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ABSTRACT Convolutional neural networks (CNNs) have become one of the most important tools for
image classification. However, many models are susceptible to adversarial attacks, and CNNs can perform
misclassifications. In previous works, we successfully developed an EA-based black-box attack that creates
adversarial images for the target scenario that fulfils two criteria. The CNN should classify the adversarial
image in the target category with a confidence ≥ 0.95, and a human should not notice any difference
between the adversarial and original images. Thanks to extensive experiments performed with the CNN
C = VGG-16 trained on the CIFAR-10 dataset to classify images according to 10 categories, this paper,
which substantially enhances most aspects of [1], addresses four issues. (1) From a pure EA point of
view, we highlight the conceptual originality of our algorithm EAtarget,C

d , versus the classical EA approach.
The competitive advantage obtained was assessed experimentally during image classification. (2) We then
measured the intrinsic performance of the EA-based attack for an extensive series of ancestor images. (3)
We challenged the filter resistance of the adversarial images created by the EA for five well-known filters.
(4) We proceed to the creation of natively filter-resistant adversarial images that can fool humans, CNNs,
and CNNs composed with filters.

INDEX TERMS Convolutional neural network, evolutionary algorithm, black-box attack, image classifi-
cation, adversarial perturbation, filter.

I. INTRODUCTION

IN 2012, Krizhevsky et al. [2] presented the outstanding
performance of convolutional neural networks (CNNs) on

a very difficult image classification task [3]. Since then, as
computing capacity has increased, CNNs have become the
main driver of many computer vision applications, includ-
ing image classification [4]–[7], facial recognition [8], [9],
malware detection [10]–[12], email spam filters [13], speech
recognition [14], [15], robotics [16], and self-driving cars
[17], [18]. Despite their increasing power and the variety
of applications, CNNs are susceptible to deception. In the
context of image classification, by analogy with Trompe-l’œil
that challenges humans’ visual perception, a CNN can be led
to misclassification of objects in an image. The generic attack

to create such specially crafted adversarial images consists of
adding some appropriate noise to a legitimate input, leading
the network to label the new input in a different category than
expected [13], [19], [20].

White-box and black-box attacks differ according to the
level of knowledge about the addressed CNN at the disposal
of the attacker. In the former case, the attacker has a complete
knowledge of the CNN model, its design and its parameters.
Gradient-based attacks [21] make use of the CNN parameters
to calculate the optimal direction in which to modify the
image, such that it becomes adversarial. The situation is
opposite in the black-box case, in which the attacker’s
knowledge is scarcely limited to the size of the images
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handled by the CNN, and to classification values outputted
by the CNN for ad-hoc queries (but without any information
about how these values are obtained). Within black-box
attacks, transfer-based methods [21] use the collected query
information to create a substitute model that is similar to the
targeted CNN. Gradient-based methods are used to attack
the substitute model, which leads to adversarial images
that transfer to the target CNN. Another type of black-box
attacks are score-based methods [21], which do not try to
infer the CNN’s parameters, and hence do not calculate any
gradients; they only make use of the CNN’s predicted output
probabilities for either all, or a subset of object classes.

Starting from an original image labeled by a CNN as
representing an object in a specific category, methods that
creates adversarial images may adopt different scenarios. For
instance, a targeted attack creates an adversarial image that
the CNN misclassifies as belonging to an a priori particular
predefined class, different from the original one. A different
scenario is addressed by untargeted attacks that only require
the CNN to misclassify the adversarial image as belonging to
any class whatsoever, provided that this class differs from the
original one.

Although efficient against a CNN, the perturbations added
to an original image to create an adversarial image may be
highly noticeable for a human eye, as illustrated in Fig. 1
(a), (b), (c), and (d). Our evolutionary algorithm-based black-
box, targeted attack EAtarget,C

d (introduced in [22], [23], see
also [24]) differs from existing techniques in this respect.
Not only does our evolutionary algorithm (EA) efficiently
produce adversarial images that deceive the targeted CNN
model C with high accuracy, but the perturbations added by
our algorithm to the original image are not perceptible to the
human eye, as shown in Fig.1e (original image in the first
row, our adversarial image in the second row).
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FIGURE 1: The images in the first row represent the original
images and in the second row the adversarial images and
their respective class labels that are created by (a) One-Pixel
attack [25], (b) Few-Pixels attack [26], (c) Fooling Transfer
Net (FTN) [27], (d) Scratch that! [28], and (e) our EA-based
attack [22], [23] .

II. MOTIVATION
The purpose of this study, which substantially enhances most
aspects of [1], is to address four issues. Broadly, the first
two deal with explaining our choices for the design of the
EA and proving its success as an adversarial attack. Rather
than simply introducing an adversarial attack, in the latter
two issues we also study its potential vulnerability to filter
defenses and adapt the attack so as to assure its robustness
even in cases when the attacker is not aware of the defense.

More specifically, the above-mentioned four issues are the
following: (1) Conceptual originality and competitive advan-
tage of our algorithm EAtarget,C

d , (2) intrinsic performance of
this EA-based attack, (3) filter resistance of the adversarial
images created by the EA, and (4) creation of natively filter-
resistant adversarial images. Before being more specific, let
us point out that all experiments in this paper are performed
with distance d = L2 for the CNN C = VGG-16 [6], [29]
trained on the CIFAR-10 [30] dataset to classify images
according to 10 categories, and mainly address the target
scenario, but also, to a lesser extent, the untargeted scenario
(see Section III).

The issue (1) (see Section IV) relates to a series of
conceptual differences, from a "pure" evolutionary algorithm
point of view (hence independent of the task to perform,
to some extent), between our adapted version and the clas-
sical EA approach [31]. To assess the practical impact of
these conceptual differences, we analyzed their respective
performances in creating adversarial images for a demanding
definition of a successful attack. Indeed, for the (ca, ct)
target scenario performed on an ancestor A classified by
VGG-16 in ca, we require these algorithms to create in less
than 7000 generations an adversarial image D classified by
VGG-16 as belonging to ct 6= ca with a ct-label value
≥ 0.95, while remaining so close to A that a human would
not notice any difference between the adversarial and the
ancestor. The first outcome of this study is that our "adapted
EA" significantly outperforms the "classic EA" approach at
creating such adversarial images for all considered cases,
since it requires between 8% and 25% fewer generations to
terminate successfully.

We then address issue (2) by a thorough and extended ef-
ficiency study of our EA-based attack with the "adapted EA"
version (see Section V). In the first series of experiments with
one ancestor per category of CIFAR-10, we performed 10
independent runs per ancestor per target category, leading to
a total of 900 attacks. The algorithm EAtarget,VGG-16

L2
achieves a

100% success rate (all ancestor-target categories are achieved
for at least one of the 10 runs performed on each ancestor),
requiring between 290 and 2793 generations on average,
depending on the (ca, ct) target scenario. To better assess the
importance of the choice of the ancestor in a given category
ca, and the impact of the seed value used for a specific run, we
extend these experiments. In a second series of experiments,
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we randomly selected 50 distinct ancestors for each of the
10 categories of CIFAR-10 and altogether ran 4500 attacks
for the target scenario. In this case, our algorithm achieved
a success rate of 98%, requiring between 461 and 1717
generations on average. Moreover, both series of experiments
show that a run of EAtarget,VGG-16

L2
has more than 96% (actually

96.56% for the former, and 98.06% for the latter series) to
terminate successfully, and to create images that fool humans
and VGG-16 trained on CIFAR-10, despite our demanding
requirements for a successful termination.

Issues (3) and (4) (addressed in Sections VI and VII,
respectively) deserve to be put into the following broader
perspective. Let A be an image classified by a CNN C in
some category ca, and D be an adversarial image; for the
target scenario, C classifies in a distinct category ct (at this
stage, the type of attack that leads to D does not matter).
One now considers a function F that acts on such images
to create images F(A) and F(D) of the size handled by
the CNN (which coincides with the same common size of
A and D in the present case). How does the CNN classify
these new images? Does F(D) remain adversarial, or does
the composition C ◦ F (that consists in putting F ahead of
C) protect C against the attack? If this latter case holds, can
one adapt the attack to create images that fool not only C, but
also the F-enhanced CNN C ◦F? If yes, would such images,
adversarial for C ◦ F , be adversarial as well for C ◦ G for
G 6= F , and hence have the capability to fool the same CNN
C but enhanced by other functions G?

Among the different meaningful functions F one could
think of in this context, we undertake the study for filters.
Indeed, daily used in image processing, filters substantially
impact the visual appearance of images for a human eye on
the one hand, and potentially affect the classification process
of a trained CNN on the other hand. It is therefore tempting
to check whether adding filters may prevent CNNs from
misclassification, or reduce this risk to some extent, when
facing an adversarial image. Additionally, one may also want
to evaluate the quality of adversarial images by their capacity
to mimic the ancestor’s image behavior when exposed to
filters.

For reasons given in Section VI, in which issue (3) is
discussed, we proceed to the selection of five filters, namely
the inverse filter (F1), the Gaussian blur filter (F2), the
median filter (F3), the unsharp mask filter (F4), and the F5

combination of the two last filters. With each of them, we
filter the ancestor Aa and the adversarial images Da,t(Aa)

created by the EAtarget,VGG-16
L2

algorithm in Section V. VGG-
16 was then challenged with the filtered images. The values
of a series of specifically designed indicators led to two con-
clusions. On the one hand, the Inverse, and the Unsharp mask
filters are significantly inefficient against our EA, because,
for instance, 95% of the adversarial images filtered by F4

remain adversarial for the target scenario, and 95% remain

adversarial for the untargeted scenario (in a relaxed sense
to be made precise in this Section). A contrario, the other
filters, especially the combination F5, render our EA-based
attack less effective for both the target and the untargeted
scenario.

This led us to address the final issue in (4). For a
filter F , we conceived a filter-enhanced F -fitness func-
tion (see Section VII), and the corresponding algorithm
EAtarget,VGG-16

L2,F
, obtained from EAtarget,VGG-16

L2
, by updating

the fitness function accordingly. For the reasons given in
Section VII, we select F = F5, and allocate to EAtarget,VGG-16

L2,F5

the task to create adversarial images that are moreover
natively immune against filter F5. In other words, these
adversarial images simultaneously fool C and C ◦ F5 for C =
VGG-16 for the target scenario (still with the demanding
target label value ≥ 0.95), while remaining so close to the
ancestor that no human eye would notice any difference.
We performed similar experiments for issue (2). The first
series of 900 attacks (one ancestor per ancestor category,
10 independent runs for each (ca(Aa), ct) scenario) shows
that EAtarget,VGG-16

L2,F5
achieves a success rate of 96.66% (three

combinations were not achieved), and that the probability
that it terminated successfully for a given run was 95.77%,
requiring an average between 798 and 2746 generations for
the successful (ca(Aa), ct) considered. In a second series
of 4500 attacks performed with 50 different ancestors per
category, EAtarget,VGG-16

L2,F5
showed a success rate of 88%, with

between 1250 and 2404 generations on average.

We complete study (4) by exploring whether an adversarial
image, constructed by EAtarget,VGG-16

L2,F5
to fool both C and

C ◦ F5, would also be adversarial against C ◦ Fk for the
other filters F1, F2, F3, andF4 for C = VGG-16. Our study
shows that it is so for F3 and F4 with (depending on
the target or untargeted scenario) between 83% and 89%
of the images remaining adversarial against these filters.
56% of theses images were also adversarial for F1 for the
untargeted scenario, while this percentage dropped to 23%
for F2. Therefore, the EAtarget,VGG-16

L2,F5
attack, designed to be

robust against C and C ◦ F5 for C =VGG-16, is also robust
to a significant extent against all individual filters for the
untargetedscenario.

Section VIII summarizes the conclusions of this case
study, and provides a series of research directions.

III. THE TARGET SCENARIO ON VGG-16 TRAINED ON
CIFAR-10
Although applicable to any CNN trained at image classifi-
cation on any dataset, we instantiate our approach on the
concrete case of VGG-16 [6] trained on CIFAR-10 [30].

A. VGG-16 TRAINED ON CIFAR-10
The CIFAR-10 dataset encompasses 50, 000 training images,
and 10, 000 test images of size 32 × 32 × 3, meaning that
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each image has a width and height of 32 pixels, and each
pixel has a color resulting from the three RGB values. Once
trained, VGG-16 sorts images according to the 10 categories
ci of CIFAR-10 listed in the 2nd row of Table 1, composed
of 4 "Object" categories (c1, c2, c9, c10), and of 6 "Animal"
categories (ci for 3 ≤ i ≤ 8). The 4th row of Table 1 displays
the original ancestor images Aa in the categories ca (and
their respective ca-label values, see below) used throughout
this paper, and the 3rd row give their reference number in the
test set of CIFAR-10.

In practice, an input image I given to VGG-16 trained
on CIFAR-10 is processed through 16 layers to produce a
classification output vector:

oI = (oI [1], · · · ,oI [10]) , (1)

where 0 ≤ oI [i] ≤ 1 for 1 ≤ i ≤ 10, and
∑10
i=1 oI [i] =

1. Each ci-label value oI [i] measures the probability that
image I belongs to category ci. Consequently, an im-
age I is classified as belonging to category ck if k =
arg max1≤i≤10(oI [i]). The higher the label value oI [k], the
higher the confidence that I represents an object of category
ck.

