

 University of Groningen

Trylock, a case for temporal logic and eternity variables
Hesselink, W H

Published in:
Science of computer programming

DOI:
10.1016/j.scico.2021.102767

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (2022). Trylock, a case for temporal logic and eternity variables. Science of computer
programming, 216, [102767]. https://doi.org/10.1016/j.scico.2021.102767

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.1016/j.scico.2021.102767
https://research.rug.nl/en/publications/0ce08589-96de-444a-87e3-46b1ba9bd513
https://doi.org/10.1016/j.scico.2021.102767

Science of Computer Programming 216 (2022) 102767
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Trylock, a case for temporal logic and eternity variables

Wim H. Hesselink

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 August 2021
Received in revised form 29 December 2021
Accepted 29 December 2021
Available online 3 January 2022

Keywords:
Concurrency
CTL
LTL
Prophecy variables
Simulation

An example is given of a software algorithm that implements its specification in linear time
temporal logic (LTL), but not in branching time temporal logic (CTL). In LTL, a prophecy of
future behaviour is needed to prove the simulation. Eternity variables are used for this
purpose. The final phase of the proof is a refinement mapping in which two threads
exchange roles.
The example is a software implementation of trylock in a variation of the fast mutual
exclusion algorithm of Lamport (1987). It has been used fruitfully for the construction of
software algorithms for high performance mutual exclusion.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When Dijkstra [4] proposed the mutual exclusion problem in 1965, he more or less apologized for its academic character.
With the advent of multithreading and multicore computing in the last years, however, the importance of mutual exclusion
or locking is no longer in doubt.

The problem of locking has two sides: granting exclusive access to one thread, and letting the other interested threads
wait. This asks for a separation of concerns. One can separate the subproblem of granting exclusive access. This means that
a thread asks for exclusive access and either gets it, or receives the answer no. This variation is known as trylock. It is
described here as the system Try.

The system Try can easily be implemented in hardware. Here, a software solution TryL is proposed with shared variables
and atomic read and write operations, based on Lamport’s fast mutual exclusion algorithm [13]. In branching time temporal
logic, CTL, however, TryL does not implement system Try. The implementation is valid only in linear time temporal logic,
LTL. The fact that CTL rejects a suitable implementation of system Try, while LTL accepts it, provides an example where LTL
is to be preferred over CTL in concurrency verification. This is in line with the arguments of Vardi and Nain [19,17].

The LTL proof of validity of the implementation is based on simulation, in several phases. The first phase is a standard
analysis of the invariants of the algorithm. The second phase consists of proofs of two progress properties of the algorithm.
This is done with UNITY logic [2,16]. Note that UNITY logic can be expressed in LTL. In some sense [11], it is even equivalent
to LTL.

The third phase deals with the problem that the construction of a simulation requires a prophecy of future behaviour.
Abadi and Lamport [1] have introduced prophecy variables for this purpose. Prophecy variables are based on König’s Lemma,
have restricted applicability, and induce rather complicated proof obligations. We therefore prefer to use an eternity variable
[6,8,9]. Eternity variables have been applied earlier, e.g., in [5,7], but the present application is more illustrative.

E-mail address: w.h.hesselink@rug.nl.
https://doi.org/10.1016/j.scico.2021.102767
0167-6423/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.scico.2021.102767
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2021.102767&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:w.h.hesselink@rug.nl
https://doi.org/10.1016/j.scico.2021.102767
http://creativecommons.org/licenses/by/4.0/

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
The construction of a prophecy by means of an eternity variable is not enough, because it turns out that the crucial
command is often executed by the wrong thread. The fourth phase consists of a refinement mapping with a subtle pas de
deux of two threads to correct the mismatch.

The proof has been verified with the proof assistant PVS [18]. The proof script is available at [10]. For the sake of
readability, there are minor differences between the presentation here and the proof script.

System TryL has been used previously in the construction of the Triangle Algorithm [12], a mutual exclusion algorithm
that is very efficient both under high contention and under low contention.

This case studies combines and illustrates several aspects of the treatment of shared-variable fine-grain concurrency:
temporal logic, simulation, theorem proving, and UNITY.

Overview

Specification Try is presented in Section 2. In Section 3, the implementation TryL of Try is given. In Section 4, it is shown
that TryL does not implement system Try in branching time temporal logic. This section also introduces the linear-time
theory of specifications and simulations that is needed. Section 5 proves that TryL implements Try in LTL, in the four phases
described above. Conclusions are drawn in Section 6.

Acknowledgments. The fruitful collaboration with Peter Buhr and Dave Dice on efficiently implementable mutual exclusion
algorithms is gratefully acknowledged. The present paper is a theoretical offshoot of this work. The draft version of this
paper has been greatly improved due to suggestions of the anonymous reviewers.

2. The system Try

In a shared-memory system with a finite number of threads, system Try offers functions trylock and unlock; a call of
trylock(p) tries to obtain exclusive access for thread p, it does not wait, and returns a boolean to indicate its success. The
second function unlock releases the lock. The typical application is that every thread is in the loop

loop of thread p:
NCS ;
if trylock(p) then

CS ;
unlock(p)

endif
endloop .

