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Summary 

 
The assessment of predictive- and prognostic molecular markers in tumor tissue, also known 
as personalized treatment, has transformed clinical practice for many cancer types. This 
genotype-directed therapy was found to improve patient survival, and several technical 
platforms have been introduced in clinical laboratories since then. However, not all tumors can 
be biopsied and tissue quantities are often insufficient for tumor characterization. Liquid 
biopsies, such as membrane-encapsulated- or circulating free RNA, DNA and proteins, can be 
derived from body fluids and can replace or complement tissue biopsies. They have several 
advantages, such as repeated sampling, a minimally invasive character and heterogeneous 
profiling. Unfortunately, there is still a big gap between basic research and clinical 
implementation of liquid biopsies, mainly due to the lack of standardized methodologies. In 
addition, currently used technical platforms are not always suitable to analyze the low quantity 
and quality of tumor-derived material that can be found in a liquid biopsy. In consequence, 
large-scale validation and clinical implementation of liquid biopsy-based biomarker assays 
requires a sensitive, quick, easy-to-use, relatively cheap, flexible and standardized technical 
platform with low input requirements. 
 
The nCounter platform can be used to analyze all types of molecules, including RNA, DNA 
and proteins. Binding of color coded barcodes to targets of interest allows for either a direct 
read-out of gene- or protein expression levels or the detection of mutations. Tissue-based 
biomarker assay development on nCounter led to the FDA approval of the Prosigna™ assay 
for clinical use in breast cancer subtyping. Previous efforts have also highlighted the potential 
of this platform to analyze amplified liquid biopsy-derived molecules, although validation 
studies in the clinical setting are needed. In this thesis we validated the use of the NanoString 
nCounter platform to analyze material from liquid biopsies and develop clinically relevant 
biomarker assays. Two manuscripts have been accepted for publication on this topic (chapter 
2 and 3), and two additional manuscripts are in preparation for publication (chapter 4 and 5).  
 
In chapter 2, we focused on one of the most advanced liquid biopsies in terms of clinical 
implementation; circulating tumor DNA. We extracted cell-free DNA (cfDNA) from body 
fluids of cancer patients, including 70 retrospective- and 91 prospective samples, and used the 
nCounter platform with the 3D Single Nucleotide Variant (SNV) Solid Tumor Panel for routine 
mutation detection. We obtained highly concordant results when comparing mutation detection 
in five clinically relevant genes by nCounter with other routinely used technical platforms 
(98.9%). In addition, follow-up analysis showed that this workflow can be used to detect 
resistance mutations. Importantly, the nCounter platform was able to detect these mutations 
with lower cfDNA input, in a shorter time frame, with less hands-on time and using a 
straightforward data analysis.  
 
We then continued with a less clinically advanced liquid biopsy; extracellular vesicles (EVs). 
The nCounter platform had never been used to analyze gene expression in plasma-derived EVs. 
To this end, in chapter 3, we performed a proof-of-concept study where we optimized a 
workflow for EV enrichment, EV-mRNA purification and subsequent gene expression analysis 
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on nCounter to develop biomarker assays. Our final workflow, including a DNase treatment, 
was highly reproducible and could be performed in only three days. We then used this 
workflow to assess gene expression in plasma EVs from cancer and control individuals, using 
the Human Immune V2 594-gene panel. Although our sample cohort did not qualify for the 
development of a clinically relevant signature, we developed a machine learning algorithm as 
a proof-of-concept. We found that an eight gene signature could be used to accurately 
distinguish between the EVs of cancer patients and controls.  
 
Biomarker assays are most valuable if they meet a clinical need. Therefore, we implemented 
the EV-mRNA workflow in another project, performing a side-by-side comparison of tumor 
tissue- and EV-mRNA in chapter 4. Treatment with immune checkpoint inhibitors (ICIs) can 
improve patient outcome, but it can also cause an overactivation of the immune system. This 
can result in the development of immune related adverse events (irAEs), such as checkpoint 
inhibitor pneumonitis (CIP). CIP occurs in about 20% of ICI-treated patients, and is an 
inflammation of the lung tissue that can be lethal if not detected and treated in time. In this 
study, we used pre-treatment tumor tissue and EVs to develop a predictive CIP signature based 
on the expression of 770 genes included in the IO360 panel. We initially obtained an 8-gene 
tissue CIP signature, that was able to predict CIP with an accuracy of 86.6%. Interestingly, this 
signature did not work in EVs. Considering our previous EV proof-of-concept results, and 
based on the advantages of an EV-based biomarker assay, we then developed a new EV-based 
signature. This 4-gene EV CIP signature had a high accuracy (87.0%) and negative predictive 
value (92.7%). Moreover, the CIP signature score could not only be used to predict CIP before 
starting ICI treatment, the EV CIP-score also increased during actual CIP development.  
 
Lung cancer is the leading cause of cancer-related death worldwide and new tools for early 
detection are an unmet clinical need. In chapter 5, we have used the EV-mRNA workflow for 
the development and validation of a signature for early lung cancer detection from plasma EV 
samples using the Human Immune V2 panel. A 16-gene signature was able to classify early- 
and late stage lung cancer versus controls with an accuracy of 81-84% in the training cohort. 
Equally high accuracy values were obtained in a separately collected validation cohort.  
 
In conclusion, this thesis has provided evidence that the nCounter platform can be used for the 
analysis of liquid biopsies in the clinical setting, especially for ctDNA and EV-mRNA. The 
low quantity and quality requirements, accuracy, short turn-around time, flexibility, high 
reproducibility and straightforward data analysis are important advantages of this platform. To 
this end, clinically relevant biomarker assays can be developed and validated on this 
standardized platform and can aid in the transition of liquid-derived biomarker assays from 
bench to bedside. The results presented in this thesis have also generated new possible lines of 
research. Many more liquids (e.g. urine, saliva), biosources (e.g. tumor educated platelets, 
circulating tumor cells, white blood cells) and circulating molecules (e.g. cfRNA, circular 
RNA, long non-coding RNA, proteins) require similar validation studies. Combining several 
types of circulating molecules, or even biosources, in a multi-omics approach is also a 
possibility on this platform and may provide a more robust source of biomarker assay 
development.  
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Resumen 

 
La evaluación de los marcadores moleculares en tejido tumoral para el pronóstico del cáncer y 
la predicción de respuesta al tratamiento (lo que habitualmente se conoce como tratamiento 
personalizado) ha transformado la práctica clínica a la hora de tratar muchos tipos de cáncer. 
Son numerosos los trabajos que desde hace tiempo respaldan el efecto que esta terapia dirigida 
por genotipo tiene sobre los pacientes oncológicos mejorando la supervivencia del paciente; 
consecuentemente, un amplio rango de plataformas técnicas han sido implementadas en los 
laboratorios clínicos en los últimos años. Sin embargo, no todos los tumores se pueden biopsiar 
y, a menudo, las cantidades de tejido son insuficientes para la caracterización del tumor. Las 
biopsias líquidas, como el ARN, el ADN o las proteínas circulantes tanto libres como 
encapsuladas en una membrana, pueden extraerse de los fluidos corporales reemplazando o 
complementando de este modo las tradicionales biopsias de tejido. Las biopsias líquidas tienen 
varias ventajas: ofrecen la posibilidad de realizar estudios seriados, son mínimamente invasivas 
y permiten analizar la heterogeneidad tumoral. Desafortunadamente, todavía existe una gran 
brecha entre la investigación básica y la implementación clínica de las biopsias líquidas, 
principalmente debido a la falta de metodologías estandarizadas. Además, las plataformas 
técnicas que se utilizan actualmente no siempre son adecuadas para analizar la baja cantidad y 
calidad de material del tumor procedente de una biopsia líquida. En consecuencia, la validación 
e implementación de los ensayos de biomarcadores en biopsias líquidas en los laboratorios 
clínicos requieren una plataforma técnica estandarizada que sea sensible, rápida, fácil de usar, 
viable económicamente, flexible y que requiera un aporte inicial de ácidos nucleicos bajo, 
debido a la baja concentración que normalmente se obtiene en las biopsias líquidas. 
 
La plataforma nCounter se puede utilizar para analizar todo tipo de moléculas, incluyendo 
ARN, ADN y proteínas. La hibridación de diferentes códigos formados por moléculas de 
colores siguiendo patrones específicos con secuencias de interés permite una lectura directa de 
los niveles de expresión de genes y proteínas o la detección de mutaciones. El desarrollo de 
ensayos de biomarcadores en tejidos usando nCounter condujo a la aprobación por la 
administración de fármacos y alimentos de los Estados Unidos (FDA) del ensayo Prosigna ™ 
para su uso clínico en la tipificación del cáncer de mama. Numerosos estudios han destacado 
el potencial de esta plataforma para analizar moléculas derivadas y amplificadas de biopsias 
líquidas, aunque estudios de validación en el entorno clínico aun son necesarios. El objeto de 
esta tesis es la validación del uso de la plataforma NanoString nCounter para analizar material 
de biopsias líquidas y desarrollar ensayos de biomarcadores clínicamente relevantes. Se han 
aceptado dos manuscritos para su publicación sobre este tema (capítulos 2 y 3), y dos 
manuscritos adicionales estan actualmente en preparación para su incipiente publicación 
(capítulo 4 y 5).  
 
En el capítulo 2, nos enfocamos en una de las biopsias líquidas más avanzadas en términos de 
implementación en la clínica; ADN tumoral circulante (ctDNA). Extrajimos ADN libre 
circulante (cfDNA) de fluidos corporales de pacientes con cáncer, incluyendo 70 muestras 
retrospectivas y 91 muestras prospectivas. Durante este estudio hemos utilizado la plataforma 
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nCounter con el panel de tumores sólidos que muestran una variante única de nucleótido (SNV) 
para la detección de mutaciones clínicamente relevantes. Obtuvimos resultados de la detección 
de mutaciones en cinco genes mediante nCounter los cuales mostraron una alta  correlación 
con los resultados obtenidos mediante  otras plataformas técnicas de uso habitual (98,9%). 
Además, el análisis de seguimiento mostró que este flujo de trabajo se puede utilizar para 
detectar mutaciones en oncogenes asociados  con  la  resistencia a terapias oncológicas. Sobre 
todo, la plataforma nCounter pudo detectar estas mutaciones más rápido, con una menor 
cantidad de cfDNA, con una necesidad mínima de personal concebido y utilizando un análisis 
de datos sencillo. 
 
El segundo estudio se centra en unos biomarcadores menos avanzados clínicamente dentro del 
campo de las biopsias líquidas, como es el caso de las vesículas extracelulares (EVs). La 
plataforma nCounter nunca se había utilizado para analizar la expresión génica en EVs 
derivados de plasma. A tal efecto, en el capítulo 3, realizamos un estudio piloto en el que 
optimizamos un flujo de trabajo para el enriquecimiento de las EVs, la purificación del ARN 
contenido en estas vesículas y el posterior análisis de expresión génica mediante nCounter 
evaluando el potencial que alberga esta plataforma para desarrollar ensayos de biomarcadores. 
Como resultado, nuestro flujo de trabajo final, incluyendo un tratamiento con DNasa, fue 
altamente reproducible con una duración total de solo tres días. Una vez optimizado el flujo de 
trabajo, este mismo protocolo fue utilizado para evaluar la expresión génica en EVs de plasma 
de los pacientes con cáncer e individuos controles, utilizando el “Human Immune V2 panel” 
de Nanostring el cual alberga 594 genes. Aunque nuestra cohorte de muestras no calificó para 
el desarrollo de una firma clínicamente relevante, desarrollamos un algoritmo de aprendizaje 
automático como prueba de concepto. Descubrimos que se podría usar una firma de ocho genes 
para distinguir con precisión entre las EVs derivadas de los pacientes con cáncer y los 
controles. 
 
Los ensayos de biomarcadores son más valiosos si satisfacen una necesidad clínica. Por esta 
razón, implementamos el flujo de trabajo de EV ARN en otro proyecto, realizando una 
comparación directa entre ARN de  tejido tumoral y ARN derivado de EVs, tal y como se 
detalla en el capítulo 4. El tratamiento con inhibidores de puntos de control inmunitarios (ICIs) 
puede mejorar el resultado del paciente, pero también puede provocar una sobreactivación del 
sistema inmunológico. Esto puede resultar en el desarrollo de eventos adversos relacionados 
con el sistema inmunológico (irAE), como la neumonitis por inhibidores de puntos de control 
inmunitarios (CIP). La CIP ocurre en aproximadamente el 20% de los pacientes tratados con 
ICIs y es una inflamación del tejido pulmonar que puede ser letal si no se detecta y trata a 
tiempo. En este estudio, utilizamos tejido tumoral y EVs basales para desarrollar una firma 
predictiva de CIP basada en la expresión de 770 genes incluidos en el panel IO360. 
Inicialmente obtuvimos una firma CIP de tejido de 8 genes, que fue capaz de predecir CIP con 
una exactitud del 86.6%. Curiosamente, esta firma no funcionó en EVs. Teniendo en cuenta 
nuestros resultados anteriores de prueba de concepto de EVs, y basándonos en las ventajas de 
un ensayo de biomarcadores basado en EVs, desarrollamos una nueva firma en EVs. Esta firma 
de 4 genes tuvo una alta exactitud (87.0%) y un alto valor predictivo negativo (92.7%). 
Además, la puntuación de la firma CIP no solo se puede utilizar para predecir CIP antes de 
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comenzar el tratamiento con ICIs, sino que la puntuación de la firma CIP también aumentó 
durante el desarrollo real de la CIP. 
 
El cáncer de pulmón es la principal causa de muerte relacionada con el cáncer en todo el mundo 
y las nuevas herramientas para la detección temprana son una necesidad clínica aun no 
alcanzada. En el capítulo 5, hemos utilizado el flujo de trabajo de ARN de las EVs para el 
desarrollo y la validación de una firma genética para la detección temprana de cáncer de 
pulmón a partir de muestras de EV de plasma utilizando el panel Human Immune V2 de 
NanoString. Una firma de 16 genes fue capaz de clasificar el cáncer de pulmón en etapa 
temprana y tardía frente a los controles con una precisión del 81-84% en la cohorte de 
entrenamiento. Se obtuvieron valores de precisión igualmente altos en una cohorte de 
validación recopilada por separado. 
 
En conclusión, esta tesis ha proporcionado evidencia de que la plataforma nCounter se puede 
utilizar para el análisis de biopsias líquidas en el ambiente clínico, especialmente para el 
análisis de ctADN y EV-mARN. Los requisitos de baja cantidad y calidad de la muestra, la 
sensibilidad, el análisis rápido, la flexibilidad, la alta reproducibilidad y análisis de datos 
sencillo son algunas de las ventajas importantes de esta plataforma. Por lo tanto, los ensayos 
de biomarcadores clínicamente relevantes se pueden desarrollar y validar en esta plataforma y 
esto puede ayudar en la transición de biopsias líquidas del laboratorio a la práctica. Los 
resultados que hemos presentado en esta tesis también han generado nuevas posibles líneas de 
investigación. Muchos más fluidos (p. ej. orina, saliva), fuentes biológicas (p. ej. plaquetas 
educadas sobre el tumor, células tumorales circulantes, glóbulos blancos) y moléculas 
circulantes (p. ej., ARN libre de células, ARN circular, ARN largo no codificante, proteínas) 
requieren estudios de validación adicionales. La combinación de varios tipos de moléculas 
circulantes, o de fuentes biológicas, en un enfoque multiómico también es una posibilidad en 
esta plataforma y puede producir un ensayo de biomarcadores con mayor precisión.  
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Resum 

 
L'avaluació dels marcadors moleculars en teixit tumoral per predir el pronòstic del càncer i la 
resposta al tractament, també coneguda com a tractament personalitzat, ha transformat la 
pràctica clínica per a molts tipus de càncer. Es va descobrir que aquesta teràpia dirigida per 
genotipar, millora la supervivència del pacient i per tant s'han introduït diverses plataformes 
tècniques en els laboratoris clínics. No obstant això, no tots els tumors es poden biopsiar i, 
sovint, les quantitats de teixit són insuficients per a la caracterització del tumor. L'ARN, l'ADN 
i les proteïnes lliures circulants de biòpsies líquides, es poden extreure dels fluids corporals i 
poden reemplaçar o complementar les biòpsies de teixit. Les biòpsies líquides tenen diversos 
avantatges: la possibilitat de realització d’ estudis de serie o mínimament invasiva i permet 
analitzar l'heterogeneïtat tumoral. Malauradament, encara hi ha una gran bretxa entre la recerca 
bàsica i la implementació clínica de biòpsies líquides, principalment a causa de la manca de 
metodologies estandarditzades. A més, les plataformes tècniques que s'utilitzen actualment, no 
sempre són adequades per analitzar la baixa quantitat i qualitat de material del tumor derivat 
d'una biòpsia líquida. En conseqüència, la validació i implementació dels assajos de 
biomarcadors en biòpsies líquides en els laboratoris clínics, requereixen una plataforma tècnica 
estandarditzada que sigui sensible, ràpida, fàcil d'utilitzar, relativamente econòmica, flexible i 
amb poca quantitat de mostra. 
 
La plataforma nCounter es pot utilitzar per analitzar tota classe de molècules, inclosos ARN, 
ADN i proteïnes. La hibridació de codis de barres codificats per colors pels  objectius d'interès 
permet una lectura directa dels nivells d'expressió de gens i proteïnes o la detecció de 
mutacions. El desenvolupament d'assaigs de biomarcadors en teixits, usant el nCounter, va 
conduir a l'aprovació per la FDA de l'assaig Prosigna™ per a ús clínic en la tipificació del 
càncer de mama. Els esforços anteriors també han destacat el potencial d'aquesta plataforma 
per analitzar molècules derivades i amplificades de biòpsies líquides, encara que es necessiten 
estudis de validació en l'entorn clínic. En aquesta tesi validem l'ús de la plataforma NanoString 
nCounter per analitzar material de biòpsies líquides i desenvolupar assajos de biomarcadors 
clínicament rellevants. S'han acceptat dos manuscrits per a la seva publicació sobre aquest tema 
(capítols 2 i 3), i estem preparant dos manuscrits addicionals per a la seva publicació (capítol 
4 i 5). 
 
En el capítol 2, ens enfoquem en una de les biòpsies líquides més avançades en termes 
d'implementació a la clínica; ADN tumoral circulant (ctDNA). Es va extreure ADN lliure de 
cèl·lules (cfDNA) de fluids corporals de pacients amb càncer, incloses 70 mostres 
retrospectives i 91 mostres prospectives. Hem utilitzat la plataforma nCounter, amb el panell 
de tumors sòlids de variant de nucleòtid únic 3D (SNV), per a la detecció de mutacions 
clínicament rellevants. Vam obtenir resultats de la detecció de mutacions en cinc gens molt 
concordants mitjançant nCounter al comparar amb altres plataformes tècniques d'ús habitual 
(98.9%). A més, l'anàlisi de seguiment va mostrar que aquest flux de treball es pot utilitzar per 
detectar mutacions de resistència. Sobretot, la plataforma nCounter va poder detectar aquestes 
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mutacions de forma ràpida, amb menor quantitat de cfDNA, amb una necessitat mínima de 
personal concebut i mitjançant una anàlisi de dades senzill. 
 
Després continuem amb una biòpsia líquida clínicament menys avançada; vesícules 
extracel·lulars (EVs). La plataforma nCounter mai s'havia utilitzat per analitzar l'expressió 
gènica en EVs derivats del plasma. A aquest efecte, en el capítol 3, vam realitzar un estudi de 
prova de concepte en el qual optimitzem un flux de treball per a l'enriquiment de les EVs, la 
purificació d'ARN de les EVs i la posterior anàlisi d'expressió gènica en nCounter per 
desenvolupar assajos de biomarcadors. El nostre flux de treball final, que  inclou un tractament 
amb DNasa, va ser altament reproduïble i es va poder realitzar en només tres dies. Després vam 
fer servir aquest flux de treball per avaluar l'expressió gènica en EVs de plasma dels pacients 
amb càncer i individus controls, utilitzant el "Human Immune V2 panel" amb 594 gens. Encara 
que la nostra cohort de mostres no va qualificar per al desenvolupament d'una signatura 
clínicament rellevant.  Vam desenvolupar un algoritme d'aprenentatge automàtic com a prova 
de concepte. Vam descobrir que es podria fer servir una signatura de vuit gens per distingir 
amb precisió entre els EVs derivat dels pacients amb càncer i els controls. 
 
Els assajos de biomarcadors són més valuosos si satisfan una necessitat clínica. Per tant, vam 
implementar el flux de treball d'EV ARN en un altre projecte, fent una comparació de teixit 
tumoral i EV ARN en el capítol 4.  El tractament amb inhibidors de punts de control immunitari 
(ICIs) pot millorar el resultat del pacient, però també pot provocar una sobre activació del 
sistema immunitari. Això pot resultar en el desenvolupament d'esdeveniments adversos 
relacionats amb el sistema immunitari (Irae), com la pneumonitis per inhibidors de punts de 
control immunitaris (CIP). Els CIP ocorren en aproximadament el 20% dels pacients tractats 
amb ICIs i és una inflamació del teixit pulmonar que pot ser letal si no es detecta i tracta a 
temps. En aquest estudi, vam utilitzar teixit tumoral i EVs basal per desenvolupar una signatura 
predictiva de CIP basada en l'expressió de 770 gens inclosos en el panel IO360. Inicialment 
vam obtenir una signatura CIP de teixit de 8 gens, que va ser capaç de predir amb una exactitud 
del 86.6%. Curiosament, aquesta firma no va funcionar en EVs. Tenint en compte els nostres 
resultats anteriors de prova de concepte de EVs, i basant-nos en els avantatges d'un assaig de 
biomarcadors, vam desenvolupar una nova firma en EVs. Aquesta signatura de 4 gens va tenir 
una alta exactitud (87.0%) i un alt valor predictiu negatiu (92.7%). A més, la puntuació de la 
signatura CIP no només es pot utilitzar per predir CIP abans de començar el tractament sino 
que la puntuació de la signatura CIP també va augmentar durant el desenvolupament real de la 
CIP. 
 
El càncer de pulmó és la principal causa de mort relacionada amb el càncer a tot el món i les 
noves eines per a la detecció primerenca són una necessitat clínica encara no assolida. En el 
capítol 5, hem utilitzat el flux de treball d'EV ARN per al desenvolupament i la validació d'una 
signatura genètica per a la detecció primerenca del càncer de pulmó a partir de mostres d´EV 
de plasma utilitzant el panell Human Immune V2 de NanoString. Una firma de 16 gens va ser 
capaç de classificar el càncer de pulmó en fase inicial i tardana davant els controls amb una 
precisió de l'81-84% en la cohort d'entrenament. Es van obtenir valors de precisió igualment 
alts en una cohort de validació recopilada per separat. 
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En conclusió, aquesta tesi ha proporcionat evidència que la plataforma nCounter es pot utilitzar 
per a l'anàlisi de biòpsies líquides en l'ambient clínic, especialment per a l'anàlisi de ctDNA i 
EV-mRNA. Els requisits de baixa quantitat i qualitat de la mostra, la sensibilitat, l'anàlisi ràpid, 
la flexibilitat, l'alta reproductibilitat i anàlisi de dades senzilles són alguns dels avantatges 
importants d'aquesta plataforma. Per tant, els assajos de biomarcadors clínicament rellevants 
es poden desenvolupar i validar en aquesta plataforma i això pot ajudar en la transició de 
biòpsies líquides de laboratori a la pràctica. Els resultats que hem presentat en aquesta tesi 
també han generat noves possibles línies d'investigació. Els líquids (p. ex. orina, saliva), 
mostres d’origen biològic (p. ex. plaquetes educades sobre el tumor, cèl·lules tumorals 
circulants, glòbuls blancs) i molècules circulants (p. ex., ARN lliure de cèl·lules, ARN circular, 
ARN no codificant llarg, proteïnes) requereixen estudis de validació addicionals. La 
combinació de diversos tipus de molècules circulants o mostres d’origen biològic, en un 
enfocament multiómic també és una possibilitat en aquesta plataforma i pot produir un assaig 
de biomarcadors amb més precisió.  
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Samenvatting 

 
Het meten en evalueren van voorspellende en prognostische biomarkers in tumorweefsel, beter 
bekend als gepersonaliseerde behandeling, heeft de zorg voor kankerpatiënten drastisch 
veranderd. Doordat overlevingskansen aanzienlijk toenemen met deze gerichte vorm van 
behandeling, zijn nieuwe technieken geïntroduceerd in klinische laboratoria om dit soort 
metingen uit te voeren. Echter, het verkrijgen van een biopt is niet altijd mogelijk en de 
hoeveelheid weefsel is vaak onvoldoende voor een nauwkeurige en volledige analyse van de 
tumor. Alle cellen in het lichaam, waaronder tumor cellen, scheiden informatie uit in het bloed. 
Deze informatie bestaat uit RNA, DNA en eiwitten. Dit soort moleculen kunnen vrij door het 
bloed circuleren of beschermd zijn door een membraan zoals een blaasje of bloedplaatje. Dit 
soort vloeibare biopten noemen we ook wel “liquid biopsies”, en kunnen weefselbiopten 
vervangen of aanvullende informatie geven. Liquid biopsies kennen verschillende voordelen, 
waaronder de mogelijkheid tot herhaalde afname, een minimaal invasief karakter en een beter 
beeld van de aanwezige tumor. Toch is er nog een grote kloof tussen fundamenteel onderzoek 
en klinische implementatie van liquid biopsies, voornamelijk vanwege het ontbreken van een 
standaard methode van analyseren. Bovendien zijn de momenteel gebruikte technische 
systemen niet altijd geschikt om de minimale hoeveelheid en lage kwaliteit van tumor-afgeleid 
materiaal uit een liquid biopsy te analyseren. Grootschalige validatie en klinische 
implementatie van biomarker testen uit liquid biopsies vereist een gestandaardiseerde techniek 
die nauwkeurig, snel, gebruiksvriendelijk, relatief goedkoop en flexibel is, ondanks de 
minimale hoeveelheid en lage kwaliteit van het materiaal.  
 
Het NanoString nCounter systeem kan worden gebruikt om RNA, DNA en eiwitten te 
analyseren. Het binden van kleurgecodeerde streepjescodes aan deze moleculen maakt het 
mogelijk de expressie van genen en eiwitten direct uit te lezen of mutaties te detecteren. Een 
voorbeeld van een FDA-goedgekeurde biomarker test in weefsel die is ontwikkeld op dit 
systeem, is de Prosigna™ test. Deze test kan prognostische informatie geven voor borstkanker 
patiënten. Naast het direct uitlezen van weefsels, kan een minimale hoeveelheid materiaal ook 
eerst gekopieerd worden voordat de analyse plaatsvindt. Hierdoor kan de kleine hoeveelheid 
materiaal dat uit bloed te verkrijgen is toch geanalyseerd worden. Echter zijn validatie studies 
noodzakelijk.  
 
In dit proefschrift hebben we het gebruik van het nCounter systeem gevalideerd met materiaal 
uit liquid biopsies om zo klinisch relevante biomarker tests te ontwikkelen. Twee manuscripten 
zijn geaccepteerd voor publicatie over dit onderwerp (hoofdstuk 2 en 3), en twee extra 
manuscripten zijn in voorbereiding voor publicatie (hoofdstuk 4 en 5).  
 