B. TARGETED AND UNTARGETED SCENARIOS
The target scenario consists of first choosing two different
categories, ct 6= ca, among the 10 categories of CIFAR-10.
Then, one is given an ancestor image A labeled by VGG-
16 as belonging to ca. Finally, one constructs an adversarial
image D, classified by VGG-16 as belonging to ct, although
D remains so close toA that a human would likely classifyD
as belonging to ca or even be unable to distinguishD fromA.
The classification threshold value is set at τ = 0.95, meaning
that such a D has achieved its purpose if oD[t] ≥ 0.95.
We shall also encounter in Section VI the slightly different
untargeted scenario. In this case, an adversarial image D is
still required to be similar toA for a human eye, but one only
requires that VGG-16 classifies D as belonging to a category
c 6= ca, in the limited sense that the label value of c outputted
by VGG-16 for D is the largest among all label values, and
is strictly larger than the label value of ca. In particular, an
image adversarial for the target scenario is also adversarial
for the untargeted scenario, but the inverse may not be true.

IV. "ADAPTED_EA" VERSUS "CLASSIC_EA"
Our evolutionary algorithm EAtarget,C

d (see [1], [22]–[24],
[32]) is a black-box, targeted attack that constructs adver-
sarial images against a CNN C in the sense sketched in
Subsection III-B, where d is a metric assessing the proximity
for a human eye between the evolved images and the original
image.

In this section, we show, from a "pure" evolutionary
algorithm point of view, that EAtarget,C

d presents a series of

important and substantial differences compared to the ap-
proach classically ( [31]) adopted for EAs performing similar
tasks, and we prove that these differences lead to a compar-
ative advantage in terms of performance. First, we examine
these differences from a conceptual point of view, meaning
independently of any specific task. For simplicity, we refer to
our version as "adapted_EA" and to its classical version as
"classic_EA". We then compared the performances of these
algorithms for the task consisting of fooling VGG-16 trained
on CIFAR-10 for image recognition in the target scenario. In
other words, these algorithms are given the task of evolving
an ancestor image A into an adversarial image D fulfilling
the conditions described in Subsection III-B. We specify
the parameters of the EAs, and run the algorithms for four
different ancestor/target combinations.

All experiments in this paper were implemented in Python
3.7 with the NumPy [33] library. For the filter experiments in
Sections VI and VII, we used the OpenCV implementation
library [34]. Keras [35] was used to load and run the VGG-
16 [6] model. The experiments were performed on nodes
with NVIDIA Tesla V100 GPGPUs of the IRIS HPC Cluster
at the University of Luxembourg [36].

A. CONCEPTUAL DIFFERENCES BETWEEN
"ADAPTED_EA" AND "CLASSIC_EA"
To illustrate the differences between our version ("adapted_EA")
and the classic version ("classic_EA", as described in [31])
of an EA, let us provide their respective algorithmic pseudo-
codes. We assume that both have a fixed population size,
which remains constant geneation for generation. For both,
we set the initial population as made of identical copies
of the considered ancestor. Based on our experiments, we
considered a population size of 160 as the best trade-off in
terms of speed and accuracy.

Algorithm 1 "Classic_EA" algorithm pseudo code, the pop-
ulation size = N

1: BEGIN
2: t = 0
3: INITIALISE population P (t = 0) = A×N ;
4: EVALUATE P (t = 0);
5: while isNotTerminated() do
6: SELECT:
7: Pe(t) = P (t).selectElites(10-20% of N); / elites
8: RECOMBINE / MUTATE:
9: Pc(t) = reproduction(Pe(t)); / off-springs;

10: mutate(Pc(t));
11: EVALUATE:
12: P (t+ 1) = evaluate(Pc(t), P (t));
13: t = t+ 1
14: end
15: END

The main difference between "classic_EA" (as described
in Algorithm 1) and our version (as described in Algorithm
2) is the process of selection, recombination and mutation. In
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TABLE 1: For 1 ≤ a ≤ 10, the image Aa (and its reference number no in the test set of CIFAR-10) classified by VGG-16 in
the category ca, with its corresponding ca-label values. These images are used as ancestor in most of our experiments.

a 1 2 3 4 5 6 7 8 9 10
ca plane car bird cat deer dog frog horse ship truck
no 281 82 67 91 455 16 29 17 1 76

Aa

0.6900 0.9999 0.9999 0.9998 0.9999 0.9996 0.9999 0.9998 0.9996 0.9984

Algorithm 2 "Adapted_EA" algorithm pseudo, the popula-
tion size = N

1: BEGIN
2: t = 0
3: INITIALISE population P (t = 0) = A×N ;
4: EVALUATE P (t = 0);
5: while isNotTerminated() do
6: SELECT:
7: Pe(t) = P (t).selectElites(Ne = 10); / elites
8: Pw(t) = P (t).selectWorsts(N/2); / "didn’t make it"
9: Pm(t) = P (t)− (Pe(t)UPw(t)); //middle-class

10: RECOMBINE / MUTATE:
11: Pkeep(t) = P (t).randomSelect(N/2−Ne) U Pe(t);
12: mutate(Pkeep(t) U Pm(t));
13: Pc(t) = reproduction(Pkeep(t), Pm(t));
14: EVALUATE:
15: P (t+ 1) = evaluate(Pe(t), Pc(t));
16: t = t+ 1
17: end
18: END

"classic_EA", the best 10-20% of the population are selected
as elites (hence between 16 and 32 individuals), and new
offsprings are generated with these elites by recombination
and mutation . Then the last 10-20% (idem) of the population
is eliminated, and only these 10-20% are updated at each
generation (see line 6-10 in Algorithm 1). However, in our
version, the number of elites is set to the first 10 individuals;
then, the algorithm starts to modify the whole rest (150
individuals) of the population by eliminating, mutating, and
recombining with elites just after the first generation.

B. THE EA PARAMETERS
The task on which we evaluate the performance of both
approaches is the construction of adversarial images for
CNNs. Although our algorithm EAtarget,C

d is efficient for a
series of CNNs, here we make our point for the instantiation
EAtarget,VGG-16

L2
of this algorithm (Algorithm 2) and of its

classical EA version (Algorithm 1), for C = VGG-16 trained
on CIFAR-10, and for the metric d = L2. Starting from
a common ancestor image A of size 32 × 32 × 3 labeled
by VGG-16 as belonging to ca, and from a target category
ct 6= ca, the specific parameters and choices of the algorithms
are as follows:

Population initialization. Both algorithms start the search
with the same initial population set, made of 160 identical

replicas of the ancestor image A.

Evaluation - Fitness Function. This operation is per-
formed on each individual image ind of a given generation
gp via the fitness function fitL2(ind, gp) that assesses a dual
goal: the evolution of ind towards the target category ct, and
its proximity to ancestorA, measured by using the L2-norm:

fitL2
(ind, gp) = A(gp, ind)oind[ct]−B(gp, ind)L2(ind,A) ≥ 0,

(2)
where the quantities A(gp, ind), B(gp, ind) ≥ 0 weight and
balance the dual goal. The L2-norm is used to calculate the
difference between the pixel values of the ancestor and the
considered image ind:

L2(ind,A) =
∑
pj

|ind[pj ]−A[pj ]|2, (3)

where pj is the pixel in the jth position, and 0 ≤
ind[pj ],A[pj ] ≤ 255 are the corresponding pixel values of
the images ind andA. Concretely, for any generation gp, one
setsB(gp, ind) = 10−5. The value ofA(gp, ind) depends on
oind[ct] (note that log10 oind[ct] ≤ 0).

A(gp, ind) = 10− log10 oind[ct] (4)

Selection, Recombination, Mutation. The fitness function
of each individual in the population is computed (starting
with the first generation made of the initial population).

In adapted_EA, the population is sorted into three groups
depending on their fitness values in the selection process.
The elite, which is composed of the 10 individuals with
the best fitness values. The lower class, "didn’t make it",
is the last half of the population, while the remaining 70
individuals constitute the middle class (line 6-9 in Algorithm
2). To replace the lower class, a "keep" group is created
by combining elites and 70 random individuals from the
previous population (line 11 in Algorithm 2). then mutation
and cross-over is applied to the entire population (except the
elites) to increase the exploration capability of the algorithm
(line 12-13 in Algorithm 2). During these processes, only the
elites pass unchanged to the next generation. Finally, these
operations lead to 160 descendant images composing the
individuals of the new generation subject to the next round
of evaluation (line 14 in Algorithm 2).
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The algorithms used the same parameters and techniques
for the mutation and crossover operations as described in
[22], [32]. In a nutshell, pixel mutations (only the value
of a channel of a pixel location is changed) are performed
by randomly choosing (with a power law) the number of
pixels to be mutated and modifying their values in the
range ±3 in the two versions of EA used here. And cross-
overs are essentially obtained by swapping a rectangular area
at a uniformly random location between two individuals.
The values of the rectangle’s length and width are chosen
uniformly random and can be between 1 and 30. Cross-overs
are performed on a single channel, chosen uniformly random.

For a fair competition, the same seed value was applied to
the adapted_EA and classic_EA to ensure fair competition.
For the mutation, this seed impacts the location of the pixels
and the magnitude (within a range defined below) of the
modifications they undergo. For the cross-over, the seed
impacts which individuals form pairs, as well as the location
and size of the interchanged regions.

Termination condition. For each version of the EA, this
loop is repeated until a descendant image is created in less
than 7000 generations (this maximum number of iterations is
a reasonable trade-off, based on our experiments), which is
classified as the target category ct with a probability ≥ 0.95,
while remaining so close toA that a human would not notice
any difference between it andA (and a fortiori would classify
this descendant image still as belonging to the original
category ca). This defines a successful termination, in which
case one notes Da,t(A) as the adversarial image resulting
from EAtarget,VGG-16

L2
(Algorithm 2) run on A, and Dclassic

a,t (A)
as the result of the classic (Algorithm 1) version of the EA
also run on A. Otherwise, the algorithm terminates without
success.

Therefore, the algorithms terminate after 7000 generations
at the latest, regardless of whether they have succeeded in
creating such an adversarial image.

C. EXPERIMENTAL COMPARISON OF "ADAPTED_EA"
WITH "CLASSIC_EA"

We experimentally compared the efficiency of both ver-
sions of the EA for four ancestor/target pairs of cate-
gories Animal/Animal, Object/Object, Animal/Object, and
Object/Animal.

Concretely, the Animal ancestor categories are bird and
dog, with image A3 as ancestor for the bird category c3, and
A6 as ancestor for the dog category c6 taken from Table 1.
Similarly, the Object ancestor categories are plane and ship,
with imagesA1 as the ancestor for the plane category c1, and
image A9 as the ancestor for the ship category c9.

With these ancestors, we performed 10 independent runs
of the algorithms for each of the following combinations:
the bird/cat pair (Animal/Animal), plane/truck pair (Ob-
ject/Object), dog/car pair (Animal/Object), and ship/horse
pair (Object/Animal).

Performance comparison. In all cases, the 10 independent
runs of each algorithm succeeded in (far) less than 7000
generations. Table 2 lists the minimum number of genera-
tions (mingen), maximum number of generations (maxgen),
and mean generations (meangen) obtained over the 10
independent runs of each algorithm. The convergence graph,
plotted in Figure 2, shows the convergence speed of both
algorithms for all cases. The horizontal axis of these graphs is
the number of generations, and the vertical axis is the average
log probability of the target category obtained for these 10
independent runs.

TABLE 2: Comparison of classic_EA and adapted_EA in
generating adversarial images for the target scenario for 4
different Ancestor/Target combinations (Aa is the ancestor
image in ca used in the experiments) to fool VGG-16 trained
on CIFAR-10. The results are over the 10 independent runs
of each algorithm.

Ancestor/Target Algorithms mingen maxgen meangen

bird (A3)/cat classic_EA 1726 2433 2172.9
adapted_EA 1353 2177 1629.2

plane (A1)/truck classic_EA 1311 1810 1547.5
adapted_EA 1050 1439 1194.8

dog (A6)/car classic_EA 1132 1334 1199.3
adapted_EA 811 1050 907.0

ship (A9)/horse classic_EA 1972 3412 2582.1
adapted_EA 1543 3171 2377.8

Results and Discussion. As can be seen in Table 2,
"adapted_EA" outperforms "classic_EA" in all cases. The
former requires fewer generations than the latter to obtain
adversarial images with a confidence of 0.95. Figure 2 con-
firms that "adapted_EA" converges faster than "classic_EA".
The graphs indicate that both algorithms apparently exhaust
most of their generations to find the correct regions and/or
pixels to modify. Once done, their learning curves accelerate
drastically, still with "adapted_EA" leading the race against
"classic_EA".

Although both algorithms start the search with the same
160 identical images, their respective performances differ
substantially, as a consequence of their distinct updating
process of the population. Indeed, "adapted_EA" starts these
updates for the whole population, except for the elite indi-
viduals passed unchanged to the next generation, and does
so right after the 1st generation. However, "classic_EA"
only updates 20% of its population in each generation.
Changing only 32 individuals, as opposed to changing 150
individuals, makes it much slower for the classic version
compared to its adapted competitor. These results not only
legitimize the choices made in our earlier work ( [1], [22]–
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FIGURE 2: Convergence characteristics of classic_EA and adapted_EA for different ancestor/target pairs. These experiments
are performed with the ancestors A3 (in the bird category), A6 (dog), A1 (plane) and A9 (ship) taken from Table 1.

[24], [32]), but also provide some evidence that for similar
exploration problems with a starting point made of the same
individuals (hence, not only for the construction of images
that are adversarial for a CNN), the generic selection and
mutation process adopted in "adapted_EA" (algorithm 2)
shortens the learning period of the algorithm and enhances
the convergence speed.

We complete this comparative analysis by assessing the
potential differences in behavior between the adversarial
images created by each version of the EA. To this purpose, we
computed the Kullback-Leibler divergence [37] between the
probability densities derived from the normalized histograms
of the pixel modifications induced by each of them. In all
cases, the values (averaged over the ten independent runs) of
the Kullback-Leibler divergences were negligible (they vary
between 2.24e−04 and 5.17e−03), indicating that the noise
created by one version of the EA significantly differs from the
noise created by the other. Hence, while both versions of the

EA create adversarial images, the modifications introduced
by each of them differ strongly, although both these modifi-
cations introduced by each EA on the one hand, as well as
their differences on the other hand, are not perceptible by a
human.