Here NCS and CS are program fragments, CS stands for the critical section in which never more than one thread is allowed,
NCS stands for the noncritical section. CS is supposed always to terminate, NCS need not terminate. CS and NCS do not refer
to variables that are used in the implementation of trylock and unlock.

We take thread as the set of the thread identifiers, a finite subset of the integers. The system can be specified by means
of a shared specification variable:

shared variable
mu : thread⊥ = ⊥ ;

trylock(p : thread) : boolean =
〈 if mu= ⊥ then mu := p ; return true else return false endif 〉 .

unlock(p : thread) = 〈 mu := ⊥ 〉 .

This functionality is the same as for tryLock in Java; similar functions exist for pthreads. The abstract variable mu is called
the mutex. If mu �= ⊥, its value is the identifier of the thread with exclusive access. The angular brackets indicate that the
actions enclosed are performed atomically, i.e., without interference.

Thread p is only allowed to call unlock when it holds the mutex, i.e., when mu = p. When it holds the mutex, it must
not call trylock, but it must call unlock eventually.

The system Try can be implemented practically with a compare-and-swap instruction. This implementation is called
TryH, with the letter H for hardware. Below, we give a software implementation TryL of system Try, based on the use of
variables with atomic read and write instructions.

3. Implementing system Try, following Lamport

The system TryL, proposed now, implements system Try of Section 2. It is derived from Lamport’s fast algorithm [13].
2

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
shared variables
x : thread ;
y : thread⊥ = ⊥ ;
bb[thread] : bool = (false, . . .) .

trylockL(p : thread) : boolean =
if y �= ⊥ then return false endif ;
bb[p] := true ;
x := p ;
if y �= ⊥ then

bb[p] := false ; return false endif ;
y := p ;
if x= p then return true endif ;
bb[p] := false ;
for each kk ∈ thread while y= p do

await y �= p ∨ ¬bb[kk] endfor ;
return (y= p) .

unlockL(p : thread) =
y := ⊥ ;
bb[p] := false .

A proof of correctness is given in Section 5.
The entry function can be explained as follows. If there is no interference, thread p sets x := p, observes x = p, and

returns true. In case of contention, the last thread that sets x := p, may observe y �= ⊥, and fail. In that case, the last thread
that has set y := p waits in its for loop until all competing threads have failed, and then returns true.

The initial test of y �= ⊥ is necessary to preclude livelock. Indeed, if the initial test y �= ⊥ is removed, there is the
following livelock scenario. It starts with y= ⊥ and all threads idle. Two threads p1 and p2 call trylock and proceed to the
assignment of y. At this point x= p2, say. Then p2 does the assignment to y, and its call of trylock succeeds. It calls unlock
and resets y := ⊥. Then p1 sets y := p1. As x= p2 �= p1, thread p1 enters the for loop with y= p1. Here the cycle starts.
Thread p2 calls trylockL. As the initial test is absent, the thread sets bb[p2]. Then thread p1 tests bb[kk] with kk = p2,
and remains waiting. Then p2 observes y �= ⊥, resets bb[p2], and becomes idle. This cycle is repeated indefinitely. Thread
p2 modifies bb[p2] infinitely often, and thread p2 cannot proceed because it always finds bb[p2] = false. As y = p1 �= ⊥
remains true, every subsequent call of trylockL by any thread fails. This is livelock.

Lamport’s algorithm [13] is a mutual exclusion algorithm with essentially

acquire(p) ≈
while ¬ trylock(p) do pause() endwhile .

In the code of [13], the initial test of y �= ⊥ is absent, and livelock is precluded by placing the test y �= ⊥ at other points.
A second, less important deviation from Lamport’s code is the disjunct y �= p in the await condition. If this disjunct

is omitted, a thread can be kept indefinitely in the waiting loop, giving starvation, see [12, Section 3.2]. The condition
while y= p is added only for performance. These two modifications are useless in the context of Lamport’s algorithm.

If one wants to implement the algorithm on current hardware, one has to reckon with the fact that compilers and
hardware optimize programs as if they are sequential. Code for concurrent algorithms therefore needs additional directives
to prevent incorrect optimizations. How this is done for the present algorithm is explained in [12, Section 6].

4. Some theory

The question whether TryL implements Try depends on the type of temporal logic one uses. The answer is no in branch-
ing time temporal logic, but yes in linear time temporal logic. Branching time is treated in Section 4.1. Section 4.2 introduces
linear time. The specification formalism is given in Section 4.3. This section also treats invariants, and the way to find and
prove them. Section 4.4 introduces simulation relations between specifications. Finally, eternity variables are introduced in
Section 4.5.

