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Immobilized cell systems are traditionally
described by one-dimensional mathematical models
that take into account diffusion and conversion of
substrates as well as cell proliferation in immobilization
matrices and biofilms. All properties (substrate
concentration, biomass density, porosity etc.) are
assumed to vary only in the direction from the bulk liquid
to the carrier interior. However, development of cell
clusters inside the support matrices and formation of
channels and filaments in biofilms result in significant
spatial variability of all significant parameters, thus
requiring multidimensional modeling (Picioreanu et al.,
1999). Cellular structures have been modeled by cellular
automata rules. For bacterial colonies, diffusion limited
aggregation (DLA) model used by Fujikawa (1994) and
different random walk models by Schindler and Rataj
(1992) predicted complex growth patterns similar to
those experimentally observed, but no explicit
conversion of nutrients has been included. Combined
differential-discrete models were successfully
developed for modeling diffusion-reaction-microbial
growth in gel beads and biofilms (Picioreanu et al.,
1998, 1999) Basis of these models is combination of
differential-discrete models with hard cellular automata
rules. Thus, the substrates are represented in
continuous field and determined by numerical methods
from the reaction—diffusion mass balances, whereas
discrete mapping is used for cell arrangement. Cell
growth in spherical gel beads was determined as
substrate limited and distribution and spreading of cells
were modeled by a discrete cellular automation
algorithm. The differential-discrete—cellular-automata
(DDCA) model was successfully applied for prediction of
oxygen concentration profiles and cell distributions in
gel beads (Picioreanu et al., 1998). In the present work
we have modified the proposed DDCA model by
addition of a rule for cell spreading and applied it to the
same experimental data reported by Picioreanu et al.
(1998).
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IMPLEMENTATION OF A COMBINED
DIFFERENTIAL-DISCRETE CELLULAR
AUTOMATA MODEL FOR CELL GROWTH
IN GEL BEADS

MODEL DEFINITION

Rectangular uniform grid is used to represent the
physical space. Cubic volume elements are used to fill
3D volume. In N x M x L 3D Cartesian grid, coordinates
of volume elements are given by vector (x, y, z) O
(0...N-1,0...M-1,0...L-1).

Two basic variables are chosen to represent the
state of the system: the soluble limiting substrate
concentration (S) and the biomass density (C) (both in
dimensionless forms, varying in the range 0 to 1). Third
variable (c) is used for storing information about the
occupation state of space elements with cells and takes
two values: O for unoccupied space (gel matrix) and 1
for occupied space (biomass placement).The substrate
concentration in grid elements depends on the balance
between transport mechanisms and consumption rate
by immobilized cells. In the present model only diffusive
transport of the substrate within the gel matrix is
considered. Consequently, the mass balance for
substrate over time in the general 3D system is:
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where cs and cx are the substrate and biomass concen-
trations within the gel beads, respectively, Ds is the sub-
strate diffusion coefficient and rs is the substrate
conversion rate usually defined as a Monod-like satura-
tion function:
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where um is the maximum specific growth rate of cells,
Yxs is the cell growth yield from substrate, ms is the
maintenance coefficient and Ks is the Monod saturation
constant. The net rate of biomass formation, rx, can be
then expressed as:

rx (s, cx) = Yxs (rs (Cs, cx) — MsCx) )

Considering the biomass accumulation to be the
net result of biomass growth and biomass decay, the
biomass balance will be:

0
S = (excs) @
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The equations (1), (2), (8) and (4) define the
differential part of the model that is the substrate
transport and biomass accumulation.

The cellular automata rules for cell growth are as
follows:

If the biomass concentration in a defined space
element increased to a maximum level (i.e. the threshold
for cell division):

1. The biomass in the volume element is divided
into two equal parts (representing two cells). The first
stays at the same site, and the second cell must be
placed in another space element.

2. Search for a free space elements in the
neighborhood considering search depth.

3. If a free space element is not in the nearest
neighborhood push randomly chosen nearest
neighborhood element into the direction of the free
space found and make one nearest neighborhood
element free.

4, Place the second cell in the nearest free
neighborhood space element.

These rules present a modification of the
previously proposed DDCA model by Picioreanu et al.
(1998). In that model, the free space element was
randomly chosen regardless the search depth, while in
the present model it is assumed that the cell will find the
nearest free space so that the number of cells that have
to be "pushed" will be the lowest. Cell movements
towards free space elements by described cellular
automata rules (1-4) are schematically presented in
Figure 1. In addition, in the present model, the most
simple biomass detachment approach is used. If the
space, in which the newly formed biomass has to be
placed, is located outside of the gel sphere then the
microorganisms are simply removed. In the future,
different detachment rules could be applied considering
hydrodynamic environments around the cell carriers.