In hoofdstuk 2 hebben we ons gericht op een van de meest geavanceerde liquid biopsies wat 
betreft klinische implementatie; circulerend tumor-DNA. We hebben celvrij DNA (cfDNA) uit 
lichaamsvloeistoffen van kankerpatiënten geïsoleerd, waaronder 70 retrospectieve en 91 
prospectieve samples en het nCounter systeem gebruikt voor routine mutatiedetectie. Onze 
resultaten in vijf klinisch relevante genen waren voor 98.9% in overeenstemming met 
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technieken die momenteel worden gebruikt in laboratoria. Ook tonen we aan dat het analyseren 
van vervolgsamples therapie resistentie kan detecteren. Het nCounter systeem kon bovendien 
mutaties vinden in samples met minder materiaal, in een korter tijdsbestek, met minder hands-
on tijd en met behulp van een eenvoudige data analyse. 
 
Vervolgens zijn we ons gaan richten op een minder klinisch geavanceerde liquid biopsy; 
(kanker)blaasjes of extracellulaire vesicles (EVs). Het nCounter systeem was nooit eerder 
gebruikt om genexpressie in EVs uit bloedplasma te analyseren. Om die reden hebben we in 
hoofdstuk 3 een proof-of-concept studie uitgevoerd waarin we een workflow optimaliseerden 
voor het isoleren van EVs uit plasma, het verkrijgen van mRNA uit EVs en de genexpressie 
analyse op het nCounter systeem om vervolgens biomarker testen te kunnen ontwikkelen. Onze 
uiteindelijke workflow was in hoge mate reproduceerbaar en kon in slechts drie dagen worden 
uitgevoerd. Vervolgens hebben we deze workflow gebruikt om genexpressie in plasma-EVs 
van kanker- en controlepersonen te analyseren, met behulp van een panel dat tegelijkertijd kan 
kijken naar 594 verschillende genen. Hoewel de geïncludeerde patiënten te uiteenlopend waren 
om een klinisch relevante biomarker test te ontwikkelen, hebben we als proof-of-concept toch 
een zelflerend algoritme ontwikkeld. Dit algoritme kon, door het combineren van de expressie 
in slechts acht genen, worden gebruikt om nauwkeurig onderscheid te maken tussen de EVs 
van kankerpatiënten en controles. 
 
Biomarker testen zijn het meest waardevol als ze voorzien in een klinische behoefte. Daarom 
hebben we de EV-mRNA workflow geïmplementeerd in een ander project in hoofdstuk 4. 
Hierin hebben we tumorweefsel- en EV-mRNA met elkaar vergeleken. Behandeling met 
immuuntherapie (ICIs) kan de overlevingskansen van patiënten verbeteren, maar het kan ook 
een overactivering van het immuunsysteem veroorzaken. Dit kan resulteren in de ontwikkeling 
van immuungerelateerde bijwerkingen (irAEs), zoals auto-immuun pneumonitis (CIP). CIP 
komt voor bij ongeveer 20% van de patiënten die behandeld zijn met immuuntherapie en is een 
ontsteking van het longweefsel die levensbedreigend kan zijn als deze niet op tijd wordt ontdekt 
en behandeld. In deze studie hebben we tumorweefsel en EVs van vóór de behandeling 
gebruikt om een voorspellende CIP-test te ontwikkelen op basis van een panel die de expressie 
meet van 770 verschillende genen. We hebben aanvankelijk een CIP-test ontwikkeld op basis 
van tumor weefsel, waar een zelflerend algoritme - met gebruik van slechts acht genen - 
nauwkeurig (86.6%) onderscheid kon maken tussen patiënten die wel en geen CIP zouden 
ontwikkelen. Deze CIP-score kon niet gebruikt worden in de EV samples van dezelfde 
patiënten. Gezien onze eerdere proof-of-concept resultaten en gebaseerd op de voordelen van 
een biomarker test in EVs, hebben we vervolgens een nieuwe test ontwikkeld op basis van 
EVs. De nieuwe EV CIP-test is gebaseerd op de expressie van slechts vier genen, en had zowel 
een hoge nauwkeurigheid (87.0%) als een goede negatief voorspellende waarde (92.7%). 
Bovendien kon de test niet alleen worden gebruikt om CIP te voorspellen voordat de ICI-
behandeling werd gestart. De EV CIP-score nam ook toe tijdens de daadwerkelijke 
ontwikkeling van CIP. 
 
Longkanker is wereldwijd de kankersoort met de hoogste sterfte, en nieuwe technieken voor 
vroege detectie zijn cruciaal voor betere overlevingskansen. In hoofdstuk 5 hebben we de EV-
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mRNA workflow gebruikt voor de ontwikkeling en validatie van een test voor de detectie van 
longkanker in een vroeg stadium met behulp van een panel die de expressie meet van 592 
verschillende genen. De uiteindelijke test is gebaseerd op de expressie van 16 genen, en kon 
onderscheid maken tussen patiënten met longkanker (zowel in een vroeg als laat stadium) en 
controles met een nauwkeurigheid van 81-84%. Validatie van deze test in een onafhankelijk 
cohort van longkanker patiënten en controles bevestigde deze nauwkeurigheid.  
 
Concluderend heeft dit proefschrift bewijs geleverd dat het nCounter systeem kan worden 
gebruikt voor het analyseren van liquid biopsies in de klinische setting, met name voor ctDNA 
en EV-mRNA. De lage eisen voor de hoeveelheid en de kwaliteit van het te analyseren 
materiaal, de hoge nauwkeurigheid, snelheid, flexibiliteit, hoge reproduceerbaarheid en 
eenvoudige data-analyse zijn belangrijke voordelen van dit systeem. Biomarker tests kunnen 
worden ontwikkeld en gevalideerd op dit gestandaardiseerde systeem en kunnen helpen bij de 
implementatie van liquid biopsy tests in de klinische praktijk. De resultaten die in dit 
proefschrift worden gepresenteerd, hebben ook nieuwe mogelijke onderzoekslijnen 
opgeleverd. Voor andere lichaamsvloeistoffen (bv. urine, speeksel), biologische bronnen 
binnen die vloeistoffen (bv. bloedplaatjes gemodificeerd door tumoren, circulerende 
tumorcellen, witte bloedcellen) en circulerende moleculen (bv. celvrij RNA, circulair RNA, 
lang niet-coderend RNA, eiwitten) zijn vergelijkbare validatiestudies vereist. Het combineren 
van verschillende soorten circulerende moleculen, of zelfs biologische bronnen, in een multi-
omics benadering is ook een mogelijkheid op dit systeem en kan een robuustere bron zijn voor 
de ontwikkeling van biomarker testen. 
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Chapter 1. Introduction 
 
 
 
The information in Chapter 1 is adapted from the following publications: 
 

Bracht JWP, Gimenez-Capitan A, Huang CY et al. Analysis of extracellular vesicle mRNA 
derived from plasma using the nCounter platform. Sci. Rep. 2021. 11:3712. 

Gimenez-Capitan A, Bracht JWP, García-Mosquera JJ et al. Multiplex detection of clinically 
relevant mutations in liquid biopsies of cancer patients using a hybridization-based platform. 
Clinical Chemistry 2021. [published Online First: 2021/01 /14] 

Bracht JWP, Mayo-de-las-Casas C, Berenguer J et al. The Present and Future of Liquid 
Biopsies in Non-Small Cell Lung Cancer: Combining Four Biosources for Diagnosis, 
Prognosis, Prediction, and Disease Monitoring. Curr. Oncol. Rep 2018. 20;20(9):70. 
 
Gonzalez-Cao M, Morán T, Dalmau J et al. Assessment of the Feasibility and Safety of 
Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection. The Phase 2 
DURVAST Study. JAMA Oncol. 2020. 1;6(7):1063-1067.  
 
Bracht JWP, Berenguer J, Karachaliou N et al. Combining plasma-based biosources to predict 
treatment response in NSCLC patients. Ann. Of Oncol. 2018. 1;29(9):2022.  
 
Bracht JWP, Karachaliou N, Bivona T et al. BRAF Mutations Classes I, II, and III in NSCLC 
Patients Included in the SLLIP Trial: The Need for a New Pre-Clinical Treatment Rationale. 
Cancers 2019. 11(9). pii: E1381. 

Bracht JWP, Aguilar A, Viteri S et al. A four-gene EV-mRNA signature to predict checkpoint 
inhibitor pneumonitis in lung cancer patients. Manuscript in preparation.  
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Cancer genotyping and patient stratification 
 
Despite progress in all fields of cancer research, the global cancer burden is still growing. With 
18 million cases, and 9 million deaths in 2018, cancer is still one of the biggest health 
problems(1). Late stage diagnosis, ineffective treatment and acquired therapy resistance are the 
main causes for this high mortality rate. In addition, cancer accounts for a major financial 
impact on health care costs, with a total amount of 103 billion euros spent in Europe in 2018. 
This includes direct cost of pharmaceuticals, facilities, medical equipment and medical staff, 
in addition to indirect costs such as productivity loss due to early mortality(2). Earlier cancer 
detection, effective molecular profiling and improved therapy response prediction are 
indispensable to enhance patient survival and lower cancer health care costs. 
 
Technical advances in tumor profiling, including genomic, transcriptomic and proteomic-based 
analyses of tumor tissues, can be used to identify targetable gene abnormalities that drive tumor 
growth(3). These abnormalities include mutations, rearrangements, copy number variations, 
splice variants and protein overexpression. Importantly, genotype-directed therapy was shown 
to significantly improve overall survival of cancer patients(4). In addition, tumor 
characterization may be used to identify predictive biomarkers, such as programmed death-
ligand 1 (PD-L1) expression and tumor mutational burden (TMB) analyses in tumor tissues. 
Although both approaches still lack robust sensitvity and specificity, both PD-L1 and TMB 
measurements are routinely used for immunotherapy response prediction and patient inclusion 
in clinical trials. Effective predictive biomarkers can ultimately improve patient survival and 
quality of life, and lower health care costs(5).  
 
Most commonly used approaches for tumor characterization include fluorescence in-situ 
hybridization (FISH), immunohistochemistry (IHC), real-time polymerase chain reaction 
(PCR), end-point PCR, sanger sequencing and microarrays to detect alterations such as 
mutations, fusions, splice variants, amplifications and expression levels(6) (Figure 1). Next-
generation sequencing (NGS) is a more recently emerged technique and can be used for 
sequencing of DNA or RNA. DNA sequencing can be employed to detect a wide array of 
alterations in multiple genes, avoiding the need to perform multiple tests and sparing tissue 
samples. Three different types of NGS analyses can be performed; a targeted gene panel, all 
genome coding regions (whole exome sequencing; WES) or the entire genome (whole genome 
sequencing; WGS)(7). For clinical implementation, targeted gene panels including actionable 
alterations, are often used due to the lower cost, easier interpretation and shorter turnaround 
time.  
 
RNA sequencing (RNAseq) is used to detect and quantify RNA in order to uncover gene 
fusions, mutations, alternative splicing, post-transcriptional modifications and differences in 
gene expression. Gene expression studies can also be conducted using reverse transcription-
quantitative-PCR (RT-qPCR) and microarrays, each with their own (dis)advantages. While 
RT-qPCR provides high sensitivity and specificity at high speed, it only allows for low-
throughput transcriptomic analysis. Microarrays are a medium-throughput platform but have a 
limited dynamic range of detection and are therefore not suitable to detect genes that are 
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expressed at either low or high levels. RNAseq is a very accurate, high-throughput platform 
with a wide dynamic range, but limitations include turn-around-time, high cost and complex 
data analysis(8, 9).  

 
 
Figure 1. Commonly used laboratory approaches for tumor tissue characterization, including fluorescence in-situ 
hybridization (FISH), immunohistochemistry (IHC), real-time polymerase chain reaction (PCR), end-point PCR, 
sanger sequencing, microarrays and next generation DNA/RNA sequencing (NGS).  
 
 
The NanoString nCounter platform 
 
The NanoString nCounter platform has gained popularity in translational research in recent 
years. This platform provides multiplexed analysis of up to 800 RNA, DNA, or protein targets 
from low quality and quantity formalin-fixed paraffin embedded (FFPE) tissue samples. 
Besides commercially available panels, they can also be customized. The multiplexed 
CodeSets provide a direct capture and readout of individual targets in the sample, based on 
unique color coded barcodes for each target of interest. The capture and reporter probes are 
mixed with the sample for overnight hybridization (Figure 2). Excess capture and reporter 
probes are washed out in the Preparation Station the next day, and target-probe complexes are 
immobilized onto a cartridge. The color-coded barcodes are then counted on the Digital 
Analyzer, to determine the abundance of each target in the sample. Depending on the nature of 
the target (DNA, RNA or protein) this output can then be used to detect mutations or measure 
gene- and protein expression levels. 
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Figure 2. NanoString nCounter workflow. The CodeSet, consisting of capture and reporter probes, is mixed with 
the sample for overnight target-probe hybridization. Excess CodeSet and sample are washed out in the Preparation 
Station the next day, and target-probe complexes are immobilized onto a cartridge. Hereafter, the color-coded 
barcodes are counted on the Digital Analyzer, to determine the abundance of each target in the sample. Depending 
on the type of target (DNA/RNA/protein) mutation detection or gene/protein expression analysis can be carried 
out. 
 
When analyzing RNA expression, the lack of cDNA synthesis and enzymatic reactions while 
using this platform significantly lowers the amplification bias, false positives and technical 
variation. In terms of sensitivity, the nCounter platform was found to be more sensitive than 
microarrays and have similar sensitivity to RT-qPCR. Moreover, reproducibility experiments 
revealed a replicate correlation coefficient of 0.999(9-12). A strong correlation has also been 
reported when comparing gene expression patterns obtained through nCounter and RNA-seq 
platforms, demonstrating how expression analysis can be performed without the required 
infrastructure, turn-around-time, RNA quality and bioinformatic pipeline for RNA-seq 
technologies(13). Finally, implementation of tumor characterization platforms in routine 
clinical practice requires an accurate, simple and cost-effective medium-throughput solution, 
such as the nCounter platform(9).  
 
The nCounter platform for discovery of prognostic- and predictive biomarkers in tissue 
 
Biomarkers are defined as: “objectively measured characteristics, describing an (ab)normal 
biological state in an organism by analysis of DNA, RNA, protein, peptide or chemical 
modifications”(14, 15). Biomarkers can be classified into 1) diagnostic; to identify a specific 
disease in a patient, 2) prognostic; used to inform on the risk of clinical outcome such as disease 
progression or recurrence, regardless of treatment, and 3) predictive; used to identify patient 
cohorts that are more likely to respond to clinical interventions(14, 16) (Figure 3). Due to its 
suitability for clinical implementation, the nCounter platform has been extensively used for 
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FFPE biomarker discovery, consequent assay development, analytical and clinical assay 
validation and to study clinical utility of the developed assays.  
 

 
 
Figure 3. Classification of existing biomarker assays. Diagnostic biomarkers can be used to detect a specific 
disease in a patient. Prognostic biomarkers can determine patient outcome, independent of treatment. Predictive 
biomarkers can be used to predict which patients are more likely to experience a certain event (e.g. response to 
treatment and/or development of adverse events).  
 
Prognostic biomarker assays on nCounter 
 
One of the first studies that made use of the nCounter platform for prognostic biomarker assays 
focused on diffuse large B-cell lymphoma (DLBCL)(17). Molecular subtypes of DLBCL have 
significant prognostic value and include activated B-cell (ABC) and germinal center B-cell 
(GCB)-like DLBCL. Previously, patient stratification was based on gene expression and IHC, 
with limitations including low quality RNA from FFPE tissue samples and non-quantitative 
analysis. Gene expression profiling with the nCounter platform was used to analyze the 
expression of 145 genes and accurately classified patients into DLBCL subtypes, which could 
be used to guide treatment selection(17).  
 
Breast cancer can also be classified into distinct subtypes; Basal-like, HER2-enriched, Luminal 
A and Luminal B, resulting in different prognostic outcomes. A gene expression study revealed 
that the nCounter platform could be used to identify these subtypes using the PAM50 assay; a 
molecular signature derived from the expression of 50 genes(18-20). This has led to the 
development of the Prosigna™ assay (NanoString Technologies, Seattle, WA), which can not 
only distinguish between the four intrinsic subtypes, but can also define a risk category and 
risk of recurrence. Prosigna™ is currently the only nCounter-based assay that has been 
validated in the clinical practice(21-23), having received US Food and Drug Administration 
(FDA) approval in 2013. The simplified workflow and shorter turnaround time supported the 
use of Prosigna™ in daily clinical practice.  
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Predictive biomarker assays on nCounter for targeted therapy selection 
 
It is now known that accurate detection of driver alterations can guide cancer treatment and 
improve patient survival. In advanced non-small-cell lung cancer (NSCLC), 5-7% of tumors 
harbor anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangements, ROS proto-
oncogene 1 receptor tyrosine kinase (ROS1) fusions, mesenchymal epithelial transition (MET) 
exon 14 skipping mutations and ret proto-oncogene (RET) fusions, which can be targeted with 
specific inhibitors(3). FISH and IHC are currently the gold standard for the detection of these 
alterations. However, these techniques have several disadvantages, such as the quantity of 
tissue that is needed for single assay fusion detection, turn-over-time and cost. A recent, 
retrospective validation study used a multiplexed NanoString nCounter Assay for fusion 
detection in mRNA derived from FFPE tissue samples(24). The assay was able to detect ALK, 
ROS1 and RET fusions in patient samples with high concordance compared to IHC or FISH.  
 
Another nCounter panel that can be used to detect targetable tumor driver alterations is the 
Vantage 3D™ DNA SNV Solid Tumor Panel, which targets 97 different single nucleotide 
variants (SNV) and small InDels in 24 genes. Two validation studies reported that mutations 
that were previously detected by NGS in FFPE samples, could also be detected by nCounter 
with a concordance of 99.9%(25) and >95%(26). In summary, these studies have shown that 
rapid, robust and cost-effective multiplexed profiling of tumor driver alterations is feasible with 
nCounter. In addition, this platform allows for easier clinical implementation compared to other 
NGS-based platforms.  
 
Predictive biomarker assays on nCounter for immunotherapy response 
 
Effective use of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of some 
tumor types. Antibodies against programmed cell death protein (PD-1), its ligand PD-L1 and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can be used to inhibit tumor growth 
and potentially lead to curability in several advanced and metastatic cancer types(27). Despite 
clinical success and FDA approval of six different checkpoint inhibitors in the last nine years, 
only a subset of patients experience durable responses(28).  
 
Research on predictive biomarkers for ICI response is currently a burning issue, and evolves 
mainly around PD-L1, TMB, microsatellite instability/defective mismatch repair 
(MSI/dMMR), specific mutations and gene signatures(29). Although PD-L1 and MSI/dMMR 
assays have already been approved for clinical use in different tumor types, both assays lack 
method standardization and require optimization to improve their predictive values(30). Other, 
less advanced, predictive biomarkers include analysis of immune cell infiltration and gene 
expression signatures. Due to the complex involvement of both the tumor and the 
microenvironment in triggering immune responses, it has been proposed that a single 
biomarker assay may not provide enough information to predict immunotherapy response. In 
this respect, gene panels could provide more wide-ranging information on both tumor biology, 
the microenvironment and immune system activation(16). 
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Efforts have been made to use gene expression signatures to distinguish between so-called 
“hot” and “cold” tumors. Hot tumors have a  T cell-inflamed tumor microenvironment, which 
suggests a pre-existing immune response indicating tumor infiltration of T cells. On the other 
hand, cold tumors do not have a T cell-inflamed tumor microenvironment, and lack a pre-
existing immune response(31). A signature has been developed to measure immune infiltration 
and the functional status of T cells and consequent responses to the anti-PD-1 antibody 
pembrolizumab(32, 33). This Tumor Inflammation Signature (TIS) is based on the expression 
of 18 genes and was developed as a clinical trial assay for multiple tumor types on the nCounter 
platform in 2017(33). TIS score was found to outperform IHC and TMB analyses in predicting 
clinical response to pembrolizumab. The 18 genes included in the TIS score are mainly 
involved in chemokine expression, cytotoxic activity, IFN-y activity and antigen presentation. 
The TIS score has been extensively validated in pre-immunotherapy patient tissues, including 
10 different tumor types, where patients with improved response to anti-PD-1 blockade tended 
to have higher pre-treatment TIS scores(34-38). Although highly promising, TIS has not yet 
been implemented in the clinical practice to stratify patients that will benefit from ICIs.  
 
In addition to the TIS score, other studies have aimed to develop nCounter-based gene 
expression signatures that can predict response to anti-PD-1 antibodies in specific tumor types, 
such as melanoma(39, 40), triple negative breast cancer (TNBC)(41), gastric cancer(42) or 
glioblastoma(43, 44). Further efforts focused on a pan-cancer predictive signature of 
immunotherapy response(37, 45), including our recent study in which we developed a 
predictive signature of clinical benefit from immunotherapy in HIV-1 infected cancer 
patients(46). Combined, these studies highlight the opportunity of using the nCounter platform 
in prospective validation studies to stratify patients that are more likely to respond to 
immunotherapy.   
 
Due to increased use and new combinations with conventional standard-of-care treatment, 
immunotherapy can trigger auto-inflammatory immune-related adverse events (irAE). 
Development of irAEs occurs after inappropriate immune activation and could be related to 
environmental circumstances, genetic predisposition or tumor-host interactions(47). One of 
these irAEs is checkpoint inhibitor pneumonitis (CIP), a non-infection induced inflammation 
of the lung tissue which is reported to occur in about 1-5% of immunotherapy treated 
patients(48, 49). CIP arises with diverse clinical and radiographic manifestations, complicating 
the diagnosis in the clinical setting. If not detected in time, CIP can lead to heart- and/or 
respiratory failure and death, independent of therapy response. Early management consists of 
discontinuation of immunotherapy and start of corticosteroid treatment. Currently, in our clinic, 
almost 19% of patients developed CIP under ICI treatment, and this number is expected to 
increase in the near future with novel treatment combinations. Pre-treatment gene expression 
analysis can be employed to predict which patients have higher risk of developing CIP, and 
should therefore be monitored more extensively, or even receive a different treatment regimen. 
This type of stratification could improve patient survival and quality of life. One major 
advantage of using nCounter is the option to create custom panels with multiple gene signatures 
that can simultaneously predict response to treatment and risk of toxicities from 
immunotherapy.  
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Liquid biopsies 
 
Even though tumor tissue profiling can provide significant prognostic and predictive 
information, advanced lung cancer and other tumors are sometimes difficult or even impossible 
to biopsy and tissue quantity is often insufficient for downstream profiling. Moreover, intra-
tumoral heterogeneity may only yield a snapshot of the actual tumor alterations and repeated 
sampling to monitor treatment response is not possible(50-52). A recent approach to overcome 
or complement invasive tissue biopsies is the use of liquid biopsies(50, 52-57). Different body 
fluids can be used as liquid biopsies, including blood, urine and saliva. Circulating molecules, 
such as DNA, RNA or proteins, can be freely present within these liquids, or can be extracted 
and analyzed from circulating tumor cells (CTCs)(58-60), extracellular vesicles (EVs)(61-64) 
and tumor educated platelets (TEPs)(65, 66) (Figure 4). These liquid biosources, including 
their (dis)advantages and their potential application for biomarker development in NSCLC 
have been extensively reviewed by our group (Annex 1)(50).  

 

 
 
Figure 4. Liquid biopsies, including blood and other types of body fluids, contain circulating molecules that can 
be isolated and used to analyze ongoing biological processes in the body. These molecules can be freely present 
(e.g. ctDNA, RNA, proteins) or can be found within other liquid biosources (CTCs, EVs and TEPs). 
Characterization of these processes on a personalized (follow-up) basis or in large cohorts of individuals can then 
be used to create diagnostic, prognostic, predictive and/or resistance biomarker assays. ctDNA: circulating tumor 
DNA; CTCs: circulating tumor cells; EVs: extracellular vesicles; TEPs: tumor-educated platelets.  
 
Genetic and transcriptomic characterization of tumors, based on liquid biopsy-derived 
materials, is currently a hot topic in translational research. Importantly, liquid biopsies could 
also provide a source for early diagnostic- or screening biomarker assays. Circulating cell free 
DNA (cfDNA) is currently the most commonly used liquid biosource. A variable fraction of 
cfDNA consists of circulating tumor DNA (ctDNA) in cancer patients, which can be used to 
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detect targetable genetic alterations. The introduction of ctDNA analysis led to enormous 
accelerations in clinical practice, and studies have shown that liquid biopsy based cfDNA 
analysis is as effective as standard-of-care tissue testing, with concordant results in >90% of 
patients and a shorter turnaround time(67). However, there is still room for improvement. 
Around 30% of NGS-based analysis using cfDNA fail, due to high sample input and quality 
requirements of these platforms(68). Other technical pitfalls related to NGS include assay 
turnaround time, high cost and complicated analysis due to the huge amount of data output. In 
addition, protocol standardization and thus technical reproducibility are crucial for validation 
studies and to establish clinical utility.  
 
Apart from clinical implementation of cfDNA, RNA expression analysis from liquid biopsies 
can yield clinically relevant information about both the tumor and the immune system. Changes 
in gene expression that occur downstream of DNA alterations can be used to detect signatures 
indicative of the presence of a tumor. In addition, differential expression of RNA can be used 
to define signatures of treatment response and localize a tumor within the body. RNA can be 
freely circulating in the blood (cfRNA), but is much more stable when conserved in a 
membrane-enclosed particle, such as EVs, CTCs or TEPs. EVs are heterogeneously sized 
vesicles (10 nm – 1 μm) that are released from several cell types, and can be isolated from 
almost all body fluids. Their double-layered phospholipid membrane protects their nucleic acid 
cargo from degradation(69-71), and allows for intercellular communication by transferring 
their contents to target cells(69, 72, 73). The quantity and cargo of EVs is regulated by the 
producing cell, and EVs may therefore be tumor-derived. Consequently, RNA profiles within 
EVs provide attractive biomarkers for the development and progression of cancer(74). Gene 
expression studies using EV-RNA from cancer patients is an active area of research(63, 64), 
but the lack of standardized protocols for the extraction and analysis of EVs and their RNA 
cargo have led to inconsistent results and hamper clinical implementation.  
 
The NanoString nCounter platform for the analysis of liquid biopsies 
 
The nCounter platform could provide a solution to the technical drawbacks that the liquid 
biopsy field is currently facing. This platform shows high accuracy and reproducibility, lower 
cost compared to other multiplexed methodologies, and a shorter and simpler workflow and 
data analysis. In short, standardization of liquid biopsy-based analysis on the nCounter 
platform could aid in the transition from bench to bedside. Some attempts have already been 
made to replace or complement tissue biopsies by using liquid biopsy-based analysis on the 
nCounter platform, including the profiling of cfRNA(58, 75, 76) and (mi)RNA derived from 
CTCs(58, 77), leukocytes(78) and EVs(79, 80). Genetic characterization of DNA derived from 
EVs has also been performed(61). 
 
One of the advantages of tissue-based nCounter analysis is the fact that cDNA conversion and 
consequent amplification are not necessary for gene expression analysis. In the case of liquid 
biopsies, the quantity of nucleic acids that can be extracted is much lower when compared to 
tissue samples. To this end, NanoString has developed a Low Input Kit, which enables gene 
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expression profiling or mutation detection from samples with low RNA or DNA input. A PCR 
amplification step is added to the workflow and used to perform multiplexed target enrichment 
(MTE) prior to panel hybridization. However, amplification bias is a concern and one study 
has reported on the detection of false-positive results after performing a pre-amplification 
step(77). Of note, the authors used a different pre-amplification protocol from the one that was 
developed by NanoString. In contrast, other studies found that the Low Input Kit yielded gene 
expression results that highly correlated with a non-amplified sample input(81).  
 