4.1. Branching time

In branching time temporal logic, more specifically in CTL [3], the system TryL does not implement system Try. In
CTL, computation tree logic, the computation of the algorithm is represented by a tree, rooted in the start state, in which
every nondeterministic choice gives rise to branching. In CTL, one might prove that system TryL implements system Try by
showing that the systems are (weakly) bisimilar. To show that they are not (weakly) bisimilar, and even that TryL does not
implement Try, it suffices to give a CTL formula that holds for TryL and is invalid for Try.
3

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
In CTL, EFϕ means that there is a directed path in the computation tree from the present node to a node where ϕ
holds. Let there be three threads p1, p2, p3 that each call trylock once. The winner is the first thread that obtains the
mutex. Let w(p) express that thread p is the winner, and t(p) that the call of thread p has terminated. It is clear that these
propositions should be observable. Consider the CTL-formula

� : EF(t(p1) ∧ EFw(p2) ∧ EFw(p3))

Formula � expresses that a path exists from the root to a node where thread p1 has terminated, and where two paths
continue, one towards a node where p2 is the winner and one towards a node where p3 is the winner.

�• •
root t(p1)

����

����

•

•

w(p2)

w(p3)

In the systems Try and TryH, formula � is false, because when thread p1 has terminated, the mutex mu has some value
�= ⊥, so that the winner is determined, although this may not yet be observable.

In system TryL, however, formula � is true. This is shown in the following scenario, with one additional thread p4.
Initially y= ⊥. The threads enter. Thread p1 proceeds to the assignment x := p; the threads p2, p3, p4 proceed to the first
assignment y := p. Then p4 executes y := p. Subsequently p1 does x := p, establishing x = p1. It then observes y = p4,
fails and terminates, establishing t(p1). Now the winner will be p2 or p3, dependent on which of the two does the last
assignment to y. Therefore � holds.

As � is a CTL-formula about the observable tree of the system and is valid for TryL but not for Try, system TryL does not
implement Try for branching time temporal logic.

4.2. LTL, linear time temporal logic

In LTL, computations are infinite sequences of consecutive states. Some notation is needed to reason about these se-
quences. If X is a set (a state space), let Xω be the set of the infinite sequences xs of elements of X , regarded as functions
N → X . If xs ∈ Xω and k ∈ N , the kth suffix of xs is defined as the sequence (xs|k) with (xs|k)(n) = xs(k + n). Let P (X)

denote the set of the subsets of X , identified with the predicates on X . For P ∈ P (X) and R ∈ P (X2) and U ∈ P (Xω), one
defines

[P] = {xs ∈ Xω | xs(0) ∈ P } ,
[R] = {xs ∈ Xω | (xs(0), xs(1)) ∈ R} ,�U = {xs ∈ Xω | ∀ k : (xs|k) ∈ U } ,�U = {xs ∈ Xω | ∃ k : (xs|k) ∈ U }

A state sequence xs satisfies a relation R under weak fairness iff it always holds that eventually R is taken by xs or is disabled.
This is formally expressed in

weakFair(R) = ��([R] ∨ [dis(R)]) ,

where dis(R) = {x ∈ X | ∀ y ∈ X : (x, y) /∈ R}. The leads-to relation of UNITY [2,16] is defined by

(P
→ Q) = �(¬[P] ∨ �[Q]) .

4.3. Computational definitions

The following definitions are more liberal than those of [8] to avoid unnecessary proof obligations. Indeed, the additional
requirements of [8] can be regarded as healthiness conditions that are usually satisfied automatically in the applications.

A specification K is a tuple (X, X0, N, P) where X is a set, X0 is a subset of X , N is a binary relation on X , and P is
a subset of Xω , the set of the infinite sequences over X . The set X is called the state space, the elements of X0 are called
initial states, relation N is called the next-state relation, and P is called the supplementary property.

The pairs in relation N are called steps of the specification. An initial execution of K is an infinite sequence xs of elements
of X with xs(0) ∈ X0, such that every pair of consecutive elements is a step. A behaviour of K is an initial execution that
also belongs to P . Therefore, the set of behaviours of K is Beh(K) = [X0] ∩ �[N] ∩ P . A predicate Q ∈ P (X) is called an
invariant of K if it contains all states of all behaviours of K .

A subrelation of the next-state relation N is called a command. For a command S and predicates P and Q , the Hoare
triple {P }S{Q } is the proposition that

∀ x, y : (x, y) ∈ S ∧ x ∈ P ⇒ y ∈ Q , or equivalently
[P ⇒ wp(S, Q)] ,
4

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
where wp stands for Dijkstra’s weakest precondition.
A predicate P is said to be preserved by command S iff {P }S{P }. Predicate P is called stable if it is preserved by N . A

predicate is called inductive iff it is stable and holds initially. Every inductive predicate is an invariant. A predicate implied
by an inductive predicate is an invariant; it is called a forward invariant.

A predicate P is said to be threatened by a command S iff it is not preserved by S . If predicate P is threatened by
command S , a predicate Q is called a remedy for P and S iff {P ∧ Q }S{P }.

Let C be a set of commands such that N = ⋃
C . If one has a family of predicates such that any member of the family

that is threatened by any command in C , has some remedy consisting of members of the family, then the conjunction of
the family is stable. If moreover all members hold initially, the conjunction is inductive, and each member of the family is
a forward invariant. This is the method used below to obtain and prove forward invariants.

