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1  |  INTRODUC TION

Mitochondrial metagenomics or mito-metagenomics (hereafter, 
MMG) is becoming an alternative to the classical amplicon metabar-
coding for the large-scale assessment of biodiversity of Metazoa 
(Crampton-Platt et al., 2015; Tang et al., 2014; Zhou et al., 2013). 

MMG consists in the shotgun sequencing of a DNA sample followed 
by the mapping of the reads to mitochondrial genomes (hereafter, 
mitogenomes) obtained from online repositories or ad hoc assem-
blages (Crampton-Platt et al., 2016). On the positive side, MMG 
avoids the amplification biases caused by the PCR step (Elbrecht & 
Leese, 2015; Piñol et al., 2015; Taberlet et al., 2012). On the negative 
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Abstract
Mito-metagenomics (MMG) is becoming an alternative to amplicon metabarcoding for 
the assessment of biodiversity in complex biological samples using high-throughput 
sequencing. Whereas MMG overcomes the biases introduced by the PCR step in the 
generation of amplicons, it is not yet a technique free of shortcomings. First, as the 
reads are obtained from shotgun sequencing, a very low proportion of reads map into 
the mitogenomes, so a high sequencing effort is needed. Second, as the number of 
mitogenomes per cell can vary among species, the relative species abundance (RSA) 
in a mixture could be wrongly estimated. Here, we challenge the MMG method to es-
timate the RSA using artificial libraries of 17 insect species whose complete genomes 
are available on public repositories. With fresh specimens of these species, we cre-
ated single-species libraries to calibrate the bioinformatic pipeline and mixed-species 
libraries to estimate the RSA. Our results showed that the MMG approach confidently 
recovers the species list of the mixtures, even when they contain congeneric species. 
The method was also able to estimate the abundance of a species across different 
samples (within-species estimation) but failed to estimate the RSA within a single sam-
ple (across-species estimation) unless a correction factor accounting for the variable 
number of mitogenomes per cell was used. To estimate this correction factor, we used 
the proportion of reads mapping into mitogenomes in the single-species libraries and 
the lengths of the whole genomes and mitogenomes.
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side, the tiny size of the mitogenome compared to the nuclear ge-
nome produces a high number of non-informative reads (Tang et al., 
2014), so a great sequencing depth is needed.

It is generally assumed that MMG quantifies satisfactorily the 
relative species abundance (hereafter, RSA) of complex mixtures 
(Gómez-Rodríguez et al., 2015; Zhou et al., 2013). However, as far as 
we know, there are only five studies that tested the MMG method 
(plus one using chloroplast metagenomics in plants) using shotgun 
samples of known composition (Bista et al., 2018; Gómez-Rodríguez 
et al., 2015; Gueuning et al., 2019; Ji et al., 2020; Lang et al., 2019; 
Tang et al., 2015). In general, the relationship between the expected 
and estimated RSA is statistically significant, but with high variability 
in the goodness of fit.

How the RSA of complex mixtures is presented in the literature 
requires some clarification. First, the RSA can be expressed as a pro-
portion of the species biomass (e.g., Gueuning et al., 2019) or indi-
vidual counts (e.g., Lang et al., 2019); alternatively, the RSA can refer 
to the proportion of the DNA amount of each species in the mixture. 
Whilst the former approach is more meaningful for most ecological 
studies, we adopt the latter approach here because it allows the in-
dependent evaluation of different sources of bias on the RSA esti-
mation. Second, some studies provide the relative abundance of one 
species in different samples (e.g., Bista et al., 2018), whereas oth-
ers report the abundance of several species in a single sample (e.g., 
Saitoh et al., 2016). Ji et al. (2020) named within-species estimation 
the former (is species i more abundant in sample s than in sample r?) 
and across-species the latter (is species i more abundant than spe-
cies j in sample s?). This distinction is important because there are 
species-specific characteristics that influence the across-species es-
timation but not the within-species estimation. The most important 
of these characteristics is the variable number of mitogenomes per 
nuclear genome (mitochondrial DNA copy number). Thus, a species i 
with twice the number of mitogenomes per nuclear genome than an-
other species j will produce twice many mitochondrial reads as well; 
without a proper correcting factor, species i would, apparently, be 
twice more abundant in the mixture than species j. This fact is known 
(Bista et al., 2018; Piñol et al., 2015; Tang et al., 2014), but there are 
not reliable solutions to the problem because little is known about 
the causes of the variation of the mitochondrial copy number across-
species (but see Liu et al., 2018, that reported a higher mitochondrial 
copy number in organs with a high metabolic rate and in species liv-
ing at low altitude than in their counterparts at high altitude in the 
Tibetan Plateau).