V. THE ADVERSARIAL IMAGES OBTAINED BY
EAtarget,VGG-16

L2

As a result of Section IV, from now on we only consider the
"adapted_EA" version of our evolutionary algorithm, namely
EAtarget,VGG-16

L2
. For an ancestor Aa in a category ca, and

the target scenario for category ct, one defines Da,t(Aa) =

EAtarget,VGG-16
L2

(Aa, ct), provided that the algorithm termi-
nates successfully. One writes more simply Da,t, or even Dt,
if there is no ambiguity about the choice of the ancestor Aa
chosen in category ca (mutatis mutandis in Sections VI and
VII).

VOLUME 4, 2016 7



Chitic et al.: EA-based images adversarial against CNNs and humanly indistinguishable: efficiency and filter robustness

A. WITH ONE ANCESTOR PER CATEGORY
From Table 1, we pick the ancestor image Aa in category
ca and perform 10 independent runs (with random seed val-
ues) of EAtarget,VGG-16

L2
for all nine possible target categories

ct 6= ca.

An example of the quality of the obtained adversarial
images is highlighted by the comparison between the dog
ancestor A6 of Table 1, and its corresponding 9 evolved
adversarial images Dt, with t 6= 6 (obtained after the
first of the 10 independent runs of the EA) as shown in
Figure 3. More generally, Figure 11 (Appendix A) contains
the adversarial images obtained by the first successful run out
of the ten independent runs of EAtarget,VGG-16

L2
for each of the

ancestor images in Table 1, and Table 5 (Appendix A) gives
their respective label values.

This example illustrates that by slightly changing many
pixels instead of heavily changing a few pixels, our approach
enhances the indistinguishability between the adversarial im-
age and the ancestor image. In particular, our method differs
substantially from [25], [26], [28], where a small fraction of
pixels is changed, but at the cost of being noticeable for a
human without difficulty (see Figure 1, Section I).

For the ancestor image Aa (from Table 1) in category ca
specified in its ath row, the tth column of Figure 4 gives the
average number of generations required by EAtarget,VGG-16

L2
to

terminate, computed over 10 independent runs. In the four
ancestor/target combinations, this number is followed by a
symbol (?x) or (?x, ‡y). These symbols indicate that the
algorithm did not achieve the τ = 0.95 threshold value
within 7000 generations for x of the 10 runs, and therefore
terminated without success for the corresponding seed val-
ues. The ct-label values of the corresponding best descendant
images remained stuck at a local optimum < 0.95, whose
quality is also indicated by the symbol. In the case of symbol
(?x), this local optimum was quite close to 0.95 (not less than
0.9370 actually; we call quasi-adversarial the corresponding
images produced by EAtarget,VGG-16

L2
). In the case of symbol

(?x, ‡y), the complementary number y specifies the number
of runs among the x unsuccessful runs for which the local
optimum remained very low (between circa 10−4 to 10−5).

For each 1 ≤ a ≤ 10, the "Row Average" value, displayed
in the rightmost column of the ath row, indicates the average
number of generations required to perform our attack on
ancestor Aa in category ca for all ct 6= ca (Mutatis mutandis
the "Column Average" value displayed in the bottom row of
the tth column).

Our EA showed a success rate of 100 % since all
possible target categories were achieved with at least one
of the ten runs for the considered ancestors. Still, some
attacks are easier than others. The ancestor image for which
EAtarget,VGG-16

L2
requires the least amount of effort in general

is the horse ancestor image A8, and bird (c3) is the easiest
target category regardless of the ancestor category (with
the considered ancestor images at least). At the other end
of the scale are the deer ancestor image A5 and the bird
ancestor image A3 for which EAtarget,VGG-16

L2
requires the

largest amount of effort in general, while dog (c6), truck
(c10) and ship (c9) are the hardest target categories. These
correspond precisely to the categories (and the ancestors) for
which some runs of EAtarget,VGG-16

L2
terminated without having

created an appropriate adversarial image within 7000 gener-
ations. Indeed, out of the altogether 900 attacks (10 runs for
each of the 90 ancestor/target combinations) performed by
EAtarget,VGG-16

L2
, Figure 4 shows that only 31 did not succeed.

It is worth noting the homogeneity and non-diversity of the
quality of rare unsuccessful cases. For such an unsuccessful
(ca, ct) combination, either the local optimum is close to the
τ = 0.95 value for all failed cases (this occurs for the nine
unsuccessful runs of the (bird (A4), dog) combination), or
it is very far from this threshold value for all failed cases
(this occurs for the 22 unsuccessful runs with the deer (A5)
ancestor for the car, ship and truck targets).

Therefore, as a consequence of this study with one an-
cestor Aa per category ca, our experiments show that the
probability that EAtarget,VGG-16

L2
terminates successfully for

a given run is 96.56%, and that its termination requires
between 290 and 2793 generations on average.

As for the run time of EAtarget,VGG-16
L2

, Figure 12 in the
Appendix A gives the average time (in seconds) required
by all successfully completed ancestor/target combinations,
with one ancestor per category. On average, it takes 79.77
seconds to generate a successful adversarial image.

B. WITH 50 DISTINCT ANCESTORS PER CATEGORY
To further evaluate the efficiency of our attack beyond the
case of a single ancestor Aa per category ca, as described in
Subsection V-A, and to assess the importance of a specific an-
cestor chosen in a given category, we considered 50 distinct
images taken randomly (from the CIFAR-10 testing set) in
each of the 10 categories ca. Unlike the 10 independent runs
per ancestor of Subsection V-A, we considered that running
EAtarget,VGG-16

L2
with one single run per ancestor was enough to

make our point. So in total, we performed 50×10×9 = 4500
attacks with EAtarget,VGG-16

L2
. Figure 5, which summarizes the

outcome of this experiment, is to be interpreted in a similar
way as Figure 4, with the difference that the averages are
computed over the 50 ancestors per category ca. Note also
that the (?x) and (?x, ‡y) symbols added to some cell values
for a given (ca, ct) scenario have a different interpretation in
Figure 5 compared to Figure 4, since they apply globally to
different ancestors here, as opposed to applying to different
runs performed on the same ancestor in Figure 4.

Performance differs again from one category to another.
The ancestor categories for which EAtarget,VGG-16

L2
requires
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plane car bird cat deer dog frog horse ship truck

FIGURE 3: From the left, comparison of the ancestor A6 in the 6th position with the adversarial images Dt in the tth position
(t 6= 6). VGG-16 classifies A6 in the dog category with probability 0.9996386, and classifies Dt in the target category ct with
probability ≥ 0.95.

plane car bird cat deer dog frog horse ship truck Row Average

64 275 2188 702 613 337 798 147 1108 692

1095 451 1246 768 1545 543 676 422 725 830

1080 665 1823 925 6921(*9) 559 2719 872 1092 1850

494 341 250 263 217 113 411 526 555 352

2700 6233(*5, ‡5) 343 460 239 834 712 6683(*8, ‡8) 6939(*9, ‡9) 2793

879 882 460 129 938 397 280 971 545 609

690 520 295 488 717 536 834 927 685 632

454 221 300 204 223 303 371 309 228 290

318 182 1291 432 2599 1502 823 2065 484 1077

145 663 383 1411 437 864 919 271 292 598

872 1085 449 931 841 1415 544 974 1238 1373
Column
Average

plane (   )

car (   )
bird (   )

cat (   )

deer (   )

dog (   )

frog (   )

horse (   )

ship (   )

truck (    )

FIGURE 4: EAtarget,VGG-16
L2

’s performance on all possible ancestor/target combinations with one ancestor per category. The rows
give the ancestor category ca (and the specific ancestor Aa in ca), the columns indicate the target class ct, and the cell values
indicate the average number of generations required by EAtarget,VGG-16

L2
to terminate, computed on 10 independent runs.

plane car bird cat deer dog frog horse ship truck

plane 1201 284 606 415 859 752 858 304 1042 702

car 1807 1740 2618 1751 2154 1492 2425 988 478 1717

bird 416 1029 376 390 537 397 679 575 844 583

cat 653 703 358 381 152 234 321 834 519 462

deer 762 1459 208 290 274 382 269 855 1139 626

dog 772 799 319 203 492 344 392 609 686 513

frog 527 646 306 302 321 463 588 532 466 461

horse 1343 1869 851 692 310 325 1085 1679 2252 1156

ship 454 708 890 1044 684 1246 734 1319 639 858

truck 576 495 813 912 1059 1077 994 908 395 803

812 990 641 783 645 787 713 862 752 896
Column
Average

Row Average

(*2, ‡2) (*1) (*1, ‡1) (*3, ‡3)

(*5, ‡5) (*3, ‡3) (*8, ‡8) (*3, ‡3) (*4, ‡4) (*2, ‡2) (*8, ‡8) (*1, ‡1)

(*1, ‡1) (*1, ‡1)

(*1)

(*2, ‡2) (*4, ‡3) (*1, ‡1) (*4, ‡4)

(*1, ‡1)

(*2, ‡2) (*4, ‡3) (*1, ‡1) (*4, ‡4) (*9, ‡9)

(*2, ‡2) (*1, ‡1) (*1) (*2, ‡1)

(*1, ‡1) (*1, ‡1) (*1, ‡1) (*2, ‡1)

FIGURE 5: EAtarget,VGG-16
L2

’s performance on all possible ancestor/target combinations with 50 distinct ancestors per category.
The rows give the ancestor category ca, the columns indicate the target class ct. The cell values give the average number of
generations required by EAtarget,VGG-16

L2
to terminate, and computed on one run performed on each of the 50 ancestors in the

category ca.

the least amount of effort in general are the frog, cat, and
dog categories. In addition, EAtarget,VGG-16

L2
achieves the target

categories bird and deer fairly fast, regardless of the ancestor
categories. Conversely, the ancestor categories car and horse

are those for which EAtarget,VGG-16
L2

requires the largest amount
of effort in general, while the car and the truck are the
hardest target categories.
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In this context, the comparison of these results with
those of Figure 4 shows the relevance for EAtarget,VGG-16

L2
’s

performance of the specific ancestor image chosen in a given
category ca. Indeed, while, for instance, the specific ancestor
A8 in the horse category was optimal in a sense (achieving
all possible target categories in 290 generations on average),
this property did not extend to the horse category as a
whole as just seen. A contrario, for instance, the combination
(deer, truck) with the ancestor A5 in the deer category was
(with 6939 generations on average) the toughest to achieve
among all trials of Subsection V-A, it is reasonably easy to
achieve in general (with 1139 generations on average) with
the 50 ancestors chosen for our experiment.

Finally, out of the 4500 trials performed by EAtarget,VGG-16
L2

,
only 87 did not terminate successfully. Therefore, this
experiment provides heuristic evidence that one run of
EAtarget,VGG-16

L2
has a probability of 98.06% to terminate suc-

cessfully. To better assess the strength of the failed cases, we
ran again the 87 unsuccessful cases 10 times with different
seed values: out of them, 28 succeeded in less than 10 runs,
while 59 did not. This result, together with the fact that our
algorithm required between 461 and 1717 generations on
average in this case, and compared to the outcome of the
similar experiments performed in the previous Subsection
V-A with other ancestors, further sustains the impact of the
specific ancestor Aa taken in a given category ca, and of the
seed value used to run the EA. It also shows that the success
rate of our attack, namely the capacity for EAtarget,VGG-16

L2
to

terminate successfully for at least one of ten runs out of a
small number of trials, is ≥ 98.68%.

VI. ROBUSTNESS OF EAtarget,VGG-16
L2

AGAINST FILTERS
For the reasons given in the introduction to this paper
(Section I), the study undertaken in this section essentially
amounts to checking whether adding filters may prevent
VGG-16 from misclassification, or may reduce this risk to
some extent, when facing an adversarial image created by
EAtarget,VGG-16

L2
.

A. SELECTION OF FILTERS
Although a large list of filters exists, we focus on the
following four filters that have a significant impact on images
[38, Chapters 7 and 8].

The inverse filter F1 replaces all the colours by their
complementary colours. This operation is performed pixel
for pixel by subtracting the RGB value (255, 255, 255) of
white by the RGB value of that pixel.

The Gaussian blur filter F2 uses a Gaussian distribution to
calculate the kernel, G(x, y) = 1

2πσ2 e
− x

2+y2

2σ2 , where x is the
distance from the origin on the x-axis, y is the distance from
the origin on the y-axis and σ is the standard deviation of
the Gaussian distribution. By design, the process gives more
priority to the pixels in the center, and blurs around it with a

lesser impact as one moves away from the center.

The median filter F3 is used to reduce noise and artifacts
in a picture. Although under some conditions it can reduce
noise while preserving the edges, this does not really occur
for small images such as those considered here. In general,
one selects a pixel and computes the median of all the
surrounding pixels.

The unsharp mask filter F4 enhances the sharpness and
contrast of the images. The unsharp-masked image is ob-
tained by blurring a copy of the image using a Gaussian
blur, which is then weighted and subtracted from the original
image.

Any filterF , or any combination of filtersFi1 , Fi2 , · · · , Fik
operating successively (in that order) on an image I, creates
a filtered image F (I) or Fik ◦ · · · ◦ Fi2 ◦ Fi1(I).

We make use of these four filters F1, F2, F3,, and F4 either
individually or as the combination F5 = F3 ◦F4. The reason
for the choice of the latter F3◦F4 is that F4 is used to amplify
and highlight detail, while F3 is used to remove noise from an
image without removing detail. Therefore, a combination of
these filters can remove the noise created by the EA while
maintaining a high level of detail. Moreover, because the
computations are performed on images of size 32 × 32, we
take a filter size f = 1 for F1 and f = 3 for the others.