When one invokes the proof assistant to prove that command S preserves predicate P , it essentially calculates the
weakest remedy. In terms of Dijkstra’s weakest precondition wp, this is ¬P ∨ wp(S, P), because, for every Q ,

[P ∧ Q ⇒ wp(S, P)] ≡ [Q ⇒ ¬P ∨ wp(S, P)] .

Human intelligence, however, is needed to replace the weakest remedy by a remedy that is both manageable and provable.

4.4. Relating specifications

The principal way to relate specifications is by means of (strict) simulation relations, which formalize that the first
specification implements the second one.

Let K = (X, X0, N, P) and L = (X ′, X ′
0, N

′, P ′) be specifications. A relation F between X and X ′ is called a strict simulation
[8] from K to L if, for every xs ∈ Beh(K), there exists ys ∈ Beh(L) with (xs(n), ys(n)) ∈ F for all n. In this paper, we can avoid
the non-strict simulations of [8].

The composition of strict simulations is a strict simulation. Therefore simulations can be constructed in phases. For the
phases, two constructions are available, refinement functions and extensions.

Let a function f : X → X ′ be called a refinement function from K to L iff, for every behaviour xs of K , the composition
f ◦ xs is a behaviour of L. If f is a refinement function, its graph {(x, f (x)) | x ∈ X} is easily seen to be a strict simulation.

Abadi and Lamport [1] defined f : X → X ′ to be a refinement mapping from K to L iff it satisfies f (x) ∈ X ′
0 for every

x ∈ X0, and (f (x), f (y)) ∈ N ′ for every pair (x, y) ∈ N with x ∈ J and y ∈ J for some invariant J of K , and has f ◦ xs ∈ P ′
for every behaviour xs of K . It is easy to prove that every refinement mapping is a refinement function; the converse
implication does not hold.

Let g be a function X ′ → X . Specification L is called an extension of K by g iff
(a) g is a refinement function from L to K ,
(b) for every xs ∈ Beh(K), there is us ∈ Beh(L) with xs = g ◦ us.

If L is an extension of K by g , condition (b) implies that the cograph G given by G = {(g(u), u) | u ∈ X ′} is a strict
simulation from K to L. Condition (a) ensures that no information is lost by going from K to L.

4.5. Eternity extensions

In order to prove that TryL implements Try, variables are needed that somehow prophesy future behaviour. Eternity
extensions serve to make this possible and sound. They were introduced and treated in [5,8]. An eternity extension just
adds an eternity variable to a specification. This variable gets its constant value initially, by a nondeterministic choice that
is guided by the behaviour restriction. The formal definition is as follows.

Let K = (X, X0, N, P) be a specification, and let M be an arbitrary set. A relation R ⊆ X × M is called a behaviour
restriction of K at M iff, for every behaviour xs of K , there exists a value m ∈ M such that

∀ n ∈N : (xs(n),m) ∈ R .

Let fst : R → X be the projection function to the first component. Let R be a behaviour restriction of K at M . The corre-
sponding eternity extension W is defined as the specification W = (R, R0, N ′, P ′) with R0 = {(x, m) ∈ R | x ∈ X0} and

((x,m), (x′,m′)) ∈ N ′ ≡ (x, x′) ∈ N ∧ m = m′ ,

and P ′ = {ws ∈ Rω | fst ◦ ws ∈ P }. It is easy to verify that W is an extension of K by fst, see [8, Thm. 4.1]. Indeed, the
definitions imply that every behaviour of W is mapped by fst to a behaviour of K . Conversely, as R is a behaviour restriction,
for every behaviour xs of K , there is a value m ∈ M , such that ws given by ws(n) = (xs(n), m) for all n, is a behaviour of W ,
mapped by fst to xs.

Example. Let K be the specification with two shared integer variables i and n, both initially 0. There are two threads that
under weak fairness concurrently do
5

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
p0: loop 〈 if i= 0 then i := 1 endif 〉 endloop ,
p1: loop 〈 if i= 0 then n := n+ 1 endif 〉 endloop .

In this system, eventually, p0 does a step. After this step, both threads are disabled. Therefore, eventually, n has a constant
value. An eternity extension can be used to prophesy this value. Indeed, take M =N . Let relation R be given by

((i,n),m) ∈ R ≡ i= 0 ∨ n= m .

It is easy to verify that R is a behaviour restriction: for any behaviour of K , one can choose for m the final value of n.

5. The simulation of Try by TryL

In this section, we prove that system TryL implements system Try. The specifications of Try and TryL are given in
Sections 5.1 and 5.2. They are fairly similar. In both cases, all threads p have the same program, given by a list of atomic
statements with consecutive line numbers. The current line number of thread p is given by the program counter pc.p. At
each command of p, the value of pc.p is incremented with 1, unless it is modified because of an if, while, or goto statement.
Every step of the algorithm leaves the state unchanged or is the state change induced by a single step of a single thread.

For both specifications, the boolean result of the function trylock is encoded in the location. This is possible, because
when thread p has obtained a result true, the thread must eventually call unlock. Between the function calls the thread is
either idle, i.e., at the noncritical section NCS, or, when it has obtained the result true, at the critical section CS.