Several studies have reported on the analysis of blood-derived liquid biosources using 
nCounter (Table 1), including miRNAs. Khodadadi-Jamayran et al(76) used a 800-miRNA 
panel, and found that plasma-miR-24-3P expression differed between patients with- and 
without metastatic breast cancer. High miR-24-3P expression correlated with lower survival, 
and results were validated in an online cancer genome atlas (TCGA) tissue cohort. Garcia-
Contreras et al(79) developed a plasma EV-miRNA signature, consisting of 7 miRNAs, to 
diagnose type 1 diabetes melitus. Finally, Vicentini et al(80) reported on the use of plasma EV-
derived miRNAs to differentiate between four different pancreatic cancer types. Importantly, 
the nCounter miRNA panel did not require any pre-amplification.  
 
 
Table 1. Previous performed studies using liquid biopsies for nCounter-based analysis 
 
Study Liquid biosource Analyte Pre-amplification 
Khodadadi-Jamayran et al. Plasma Cell-free miRNA No 
Garcia Contreras et al. Plasma EVs miRNA No 
Vicetini et al. Plasma EVs miRNA No 
Porras et al. CTCs mRNA Yes 
Beck et al. Plasma 

CTCs 
Cell-free mRNA 
mRNA 

Yes 
Yes 

Wu et al. Leukocytes mRNA No 
Kossenkov et al. Whole blood mRNA No 
Kamyabi et al. Plasma EVs DNA Yes 

 
 
Other studies have described the use of CTC-mRNA for nCounter-based transcriptomic 
analysis. Porras et al(77) spiked CTCs, isolated from breast cancer cell lines, into the blood of 
healthy controls to determine if an nCounter panel could distinguish between gene expression 
patterns of spiked and unspiked samples. The authors found that pre-amplification of the CTC-
mRNA was necessary to obtain gene expression values above background levels, but yielded 
a high fraction of false positive results when the gene expression signature was used to diagnose 
breast cancer with the PAM50 gene panel. This was likely due to the leukocyte-derived 
background RNA expression. Beck et al(58) used a combination of CTC-mRNA and plasma 
cfRNA to investigate prognostic and predictive biomarkers in lung cancer patients. They found 
a set of transcripts related to platelet factor 4 (PF4), present in patients with metastatic lung 
cancer, that was associated with patient survival. The pre-amplification protocol, used by 
Porras et al, was also implemented in this study and the authors did not report on amplification 
bias. 
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Besides EVs and CTCs as RNA carriers, leukocyte mRNA can also be used on the nCounter 
platform. Wu et al(78) focused on inflammation markers in leukocyte-derived mRNA, isolated 
from metastatic breast cancer patients, before and after targeted treatment. They defined a set 
of genes, related to IL-1 associated inflammation, that was downregulated after treatment 
initiation. These profile changes indicated an enhanced antitumor activity, and may therefore 
be exploited to predict therapy response. No pre-amplification step was reported by the authors. 
Instead of using encapsulated RNA from liquid biosources, cfRNA can also be extracted from 
whole blood. In a recently published study, Kossenkov et al(75) developed an nCounter-based 
classifier that was able to differentiate between low-dose computed tomography (CT) detected, 
malignant and non-malignant pulmonary nodes. The final classifier made use of only 41 
transcripts to distinguish between malignant pulmonary nodes that require follow-up and non-
malignant nodes. The use of whole blood samples led to higher RNA quantities, and prevented 
the need for a pre-amplification step.  
 
Finally, EV-DNA has been analyzed with nCounter to detect mutations. Although only one 
sample was analyzed using this methodology, Kamyabi et al(61) reported on the use of plasma 
EV-DNA to detect a KRAS mutation in a pancreatic cancer patient(61). Since the quantity of 
DNA that can be extracted from EVs is expected to be much lower than the commonly used 
total plasma cfDNA extraction, the nCounter platform may provide new perspectives to 
standardize the detection of targetable genetic alterations in liquid biopsy samples. These 
studies combined indicate that, although the evidence is still preliminary, analysis of liquid 
biopsies on the nCounter platform could be a valuable tool to detect tumor specific alterations 
and transcriptional profiles. These alterations and patterns can be developed into biomarker 
assays and used for diagnostic, predictive and response evaluation purposes on the clinically 
employable nCounter analysis platform.  
 
Central motivation and objectives 
 
Taking into account the information that has already been published on liquid biopsies and 
the nCounter platform, this PhD thesis aimed to validate the use of the NanoString nCounter 
platform for the analysis of liquid biopsies. In particular: 
 

- Chapter 2 contains a validation study on liquid biopsy-derived ctDNA for mutation 
detection 

- In Chapter 3 we optimized existing protocols to analyze EV-mRNA 
- We then compared FFPE tissue and matched plasma EV-mRNA analysis to predict 

risk of checkpoint inhibitor pneumonitis in Chapter 4 
- In Chapter 5 we explored the use of EV-mRNA analysis for early lung cancer 

detection 
- Finally, Chapter 6 contains a thorough discussion regarding the obtained results, 

followed by an overview of future perspectives.  
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Abstract 
 
Background: With the advent of Precision Oncology, liquid biopsies are quickly gaining 
acceptance in the clinical setting. However, in some cases, the amount of DNA isolated is 
insufficient for Next Generation Sequencing (NGS) analysis. The nCounter platform could be 
an alternative, but it has never been explored for detection of clinically relevant alterations in 
fluids. 
 
Methods: Circulating-free DNA (cfDNA) was purified from blood, cerebrospinal fluid and 
ascites of cancer patients and analyzed with the nCounter 3D Single Nucleotide Variant (SNV) 
Solid Tumor Panel, which allows for detection of 97 driver mutations in 24 genes. 
 
Results: Validation experiments revealed that the nCounter SNV panel could detect mutations 
at allelic fractions of 0.02%-2% in samples with ≥5 pg mutant DNA/µL. In a retrospective 
analysis of 70 cfDNAs from cancer patients, the panel successfully detected EGFR, KRAS, 
BRAF, PIK3CA and NRAS mutations when compared with previous genotyping in the same 
liquid biopsies and paired tumor tissues [Cohen kappa of 0.96 (CI=0.92-1.00) and 0.90 
(CI=0.74-1.00), respectively]. In a prospective study including 91 liquid biopsies from patients 
with different malignancies, 90 yielded valid results with the SNV panel and mutations in 
EGFR, KRAS, BRAF, PIK3CA, TP53, NFE2L2, CTNNB1, ALK, FBXW7 and PTEN were 
found. Finally, serial liquid biopsies from a NSCLC patient revealed that the semi-quantitative 
results of the mutation analysis by the SNV panel correlated with the evolution of the disease.  
 
Conclusions: The nCounter platform requires less DNA than NGS and can be employed for 
routine mutation testing in liquid biopsies of cancer patients. 
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Introduction 
 
Although genetic analysis of tumor tissue provides useful information for prognosis and 
treatment decision making, a significant percentage of advanced-stage cancer patients cannot 
be biopsied or the amount of tumor tissue is insufficient for genetic analyses. In addition, 
repeated sampling for monitoring the course of the disease and detecting the emergence of 
mechanisms of resistance is frequently not feasible. Liquid biopsies constitute a minimally 
invasive, safe, and sensitive alternative in these cases; and are quickly gaining acceptance in 
the clinical setting(50, 82-87). 
 
Circulating free DNA (cfDNA) purified from blood or other body fluids(88) is the most 
commonly used type of liquid biopsy. In cancer patients, cfDNA contains a variable fraction 
of DNA originating in the tumor cells (circulating tumor DNA, or ctDNA) and can be used to 
identify clinically relevant mutations, amplifications and gene fusions(85, 88-90), with 
polymerase chain reaction (PCR) based methods and targeted next-generation sequencing 
(NGS) being the most frequently used techniques. The nCounter platform (NanoString 
Technologies) is a relatively novel technology initially developed for multiplex analysis of 
RNA molecules, and has been successfully applied for the detection of clinically relevant 
fusion transcripts and gene signatures in tumor tissues(18, 24, 91). In addition, a new 
hybridization probe chemistry has been developed for the detection of hotspot somatic variants 
in tumor tissue samples(92). However, despite the growing number of laboratories using 
nCounter, the platform has never been tested for the routine analysis of liquid biopsies.  
 
In this study, we performed a retrospective validation on collection-stored cfDNA samples that 
revealed an excellent correlation of nCounter with other methodologies for mutation detection. 
Then, we prospectively analyzed fluids derived from cancer patients and were able to detect a 
substantial number of relevant mutations, demonstrating that nCounter can be implemented in 
the clinical setting for the routine testing of liquid biopsies. 
 
Materials and methods 
 
Patients and cell lines 
Fifteen liquid biopsy samples from healthy donors and seventy from cancer patients were used 
for the retrospective validation of the nCounter Vantage 3D DNA Single Nucleotide Variant 
(SNV) Solid Tumor Panel (NanoString Technologies) (Table 1). All of them had been stored 
in a sample collection approved by the Spanish Ministry of Health (reference number 
C.0005039). Then, 91 liquid biopsies (Table 2) from 83 patients collected in six Spanish 
hospitals were analyzed with the same panel (online Supplemental Tables 1 and 2). The study 
was carried out in accordance with the principles of the Declaration of Helsinki under an 
approved protocol of the institutional review board of Quirón Hospitals. Written informed 
consent was obtained from all patients and documented; samples were de-identified for patient 
confidentiality. Clinical information collected from each patient was limited to stage, gender, 
smoking status and tumor histology. Cell lines with EGFR, KRAS, PIK3CA, BRAF, and 
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NRAS mutations were used for analytical validation purposes and also as positive and negative 
controls (online Supplemental Table 3).  
 
Table 1. Characteristics of the liquid biopsy samples included in the retrospective cohort. 

 
 
DNA isolation  
Plasma samples (10 mL) were collected in sterile Vacutainer tubes (BD) and cerebrospinal-, 
pleural- and ascitic fluid samples (3 to 500 mL) in sterile containers. After two consecutive 
centrifugation steps (500 g, 10 min), cfDNA was purified using the QIAsymphony® DSP 
Virus/Pathogen Midi Kit and a QIAsymphony robot (Qiagen), following the manufacturer’s 
instructions. Initial volume was 1.2 mL, final elution volume was 30 µL. DNA concentration 
was estimated using Qubit®. Finally, DNA from the cell lines was purified using the DNA 
Easy® extraction kit (Qiagen,), according to the manufacturer’s instructions. 
 
Mutation detection by nCounter 
The nCounter Vantage 3D DNA SNV Solid Tumor Panel enables detection of 97 driver 
mutations in 24 clinically relevant genes (online Supplemental Table 4). For mutation  

Table 1. Characteristics of the liquid biopsies included in the retrospective cohort. 

Characteristics  N =70 (%) 

   

Type of tumor    

Lung Cancer    49 70% 
Colorectal Cancer 11 15.7% 
Breast Cancer    1 1.4% 
Melanoma 5 7.3% 
Leukemia 1 1.4% 
Pancreatic 1 1.4% 
Endometrial 1 1.4% 
Ovarian 1 1.4% 

Type of fluid   

Plasma 62 88.6% 
Ascites 3 4.3% 
Serum 3 4.3% 
Pleural fluid 1 1.4% 
Cerebrospinal fluid 1 1.4% 

   
Mutations previously 
detected by NGS or 
Q-PNA-PCR 

  

   
EGFR 19 27.1% 
KRAS 9 12.% 
BRAF 11 15.7% 
NRAS 1 1.4% 
PIK3CA 3 4.3% 
EGFR and PIK3CA 2 2.8% 
KRAS and PIK3CA 1 1.4% 
BRAF and PIK3CA 1 1.4% 
NRAS and KRAS 2 2.8% 
No mutations 21 30% 
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Table 2. Characteristics of the samples prospectively evaluated in the study. 
 

 
 
detection using nCounter, 5 µL of purified cfDNA and a reference DNA (NanoString 
Technologies, provided with the panel) were subjected to a 21-cycle preamplification step in a 
Verity thermal cycler (Applied Biosystems), according to the manufacturer’s instructions. 
Amplified DNA was denatured at 95ºC for 10 minutes and hybridized at 65ºC for 18-24 hours 
with the SNV pool, which contains mutation-specific and exon-specific probes that bind to 
DNA independently of the presence of mutations. Capture, cleanup and digital data acquisition 
were performed using the nCounter Prep StationTM and Digital AnalyzerTM (NanoString 
Technologies) (online Supplemental Fig. 1).  
 
Data analysis 
Count values were exported to Excel 2016 (Microsoft) using nSolver software v4.0 
(NanoString Technologies). For each mutation, samples with count values lower than the 
reference DNA were automatically considered negative and excluded from further analysis. 
The reference consists of a wild-type DNA that does not harbor any mutation and allows 
estimating the “background noise” counts for every mutation targeted by the kit. The remaining 
mutation-specific counts were normalized using the geometric mean of the exon counts of the 
corresponding gene in the same sample. The same procedure was applied to the count values 
derived from the reference DNA. Finally, the mutation-specific normalized counts of the 
samples were divided by the corresponding normalized counts of the reference DNA and the 

Table 2 Characteristics of the samples prospectively evaluated in the study. 

Characteristics  N = 90  (%) 

 
Tumor type and histology  

  

Lung Cancer    51 56.6% 
Adenocarcinoma 42 46.6% 
Squamous 2 2.2% 
Others 7 7.7% 

   

Colorectal Cancer 20 22.2% 
Adenocarcinoma 19 21.1% 
Others 1 1.1% 

   

Breast Cancer 4 4.4% 
   

Melanoma 4 4.4%    

Others 11 12.2% 

 
Collection time  

  

Basal 62 68.8% 
Progression                  8 8.8% 
Follow up 18 20% 
Unknown 2 2.2% 

 
Type of fluid  

  

Plasma 87 96.7% 
Pleural fluid 1 1.1% 
Cerebrospinal fluid 2 2.2% 
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result was subjected to a base-2 logarithmic transformation to obtain the log MUT values. For 
every mutation in the SNV panel, the average log MUT of all the negative samples for this 
particular mutation included in the retrospective study plus three standard deviations (SD) was 
established as the cut-off value for positivity. The only exceptions were KRAS mutations, 
where the mean plus two SDs was used. 
 
Mutation testing by PNA-Q-PCR and NGS 
Samples used in the retrospective validation had been previously genotyped by PNA-Q-PCR 
or NGS(85, 88, 89, 93, 94). For details about these two techniques, see the online Supplemental 
Methods. 
 
Results 
 
Analytical validation 
First, we analyzed 15 cfDNA samples purified from the blood of healthy donors. All of them 
tested negative for the 97 mutations targeted by the Vantage 3D DNA SNV panel. Next, using 
DNA from two mutant cell lines, we found that 5 pg of mutated genomes per µL were sufficient 
to detect EGFR 15-bp deletions and KRAS G12C mutations (online Supplemental Table 5). 
Serial dilutions of a mixture of DNAs from 13 mutant cell lines spiked into a pan-negative 
cfDNA were employed to determine the limit of detection of the panel. Mutations in EGFR, 
KRAS, NRAS and PIK3CA were detected at allelic fractions between 0.02% and 2% (online 
Supplemental Table 6). Finally, spiked samples of two mutant cell lines and a cfDNA purified 
from the blood of a KRAS G12D positive patient were tested on different days by different 
operators, and the reproducibility of the SNV panel was found to be 100% (online 
Supplemental Table 7). 
 
Retrospective validation in clinical samples 
A total of 70 liquid biopsies from cancer patients were used in the retrospective validation of 
the nCounter SNV panel. Most of them corresponded to plasma samples (n=62), but sera (n = 
3), ascites (n = 3), PE and CSF (n=1 each) were also represented (Table 1). Regarding tumor 
types, the majority of samples were from lung cancer patients (n=49), followed by colorectal 
cancer (n=11), melanoma (n=5) and other malignancies (n=5). All liquid biopsies in the 
retrospective cohort had been previously genotyped for EGFR, KRAS, BRAF, NRAS and 
PIK3CA hotspot mutations by NGS or PNA-Q-PCR. The cfDNAs were re-analyzed using the 
nCounter SNV panel, the counts for each mutation were normalized and positive and negative 
samples identified as explained in Methods (see also online Supplemental Fig. 2). The results 
obtained for three representative hotspot mutations are shown in Figure 1. In all cases, the 
distribution of the normalized counts was bimodal, with the mutant samples representing a 
different subpopulation. 
 
The results of the previous cfDNA genotyping were used for comparison purposes (Fig. 2). 
For EGFR, KRAS, BRAF, NRAS and PIK3CA mutation detection, nCounter and NGS/PNA-Q-
PCR showed concordance rates ranging from 97.1% to 100% and Cohen kappas from 0.91 to 
1.00 (Table 3). If the five genes were considered together, mutation status by nCounter showed 
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Figure 1. Results of the mutation detection by nCounter in the retrospective cohort (n=70) for three representative 
mutations, L858R in EGFR (A), G12C in KRAS (B) and V600E in BRAF (C). Left, individual normalized counts 
in the liquid biopsy samples, expressed as log MUT values. The dotted lines indicate the threshold. Right, 
distribution of the log MUT values. 
 
an almost perfect agreement with previous genotyping, with only four discordant cases, 0.96 
Cohen kappa (CI=0.92-1.00) and 98.9% concordance (CI=97.1-99.7%). 
 
The four discordant samples were further investigated (Fig. 2). One corresponded to a plasma 
sample with a T790M in EGFR detected by PNA-Q-PCR at an extremely low allelic fraction 
(0.004%), well below the limit of detection of the nCounter SNV panel.  The only discordant 
sample for BRAF had been positive for a V600K mutation by PNA-Q-PCR, with a 2.1% allelic 
fraction. The plasma sample had been stored for four years at the moment of the nCounter 
analysis and showed very low exonic counts, suggesting cfDNA degradation. Regarding the 
two samples discordant for KRAS, one corresponded to a plasma positive for a Q61L mutation 
by nCounter but negative by PNA-Q-PCR and one to a serum sample harboring a G12S 
mutation by PNA-Q-PCR at 0.12% allelic fraction, not detected by nCounter. 
 
Paired tissue samples with complete genotyping results were available for 30 liquid biopsies 
included in the retrospective study. For EGFR, KRAS, BRAF, NRAS and PIK3CA mutation 
detection, nCounter in liquid biopsy showed 71-100% sensitivity and 100% specificity vs. 
paired tissue (online Supplemental Table 8). When the five genes were considered together, 
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Figure 2. Heatmap of the liquid biopsies included in the retrospective cohort (n=70). All samples were analyzed 
by nCounter and an alternative technique, either NGS or PNA-Q-PCR. Green, mutations detected by nCounter 
and the alternative technique. Blue, mutations detected only by nCounter. Yellow, mutations detected only by the 
alternative technique. 
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Table 3. Concordance of mutation detection by nCounter with NGS and PNA-Q-PCR in liquid biopsy samples. 
The 95% confidence intervals are indicated for the overall results.  

 
 
mutation status in liquid biopsy by nCounter showed an almost perfect agreement with 
previous genotyping in tissue biopsies, with a Cohen kappa of 0.90 (CI=0.74-1.00) and a 97.3% 
concordance (CI=93.1-99.2%). 
 
Finally, we compared the log MUT values obtained by nCounter with the allelic fractions 
previously found by NGS or PNA-Q-PCR in the same samples. For this analysis, we selected 
the KRAS-positive liquid biopsies and we found a linear correlation between the log MUT 
KRAS values and the log2 of the KRAS mutant allelic fractions derived from NGS or PNA-Q-
PCR (R2=0.63; Pearson r=0.80; online Supplemental Figure 3). 
 
Prospective analysis of liquid biopsies  
During a 6-month period (December 2018 to June 2019), liquid biopsy samples from 83 cancer 
patients were collected, submitted to DNA extraction and prospectively analyzed using the 
SNV nCounter panel. Six patients had two or more fluid samples available (online 
Supplemental Table 1) bringing the total number of liquid biopsies tested to 91. In all cases, 
the concentration of purified cfDNA was less than 1 ng/mL, as measured by Qubit. Despite 
these low concentrations, only one of the 91 liquid biopsies showed very low exonic counts 
and was considered as not evaluable.  
 
The characteristics of the 90 liquid biopsy samples finally included in the prospective study 
are presented in Table 2. The majority of them corresponded to plasma samples (n=87), 
although two CSF and a PE were also included. Regarding the type of malignancy, most liquid 
biopsies were obtained from lung cancer patients (n=51); followed by colorectal (CRC) (n=20), 
breast (n=4), melanoma (n=4), prostate (n=3) and other tumors (n=8), including thyroid, 
ovarian, pancreatic, sarcoma and kidney cancer. 
 
The results of the mutation analysis by nCounter are presented in Fig. 3A. Among the 51 fluid 
samples from lung cancer patients, mutations in EGFR were found in seven samples; three 
harbored exon 19 deletions, three exon 21 point mutations and one a G719A mutation in exon 

Table 3. Concordance of mutation detection by nCounter with NGS and PNA-Q-PCR in liquid biopsy samples. The 95% confidence intervals are 1	
indicated for the overall results. 2	

 nCounter vs. NGS/PNA-Q-PCR  

Genes* EGFR KRAS BRAF NRAS PIK3CA Overall 

Nº concordant 
results  

69 68 69 70 70 346 

Nº discordant 
results  

1 2 1 0 0 4 

Sensitivity  100%  93.3%  100% 
 

100%  
 

100.0% 
 

94.7% 
(CI=85.4-98.9%) 

Specificity  98.0%  98.2%  98.3% 
 

100% 
 

100.0% 
 

99.7% 
(CI=98.1-100%) 

Concordance  98.6%  97.1%  98.6%  
 

100% 
 

100.0% 
 

98.9% 
(CI=97.1-99.7%) 

Cohen kappa  0.96  0.91  0.95 
 

1.00 
 

1.00 
 

0.96 
(CI=0.92-1.00) 

 3	
*Samples not carrying a mutation in a particular gene were used as negatives for this gene, independently of the mutational status of other genes. 4	
 5	
Abbreviations: NGS—next generation sequencing; PNA-Q-PCR--quantitative PCR in presence of a quencher-labeled peptide nucleic acid6	
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18. Regarding KRAS mutations, seven samples were positive for the G12 (n=4), Q61 (n=2) or 
G13 (n=1) positions. Hotspot mutations in PIK3CA were found in four lung cancer liquid 
biopsies, three of them coming from the same patient (see below). Finally, eleven samples 
harbored mutations in a variety of genes, including PTEN, CTNNB1, GNAQ, NFE2L2, FGFR2, 
FBXW7, TP53 and ALK. The two liquid biopsies positive for ALK mutations corresponded to 
patients in progression to ALK targeted therapies. In the case of the CRC patients, 2/20 liquid 
biopsies were positive for KRAS mutations and one each for BRAF, NRAS and CTNNB1. 
Finally, among samples collected from patients with other malignancies, a G12D mutation in 
NRAS was found in two serial samples from a melanoma patient in progression to BRAF/MEK 
inhibitors, while two consecutive liquid biopsies from a pancreatic cancer patient harbored the 
I195T mutation in TP53 and a thyroid sample a Q61R mutation in NRAS. 
 
Eighty-four of the 90 liquid biopsy samples in the prospective cohort had not been previously 
submitted to any kind of testing. The remaining six samples (four blood and two CSFs) had 
been analyzed using liquid-biopsy NGS panels, yielding invalid results. Interestingly, all of 
them were evaluable by nCounter, which detected drivers in two, a KRAS G12D mutation in a 
blood sample and a L1196M ALK resistance mutation in a CSF. 
 
Validation of results of the prospective testing 
A subset of 16 cfDNA samples from the prospective cohort with remaining material was 
subsequently submitted to NGS for validation purposes. The subset included samples from the 
11 patients carrying mutations in genes not validated in the retrospective part of the study; such 
as TP53 or ALK (Figure 3A). The NGS panel employed did not cover CTNNB1, FBXW7, 
FGFR2 or GNAQ and mutations in these genes could not be confirmed. For the rest of genes, 
NGS showed concordant results with nCounter for EGFR (n=4), TP53 (n=3), PIK3CA (n=2), 
NRAS (n=2), ALK (n=1) and NFE2L2 (n=1) mutations. Sequencing only failed to detect a 
PTEN mutation, while two samples were not evaluable due to insufficient material (Figure 3A 
and online Supplemental Table 9). 
 
Mutation analysis of serial samples 
A clinical case where serial liquid biopsies were collected will be described in further detail 
(Fig. 3B). It corresponded to a lung cancer patient, diagnosed in February 2016, harboring an 
EML4-ALK fusion and wild-type for EGFR, KRAS, BRAF and PIK3CA in tumor tissue at 
presentation. The patient started ceritinib on February 2016, which was replaced by alectinib 
three months later due to hepatic toxicity. The patient was in remission for more than two years, 
and the four serial blood samples obtained from April 2016 to June 2017 were pan-negative by 
the nCounter SNV panel. In contrast, two mutations were detected in a fifth sample collected 
in April 2018, E545K in PIK3CA and E79Q in NFE2L2, at log MUT values of 2.1 and 3.2, 
respectively. The patient showed radiological progression in multiple sites four months later, 
in August 2018. Alectinib was then replaced by brigatinib, a blood sample obtained in October 
revealed a substantial increase in the log MUT values of both mutations, which rose to 5.6 and 
7.8. A subsequent radiological evaluation demonstrated lack of response to brigatinib.  
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Figure 3. (A, previous page) Heatmap representing the results of the mutation detection by nCounter in the liquid 
biopsies included in the prospective cohort (n=90). (B) Case report of an EML4-ALK advanced NSCLC patient. 
Results of the mutation analysis of serial blood samples using the nCounter SNV panel are presented, together 
with the clinical evolution of the patient. 
 
Atezolizumab was then administered, but the log MUT values further increased in blood, to 
7.6 and 10.1; an evaluation of response on February 2019 revealed progression of the disease. 
Lorlatinib was finally started and the patient underwent a partial response that was 
accompanied by a substantial decrease in the log MUT values of the two mutations in plasma, 
which dropped to 2.2 and 4.0. Five serial samples of the patient had remaining material after 
nCounter, and PIK3CA mutations were tested by PNA-Q-PCR for validation purposes. The 
results showed a good agreement with those previously obtained by nCounter (online 
Supplemental Table 10).  
 
Discussion 
 
Precision oncology, based on the assessment of molecular markers predictive of treatment 
outcome, has transformed clinical practice for many types of cancer. Since tumor tissue is not 
always available or sufficient for genetic testing, liquid biopsies have quickly gained 
acceptance in the clinical setting(50, 82-87). Initially, blood and other fluids from cancer 
patients were mainly employed to detect clinically relevant mutations in EGFR, KRAS, NRAS 
or BRAF using PCR-derived techniques targeting a limited number of exons(95). However, in 
the last few years, several NGS platforms have been adapted to the requirements of liquid 
biopsies and are being employed by a growing number of laboratories.  
 
The nCounter technology is a multiplex hybridization-based assay(11) that differs from NGS 
techniques, being based on direct counting of the RNA or DNA molecules(96). The technology 
has been adapted for the detection of mutations in DNA purified from tumor tissue(92) by the 
design of three types of probes (S, M and T). S probes have two binding regions, one detecting 
the presence of the mutation and the other binding to a nearby wild-type sequence; while M 
probes act like signal attenuators of the wild-type sequences, and T probes facilitate detection 
(online Supplemental Figure 1). The nCounter technology has been widely used in research 
studies to simultaneously determine mRNA expression levels of hundreds of genes in 
biological samples(97, 98), including liquid biopsies of cancer patients(99, 100). Some of these 
exploratory studies have led to the identification of expression-based signatures to discriminate 
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malignant lung nodules(75) and predict outcome to immunotherapy in solid tumors(101) or 
drug sensitivity in prostate cancer(102). However, nCounter has never been used for routine 
testing of liquid biopsies of cancer patients and the only signature in clinical use is the U.S. 
Food and Drug Administration-approved, tumor-tissue based Prosigna, which determines the 
risk of recurrence in breast cancer(18, 91, 103). 
 