The size of the nuclear genome of the species also affects the 
across-species RSA estimation. Being all other things equal, a spe-
cies r with a nuclear genome half as big as that of another species s 
will produce twice many mitochondrial reads because the mitochon-
drial DNA is diluted in a smaller amount of nuclear DNA. Therefore, 
without a proper correcting factor, species r would, apparently, be 
twice more abundant in the mixture than species s. The effect of 
genome size on RSA estimation is also known (Crampton-Platt et al., 
2016; Krehenwinkel et al., 2017; Tang et al., 2014), but it is difficult 
to consider it because measuring the genome size is not an easy task 

(there is a database of genomes sizes with 1344 insect species on 
it; Gregory (2020), accessed on 25 March 2020). Both the variation 
across-species of mitochondrial copy number and genome size affect 
MMG, but also any amplicon metabarcoding method that targets ge-
nomic regions with a variable copy number, such as COI in animals 
(Hebert et al., 2003), ITS in fungi (Schoch et al., 2012), or rbcL + 
matK in plants (CBoL Plant Working Group, 2009).

Here we explore the quantitative capabilities of MMG for the 
estimation of RSA of heterogeneous mixtures of insects. For this 
purpose, we prepared single-species and artificial mixed-species 
libraries with several species of insects whose entire genome has 
already been sequenced. We included four species of Drosophila 
to assess the ability of the method to set apart closely related 
species. The single-species libraries allowed the calculation of a 
reliable mitochondrial DNA copy number (NM) for each species 
that was further used as a correction factor for the across-species 
estimation of RSA of the mixed-species libraries. In particular, we 
addressed the following questions: (1) Is the MMG method able to 
identify species in complex mixtures, even when they are of the 
same genus? As an approach to real samples, we investigated the 
robustness of the method in the absence of the mitogenome of 
the focal species. (2) Can MMG estimate the RSA of complex sam-
ples? Is it necessary the use of the NM correction factor for the 
across-species estimation of RSA? (3) Finally, can the number of 
sequenced reads be reduced and still recover all species in a com-
plex sample of insects?

2  |  MATERIAL S AND METHODS

2.1  |  Selection of species, preparation of the DNA 
libraries, sequencing, and quality control

We selected 17 species of insects whose complete genome is al-
ready sequenced and available on the RefSeq repository (Table 1). 
Individuals of these species were captured alive or in fly traps from 
various locations and DNA was extracted using DNeasy Blood & 
Tissue Kit (Qiagen) from c. 20 mg of fresh material. With the DNA 
extracts, we prepared two kinds of libraries: 21 single-species librar-
ies and six mixed-species libraries. Four species were sequenced 
twice in different runs using different extractions to test the repeat-
ability of the method (Table 1). The same extracts used for the first 
run of single-species libraries were also used to create six artificial 
mixed-species libraries of 7–8 species at known relative DNA con-
centrations to test the ability of the method to estimate the RSA 
(Table S1). In libraries no. 1 and no. 2, the RSA was highly variable 
(from ~50%, the most abundant, to ~0.4%, the least abundant); in 
libraries no. 3 and no. 4, it was intermediate (from ~35% to ~3%); and 
in libraries no. 5 and no. 6, the variability among species was much 
lower (from ~24% to ~8.5%). As stated in the Introduction, here the 
RSA is the relative DNA concentration of the species in the mix-
ture, not their relative biomass. Consequently, all sources of varia-
tion between the fresh biological material and the extracted DNA 
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(e.g., DNA-to-biomass ratio) are ignored (Matesanz et al., 2019; Tang 
et al., 2015).

All libraries were prepared with the TruSeq DNA PCR-Free LT Kit 
of Illumina following the manufacturer's instructions (Ref. 15037063) 
and sequenced using Illumina MiSeq with the 2 × 150 bp chemistry 
in three different runs. Both the libraries and the sequencing runs 
were also used in a previous study (Garrido-Sanz et al., 2020). In the 
parent study, the obtained reads were mapped against a reference 
database of whole-genomes instead of a reference database of mi-
togenomes as we do here.

We pre-processed the raw reads through a quality control step 
using fastqc v0.11.7 (Andrews, 2015) and trimmomatic v0.36 (Bolger 
et al., 2014) to trim the reads to a 150 bp length and to remove those 
shorter than 140 bp. Only paired reads were kept.

2.2  |  Reference genomes

We downloaded all mitogenomes of insects available at the NCBI 
RefSeq database on 1 August 2019, plus the complete genomes 
of the 17 species selected for the study from the same database. 
Ten species had the complete genomes but not the mitogenomes 
on RefSeq, and we downloaded their mitogenomes from GenBank 
(accessed on 2 August 2019). We used high-quality mitogenomes 
of as many species as possible to test the ability of the method to 
find the selected species among the many others in the reference 
database. Species with several mitogenomes were deduplicated, and 
we obtained the mitogenomes of 1794 species of insects, compris-
ing 1174 genera, 331 families, and 27 orders (hereafter, Mito1794; 
Table S2).

2.3  |  Mapping of reads into references

In MMG studies, a small proportion of shotgun reads map into the 
mitogenome (e.g., Tang et al., 2014), hence most reads are not useful 
and slow down the mapping process. Thus, it seems reasonable to 
eliminate the reads that are not mitochondrial before the mapping 
step (Crampton-Platt et al., 2015, 2016; Zhou et al., 2013). For this 
purpose, we created a reference database with one mitogenome per 
family (hereafter, Mito331) where the representative species per 
family was chosen randomly. We then mapped the raw reads against 
the Mito331 reference data set using a permissive criterion and kept 
the putative mitochondrial reads (hereafter, candidate mito-reads). 
The mapping was done using BWA 0.7.15-r1140 (Li, 2013) with mem 
algorithm and an alignment score of zero (-T0). samtools 1.10 (Li et al., 
2009) was subsequently used to filter the paired-end reads with no 
mapping reads (view -F2316 -b) and recovered the mito-reads in 
fastq format (bam2fq).