The observable state of each thread thus has one of four possible values: 0 when the thread is at NCS, 1 when the thread
is trying to enter, 2 when the thread is at CS, 3 when the thread is exiting from CS. When trylock returns false, the thread
goes from observable state 1 to observable state 0. The observation space is therefore the set of functions from thread to
{0, 1, 2, 3}.

The state space X of the specification consists of all possible value assignments to the shared and private variables, as
declared, including pc. Let stepk(p) be the set of pairs (x, y), such that state x is transformed into state y when thread p
executes line k of the program. At the lines k0 of NCS and k1 of CS, nothing more is done than incrementation of pc.p. Put
step(p) = ⋃

k stepk(p). Initially, pc.p = k0 for all threads p. The next-state relation N is given by

(x, y) ∈ N ≡ x = y ∨ ∃ p : (x, y) ∈ step(p) .

Therefore, step(p) and stepk(p) are commands in the sense of Section 4.3.
The supplementary property expresses weak fairness: every thread always eventually does a step unless it is at NCS or

is disabled. Indeed, a thread at NCS is allowed to do a step and go to the next line, but it is not expected to do so. Formally,
the supplementary property is defined by

(0) prop = ∀ p : weakFair(fwd(p)) ,

where fwd(p) = ⋃
k �=k0

stepk(p).

5.1. The abstract specification Try

Specification Try of Section 2 is formalized as follows.
The state space consists of the tuples (mu, pc, c), where c is a private variable to hold the return value of trylock, and

pc is the program counter. Initially mu = ⊥ and pc.p = 10 and c.p = false for all threads p. We use k0 = 10 and k1 = 13.
The loop of Section 2 together with the abstract specification of the functions trylock and unlock gives rise to the following
transition system for thread p:

10 NCS ;
11 if mu= ⊥ then mu := p ; c := true endif ;
12 if ¬ c then goto 10 endif ;
13 CS ;
14 mu := ⊥ ; c := false ;
15 goto 10 .

Here, and henceforth, each numbered line is an atomic command. The dummy locations 12 and 15 are introduced, because
after commands 11 and 14 the result need not be immediately observable.

Specification Try has the obvious invariant c.p = (mu = p). One can therefore restrict the state space to the set where
this invariant holds, replace line 12 by

12 if mu �= p then goto 10 endif ,

and remove the private variable c. This simplifies the specification.
6

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
5.2. The specification of TryL

Specification TryL of Section 3 is formalized as follows. The shared variables are

x : thread ;
y : thread⊥ = ⊥ ;
bb : array [thread] of bool = (false, . . .) .

We use k0 = 20 and k1 = 33. The code is translated into the transition system for thread p:

20 NCS ;
21 if y �= ⊥ then
22 goto 20 endif ;
23 bb[p] := true ;
24 x := p ;
25 if y �= ⊥ then
26 bb[p] := false ; goto 20 endif ;
27 y := p ;
28 if x �= p then
29 bb[p] := false ; lis := allthreads ;
30 while lis �= ∅ ∧ y= p do

choose some kk ∈ lis ;
31 await y �= p ∨ ¬bb[kk] ;

remove kk from lis endwhile ;
32 if y �= p then goto 20 endif endif ;
33 CS ;
34 y := ⊥ ;
35 bb[p] := false ; goto 20 .

In comparison with the version given in Section 3, line numbers have been added, and a set-valued private variable lis,
which holds the threads kk for which the loop body 31 has not yet been executed. In line 29, allthreads stands for the set
of all threads. We introduce the notations

q at � ≡ pc.q = � ,
q in L ≡ pc.q ∈ L ,

if � is a line number and L is a set of line numbers.
Unfortunately, the proof that TryL refines Try needs (in Section 5.3) one critical invariant of the system TryL. This in-

variant depends on mutual exclusion. We therefore first prove mutual exclusion for TryL. Indeed, mutual exclusion holds. In
fact, something stronger is valid: there are never two different threads both in the lines 33 and 34:

Pq0: q in {33 . . . 34} ∧ r in {33 . . . 34} ⇒ q = r .

This is proved by means of a family of nine predicates. The proof is roughly the same as the proof given in a more
complicated setting in [12, Section 4.2].

Predicate Pq0 is threatened only by the commands of the lines 28 and 32. Remedies for these commands (see Section 4.3)
are, respectively, the predicates

Pq1: q in {27 . . . 28} ∧ r in {33 . . . 34} ⇒ x �= q ,
Pq2: q at 32 ∧ y= q ∧ r in {27 . . . 34} ⇒ r in {29 . . . 32} .

Predicate Pq1 is threatened only by the commands 25 and 32. Pq2 is a remedy for command 32. A remedy for command 25
is

Pq3: q in {33 . . . 34} ⇒ y �= ⊥ .

Predicate Pq2 is threatened only by command 30. A remedy is the predicate

Pq4 : q in {30 . . . 31} ∧ y= q ∧ r in {27 . . . 34}
⇒ r in {29 . . . 32} ∨ r ∈ lis.q .