The boundary conditions are set for the case in
which external mass transfer limitations could be
neglected, that is the substrate concentration is maximal
and constant outside of the bead: S = 1 = constant (at

Figure 1. A simple chosen for cellular automata division rules for
two cases: [) the nearest space element is free; ll) the nearest
free space is found such that the new cell has to "push" randomly
chosen cells towards that space element.
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any t) for where r is a radial distance from the center of
the spherical bead and Rbead is the bead radius.

At time zero, substrate is also at the maximal
concentration and uniformly distributed in the space: for
all (x, y, z) elements. In addition, an initial number (ng) of
virtual microbial cells are randomly distributed
throughout the gel sphere.

The algorithm for determination of microbial cell
growth and diffusion gradients of substrate is as follows:

Initialization. Specify initial substrate field and seed
the bead volume with microorganisms, randomly
distributed in the sphere. Initial count of microorganism
cells is no.

Step1. Find the substrate distribution after a
defined time interval. An iterative super—relaxation
algorithm solves the balance equations (1) — (2).

Step2. Solve the biomass balance (3) — (4). The
biomass growth rate is used in each grid element
occupied by biomass to calculate the amount of
biomass produced at a given time interval.

Step3. Check each element that contains biomass
to determine if the threshold for cell division has been
reached. If yes then redistribute the biomass according
to the automation rules.

Then the algorithm goes back to the step 1 to find
the substrate distribution for the new state of biomass
matrix.

MODEL PARAMETERS

Parameters for microbial growth and diffusive
substrate transport, applied in the previously proposed
DDCA model (Picioreanu et al., 1998), were also used in
this study as summarized in Table 1.

Table 1. Parameters used in simulations of substrate concen-
tration profiles and growth of Nitrosomonas europaea immo-
bilized in carrageenan gel beads (Picioreanu et al., 1998)

Parameter Symbol Value Units
Total number of volume N=M-L 108 O
elements

Substrate concentration in -3 —
bulk liquid Cso | 8.8400 (kg m™
Biomass maximum density —
in colonies Cxm 70 (kgm9)
Initial number of "cells" no 210 =
Bead diameter d 2.00007° (m)
Diffusion coefficient of 9 2 1
substrate Ds 2.0010 (m®s™)
Monod saturation constant Ks 350007 (kg mfs)

for substrate

3.0000°° (kgs

Maintenance coefficient ms Koy 3,1)
Maximum specific growth 5 =
rate Hm 1.52010 (s)
Growth yield from substrate | Yxs 0.045 (kgxRgs )
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Figure 2. 3D occupation of space with microbial cells in a spherical gel bead (2 mm in diameter corresponding to 100 grid increments).

a) Initial cell distribution (t = 0); b) Cell distribution after 15 days.

RESULTS AND DISCUSSION

Simulated growth of Nitrosomonas europaea
immobilized in a spherical gel bead is presented in
Figure 2. Development of microbial colonies of different
sizes as functions of distance from the bead surface can
be distinguished. The results of the simulation were
compared with results obtained by the previously
proposed DCCA model (Picioreanu et al., 1998).
Predictions of the two models are overally similar with
slightly different shapes of microbial colonies. The
presented model is globally identical to the previous
model but with altered cellular automata rules for cell
division. The rules applied in this study take into account
direction of the cell movement. In the present simulation
it is assumed that the cell will take the nearest free
space at the minimal number of already present cells to
be "pushed". However, the applied rules also provide a
possibility of governing the cellular division and
movement in some particular direction e.g. towards the
source of nutrients or other stimuli. In this way, the
effects of a chosen cultivation parameter on cell growth
could be modeled and estimated.

CONCLUSION

In this paper a automata—discrete—cellular—
automata model was developed for prediction of
substrate concentration profiles and growth of cells
immobilized in gel beads. The model was based on a
previously proposed DDCA model with modified cellular
automata rules. The rules applied here provided

modeling of cell movements towards nearest free sites.
In addition, cell growth in the present model could be
directed in some specific direction, which could be
attractive for evaluation of the effects of growth factors or
other biologically active molecules on growth kinetics
and colony formation. Overally, the model predictions of
cell distributions within the gel beads were in qualitative
agreements with the results of the previously proposed
model as well as with previously reported experimental
data (Picioreanu et al., 1998).

NOMENCLATURE

cs — Substrate concentration in volume elements (kg mﬁ)
cx — Biomass concentration in volume elements (kg mﬁ)
rs — Substrate consumption rate (kg m® s’1)

rx — Biomass formation rate (kg m= s’1)

C - Dimensionless biomass density (-

S - Dimensionless substrate concentration (-)

N, M, L — Sizes of matrices (-)
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