Here we have described the validation of the nCounter SNV panel, which can detect mutations 
and small indels in 27 genes, for the genotyping of liquid biopsy samples; followed by the 
implementation of the assay for the prospective testing of blood and other fluids of cancer 
patients. During the validation study, we found that 5 pg of mutant DNA, purified from 1.2 mL 
of blood or other body fluids, was sufficient for successful analysis. Regarding limits of 
detection, using spiking experiments with cell lines we found values of 0.02-2% allelic fraction. 
The concentration of cfDNA in the liquid biopsy samples used in our study ranged between 
0.1 and 0.5 ng/µL, and 5 µL were loaded in the nCounter assay; meaning that the total cfDNA 
input was 500-2500 pg. Since 5 pg of mutant DNA are required, the minimum allelic fractions 
needed for mutation detection in liquid biopsy samples by nCounter would be 0.1%-0.02%, in 
coincidence with the values found in cell line experiments In contrast, using cfDNA inputs 
lower than 500 pg could lead to higher limits of detection. 
 
The limits of detection of the nCounter SNV panel compare favorably with the requirements 
of liquid biopsy NGS assays (online Supplemental Table 11) and the low requirement of input 
material explains that, among the 91 liquid biopsies prospectively analyzed with the panel, 
only 1 (1.1%) sample was not evaluable. Remarkably, valid results could be obtained for two 
CSF samples, which are usually collected at small volumes and contain particularly low 
amounts of cfDNA(88, 104, 105). One of them corresponded to an EML4-ALK positive patient 
progressing to targeted therapies, where a L1196M resistant mutation was identified and used 
for the selection of subsequent therapies. Of note, NGS had been previously attempted with 
these two CSFs but yielded invalid results due to insufficient DNA concentration. 
 
Finally, comparison with results obtained in tissue biopsies revealed diagnostic sensibility and 
specificity of 84.6% and 100%, respectively. All these values are in the range of those reported 
for liquid biopsy NGS platforms such as Guardant Health or Oncomine (online Supplemental 
Table 11). One of the limitations of our study was that the number of paired tissue samples 
was limited and the confidence interval calculated for the diagnostic sensitivity had a wide 
range, from 66.4-93.8%. However, we were able to compare the results obtained by nCounter 
in all the liquid biopsies in the retrospective cohort with the previous genotyping of the same 
samples by NGS or PNA-Q-PCR, showing an almost perfect agreement, with 99% 
concordance and a 0.96 Cohen kappa (CI=0.92-1.00). 
 
During prospective testing, EGFR mutations were found in 7/51 liquid biopsy samples from 
the NSCLC patients analyzed (13.7%)(3), a percentage in the range of the frequency described 
in European populations, while KRAS mutations were detected in another seven patients; 
EGFR and KRAS mutations were mutually exclusive, as expected. In the case of CRC, KRAS, 
NRAS or BRAF mutations were found in 5/21 (23.8%) of liquid biopsies. This relatively low 
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prevalence can be explained in two ways, (i) a considerable number of the CRC patients were 
stage I-IIIA, with less tumor burden than advanced patients; (ii) 3/21 samples corresponded to 
samples of patients in response to therapy. Finally, results obtained in serial liquid biopsies 
indicate that the nCounter SNV panel could be used to follow the evolution of cancer patients. 
Although allelic fractions as such cannot be estimated, the log MUT values were directly 
dependent on allelic fractions and could be easily calculated and monitored (Figure 4). 
 
The nCounter platform confers several advantages over NGS techniques for mutation detection 
in liquid biopsies. It requires a substantially lower amount of material, has a 24-48h turnaround 
time with relatively short hands-on time, sample preparation is simple compared to NGS, data 
analysis is straightforward and does not require bioinformatics expertise (Supplemental 
Figure 1). The main disadvantage of the nCounter platform is that, not being a sequencing 
technique, it cannot detect mutations other than those contained in the SNV panel, although 
the panel can be customized. Detection of mutations by nCounter can be particularly useful in 
some settings. Examples include liquid biopsies with small volumes and/or low concentrations 
of cfDNA, such as CSF samples(88) or pleural and peritoneal lavages(94); liquid biopsies 
where NGS has failed; or cancer patients in urgent need of a genetic testing to determine if 
they are eligible for targeted therapies. Also, the nCounter SNV panel is well suited for 
monitoring patients in response to therapy where repeated NGS of liquid biopsies would not 
be cost-effective and can be spared until progression.  
 
In summary, we have demonstrated that the nCounter SNV panel, initially developed for tumor 
tissue samples, shows an analytical performance similar to NGS in liquid biopsies, requires 
less material and can be implemented for multiplex detection of somatic mutations in the 
clinical setting. Our results also pave the way for testing the performance of nCounter for the 
detection of other relevant alterations in liquid biopsies from cancer patients, such as gene 
fusions or expression levels of genes predictive of response to immunotherapy. 
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Supporting information 
 

 
Supplemental Figure 1. (A) Workflow of the mutation analysis of liquid biopsies using nCounter. (B) 
Hybridization-based detection of mutations using S and T probes. 
 
 

 
Supplemental Figure 2. Results of the mutation detection by nCounter in the retrospective cohort (n=70) for 
KRAS (A), EGFR (B), BRAF (C) and NRAS (D). Individual normalized counts in the liquid biopsy samples, 
expressed as log MUT values, are represented. The dotted lines indicate the threshold for positivity. 
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Supplemental Figure 3. Comparison of the log2MUT values obtained by nCounter and the log2 of allelic 
fractions obtained by NGS or PNA-Q-PCR in 12 liquid biopsies positive for KRAS mutations. 
 
 
The supplementary methods and tables can be found online at:  
https://academic.oup.com/clinchem/advance-article/doi/10.1093/clinchem/hvaa248/6095704? 
searchresult=1#supplementary-data 
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Abstract 
 
Extracellular vesicles (EVs) are double-layered phospholipid membrane vesicles that are 
released by most cells and can mediate intercellular communication through their RNA cargo. 
In this study, we tested if the NanoString nCounter platform can be used for the analysis of 
EV-mRNA. We developed and optimized a methodology for EV enrichment, EV-RNA 
extraction and nCounter analysis. Then, we demonstrated the validity of our workflow by 
analyzing EV-RNA profiles from the plasma of 19 cancer patients and 10 controls and 
developing a gene signature to differentiate cancer vs. control samples. TRI-reagent 
outperformed automated RNA extraction and, although lower plasma input is feasible, 500 µL 
provided highest total counts and number of transcripts detected. A 10-cycle pre-amplification 
followed by DNase treatment yielded reproducible mRNA target detection. However, 
appropriate probe design to prevent genomic DNA binding is preferred. A gene signature, 
created using a bioinformatic algorithm, was able to distinguish between control and cancer 
EV-mRNA profiles with an area under the ROC curve of 0.99. Hence, the nCounter platform 
can be used to detect mRNA targets and develop gene signatures from plasma-derived EVs.  
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Introduction 
 
With the growing global cancer burden, estimated at 18 million cases in 2018(1), earlier cancer 
detection, enhanced disease monitoring and improved therapy selection are indispensable to 
enhance patient survival. Liquid biopsies provide a minimally invasive, safe and sensitive 
surrogate for tissue biopsies. Extracellular vesicles (EVs) are double-layered phospholipid 
membrane vesicles that are released by most cells, including cancer cells, immune cells and 
even blood platelets, and can be isolated from practically any body fluid. Cells liberate highly 
heterogeneous EVs in terms of size (10 nm – 1 um), cargo (nucleic acids, proteins and lipids), 
membrane composition, biogenesis and biological function(69-71). Several EV enrichment 
strategies have been described, including ultracentrifugation, size-exclusion chromatography 
and precipitation. Precipitation buffers capture water molecules and thereby decrease the 
hydration of particles, allowing their precipitation after a low-speed centrifugation.  
 
Importantly, the active molecules that are found within EVs can be transported to local or 
distant target cells and execute biological functions, making EVs important mediators of 
intercellular communication(69, 72, 73). Since the quantity of released EVs and their specific 
cargo is regulated by the producing cells, the RNA profiles contained within EVs could 
potentially be used as biomarkers for development and progression of several diseases, 
including cancer(74). EVs also have the advantage of their lipid bilayer, which makes their 
cargo particularly stable and allows the use of biobank stored samples.  
 
Gene expression studies using EV-RNA from cancer patients are an active area of research(63, 
64). Promising findings have been reported but the lack of standardized protocols for RNA 
extraction and analysis, leading to inconsistent results, is hampering clinical implementation. 
Transcriptomic analysis studies are often conducted using quantitative real time PCR (qRT-
PCR), microarrays or RNA sequencing (RNAseq), each with their own (dis)advantages(106). 
While qRT-PCR provides high sensitivity and specificity with a short turnaround time, it only 
allows for low-throughput transcriptomic analysis of a limited number of genes. Microarrays 
represent a medium-throughput platform but have a narrower dynamic range of detection and 
are not suitable to detect genes expressed at either low or high levels. Finally, RNAseq is an 
accurate, high-throughput platform with a wide dynamic range, but limitations include longer 
turnaround time, high cost and complex data analysis(8, 9).  
 
In recent years, the NanoString nCounter platform has gained popularity in translational 
research and clinical settings. The platform provides a simple, sensitive and cost-
effective solution for multiplexed analysis of up to 800 RNA targets by direct capturing and 
counting of individual targets. In addition, it can be used with formalin-fixed paraffin 
embedded (FFPE) tumor tissue and allows for low quality and quantity tissue samples(11, 92). 
At this respect, the nCounter-based Prosigna assay, which differentiates breast cancer subtypes 
and predicts the risk of recurrence based on a 50-gene signature, has been validated in the 
clinical practice and received FDA approval in 2013(22, 23). Another assay developed using 
the nCounter platform is the 18-gene Tumor Inflammation Signature (TIS), which was able to 
predict clinical response to PD-1 blockade in an investigational clinical trial assay(33). These 



Plasma-derived EV-mRNA analysis on nCounter 
___________________________________________________________________________ 

 66 

two assays, which utilize tissue samples, emphasize the potential of the nCounter platform as 
biomarker assay development tool, especially in diagnostic laboratories. Regarding the 
analysis of liquid biopsies on nCounter, several studies have investigated the potential of some 
materials, including cf-(107) and EV-DNA(61), CTC-RNA(58, 77), leukocyte mRNA(78), 
cfRNA(75) and EV-miRNA(79, 80), with different success rates. However, nCounter has 
never been tested for the analysis of EV-derived mRNA. 
 
Here, we present a proof-of-concept study where we optimized a workflow for EV enrichment 
from human blood samples, EV-mRNA purification and subsequent analysis by nCounter.  
Then, we used the workflow to develop an EV-mRNA based gene signature to differentiate 
cancer vs. control samples. Our work demonstrates that nCounter can be employed for 
biomarker discovery based on EV-mRNA. 
 
Materials and methods 
 
Patient Samples 
This study was carried out in accordance with the principles of the Declaration of Helsinki 
under an approved protocol of the institutional review board of Quirón Hospitals. We selected 
for the study all blood samples from advanced stage cancer patients arriving to our institution 
in a two month period with sufficient volume for EV extraction after routine genetic testing 
(n=19). Blood samples from 10 healthy controls were also collected (Table 1). Written 
informed consent was obtained from all participants and documented; samples were de-
identified for confidentiality. Clinical information collected from each participant was limited 
to gender, age, tumor type and stage.  
 
Table 1. Clinical characteristics of the cancer patients and controls included in the study. ADC: adenocarcinoma; 
SCC: squamous cell carcinoma; UPS: undifferentiated pleomorphic sarcoma.  

 
 
Extracellular Vesicle Enrichment 
Whole blood samples (10 mL) were collected in sterile EDTA Vacutainer tubes (BD, 
Plymouth, UK) and centrifugated twice at 1000 x g for 10 min at room temperature (RT). 
Plasma samples were stored at -80°C until further processing. The miRCURY Exosome 

Table 1. Clinical characteristics of the cancer patients and controls included in the study. ADC: 
adenocarcinoma; SCC: squamous cell carcinoma; UPS: undifferentiated pleomorphic sarcoma.  
 

Characteristics Cancer patients 
(n = 19) 

Controls 
(n = 10) 

 
Gender – no. (%) 

   

     Male 11 (57.9) 5 (50.0) 
     Female 8 (42.1) 5 (50.0) 
Age - yr   
     Median 62 42 
     Range 45-78 24-53 
Tumor type – no. (%)   
     Lung (ADC) 10 (52.7) - 
     Gastric (ADC) 3 (15.8) - 
     Anal (SCC) 2 (10.5) - 
     Rectal (ADC) 2 (10.5) - 
     Sarcoma (UPS) 2 (10.5) - 
Stage – no. (%)   
     Stage III 2 (10.5) - 
     Stage IV 
 

17 (89.5) - 
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Serum/Plasma Kit (Qiagen, Hilden, Germany) was used to enrich for EVs from 500 µL plasma, 
according to the manufacturer’s instructions, unless otherwise specified. In short, dead cells 
and debris (including platelets and fibrin) were cleared with thrombin and centrifugation. 
Precipitation Buffer was added, samples were incubated overnight at 4°C and the EV fraction 
was pelleted by centrifugation. Supernatants were collected and stored for separate analysis. 
EV enriched pellets were resuspended for further processing.  
 
EV Characterization by Western Blot 
EV enriched pellets were resuspended in 300 µL ice-cold radioimmunoprecipitation assay 
buffer containing protease inhibitor mixture (Roche Applied Science, Penzberg, Germany), as 
previously described(108). Samples were incubated on ice for 30 min, homogenized and 
centrifugated 15 min, 12.000 x g at 4°C. Supernatants (lysates) were collected and 80 μg 
proteins were electrophoresed on 10% SDS-polyacrylamide gels (Life Technologies, Carlsbad, 
CA, USA) and transferred to PVDF membranes (Bio-Rad Laboratories Inc., Hercules, CA, 
USA). Membranes were blocked in Odyssey Blocking Buffer (Li-Cor Biosciences, Lincoln, 
NE, USA). All target proteins were immunoblotted with appropriate primary and horseradish 
peroxidase (HRP)-conjugated secondary antibodies (Supplementary Table S5). 
Chemiluminescent bands were detected in a ChemiDoc MP Imaging System (Bio-Rad 
Laboratories Inc.).  
 

EV Characterization with Cryogenic Electron Microscopy  
Cryogenic Electron Microscopy (Cryo-EM) was performed by the Microscopy Service of the 
Universitat Autonoma de Barcelona (UAB), and used for direct visualization of EVs using the 
TEM JEOL 2011 200 KV. As previously described(109), 2 µL volume of the resuspended EV 
sample was added to a carbon TEM grid. The grid was transferred onto the cyro-preparation 
chamber of a Leica electron microscope, containing a liquid ethane bath cooled to -180 °C. 
Using a piece of filter paper, the EV solution was taken off the grid and plunged into the liquid 
ethane. The orifice trapped frozen EV solution was assembled into a plunger (Leica EM GP) 
and blotted with Whatman No. 1 filter paper. The grid was placed in a liquid nitrogen bath, and 
then loaded into a liquid nitrogen-cooled TEM grid holder. The grid holder was placed into a 
JEOL 2011 TEM microscope. Imaging was performed using a Gatan UltraScan US1000 CCD 
camera and data was analyzed with Digital Micrograph 1.8.  
 
RNA Extraction 
EV-enriched pellets were treated with 4 µg/mL RNase A from bovine pancreas (Sigma-
Aldrich, St. Louis, MO) for 1 h at 37°C, to remove extra-vesicular RNA not associated to EVs. 
For TRIzol LS Reagent (Thermo Fisher Scientific, Waltham, MA) and TRI-reagent (MRC, 
Cincinnati, OH) extraction, TRIzol solutions were added to a final volume of 1 mL and 
incubated at RT for 20 min to inactivate RNase A and lyse the EVs. Then, 200 µL Chloroform: 
Isoamyl Alcohol (24:1) (Panreac Química SLU, Barcelona, Spain) was added and samples 
were vigorously vortexed and centrifuged at 12,000 x g for 15 min at 4°C. The aqueous upper 
layer was kept and RNA was precipitated adding 2.5 µL Glycogen (Merck KGaA, Darmstadt, 
Germany) and 500 µL 2-propanol (Merck KGaA), incubating 10 min at RT and centrifugating 
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for 10 min, 12,000 x g, at 4°C. The final RNA pellet was washed with 75% ethanol, air dried 
and dissolved in 20 µL nuclease free water. The QIAsymphony DSP Virus/Pathogen Kit was 
also tested in the automated QIAsymphony SP System (Qiagen) for RNA extraction from EVs, 
according to the manufacturer’s instructions.  
 
Electrophoretic analysis of RNA 
The approximate quantity and size distribution of the isolated EV-RNA was evaluated using 
the Bioanalyzer RNA 6000 Pico Assay (Agilent Technologies, Santa Clara, CA) according to 
manufacturer instructions. 
 
DNase Treatment 
In order to remove co-isolated DNA, the EV-RNA samples were treated with the DNA-free 
DNA Removal Kit (Thermo Fisher Scientific), according to manufacturer instructions. In short, 
1 µL DNase buffer and 0.5 µL enzyme were added to 7.5 µL RNA sample, followed by 
incubation at 37°C for 30 min and DNase removal.  
 
Gene Expression Analysis using nCounter 
The nCounter Low RNA Input Amplification Kit (NanoString Technologies, Seattle, WA) was 
used to retrotranscribe and pre-amplify 4 µL EV-derived RNA using 10 cycles. 
Retrotranscription was carried out in 0.5 mL tubes while pre-amplification, using primers 
targeting the genes of the Human Immunology V2 Panel (NanoString Technologies), was 
performed in 384-well plates to prevent sample evaporation. In parallel, a Moloney Murine 
Leukema Virus (M-MLV) Reverse Transcriptase Enzyme (Thermo Fisher Scientific) was also 
tested for cDNA synthesis. The Human Immunology V2 Panel (NanoString Technologies) was 
used to analyze EV-derived, pre-amplified cDNA according to manufacturer instructions. This 
panel targets 594 general genes involved in the immune response such as cytokines, enzymes, 
interferons and their receptors. Samples were hybridized for 18 h at 65°C.  
 
Data Normalization and Analysis 
Raw nCounter counts of expressed genes were normalized in R and R studio v3.6.3 using the 
R package NanoStringNorm.(110) Normalization was performed following several steps: 
technical assay variability normalization using the geometric mean of the positive control 
probes, background correction using the mean plus two times standard deviation (SD) of the 
negative control probes, and sample content normalization using the total amount of counts for 
each sample. Normalized counts were log2-transformed, and used for differential expression 
(DE) analysis. Log2 fold change (FC) of each gene was calculated as the ratio of average log-
2 transformed counts of the cancer patient cohort vs. the control cohort. Volcano plots were 
used to visualize log2 FC on the x-axis and nominal p-values on the y-axis. GraphPad Prism 
software (version 9.0.0; https://www.graphpad.com/scientific-software/prism/) was used for 
other statistical testing and to create figures.  
 
Classifier Algorithm Development 
Optimal gene selection was performed using recursive feature elimination (RFE). To this end, 
a leave-one-out cross validation (LOOCV) algorithm was used on the full Human Immunology 
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V2 gene Panel. The number of genes to select was set at 4, 8, 16 or 579 and the amount of 
genes that yielded optimal performance after cross-validation was automatically selected. 
Classification was performed with the selected gene signature using random forest (rf) and k-
nearest neighbors (knn) classifiers with three iterations. The model with the highest accuracy 
was then selected as the final model. Signature scores for each sample were derived from the 
final model.  
 
Gene Expression Analysis using qRT-PCR 
Complementary DNA (cDNA) was synthesized using the M-MLV Reverse Transcriptase 
Enzyme (Thermo Fisher Scientific). Hereafter, cDNA was added to TaqMan Universal Master 
Mix (Applied Biosystems) in a 12.5 μL reaction with specific primers and probe designed for 
each gene. The primer and probe sets were designed using Primer Express Software (version 
3.0.1; https://www.thermofisher.com/order/catalog/product/4363993#/4363993) (Applied 
Biosystems) according to their Ref Seq (http://www.ncbi.nlm.nih.gov/LocusLink) Gene-
specific primers were designed as follows: GAPDH, forward: 5´-TGACC 
TCAACTACATGGTTTACATGTT-3´ and reverse: 5´-TGACGGTGCCATGGAATTT-3´; 
Caspase 8, forward: 5´-CAGGGCTCAAATTTCTGCCTAC-3´ and reverse: 5´-GAAGAA 
GTGAGCAGATCAGAATTGAG-3´; CCL5, forward: 5´ CATCT GCCTCCCCATATTCCT 
3´ and reverse: 5´ AGTGGGCGGGCAATGTAG 3´. Quantification of gene expression was 
performed using the QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific). 
Expression levels of mRNA were expressed as arbitrary units based on Ct values. Commercial 
RNAs were used as controls (liver and lung; Stratagene, La Jolla, CA). In all quantitative 
experiments, a sample was considered not evaluable when the standard deviation of the Ct 
values was > 0.30 in 2 independent analyses.  
 
Data Availability 
Supplementary information is available for this paper 
 
Results 
 
Optimization of plasma EV enrichment and EV-RNA extraction methodologies 
EVs were enriched from 500 µL plasma of control samples using the miRCURY Exosome 
Serum/Plasma Kit (Fig. 1a). Final miRCURY sediments were submitted to western blotting, 
revealing enrichment in the exosome markers Flotillin and CD63, which were absent or 
detected at low levels in miRCURY supernatants and whole plasma samples. Sediments, 
supernatants and plasmas were negative for the cell-specific marker calnexin (Fig. 1b, 
Supplementary Fig. S1). Cryogenic electron microscopy (cryo-EM), a commonly used 
technique for EV characterization(111, 112), was used to visualize the miRCURY sediments, 
revealing EVs with the classical morphology and a diameter of 100-300 nm, in agreement with 
the reported 10 nm - 1 µm size range (Fig. 1c)(69-71). 
 
TRIzol LS and TRI-reagent are mixtures of phenol, guanidine isothiocyanate and other 
components routinely used for nucleic acid extractions. We found that the quantity of RNA 
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that could be isolated from EV-enriched sediments using TRI-reagent was too low to be 
determined by the 

 
Figure 1. EV enrichment and characterization, assay reproducibility. (A) EV enrichment based on precipitation 
using the miRCURY Exosome Serum/Plasma Kit, including separation of supernatant and EV-enriched pellet. 
(B) Immunoblots showing expression of Flotillin, CD63 (both exosome markers) and Calnexin (cell specific 
marker) in EV-enriched pellets, supernatants, full plasma and a positive control sample. Experiments were 
performed in duplicates. Membranes were cut and incubated with specific antibodies for Flotillin, CD63 and 
Calnexin. Images were cropped for clarity purposes and full membranes can be found in Supplementary Figure 
S1. (C) Cryogenic Electron Microscopy (cryo-EM) of EV pellets. Arrows point to extracellular vesicles with 
different size ranges. Scale bars are 200 nm. (D) Total  counts by nCounter after EV-RNA extraction using TRI 
reagent. Two different retrotranscriptases (NanoString versus M-MLV) and three pre-amplification conditions (0, 
10 and 20 cycles) were tested. (E) Reproducibility experiment comparing the Log2 normalized counts by 
nCounter from three independent cDNAs derived from a single EV-RNA sample. Spearman´s correlation 
coefficient is indicated. EVs: extracellular vesicles; PC: positive control; Cyc: cycles. 
 
Qubit RNA High Sensitivity Assay Kit (Thermo Fisher Scientific). Bioanalyzer profiles of two 
representative samples revealed RNA concentrations <150 pg/µL, insufficient for nCounter 
analysis using the Human Immunology V2 Panel, which we had selected for our study 
(Supplementary Fig. S2). Therefore, we tested retrotranscription and pre-amplification of the 
EV-mRNA with the nCounter Low RNA Input Amplification Kit, using primers targeting the 
genes of the Panel. Two reverse transcriptases were compared, the M-MLV and the enzyme 
provided by the kit, together with 10 vs. 20-cycles for the pre-amplification step. Results 
indicated that the retrotranscriptase provided by the kit was more efficient in terms of final 
counts and that both 10 and 20 cycles yielded sufficient raw counts for successful nCounter 
analysis with the Human Immunology V2 Panel (Fig. 1d). However, 20-cycles of pre-
amplification led to saturation for some genes with higher expression levels (Supplementary 
Fig. S2). In consequence, 10 cycles were selected for the final workflow.  
 
To test the reproducibility of the steps described above, we retrotranscribed and pre-amplified 
the same EV-RNA sample on three independent reactions. Then, we compared the results 
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obtained when submitting the three resulting cDNA samples to nCounter analysis. A strong 
correlation was found between the normalized counts for each individual gene obtained in the 
different cDNAs, represented by a Spearman´s r of 0.84 to 0.91, p < 0.01 (Fig. 1e). 
 
All the experiments so far described had been performed with 500 µL plasma samples and 
TRI-reagent. Two additional RNA extraction methods were tested on EV-enriched 
preparations from control samples, the automated QiaSymphony and the manual TRIzol LS 
Reagent based isolation (Fig. 2a). When considering the total number of counts by nCounter, 
TRI-reagent was found to outperform both QiaSymphony and TRIzol LS, independently of the 
retrotranscriptase or the number of cycles used for the pre-amplification step (Fig. 2b). Finally, 
we also tested the effect of plasma input volume on downstream analysis of EV-RNA on the 
nCounter platform. Both the total counts and number of transcripts detected were higher with 
an initial plasma volume of 500 µL (Fig. 2c).  
 

 
Figure 2. EV-RNA extraction, targeted pre-amplification and plasma input testing. (A) Total nCounter counts 
after automated (QiaSymphony) vs. manual (TRI reagent) RNA extraction from an EV-enriched pellet. Two 
different retrotranscriptases (NanoString versus M-MLV) and three pre-amplification conditions (0, 10 and 20 
cycles) were tested. Results were normalized to the counts corresponding to 0 cycles. (B) Total nCounter counts 
after TRIzol LS vs. TRI reagent manual RNA isolation from an EV-enriched pellet. Results were normalized to 
the counts corresponding to 0 cycles. (C) Effect of input plasma volume (150-500 uL) on the final number of 
transcripts detected (left) or total nCounter counts (right) Results were normalized to the counts corresponding to 
500 uL plasma. (D) Total nCounter counts of different fractions obtained during EV enrichment of plasma (EVs 
vs. supernatant p < 0.0001 in a one-way ANOVA with Dunnett´s multiple comparisons test; EVs versus C-EXT 
p < 0.0001). Cyc: cycles; EVs; extracellular vesicles; C-EXT: extraction control. 
 