As low-complexity regions are prone to misclassify the reads 
(Lu & Salzberg, 2018; Pearman et al., 2019), we prepared a new set 
of filtered mitogenome references by removing low-complexity 

regions from the Mito1794 reference (hereafter, FilteredMito1794). 
Low-complexity regions were identified using dustmasker (-level 45) 
(Morgulis et al., 2006) and replaced with Ns using an in-house py-
thon script.

To avoid confusion, we recapitulate below the name and mean-
ing of the three different databases of mitochondrial genomes that 
we used for the mapping of reads:

•	 Mito1794: the original mitogenomes of 1794 species.
•	 FilteredMito1794: as Mito1794, but with the low complexity re-

gions removed.
•	 Mito331: a subset of Mito1794 with only one mitogenome per 

family; this reference was only used to obtain the candidate mito-
reads from the total of reads of each sample.

As we did not know to which extent the filtering of raw reads 
and mitogenomes was useful, we conducted four different kinds of 
mapping of reads to reference mitogenomes in the single-species 
libraries:

•	 Raw reads against Mito1794 reference database
•	 Raw reads against FilteredMito1794 reference database
•	 Candidate mito-reads against Mito1794 reference database
•	 Candidate mito-reads against FilteredMito1794 reference 

database

In all cases, the mapping was conducted using BWA with mem 
algorithm and default options. Because the mapping of a sample was 
done against each mitogenome individually, we obtained the same 
number of SAM files as references used. We subsequently used 
SAMtools to remove reads that did not map to any reference (view 
-F2308).

2.4  |  Assignment of mapped reads to species

In general, a read mapped to several reference mitogenomes (e.g., 
homologous sequences in several species), so an algorithm was 
needed to assign reads to species. For this purpose, we used the γ–δ 
algorithm described in Garrido-Sanz et al. (2020). Briefly, what the 
γ–δ algorithm does is to quantify the similarity between the query 
read and the reference (i.e., the mapping ratio) and then decide 
whether a read is informative or non-informative. It is informative 
when it is very similar (mapping ratio above γ) to species i and not 
very similar (mapping ratio below δ) to the rest of species; in this 
case, the read is assigned to species i. It can be non-informative for 
two reasons, either because the read is not similar enough to any 
species (mapping ratio below γ for all species) or because it is too 
similar (mapping ratio above δ) to two or more species; in this case, 
the read is discarded. In all cases γ > δ.

The γ–δ algorithm has never been applied before to MMG 
data, hence the appropriate values of γ and δ are unknown, so the 
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single-species libraries were used to find the best combination of the 
parameters γ and δ. The tested values were all the combinations of 
γ = {0.99, 0.98, 0.97} and δ = {0.98, 0.97, 0.96} provided that γ > δ. 
To find the best values of γ and δ we relied on the criterion that 
the number of recovered species had to be one in the single-species 
libraries.

The reads in single-species libraries were divided into a train-
ing set with 75% of the reads randomly selected, and a test set 
with the remaining 25% of the reads. The training set was used for 
the calibration of the procedure; the test set was used to assess 
the goodness of fit of the model and to calculate the summary 
statistics.

A situation that can arise in real samples, as opposed to the ar-
tificial samples used here, is that the mitogenomes of some species 
in the sample are not in the reference database. We explored this 
situation by running again the complete pipeline with all the single-
species libraries using the best set of input data and parameters. 
Ideally, no read should be assigned to any species because the mi-
togenome of the only species in the library is not in the database. 
However, the reads might eventually be wrongly assigned to other 
species in the database and, thus, generate false positives. The out-
come of this experiment should reveal the robustness of the γ–δ al-
gorithm in the assignment of reads to species.

2.5  |  Quantification of the RSA in mixed-
species libraries and the need for a species-specific 
correction factor

In the literature, the relative abundance of one species is sometimes 
compared among different samples and on other occasions, the rela-
tive abundance of several species is compared within one sample 
(within-species and across-species RSA, respectively, following Ji 
et al., 2020). Here, we present the comparison of actual versus esti-
mated RSA in the mixed-species libraries using both approaches. As 
we observed in the Introduction, from a conceptual point of view, 
the quantitative estimation of within-species RSA in MMG is easier 
than the across-species RSA, because in the latter the mitochondrial 
DNA copy number can vary widely between species.

With the single-species libraries we estimated the mitochondrial 
DNA copy number (NM) of each species in the following way:

1.	 Let xi be the ratio of the genomic mitochondrial information 
divided by the total (haploid) genomic information for species 
i. The mitochondrial information is the mitogenome length (Mi) 
times NMi; the total genomic information is the sum of the 
nuclear genome length (Gi) and the mitochondrial 
information.