Predicate Pq3 is threatened only by the commands 28 and 34. Pq0 is a remedy for command 34. A remedy for command 28
is
7

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
Pq5: q at 28 ∧ x= q ⇒ y �= ⊥ .

Predicate Pq4 is threatened only by command 31. A remedy is formed by

Pq6 : q in {24 . . . 29} ⇒ bb[q] ,
Pq7 : q in {33 . . . 34} ⇒ bb[q] ∨ y= q .

Predicate Pq5 is threatened only by command 34. A remedy is Pq1. Predicate Pq6 is inductive. Predicate Pq7 is threatened
only by the commands 27, 28, and 34. Remedies for commands 28 and 34 are Pq6 and Pq0, respectively. A remedy for
command 27 is the new predicate

Pq8 : q at 27 ∧ r in {33 . . . 34} ⇒ bb[r] .

Predicate Pq8 is threatened only by the commands 25, 28, and 32. Remedies are Pq3, Pq6, and Pq2, respectively. It follows
that the conjunction Pq* of the nine predicates is stable. As they all hold initially, the conjunction Pq* is inductive. Therefore
all these predicates are forward invariants. This concludes the proof of mutual exclusion: Pq0.

The refinement proof also needs progress of system TryL. To prove this, we first note the inductive invariants

Qq0 : y= q ⇒ q in {28 . . . 34} ,
Qq1 : bb[q] ⇒ q in {24 . . . 29} ∪ {33 . . . 35} .

States where the invariants do not hold are irrelevant for the algorithm. They are therefore removed from the state space.
This is formalized by introducing a specification TryL1 that only differs from TryL in its smaller state space. It has the same
behaviours as TryL. Formally speaking, the identity function is an extension from TryL to TryL1.

The next thing is to prove that TryL1 has the progress property

(1) ��[y= ⊥] .

This formula means that in every behaviour every state with y �= ⊥ is followed eventually by a state where y = ⊥. It is
proved as follows. Consider a state with y �= ⊥. In this and all following states, let S hold the set of the threads in {23 . . . 35}.
If y �= ⊥, then S is nonempty because of Qq0. As long as y �= ⊥ holds, the set S cannot grow because of the test in line 21;
the set S can only shrink. Now consider the function

vf (p) = 37 − pc.p + 2 · (pc.p < 30? #allthreads : #lis.p) .

If p ∈ S then vf (p) > 0. Whenever thread p ∈ S does a step and remains in S , it decreases vf (p) because the forward steps
increase pc.p and the backward step from line 31 decreases #lis.p. Therefore, the sum vf = ∑

p∈S vf (p) decreases in every
step of elements of S . Let S ′ be the subset of S of the threads that are enabled, i.e.,

S ′ = {q ∈ S | q at 31 ⇒ y �= q ∨ ¬bb[kk.q]} .

If the set S is nonempty, then S ′ is nonempty because of Qq1. If a step of some thread p modifies S ′ , then p ∈ S ′ and the
step decreases vf . It follows that every thread q ∈ S ′ is continuously enabled until some thread p ∈ S ′ decreases vf .

In UNITY [2,16], an assertion P ensures Q means that, if P holds, this remains true unless Q holds, and that the system
has a command that is continuously enabled while P ∧ ¬Q holds, and that establishes Q .

In the present case, the formal argument is

q ∈ S ′ ∧ vf ≤ k + 1 ∧ y �= ⊥ ensures vf ≤ k ∨ y= ⊥ .

Indeed, thread q ∈ S ′ remains enabled until it decreases vf or y= ⊥. Using the fact that ensures implies
→ (leads-to), and
the union rule for
→, one obtains

vf ≤ k + 1
→ vf ≤ k ∨ y= ⊥ .

By transitivity of
→ and another application of the union rule, one obtains true
→ y= ⊥, or equivalently ��[y= ⊥].
Finally, every thread p is always eventually idle, that is: true
→ p at 20, or equivalently

(2) ��[p at 20] .

Indeed, if thread p is not at line 20, by weak fairness it proceeds until it is disabled at line 20 or line 31. If it waits at line
31, eventually y becomes ⊥, and hence y �= p. The latter predicate remains true. Therefore, from then onward, thread p is
continuously enabled and proceeds to line 20.

The progress properties (1) and (2) are valid only because of the modifications of Lamport’s code [13] mentioned at the
end of Section 3. An alternative would be to postulate strong fairness.
8

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
5.3. How to construct a prophecy?

Specification TryL uses the variable y as a gate, which is closed if and only if y �= ⊥. When the gate is open, y= ⊥, the
first thread that executes line 27 closes the gate. In specification Try, the variable mu has the same role. TryL is therefore
extended with a ghost variable mu that gets its value when the first thread executes line 27. In system Try, the value mu
gets, is the thread that succeeds. In TryL, this thread has not yet been decided. Therefore, a prophecy of the succeeding
thread needs to be constructed.