RNase A is a bovine enzyme that can be used to degrade RNA in a sample. When enriching 
for EVs from plasma samples, we expect two sources of RNA; extra-vesicular RNA and RNA 
derived from within the EVs. Our workflow for EV-RNA analysis incorporates an RNase A 
treatment of the EV-enriched pellets in order to remove extra-vesicular RNA not embedded 
into the particles. To further validate this step, we collected two EV-enriched pellets and the 
corresponding supernatants of healthy patients, treated them with RNase A, purified the RNA 
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and analyzed them with the Human Immunology V2 Panel. We found that EV-enriched pellets 
yielded significantly higher transcript counts compared to the supernatant (one-way ANOVA 
with Dunnett´s multiple comparisons, EVs vs. supernatant p < 0.01), indicating that the 
transcripts detected by nCounter are associated with EVs (Fig. 2d). To validate the efficacy of 
our RNase treatment, we also checked the expression of GAPDH and CCL5 by qRT-PCR in 
three patient samples. Three different sample conditions were used; EVs without RNase 
treatment, EVs with RNase treatment and lysed EVs with RNase treatment. Results indicated 
that RNase treatment of intact EVs slightly reduced the GAPDH and CCL5 mRNA levels, 
probably by removing the extra-vesicular RNA co-precipitated with the EVs (Supplementary 
Fig. S3). In contrast, once EVs were lysed, RNase treatment effectively eliminated all RNA 
and both GAPDH and CCL5 transcripts were undetectable, confirming that transcripts purified 
using our workflow are indeed contained within the EVs.  
 
EV-derived mRNA analysis on nCounter and classifier development  
Based on the data presented above, we selected a workflow for subsequent experiments; 
starting with EV enrichment from 500 uL of plasma with the miRCURY kit, followed by 
manual RNA purification with TRI-reagent, retrotranscription with the Nanostring enzyme, a 
10-cycle pre-amplification and final cDNA analysis by nCounter. We validated the proposed 
workflow by studying the EV-mRNA expression of 19 cancer patient and 10 control plasma 
samples using the Human Immunology V2 Panel (Table 1). If all samples were considered 
together, the average number of transcripts detected was 430 ± 79 out of the 594 transcripts in 
the panel (Fig. 3a). No significant differences were found between the number of mRNA 
transcripts in EVs from controls versus cancer patients (445 ± 68 and 422 ± 84 respectively, 
Mann-Whitney’s U p = 0.46).  
 
After normalization, we analyzed the differential expression (DE) of transcripts in EVs from 
cancer patients vs. controls (Fig. 3b, Supplementary Table S1). We found 141 mRNAs with 
significantly different levels; of them, 107 were upregulated and 34 downregulated in the EVs 
from cancer patients vs. controls. Then, we used a recursive feature elimination (RFE) method 
to select a gene signature predictive of the origin of the sample; a cancer patient or a control 
sample. The transcripts included in the final signature were BCL10, CXCL11, CYBB and GBP1 
and, based on their expression levels, our algorithm was able to classify plasma samples into 
cancer and control with a receiver operating characteristic (ROC) area under the curve (AUC) 
of 0.92 to 0.95 (Fig. 3c). The classifier also calculated signature scores for each sample, which 
were found to be significantly different between cancer patients and controls (Mann-Whitney 
U, p < 0.01; Fig. 3d).  
 
Improvement of classifier performance through removal of genomic DNA 
The TRI-reagent-based RNA isolation incorporated in our workflow for EV-RNA purification 
may also co-extract EV-genomic DNA, which could bind to the nCounter probes during 
hybridization. In consequence, some of the counts detected can correspond to genomic DNA 
instead of mRNA transcripts, particularly considering that we used a 10-cycle pre- 
amplification step. To test if this was the case, we analyzed the effect of adding a DNase  
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Figure 3. EV-mRNA transcript detection, differential expression analysis and development of a classifier 
algorithm. (A) Number of transcripts detected in EVs from cancer patients and healthy controls using the Human 
Immunology v2 nCounter panel, which targets 594 genes (two-tailed Mann-Whitney U test, p = 0.463). (B) 
Differential expression analysis of log2-normalized counts between cancer patients and healthy controls. The full 
list of genes differentially expressed is presented in Supplementary Table S1. (C) Area under the ROC curve of 
the four-gene signature, selected using recursive feature elimination (RFE), to differentiate cancer from control 
samples. (D) Scores of cancer vs. control samples based on expression of the four-gene signature (p < 0.001 in a 
two-tailed Mann-Whitney U test). NS: not significant; EVs: extracellular vesicles; ROC: receiver operating 
characteristic; AUC: area under the curve; RFE: recursive feature elimination; rf: random forest; knn: k-nearest 
neighbors. 
 
treatment step after EV-RNA extraction in the 28 EV samples with remaining material. A 
dramatic reduction in the number of transcripts detected and the total amount of counts was 
observed in the EV-RNA samples after DNase treatment (Fig. 4a, Mann-Whitney U, p < 0.01 
in both cases). The average number of transcripts in the 28 samples decreased from 430 ± 79 
to 115 ± 66 and the total counts dropped more than 90%. As previously observed in samples 
without DNase treatment, the number of transcripts detected in cancer vs. control samples were 
not significantly different (122 ± 77 vs 103 ± 39, Mann-Whitney’s U p = 0.92, Fig. 4b). In 
addition, there were no significant differences in the number of transcripts detected between 
the different tumor types; which included sarcoma, lung, rectal, anal and gastric cancer 
(Supplementary Fig. S4).  
 
Based on these results, we decided to incorporate a DNase step in our EV-mRNA purification 
and analysis workflow when working with this panel (Fig. 5), and we confirmed that 500 µL 
still yielded the highest number of transcripts and total counts (Fig. 4c). To further validate the 
DNase step, we analyzed GAPDH, CCL5 and Caspase 8 (CASP8) expression by qRT-PCR in 
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Figure 4. Effect of DNase treatment on the number of transcripts detected, total counts, and additional validation 
experiments. (A) Number of transcripts detected (left) and total nCounter counts (right) in non-DNase vs. DNase 
treated EV samples (p < 0.001 in a two-tailed Mann-Whitney U test, in both cases). (B) Number of transcripts 
detected in EVs from cancer patients and control samples using the Human Immunology v2 nCounter panel, after 
DNase treatment (p = 0.916 in a two-tailed Mann-Whitney U test). (C) Effect of input plasma volume (150-500 
uL) on the final number of transcripts detected (left) or total nCounter counts (right), after DNase treatment. 
Results were normalized to the counts corresponding to 500 uL plasma. (D) Comparison of Log2 counts by 
nCounter vs. ddCT values by qRT-PCR for GAPDH and CCL5 in 22 samples. Spearman´s correlation coefficient 
is indicated. NS: not significant. 
 
 
the 22 EV samples with remaining RNA. We observed a statistically significant correlation 
between GAPDH and CCL5 expression as measured by nCounter and qRT-PCR (Spearman´s 
r = 0.545, p < 0.01 and r = 0.850, p < 0.01, respectively; Fig. 4d); while CASP8 transcripts 
were undetectable in DNase treated EV-RNA by both techniques. 
 
Next, we proceeded to redesign our gene signature and classifier algorithm using the expression 
data derived from DNase treated EV-mRNAs. We observed that the number of differentially 
expressed genes in cancer vs. control samples dropped from 141 to 43 (Fig. 6a and 
Supplementary Table S2). Of them, 17 genes (40%) overlapped with those obtained using 
non-DNase treated samples (Fig. 6b). Then, we used the RFE algorithm to create a second 
signature, which included eight genes: CCL5, S100A9, B2M, HLA-B, IL7R, ICAM3, ARHGDIB 
and PYCARD (Fig. 6a and Supplementary Table S3). The algorithm based on this signature 
was able to classify the samples into cancer and control with a ROC AUC of 0.99 to 1.00 (Fig. 
6c). Also, the signature scores for each sample were found to be significantly different between 
cancer patients and controls (Mann-Whitney U, p < 0.01; Fig. 6d). 
 
The significant decrease in counts after DNase treatment prompted us to further investigate the 
binding of nCounter probes to genomic DNA co-purified with EV-mRNA. The nCounter 
Human Immunology V2 Panel targets 594 gene transcripts. The probes for some genes are 
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Figure 5. Final workflow for EV-RNA extraction and analysis on the nCounter platform. The miRCURY kit was 
used to enrich EVs from 500 uL plasma and EV-enriched preparations were treated with RNase to remove extra-
vesicular RNA. Then, EV-RNA was extracted using TRI reagent and treated with DNase to remove genomic 
DNA. DNase treatment is only necessary when probes are not designed in an intron-spanning manner. Next, we 
performed retrotranscription and a 10-cycle pre-amplification, followed by hybridization, purification on the 
nCounter prep-station and analysis on the nCounter digital analyzer. EVs: extracellular vesicles. Part of this figure 
was modified from SMART (Servier Medical Art), licensed under a Creative Common Attribution 3.0 Generic 
License. http://smart.servier.com/  
 
designed within the same exon (“non-intron spanning”); while other probes (“intron spanning”) 
target sequences corresponding to contiguous exons of the cDNA/mRNA. Genomic DNA 
should only bind “non-intron spanning” probes, and we performed an additional experiment to 
confirm this point. We analyzed an EV sample in quadruplicate, skipping the retrotranscriptase 
and/or the DNase treatment (Supplementary Table S4). Without DNase treatment, we 
observed counts for “non-intron spanning” probes (such as CASP8, TNFRSF8 and B2M) both 
in presence and in absence of the retrotranscriptase step. In contrast, counts for “intron 
spanning” probes (such as PRKCD, TNFRSF10C, FCER1G) were apparent only if 
retrotranscription was performed. Finally, DNase treatment induced a significant drop in the 
counts of “non-intron spanning” but, unexpectedly, also “intron spanning” probes. 
 
Discussion 
 
The molecules found within EVs, such as mRNAs, are often involved in intercellular 
communication and represent a potential source for biomarker discovery. However, lack of 
standardized methods and clinical validation prevents the implementation of EV-derived 
testing in daily practice. The nCounter platform, which allows for multiplex detection of 
hundreds of transcripts, has been extensively used in translational research for transcriptomic 
tumor characterization. In addition, the nCounter Prosigna assay, based on a 50-gene 
expression signature, has been fully standardized and validated at the clinical level; and 
received FDA approval in 2013 to predict risk of recurrence in breast cancer(21-23). However, 
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Figure 6. Effect of DNase treatment on differential expression analysis and classifier development. (A) 
Differential expression analysis of log2-normalized counts after DNase treatment between cancer patients and 
control samples. The full list of genes differentially expressed is presented in Supplementary Table S2. Labels 
indicate the eight transcripts selected for the final classification signature. (B) Out of 594 genes in the panel, 17 
showed differential expression independently of DNase treatment. (C) Recursive feature elimination (RFE) was 
used to select an eight-gene signature that could distinguish between samples derived from cancer patients and 
controls. (D) Scores of cancer vs. control samples based on expression of the eight gene signature (p < 0.001 in a 
two-tailed Mann-Whitney U test). DE: differentially expressed; EVs: extracellular vesicles; ROC: receiver 
operating characteristic; AUC: area under the curve; RFE: recursive feature elimination; rf: random forest; knn: 
k-nearest neighbors. 
 
studies investigating the performance of nCounter for mRNA analysis in liquid biopsies are 
scarce, particularly in the case of EVs. 
  
Here, we present a workflow for nCounter-based analysis of plasma-derived EVs and we 
demonstrate that it can be used to efficiently detect transcripts in EV-enriched preparations 
from cancer patients and control samples. The first step of the workflow is plasma processing 
using the precipitation-based miRCURY kit which, as previously described(113, 114), yielded 
pellets enriched in EVs. Clinical laboratories do not usually have access to ultracentrifugation 
and precipitation kits offer several advantages, such as short turn-around time and limited 
technical requirements. Although 500 µL plasma was found to give the highest amount of 
detected transcripts and total counts by nCounter, lower plasma inputs also yielded valid 
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results. The second step is manual RNA isolation using TRI-reagent, which was found to 
outperform manual purification by TRIzol LS and automated extraction.  
 
The extraction methods tested, including the TRI-reagent based manual extraction, did not 
yield sufficient RNA for direct analysis by nCounter. In consequence, after some optimization 
experiments, a 10-cycle pre-amplification step was added to our workflow and found to be 
highly reproducible. Most RNA extraction methods are known to co-purify genomic DNA 
(gDNA), and this was also our case. The EV-associated gDNA could be located in the interior 
of the vesicles or be attached to the membranous surface, and further research is needed to 
clarify this issue. More importantly, it has been described that simultaneous isolation of EV-
derived genomic DNA during EV-RNA extraction can affect the amount of detected 
transcripts(115). In consequence, we tested the effect of adding a DNase treatment step to our 
methodology and found a significant decrease in total counts and number of transcripts 
detected. Interestingly, while the expression of many genes became undetectable after DNase 
treatment, the counts for some transcripts were maintained. These observations suggested that 
co-extracted EV-genomic DNA was amplified during the pre-amplification step and could 
hybridize to the “non-intron spanning” probes in the nCounter panel. In contrast, probes 
designed in an “intron-spanning” manner should not hybridize to EV-DNA. Validation 
experiments confirmed this point (Supplementary Table S4). Unexpectedly, we observed a 
sharp decrease also in the counts of “intron-spanning” probes after DNase treatment, strongly 
suggestive of EV-RNA degradation or, more likely, EV-RNA loss during the purification steps 
needed to remove the DNase. In consequence, appropriate design of probes should be preferred 
over DNase treatment when analyzing samples with low amounts of RNA that require pre-
amplification. Since we were using a pre-designed panel that could not be modified, we added 
a DNase treatment step to our final protocol for EV-mRNA analysis (Fig. 5). As an additional 
validation of the entire workflow, we re-analyzed 22 DNase treated samples for GAPDH, 
CASP8 and CCL5 expression by qRT-PCR. Similarly to previous reports(9, 12), we found a 
statistically significant correlation between the expression levels obtained by qRT-PCR and 
nCounter. 
 
Next, we investigated if our workflow for EV-mRNA analysis could be used to develop gene 
signatures. To this end, we performed differential expression analysis of the nCounter results 
obtained for control and cancer samples. The signature-based algorithm obtained for EV-
mRNA (DNase treated) showed an improved classifier performance in comparison with EV-
nucleic acids (non-DNase treated); with ROC-AUCs of 0.99-1.00 versus 0.92-0.95 for the 
discrimination of control vs. cancer, respectively. This result is coincident with a previous 
report where a DNA removal step was shown to reduce signature noise during algorithm 
development and yielded better classification results(116). The genes selected for our EV-
mRNA expression signature are CCL5, S100A9, B2M, HLA-B, IL7R, ICAM3, ARHGDIB and 
PYCARD; which are involved in several immune-related pathways such as cytokine signaling, 
innate immune system or lymphocyte activation (Fig. 6a and Supplementary Table S3). 
CCL5, B2M, HLA-B and IL7R are all related to cytokine signaling and lymphocyte activation, 
and are thus known as immunomodulators. Interestingly, these four transcripts were 
downregulated in cancer samples, suggesting differences in immune system activation through 
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cytokine induction between cancer patients and controls. PYCARD is also proposed to be 
involved in lymphocyte activation and was found to be upregulated in cancer patients. A 
previous study found that PYCARD could suppress apoptosis of cancer cells in gastric 
cancer(117), potentially explaining the observed higher expression in EVs from cancer 
patients.  
 
Two studies have used nCounter for analysis of mRNA isolated from blood. Kossenkov et 
al(75) developed a pulmonary node classifier to differentiate malignant from non-malignant 
nodules previously detected by low-dose CT. Since the authors made use of whole blood, the 
quantities of purified RNA were significantly higher than those in our EV-based study (3 
µg/2.5 mL blood versus 0.01 µg/2.5 mL, respectively), avoiding the need for a pre-
amplification step. Beck et al(58) used a combination of CTC-RNA and cfRNA to profile 
tumor-associated biomarkers and correlate them with diagnostics and survival. The quantities 
of RNA were similar to those obtained in our study and a pre-amplification step was also added.  
 
Our study shows several limitations. First, although purification of EVs from plasma yielded 
pellets that were found to be enriched in EVs, such precipitation techniques can also isolate a 
significant fraction of proteins and lipoproteins(118, 119). Second, there are no validated 
housekeeping genes for normalization of EV-mRNAs and we had to use the total amount of 
counts, as described(120-122). Third, although nCounter presents many advantages, it has also 
a few limitations when compared to other multiplex techniques such as RNAseq. For instance, 
since nCounter works with gene panels, no new transcripts can be found. Finally, our aim was 
to establish a workflow for the nCounter analysis of EV-mRNA and the mixed patient 
population we used to demonstrate the validity of our approach was not the most appropriate 
to develop a clinically useful signature. Much larger patient cohorts would be needed to train 
and validate signatures that could differentiate between cancer patients and controls. 
 
In summary, to the best of our knowledge, this proof-of-concept study is the first to demonstrate 
that the nCounter platform can be used to reproducibly detect plasma EV-mRNA transcripts. 
Differential expression analysis can then be implemented for biomarker assay development. 
Our work paves the way for widespread testing of EV-mRNA expression in blood and other 
fluids, and subsequent selection of signatures useful in the clinical setting.  
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Supporting information 

 
Supplementary Figure S1. Full immunoblot membranes showing expression of Flotillin, CD63 and Calnexin in 
EV-enriched pellets, supernatants, full plasma and a positive control sample.  
 

 
Supplementary Figure S2. Bioanalyzer profiles for RNA quantity and quality and saturation of GAPDH 
transcripts after pre-amplification. (A) Bioanalyzer profiles of Tri-reagent based EV-RNA extraction from 500 
µL plasma. (B) Raw GAPDH counts after Tri-reagent based EV-RNA extraction. Different pre-amplification 
conditions (0, 10 and 20 cycles) were tested, using the same plasma sample. The 0 cycle condition was used as 
control value for normalization. A pre-amplification of 20 cycles was found to cause saturation in the GAPDH 
counts. Cyc: cycles. 
 

 
Supplementary Figure S3. qRT-PCR analysis for GAPDH and CCL5 in three patient samples to determine the 
efficacy of RNase A treatment. For each patient three different sample conditions were used: intact EVs with- and 
without RNase treatment, and lysed EVs after RNase treatment. Results were normalized to the counts 
corresponding to EVs without RNase treatment. Undetermined values by qRT-PCR have been assigned a value 
of 0%. 
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Supplementary Figure S4. Number of transcripts detected in EVs from cancer patients, divided by tumor type, 
and control samples using the Human Immunology v2 nCounter panel, after DNase treatment (p = 0.756 in a 
Kruskal-Wallis test). 
 
 
The supplementary tables can be found online at: 
https://doi.org/10.1038/s41598-021-83132-0 
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Abstract 
 
Purpose: T-cell activation against self-antigens due to immune checkpoint inhibitor (ICI) 
treatment can induce a spectrum of toxicities, known as immune-related adverse events 
(irAEs). Checkpoint inhibitor pneumonitis (CIP) is one of the more lethal irAEs, but predictive 
factors for CIP development remain unclear. We aimed to develop a predictive gene signature 
to stratify patients at higher risk for CIP. 

Experimental design: We retrospectively collected pre-treatment tumor tissue and plasma-
EV samples from lung cancer patients with- and without CIP development. Gene expression 
analysis was carried out using the IO360 panel on the NanoString nCounter platform. Gene 
signatures with best discriminative performance were selected using a bioinformatic algorithm. 
In addition, a multivariate analysis was performed to explore risk factors for CIP development.  

Results: Our study demonstrates that a four-gene EV-mRNA signature can discriminate 
between lung cancer patients with high vs. low risk of developing CIP. The EV-based CIP-
signature yielded an average accuracy of 87.0% and a negative predictive value of 92.7%. 
Importantly, the CIP-signature was found to increase during actual CIP development in follow-
up samples, while it remained low in the other time points.  

Conclusion: We have developed a 4-gene CIP-signature that can be used as a predictive assay 
for CIP development based on plasma EV-mRNA samples from lung cancer patients under ICI 
treatment.  
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Introduction 
 
In the last decade, several immune checkpoint inhibitors (ICIs) targeting programmed cell 
death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have been approved for cancer 
therapy(123). Thus far, monoclonal antibodies targeting PD-1, such as nivolumab, 
pembrolizumab and cemiplimab, and antibodies targeting PD-L1, including atezolizumab, 
avelumab and durvalumab have demonstrated clinical efficacy in several malignancies, 
including lung cancer(124-126). T-cell activation against self-antigens due to ICI treatment can 
induce a spectrum of toxicities, known as immune-related adverse events (irAEs)(127). 
Although, in general, the development of irAEs was found to correlate with improved response 
rates to ICIs and longer patient survival, the type and grade of irAEs needs to be taken into 
account(49, 128, 129).  

Checkpoint inhibitor pneumonitis (CIP) is one of the more lethal irAEs and has been reported 
to occur between a few days up to 24 months after treatment initiation(48, 127, 130). CIP is a 
non-infection induced inflammation of the lung tissue which comes with diverse clinical and 
radiographic manifestations and no available predictive or diagnostic test, complicating clinical 
management. Grade 1-2 CIP includes patients with ground-glass opacity changes and can 
present with symptoms such as dyspnea, cough and chest pain. When diagnosed with grade 3-
4 CIP, patients experience severe symptoms including hypoxia or acute respiratory distress 
syndrome (ARDS) and administration of oxygen or even intubation is often required. A patient 
that has died due to the consequences of CIP development is classified as grade 5(131). 
Treatment strategies depend on the grade, but often consists of discontinuation of 
immunotherapy and administration of high-dose corticosteroid treatment. Multiple studies 
have reported shorter survival in patients that developed CIP(49, 132-134). When not detected 
and treated in time, CIP can lead to heart- and/or respiratory failure and death irrespective of 
tumor response.  

While the reported incidence in literature is around 5%(135), in a retrospective analysis in our 
clinic and two single institution analysis by Suresh et al.(48) and Barron et al.(136) CIP was 
observed in 20% of patients treated with ICIs. Potential risk factors for CIP include pre-existing 
adverse pulmonary conditions, such as tobacco exposure, previous lung radiation, lung 
infections or previous interstitial lung disease(128). The pulmonary damage caused by these 
pathologies may induce a host immune response when exposed to anti-PD1/PD-L1 
therapies(130, 137). In addition, older patients, treatment with multiple therapies and treatment 
with anti-PD-1 antibodies have shown higher CIP incidence(138). Despite these observations, 
there is still an unmet clinical need to confidently predict which patients are at higher risk for 
CIP and to identify the mechanisms of CIP development(131).  
 
Liquid biopsies provide a minimally invasive and clinically relevant source of genetic 
information on several biological processes, including immune system activation(139). RNA 
molecules can be freely circulating in the blood plasma, but are much more stable when 
conserved in membrane-enclosed particles(69-71), such as extracellular vesicles (EVs). EVs 
are released from several cell types and function as intercellular communicators by transferring 
their contents to target cells(69, 72, 73). Consequently, RNA profiles within EVs provide an 
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attractive source of diagnostic and predictive biomarkers, and gene expression studies using 
EV-RNA are an active area of research(63, 64).  

We hypothesized that a pre-treatment state of chronic lung inflammation or immune system 
imbalance could predict which lung cancer patients are at higher risk of developing CIP under 
ICI treatment, paving the way for intensive monitoring of these patients. To this end we 
retrospectively analyzed gene expression profiles (GEPs) of baseline tumor tissue and plasma-
EV samples from lung cancer patients with- and without CIP development. We also 
investigated gene expression changes between pre- and on-treatment EV samples from two 
CIP and two non-CIP patients. Finally, a multivariate analysis was carried out to explore 
patterns of increased CIP risk. Our study demonstrates that a four-gene EV-mRNA signature 
can discriminate between lung cancer patients with high vs. low risk of developing CIP with 
an average accuracy of 87.0% and a negative predictive value (NPV) of 92.7%.  

 
Materials and methods 
 
Tumor tissue and plasma samples 
This study was carried out in accordance with the principles of the Declaration of Helsinki 
under an approved protocol of the institutional review board of Quirón Hospitals. To explore 
differences in gene expression between lung cancer patients with- and without CIP 
development, pre-ICI-treatment formalin-fixed paraffin-embedded (FFPE) tumor tissue 
samples and matching biobank stored pre- and on-treatment plasma samples were 
retrospectively collected (Figure 1, Table 1 and Table 2). Written informed consent was 
obtained from all participants and documented; samples were de-identified for confidentiality. 
Progression-free survival (PFS) was measured from the time of first anti PD-1/PD-L1 
administration to the time of tumor progression by RECIST 1.1 criteria or death/loss of follow-
up. Median PFS and overall survival (OS) were estimated using Kaplan-Meier analysis 
method. Summary statistics, frequency tables, and parametric and nonparametric statistical 
tests were used, as applicable. Statistical analyses were performed with the use of Prism 
software V8.4.3 and SAS. 
 

 
Figure 1. Workflow for tissue and EV-mRNA analysis on the nCounter platform using the IO360 panel and 
downstream gene expression profiling analysis to differentiate between CIP risk. FFPE: formalin-fixed paraffin-
embedded; EV: extracellular vesicle; CIP: checkpoint inhibitor pneumonitis.  
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Table 1. Clinical characteristics of pre-treatment tumor tissue samples from CIP and non-CIP patients. 
 

 

CIP non-CIP
(n = 17) (n = 24)

Gender – no. (%)
     Male 11 (64.7%) 16 (66.7%)
     Female 6 (35.3%) 8 (33.3%)
Age (yr) – median (range)
     Median 63 (51-82) 56 (33-76)
Smoking status – no. (%)
     Former/Current 17 (100.0%) 24 (100.0%)
Stage – no. (%)
     Stage II 0 (0.0%) 1 (4.2%)
     Stage III 2 (11.8%) 0 (0.0%)
     Stage IV 15 (88.2%) 23 (95.8%)
Histology – no. (%)
     Non Squamous NSCLC 12 (70.6%) 18 (75.0%)
     Squamous NSCLC 4 (23.5%) 2 (8.3%)
     SCLC 1 (5.9%) 4 (16.7%)
Treatment line – no. (%)
     First line 5 (29.4%) 10 (41.7%)
     Pre-treated 10 (58.8%) 13 (54.2%)
     Adjuvant 1 (5.9%) 1 (4.1%)
     Neoadjuvant 1 (5.9%) 0 (0.0%)
ICI treatment – no. (%)
     Nivolumab 10 (58.8%) 9 (37.5%)
     Pembrolizumab 3 (17.6%) 2 (8.3%)
     Durvalumab 2 (11.8%) 10 (41.7%)
     Avelumab 2 (11.8%) 0 (0.0%)
     Atezolizumab 0 (0.0%) 3 (12.5%)
Treatment regimen – no. (%)
     Single 13 (76.5%) 21 (87.7%)
     With chemo 3 (17.6%) 1 (4.1%)
     With immunotherapy 0 (0.0%) 1 (4.1%)
     Other combination 1 (5.9%) 1 (4.1%)
Clinical benefit* – no. (%)
     Yes 11 (64.7%) 11 (45.8%)
     No 5 (29.4%) 12 (50.0%)
     NA 1 (5.9%) 1 (4.2%)
CIP grade – no. (%)
     1-2 7 (41.2%) 0 (0.0%)
     3-5 10 (58.8%) 0 (0.0%)
     NA 0 (0.0%) 24 (100.0%)
Time to CIP (m) – median (range)
     Median 4.5 (1-14) NA
PD-L1 IHC – no. (%)
     Positive 5 (29.4%) 5 (20.8%)
     Negative 7 (41.2%) 9 (37.5%)
     Unknown 5 (29.4%) 10 (41.7%)

Characteristics

  

Table 1. Clinical characteristics of pre-treatment tumor tissue samples from CIP and non-CIP patients. 

*Clinical benefit is defined as the sum of patients with complete response (CR) or partial response (PR) plus 
stable disease (SD) longer than 24 weeks.
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Table 2. Clinical characteristics of pre-treatment EV-samples from CIP and non-CIP patients. 
 