2.	 The re-arrangement of Equation (1) allows the estimation of 
NMi.

3.	 Gi and Mi are known for species with sequenced genomes, 
but xi is not. In our experimental setting, xi can be estimated 
in the single-species libraries as the ratio between the number 
of reads that map into the mitogenome (RMi) divided by the 
total number of reads of species i (RGi).

We obtained RMi by mapping the reads of species i to its mitoge-
nome when this mitogenome was the only one used as the reference 
in the mapping. Regarding RGi, we assumed that all reads of the single-
species library of species i belong to species i.

In the comparison of actual versus estimated RSA using the 
mixed-species libraries, we multiplied the actual relative abundance 
of species i (Table S1) by NMi, and then renormalized the values to 
sum 1.

Finally, we estimated the importance of knowing or ignoring the 
individual values of Gi and Mi of each species in the mixture in the es-
timated RSA by comparing the results obtained with the correction 
factor of Equation (2) (NMi) with another factor that uses the mean 
value of G (G = 338 Mbp) and M (M = 16.3 kbp) for all the species in 
the mixture (NMi):

2.6  |  Rarefaction of the input samples

We only multiplexed six mixed-species libraries in a single Illumina 
MiSeq run (Table S1), with the consequence of a high economic 
cost per library. However, from a practical point of view, it would 
be interesting to use fewer reads per library and still have a good 
quantitative estimation of RSA. To test this possibility, we randomly 
rarefacted the mixed-species samples at various proportions of the 
original number of reads {0.5, 0.1, 0.05, 0.01} and run the new data 
sets through the entire pipeline. We repeated each simulation 100 
times using different subsets and from every simulation we recorded 
the number of recovered species.

2.7  |  Statistical analyses and hardware

All statistical analyses were performed with r 3.4.2 (R Core 
Team, 2016) in rstudio 1.0.143 (RStudio Team, 2015). Plots were 

(1)xi =
Mi ⋅ NMi

Gi + (Mi ⋅ NMi)

(2)NMi =
xi ⋅ Gi

Mi ⋅ (1 − xi)

(3)xi =
RMi

RGi

(4)NMi =
xi ⋅ G

M ⋅ (1 − xi)
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created using the r packages ggplot2 (Wickham, 2016) and ggpubr 
(Kassambara, 2018).

We run the complete pipeline on a server with two Intel Xeon 
E5-2620 v3 processors with six cores each and hyperthreading tech-
nology, so a maximum of 24 threads were available.

3  |  RESULTS

3.1  |  Species identification

The 21 single-species libraries (Table 1) generated 
2,371,091  ±  1,210,091 (mean  ±  SD) paired-end reads. A propor-
tion of 0.012 ± 0.027 reads were eliminated in the trimming step, 
remaining a proportion of 0.987 ± 0.027 reads available for further 
analysis.

The results that follow correspond to the application of the γ–δ 
algorithm for the assignation of reads to species on the training set 
(i.e., 75% of the sequenced data). We also eliminated from the fol-
lowing results the reads assigned to species that could legitimately 
be attributed to physical contamination in the laboratory or the se-
quencing. These contaminants were species sequenced in different 
libraries of the same Illumina run and the fly Ceratitis capitata that 
contaminated the library of Bactrocera oleae (see the discussion for 
the reason behind this contamination).

Because the MMG method must recover only one species in 
single-species libraries, we fixed the values of γ = 0.99 and δ = 0.96 
in the γ–δ algorithm as this combination was the only one to pro-
vide the expected result (Table S3). All the other tested combina-
tions reported false positives, such as Bactrocera biguttula in libraries 
of B. oleae, Drosophila formosana in libraries of D. melanogaster and 
Solenopsis richteri in libraries of S. invicta. Results of all tested γ, δ 
and input data combinations (raw reads versus candidate mito-reads 
and Mito1794 versus FilteredMito1794 references) are provided as 
Supporting Information (Tables S4–S7).

Filtering out the repetitive regions of the mitogenomes (i.e., 
FilteredMito1794) had a dramatic effect on the number of identified 
species. With the FilteredMito1794 database, we only detected the 

focal species in all the libraries, whereas with the Mito1794 database 
there appeared several false positives in many libraries (2.5 ± 1.2 
species per library using all raw reads or 1.7 ± 0.9 species using only 
candidate mito-reads; Table 2a). The masked regions mostly be-
longed to non-coding regions of the mitogenome, including the con-
trol region (Table S8). The use of only candidate mito-reads instead 
of all reads produced a loss of c. 6% of informative reads (Table 2b) 
but reduced ~18 times the execution time (Table 2c). In summary, the 
elimination of the repetitive regions from the genomes removed all 
the false positives and the mining of candidate mito-reads reduced 
18-fold the execution time of the pipeline with a moderate loss of 
informative reads. Therefore, in the subsequent steps, we used both 
the FilteredMito1794 database and only the candidate mito-reads 
(Figure 1).