For this purpose, first, shared history variables time and log are introduced, such that log holds the sequence of
consecutive threads that have succeeded, and time holds their number, as a discrete notion of time. So, initially time= 0
and log is the empty sequence, and these variables are modified (only) in the extended line

34 y := ⊥ ; log(time) := p ; time++ ;

Specification TryL1 is thus extended to specification TryL2 with additional variables log and time. The natural relation
between the state spaces of TryL and TryL2 is the one where the common variables have the same values, while log and
time are ignored. This relation is an extension from TryL1 to TryL2, a so-called history extension.

The next phase is to introduce an eternity extension. Let M be the set of the infinite sequences of threads. Let BR be the
relation between the state space of TryL2 and M given by

(x,m) ∈ BR ≡ ∀ n : n < x.time ⇒ x.log(n) = m(n) .

As time never decreases and the values log(n) with n < time are never modified, every behaviour of TryL2 determines
a unique finite or infinite limit sequence log. If the sequence is infinite, it determines m by BR; if it is finite, it can be
extended to an infinite sequence m that satisfies BR. This proves that predicate BR is a behaviour restriction. The state space
can therefore be extended with M while assuming validity of BR. This results in an eternity extension [8], a strict simulation
from TryL2 to TryL3. In specification TryL3, we have the ghost variables log, time, and m, and they are connected by
predicate BR.

The next phase is to introduce a ghost variable mu, initially equal to ⊥ which is modified in the lines 27 and 34.

27 y := p ; if mu= ⊥ then mu := m(time) endif ;
34 y := ⊥ ; log(time) := p ; time++ ; mu := ⊥ ;

Here, m(time) can be regarded as the prophecy of log(time).
The ghost variable mu satisfies the obvious inductive invariants

Mq0: mu �= ⊥ ≡ y �= ⊥ ,
Mq1: mu �= ⊥ ⇒ mu= m(time) .

Less obvious is the invariant that expresses that the value mu received in line 27, is a correct prophecy of the succeeding
thread:

Bq0: q in {33 . . . 34} ⇒ mu= q .

This predicate is proved as follows. Bq0 holds trivially if q is at line 20. By property (2), every state is followed eventually
by a state where Bq0 holds. By Section 4.3, it therefore suffices to prove that

(3) (u, v) ∈ step(p) ∧ Bq0(q, v) ⇒ Bq0(q, u) .

Here, we make it explicit that the predicate is about q and about either the post-state v or the pre-state u, and that p is
the thread that performs the step. Moreover, in the proof of this implication, we may use that u and v satisfy the invariants
that have been established earlier. Note that state variables u and v are used to avoid confusion with the program variables
x and y.

Implication (3) holds trivially for all steps of thread p, except for the steps at line 34 and 27. The step at line 34 uses
that the post-state v satisfies BR, in particular m(t) = log(t) = p for the value t of time in the pre-state. Moreover, the
pre-state u satisfies mu= m(time) because of Pq3, Mq0, and Mq1. The proof for line 27 is easier; it only uses Pq3 and Mq0.
Note, that the invariant Pq3 introduced in Section 5.2 is used here, twice.

Predicate Bq0 is called a backward invariant because of the proof by means of Formula (3).
There is one other backward invariant:

Bq1: mu= q ⇒ q in {27 . . . 34}
∧ (q in {29 . . . 32} ⇒ y= q)

∧ (q at 28 ⇒ x= q ∨ y= q) .
9

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
The proof is similar to the proof of Bq0. The predicate holds always eventually because of Formula (1) and Mq0. The
backward step relation analogous to Formula (3) holds because of Mq0 and Bq0.

5.4. The construction of the refinement mapping

In line 27, as refined in Section 5.3, the variable mu gets the value of the thread that gets access to the critical section
because of Bq0. The assignment to mu, however, is done by the thread that is the first to modify y. This is not necessarily
the thread that eventually gets the mutex, as it is the case in specification Try. If these two threads differ, we must somehow
swap the roles of them; a modest application of Lamport’s dictum “Processes are in the Eye of the Beholder” [14].

In order to prepare the swapping, we introduce a ghost variable nu, which has to be swapped with mu. This variable is
initially ⊥. It holds the number of the first thread that has executed line 27, as long as this thread is at line 28 and thread
mu has not yet executed line 27. Therefore, the lines 27 and 28 become

27 y := p ;
if mu= ⊥ ∧ m(time) �= p then nu := p
elsif mu= p then nu := ⊥ endif ;
if mu= ⊥ then mu := m(time) endif ;

28 if nu= p then nu := ⊥ endif ;
if x= p then goto 33 endif ;

Note that, complicated as they are, the lines 27 and 28 are still executed atomically. This is possible because mu and nu are
ghost variables (used in the proof, but omitted in implementation). In this way one obtains the specification TryL4 with the
obvious extension from TryL3 to TryL4. The composition of extensions is an extension. Therefore specification TryL4 is an
extension of TryL by the projection function that forgets the auxiliary variables log, time, m, mu, and nu. This extension
induces a strict simulation from TryL to TryL4.

The variable nu in TryL4 satisfies the invariants

Nq0: nu �= ⊥ ⇒ nu at 28 ,
Nq1: nu �= ⊥ ⇒ mu �= ⊥ ∧ mu at 27 .