 
 

CIP non-CIP
(n = 15) (n = 54)

Gender – no. (%)
     Male 10 (66.7%) 41 (75.9%)
     Female 5 (33.3%) 13 (24.1%)
Age (yr) – median (range)
     Median 65 (51-77) 62.5 (33-80)
Smoking status – no. (%)
     Never 0 (0.0%) 3 (5.6%)
     Former/Current 15 (100.0%) 51 (94.4%)
Stage – no. (%)
     Stage II 0 (0.0%) 1 (1.9%)
     Stage III 2 (13.3%) 6 (11.1%)
     Stage IV 13 (86.7%) 47 (87.0%)
Histology – no. (%)
     Non Squamous NSCLC 12 (80.0%) 35 (64.8%)
     Squamous NSCLC 3 (20.0%) 18 (33.3%)
     SCLC 0 (0.0%) 1 (1.9%)
Treatment line – no. (%)
     First line 4 (26.7%) 8 (14.8%)
     Pre-treated  10 (66.7%) 45 (83.3%)
     Adjuvant 1 (6.6%) 1 (1.9%)
ICI treatment – no. (%)
     Nivolumab 9 (60.1%) 42 (77.8%)
     Pembrolizumab 2 (13.3%) 1 (1.9%)
     Durvalumab 2 (13.3%) 11 (20.3%)
     Avelumab 2 (13.3%) 0 (0.0%)
Treatment regimen – no. (%)
     Single 13 (86.7%) 54 (100.0%)
     With chemo 2 (13.3%) 0 (0.0%)
Clinical benefit* – no. (%)
     Yes 11 (73.3%) 28 (51.8%)
     No 3 (20.0%) 25 (46.3%)
     NA 1 (6.7%) 1 (1.9%)
CIP grade – no. (%)
     1-2 8 (53.3%) 0 (0.0%)
     3-5 7 (46.7%) 0 (0.0%)
     NA 0 (0.0%) 54 (100.0%)
Time to CIP (m) – median (range)
     Median 5.5 (1-14) NA
PD-L1 IHC – no. (%)
     Positive 3 (20.0%) 15 (27.8%)
     Negative 6 (40.0%) 27 (50.0%)
     Unknown 6 (40.0%) 12 (22.2%)

Characteristics

  

Table 2. Clinical characteristics of pre-treatment EV-samples from CIP and non-CIP patients.

*Clinical benefit is defined as the sum of patients with complete response (CR) or partial response (PR) plus 
stable disease (SD) longer than 24 weeks.
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Extracellular Vesicle Enrichment 
Whole blood samples (10 mL) were collected in sterile EDTA Vacutainer tubes (BD, 
Plymouth, UK) and centrifugated twice at 1000 x g for 10 min at room temperature (RT). 
Plasma samples were stored at -80°C until further processing. The miRCURY® Exosome 
Serum/Plasma Kit (Qiagen, Hilden, Germany) was used to enrich for EVs from 600 µL plasma, 
according to the manufacturer’s instructions and as previously described(140). In short, dead 
cells and debris (including platelets and fibrin) were cleared with thrombin and centrifugation. 
Precipitation Buffer was added, samples were incubated overnight at 4°C and the EV fraction 
was pelleted by centrifugation. EV-enriched pellets were treated with 4 µg/mL RNase A 
(Sigma-Aldrich, St. Louis, MO) for 1 hour (h) at 37°C, to remove extracellular RNA not 
associated to EVs. EV characterization and enrichment was previously performed using 
identical protocols(140).  
 
FFPE and EV RNA extraction  
FFPE tissue slides were stained with hematoxylin and eosin. Tumor area was evaluated by a 
pathologist, and samples were macro-dissected prior to RNA isolation. Typically, RNA was 
isolated from 2-4 slides per patient. Total RNA was extracted with the High Pure FFPE RNA 
Isolation Kit (Roche, Indianapolis, IN), following the manufacturer’s protocols, and eluted in 
a final volume of 25 μL. RNA integrity and concentration were evaluated using the 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA) with the RNA 6000 Pico kit (Agilent 
Technologies), and with the Qubit RNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 
MA). For RNA extraction from EVs, Tri-reagent (MRC, Cincinnati, OH) was added to the EV-
enriched pellets in a final volume of 1 mL and incubated at RT for 20 min to inactivate RNase 
A and lyse the EVs, as previously described(140). In short, chloroform: Isoamyl Alcohol (24:1) 
(Panreac Química SLU, Barcelona, Spain) was added and after centrifugation the aqueous 
upper layer was kept to precipitate RNA after adding 2.5 µL Glycogen (Merck KGaA, 
Darmstadt, Germany) and 500 µL 2-propanol (Merck KGaA). The final RNA pellet was 
washed with 75% ethanol, air dried and dissolved in 15 µL nuclease free water. To remove co-
isolated DNA from the resuspended RNA, the DNA-free™ DNA Removal Kit (Thermo Fisher 
Scientific), was used according to manufacturer instructions. In short, 1 µL DNase buffer and 
0.5 µL enzyme were added to 7.5 µL RNA sample, followed by incubation at 37°C for 30 min 
and DNase removal. 
 
Gene Expression Analysis using nCounter 
The nCounter® Low RNA Input Amplification Kit (NanoString Technologies, Seattle, WA) 
was used to retrotranscribe and pre-amplify 4 µL EV-derived RNA using 10 cycles. 
Retrotranscription was carried out in 0.5 mL tubes while pre-amplification, using primers 
targeting the genes of the Human PanCancer IO360 Panel (NanoString Technologies), was 
performed in 384-well plates to prevent sample evaporation. The Human PanCancer IO360 
Panel (NanoString Technologies) was used to analyze EV-derived, pre-amplified cDNA 
according to manufacturer instructions. The FFPE-derived RNA was analyzed without pre-
amplification. The IO360 panel targets 770 genes related to tumor biology, microenvironment 
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and immune response. In addition, the panel contains gene signatures to measure immune cell 
populations and tumor and immune activities. Samples were hybridized for 18 h at 65°C.  
 
Data Normalization and Analysis 
Raw nCounter counts of expressed genes were normalized in R and R studio v3.6.3 using the 
R package NanoStringNorm(110). Normalization was performed following several steps: 
technical assay variability normalization using the geometric mean of the positive control 
probes, background correction using the mean plus two times standard deviation (SD) of the 
negative control probes, and sample content normalization using either the geometric mean of 
the most stable set of housekeeping genes (FFPE tissue RNA) or the total amount of counts for 
each sample (plasma EV-RNA). Normalized counts were log2-transformed, and used for 
differential expression (DE) analysis. Log2 fold change (FC) of each gene was calculated as 
the ratio of average log-2 transformed counts of the CIP patient cohort vs. the non-CIP cohort. 
Volcano plots were used to visualize log2 FC on the x-axis and nominal p-values on the y-axis.  
 
Classifier Algorithm Development 
Optimal gene selection was performed using recursive feature elimination (RFE). To this end, 
a leave-one-out cross validation (LOOCV) algorithm was used on the full IO360 gene Panel. 
The number of genes to select was set at 4, 8, 16 or 770 and the amount of genes that yielded 
optimal performance after cross-validation was automatically selected. Classification was 
performed with the selected gene signature using random forest (rf), k-nearest neighbors (knn) 
and stochastic gradient boosting (gbm) classifiers, where appropriate, using three iterations. 
The model with the highest accuracy was then selected as the final model. Signature scores for 
each sample were derived from the final model. 
 
Results 
 
Gene expression profiling of FFPE tumor tissue to predict CIP development 
To determine if pre-ICI-treatment gene expression profiles GEPs differ between CIP vs. non-
CIP patients, we analyzed FFPE tumor tissue samples with the NanoString nCounter IO360 
panel (Figure 1). Panel-incorporated biological signature scores, related to tumor and immune 
activities, were assessed. The relative abundance of some cell types was found to be 
significantly lower in CIP-developing patients, including neutrophil-, natural killer- (NK) and 
CD56dim NK cell scores and the NOS2 signature score (Mann-Whitney U, p = 0.04, p = 0.02, 
p = 0.01 and p = 0.01, respectively; Supplementary Figure 1). Although these signature 
scores found to be lower expressed in patients that develop CIP, there was no clear cutoff that 
could discriminate between CIP and non-CIP patients.  
 
We then performed a differential expression (DE) analysis of all transcripts included in the 
panel, and discovered 54 mRNA targets with significantly different expression levels; of which 
most were upregulated in the CIP cohort (Supplementary Table 1). Hierarchical clustering 
led to a non-optimal separation of CIP vs non-CIP, but indicated the potential of some genes 
for discriminatory purposes (Figure 2A). A classifier algorithm was developed based on all 
DE genes, and classifier performance yielded receiver operating characteristic (ROC) areas 
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under the curve (AUC) of 0.70-0.77 with accuracies ranging from 65.9% to 73.2% (Figure 2B, 
Supplementary Table 2). Of note, 7 out of 27 patients that were classified as non-CIP were 
false negatives, resulting in a non-optimal negative predictive value (NPV) of 74.1% and a 
positive predictive value of 71.4%. A high NPV is useful in the clinical setting to confidently 
start a patient on ICI treatment, with less intense follow-up. Therefore, we aimed to improve 
classifier performance by selecting a gene signature with a recursive feature elimination (RFE) 
algorithm. The transcripts included in the signature were CDKN1A, BID, ULBP2, HDAC11, 
ARID1A, IGF2R, TWIST1 and IER3 (Figure 2C, Table 3), and annotated pathways included 
tumor-intrinsic factors and myeloid cell activity. Classification yielded ROC AUCs of 0.81-
0.94 with accuracies of 80.5%-92.7%, and an increased NPV and positive predictive value 
(PPV) of 92.0% and 93.8%, respectively (Figure 2D, Supplementary Table 2). The Youden 
Index, a measure between 0 and 1 indicative of the maximum potential effectiveness of a 
biomarker assay, of our 8-gene tissue CIP signature was 0.84. Based on the expression of these 
eight genes, the algorithm calculated tissue CIP-scores for each patient, which were found to 
be significantly different between CIP and non-CIP patients (Mann-Whitney U, p < 0.01; 
Figure 2E). 

 
Figure 2. DE analysis of all 770 transcripts included in the panel in the tumor tissue of CIP vs non-CIP patients. 
(A) Hierarchical clustering of the patients based on the 54 mRNA transcripts that were found to be expressed at 
significantly different levels between CIP and non-CIP patients (Supplementary Table 1). (B) ROC curve 
indicative of classifier performance to distinguish between CIP and non-CIP tumor tissues using all 54 DE 
transcripts. Optimal classifier selection yielded accuracies of 65.9%-73.2% (Supplementary Table 2). (C) 
Volcano plot representing the Log2(FC) and nominal -Log10(p-values) of all transcripts included in the panel for 
CIP vs non-CIP tumor tissue samples. Labels indicate the eight transcripts selected for the final classification 
signature based on a RFE. (D) ROC curve indicative of classifier performance to distinguish between CIP and 
non-CIP tumor tissues using the RFE-selected 8-gene tissue CIP signature. Optimal classifier selection yielded 
accuracies of 80.5%-92.7% (Supplementary Table 2). (E) Signature scores of non-CIP vs. CIP tumor tissue 
samples based on expression of the eight gene signature (p < 0.01 in a Mann-Whitney U test). CIP: checkpoint 
inhibitor pneumonitis; ROC-AUC: area under the receiver operating characteristic curve; DE: differential 
expression; rf: random forest; knn: k-nearest neigbors: RFE: recursive feature elimination.  
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Table 3. RFE-selected 8-gene tissue CIP signature. RFE: recursive feature elimination; CIP: checkpoint inhibitor 
pneumonitis; Mean Log(NC) CIP: mean of the log normalized counts in tumor tissue of CIP patients; SD: 
standard deviation; FC: fold change. 

 
 
Survival- and univariate analysis related to CIP risk 
To determine if CIP development correlated with progression free survival (PFS) and overall 
survival (OS) of the patients, Kaplan Meier analyses were carried out (Figure 3A and 
Supplementary Figure 2). No significant correlations were found between either CIP and 
non-CIP, or low-grade CIP, high-grade CIP and non-CIP (PFS, log-rank, p = 0.15; OS, log-
rank, p = 0.69 and PFS, log-rank, p = 0.22; OS, log-rank, p = 0.80, respectively). Interestingly, 
we could detect a trend towards longer PFS for patients that developed CIP, especially in the 
high grade CIP cohort. In contrast, these patients tended to have a shorter OS. 
 

 
Figure 3. (A) Kaplan Meier analysis correlating the PFS and OS with development of CIP. (B) Univariate analysis 
exploring associations between patient characteristics and CIP development to determine risk factors in the tissue 
sample cohort. Forest plot represents the odds ratios with 95% wald confidence limits. PFS: progression-free 
survival; OS: overall survival; CIP: checkpoint inhibitor pneumonitis; CR: complete response; PR: partial 
response; SD: stable disease; PD: progressive disease.  
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NM_000389.2 CDKN1A 8,4 2,5 -1.2 Downregulated 0.061 - - - - - - - + - + + - -
NM_001196.3 BID 6,1 2,4 1.6 Upregulated 0.060 - - - - - - - - - + + - -
NM_025217.2 ULBP2 3,6 2,5 2.2 Upregulated 0.011 - + - + - - - + - - + - -
NM_001330636.1 HDAC11 5,7 2,3 2.7 Upregulated 0.003 + - - - - - - - - - + - -
NM_006015.4 ARID1A 9,4 0,8 -0.6 Downregulated 0.018 + - - - - - - - - - + - -
NM_000876.2 IGF2R 8,5 0,8 -0.6 Downregulated 0.029 - - - - - - + - - - - - -
NM_000474.3 TWIST1 2,8 2,9 2.4 Upregulated 0.005 - - - - + - - - - - + - -
NM_003897.3 IER3 8,7 2,4 -1.7 Downregulated 0.014 - - - - - - - + - - - - -

Table 3. RFE-selected 8-gene tissue CIP signature. RFE: recursive feature elimination; CIP: checkpoint inhibitor pneumonitis; Mean Log(NC) CIP: mean of the log normalized 
counts in tumor tissue of CIP patients; SD: standard deviation; FC: fold change

Subjects Events Censored Median (CI 95%)
CIP 16 56.3% (9) 43.8% (7) 13.0 (5.0-35.0)
nonCIP 23 82.6% (19) 17.4% (4) 6.0 (2.0-12.9)
Log-Rank p = 0.147

Subjects Events Censored Median (CI 95%)
CIP 16 62.5% (10) 37.5% (6) 10.0 (5.0-30.0)
nonCIP 23 60.9% (14) 39.1% (9) 16 (9.0-25.0)
Log-Rank p = 0.692
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We then explored if certain patient characteristics could provide risk factors for CIP 
development be performing a univariate analysis (Figure 3B). Several characteristics that have 
previously been associated with higher risk of CIP, such as age, gender, type of ICI treatment, 
combination treatment, previous treatment, treatment outcome, histology and smoking status, 
were evaluated. Of these characteristics, a significant association could only be found for 
treatment outcome. Intriguingly, our developed CIP score was found to be a significant 
predictive factor for CIP, with an odds ratio of 172.  

 
Gene expression profiling of plasma-derived EV-RNA to predict CIP development 
Since obtaining a liquid biopsy sample is less invasive and much faster compared to a tissue 
biopsy, we investigated if analyzing pre-treatment plasma-derived EV-mRNA from matched 
patients and an additional patient cohort would yield similar results (Table 2). A DE analysis 
yielded 57 mRNA transcripts with significantly different expression levels between CIP and 
non-CIP developing patients (Figure 4A, Supplementary Table 3). Similar to the tissue 
analysis, most genes were upregulated in CIP vs. non-CIP patients. Hierarchical clustering did 
not depict a clear distinction between CIP and non-CIP patients. We then determined if the 8-
gene CIP signature that we discovered in tumor tissues (Figure 2B) could be applied to pre-
treatment EVs. Classification based on this signature resulted in ROC AUCs of 0.45-0.59, 
which can be interpreted as a poor prediction capacity (Figure 4B, Supplementary Table 4). 
 

 
Figure 4. DE analysis of all 770 transcripts included in the panel in pre-treatment EVs of CIP vs non-CIP patients. 
(A) Hierarchical clustering of the patients based on the 57 mRNA transcripts that were found to be expressed at 
significantly different levels between EVs of CIP and non-CIP patients (Supplementary Table 3). (B) ROC curve 
indicative of low classifier performance to distinguish between CIP and non-CIP EV samples using the 8-gene 
CIP-signature previously developed in tumor tissue samples (Supplementary Table 4). (C) Volcano plot 
representing the Log2(FC) and nominal -Log10(p-values) of all transcripts included in the panel for CIP vs non-
CIP EV samples. Labels indicate the four transcripts selected for the final classification signature based on a RFE. 
(D) ROC curve indicative of classifier performance to distinguish between CIP and non-CIP EVs using the RFE-
selected 4-gene EV CIP signature. Optimal classifier selection yielded accuracies of 84.1% to 89.9% 
(Supplementary Table 4). (E) Signature scores of non-CIP vs. CIP EV samples based on expression of the four 
gene signature (p < 0.01 in a Mann-Whitney U test). CIP: checkpoint inhibitor pneumonitis; EVs: extracellular 
vesicles; ROC-AUC: area under the receiver operating characteristic curve; DE: differential expression; rf: 
random forest; gbm: stochastic gradient boosting; knn: k-nearest neigbors: RFE: recursive feature elimination.  

Figure 3 DE expression analysis EVs full cohort CIP and nonCIP (genes with p < 0.05, n = 57)
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Since EVs contain more systemic information compared to the tumor tissue, their cargo may 
not only resemble what is going on in the tumor. We then aimed to improve classifier 
performance by developing a new EV-specific CIP-signature. RFE was carried out on the 
detected EV-mRNA transcripts and yielded a 4-gene signature for CIP prediction, including 
LYZ, CDH1, CD300A and SPIB transcripts (Figure 4C, Table 4). Annotations of these genes 
include immune cell localization to tumors and myeloid cell activity. The discrimination 
capacity of the new classifier resulted in ROC AUCs of 0.82 to 0.90, with accuracies ranging 
from 84.1% to 89.9% (Figure 4D, Supplementary Table 4). The NPV and PPV of the EV 
CIP signature were 92.7% and 78.6%, respectively, with a Youden index of 0.67. Moreover, 
EV CIP-scores between CIP and non-CIP developing patients were found to be significantly 
different (Mann-Whitney U, p < 0.01; Figure 4E). Consistent with the univariate analysis in 
the tissue sample cohort, only our EV-CIP score was found to be associated to CIP 
development in the plasma sample cohort (Supplementary Figure 3).  

 
Table 4. RFE-selected 4-gene EV CIP signature. RFE: recursive feature elimination; EV: extracellular vesicle; 
CIP: checkpoint inhibitor pneumonitis; Mean Log(NC) CIP: mean of the log normalized counts in tumor tissue 
of CIP patients; SD: standard deviation; FC: fold change. 

 
 
 
 
Follow-up EV-RNA analysis for CIP risk and diagnosis 

Considering the unmet clinical need for a diagnostic CIP test and aiming to understand the 
mechanism of CIP development regarding changes in gene expression, we retrospectively 
explored follow-up plasma EV samples from 2 CIP patients and 2 non-CIP patients using the 
4-gene EV CIP-signature (Figure 5, Supplementary Table 5). Follow-up samples were 
included in the sample cohort and the classifier algorithm was used to discriminate between 
CIP and non-CIP samples based on the CIP-score. Results indicated that the CIP signature 
score could not only predict CIP before starting ICI treatment, but scores also increased above 
the cutoff upon actual CIP development (Figure 5A and B). EV-mRNA was extracted from 
plasma samples that were obtained during first evaluation after anti-PD-1 antibody 
administration, and CIP-scores decreased below the cutoff in both cases. Patient 1 (Figure 5A) 
received nivolumab treatment for 9.5 months, which stabilized tumor growth, until high-grade 
CIP was diagnosed in June 2017. The CIP-score of the EV-mRNA at this time point increased 
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NM_000239.2 LYZ 6.8 4.3 3.6 Upregulated 0.008 - - - + - - - + - - - - -
NM_004360.3 CDH1 3.0 3.0 2.7 Upregulated 0.004 - - - + + - - + - - + - -
NM_001256841.1 CD300A 2.2 2.6 1.7 Upregulated 0.023 - - - - - - - - - - - + -
NM_003121.3 SPIB 2.1 2.7 2.0 Upregulated 0.013 - - - + - - - - - - - - -

Table 4. RFE-selected 4-gene EV CIP signature. RFE: recursive feature elimination; EV: extracellular vesicle; CIP: checkpoint inhibitor pneumonitis; Mean Log(NC) 
CIP: mean of the log normalized counts in tumor tissue of CIP patients; SD: standard deviation; FC: fold change
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Figure 5. Results of follow-up plasma EV analysis using the 4-gene EV CIP-signature. Follow-up samples 
included 2 CIP patients (A and B) and 2 non-CIP patients (C and D). For CIP patients, the CIP signature scores 
were above cutoff levels both before starting ICI treatment, and at the time of CIP diagnosis. Signature scores 
remained below cutoff levels for non-CIP patients. EV: extracellular vesicle; CIP: checkpoint inhibitor 
pneumonitis; ADC: adenocarcinoma; ICI: immune checkpoint inhibitor.  
 

above cutoff, to an even higher level than the pre-treatment CIP-score. ICI treatment was 
discontinued and the patient was treated with corticosteroids (methylprednisolone). The CIP-
score decreased in July 2019, but unfortunately the patient died short after due to CIP-related 
complications. Patient 2 (Figure 5B) was treated with pembrolizumab for only two months 
when she was diagnosed with low-grade CIP. Also in this patient ICI treatment was 
discontinued, and corticosteroids were administered. In November 2018 the patient had a 
progressive disease (PD). She recovered from CIP, and continued on chemotherapy treatment.  

In contrast, in patients that did not develop CIP, scores remained below the cutoff of 0.5 
(Figure 5C and D). For Patient 3 (Figure 5C) we only had an available plasma sample that 
was collected six months before nivolumab administration, where CIP score was below cutoff 
levels. Less than one month after treatment initiation, the CIP score increased but remained 
below cut-off. Interestingly, the clinical reports mention that this patient experienced increased 
cough in September 2015. After two months of treatment the patient had a PD, and nivolumab 
was discontinued. Another two months later the CIP-score lowered to baseline levels, but the 
patient died from PD a few months later. Patient 4 (Figure 5D) started treatment at the end of 
June 2016. CIP-score increased one month after nivolumab administration, but lowered to 
baseline values in August 2016. The patient was on treatment for a total of six months until 
PD, and CIP-scores remained low until the beginning of 2018. The patient died one month later 
from a pulmonary thromboembolism.  
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Discussion 
 
CIP is a serious irAE, that cannot be ignored in the current clinical setting where ICIs are 
increasingly used, both in previously treated advanced stage lung cancers and as a first line 
treatment in PD-L1 expressing tumors. Distinct clinical and radiographic manifestations of CIP 
create a challenging diagnostic process, where multi-disciplinary teams are often necessary. 
Therefore, being able to predict which patients have a higher risk to develop CIP provides an 
important tool for extensive monitoring of this subgroup of patients under treatment, and 
confidently administer ICIs to the patient group with low CIP risk. Risk factors for irAEs, 
especially for CIP, are currently still in exploratory phases. In the current study most patient 
characteristics were not found to be associated to CIP development, revealing that they cannot 
be used for confident treatment decision making. Progressive disease as the best response to 
treatment was the only characteristic that was associated to lower CIP risk in the tissue sample 
cohort, likely due to a shorter treatment time compared to patients with treatment response. 
These results are not in agreement with previously published studies, where a higher incidence 
of CIP was reported in patients treated with anti-PD-1 antibodies(141) and in patients treated 
with immunotherapy combinations(142). Also, in one study, CIP incidence was found to be 
higher in females(48). However, most of these results, including the results presented herein, 
are derived from retrospective single-center studies. Larger patient cohorts are needed to 
conclude if any of these characteristics provide a risk factor for CIP development.  
 
Our retrospective gene expression analysis of pre-treatment tumor tissue and plasma-EV 
mRNA from lung cancer patients with- and without CIP development, indicated that predictive 
CIP signatures can be derived from mRNA using the nCounter platform. Results of the IO360 
panel-incorporated signatures indicated a lower pre-treatment immune cell abundance in tumor 
tissue of CIP patients, while in general most transcripts included in the panel were upregulated 
in the tumor tissue of these patients. To the best of our knowledge, no previous studies have 
reported on the analysis of gene expression or immune cell abundance in the pre-treatment 
tumor tissues of CIP developing patients. However, Suresh et al.(143) performed immune cell 
population analysis in bronchoalveolar lavage (BAL) samples of patients during CIP. An 
increased fraction of activated T cells and loss of anti-inflammatory regulatory T cells (Tregs) 
was detected in these patients. In addition, lower expression of CTLA-4 and PD-1 in CIP 
patients was reported. NOS2 is an inhibitory immune signaling signature, like PD-L1 and 
CTLA-4, that has been associated with intratumor accumulation of Tregs(144). In agreement 
with their findings, we found lower NOS2 signature scores, indicative of a loss of Tregs, in 
pre-treatment tumor tissue of CIP patients. Further studies are needed to explore the 
mechanisms of CIP development related to immune population abundance in both BAL- and 
tumor tissue samples, before and during CIP development.  
 
Development and optimization of a classifier algorithm yielded a predictive 8-gene CIP 
signature in tumor tissue, including transcripts for CDKN1A, BID, ULBP2, HDAC11, ARID1A, 
IGF2R, TWIST1 and IER3. The average accuracy and the NPV of the signature were 86.6% 
and 92.0%, respectively. In the clinical setting, this allows for a more confident treatment 
decision making by assessing risk-benefit ratios for each patient. Reinforcing our finding, a 
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decrease in IGF2R protein expression in lung tumors was previously found to predispose 
patients to radiation-induced lung injury(145). The other transcripts have not previously been 
associated to CIP. Results also indicated that pre-treatment tumor tissue- and plasma EV-
mRNA expression are divergent, and led to the development of an additional, EV-derived, 4-
gene CIP signature based on a total of 69 plasma samples. This signature included LYZ, CDH1, 
CD300A and SPIB transcripts, and compared to the tissue CIP-signature we obtained an 
improved accuracy and NPV of 87.0% and 92.7%, respectively. However, the PPV decreased 
from 93.8% for the tissue CIP-score, to 78.6% in the EVs. This is likely due to the fact that the 
prevalence of CIP is lower in our plasma cohort (21.7%), but resembles the real-world situation 
better, compared to the tissue cohort (41.5%)(146).  
 
Three out of four genes in our signature (LYZ, CDH1 and SPIB) have been related to immune 
cell localization to tumors. Lysozyme (encoded by the LYZ gene), is an antimicrobial enzyme 
with important roles in the innate immune system and serum levels have been used as a marker 
for sarcoidosis(147). Since CIP and sarcoidosis are both characterized by an overactivation of 
the immune system, lysozyme could be an important player in both pathologies. Furthermore, 
CD300A is expressed on several immune cell types and generally acts as an inhibitory 
receptor(148). However, CD8+ T cells that express CD300A have a more cytotoxic phenotype 
and were found to infiltrate the placenta in maternal anti-fetal rejection. This processes causes 
a destructive inflammation of the placenta due to a maternal immune response against the 
fetus(149). Although none of these transcripts have been previously associated to CIP, most of 
them have been reported to play a role in other abnormal immune responses and further studies 
are needed to reveal the relationship of these genes with CIP and determine if they are CIP-
specific or immune overactivation specific.  
 