FIGURE 6: Comparison of the impact of filters on the an-
cestor A6 and on the adversarial images Dt. The kth row
represents F (Dt) in tth position (with D6 = A6), where
F = Fk for 1 ≤ k ≤ 5.

For each F = Fk, 1 ≤ k ≤ 5, we then challenge VGG-16
with these 100 filtered images F (Aa) and F (Da,t(Aa)).

The complete classification and the corresponding label
values output by VGG-16 for F (Aa) and F (Da,t(Aa)) for
the five considered filters and for all (ca, ct) combinations are
given in Tables 6 to 10 (Appendix A). In these tables, an im-
age is classified as belonging to category c if c has the largest
label value outputted by VGG-16 among all categories.
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B. INDICATORS ADDRESSING THE ROBUSTNESS OF
FILTERED ADVERSARIALS
Filters differ substantially in their individual capaci-
ties to sustain the adversarial component of the filtered
F (Da,t(Aa)). Additionally, it may also happen that VGG-
16 classifies F (Aa) in a category different from the an-
cestor category ca. Since in this section (and the next one)
we consider that the classification of an image in a given
category c means that the label value given by VGG-16
for c is the largest among all possible categories, we relax
the formulation of the target scenario accordingly; in this
context, one does not necessarily require a target label value
exceeding the threshold value of 0.95, but only asks that it is
the largest one. The formulation of the untargeted scenario
in the filtered context, made precise below in this subsection,
requires paying attention to the potential difference between
the categories ca and cF (Aa).

The following indicators quantitatively assess the afore-
mentioned issues for each filter Fk, with the considered an-
cestors and adversarial images. These indicators take integer
values, and we specify their theoretical bounds (which clearly
depend on the number 10 of ancestors, and on the number 9
of target categories considered in this study).

For each 1 ≤ a ≤ 10, we first define ρk(Aa) as the
number of target categories ct such that VGG-16 classi-
fies Fk(Da,t(Aa)) (including potentially Da,a(Aa) = Aa)
back to the ancestor category ca. One computes Σk =∑10
a=1 ρk(Aa) ∈ [0, 100].

One sets δk(Aa) = 1 if ρk(Aa) = 10, that is, if the filtered
ancestor and all filtered adversarial images are classified
back to the ancestor category. Otherwise δk(Aa) = 0. One
computes ∆k =

∑10
a=1 δk(Aa) ∈ [0, 10].

One sets µk(Aa) = 0 if VGG-16 classifies Fk(Aa)
back to ca, and µk(Aa) = 1 if it does not. One defines
Mk =

∑10
a=1 µk(Aa) ∈ [0, 10].

Of interest for the target scenario is τk(Aa), the number
of t 6= a for which Fk(Da,t(Aa)) is classified as belonging
to ct (namely those that "really succeed"), and its sum
Tk =

∑10
a=1 τk(Aa) ∈ [0, 90].

Finally, we consider τ̃k(a) to assess the untargeted sce-
nario: τ̃k(a) counts the number of t 6= a for which
Fk(Da,t(Aa)) is classified as belonging to c 6= cFk(Aa). One
computes its sum T̃k =

∑10
a=1 τ̃k(Aa) ∈ [0, 90].

Observe en passant that the inequality Tk ≤ T̃k may
theoretically not hold (as opposed to what happens in the
absence of any filter, where the corresponding inequality
necessarily holds). The reason is that one considers ct 6= ca
for the left-hand side of the inequality, and c 6= cFk(Aa) for
the right-hand side. Since the quantities ca and cFk(Aa) may

differ, the set whose number of elements is Tk may not be
included in the set whose number of elements is T̃k.

C. ROBUSTNESS ANALYSIS OF THE ADVERSARIAL
DA,T (AA) AGAINST FILTERS
Let us now proceed to the analysis of Table 3, which provides
these quantities resulting from, and summarizing Tables 6 to
10 (Appendix A).

TABLE 3: Indicator values assessing the robustness of adver-
sarial images Da,t(Aa) against filters. For each ancestor Aa,
computation of (ρk(Aa), δk(Aa), µk(Aa)) in the 1st row, and
of (τk(Aa), τ̃k(Aa)) in the 2nd row. The last two rows give
the sums

∑10
a=1 of these quantities.

Aa

k
1 2 3 4 5

A1 (10,1,0) (0,0,1) (2,0,0) (0,0,1) (7,0,0)

(0,0) (2,7) (1,8) (9,8) (1,3)

A2 (1,0,0) (3,0,0) (9,0,0) (3,0,0) (10,1,0)

(1,9) (2,7) (0,1) (7,7) (0,0)

A3 (7,0,0) (10,1,0) (10,1,0) (1,0,0) (10,1,0)

(1,3) (0,0) (0,0) (9,9) (0,0)

A4 (3,0,0) (10,1,0) (10,1,0) (1,0,0) (10,1,0)

(1,7) (0,0) (0,0) (8,9) (0,0)

A5 (1,0,1) (10,1,0) (10,1,0) (1,0,0) (10,1,0)

(3,7) (0,0) (0,0) (9,9) (0,0)

A6 (0,0,1) (0,0,1) (1,0,1) (1,0,0) (4,0,0)

(3,5) (1,0) (1,1) (9,9) (1,6)

A7 (5,0,0) (10,1,0) (10,1,0) (2,0,0) (10,1,0)

(1,5) (0,0) (0,0) (8,8) (0,0)

A8 (0,0,1) (10,1,0) (10,1,0) (1,0,0) (10,1,0)

(3,7) (0,0) (0,0) (9,9) (0,0)

A9 (6,0,0) (1,0,1) (8,0,0) (1,0,0) (8,0,0)

(2,4) (2,2) (1,2) (9,9) (1,2)

A10 (0,0,1) (0,0,1) (10,1,0) (1,0,0) (10,1,0)

(1,1) (1,0) (0,0) (9,9) (0,0)

(Σk,∆k,Mk) (33, 1, 4) (54, 5, 4) (80, 6, 1) (12, 0, 1) (89, 7, 0)

(Tk, T̃k) (16, 48) (8, 16) (3, 12) (86, 86) (3, 11)

Looking at Σk shows that, although all filters F1, · · · , F5

bring some filtered images back to ca, the unsharp mask (F4)
and the inverse (F1) filters are less efficient in this regard.
In contrast, the three other filters bring back a majority of
the filtered images back to ca. The median (F3) filter and
foremost the combination (F5) of the Unsharp and Median
filters are highly effective, since more than 80% of all filtered
images are classified back to ca. The three filters F = F2, F3,
and F5 are also those that bring all filtered images back to ca
for 5 (in the case ofF2), 6 (in the case ofF3) and 7 (in the case
of F5) ancestors, including a fortiori the filtered ancestor.

Consistently, the consideration of Tk and of T̃k shows that
EAtarget,VGG-16

L2
resists highly efficiently against the Unsharp

mask filter F4, as 95 % (86 out of 90) filtered images remain
adversarial for the target scenario (with target label values
no less than 0.5505, see Table 9), and 95 % (86 out of 90)
filtered images are adversarial for the untargeted scenario.
Our EA is also significantly efficient against the inverse filter
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F1, as 17 % (16/90) filtered images remain adversarial for
the target scenario (with target label values ≥ 0.4415, see
Table 6), and 53 % (48/90) are adversarial for the untargeted
scenario.

On the other hand, the Gaussian blur (F2), the median
(F3), and the median and unsharp combined (F5) filters
are effective to a far larger extent against EAtarget,VGG-16

L2
,

with F3 and F5 being particularly efficient at removing the
adversarial property of the descendant images. Indeed, only
three filtered adversarial images (hence 3 % of all filtered)
remain adversarial for the target scenario for each of these
two filters (with target label values ≥ 0.4978 for F3 and
≥ 0.8131 for F5; see Tables 8 and 10). For the untargeted
scenario finally, the proportion of filtered images that are
adversarial drops to 13 % (12/90) for F3, and to 12 %
(11/90) for F5.

This study proves that the inverse (F1) and the unsharp
mask (F4) filters are largely inefficient against our EA, but
that the Gaussian (F2), and foremost, the median (F3) and
the combination (F5 = F3 ◦F4) of the unsharp mask and the
median filters render our EA-based attack significantly less
effective for both the targeted scenario and the untargeted
scenario, at least with the ancestor images considered.

VII. THE FILTER-ENHANCED F -FITNESS FUNCTION
The results of the previous section lead to the conception of
a new fitness function that natively forces the EA to create
adversarial images that remain adversarial (in the sense of
Subsection III-B) once filtered. For a filter F , the filtered-
enhanced F -fitness function is obtained as the following
variant of the fitness function defined in Equation (2):

fitFL2
(ind, gp) = A(gp, ind)(oind[ct] + oF (ind)[ct])−

B(gp, ind)L2(ind,A),
(5)

where the component oF (ind)[ct] measures the probability
that an individual filtered with F is classified as the target
category. One obtains EAtarget,VGG-16

L2,F
from EAtarget,VGG-16

L2
by

updating the fitness function accordingly. The termination
and termination with success criteria are the same as in
Subsection IV-B.

Since F5 = F3 ◦ F4 is not only highly efficient against
EAtarget,VGG-16

L2
, but is the filter that reverts the largest propor-

tion (89 %) of images Da,t(Aa) back to ca, we limit this
study to this case.

A. RUNNING EAtarget,VGG-16
L2,F5

WITH ONE ANCESTOR PER
CATEGORY
For 1 ≤ a ≤ 10, one performs 10 independent runs
of EAtarget,VGG-16

L2,F5
on the ancestor Aa in category ca given

in Table 1. If EAtarget,VGG-16
L2,F5

terminates successfully, one
writes DF5

a,t(Aa) for the first adversarial image obtained by

EAtarget,VGG-16
L2,F5

in less than 7000 generations. By construction,
this image and its by F5 filtered version are classified by
VGG-16 as belonging to the target category ct with probabil-
ity ≥ 0.95, while remaining so close to Aa for a human eye
that no one would notice any difference.

Figure 7 pictures the adversarial imagesDF5
6,t(A6) obtained

that way for the dog ancestor A6 (all first runs succeeded for
the dog ancestor).

For the ancestor imageAa (taken from Table 1) in category
ca specified in its ath row, the tth row of Figure 8 gives the
average number of generations required by EAtarget,VGG-16

L2,F5

to terminate, computed over 10 independent runs. With a
terminology adapted from the one used in Figure 4, this
number is followed by a symbol (?x, ‡y, †z) in 5 of the 90
cells. The occurrence of this symbol means that the algorithm
did not terminate successfully for x out of the 10 runs (i.e.,
the average value = 7000 if x = 10). Not succeeding means
that the ct-label value of the most performing descendant
images D or of the filtered image F5(D) is stuck at a local
optimum< 0.95. The symbols ‡y and †z measure the quality
of these local optima. ‡y (respectively, †z) counts the number
of runs among the x unsuccessful ones for which the local
optimum for descendant D (respectively, F5(D)) remained
very low (between 10−3 and 10−6).

Of the 900 performed runs, 38 did not terminate success-
fully, and 3 out of the 90 possible ancestor/target scenarios
were not achieved, namely the pairs (plane(A1), deer),
(bird(A3), car), (horse(A8), ship). Therefore, the experi-
ments show a success rate of EAtarget,VGG-16

L2,F5
of 96.66%, and

a probability that the algorithm terminates successfully for a
given run of 95.77%.

Comparing Figure 8 to Figure 4, when all 10 runs termi-
nate successfully for both EAtarget,VGG-16

L2
and EAtarget,VGG-16

L2,F5

for an (ancestor(Aa), target) pair (83 cases altogether),
the latter algorithm usually requires more generations than
the former on average (with three notable exceptions,
namely the (ship(A9), deer), the (ship(A9), dog) and the
(truck(A10), cat) pairs for which it needs 10%, 18% and
13% fewer generations). The fact that, for the 80 remain-
ing pairs, EAtarget,VGG-16

L2,F5
requires between 1.12 and 3.87

(depending on the pair considered) times more generations
than EAtarget,VGG-16

L2
to terminate successfully is not surprising

since there are 3 and no longer 2 criteria to fulfill.

For all 87 combinations (ancestor(Aa), target) for
which EAtarget,VGG-16

L2,F5
terminated successfully in at least

one of the 10 independent runs, Figure 13 (Appendix B)
displays the first adversarial image DF5

a,t(Aa) obtained by
EAtarget,VGG-16

L2,F5
(with DF5

a,t(Aa) = Aa repeated on the diag-
onal for the sake of consistency and comparison), and Table
11 (Appendix B) gives the corresponding label values.
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plane car bird cat deer dog frog horse ship truck

FIGURE 7: From left to right, comparison of the ancestorA6 in the 6th position with the adversarial images DF5
6,t(A6) in the tth

position (t 6= 6).

plane car bird cat deer dog frog horse ship truck Row Average

169 435 2455 7000 866 512 1330 174 1562 1611

1600 562 1704 1170 1911 832 1640 655 1010 1231

1320 7000 1508 1197 2201 5132 3440 1111 1808 2746

1468 1320 459 559 359 266 839 1016 1466 861

2931 4797 723 810 431 1098 1217 2266 2924 1910

1582 1275 723 189 2171 775 573 1440 1365 1121

1761 1574 576 1074 1262 1037 1863 1775 1695 1401

768 503 475 450 435 814 753 7000 391 1287

475 262 1333 740 2333 1226 1186 3279 811 1293

225 1011 638 1224 706 1391 1051 436 503 798

1347 1990 658 1128 1870 1137 1289 1624 1771 1448Column
Average

plane (   )

car (   )
bird (   )

cat (   )

deer (   )

dog (   )

frog (   )

horse (   )

ship (   )

truck (    )

(*10, ‡0,  10)   

(*10, ‡0,   10)   

(*7, ‡0,   7)  

(*10, ‡0,  10)   

(*1, ‡1,   0)   

 

FIGURE 8: EAtarget,VGG-16
L2,F5

’s performance on all possible ancestor/target combinations. The rows give the ancestor categories
ca (and the specific ancestor Aa in ca), the columns indicate the target class ct, and the cell values give the average number of
generations required by EAtarget,VGG-16

L2,F5
to terminate, computed on 10 independent runs.