Indeed, Nq0 is inductive. Predicate Nq1 is a forward invariant which is threatened only by the commands 27 and 34. It is
preserved by command 34 because of Bq0. It is preserved by command 27 because of Pq3, Pq4, and Mq0, and because Bq1
holds in the post-state.

Now everything is prepared to construct the refinement mapping from TryL4 to specification Try of Section 5.1, with
private variable c eliminated. This is the function f that maps a state x of TryL4 to the state u of Try given by

u.mu= x.mu ,
u.pc.q = mpc(x.pc.q, x.mu= q, x.nu= q) where

mpc(k,b1,b2) =
(k = 20 ? 10
: 33 ≤ k ? k − 20
: k = 27 ∧ b1 ? 12
: k = 28 ∧ b2 ? 11
: k = 22 ∨ k = 26 ∨ 28 ≤ k ? 12
: 11) .

Here the booleans b1 and b2 serve in swapping the actions of mu and nu.
The correspondence between the line numbers of TryL4 and Try is suggested by lines between the two transition systems

in the diagram. To avoid cluttering of arrows the letter Z represents NCS. Circles indicate the critical sections.

TryL4:

Try:

� � � � � �

� �

� � �

�

�

�

Z

Z

����

� �	

21

22

��

23 24 25

Z 26�

27 28

11 12

29 30
	� 	

Z31

32

33

13

34

14

35

15

Z

Z� � �

� � �
	 	 	 �

It is clear that function f maps start states of TryL4 to start states of Try. The hard work is to show that it maps steps
of TryL4 to steps of Try.
10

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
For the step of thread p at line 27 there are four different cases:
1. Under the precondition mu= ⊥, it is mapped to the step of Try from line 11 by the thread m(time). This assertion uses
the invariants Pq3, Pq5, Mq0, Bq1, Nq1.
2. Under the precondition mu= p ∧ nu �= ⊥, it is mapped to step 11 of thread nu because of Nq0.
3. Under the precondition mu �= p ∧ mu �= ⊥, it is mapped to the step 11 of p because of Nq0.
4. In the case of the remaining precondition mu= p ∧ nu= ⊥, it is mapped to skip (no state change).

All other steps of thread p in TryL4 are mapped to skip or steps of p in Try. In particular, the steps of thread p from line
28 are mapped to steps of p from lines 11 or 12, when nu= p or x= p, respectively, because of Bq0 and Nq1.

The steps of p from lines 21 and 25 when y �= ⊥ are mapped to the step from 11 because of Mq0. These steps are
mapped to skip when y= ⊥ (in the second case because of Bq1).

The steps from lines 22 and 26 are mapped to steps from line 12 because of Bq1. The step from line 32 is mapped to
the step from line 12 because of Bq0 and Bq1. The step from line 34 is mapped to the step from line 14 because of Bq0.

The remaining steps need no invariants. All steps of p to line 20 are mapped to steps of p from lines 12 or 15 to line
10. The step from line 33 is mapped to the step from lines 13. All other steps are mapped to skip.

It remains to show that every behaviour xs of TryL4 is mapped to a state sequence of Try that satisfies the supplementary
property of Try. Let sequence us be the image of the sequence xs. Let p be a thread. By Formula (0), it suffices to prove
that us is weakly fair for fwd(p). Behaviour xs satisfies ��[p at 20] by Formula (2). Therefore, the sequence us satisfies ��[p at 10]. As fwd(p) is disabled at line 10, it follows that fwd(p) is always eventually disabled. This proves that us is
weakly fair for fwd(p).

This concludes the proof that the function x
→ u is a refinement mapping from TryL4 to Try. Composing it with the
strict simulation from TryL to TryL4, one thus obtains:

Theorem. There is a strict simulation from system TryL to system Try.

6. Conclusions

Branching time temporal logic, CTL, rejects the useful implementation relation between TryL and Try, which is accepted
by LTL, linear temporal logic. This supports the opinion of Vardi and Nain [19,17], that LTL is to be preferred over CTL in
concurrency verification. The present case study further indicates that, in cases where a simulation relation for CTL does not
exist, the construction of an LTL simulation may need prophecy or eternity variables.

Abadi and Lamport [1] used König’s lemma to justify prophecy variables. This lemma is also used for the backward
simulations of Lynch and Vaandrager [15]. Therefore, the soundness of prophecy variables or backward simulations imposes
finiteness conditions that limit the applicability and imply heavy proof obligations, compare [6]. We therefore prefer eternity
variables. They are easier to prove sound and have wider applicability.

The mechanical proof, done with the proof assistant PVS [18], deviates marginally from the proof rendered here, for the
sake of readability of the paper and simplicity of the proof script. The proof script is available at [10], but can only be
advised for readers with a working version of PVS. The proof assistant was in particular indispensable for the treatment of
the invariants and the final refinement mapping.

CRediT authorship contribution statement

Wim H. Hesselink: author, and verifier with PVS.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] M. Abadi, L. Lamport, The existence of refinement mappings, Theor. Comput. Sci. 82 (1991) 253–284.
[2] K.M. Chandy, J. Misra, Parallel Program Design, A Foundation, