65], where SOC stock
in bushland was the highest (166.22 Mg ha~!) in the upper position.

In contrast, numerous studies have confirmed carbon leaching through erosion related
to topography [65-68]. With increasing slope, infiltration decreases because the increasing
slope area and the velocity of the water flow lead to increasing runoff. Although a part of
the surface of the examined area was endangered by erosion processes, a high threat of
erosion was found only for 2.73% of the territory and a severe threat for 0.73%. The average
erosion intensity in the observed localities ranged between 0.05 and 9.80 t ha~! yr~1,
with a mean value of 4.43 t ha~! yr~!, which classifies this area as having tolerable soil
loss according to the OECD classification [48]. The correlation between mean annual soil
loss and altitude (r = 0.29) was not significant. It can be concluded that erosion did not
significantly contribute to leaching of organic matter.

The overall mean SOC concentration of the samples in topsoil (0-30 cm), 10.85 g kg~ !,
was significantly higher than SOC concentrations in subsoil (30-60 cm), 7.25 g kg~ !. This is
in agreement with the results of other research [1,32].

3.4. The SOC Content for Different Land Uses

The SOC contents were significantly affected by land use (Table 5 and Figure 9).
Vineyard areas exhibited lower values of SOC (8.28 g kg~!) compared to forest areas
(10.58 g kg 1), indicating that the management adopted in these areas contributed to the
reduction of these fractions. Forests have dense cover, which protects soil from being
exposed to any other factors, such as erosion; hence, the SOC content is less affected [69].
This finding has been confirmed by many authors, who have shown that forest soils supply
a large carbon input and have low litter decomposition [32]. This means that forest soils
are distinguished by higher SOC, which is highly related to the lower degree of natural
and human-induced disturbance.

13
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Figure 9. Effect of land use on soil organic carbon content. Significant differences between soil groups

are labeled with different letters, p < 0.01 (N = 60).
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Due to the specificities of soils in vineyards, such as limited soil development and their
coarse texture and low capacity to protect SOM from binding to soil minerals, these soils
are sensitive to degradation [28-30]. In addition, intensive viticulture under conventional
cultivation systems is likely to increase the risk of soil degradation in the studied area.
Intensive viticulture could lead to the loss of soil fertility, acceleration of soil erosion and
SOM mineralization and increases in CO, emissions [59,70,71]. Soil tillage affects soil
respiration, temperature, water content, pH, oxidation-reduction potential and the soil
ecology [6,61]. In particular, it enhances the microbial biomass turnover and, in turn, the
short-term CO; evolution by improving soil aeration, increasing the contact between soil
and crop residues and exposing organic matter to microbial attack [17].

Similar results were obtained in wine-producing regions in the state of Santa Catarina,
Brazil [65]. In the study by Gatullo et al. [72], the SOC content in a table grape vineyard in
southern Italy was 2.86 g kg ~!. Similar results were recorded by Dogan and Giilser [54] in a
soil study in the Menderes district of Izmir, Turkey, where the SOC content was in the range
of 2.70-14.91 g kg~ !. Zhou et al. [4] concluded that land use is the main SOC change driver.

Previous studies in Serbian soils have shown that land use is an important factor in
SOC variability. Manojlovic et al. [21] observed a significantly higher SOC content in forest
land (020 cm depth) compared to agricultural land. Vidojevi¢ [55] stated that the largest
reserves of organic carbon are in forest soil (27.8 g kg~ !), while they are significantly lower
(15.80 g kg !) in agricultural land. In the study by Antonovi¢ and Mrvi¢ [73], the average
SOC content in forests was 15.20 g kg ~!. The SOC in vineyards was lower, 12.91 g kg~ .

3.5. Effects of Land Use on SOC Across Topographic Positions

The interaction between topographic position and land use had a significant effect
on SOC (Figure 10). The SOC contents of forest land were significantly higher at the
upper position (17.32 g kg~!) than that at the middle (9.56 g kg~!) and lower positions
(8.46 g kg~1). However, SOC contents in vineyards were not significantly different across
topographic positions. At the lower positions in vineyards, SOC ranged from 3.95 g kg ~!
to 12.24 g kg1, with an average value of 8.09 g kg~!. At the middle positions, the SOC
content ranged from 4.17 to 12.47 g kg1, with a mean value of 9.20 g kg~!. At the upper
topographic position in vineyards, the SOC content ranged from 3.88 g kg ! t0 15.49 g kg~ !,
with an average value of 8.17 g kg 1.

— f T T
Sl [ T il W i
Vv F Vv F

Figure 10. Effects of land use on SOC across topographic positions. Significant differences between

<350ma.s.l 350—450 m a.s.l.

SOC (g kg™)
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soil groups are labeled with different letters, p < 0.05 (N = 60). V—vineyard, F—forest.
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Unlike forests, which have less human interference, agricultural land is often dis-
turbed by soil management. Variations in the SOC content at the same altitude and with
the same soil type were primarily due to the different approaches of winegrowers to vine-
yard fertilization and tillage (see Section 3.6). Some winegrowers avoid using organic
fertilizers because they fear there will be negative effects on the quality of the grapes
(extended period of grape ripening, low sugar and high acid content). Furthermore, there
is also a higher risk of SOC being leached from upper to lower topographic positions in
agricultural land compared to forests. Similar results were obtained by Dortzbach et al. [74].
Their study found that the irregular spatial distribution of SOC in the vineyard soils was
significantly influenced by management practices and soil disturbance, in addition to
altitude and climatic factors. Furthermore, Abebe et al. [65] observed irregularities in the
spatial distribution of SOC in vineyard soils.

3.6. The Influence of Soil Management on SOC

Figure 11 shows the SOC content, which depended on the management practice, in
the topsoil and subsoil of vineyards. The effects of soil type and location on the SOC
of vineyards were not significant in our study. Vineyards, in which deep tillage was
performed along with the application of organic amendments, had a higher average SOC
content in subsoil in comparison to vineyards in which tillage was performed at depths of

30-40 cm. There was no difference in the surface layer.
13
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Figure 11. Soil organic carbon (SOC) content in soil layers of vineyards for different tillage depths
(N = 60). Significant differences between soil groups are labeled with different letters, p < 0.05.

The SOC content in the subsoil of deeply tilled vineyards was similar to the value in
the subsoil of forest land. Deep tillage (60-80 cm) has led to deep placement of organic
amendments. This practice shows high potential for SOC preservation in the deeper soil
layer and for prevention of carbon loss from the surface layer. Subsoil has high potential
for the storage of additional soil organic carbon because of the large number of unsaturated
mineral surfaces and environmental conditions that impede SOC decomposition, e.g., a
more constant moisture and temperature regime or oxygen limitation [75]. Subsoiling can
break compacted hardpan layers and it reduces soil strengths and improves water use
efficiencies [75-77]. Similar results have been obtained by other authors. According to Liu
et al. [16], deep tillage (subsoiling) increased SOC and N compared to conventional tillage.
Cervantes et al. [78] stated that after the deep plowing, the layer of the deeply plowed
fields accumulated 0.4 + 0.1 Mg SOC ha=! yr—! on average. In the study by Shen et al. [79],
subsoiling was found to increase aggregate-associated organic carbon, dry matter and
maize yield on the North China Plain.

3.7. SOC and Soil Compaction

In our study, in the surface horizon (0-30 cm) on all plots (Figure 12, line a), the
compaction was within the optimal values. At a depth of 30 cm, the compaction went
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beyond the optimum range, as it entered the range of moderately compacted soil up to
the fiftieth centimeter, where it continued to grow. In some plots, a significant increase
in penetrometric resistance or soil compaction at the depth of tillage could be observed
(Figure 12, line c), which can negatively affect the growth and development of the root
system of plants. Also, the presence of a soil layer with low permeability has resulted
in the the top soil layer being more prone to saturation with water. The top soil layer
is thus at risk of causing landslides. In contrast, individual plots were characterized by
optimum values throughout the entire soil layer in which the plant root system had already
developed (Figure 12, line b). Increased soil compaction has a very unfavorable effect on
both soil and plants [46]. Soil compaction can induce or accelerate other soil degradation
processes, such as erosion or landslides. Compaction reduces the infiltration rate, which
increases run-off in sloping [80].

Resistance to penetration(MPa)
0 2 4 6

Depth (cm)
3 8 8 8 8 8 B

\r

—a.——=h)—¢

Figure 12. Penetrometric resistance of the tested soil: (a) average value for all plots; (b) Jasenovik
locality—haplic vertisol (ochric), VR-ha-oh; (c) Mal¢a locality—haplic vertisol, VR-ha-oh.

Heavy mechanization, extensive cultivation activities—especially if performed under
unfavorable soil moisture conditions—and a trend of decreasing organic matter content
in agricultural soils increase soil compaction and disturb the water, air and tempera-
ture regime.

Soil structure can be improved by increasing soil organic matter [81] and reducing
the soil’s susceptibility to compaction, erosion and landslides [82,83]. Increases in organic
matter can reduce compactibility by increasing resistance to deformation and/or increasing
elasticity (rebound effects) [84]. In our study, a significant negative correlation (—0.53) was
found between the SOC content and soil compaction, expressed through penetrometric soil
resistance. Similar results were obtained in the study by Vasin et al. [85]. Compactibility is
sensitive to even quite small changes in the amount of organic matter. These observations
have important implications for the improvement of soil management in order to avoid
over-compaction problems in crop production.

4. Conclusions

The amount of organic carbon in soil and its spatial distribution depend on the land
use, soil depth, altitude and management practices, as well as the interaction between
land use and topographic position. Land use proved to be an important factor influencing
SOC distribution. Due to specific soil properties in vineyards and the conventional land
cultivation and specific fertilization strategies used, vineyards contained less SOC than
forest land. The effect of topographic position was significant. The distribution of SOC in
forest soils was influenced by altitude. At higher altitudes, SOC accumulation was higher
due to lower temperatures and increased levels of soil moisture. At lower positions, higher
soil temperatures led to a significant decrease in SOC content. The spatial distribution of
organic carbon in the vineyards was not dependent on altitude, but most likely resulted
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from different soil management practices. Deep tillage at 60-80 cm, along with application
of organic amendments, has high potential for the preservation of SOC in the deeper soil
layer and for the prevention of carbon loss from the surface layer. Continuous tillage in
vineyards at constant depths has led to the formation of a layer with low permeability.
Increases in SOC content, i.e., organic matter, reduce soil compaction and lower the risk of
erosion and landslides.

Knowledge of soil carbon distribution as a function of topographic position, land
use and management practice is important for sustainable soil management and climate
change mitigation. Systematic monitoring and more efficient soil management should be
considered for the improvement of SOC status.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10.3
390/agronomy11071438/s1, Figure S1. Some of the observed vineyards in the vineyard region of Nis.
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