Two CIP patients were misclassified using the 8-gene tissue CIP-signature with scores of 0.226 
and 0.354, respectively. Although borderline, the first patient was also misclassified with the 
4-gene EV-signature (0.476). This patient had a grade 2 CIP, three months after initiation of 
nivolumab treatment. In contrast, the second patient was correctly classified using the EV-
signature (0.802), and developed a grade 1 CIP two months after starting nivolumab treatment. 
Finally, one non-CIP patient was misclassified with the tissue CIP-signature (0.716), while the 
EV CIP-signature correctly classified this patient as non-CIP (0.000). These results emphasize 
the use of EV-mRNA in predictive biomarker assay development for a complete readout of the 
ongoing biological processes in a cancer patient. Besides the wrongly classified CIP patient 
mentioned above, three other CIP patients were misclassified with the 4-gene EV CIP-
signature. For one of them we had a matching tissue sample, which correctly predicted CIP 
with a tissue CIP-score of 0.714. We did not have matched tissue for the other two samples. 
However, clinical data indicated that one of those samples was actually collected after CIP 
development upon administration of a previous treatment, and the patient did not develop CIP 
after collecting the plasma sample.  
 
Differential diagnosis of CIP based on radiographic evidence is complex due to similarities 
with other complications. In addition, no formal diagnostic criteria or test, except for 
guidelines, are available(128, 143). This underscores the importance of the finding that our EV 
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CIP-signature could not only predict higher CIP-risk, but increased upon actual CIP 
development in follow-up samples. Importantly, the nCounter workflow for EV-mRNA 
analysis can be carried out in less than three days(140), allowing for the required rapid clinical 
decision making.  
 
Our study shows several limitations. First, to implement a predictive and/or diagnostic 
biomarker assay, extensive retrospective and prospective validation studies need to be carried 
out in addition to the assessed patient cohorts. Second, patients with other lung disorders (e.g. 
pneumonia, asthma, COPD, bronchitis and COVID-19) should be included in follow-up 
studies, to determine if the signature is CIP-specific, or related to a general hyper immune 
activation. And finally, as previously indicated, the collected tissue samples did not reflect the 
real-world prevalence of CIP, and therefore PPV values may reflect an over-estimation. 
Prospective testing of the predictive and/or diagnostic use of the EV CIP signature is ongoing, 
and may be extended to testing in upcoming clinical trials investigating anti PD-1/PD-L1 
antibodies.  
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Supporting information 
 
 

 
Supplementary Figure 1. Panel-incorporated biological signature scores, indicative of relative cell type 
abundance in tumor tissue from CIP vs non-CIP lung cancer patients. Differences were assessed using a Mann-
Whitney U test; p = 0.04, p = 0.02, p = 0.01 and p = 0.01, respectively. CIP: checkpoint inhibitor pneumonitis; 
NK: natural killer.   

 
 

 
Supplementary Figure 2. Kaplan Meier analysis correlating the PFS and OS with development of low- or high 
grade CIPs. PFS: progression-free survival; OS: overall survival; CIP: checkpoint inhibitor pneumonitis.  

 

 
Supplementary Figure 3. Univariate analysis exploring associations between patient characteristics and CIP 
development to determine risk factors in the plasma sample cohort. Forest plot represents the odds ratios with 
95% wald confidence limits. CIP: checkpoint inhibitor pneumonitis; CR: complete response; PR: partial 
response; SD: stable disease; PD: progressive disease.  

 

Supplementary Figure 1 Immune cell abundance
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Supplementary Figure 2 PFS/OS correlated to CIP development
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Subjects Events Censored Median (CI 95%)
CIP (1-2) 6 66.7% (4) 33.3% (2) 5.0 (2.0-19.0)
CIP (3-5) 10 50.0% (5) 50.0% (5) 13.0 (5.0-35.0)
nonCIP 23 82.6% (19) 17.4% (4) 6.0 (2.0-12.0)
Log-Rank p = 0.216

Subjects Events Censored Median (m)
CIP (1-2) 6 33.3% (2) 66.7% (4) NA (2.0-NA)
CIP (3-5) 10 80.0% (8) 20.0% (2) 10.0 (1.0-30.0)
nonCIP 23 60.9% (14) 39.1% (9) 16.0 (9.0-25.0)
Log-Rank p = 0.796
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Supplementary Figure 3
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Supplementary Table 1. Significantly DE transcripts (p < 0.05) in tumor tissue samples between CIP and non-
CIP patients. A Log2(FC) > 0 corresponds to enrichment in tumor tissue of CIP-developing patients. DE: 
differentially expressed; CIP: checkpoint inhibitor pneumonitis; P: nominal p-value; FC: fold change. 

 

Transcript P_CIP Log2(FC)_CIP
1 HDAC11 0,0027 2,7
2 MICB 0,0039 2,5
3 TWIST1 0,0051 2,4
4 RIPK3 0,0052 2,4
5 RNLS 0,0079 2,3
6 RASGRF1 0,0097 2,3
7 ULBP2 0,011 2,2
8 PTEN 0,012 2,1
9 LY96 0,013 2,2
10 TLR7 0,013 1,5
11 IER3 0,014 -1,7
12 TNFSF13B 0,014 2
13 TAF3 0,015 1,8
14 SNCA 0,015 2,3
15 WNT10A 0,016 2,5
16 TCF3 0,017 -0,6
17 SNAI1 0,017 -1,1
18 ARID1A 0,018 -0,6
19 MICA 0,019 2,5
20 P4HA1 0,02 1,7
21 NEIL1 0,02 2,3
22 FOXP3 0,023 1,9
23 CLEC7A 0,024 2,2
24 CD2 0,025 2,1
25 RAD50 0,026 1,7
26 BRCA2 0,026 2
27 CDKN2A 0,026 -1,4
28 WNT4 0,027 1,4
29 OASL 0,027 2,2
30 IGF2R 0,029 -0,6
31 SGK1 0,029 -1,6
32 LTBP1 0,03 -1,9
33 CLECL1 0,032 1,6
34 CXCL16 0,032 1,8
35 DDB2 0,033 -0,8
36 PFKM 0,034 1,7
37 COL6A3 0,035 -2,2
38 FAS 0,035 1,8
39 HES1 0,036 -0,7
40 WNT7B 0,037 1,9
41 TNFSF4 0,04 1,6
42 FUT4 0,04 1,8
43 TLR3 0,041 1,9
44 PDGFA 0,041 1,6
45 CD86 0,042 1,7
46 IL2RA 0,043 2
47 IL17A 0,043 -0,9
48 MFNG 0,043 1,9
49 IL15 0,046 1,7
50 IL11RA 0,046 1,8
51 JAG2 0,047 1,6
52 PRR5 0,048 1,6
53 SIRPB2 0,049 1,7
54 CDK2 0,049 -0,3

Supplementary Table 1. Significantly DE transcripts (p < 0.05 ) in tumor tissue samples between CIP and non-CIP 
patients. A Log2(FC) > 0 corresponds to enrichment in tumor tissue of CIP-developing patients. DE: differentially 
expressed; CIP: checkpoint inhibitor pneumonitis; P: nominal p-value; FC: fold change. 
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Supplementary Table 2. Confusion matrices based on optimal classifiers using all DE genes between tissue of 
CIP and non-CIP patients (top), or the RFE selected 8-gene tissue signature (bottom). DE: differentially 
expressed; CIP: checkpoint inhibitor pneumonitis; RFE: recursive feature elimination; PPV: positive predictive 
value; NPV: negative predictive value. 

 

  

CIP nonCIP Total CIP nonCIP Total
CIP 10 7 17 CIP 15 2 17

nonCIP 4 20 24 nonCIP 1 23 24
Total 14 27 41 Total 16 25 41

Value % Value %
Sensitivity 0,59 58,82 Sensitivity 0,88 88,24
Specificity 0,83 83,33 Specificity 0,96 95,83
PPV 0,71 71,43 PPV 0,94 93,75
NPV 0,74 74,07 NPV 0,92 92,00
Accuracy 0,73 73,17 Accuracy 0,93 92,68
Youden´s index 0,42 Youden´s index 0,84

Predicted

Actual

Predicted

Actual

Tissue RFE-selected 8-gene CIP signatureTissue DE genes
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Supplementary Table 3. Significantly DE transcripts (p < 0.05) in EV samples between CIP and non-CIP 
patients. A Log2(FC) > 0 corresponds to enrichment in EVs of CIP-developing patients. DE: differentially 
expressed; CIP: checkpoint inhibitor pneumonitis; P: nominal p-value; FC: fold change. 

 

Transcript P_CIP Log2(FC)_CIP
1 LTBP1 0,002 -0,7
2 TPM1 0,002 -0,7
3 CDH1 0,0044 2,7
4 ZEB1 0,0055 3,1
5 LYZ 0,0079 3,6
6 SNAI1 0,0081 2,3
7 PIAS4 0,0085 -0,5
8 FOSL1 0,009 2,5
9 PVRIG 0,0095 1,6
10 DNAJC14 0,0095 1,6
11 HLA-DPA1 0,0097 3
12 TBX21 0,011 2,2
13 PDZK1IP1 0,013 -0,7
14 SPIB 0,013 2
15 LILRA3 0,015 2,1
16 CD48 0,016 2,9
17 CASP9 0,016 1,6
18 AKT1 0,019 2
19 FCN1 0,02 2,2
20 KAT2B 0,02 2
21 CTSS 0,021 2,5
22 MYD88 0,021 2,2
23 NFIL3 0,022 2
24 CD300A 0,023 1,7
25 BLM 0,024 1,8
26 CDK6 0,024 -0,3
27 ANGPT2 0,026 1,6
28 NFKBIA 0,026 2,5
29 MS4A1 0,026 1,9
30 CASP3 0,026 1,8
31 CLECL1 0,027 1,5
32 PECAM1 0,028 2,1
33 GHR 0,03 1,7
34 TREM1 0,03 -0,3
35 DTX3L 0,031 -0,1
36 IL16 0,033 1,5
37 IKBKG 0,033 2,2
38 CX3CR1 0,034 1,5
39 MYCT1 0,034 -0,6
40 PIK3CG 0,035 1,6
41 CCND3 0,038 2,1
42 APLNR 0,039 1,4
43 NECTIN1 0,039 1,7
44 LDHB 0,04 2,1
45 C2 0,041 1
46 PIK3CA 0,042 1,5
47 CD276 0,043 1,6
48 TWF1 0,043 1,6
49 CXCR3 0,043 1
50 CD84 0,045 -0,2
51 CCL8 0,045 1,1
52 IL11 0,046 1,9
53 SFRP1 0,046 1,4
54 NRAS 0,046 1,2
55 SELE 0,047 1
56 CTLA4 0,047 1,4
57 ATF3 0,049 1,1
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Supplementary Table 4. Confusion matrices based on optimal classifiers using the 8-gene tissue CIP signature 
(top), or the RFE selected 4-gene EV signature (bottom) to distinguish between EVs from CIP and nonCIP 
patients. CIP: checkpoint inhibitor pneumonitis; RFE: recursive feature elimination; EVs: extracellular 
vesicles; PPV: positive predictive value; NPV: negative predictive value. 

 
 
 
 
 
Supplementary Table 5. Clinical characteristics of pre-treatment tumor tissue samples from CIP and non-CIP 
patients. CIP: checkpoint inhibitor pneumonitis; yr: years; NSCLC: non-small cell lung cáncer; ICI: immune 
checkpoint inhibitor; m: months.  

 
 

CIP nonCIP Total CIP nonCIP Total
CIP 2 13 15 CIP 11 4 15

nonCIP 2 52 54 nonCIP 3 51 54
Total 4 65 69 Total 14 55 69

Value % Value %
Sensitivity 0,13 13,33 Sensitivity 0,73 73,33
Specificity 0,96 96,30 Specificity 0,94 94,44
PPV 0,50 50,00 PPV 0,79 78,57
NPV 0,80 80,00 NPV 0,93 92,73
Accuracy 0,78 78,26 Accuracy 0,90 89,86
Youden´s index 0,10 Youden´s index 0,68

Predicted

Actual

Predicted

Actual

8-gene tissue CIP signature RFE-selected 4-gene EV CIP signature

Characteristics Patient 1 Patient 2 Patient 3 Patient 4

    
Status CIP CIP nonCIP nonCIP

Samples
     Pre-treatment 1 1 1 1
     On-treatment 5 2 1 2
     Post-treatment 1 0 1 2

Gender M F F M

Age (yr) 63 73 52 76

Smoking status Current Former Current Former

Histology
Non Squamous 

NSCLC
Non Squamous 

NSCLC
Non Squamous 

NSCLC
Non Squamous 

NSCLC

Stage IV IV IV IV

Treatment line Pre-treated Pre-treated Pre-treated First line

ICI treatment Nivolumab Pembrolizumab Nivolumab Nivolumab

Clinical benefit* Yes No No No

CIP grade Grade 5 Grade 1/2 NA NA

Time to CIP (m) 9 2 NA NA

PD-L1 IHC Unknown Positive Unknown Negative

Supplementary Table 5. Clinical characteristics of pre-treatment tumor tissue samples from CIP and non-CIP patients. 

*Clinical benefit is defined as the sum of patients with complete response (CR) or partial response (PR) plus 
stable disease (SD) longer than 24 weeks.
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Abstract 
 
Lung cancer remains the leading cause of cancer-related death worldwide, mainly due to the 
late stage diagnosis. New tools for early lung cancer detection, with low fractions of false-
positive findings, are an unmet clinical need. We have previously created a pipeline for plasma 
extracellular vesicle (EV)-mRNA analysis on the nCounter platform and consequent gene 
signature development. In this study we aimed to create a specific lung cancer detection 
signature. EVs were enriched from 600 uL plasma of the training cohort (n = 57), including 
plasma from early- and late stage lung cancer patients and controls. RNA was extracted, and 
the pre-amplified cDNA was analyzed using the Human Immune V2 panel. A machine learning 
algorithm was then used to select the most optimal genes for the development of a classifier 
algorithm. The final model consisted of a 16-gene signature, which yielded accuracies of 81% 
to 84% in the training cohort. We then validated this lung cancer signature in a separately 
collected validation cohort (n = 43), with equally high accuracies (81%-84%). In conclusion, 
an nCounter-derived 16-gene EV signature can be used to accurately distinguish between early- 
and late stage lung cancer patients versus controls.  
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Introduction 
 
With over 2 million newly diagnosed cases in 2018, lung cancer is the most commonly 
diagnosed cancer and the leading cause of cancer-related death worldwide(1). The often long 
asymptomatic phase translates into a late stage (IIIB/IV) diagnosis in 80% of the cases, with a 
dramatic life expectancy of only 1-2 years(150). In contrast, lung cancer patients diagnosed at 
early stages (I/II/IIIA) can often undergo surgery and have a significantly better clinical 
outcome. To this end, new tools for early lung cancer detection are urgently needed and could 
provide a diagnostic stage-shift, ultimately leading to prolonged patient survival.  
 
Considering the major impact of early lung cancer detection on patient survival, trials that 
screen for lung cancer have been carried out since the 1960s(151). In the last decade, low-dose 
CT (LDCT) screening trials have gained additional interest. In 2011, the National Lung 
Screening Trial (NLST) reported a 20% reduction in lung cancer mortality when individuals 
underwent LDCT vs. chest radiography screening(152). Although other smaller studies did not 
observe a mortality reduction when screening with LDCT(153-155), the NELSON trial 
confirmed this reduction in lung cancer mortality of 24%-33%(156). Crucial characteristics of 
any screening test include the positive- and negative predictive values (PPV and NPV). Both 
describe the performance of the screening test and also rely on the prevalence of the disease. 
In the case of the NLST, it was shown that of all LDCT scans that had an abnormality (positive 
result, 24.2%), 96.4% were false positive results. The often unnecessary and potentially 
harmful follow-up interventions ultimately formed the basis to search for other types of- or 
additional screening tests(157-159).  
 
Tumor cells, like any other cell type, continuously release nucleic acids into the bloodstream. 
RNA and DNA can be freely circulating within body fluids or can be loaded into membrane-
bound compartments, such as tumor-educated platelets (TEPs) or extracellular vesicles (EVs). 
The lipid bilayer of EVs contribute to the stability of the nucleic acids, and allow for the use 
of biobank stored samples. EVs can be found in divergent sizes, contain a specific cargo and 
comprise several biological functions(69-71). They are important mediators of intercellular 
communication and their RNA content can provide a read-out of early oncological 
development(69, 72, 73). Although efforts have been made to use EV-RNA for early cancer 
detection(160, 161), lack of standardized protocols often yields divergent signatures and 
technical requirements are not suitable for implementation in the clinical laboratory setting(8, 
9, 162). The NanoString nCounter platform is a multiplexed analysis platform that uses direct 
capturing and counting of up to 800 RNA targets(11, 92). The FDA approved Prosigna assay 
emphasizes the potential of the nCounter platform as a biomarker assay development tool, 
especially when used in diagnostic laboratories(22, 23).  
 
We have previously developed an nCounter workflow for the detection of plasma EV-mRNA 
targets and the development of gene signatures(140). Using only eight gene transcripts, a 
machine learning algorithm was able to distinguish between EVs derived from cancer patients 
with different tumor types and controls with areas under the ROC curve of 0.99. In the current 
study we developed a specific lung cancer signature based on EV-mRNA expression analysis 
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with the nCounter platform. The final 16-gene signature could be used to differentiate between 
early- and late stage lung cancer vs. control samples. We then validated this signature in a 
separate cohort, yielding high accuracies. 
 
Materials and methods 
 
Patient samples 
This study was carried out in accordance with the principles of the Declaration of Helsinki 
under approved protocols of the institutional review board of Quirón Hospitals and Amsterdam 
UMC. Plasma samples for the training and validation cohorts were retrospectively and 
prospectively collected from lung cancer patients and control individuals in two hospitals 
(Table 1, Table 2). Written informed consent was obtained from all participants and 
documented; samples were de-identified for confidentiality.  
 
Table 1. Clinical characteristics of the training cohort. no: number; yr: years.  

 
 
Extracellular Vesicle Enrichment 
Whole blood samples (10 mL) were collected in sterile EDTA Vacutainer tubes (BD, 
Plymouth, UK) and centrifugated twice at 1000 x g for 10 min at room temperature (RT). 
Plasma samples were stored at -80°C until further processing. The miRCURY® Exosome 
Serum/Plasma Kit (Qiagen, Hilden, Germany) was used to enrich for EVs from 600 µL plasma, 
according to the manufacturer’s instructions and as previously described(140). In short, dead 
cells and debris (including platelets and fibrin) were cleared with thrombin and centrifugation. 
Precipitation Buffer was added, samples were incubated overnight at 4°C and the EV fraction 
was pelleted by centrifugation. EV-enriched pellets were treated with 4 µg/mL RNase A 
(Sigma-Aldrich, St. Louis, MO) for 1 hour (h) at 37°C, to remove extracellular RNA not 
associated to EVs. EV characterization was previously performed using identical 
protocols(140).  

 

Cancer Controls
(n = 31) (n = 26)

Gender – no. (%)
     Male 16 (51.6%) 12 (46.2%)
     Female 15 (48.4%) 14 (53.8%)
Age (yr) – median (range)
     Median 63 (51- 78) 60 (42-79)
Smoking status – no. (%)
     Never 7 (22.6%) 15 (57.7%)
     Former  11 (35.5%) 5 (19.2%)
     Current 2 (6.4%) 6 (23.1%)
     Unknown 11 (35.5%) 0 (0.0%)
Stage – no. (%)
     Stage I 13 (41.9%) NA
     Stage II 3 (9.7%) NA
     Stage III 4 (12.9%) NA
     Stage IV 11 (35.5%) NA

Characteristics

  

Table 1. Clinical characteristics of the training cohort
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Table 2. Clinical characteristics of the validation cohort. no: number; yr: years.  

 
 
EV RNA extraction  
TRI-reagent (MRC, Cincinnati, OH) was added to the EV-enriched pellets in a final volume of 
1 mL and incubated at RT for 20 min to inactivate RNase A and lyse the EVs, as previously 
described(140). In short, chloroform: Isoamyl Alcohol (24:1) (Panreac Química SLU, 
Barcelona, Spain) was added and after centrifugation the aqueous upper layer was kept to 
precipitate RNA after adding 2.5 µL Glycogen (Merck KGaA, Darmstadt, Germany) and 500 
µL 2-propanol (Merck KGaA). The final RNA pellet was washed with 75% ethanol, air dried 
and dissolved in 20 µL nuclease free water. To remove co-isolated DNA from the resuspended 
RNA, the DNA-free™ DNA Removal Kit (Thermo Fisher Scientific), was used according to 
manufacturer instructions. In short, 1 µL DNase buffer and 0.5 µL enzyme were added to 7.5 
µL RNA sample, followed by incubation at 37°C for 30 min and DNase removal. 

 
Gene Expression Analysis using nCounter 
The nCounter® Low RNA Input Amplification Kit (NanoString Technologies, Seattle, WA) 
was used to retrotranscribe and pre-amplify 4 µL EV-derived RNA using 10 cycles. 
Retrotranscription was carried out in 0.5 mL tubes while pre-amplification, using primers 
targeting the genes of The Human Immunology V2 Panel (NanoString Technologies), was 
performed in 384-well plates to prevent sample evaporation. The Human Immunology V2 
Panel (NanoString Technologies) was used to analyze EV-derived, pre-amplified cDNA 
according to manufacturer instructions. The Human Immunology V2 panel targets 594 
different transcripts involved in the immune response such as cytokines, enzymes, interferons 
and their receptors. Samples were hybridized for 18 h at 65°C.  

 
Data Normalization and Analysis 

Cancer Controls Nodules
(n = 24) (n = 19) (n = 3)

Gender – no. (%)
     Male 14 (58.3%) 7 (36.8%) 1 (33.3%)
     Female 10 (41.7%) 12 (63.2%) 2 (66.7%)
Age (yr) – median (range)
     Median 65 (37-91) 40 (22-66) 54 (52 - 67)
Smoking status – no. (%)
     Never 5 (20.8%) 7 (36.8%)  0 (0.0%)
     Former 15 (62.5%) 4 (21.1%) 1 (33.3%)
     Current 4 (16.7%) 8 (42.1%) 1 (33.3%)
     Unknown 0 (0.0%) 0 (0.0%) 1 (33.3%)
Stage – no. (%)
     Stage I 4 (16.7%) NA NA
     Stage II 1 (4.2%) NA NA
     Stage III 8 (33.3%) NA NA
     Stage IV 11 (45.8%) NA NA

Table 2. Clinical characteristics of the validation cohort

Characteristics
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Raw nCounter counts of expressed genes were normalized in R and R studio v3.6.3 using the 
R package NanoStringNorm(110). Normalization was performed following several steps: 
technical assay variability normalization using the geometric mean of the positive control 
probes, background correction using the mean plus two times standard deviation (SD) of the 
negative control probes, and sample content normalization using the total amount of counts for 
each sample. Normalized counts were log2-transformed, and used for differential expression 
(DE) analysis. Log2 fold change (FC) of each gene was calculated as the ratio of average log-
2 transformed counts of the cancer patient cohort vs. the control cohort. Volcano plots were 
used to visualize log2 FC on the x-axis and nominal p-values on the y-axis. GraphPad Prism 
software v9.0.0 was used for statistical testing and to create figures. 

 
Classifier Algorithm Development 
Optimal gene selection was performed using recursive feature elimination (RFE). To this end, 
a leave-one-out cross validation (LOOCV) algorithm was used on the full Human Immunology 
V2 Panel. The number of genes to select was set at 4, 8, 16 or 594 and the amount of genes 
that yielded optimal performance after cross-validation was automatically selected. 
Classification was performed with the selected gene signature using random forest (rf), k-
nearest neighbors (knn) and stochastic gradient boosting (gbm) classifiers, where appropriate, 
using three iterations. The model with the highest accuracy was then selected as the final model. 
Signature scores for each sample were derived from the final model. 

 
Results 
 
Plasma EV-mRNA signature development for lung cancer detection 
EVs were enriched from the plasma samples of the training cohort (n = 57) and RNA was 
extracted. A multiplexed gene expression analysis was then performed using the Human 
Immune V2 panel on the nCounter platform, including 594 gene transcripts. The training 
cohort consisted of 26 control samples and 31 plasma samples from lung cancer patients, 
including 20 early stage (stage I, II and IIIA) and 11 late stage (stage IIIB and IV) patients 
(Table 1). After data normalization we found 48 differentially expressed (DE) genes between 
EVs from lung cancer patients and controls (Figure 1A, Supplementary Table 1). Most genes 
were overexpressed in EVs from lung cancer patients. Hierarchical clustering of the training 
cohort, using the DE genes, did not accurately separate the cancer patients from the controls 
(Figure 1B). However, 13 out of 31 lung cancer samples clustered together. We then explored 
if a machine learning algorithm could distinguish between lung cancer and control samples 
based on the expression of all 594 genes included in the panel. Using the full gene panel, we 
obtained areas under the receiver operating characteristic curve (ROC-AUCs) of 0.63-0.75 and 
accuracies ranging from 61.4% to 73.7%, depending on the type of classifier that was used 
(Figure 1C, Table 3).  
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Figure 1. EV-mRNA analysis of the samples included in the training cohort, and consequent classifier algorithm 
development. (A) Volcano plot representing the Log2(FC) and nominal -Log10(p-values) of all transcripts 
included in the Human Immune V2 nCounter panel for lung cancer vs control samples (n = 57). (B) Hierarchical 
clustering of the patients based on the 48 mRNA transcripts that were found to be expressed at significantly 
different levels between EVs of lung cancer patients vs controls (Supplementary Table 1). (C) ROC curve 
indicative of classifier performance to distinguish between lung cancer and control EVs using all transcripts 
included in the panel (n=594). Optimal classifier selection yielded accuracies of 61.4% to 73.7% (Table 3). (D) 
ROC curve indicative of classifier performance to distinguish between lung cancer and control EVs using the 
previously found DE genes (Supplementary Table 1). Optimal classifier selection yielded accuracies of 68.4% 
to 77.2% (Table 3). EV: extracellular vesicle; FC: fold change; ROC: receiver operating characteristic; DE: 
differentially expressed; NS: not significant; rf: random forest; gbm: stochastic gradient boosting; knn: k-neirest 
neigbors.   

 
Aiming to improve classifier performance, we then selected only the DE genes and developed 
a new classifier algorithm. ROC-AUC values increased to 0.70-0.79 with accuracies of 68.4%-
77.2% in separating lung cancer patients from controls (Figure 1D, Table 3).  
 
A final optimization step, using a recursive feature elimination (RFE) method to select the best 
set of genes for consequent classification of the samples, was then carried out. The obtained 
gene signature consisted of 16 transcripts, including: S100A9, MYD88, LGALS3, CCL5, GPI, 
EEF1G, CD14, IRF7, TAGAP, B2M, FCGR2A, MAP4K4, HLA-DMA, HLA-B, ARG1, CD3D 
(Figure 2A, Supplementary Table 2). Again, hierarchical clustering was not able to 
accurately separate lung cancer from control samples using this 16-gene signature (Figure 2B). 
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However, a machine learning algorithm that made use of these 16 transcripts could distinguish 
between lung cancer and control samples with accuracies ranging from 80.7% to 84.2% and 
ROC-AUCs of 0.86-0.91 (Figure 2C, Table 3). Importantly, the negative predictive value 
(NPV), positive predictive value (PPV) and Youden´s index value all improved using this 
feature selection method, with final values of 84.0%, 84.4% and 0.68, respectively. Amongst 
all samples included in the training cohort, 5 controls and 4 lung cancer samples were wrongly 
classified based on the algorithm determined cutoff value of 0.5 (Figure 2D).  
 