We evaluated the goodness of fit of the model with the test 
set (i.e., the remaining 25% of reads not used in the previous cal-
ibration) using the best set of input data and parameters (i.e., the 
FilteredMito1794 database, the candidate mito-reads and the pa-
rameters γ = 0.99 and δ = 0.96). The number of identified species per 
library was 1 in all cases (Table S9) and the proportion of informative 
reads was 0.0046 ± 0.0056.

The absence of the mitogenome of the focal species in the ref-
erence database did not produce many false positives in the single-
species libraries (Table 3). When there were no congeneric species 
of the focal species in the reference database (six out of 17 spe-
cies), no read was assigned to any species; when there were con-
generic species in the database, in six cases no reads were assigned 
to any species and in four cases some reads were assigned to an-
other species of the same genus (Bactrocera, Drosophila, Plutella, and 
Solenopsis); only in one species (Drosophila melanogaster) appeared 
some reads belonging to species of a different genus (Exorista sorbil-
lans, Diptera:Tachinidae).

The six mixed-species libraries (Table S1) generated 
3,376,087  ±  424,238 paired-end reads. A proportion of 
0.003 ± 0.001 reads were eliminated in the trimming step and a pro-
portion of 0.925 ± 0.006 in the mito-reads mining step. Therefore, 
only a proportion of 0.075 ± 0.006 of the raw reads were candidate 
mito-reads retained for further analysis.

TA B L E  2  Summary of the results per library (mean ± SD) on the training data set of single-species libraries for the four combinations 
of input data assessed in this study (raw reads and candidate mito-reads mapped to Mito1794 and FilteredMito1794 databases) and using 
γ = 0.99 and δ = 0.96. (a) Number of recovered species per library, (b) Relative proportion of informative reads per library, and (c) processing 
time per library (format h:mm:ss; the time necessary to find the candidate mito-reads is included in the processing time). Reads from 
contaminant species have not been considered

Metric Input data

Reference database

Mito1794 FilteredMito1794

(a) Number of identified species Raw reads 2.52 ± 1.21 1 ± 0

Mito-reads 1.71 ± 0.90 1 ± 0

(b) Relative proportion of informative reads Raw reads 0.0049 ± 0.0057 0.0047 ± 0.0056

Mito-reads 0.0049 ± 0.0057 0.0046 ± 0.0057

(c) Processing time Raw reads 7:19:43 ± 3:46:53 7:21:10 ± 3:53:34

Mito-reads 0:25:13 ± 0:17:07 0:24:37 ± 0:16:37
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In the mixed-species libraries, we recovered all species included 
in the libraries except Papilio machaon in library no. 2 (Table S10). 
As in the single-species libraries, in the mixed-species libraries, we 
found reads of Ceratitis capitata and discarded them as laboratory 
contamination. In addition, in libraries no. 2 and no. 3, one single 
read was attributed to Bactrocera biguttula (Table S10), a species not 
handled in the laboratory; therefore, an analytical detection limit of 
ε = 0.0001 would be useful for the elimination of all false positives.

3.2  |  Estimation of the relative species abundance 
in mixed-species libraries

The within-species RSA was well estimated for all species (r  ≥  .97 
and p  <  .05 for all species; Figure 2), but the across-species RSA 

estimation was very poor (r  ≤  .67 and p  >  .05 for all samples; 
Figure 3a). Thus, it seems clear the need for a species-specific cor-
rection factor that considers a variable ratio of mitochondrial to 
nuclear DNA (Table 4). When we modified the actual RSA with the 
NMi correction factor (Equation 2), the correlation between actual 
and estimated RSA across-species became significant in all samples 
(r ≥  .84 and p <  .05 for all libraries; Figure 3b). The use of the NMi 
correction factor (Equation 4) instead of NMi provided an even better 
quantitative estimation of RSA across-species (r ≥ .91 and p < .005 
for all libraries; Figure 3c).

The use of rarefacted samples showed that in the libraries with 
a more variable species abundance (libraries no. 1 and no. 2), the 
use of just half of the total available reads reduced the number of 
the identified species (Figure 4a) and promoted the presence of 
low-abundant false positives, like Bactrocera biguttula above the de-
tection limit ε = 0.0001 in library no. 2. On the contrary, when the 
abundance of species was less variable (libraries no. 5 and no. 6), 
the expected number of species was obtained with half the reads 
(Figure 4f) or even with 10% of reads (Figure 4e).

3.3  |  Computer use

The total consumed time by running the entire pipeline with the 
mixed-species libraries ranged between 66 and 82 min (Table S11). 
Most of the processing time was devoted to the mapping of the 
reads to the references (95%) and only 3% of the time was used by 
the γ–δ algorithm (Table S11).

4  |  DISCUSSION

Mito-metagenomics (MMG) proved to be able to set apart and quan-
tify the relative DNA abundance of insect species in artificial mix-
tures, even when the species were congeneric. The estimation was 
as good as the one obtained with whole genomes instead of mitog-
enomes by Garrido-Sanz et al. (2020), using the same DNA libraries 
and bioinformatic methods as here. However, to be able to quantify 
the RSA in a sample with several species (across-species RSA) it was 
necessary to correct the raw reads by the variable amount of mito-
chondrial to nuclear DNA (mitochondrial DNA copy number) among 
species.