The competition time of EAtarget,VGG-16
L2,F5

is given in Figure
14 (see the Appendix B). It shows the average time (in sec-
onds) required by all successfully completed ancestor/target
combinations, with one ancestor per category. On average,
it takes 242.7 seconds to generate a successful adversarial
image, which is almost 3 times slower that EAtarget,VGG-16

L2
.

B. RUNNING EAtarget,VGG-16
L2,F5

WITH 50 ANCESTORS PER
CATEGORY
For the sake of completeness, we performed the same ex-
periments as in Subsection V-B with the same 500 ancestor
images (50 ancestor images per ancestor category), but with
EAtarget,VGG-16

L2,F5
instead of EAtarget,VGG-16

L2
. Figure 9 shows the

outcome. Of the 4500 attacks, 543 were unsuccessful; hence,
the success rate of EAtarget,VGG-16

L2,F5
was 88%, and required

between 1250 and 2404 generations on average.

Comparing Figure 4 with Figure 8 and Figure 5 with
Figure 9 shows that EAtarget,VGG-16

L2,F5
usually requires more gen-

erations than EAtarget,VGG-16
L2

to construct adversarial images,
which is to be expected since EAtarget,VGG-16

L2,F5
must satisfy not

two, but three conditions.

C. ROBUSTNESS OF DF5
A,T (AA) AGAINST VGG-16◦FK

FOR ALL FILTERS
Using again the images of Figure 13 (Appendix B) obtained
as described in Subsection VII-A, the ancestor Aa and the

corresponding adversarial images DF5
a,t(Aa) were then tested

against all five filters of Subsection VI-A. Figure 10 shows
the outcome of this process for the dog ancestor A6 and the
adversarial images DF5

6,t(A6).

These filtered images are given to VGG-16 for classi-
fication (see Appendix B, Table 11 for F5, and Table 12
for F1, F2, F3, and F4, with DF5

a,a(Aa) = Aa to ease the
notations).

Mutatis mutandis, Table 4 is obtained in a similar way as
in Table 3. Note that the upper bounds of the indicators are
impacted by the fact that three combinations (ca(Aa), ct)
were not achieved. Indeed, one has 0 ≤ ρF5

k (Aa) ≤ 9
for a = 1, 3, 8, and 0 ≤ ρF5

k (Aa) ≤ 10 otherwise.
One writes δF5

k (Aa) = 1 if the filtered ancestor and all
filtered adversarial images are classified back to the an-
cestor category whenever possible. Consistently, one has
0 ≤ τF5

k (Aa), τ̃F5

k (Aa) ≤ 8 for a = 1, 3, 8, and
0 ≤ τF5

k (Aa), τ̃F5

k (Aa) ≤ 9 otherwise. As a consequence,
one has 0 ≤ ΣF5

k ≤ 97, 0 ≤ ∆F5

k ,MF5

k ≤ 10, and
0 ≤ T F5

k , T̃ F5

k ≤ 87.

Table 4 clearly shows that the produced images are not
only adversarial for F5, but also for F3 and F4 to a large
extent for the target scenario (88% and 84%, respectively),
and for the untargeted scenario (89% and 88% respectively).
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plane car bird cat deer dog frog horse ship truck

3423 1038 1914 2348 2438 1920 2816 2190 3546 2404

(*17, ‡1, †16) (*4, ‡0, †4) (*8, ‡0, †8) (*12, ‡0, †12) (*15, ‡0, †15) (*6, ‡0, †6) (*15, ‡0, †15) (*8, ‡1, †8) (*22, ‡1, †21)

1829 1552 2168 1964 1786 1898 1187 2814 1066 1807

(*1, ‡0, †1) (*1, ‡1, †0) (*2, ‡2, †0) (*3, ‡1, †2) (*2, ‡0, †2) (*2, ‡2, †0) (*7, ‡5, †2) (*2, ‡1, †1)

1505 3280 2112 1821 1491 1514 2144 2246 3254 2152

(*2, ‡0, †2) (*11, ‡2, †8) (*10, ‡0, †10) (*8, ‡0, †8) (*5, ‡1, †4) (*7, ‡0, †7) (*7, ‡0, †7) (*10, ‡0, †10) (*15, ‡0, †15)

1406 3132 894 2260 855 1842 1745 2820 3876 2092

(*1, ‡0, †1) (*15, ‡2, †12) (*3, ‡0, †3) (*12, ‡0, †12) (*4, ‡0, †4) (*10, ‡0, †10) (*7, ‡0, †7) (*13, ‡0, †13) (*21, ‡0, †21)

1367 3680 535 870 723 1362 1189 1485 2524 1526

(*3, ‡1, †3) (*18, ‡12, †8) (*1, ‡0, †1) (*2, ‡0, †2) (*5, ‡0, †5) (*4, ‡0, †4) (*2, ‡0, †2) (*8, ‡3, †7)

1842 2911 1027 603 1856 2120 1781 2419 3028 1954

(*5, ‡0, †5) (*12, ‡0, †12) (*4, ‡0, †4) (*2, ‡0, †2) (*8, ‡0, †8) (*11, ‡0, †11) (*7, ‡0, †7) (*10, ‡0, †10) (*14, ‡0, †14)

1481 3712 613 734 895 904 1961 1775 2583 1629

(*16, ‡8, †8) (*2, ‡0, †2) (*3, ‡1, †2) (*4, ‡0, †4) (*10, ‡1, †9)

1419 2687 779 1215 956 997 1866 1783 2959 1629

(*1, ‡0, †1) (*5, ‡0, †5) (*2, ‡0, †2) (*3, ‡0, †3) (*2, ‡0, †2) (*7, ‡0, †7) (*2, ‡0, †2) (*10, ‡1, †9)

1218 2724 1222 1494 2649 1710 2431 2056 2490 1999

(*2, ‡0, †2) (*9, ‡0, †9) (*1, ‡0, †1) (*2, ‡0, †2) (*13, ‡0, †13) (*2, ‡1, †1) (*12, ‡0, †12) (*4, ‡2, †2) (*11, ‡0, †11)

1355 1180 978 1199 1584 1337 1302 1157 1157 1250

(*2, ‡0, †2) (*4, ‡0, †4) (*2, ‡1, †1) (*3, ‡0, †3) (*1, ‡1, †0) (*2, ‡0, †2) (*1, ‡0, †1) (*1, ‡0, †1)

1491 2970 960 1368 1815 1360 1806 1782 2077 2814

frog

horse

ship

truck

deer

dog

plane

car

bird

cat

Column
Average

Row Average

FIGURE 9: 500 attacked images with 50 samples per ancestor class. Rows correspond to source classes, columns correspond
to target classes, and cell values correspond to the average number of generations needed by EAtarget,VGG-16

L2,F5
to terminate.

FIGURE 10: Impact of filters on the ancestor A6 and adver-
sarial imagesDF5

6,t(A6). The kth row represents F (DF5
6,t(A6))

in tth position (with DF5
6,6(A6) = A6), where F = Fk for

1 ≤ k ≤ 5.

Additionally, 56% of these images were efficient against F1

for the untargeted scenario, while this percentage dropped to
23% with F2.

This study shows that the EAtarget,VGG-16
L2,F5

attack, designed
to be robust against F5, is also robust to some significant ex-
tent against all individual filters considered for the untargeted
scenario, and the Gaussian filter (F2) is the most efficient at
removing the adversarial character of the constructed images.

VIII. CONCLUSION
This study, which substantially complements our previous
works [1], [22]–[24], [32], successfully addresses the four
issues raised in the introduction. First, we proved that the
conceptual originality of our generic evolutionary algorithm
leads to a competitive advantage in terms of performance

TABLE 4: Indicator values assessing the robustness of ad-
versarial images DF5

a,t(Aa) against filters. For each ancestor
Aa, computation of (ρF5

k (Aa), δF5

k (Aa), µF5

k (Aa)) in the 1st

row, and of (τF5

k (Aa), τ̃F5

k (Aa)) in the 2nd row. The last two
rows give the sums

∑
a of these quantities for all possible a.

Aa

k
1 2 3 4 5

A1 (9,1,0) (0,0,1) (1,0,0) (0,0,1) (1,0,0)

(0,0) (2,6) (8,8) (8,7) (8,8)

A2 (1,0,0) (2,0,0) (1,0,0) (4,0,0) (1,0,0)

(1,9) (4,8) (9,9) (6,6) (9,9)

A3 (6,0,0) (9,1,0) (6,0,0) (1,0,0) (1,0,0)

(2,3) (0,0) (3,3) (8,8) (8,8)

A4 (5,0,0) (9,0,0) (1,0,0) (1,0,0) (1,0,0)

(2,5) (1,1) (8,9) (5,9) (9,9)

A5 (0,0,1) (10,1,0) (1,0,0) (1,0,0) (1,0,0)

(3,8) (0,0) (8,9) (9,9) (9,9)

A6 (0,0,1) (0,0,1) (0,0,1) (1,0,0) (1,0,0)

(3,6) (1,0) (7,6) (9,9) (9,9)

A7 (6,0,0) (8,0,0) (1,0,0) (5,0,0) (1,0,0)

(2,4) (2,2) (9,9) (5,5) (9,9)

A8 (0,0,1) (6,0,0) (1,0,0) (1,0,0) (1,0,0)

(1,8) (2,3) (8,8) (7,8) (8,8)

A9 (6,0,0) (1,0,1) (2,0,0) (3,0,0) (1,0,0)

(1,4) (2,2) (8,8) (7,7) (9,9)

A10 (0,0,1) (0,0,1) (1,0,0) (1,0,0) (1,0,0)

(1,2) (2,1) (9,9) (9,9) (9,9)

(Σ
F5
k

,∆
F5
k

,MF5
k

) (33,1,4) (45,2,4) (15,0,1) (18,0,1) (10,0,0)

(T F5
k

, T̃ F5
k

) (16,49) (16,23) (77,78) (73,77) (87,87)

compared to the classical EA approach. Then, an extensive
experimental study showed the intrinsic efficiency of our
algorithm, EAtarget,VGG-16

L2
, at constructing adversarial images

for the target scenario performed against VGG-16 with
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images from CIFAR-10. We then challenged the adversar-
ial images obtained against a series of filters, and finally
designed a variant EAtarget,VGG-16

L2,F
of the EA, specifically

designed to fool VGG-16 and VGG-16 composed with a
filter F , and demonstrated the efficiency of the produced
adversarial images not only against the specific chosen filter,
but also against other filters.

The results of this paper lead to a series of additional
studies. First, from a pure EA point of view, we intend to
look for methods to accelerate our algorithm, including early
warnings that indicate a high probability of unsuccess of
a given run. In this line of thought and more specifically
for the construction of adversarial images, other efficiency
improvement methods will be studied, such as the restriction
of the zones on which the EA should focus its noise creation,
or the search for optimized paths between ca and ct for a
given ancestor via auxiliary categories. Second, since the
small 32 × 32 images in this study are naturally grainy,
we intend to apply our attack to larger images, not only
those of ImageNet [3], but foremost high resolution images
arising from different horizons (e.g., satellite, medical, or
artistic images), which may lead to combinations C ◦ F for
functions F that are no longer filters. Moreover, we plan
to replace the L2 distance with L − infinity in order to
check the attack performance against state-of-the-art defense
methods. Finally, our EA-based attack can potentially be ex-
tended to other domains (natural language processing, speech
recognition, etc.) beyond the computer vision applications
mentioned in the first paragraph of the Introduction.