Table 3. Performance of the machine learning algorithms in the training cohort. DE: differentially expressed; 
RFE: recursive feature elimination; rf: random forest; knn: k-neirest neighbors; NPV: negative predictive 
value; PPV: positive predictive value.  
 

 
 

 
Figure 2. EV-mRNA analysis of the samples included in the training cohort, and consequent classifier algorithm 
development using a recursive feature elimination (RFE) method. (A) Volcano plot representing the Log2(FC) 
and nominal -Log10(p-values) of all transcripts included in panel for lung cancer vs control samples (n = 57). 
Labels indicate the 16 transcripts selected for the final classification signature. (B) Hierarchical clustering of the 
patients based on the 16-gene RFE-selected signature (Supplementary Table 2). (C) ROC curve indicative of 
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classifier performance to distinguish between lung cancer and control EVs using the RFE-selected 16-gene 
signature. Optimal classifier selection yielded accuracies of 80.7% to 84.2% (Table 3). (D) Signature scores of 
lung cancer vs control EV samples based on expression of the 16-gene signature (p < 0.01 in a Mann-Whitney U 
test). EV: extracellular vesicle; FC: fold change; NS: not significant; ROC: receiver operating characteristic; rf: 
random forest; gbm: stochastic gradient boosting; knn: k-neirest neigbors.   

 
Validation of the plasma EV-mRNA signature for lung cancer detection 
To validate our developed 16-gene lung cancer signature, we made use of an additional 
independently collected EV sample cohort including 19 controls, 11 late stage- and 13 early 
stage lung cancer samples (Table 2). Similar to the results of the training cohort (Figure 2B), 
hierarchical clustering could not be used to accurately separate lung cancer from control 
samples using the 16-gene signature that was developed based on the training cohort (Figure 
3A). However, when applying our machine learning algorithm we obtained a high 
classification performance based on this signature, with ROC-AUCs of 0.9 and matching 
accuracies of 81.4%-83.7% (Figure 3B, Table 4). Out of the 43 samples included in the 
validation cohort, five lung cancer samples were wrongly classified with lung cancer scores < 
0.5 (Figure 3C). In addition, three control samples were classified as cancer samples (scores 
> 0.5).  

       
Figure 3. EV-mRNA analysis of the samples included in the validation cohort (n = 43), and consequent validation 
of the 16-gene lung cancer signature. (A) Hierarchical clustering of the patients in the validation cohort based on 
the 16-gene RFE-selected signature (Supplementary Table 2). (B) ROC curve indicative of classifier 
performance to distinguish between lung cancer and control EVs in the validation cohort, using the RFE-selected 
16-gene signature. Optimal classifier selection yielded accuracies of 81.4% to 83.7% (Table 4). (C) Signature 
scores of lung cancer vs control and three nodule EV samples in the validation cohort, based on expression of the 
16-gene signature (p < 0.01 in a Mann-Whitney U test for lung cancer vs control). EV: extracellular vesicle; 
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ROC: receiver operating characteristic; RFE: recursive feature elimination; rf: random forest; knn: k-neirest 
neigbors. 

 
Table 4. Performance of the machine learning algorithms in the validation cohort. RFE: recursive feature 
elimination; rf: random forest; knn: k-neirest neighbors; NPV: negative predictive value; PPV: positive 
predictive value.  

 
 
We then analyzed three additional plasma EV samples from individuals with a previously 
detected lung nodule (Table 2). Our developed signature was used to let the algorithm create 
a lung cancer score for each sample (Figure 3C). Two nodule samples were classified as lung 
cancer with scores of 0.69 and 0.64. One nodule sample was classified as a control with a score 
of 0.45. Follow-up of these patients will elucidate if the nodules are indeed malignant or not.  
 
Discussion 
 
Lung cancer is often diagnosed at a late stage, when treatment options are not curative anymore. 
A blood-based biomarker assay that can detect lung cancer at an early stage allows for the 
diagnostic stage-shift that could reduce lung cancer mortality. In the current study, we have 
used the nCounter platform to develop and validate a 16-gene signature that can distinguish 
between plasma EV-mRNA profiles of early- or late stage lung cancer patients versus control 
individuals. The final models yielded accuracies ranging from 80.7% to 84.2% in the training-
, and 81.4% to 83.7% in the validation cohort. To the best of our knowledge, this is the first 
nCounter-based EV-mRNA biomarker assay for the early detection of lung cancer.  
 
Although low-dose computed tomography (LDCT) is currently the only recommended lung 
cancer screening test, the NLST has showed that 96.4% of the abnormal scans were false 
positives. This translates into a PPV of only 6.6%-9.7%(152, 163). The same holds true for 
chest radiography, where 6.9% of the tests were positive, and 94.5% were false positive results. 
This high fraction of false positive results can lead to unnecessary and potentially harmful 
follow-up interventions, in conjunction with psychological distress and anxiety for the screened 
individual. The unmet clinical need to detect lung cancer at an early stage with less false 
positive results resulted in the exploration of other types of screening tests.  
 
In the last years, several studies have aimed to develop an EV-based lung cancer screening test. 
Most of these studies made use of the miRNA(164, 165) or long non-coding RNA 
(lncRNA)(166) content of EVs as biomarker assays. Even though some studies obtained high 
accuracies in separating lung cancer from controls, they often used small sample cohorts and/or 
did not validate their findings in an independent validation cohort. Moreover, a lack in 
consistency of EV enrichment and RNA extraction methodologies are likely to yield divergent 
signatures and thus results(167). NanoString provides a standardized platform for the analysis 

rf knn

RFE genes (n=16) 81.4% 83.7% 79.2% 78.9% 75.0% 82.6% 0.58

Youden´s indexAccuracy Sensitivity Specificity NPV PPV
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of several sample types, with the option of not only analyzing RNA, but also DNA and protein 
panels. We have previously published a proof-of-concept study which included the 
establishment of a workflow to assess EV-mRNA expression on the nCounter platform(140). 
 
Using this workflow and the Human Immune V2 gene panel, we developed the early lung 
cancer detection signature presented in this study with only 600 uL of human plasma input. 
Our 16-gene signature had a PPV of 84.0% and 82.6% in the training and validation cohorts, 
respectively (Table 3 and Table 4). In addition, the sensitivity and specificity of our signature 
was around 80% in both the training and validation setting. Of the 16 transcripts included in 
the signature, two have been previously reported in early lung cancer detection studies. Kim et 
al.(168) reported that the S100A9 protein was secreted by metaplastic bronchial cells, but not 
by non-metaplastic cells in culture. Moreover, Lee et al.(169) found that CCL5 and four other 
serum-based transcripts could be used to differentiate non-small cell lung cancer patients from 
healthy controls. Confirming our findings, CCL5 was lower expressed in the lung cancer cohort 
compared to the control cohort.  
 
Even though our signature yielded high accuracies in the training and validation cohorts, some 
samples were misclassified. In the training cohort five controls and four lung cancer patients 
were wrongly classified based on the algorithm-determined cutoff value of 0.5 (Figure 2D). 
The wrongly classified lung cancer samples in the training cohort contained only early stage 
samples, including one stage I, one stage II and two stage IIIA lung cancer samples. In addition, 
five lung cancer samples and three control samples from the validation cohort were 
misclassified (Figure 3B). Of the lung cancer samples, four were derived from early stage 
patients, including one stage I and three stage IIIA samples. The fifth sample came from a stage 
IV lung cancer patient. Interestingly, cancer stage did not correlate with signature score in those 
wrongly classified samples. Considering the observation that most misclassified lung cancer 
samples were derived from patients with stage III, future addition of a larger fraction of these 
samples may improve classifier performance.  
 
An EV-mRNA lung cancer signature could also provide clinical utility as a complementary 
tool to LDCT screening programs, particularly to lower the proportion of false positives. In 
this study we had plasma samples available from three individuals in which a lung nodule had 
been previously detected. Follow-up of the herein classified individuals (Figure 3B), and 
future cohorts of individuals with nodules, will provide preliminary information on the added 
value of the lung cancer signature to detect lung cancer from benign nodules.  
 
Limitations of the current study include the high prevalence of lung cancer in the explored 
training and validation cohorts. The proportion of lung cancer was much higher than the actual 
prevalence in the population, with 54.4% lung cancer in the training and 55.8% in the validation 
cohort. This probably causes an overestimation of the PPV, and further studies should reveal 
the performance of the gene signature in a large, prospective lung cancer screening trial. In 
addition, patients with other lung conditions (e.g. COPD, asthma, lung embolisms) and other 
types of cancer should be assessed to evaluate the accuracy of our signature in these 
populations. Finally, precipitation-based EV enrichment can yield contaminants such as 
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(lipo)proteins(167). Although the utility of the signature outweighs the origin of it, deciphering 
where(in) the mRNA is located could improve extraction and downstream analysis.  
 
Supporting information 
 
Supplementary Table 1. DE genes between the lung cancer- and control samples in the training cohort. DE: 
differentially expressed; P_Cancer: p-value of the DE genes; FC: fold change.  
 

 
 
  

1 IRF7 0,00074 1,6 25 PRKCD 0,019 1,9
2 CD14 0,0013 1,3 26 CD81 0,02 0,7
3 ITGAE 0,002 1,7 27 IFNGR1 0,021 0,6
4 MYD88 0,0025 2,4 28 LGALS3 0,022 1,9
5 ARG1 0,0027 1,8 29 PSMD7 0,022 1,5
6 FCGR2A 0,0033 1,8 30 CD164 0,022 1,3
7 G6PD 0,0037 1,9 31 CAMP 0,023 0,8
8 CTSG 0,0038 1,7 32 CCL5 0,023 -1,7
9 S100A8 0,0044 1,6 33 ATG5 0,025 1,3

10 ATG7 0,0044 1,3 34 CD74 0,026 0,8
11 IL18 0,0057 1,5 35 MAPKAPK2 0,027 0,6
12 ITGB2 0,0059 1,2 36 LITAF 0,029 1,2
13 MAP4K4 0,0062 1,9 37 PTPN6 0,032 1,6
14 BATF 0,0067 0,6 38 IL8 0,032 1
15 CR1 0,0071 1 39 BCL6 0,033 0,8
16 NCF4 0,0076 1,4 40 ICAM4 0,037 0,6
17 IFNAR2 0,0076 0,8 41 LCP2 0,041 1,5
18 STAT6 0,011 1,5 42 CLEC4E 0,042 0,8
19 CTSC 0,012 1,3 43 C1QB 0,044 1,3
20 CXCL10 0,012 0,9 44 HPRT1 0,044 1,3
21 PSMB5 0,013 0,6 45 GUSB 0,044 0,4
22 GPI 0,016 2,1 46 CD86 0,046 0,3
23 CD59 0,017 1,6 47 AHR 0,047 0,9
24 HLA-DMA 0,018 1,8 48 CCR1 0,048 0,3

Transcript P_Cancer FC_CancerTranscript P_Cancer FC_Cancer
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Supplementary Table 2. Annotations of the 16-gene signature. Log(NC): Log normalized counts; SD: standard 
deviation; FC: fold change.  
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Chapter 6. Discussion, conclusion and future perspectives  
 
Discussion 
 
Although significant progress has been made in the biological understanding, prevention, 
earlier detection and treatment of malignant tumors in the last decades, the global cancer burden 
is still growing due to an extended life-span and continuing risk-factor exposure(1). In 
consequence, cancer-related deaths are expected to increase up to 17 million in 2030(170). Late 
stage diagnosis, ineffective treatments and acquired therapy resistance are the main causes for 
this high mortality rate. The concept of personalized treatment, for example based on the 
assessment of targetable molecular markers, has transformed clinical practice for many cancer 
types(3). Several technical platforms have been introduced in clinical laboratories to 
characterize the genomic, transcriptomic and proteomic make-up of tumors. This genotype-
directed therapy was found to improve patient survival(4), and is now part of daily clinical 
practice. Even though tumor tissue profiling can provide significant prognostic and predictive 
information, advanced lung cancer and other tumors are sometimes difficult or even impossible 
to biopsy. This results in a tissue quantity that is insufficient for downstream profiling. 
Moreover, repeated sampling to explore changes in the tumor tissue upon development of 
resistance or adverse events is not possible(50-52). Due to these obstacles, liquid biopsies have 
quickly gained acceptance in the clinical setting(50). Liquid biopsies can be derived from all 
body fluids and can be used to complement or overcome invasive tissue biopsies(50, 52-57). 
The advantages of analyzing a tumor through liquid, such as repeated sampling, the minimally 
invasive character and heterogeneous profiling, make them a hot topic in translational research. 
Importantly, liquid biopsies could also provide a source for early diagnostic- or screening 
biomarker assays. Circulating molecules, such as DNA, RNA or proteins, can be freely present 
within these liquids, or can be extracted and analyzed from circulating tumor cells (CTCs)(58-
60), extracellular vesicles (EVs) (61-64) and tumor-educated platelets (TEPs)(65, 66).  
 
Their introduction to the field has seen some highly promising results, including the use of 
ctDNA as a complement to, or replacement for, tumor tissue biopsies. However, major efforts 
are still needed to bridge the gap between basic research and clinical implementation of other 
liquid biopsy sources, such as TEPs and EVs. Moreover, currently used technical platforms for 
tumor characterization are not always suitable to analyze the low quantity and quality of tumor-
derived material that can be found in a liquid biopsy(6). Even when these hurdles are overcome, 
the cost, technical necessities, continuous need for panel updates and complex data analysis 
that are required for some platforms are simply not feasible in the clinical laboratory setting. 
In conclusion, large-scale validation and clinical implementation of liquid biopsy-based 
biomarker assays requires a quick, easy-to-use, relatively cheap, flexible and standardized 
technical platform with low input requirements. The NanoString nCounter platform meets 
these demands, and all types of liquid-derived circulating molecules, including RNA, DNA 
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and proteins can be analyzed on this platform(96). Several studies developing or validating 
prognostic and predictive tissue biomarker assays on nCounter have been carried out and one 
of those, the Prosigna™ assay, received FDA approval for clinical use. Although the 
NanoString platform is designed to analyze FFPE tissue samples, efforts have also been made 
to explore the use of liquid biopsies on this system. This provoked NanoString to develop a 
“Low Input Kit”, a specific kit that can be used to amplify the starting material. From that 
moment on, studies investigating the possibility of amplified liquid biopsy-based analysis on 
nCounter have been performed and results show that this platform provides a valuable tool for 
tumor characterization, especially in the clinical setting.  
 
This thesis focused on validating the NanoString nCounter platform for the analysis of liquid 
biopsy sources to develop clinically relevant biomarker assays. The nCounter platform has 
never been used for routine mutation detection in liquid biopsies of cancer patients. Therefore, 
we initially focused on validating the use of ctDNA, one of the most advanced liquid biosources 
in terms of clinical applications, to detect tumor-derived mutations in liquid biopsies from 
cancer patients. Confirming previous studies(88, 171), ctDNA could be extracted from several 
body fluids, including plasma, serum, cerebrospinal fluid and ascites yielding sufficient input 
for a pre-amplification and down-stream analysis on this platform. A retrospective analysis of 
70 patient samples using the 3D Single Nucleotide Variant (SNV) Solid Tumor Panel led to a 
highly concordant (98.9%) detection of mutations in EGFR, KRAS, BRAF, PIK3CA and NRAS, 
compared to results obtained by NGS or PNA-Q-PCR. In addition, a prospective analysis with 
91 liquid biopsy samples yielded valid results for 90 samples. Besides the previously 
mentioned clinically relevant mutations, we also detected mutations in TP53, NFE2L2, 
CTNNB1, ALK, FBXW7 and PTEN. Analysis of follow-up samples revealed that the nCounter 
system can also be used for semi-quantitative mutation detection to follow disease evolution 
and detect resistance mutations. These results confirmed that nCounter can indeed be used for 
routine mutation testing in liquid biopsies of cancer patients. The observation that nCounter 
can accurately detect mutations in samples with a concentration range as low as 0.5 – 2.5 ng 
total DNA, highlights the clinical utility of this methodology. In contrast, NGS platforms 
require substantially higher input material and analyses can fail due to the high sample quality 
requirements(68). Other advantages of nCounter include the considerably shorter turnaround 
time, simplicity of the platform and the straightforward data analysis(172). The main limitation 
of this platform is the inability to detect mutations that are not included in the panel, although 
the mutations included in the panel can be adapted at any time. In addition, some mutations 
have a very low prevalence, making it difficult to validate their detection in average-size 
validation studies. Based on concordant results with other methodologies and advantages of 
using the nCounter platform, this platform can be accurately implemented in clinical 
laboratories for routine mutation testing, especially when sample input is too low to perform 
NGS.  
 
After successfully validating the use of ctDNA, we explored a different liquid biopsy source; 
EVs. EVs are released by most cell types and, depending on the cell they derived from, contain 
a heterogeneous cargo. Besides proteins and lipids, EVs contain nucleic acids that are protected 
from degradation by a lipid bilayer(69-71). EVs are thought to function as intercellular 
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communication tools, by transporting their cargo to other cells(69, 72, 73). The latter has 
boosted the research on these vesicles, especially regarding their use as biomarkers for cancer 
development and progression(74). Although promising findings have been reported, the 
biggest hurdle in the field of EVs is the lack of standardized protocols. Vesicle enrichment can 
be carried out using several strategies, and downstream nucleic acid extraction and analysis 
techniques are even more diverse. In general, EVs have been used to study their miRNA cargo 
and various studies have been published where EV-miRNAs were analyzed using nCounter(79, 
80). However, the nCounter platform has never been tested for the analysis of plasma-derived 
EV-mRNA. Thus, our second aim was to perform a proof-of-concept study where we 
optimized a workflow for EV enrichment, EV-mRNA purification and subsequent gene 
expression analysis on nCounter to develop biomarker assays. Due to the fact that clinical 
laboratories are usually unable to meet the technical or time requirements for 
ultracentrifugation, we focused on a precipitation kit for EV enrichment(114). The 
methodology for EV-RNA extraction and pre-amplification was optimized, and resulted in a 
highly reproducible final workflow that can be performed in only three days. The developed 
workflow was then validated in plasma samples from cancer and control individuals to measure 
gene expression with the Human Immune V2 594-gene panel. We were able to define a gene 
signature that could distinguish cancer patients from controls using a classifier algorithm. A 
key finding was the binding of EV-DNA to our mRNA panel, due to a non-intron spanning 
probe design. This required the addition of a DNase step, which significantly altered gene 
expression profiles but led to a higher performance of the classifier. A limitation of this study 
is the divergent cancer patient cohort which cannot be used to create a clinically useful gene 
signature. However, results of this proof-of-concept study confirm that we can use the 
nCounter platform for EV-mRNA analysis, and led us to implement this workflow in other 
projects for clinically relevant biomarker assay development.  
 
The use of ICIs has changed advanced cancer treatment significantly, but has also revealed 
new unmet clinical needs. While 20-30% of ICI treated patients have impressive and durable 
responses, other patients do not benefit from this type of treatment(134). PD-L1 expression is 
still the gold-standard for ICI response prediction and patient inclusion in clinical trials. 
However, this assay lacks a standardized methodology and predictive performance is 
suboptimal(30). More effective predictive biomarkers are needed and the complex interaction 
between the tumor, microenvironment and immune system may require the assessment of 
multiple biomarkers at the same time(16). Irrespective of response, ICI treatment can cause an 
overactivation of the immune system and lead to development of immune related adverse 
events (irAEs)(47). Although not all irAEs are detrimental, checkpoint inhibitor pneumonitis 
(CIP) comprises an inflammation of the lung tissue that can be lethal if not detected and treated 
in time. Moreover, diagnosis of CIP is still a major problem due to overlapping characteristics 
with other lung complications(128, 143). In agreement with our observations in the clinic, two 
retrospective analyses have found a 20% CIP incidence in patients treated with ICIs(48, 136). 
Since there are no available predictive or diagnostic tests and risk factors remain unclear, CIP 
development is a big concern in daily clinical practice. We hypothesized that a chronic lung 
inflammation or an imbalance in the immune system prior to ICI administration could be 
indicative of higher CIP risk, providing a window for intensive monitoring of those patients. 
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To this end, we aimed to develop a predictive biomarker assay for CIP development using the 
nCounter platform with an immune-oncology (IO360) panel comprising 770 gene transcripts. 
Retrospectively collected pre-treatment FFPE tumor tissues from CIP and non-CIP patients 
were analyzed, and a bioinformatic algorithm was used to select a gene signature that could 
distinguish between the two cohorts. The optimal classifier had an accuracy of 86.6% and 
negative predictive value (NPV) of 92% and consisted of eight genes, including CDKN1A, 
BID, ULBP2, HDAC11, ARID1A, IGF2R, TWIST1 and IER3. Only one of those genes, IGF2R, 
had been previously linked to radiation-induced lung injury(145).  
 
Considering our previous EV proof-of-concept results, and based on the advantages of an EV-
based biomarker assay, we then analyzed pre-treatment plasma-derived EV samples for the 
same purpose. Interestingly and as previously reported for proteins(173), the gene expression 
profiles between tumor tissue and EVs differed, and the same 8-gene tissue CIP signature could 
not accurately distinguish CIP from non-CIP EVs. Development of a new EV-specific 
signature yielded a classifier with a slightly increased accuracy and NPV of 87.0% and 92.7%, 
respectively, based on the expression of LYZ, CDH1, CD300A and SPIB. Some of those genes 
were reported to be involved in other pathologies characterized by an overactivation of the 
immune system, such as sarcoidosis(147) or a maternal immune response against her 
fetus(149). Besides a more complete readout of ongoing biological processes, an EV-based 
assay can also be used for follow-up analysis to determine gene expression changes upon actual 
CIP development. We found that the 4-gene signature score could not only predict CIP 
development before ICI administration, but increased upon actual CIP development in follow-
up samples of two patients. In contrast, in non-CIP patients the signature scores remained 
below the cutoff during follow-up. In conclusion, we can use both tumor tissue- and EV-mRNA 
to predict CIP on the nCounter platform. The possibility for follow-up analysis and their 
minimally invasive character emphasize the use of EVs in a predictive CIP test. In addition, 
the short turnaround time of nCounter allows for rapid clinical decision making in patients with 
high grade CIP and could potentially improve patient outcome and quality of life. Two 
limitations of this study should be taken into account. Firstly, an independently collected 
validation cohort that resembles CIP prevalence should be assessed to control for overfitting 
of our model. A prospective validation study is currently being carried out. Secondly, 
additional patient cohorts including hyper-immune activated pathologies should be evaluated 
to reveal if the developed signature is CIP-specific.  
 
Predicting therapy response or adverse events could have a major clinical impact, but earlier 
detection of cancer is still seen as the holy grail for patient survival. Low-dose computed 
tomography (LDCT) is the only recommended lung cancer screening test, even though the 
NLST lung cancer screening trial has showed that out of all abnormal scans 96.4% were false 
positives(152, 163). A liquid biopsy-based test could be used to either complement, to lower 
the fraction of false positive results, or replace these imaging screening tests. However, a 
standardized platform and a test with a high accuracy are essential. We used our developed 
EV-mRNA workflow to explore if it could also be used for early- and late-stage lung cancer 
detection. From all 592 genes included in the Human Immune V2 Panel, 16 genes were selected 
by a machine learning algorithm due to optimal classification performance (81-84% accuracy). 
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These results were then validated in a separate patient- and control cohort, of which the blood 
samples were collected and processed in a different center. These results highlight the potential 
of using plasma EVs as a read-out for biological processes. Although the clinical necessity of 
all the developed signatures outweighs their origin, it is important to keep in mind that 
precipitation-based EV enrichment kits yield contaminants. Therefore, it cannot be ruled out 
that the signatures are (in part) derived from other fractions that can be detected in plasma, 
such as RNA-binding proteins or lipoproteins(167). Further research is needed to decipher 
where the mRNA transcripts were stored or what they were attached to in the plasma, to 
improve their extraction and downstream analysis.  
 
General conclusion 
 
In conclusion, this thesis has provided evidence that the nCounter platform can be used for the 
analysis of liquid biopsies in the clinical setting, specifically for ctDNA and EV-mRNA. 
Clinically relevant biomarker assays can be developed and validated on this standardized 
platform and can aid in the transition of liquid-derived biomarker assays from bench to bedside. 
 
Future perspectives 
 
The background of my desktop during my PhD contains the words of George Bernard Shaw: 
“Science never solves a problem without creating ten more”. This quote can be read in two 
ways; a scientific finding never ends, or – my personal interpretation - there is always more to 
understand. This thesis has provided a rationale for the use of nCounter to analyze liquid 
biopsies in the clinical setting, but also opened new questions.  
 
Firstly, further exploration is needed to understand where the liquid biopsy derived signals are 
coming from. Especially in the case of EV-RNA, precipitation kits are known to capture all 
particles present in a plasma sample, including lipids, platelet-derived vesicles and proteins. It 
would be of great interest to know which type of particles are present in our samples, where 
those particles derived from, and if they all contain RNA. 
 
Secondly, a biomarker assay requires large retrospective and prospective cross-validation 
studies before implementation in diagnostic laboratories. We are currently collecting an 
independent validation cohort to validate the developed CIP-signature. This cohort will include 
CIP and non-CIP patients, but we also aim to obtain plasma samples from patients with other 
pathologies where a hyper-immune activation occurs. Moreover, we have opened a new study 
to prospectively analyze samples from patients starting on ICI treatment, to determine CIP risk. 
If our 4-gene CIP signature can be validated in retrospective and prospective studies, a 
Prosigna-like kit could be developed for clinical use, and the panel may be expanded by adding 
signatures indicative of ICI treatment response.  
 
Thirdly, although NGS platforms are not always easy to implement in clinical practice, they 
provide a better tool for biomarker discovery, compared to the NanoString system. Once the 
signatures have been detected using NGS, custom panels can be created for nCounter analyses, 
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allowing an easy workflow from biomarker discovery to validation and implementation in 
clinical studies on a standardized platform.  
 
Finally, we have provided evidence for the use of multi-fluid derived ctDNA and plasma-
derived EV-mRNA on nCounter. However, many more liquids (e.g. urine, saliva), biosources 
(e.g. tumor educated platelets, circulating tumor cells, white blood cells) and circulating 
molecules (e.g. cfRNA, circular RNA, long non-coding RNA, proteins) require similar 
validation studies. In addition, multi-omics approaches are currently emerging and can also be 
carried out on the nCounter platform, by combining DNA, RNA and protein panels.  
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Annexes 
 
Annex 1. The Present and Future of Liquid Biopsies in Non-Small Cell Lung 

Cancer: Combining Four Biosources for Diagnosis, Prognosis, Prediction, and 

Disease Monitoring. 

 

Annex 2. Multiplex Detection of Clinically Relevant Mutations in Liquid 

Biopsies of Cancer Patients Using a Hybridization-Based Platform. 

 

Annex 3. Analysis of extracellular vesicle mRNA derived from plasma using 

the nCounter platform.  
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Annex 1. The present and future of liquid biopsies in non-small cell lung cancer: 
combining four biosources for diagnosis, prognosis, prediction, and disease monitoring 
(PDF) 
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Annex 2. Multiplex detection of clinically relevant mutations in liquid biopsies of cancer 
patients using a hybridization-based platform (PDF) 
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Annex 3. Analysis of extracellular vesicle mRNA derived from plasma using the nCounter 
platform (PDF) 
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