4.1  |  Species identification

The MMG approach used here recovered only the focal species 
from all the single-species libraries, with no false positives when 
low-complexity regions were filtered out from the mitogenomes 
(except for genuine contaminants, see below). Without this filtering 
step, some reads were attributed to non-focal species; these reads 
were sequences with biased composition, probably from repeti-
tive regions (e.g., microsatellites) that mostly matched non-coding 

F I G U R E  1  MMG pipeline applied in this study. In brackets, the 
tools used in each step
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regions on the reference mitogenomes (Table S8; Faber & Stepien, 
1998; Wolff et al., 2012). Some popular tools do implicitly or explic-
itly filter out low complexity regions from the reference genomes: 
Kraken masks low complexity regions when adding references to the 
database (Wood & Salzberg, 2014); and BLAST filters both query se-
quences and references (Altschul et al., 1990, 1997; Camacho et al., 
2009).

We also found contaminant species in all the sequenced librar-
ies (Tables S9–S10). The origin of these reads of contaminants can 
be tag jumping during the sequencing reaction (Schnell et al., 2015) 
or actual contamination in the laboratory. The first reason is prob-
ably the cause of finding reads in single-species libraries belonging 
to other species sequenced in the same run but different libraries. 
The second reason is behind the presence of reads attributed to 
Ceratitis capitata in libraries where Bactrocera oleae was also pres-
ent, because the two dipterans, which are agricultural pests, were 

captured together in fly traps. A more throughout discussion about 
this problem is provided in Garrido-Sanz et al. (2020). The removal 
of the genuine contaminant species in artificial libraries as we did 
here was possible because we knew the identity of the species in the 
mixture, but it is impossible in real samples.

4.2  |  Quantification of the RSA and the need for a 
species-specific correction factor

With the mixed-species libraries, we estimated the within-species 
RSA with high statistical confidence (Figure 2). Similar good results 
have been reported in previous studies that used mock samples 
(Bista et al., 2018; Ji et al., 2020). On the contrary, the across-species 
RSA estimation within a sample was not statistically significant in 
any sample (Figure 3a). These results contrast with the study of 

TA B L E  3  List of species detected on the single-species libraries when the mitogenome of the focal species is in the reference database 
(column A) and when it is not (column B). For each detected species we indicate its name and the number of assigned reads (in brackets). The 
number of congeneric species of the focal species included in the database is provided in column C. Libraries are divided into four groups: 
Group 1, species without congeneric species in the database and without false positive species; Group 2, species with congeneric species in 
the database and without false positive species; Group 3, species with congeneric species in the database but with false positive of the same 
genus; and group 4, species with congeneric species in the database but with false positive of a different genus

Group Run Library
Species used to 
prepare the library

(A) Focal species mitogenome 
present in database

(B) Focal species mitogenome 
not present in database

(C) Number of congeneric 
species in the database

1 1 9 Acyrthosiphon pisum Acyrthosiphon pisum (154) None 0

2 1 Atta colombica Atta colombica (19412) None 0

2 3 Cimex lectularius Cimex lectularius (1082) None 0

1 6 Linepithema humile Linepithema humile (218) None 0

2 8 Linepithema humile Linepithema humile (913) None 0

2 11 Vollenhovia emeryi Vollenhovia emeryi (1399) None 0

2 12 Wasmannia 
auropunctata

Wasmannia auropunctata (17) None 0

2 1 8 Apis mellifera Apis mellifera (3597) None 7

2 2 Bemisia tabaci Bemisia tabaci (349) None 1

1 7 Bombus terrestris Bombus terrestris (1877) None 2

1 4 Drosophila 
mojavensis

Drosophila mojavensis (4407) None 18

2 5 Drosophila 
mojavensis

Drosophila mojavensis (2646) None 18

2 7 Drosophila suzukii Drosophila suzukii (4664) None 18

1 1 Papilio machaon Papilio machaon (312) None 13

3 1 5 Bactrocera oleae Bactrocera oleae (425) Bactrocera biguttula (137) 14

1 2 Drosophila virilis Drosophila virilis (8070) Drosophila littoralis (20) 18

2 6 Drosophila virilis Drosophila virilis (2704) Drosophila littoralis (6) 18

2 9 Plutella xylostella Plutella xylostella (2371) Plutella australiana (127) 1

2 10 Solenopsis invicta Solenopsis invicta (131) Solenopsis richteri (236) 2

4 1 3 Drosophila 
melanogaster

Drosophila melanogaster (979) Drosophila formosana (312)
Exorista sorbillans (26)
Drosophila mauritiana (3)

18

2 4 Drosophila 
melanogaster

Drosophila melanogaster (1384) Drosophila formosana (478)
Exorista sorbillans (53)
Drosophila mauritiana (3)

18
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Gueuning et al. (2019) that reported good quantitative estimations 
of across-species RSA in artificial mixtures of wild bees.