.
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APPENDIX A

FIGURE 11: For 1 ≤ a ≤ 10, the image on the diagonal of the ath row is the ancestor Aa (recovered from Table 1) classified
by VGG-16 as belonging to the category ca, and the picture in the tth column, with t 6= a, is the adversarial pictureDa,t(Aa) =

EAtarget,VGG-16
L2

(Aa, ct) classified by VGG-16 as belonging to ct, obtained after the first of the 10 independent runs.

plane car bird cat deer dog frog horse ship truck Row Average

6.95 29.8 239.64 76.77 66.76 36.68 87.57 16.24 121.35 75.75

120.97 49.84 135.63 83.33 167.08 58.77 73.18 45.88 78.52 90.36

117.02 72 197.42 100.12 671.95 60.51 293.8 94.43 118.03 191.70

53.38 37.04 27.14 28.55 23.56 12.33 44.51 61.44 68.2 39.57

198.95 402.95 25.35 33.99 34.57 17.64 61.12 52.2 399.42 470.01 169.62

64.45 64.7 33.65 9.51 68.77 66.78 29.1 20.57 71.36 40.18 46.91

50.77 38.17 21.7 35.94 52.91 39.47 39.02 61.47 68.14 50.37 45.80

33.4 16.26 22.1 15.04 16.39 22.36 27.35 22.8 16.73 21.38

23.39 13.39 94.87 31.79 183.15 97.4 53.05 132.95 139.16 31.24 80.04

9.4 42.86 24.76 91 28.18 55.68 59.34 17.5 18.89 18.47 36.61

75 77 37 88 67 123 44 87 94 101
Column
Average

plane (   )

car (   )
bird (   )

cat (   )

deer (   )

dog (   )

frog (   )

horse (   )

ship (   )
truck (    )

FIGURE 12: EAtarget,VGG-16
L2

’s performance on all possible ancestor/target combinations with one ancestor per category. The
rows give the ancestor category ca (and the specific ancestor Aa in ca), the columns indicate the target class ct, and the
cell values indicate the average number of seconds required by EAtarget,VGG-16

L2
to terminate successfully, computed on 10

independent runs, with only the successful runs being considered.
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TABLE 5: For C = VGG-16, each of the cell in (a, t)th-position contains a pair (maximum label value, corresponding class)
given by C for Da,t(Aa) (with Da,a(Aa) = Aa).

plane
c1

car
c2

bird
c3

cat
c4

deer
c5

dog
c6

frog
c7

horse
c8

ship
c9

truck
c10

plane(A1) 0.6900
plane

0.9506
car

0.9501
bird

0.9500
cat

0.9501
deer

0.9500
dog

0.9502
frog

0.9501
horse

0.9537
ship

0.9531
truck

car(A2) 0.9519
plane

0.9999
car

0.9546
bird

0.9515
cat

0.9534
deer

0.9509
dog

0.9508
frog

0.9606
horse

0.9509
ship

0.9502
truck

bird(A3) 0.9502
plane

0.9505
car

0.9999
bird

0.9501
cat

0.9511
deer

0.9509
dog

0.9517
frog

0.9523
horse

0.9506
ship

0.9510
truck

cat(A4) 0.9514
plane

0.9507
car

0.9512
bird

0.9998
cat

0.9510
deer

0.9519
dog

0.9543
frog

0.9503
horse

0.9514
ship

0.9552
truck

deer(A5) 0.9524
plane

0.9501
car

0.9507
bird

0.9514
cat

0.9999
deer

0.9545
dog

0.9520
frog

0.9501
horse

0.9560
ship

0.9510
truck

dog(A6) 0.9516
plane

0.9502
car

0.9529
bird

0.9518
cat

0.9501
deer

0.9996
dog

0.9502
frog

0.9512
horse

0.9508
ship

0.9518
truck

frog(A7) 0.9519
plane

0.9528
car

0.9501
bird

0.9530
cat

0.9521
deer

0.9527
dog

0.9999
frog

0.9529
horse

0.9521
ship

0.9515
truck

horse(A8) 0.9502
plane

0.9523
car

0.9503
bird

0.9568
cat

0.9521
deer

0.9510
dog

0.9521
frog

0.9998
horse

0.9587
ship

0.9514
truck

ship(A9) 0.9504
plane

0.9543
car

0.9581
bird

0.9506
cat

0.9500
deer

0.9516
dog

0.9517
frog

0.9505
horse

0.9996
ship

0.9504
truck

truck(A10) 0.9525
plane

0.9532
car

0.9518
bird

0.9517
cat

0.9557
deer

0.9511
dog

0.9516
frog

0.9507
horse

0.9517
ship

0.9984
truck
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TABLE 6: For C = VGG-16, the cell in (a, t)th-position gives (top part) the ca-label value and the ct-label value, and (bottom
part) the maximum label value and corresponding class of C ◦ F1 for Da,t(Aa) (with Da,a(Aa) = Aa).

plane car bird cat deer dog frog horse ship truck
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

plane (A1) 0.9923 0.9870 0.9830 0.8888 0.5932 0.9845 0.9857 0.9436 0.9007 0.9806
0.9923 1.56e-03 5.16e-04 4.17e-04 1.71e-04 9.59e-04 1.92e-03 8.26e-05 9.18e-02 2.52e-05
0.9923 0.9870 0.9830 0.8888 0.5932 0.9845 0.9857 0.9436 0.9007 0.9806
plane plane plane plane plane plane plane plane plane plane

car (A2) 2.77e-04 0.7608 1.71e-04 5.46e-05 1.09e-04 7.36e-04 6.81e-04 1.63e-04 2.60e-05 3.29e-03
0.1501 0.7608 1.44e-04 1.82e-03 4.02e-05 2.29e-04 1.00e-04 1.08e-05 0.9993 8.08e-03
0.8491 0.7608 0.9958 0.9962 0.9965 0.9837 0.9969 0.9864 0.9993 0.9877

ship car ship ship ship ship ship ship ship ship
bird (A3) 0.2966 0.7862 0.9996 0.2070 0.8838 0.9665 0.8639 0.4902 0.4071 0.5798

5.15e-02 0.1254 0.9996 8.18e-04 1.38e-04 2.49e-04 0.1120 5.17e-04 0.5643 1.63e-03
0.4964 0.7862 0.9996 0.6009 0.8838 0.9665 0.8639 0.4902 0.5643 0.5798

ship bird bird ship bird bird bird bird ship bird
cat (A4) 0.1906 4.82e-02 4.13e-02 0.9176 0.6035 0.1058 0.5140 0.1909 1.27e-02 2.49e-02

0.1682 2.36e-02 2.79e-04 0.9176 5.37e-03 1.72e-03 4.64e-02 6.87e-02 0.9800 1.78e-02
0.5977 0.8971 0.9162 0.9176 0.6035 0.8079 0.5140 0.4871 0.9800 0.9054

ship ship ship cat cat ship cat frog ship ship
deer (A5) 3.90e-05 7.41e-03 9.00e-02 5.71e-04 0.3245 0.7423 2.16e-03 0.1149 7.83e-03 8.01e-04

0.9985 4.49e-02 2.39e-03 0.9982 0.3245 1.23e-02 3.97e-02 7.53e-04 0.4939 3.41e-02
0.9985 0.8634 0.8982 0.9982 0.5838 0.7423 0.6883 0.7741 0.4939 0.9616
plane plane cat cat plane deer cat cat ship cat

dog (A6) 3.08e-04 9.21e-03 5.23e-03 1.69e-03 1.32e-03 0.0014 7.82e-02 1.03e-02 4.41e-03 5.18e-03
8.74e-04 1.28e-03 1.18e-04 0.9977 1.80e-04 0.0014 0.4415 3.46e-05 1.19e-02 0.5093
0.9925 0.6375 0.9727 0.9977 0.9380 0.9983 0.4415 0.9794 0.8320 0.5093
truck cat cat cat truck cat frog cat truck truck

frog (A7) 0.5602 0.9198 9.37e-02 0.4898 0.2230 0.2092 0.9140 0.2013 9.97e-04 0.4658
0.4272 5.41e-03 4.93e-04 0.4423 1.90e-03 5.25e-02 0.9140 1.20e-03 0.9941 1.37e-02
0.5602 0.9198 0.7740 0.4898 0.7097 0.3961 0.9140 0.4221 0.9941 0.4658

frog frog plane frog cat cat frog cat ship frog
horse (A8) 3.06e-05 3.20e-04 1.83e-04 1.89e-04 1.46e-04 5.03e-05 1.09e-05 0.0004 2.27e-05 1.27e-04

0.9316 2.43e-03 2.29e-02 9.12e-03 4.38e-04 0.8593 7.05e-03 0.0004 0.9470 6.98e-03
0.9316 0.4645 0.5039 0.3962 0.6209 0.8593 0.8860 0.7479 0.9470 0.8123
plane plane dog plane plane dog plane dog ship plane

ship (A9) 0.9136 0.9445 0.1834 0.9034 7.89e-03 1.71e-03 0.9801 3.43e-02 0.9865 0.9242
7.62e-02 4.45e-04 1.30e-03 8.70e-02 0.6532 0.9306 1.79e-03 1.04e-02 0.9865 3.55e-04
0.9136 0.9445 0.7320 0.9034 0.6532 0.9306 0.9801 0.9311 0.9865 0.9242

ship ship plane ship deer dog ship cat ship ship
truck (A10) 2.35e-05 2.68e-04 3.16e-05 1.43e-04 6.35e-05 4.79e-05 6.68e-04 3.60e-04 1.38e-04 0.0001

0.9994 4.12e-05 4.41e-04 5.57e-05 1.43e-04 4.18e-05 4.62e-05 1.65e-03 1.30e-02 0.0001
0.9994 0.9971 0.9970 0.9941 0.9946 0.9941 0.8366 0.9947 0.9865 0.9973
plane plane plane plane plane plane ship plane plane plane
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Chitic et al.: EA-based images adversarial against CNNs and humanly indistinguishable: efficiency and filter robustness

TABLE 7: For C = VGG-16, the cell in (a, t)th-position gives (top part) the ca-label value and the ct-label value, and (bottom
part) the maximum label value and corresponding class of C ◦ F2 for Da,t(Aa) (with Da,a(Aa) = Aa).

plane car bird cat deer dog frog horse ship truck
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

plane (A1) 0.2591 0.2052 0.1978 0.1256 0.2017 0.1885 0.1907 0.1415 9.10e-02 0.2188
0.2591 0.5786 0.1627 4.95e-03 5.82e-04 1.89e-02 3.08e-02 1.51e-04 0.7307 3.94e-05
0.4463 0.5786 0.3455 0.5941 0.6175 0.4134 0.4057 0.7010 0.7307 0.5850

car car ship ship ship ship car ship ship ship
car (A2) 5.29e-03 0.9988 9.92e-02 5.78e-03 0.4091 0.1245 5.40e-02 1.37e-02 3.80e-02 0.9989

3.23e-04 0.9988 0.7795 4.33e-02 7.96e-04 9.59e-04 0.5196 6.14e-05 3.73e-02 1.76e-04
0.8311 0.9988 0.7795 0.7865 0.4091 0.7438 0.5196 0.9224 0.8378 0.9989

bird car bird bird car bird frog bird bird car
bird (A3) 0.9996 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997 0.9998

1.98e-04 5.04e-06 0.9998 1.13e-04 5.52e-06 4.45e-05 1.72e-05 2.11e-05 3.80e-05 5.91e-06
0.9996 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997 0.9998

bird bird bird bird bird bird bird bird bird bird
cat (A4) 0.9876 0.9959 0.9743 0.9992 0.9955 0.9691 0.9983 0.9723 0.9968 0.9917

4.65e-06 7.52e-07 8.52e-04 0.9992 5.96e-04 3.02e-02 2.37e-04 4.62e-05 8.10e-06 9.37e-07
0.9876 0.9959 0.9743 0.9992 0.9955 0.9691 0.9983 0.9723 0.9968 0.9917

cat cat cat cat cat cat cat cat cat cat
deer (A5) 0.9997 0.9985 0.9989 0.9988 0.9998 0.9983 0.9996 0.9992 0.9985 0.9997

8.28e-06 1.35e-06 9.30e-04 7.09e-04 0.9998 1.49e-03 1.73e-05 1.43e-04 5.85e-06 1.02e-06
0.9997 0.9985 0.9989 0.9988 0.9998 0.9983 0.9996 0.9992 0.9985 0.9997

deer deer deer deer deer deer deer deer deer deer
dog (A6) 2.17e-04 3.40e-03 2.52e-03 1.48e-04 3.64e-03 3.14e-04 3.71e-04 8.51e-04 1.95e-04 2.33e-04

1.34e-05 2.26e-06 5.67e-05 0.9998 1.88e-05 3.14e-04 8.29e-06 1.63e-05 2.77e-06 2.94e-06
0.9997 0.9965 0.9973 0.9998 0.9962 0.9996 0.9995 0.9990 0.9997 0.9997

cat cat cat cat cat cat cat cat cat cat
frog (A7) 0.9994 0.9997 0.9995 0.9977 0.9980 0.9941 0.9998 0.9982 0.9995 0.9996

1.90e-05 8.46e-06 2.25e-04 1.21e-03 8.21e-05 4.55e-03 0.9998 4.94e-05 6.97e-05 7.29e-06
0.9994 0.9997 0.9995 0.9977 0.9980 0.9941 0.9998 0.9982 0.9995 0.9996

frog frog frog frog frog frog frog frog frog frog
horse (A8) 0.7487 0.9692 0.8900 0.9062 0.9967 0.9568 0.9164 0.9997 0.9792 0.9758

4.02e-04 7.37e-05 9.74e-02 8.47e-02 1.94e-03 3.46e-03 7.37e-04 0.9997 4.28e-04 2.19e-05
0.7487 0.9692 0.8900 0.9062 0.9967 0.9568 0.9164 0.9997 0.9792 0.9758
horse horse horse horse horse horse horse horse horse horse

ship (A9) 1.73e-03 4.33e-02 5.67e-02 1.85e-02 0.8242 0.1091 8.23e-02 7.87e-03 0.3924 1.55e-03
0.9894 0.7334 1.25e-03 3.34e-04 2.25e-05 8.34e-04 1.54e-04 7.16e-05 0.3924 4.34e-03
0.9894 0.7334 0.8965 0.6402 0.8242 0.8392 0.4956 0.8441 0.4525 0.9214
plane car plane plane ship plane plane plane plane plane

truck (A10) 1.61e-03 6.03e-04 1.57e-03 1.05e-04 7.27e-04 4.96e-03 9.52e-03 3.86e-03 1.02e-03 5.62e-03
0.9955 2.88e-04 2.79e-03 1.88e-04 3.04e-02 4.73e-04 2.58e-04 0.1820 9.07e-05 5.62e-03
0.9955 0.9873 0.9920 0.9931 0.9670 0.9184 0.9876 0.8099 0.9974 0.9919
plane plane plane plane plane plane plane plane plane plane
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Chitic et al.: EA-based images adversarial against CNNs and humanly indistinguishable: efficiency and filter robustness

TABLE 8: For C = VGG-16, the cell in (a, t)th-position gives (top part) the ca-label value and the ct-label value, and (bottom
part) the maximum label value and corresponding class of C ◦ F3 for Da,t(Aa) (with Da,a(Aa) = Aa).

plane car bird cat deer dog frog horse ship truck
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

plane (A1) 0.7298 0.6388 0.3414 0.1388 0.3576 0.2870 0.3931 0.2510 0.1163 0.3362
0.7298 6.08e-02 0.1755 8.80e-04 3.35e-04 3.20e-02 1.14e-02 2.19e-04 0.8616 2.08e-05
0.7298 0.6388 0.4205 0.8034 0.5857 0.5863 0.5051 0.6781 0.8616 0.6479
plane plane ship ship ship ship ship ship ship ship

car (A2) 0.3643 0.9997 0.9734 0.9666 0.9858 0.8656 0.9075 0.9986 0.9607 0.9997
1.23e-03 0.9997 1.79e-02 1.44e-03 7.33e-05 5.59e-04 5.22e-02 8.15e-06 1.97e-03 5.86e-05
0.5191 0.9997 0.9734 0.9666 0.9858 0.8656 0.9075 0.9986 0.9607 0.9997

bird car car car car car car car car car
bird (A3) 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998

7.36e-05 3.88e-06 0.9999 5.44e-05 4.91e-06 2.73e-05 1.26e-05 1.22e-05 2.02e-05 4.76e-06
0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998

bird bird bird bird bird bird bird bird bird bird
cat (A4) 0.9971 0.9977 0.9873 0.9994 0.9980 0.9969 0.9986 0.9916 0.9975 0.9963

2.73e-06 1.95e-06 9.16e-03 0.9994 1.09e-04 2.56e-03 2.80e-04 1.33e-04 1.16e-05 1.81e-06
0.9971 0.9977 0.9873 0.9994 0.9980 0.9969 0.9986 0.9916 0.9975 0.9963

cat cat cat cat cat cat cat cat cat cat
deer (A5) 0.9994 0.9995 0.9998 0.9996 0.9998 0.9991 0.9999 0.9995 0.9986 0.9997

1.02e-05 7.05e-07 1.73e-05 7.95e-05 0.9998 8.14e-04 1.17e-05 2.09e-04 4.97e-06 1.04e-06
0.9994 0.9995 0.9998 0.9996 0.9998 0.9991 0.9999 0.9995 0.9986 0.9997

deer deer deer deer deer deer deer deer deer deer
dog (A6) 0.2027 0.8235 0.4543 1.37e-02 0.1518 0.2668 1.11e-02 0.1644 5.96e-02 3.49e-02

1.70e-05 3.99e-06 1.20e-03 0.9861 2.06e-05 0.2668 2.52e-05 4.93e-05 4.62e-06 4.38e-06
0.7969 0.8235 0.5443 0.9861 0.8479 0.7329 0.9886 0.8352 0.9401 0.9649

cat dog cat cat cat cat cat cat cat cat
frog (A7) 0.9997 0.9998 0.9998 0.9993 0.9997 0.9994 0.9998 0.9994 0.9997 0.9997

1.74e-05 1.30e-05 4.40e-05 4.63e-04 1.08e-05 2.41e-04 0.9998 1.72e-05 5.84e-05 6.97e-06
0.9997 0.9998 0.9998 0.9993 0.9997 0.9994 0.9998 0.9994 0.9997 0.9997

frog frog frog frog frog frog frog frog frog frog
horse (A8) 0.9965 0.9985 0.9958 0.9988 0.9997 0.9992 0.9891 0.9998 0.9974 0.9994

6.08e-05 1.93e-05 3.63e-03 1.24e-04 1.37e-04 5.16e-05 2.94e-05 0.9998 2.45e-05 8.11e-06
0.9965 0.9985 0.9958 0.9988 0.9997 0.9992 0.9891 0.9998 0.9974 0.9994
horse horse horse horse horse horse horse horse horse horse

ship (A9) 0.5341 0.4759 0.8869 0.7291 0.9987 0.7917 0.4933 0.6350 0.9942 0.2402
0.3343 0.4978 8.15e-04 3.15e-04 3.33e-06 2.92e-04 1.03e-04 5.64e-05 0.9942 1.07e-02
0.5341 0.4978 0.8869 0.7291 0.9987 0.7917 0.4933 0.6350 0.9942 0.6106

ship car ship ship ship ship ship ship ship car
truck (A10) 0.9685 0.9701 0.5662 0.6816 0.7751 0.7993 0.8764 0.8361 0.6649 0.9924

2.94e-02 2.13e-02 4.58e-03 7.19e-04 0.1100 1.29e-04 2.88e-04 8.23e-04 7.35e-03 0.9924
0.9685 0.9701 0.5662 0.6816 0.7751 0.7993 0.8764 0.8361 0.6649 0.9924
truck truck truck truck truck truck truck truck truck truck
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Chitic et al.: EA-based images adversarial against CNNs and humanly indistinguishable: efficiency and filter robustness

TABLE 9: For C = VGG-16, the cell in (a, t)th-position gives (top part) the ca-label value and the ct-label value, and (bottom
part) the maximum label value and corresponding class of C ◦ F4 for Da,t(Aa) (with Da,a(Aa) = Aa).

plane
c1

car
c2

bird
c3

cat
c4

deer
c5

dog
c6

frog
c7

horse
c8

ship
c9

truck
c10

plane(A1)
0.4425
0.4425

1.10e-02
0.9871

1.62e-02
0.9689

5.08e-03
0.9843

6.28e-03
0.9813

1.16e-02
0.9566

1.27e-02
0.9610

2.14e-03
0.9815

4.610e-02
0.9146

4.84e-03
0.9792

0.5497
car

0.9871
car

0.9689
bird

0.9843
cat

0.9813
deer

0.9566
dog

0.9610
frog

0.9815
horse

0.9146
ship

0.9792
truck

car(A2)
9.97e-03
0.9879

0.9999
0.9999

0.8717
0.1196

0.1439
0.8162

0.3505
0.6083

9.05e-02
0.8912

0.2418
0.7558

6.16e-02
0.9287

0.7124
0.2840

3.99e-02
0.9597

0.9879
plane

0.9999
car

0.8717
car

0.8162
cat

0.6083
deer

0.8912
dog

0.7558
frog

0.9287
horse

0.7124
car

0.9597
truck

bird(A3)
1.63e-03
0.9710

1.75e-03
0.9903

0.9999
0.9999

5.26e-03
0.9268

8.46e-03
0.9705

1.27e-02
0.9505

4.31e-03
0.9952

8.68e-03
0.9505

1.49e-03
0.9916

3.86e-03
0.9606

0.9710
plane

0.9903
car

0.9999
bird

0.9268
cat

0.9705
deer

0.9505
dog

0.9952
frog

0.9505
horse

0.9916
ship

0.9606
truck

cat(A4)
8.86e-03
0.8439

4.34e-04
0.9948

3.31e-02
0.7611

0.9998
0.9998

6.74e-03
0.9860

4.28e-02
7.94e-02

2.03e-03
0.9979

7.95e-02
0.6060

3.50e-03
0.9079

5.92e-04
0.9833

0.8439
plane

0.9948
car

0.7611
bird

0.9998
cat

0.9860
deer

0.8764
frog

0.9979
frog

0.6060
horse

0.9079
ship

0.9833
truck

deer(A5)
1.65e-04
0.9932

9.22e-05
0.9970

3.67e-02
0.9630

2.14e-03
0.9902

0.9999
0.9999

2.27e-02
0.9771

3.95e-04
0.9987

1.00e-02
0.9852

1.27e-03
0.9957

1.16e-03
0.9951

0.9932
plane

0.9970
car

0.9630
bird

0.9902
cat

0.9999
deer

0.9771
dog

0.9987
frog

0.9852
horse

0.9957
ship

0.9951
truck

dog(A6)
3.01e-03
0.9524

6.08e-05
0.9985

3.49e-03
0.9830

7.11e-02
0.9286

8.47e-04
0.9943

0.9998
0.9998

6.87e-04
0.9960

2.71e-03
0.9960

4.09e-04
0.9974

2.47e-05
0.9994

0.9524
plane

0.9985
car

0.9830
bird

0.9286
cat

0.9943
deer

0.9998
dog

0.9960
frog

0.9960
horse

0.9974
ship

0.9994
truck

frog(A7)
7.74e-02
0.9017

1.94e-02
0.9796

9.23e-02
0.9075

0.2083
0.7900

0.1896
0.8091

0.4448
0.5505

0.9999
0.9999

0.5326
0.4461

8.68e-02
0.9092

4.41e-02
0.9519

0.9017
plane

0.9796
car

0.9075
bird

0.7900
cat

0.8091
deer

0.5505
dog

0.9999
frog

0.5326
frog

0.9092
ship

0.9519
truck

horse(A8)
5.42e-03
0.9515

5.40e-03
0.9768

5.30e-03
0.8715

1.65e-02
0.8458

8.67e-03
0.9852

1.40e-02
0.9342

1.94e-04
0.9958

0.9998
0.9998

1.63e-02
0.9648

6.68e-03
0.9316

0.9515
plane

0.9768
car

0.8715
bird

0.8458
cat

0.9852
deer

0.9342
dog

0.9958
frog

0.9998
horse

0.9648
ship

0.9316
truck

ship(A9)
0.2174
0.6631

0.1769
0.8214

3.05e-02
0.9155

2.13e-02
0.9712

6.81e-03
0.8909

0.2438
0.6297

5.26e-03
0.9929

3.09e-02
0.9414

0.9997
0.9997

6.52e-02
0.9095

0.6631
plane

0.8214
car

0.9155
bird

0.9712
cat

0.8909
deer

0.6297
dog

0.9929
frog

0.9414
horse

0.9997
ship

0.9095
truck

truck(A10)
0.1588
0.8403

1.10e-02
0.9869

2.70e-02
0.9666

4.66e-03
0.9878

0.2818
0.6789

1.23e-02
0.9517

6.82e-03
0.9914

0.1163
0.7095

6.94e-02
0.9270

0.9993
0.9993

0.8403
plane

0.9869
car

0.9666
bird

0.9878
cat

0.6789
deer

0.9517
dog

0.9914
frog

0.7095
horse

0.9270
ship

0.9993
truck
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Chitic et al.: EA-based images adversarial against CNNs and humanly indistinguishable: efficiency and filter robustness

TABLE 10: For C = VGG-16 and F5 = F3 ◦ F4, the cell in (a, t)th-position gives (top part) the ca-label value and the ct-label
value, and (bottom part) the maximum label value and corresponding class of C ◦ F5 for Da,t(Aa) (with Da,a(Aa) = Aa).

plane
c1

car
c2

bird
c3

cat
c4

deer
c5

dog
c6

frog
c7

horse
c8

ship
c9

truck
c10

plane(A1)
0.8817
0.8817

0.8366
4.33e-02

0.5261
0.1688

0.2653
9.90e-04

0.5060
4.08e-04

0.5797
3.43e-02

0.5169
1.12e-02

0.3472
3.96e-04

0.1666
0.8131

0.6224
3.38e-05

0.8817
plane

0.8366
plane

0.5261
plane

0.6487
ship

0.5060
plane

0.5797
plane

0.5169
plane

0.5715
ship

0.8131
ship

0.6224
plane

car(A2)
0.9637
2.85e-04

0.9998
0.9998

0.9907
7.17e-03

0.9971
3.92e-04

0.9980
2.70e-05

0.9907
1.01e-04

0.9935
3.75e-03

0.9994
7.29e-06

0.9961
3.66e-04

0.9997
6.04e-05

0.9637
car

0.9998
car

0.9907
car

0.9971
car

0.9980
car

0.9907
car

0.9935
car

0.9994
car

0.9961
car

0.9997
car

bird(A3)
0.9998
8.86e-05

0.9998
3.74e-06

0.9999
0.9999

0.9997
6.25e-05

0.9998
6.93e-06

0.9998
3.01e-05

0.9999
1.42e-05

0.9998
1.25e-05

0.9998
2.32e-05

0.9998
4.46e-06

0.9998
bird

0.9998
bird

0.9999
bird

0.9997
bird

0.9998
bird

0.9998
bird

0.9999
bird

0.9998
bird

0.9998
bird

0.9998
bird

cat(A4)
0.9990
3.46e-06

0.9984
2.06e-06

0.9853
1.13e-02

0.9997
0.9997

0.9987
7.19e-05

0.9982
9.95e-04

0.9990
2.55e-04

0.9833
2.29e-04

0.9983
1.57e-05

0.9978
2.76e-06

0.9990
cat

0.9984
cat

0.9853
cat

0.9997
cat

0.9987
cat

0.9982
cat

0.9990
cat

0.9833
cat

0.9983
cat

0.9978
cat

deer(A5)
0.9982
1.71e-05

0.9959
1.77e-06

0.9996
1.43e-05

0.9995
5.01e-05

0.9992
0.9992

0.9974
2.49e-03

0.9999
1.28e-05

0.9988
6.28e-04

0.9958
7.19e-06

0.9995
1.58e-06

0.9982
deer

0.9959
deer

0.9996
deer

0.9995
deer

0.9992
deer

0.9974
deer

0.9999
deer

0.9988
deer

0.9958
deer

0.9995
deer

dog(A6)
0.3989
2.67e-05

0.9915
1.96e-06

0.8812
2.37e-03

0.1154
0.8843

0.1433
2.35e-05

0.9148
0.9148

7.58e-02
5.47e-05

0.6196
7.70e-05

0.4921
6.71e-06

0.1617
1.04e-05

0.6006
cat

0.9915
dog

0.8812
dog

0.8843
cat

0.8563
cat

0.9148
dog

0.9238
cat

0.6196
dog

0.5074
cat

0.8379
cat

frog(A7)
0.9998
2.03e-05

0.9998
3.11e-05

0.9998
6.01e-05

0.9997
1.86e-04

0.9998
1.38e-05

0.9996
1.14e-04

0.9999
0.9999

0.9997
1.07e-05

0.9998
4.63e-05

0.9997
1.33e-05

0.9998
frog

0.9998
frog

0.9998
frog

0.9997
frog

0.9998
frog

0.9996
frog

0.9999
frog

0.9997
frog

0.9998
frog

0.9997
frog

horse(A8)
0.9924
8.50e-05

0.9953
4.29e-05

0.9900
9.55e-03

0.9989
8.48e-05

0.9998
7.39e-05

0.9991
4.19e-05

0.9945
2.76e-05

0.9998
0.9998

0.9963
2.31e-05

0.9995
1.99e-05

0.9924
horse

0.9953
horse

0.9900
horse

0.9989
horse

0.9998
horse

0.9991
horse

0.9945
horse

0.9998
horse

0.9963
horse

0.9995
horse

ship(A9)
0.7220
4.71e-02

0.1382
0.8536

0.5000
6.50e-04

0.7736
3.24e-04

0.9983
3.35e-06

0.6808
3.04e-04

0.4648
8.79e-05

0.6148
3.85e-05

0.9945
0.9945

0.4792
9.87e-03

0.7220
ship

0.8536
car

0.5000
ship

0.7736
ship

0.9983
ship

0.6808
ship

0.4955
car

0.6148
ship

0.9945
ship

0.4792
ship

truck(A10)
0.9894
9.42e-03

0.9847
1.34e-02

0.5815
2.45e-03

0.9414
3.01e-04

0.9378
2.02e-02

0.9084
1.71e-04

0.9752
1.62e-04

0.9194
5.57e-04

0.9244
7.97e-03

0.9987
0.9987

0.9894
truck

0.9847
truck

0.5815
truck

0.9414
truck

0.9378
truck

0.9084
truck

0.9752
truck

0.9194
truck

0.9244
truck

0.9987
truck
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APPENDIX B

FIGURE 13: For 1 ≤ a ≤ 10, the image on the diagonal at the (a, a)th position is the ancestor Aa (recovered from Table
1) classified by VGG-16 as belonging to the category ca. The picture in the (a, t)th position, with t 6= a, is the adversarial
picture DF5

a,t(Aa) = EAtarget,VGG-16
L2,F5

(Aa, ct) obtained after the first successful run of the algorithm. Both images DF5
a,t(Aa) and

F5(DF5
a,t(Aa)) are classified by VGG-16 as belonging to ct with a ct-label value≥ 0.95. The 3 fully empty pictures correspond

to the (ancestor(Aa), target) combinations for which the algorithm did not terminate successfully for any of the 10 runs.

plane car bird cat deer dog frog horse ship truck Row Average

35.76 91.12 506.3 175.48 103.65 273.09 34.85 311.95 191.53

320.99 113.00 341.12 234.18 382.84 166.51 328.07 131.11 202.12 246.66

261.66 302.21 241.56 441.72 472.76 705.55 225.94 372.27 377.96

309.18 278.29 96.88 117.97 75.48 55.62 151.89 184.48 266.03 170.65

531.52 823.99 129 144.76 77.16 196.59 217.64 405.2 523.14 338.78

283.08 251.62 155.09 40.63 472.17 171.14 126.53 268.26 253.78 224.70

387.93 346.47 126.77 236.8 243.1 188.35 336.26 318.62 304.77 276.56

138.08 90.46 85.51 81.00 79.06 147.76 135.58 70.54 103.50

85.7 47.26 239.83 133.41 420.04 220.47 239.54 667.64 164.96 246.54

40.81 182.2 115.01 233.75 135.08 264.78 200.74 83.13 95.88 150.15

262.11 257.01 128.02 224.44 242.90 219.34 193.57 321.09 208.04 274.40Column
Average

plane (   )

car (   )
bird (   )

cat (   )

deer (   )

dog (   )

frog (   )

horse (   )

ship (   )

truck (    )

FIGURE 14: EAtarget,VGG-16
L2,F5

’s performance on all possible ancestor/target combinations with one ancestor per category. The
rows give the ancestor category ca (and the specific ancestor Aa in ca), the columns indicate the target class ct, and the
cell values indicate the average number of seconds required by EAtarget,VGG-16

L2
to terminate successfully, computed on 10

independent runs, with only the successful runs being considered.
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TABLE 11: For C = VGG-16, each of the two parts of the cell in (a, t)th-position contains a pair (maximum label value,
corresponding class) given by C (top) and by C ◦ F5 (bottom) for DF5

a,t(Aa) (with DF5
a,a(Aa) = Aa) whenever applicable (3

cells are empty).

plane
c1

car
c2

bird
c3

cat
c4

deer
c5

dog
c6

frog
c7

horse
c8

ship
c9

truck
c10

plane(A1)
0.69, plane 0.98, car 0.95, bird 0.95, cat 0.95, dog 0.95, frog 0.95, horse 0.95, ship 0.95, truck
0.88, plane 0.95, car 0.98, bird 0.97, cat 0.98, dog 0.98, frog 0.97, horse 0.98, ship 0.98, truck

car(A2)
0.95, plane 0.99, car 0.95, bird 0.95, cat 0.95, deer 0.95, dog 0.95, frog 0.95, horse 0.96, ship 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck

bird(A3)
0.95, plane 0.99, bird 0.95, cat 0.95, deer 0.95, dog 0.95, frog 0.95, horse 0.95, ship 0.95, truck
0.99, plane 0.99, bird 0.98, cat 0.99, deer 0.99, dog 0.99, frog 0.97, horse 0.99, ship 0.97, truck

cat(A4)
0.95, plane 0.95, car 0.95, bird 0.99, cat 0.95, deer 0.95, dog 0.95, frog 0.95, horse 0.95, ship 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck

deer(A5)
0.95, plane 0.95, car 0.95, bird 0.95, cat 0.99, deer 0.95, dog 0.95, frog 0.95, horse 0.95, ship 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck

dog(A6)
0.95, plane 0.95, car 0.95, bird 0.95, cat 0.95, deer 0.99, dog 0.95, frog 0.95, horse 0.95, ship 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.91, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck

frog(A7)
0.95, plane 0.95, car 0.95, bird 0.95, cat 0.95, deer 0.95, dog 0.99, frog 0.95, horse 0.95, ship 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck

horse(A8)
0.95, plane 0.95, car 0.95, bird 0.96, cat 0.95, deer 0.95, dog 0.95, frog 0.99, horse 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, truck

ship(A9)
0.95, plane 0.95, car 0.95, bird 0.95, cat 0.95, deer 0.95, dog 0.95, frog 0.95, horse 0.99, ship 0.95, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck

truck(A10)
0.95, plane 0.95, car 0.95, bird 0.95, cat 0.95, deer 0.95, dog 0.95, frog 0.95, horse 0.95, ship 0.99, truck
0.99, plane 0.99, car 0.99, bird 0.99, cat 0.99, deer 0.99, dog 0.99, frog 0.99, horse 0.99, ship 0.99, truck
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TABLE 12: For C = VGG-16, each of the 4 parts of the cell in (a, t)th-position contains a pair (maximum label value,
corresponding class) given, respectively from the top to the bottom, by C ◦ F1, C ◦ F2, C ◦ F3, and C ◦ F4 for DF5

a,t(Aa) (with
DF5
a,a(Aa) = Aa) whenever applicable.

plane
c1

car
c2

bird
c3

cat
c4

deer
c5

dog
c6

frog
c7

horse
c8

ship
c9

truck
c10

plane(A1)

0.99, plane
0.44, car
0.72, plane
0.54, car

0.95, plane
0.81, car
0.82, car
0.99, car

0.97, plane
0.35, ship
0.92, bird
0.98, bird

0.54, plane
0.58, ship
0.64, cat
0.98, cat

0.65, plane
0.50, ship
0.87, dog
0.96, dog

0.95, plane
0.35, car
0.90, frog
0.96, frog

0.92, plane
0.57, ship
0.40, horse
0.96, horse

0.87, plane
0.78, ship
0.98, ship
0.90, ship

0.97, plane
0.47, ship
0.48, truck
0.96, truck

car(A2)

0.97, ship
0.61, bird
0.99, plane
0.97, plane

0.76, car
0.99, car
0.99, car
0.99, car

0.92, ship
0.97, bird
0.99, bird
0.95, car

0.99, ship
0.80, cat
0.99, cat
0.95, cat

0.99, ship
0.83, bird
0.99, deer
0.85, car

0.55, ship
0.80, bird
0.91, dog
0.49, car

0.99, ship
0.56, frog
0.99, frog
0.86, frog

0.99, ship
0.89, bird
0.99, horse
0.70, horse

0.99, ship
0.59, ship
0.99, ship
0.56, ship

0.99, ship
0.99, car
0.99, truck
0.90, truck

bird(A3)

0.77, bird
0.99, bird
0.96, plane
0.92, plane

0.99, bird
0.99, bird
0.99, bird
0.99, bird

0.48, cat
0.99, bird
0.65, bird
0.96, cat

0.89, bird
0.99, bird
0.75, deer
0.96, deer

0.74, ship
0.99, bird
0.64, dog
0.93, dog

0.84, bird
0.99, bird
0.91, bird
0.99, frog

0.99, bird
0.99, bird
0.91, bird
0.98, horse

0.83, ship
0.99, bird
0.93, bird
0.98, ship

0.56, bird
0.99, bird
0.97, bird
0.95, truck

cat(A4)

0.32, plane
0.93, cat
0.45, bird
0.55, frog

0.61, cat
0.93, cat
0.95, car
0.97, car

0.51, ship
0.97, cat
0.99, bird
0.78, frog

0.91, cat
0.99, cat
0.99, cat
0.99, cat

0.95, frog
0.96, cat
0.99, deer
0.63, deer

0.49, cat
0.67, dog
0.99, dog
0.92, frog

0.61, cat
0.98, cat
0.97, frog
0.99, frog

0.51, cat
0.67, cat
0.99, horse
0.68, frog

0.50, ship
0.99, cat
0.81, ship
0.88, ship

0.98, frog
0.97, cat
0.61, truck
0.98, truck

deer(A5)

0.96, plane
0.99, deer
0.93, plane
0.98, plane

0.65, car
0.87, deer
0.75, bird
0.98, car

0.99, cat
0.98, deer
0.98, bird
0.98, bird

0.99, cat
0.98, deer
0.99, cat
0.97, cat

0.58, plane
0.99, deer
0.99, deer
0.99, deer

0.46, cat
0.99, deer
0.76, dog
0.96, dog

0.97, cat
0.99, deer
0.99, frog
0.99, frog

0.77, cat
0.99, deer
0.97, horse
0.97, horse

0.46, cat
0.99, deer
0.99, ship
0.98, ship

0.95, cat
0.99, deer
0.77, truck
0.96, truck

dog(A6)

0.79, truck
0.99, cat
0.94, plane
0.63, plane

0.81, frog
0.99, cat
0.88, car
0.65, car

0.96, cat
0.99, cat
0.99, bird
0.96, bird

0.99, cat
0.99, cat
0.99, cat
0.93, cat

0.93, frog
0.98, cat
0.88, deer
0.97, deer

0.99, cat
0.99, cat
0.73, cat
0.99, dog

0.90, frog
0.99, cat
0.75, frog
0.99, frog

0.89, cat
0.99, cat
0.99, horse
0.95, horse

0.99, truck
0.99, cat
0.69, cat
0.94, ship

0.83, truck
0.99, cat
0.58, cat
0.99, truck

frog(A7)

0.93, plane
0.99, frog
0.99, plane
0.81, plane

0.88, frog
0.99, frog
0.99, car
0.95, car

0.61, frog
0.99, frog
0.98, bird
0.93, bird

0.80, frog
0.63, frog
0.99, cat
0.62, frog

0.74, cat
0.97, deer
0.99, deer
0.67, frog

0.76, cat
0.63, frog
0.99, dog
0.81, frog

0.91, frog
0.99, frog
0.99, frog
0.99, frog

0.56, frog
0.56, horse
0.99, horse
0.63, frog

0.89, ship
0.99, frog
0.99, ship
0.63, ship

0.93, frog
0.99, frog
0.99, truck
0.95, truck

horse(A8)

0.74, plane
0.95, horse
0.99, plane
0.88, plane

0.71, plane
0.97, horse
0.99, car
0.97, car

0.60, plane
0.88, bird
0.99, bird
0.98, bird

0.80, plane
0.60, cat
0.99, cat
0.95, cat

0.78, bird
0.98, horse
0.99, deer
0.95, deer

0.39, bird
0.89, horse
0.99, dog
0.79, bird

0.48, plane
0.61, cat
0.99, frog
0.99, frog

0.74, dog
0.99, horse
0.99, horse
0.99, horse

0.58, plane
0.98, horse
0.9546, truck
0.97, truck

ship(A9)

0.87, ship
0.99, plane
0.99, plane
0.49, plane

0.99, ship
0.77, car
0.99, car
0.70, car

0.69, cat
0.96, plane
0.99, bird
0.46, ship

0.89, ship
0.91, plane
0.96, cat
0.96, cat

0.74, car
0.67, ship
0.85, deer
0.62, deer

0.53, dog
0.95, plane
0.99, dog
0.24, ship

0.99, ship
0.80, plane
0.59, ship
0.98, frog

0.38, cat
0.98, plane
0.99, horse
0.55, horse

0.98, ship
0.45, plane
0.99, ship
0.99, ship

0.65, ship
0.93, plane
0.76, truck
0.96, truck

truck(A10)

0.99, plane
0.99, plane
0.99, plane
0.81, plane

0.59, plane
0.99, plane
0.99, car
0.94, car

0.99, plane
0.98, plane
0.97, bird
0.97, bird

0.68, ship
0.96, plane
0.99, cat
0.85, cat

0.92, plane
0.97, plane
0.99, deer
0.91, deer

0.71, plane
0.96, plane
0.99, dog
0.97, dog

0.96, ship
0.95, plane
0.99, frog
0.99, frog

0.98, plane
0.58, horse
0.99, horse
0.58, horse

0.96, plane
0.99, plane
0.97, ship
0.91, ship

0.99, plane
0.99, plane
0.99, truck
0.99, truck
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