Using the mitochondrial DNA copy number correction factor, the 
RSA across-species correlated significantly with the real values in the 
six artificial samples analysed (Equation 2; Figure 3b), even when 
the mean genome and mitogenome sizes were used instead of the 
species-specific value (Equation 4; Figure 3c). Other studies report-
ing RSA estimation across-species also used some correction factor 
before comparing the expected and observed number of reads, but 
none included the genome size, as we did here. For instance, Gómez-
Rodríguez et al. (2015) and Tang et al. (2015) considered the mitoge-
nome size of the species and Tang et al. (2015) and Lang et al. (2019) 
the number of reads from the genome. Tang et al. (2015) is the only 
study that provides both the goodness of fit with and without the 
use of the correction factor, and the effect is very different from the 

one reported here, as the result was almost the same in both cases. 
One possible explanation is that Tang et al. (2015) dealt only with 
wild bees (a group of a few Hymenoptera families), so the interspe-
cific differences might be low compared to our study which included 
species from four insect orders. Nevertheless, the effect of the mi-
tochondrial DNA copy number on the estimation of RSA deserves 
more research effort if DNA-based techniques are to provide good 
quantitative results, both using mito-metagenomics and amplicon 
metabarcoding targeting variable copy number regions.

The method used here to estimate the correction factor for the 
mitochondrial DNA copy number (i.e., preparation and sequencing 
of a single-species library to a depth of c. one million reads) has a 
cost that is not negligible. Ideally, there should be a method to in-
dependently estimate the mitochondrial DNA copy number of each 
species that did not involve sequencing. Such methods do exist 

F I G U R E  2  Scatter plot of the 
estimated versus the actual RSA for each 
species of the mixed-species libraries (i.e., 
within-species RSA). Each plot shows the 
Pearson correlation coefficient (r) and the 
corresponding p-value. The coordinate at 
the origin of all regression lines was not 
different to 0 A. pisum
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r = 0.67 , p = 0.067
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because there is an interest in medicine to measure the mitochon-
drial DNA copy number for its relationship with several diseases. 
In medicine, the mitochondrial DNA copy number is usually esti-
mated using quantitative PCR (qPCR; Thyagarajan et al., 2012); this 
method requires two primer pairs, one for a mitochondrial marker 
and one for a single-copy nuclear marker. These primers are known 
for humans, but it would be costly to generate them for every spe-
cies in an environmental sample, especially for those species whose 
genome has not yet been sequenced (but see Liu et al., 2018). The 
qPCR itself is cheap, but the preparative work for each species 
would be long.

It is important to emphasize that the RSA used here is based on 
the relative proportions of DNA of the species in the mixture, but 
what is needed in most ecological applications is the relative propor-
tions of biomass (or individual counts) of the different species. The 
reason behind our choice was to simplify the problem of obtaining 
the actual RSA from high-throughput sequenced reads in several 
steps. There is one bias caused by the variable mitochondrial copy 
number of the different species and there is another, independent, 
bias caused by the variable DNA content of the biomass of different 
species. We addressed here the first bias and obviated the second 
one. From our results, the RSA based on the biomass could be ob-
tained by multiplying our estimates by the biomass-to-DNA ratio of 
each species, if known. There are very little data in the literature 
about the proportion of DNA to biomass in different species, but it 
can be very variable; for instance, Pornon et al. (2016) reports a very 
different DNA yield from the same number of pollen grains of three 
plant species.

In metabarcoding applications, some authors use empirical 
correction factors based on mixtures of known relative biomass 
of several species rather than in mixtures of DNA (e.g., Matesanz 
et al., 2019; Thomas et al., 2016). In these cases, the correction fac-
tor solves for the mitochondrial copy number among species and 
also for the DNA-to-biomass ratio and the differential amplification 
efficiency caused by PCR. This method is undoubtedly practical 
but does not differentiate the relative importance of each source 
of bias.

4.3  |  Mito-metagenomics in real samples

The present study is based on artificial mixtures of a low num-
ber of species whose mitogenomes are already assembled. Thus, 
it is fair to question the value of our proposal in real samples with 
many more species, with a limited amount of DNA, where the prior 
species composition is unknown, or when the reference mitoge-
nomes are obtained in the same experiment and are only partially 
assembled.

4.3.1  |  More complex mixtures

Real samples can contain hundreds of species, and that might affect 
the ability of the method to detect the less abundant ones. With the 
sequencing depth achieved here (~3.4 million raw reads per sample; 
Table S1) we were able to detect three (out of four) species with an 
expected RSA below 1‰ (Table S10). The subsequent rarefaction 
experiment showed that with fewer reads more species become un-
detected (Figure 4). In consequence, it seems that at least 3.4·106 
reads are needed to detect most species with an RSA above 1‰. 
Having hundreds of species in the mixture would not hamper the 
quantitative ability of the method, as most species would be above a 
1‰ abundance. However, ultra-rich samples with thousands of spe-
cies would require a higher sequencing depth to ensure the detec-
tion of most species.

4.3.2  |  Limited amount of DNA available

The Illumina TruSeq kit used here to prepare the libraries requires 
1 μg of DNA and this might be a problem with small specimens or in 
DNA-poor samples. However, today there are alternative methods 
that provide good results with just 1  ng of DNA, like the Illumina 
Nextera DNA Flex kit (Sato et al., 2019), albeit potential biases 
should be tested in future experiments for these kits.

4.3.3  |  Absence of mitogenomes in the 
reference database

Our results showed that the proposed methodology was robust in 
the absence of the mitogenomes of species in the reference data-
base. Of course, the species without their mitogenome in the refer-
ence database will never be found, but their reads will not generate 
many false positives, even for species with close relatives in the 
reference database (Table 3). The presence of species without their 
reference genome in the mixture is likely to occur frequently in real 
samples. The unassigned reads (or also when the prior composi-
tion of the sample is unknown) can be further explored by mapping 
them against other databases, like COI barcodes from BOLD; thus, 
the identity of more species will be revealed, albeit not their relative 
abundance.

4.3.4  |  Incomplete genomes

In several MMG studies, the reference mitogenomes are assembled 
from the same mixtures in which the RSA is intended to be quantified 

F I G U R E  3   Scatter plot of the estimated versus the actual RSA in each mixed-species library (i.e., across-species RSA). At the top, it is 
indicated the way we conducted the actual RSA. (a) Original expected data. (b) Corrected expected data after applying the NMi correction 
factor. (c) Corrected expected data after applying the NMi correction factor. Rows from top to bottom correspond to mixed-species libraries 
from 1 to 6. Each plot shows the Pearson correlation coefficient (r) and the corresponding p-value
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(Crampton-Platt et al., 2016; Zhou et al., 2013). In these cases, the 
mitogenomes are assembled de novo and, normally, they are incom-
plete. We do not see any impediment in using mitogenomes as-
sembled in this way if all of them have a similar length and quality. 
However, we would advise against the simultaneous use of mitog-
enomes with disparate length or quality for quantification purposes, 
because that would bias the RSA towards the species with better 
mitogenomes (Tang et al., 2015). On the contrary, the use of all avail-
able partial mitogenomes would be fine for identification purposes.

4.3.5  |  Estimation of the mitochondrial DNA copy 
number (NMi)

Perhaps the most difficult problem in real samples is the estima-
tion of NMi. The rationale that we propose for the estimation of NMi 
(Equations 1–4) seems reasonable, but the devil is in the detail: the 
estimation of the variables needed to calculate NMi is paved with dif-
ficulties for species without a reference genome. First, the estima-
tion of the proportion of reads that belong to the mitogenomes (xi, 
Equation 3) is biased, because we assumed that all reads belong to 
the same species (RGi, Equation 3); however, there is always DNA 
that comes from other sources, like food, gut bacteria, parasites, 
etc. Consequently, the number of reads of the entire genome RGi is 
overestimated and, hence, xi underestimated. Second, the size of the 
mitogenome and the whole genome is generally unknown for most 
species; even for the best studied species their whole genome is far 
from complete (e.g., Paris et al., 2020), and the estimated size (Gi) is 
an underestimation of the real size.

Nevertheless, despite the above problems, the correction factor 
NMi helped to reproduce the expected across-species RSA in our li-
braries. Similar results were obtained using the mean values of the 
mitogenome and whole genome sizes (NMi, Equation 4). The apparent 
lack of effect of the species-specific genome and mitogenome sizes 
might be caused to the low variability of the mitogenome size (coef-
ficient of variation, CV = 9%) and moderate variability of the whole 
genome size (CV = 47%; Table 4). On the contrary, the proportion of 
reads mapping into the mitogenome (xi, Equation 3) was much more 
variable among species (CV = 113%).

Given the previous considerations, we suggest the use of the 
correction factor NMi instead of NMi, for species without a reference 
genome and to estimate the three necessary variables (xi, Mi, Gi) in 
the following way.

•	 xi. The proportion of reads belonging to the mitogenome of spe-
cies i could be estimated by shotgun sequencing a single-species 
DNA extract. The value of xi would be an underestimation of the 
real value but given the high interspecific variability, the obtained 
xi values should still be useful for correction purposes.

•	 Mi. Ninety per cent of the 1794 mitogenomes used here have a 
length of 14.9 to 17.0 kpb (i.e., a rank of 2.1 kbp or 13% of the 
mean Mi; Table S2). Consequently, we recommend the use of the 
mean value M for the group of species of interest (Table S12).TA
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•	 Gi. The length of the whole genome is more variable across spe-
cies than the length of the mitogenomes: 90% of the 115 whole 
genomes of insects available at RefSeq (Table S13A) have a length 
between 0.14 and 0.98 Gbp. However, if the insects are split by 
orders the variability of Gi is smaller for most insect orders (Table 
S13B). Consequently, we would advise using the mean value Ḡ for 
each group of taxa (e.g., insect orders).

4.4  |  Concluding remarks

The approach presented here to identify insect species and to es-
timate their relative abundance in complex mixtures using MMG 
worked well with artificial samples of known composition for a select 
group of species whose mitogenomes are sequenced to an advanced 
degree. The key for the accurate estimation of the across-species 
RSA was a correction factor for the mitochondrial copy number of 
each species. We are aware that the proposed methodology is not 
immediately applicable to most real samples, so its real value should 
be tested on more of such samples.
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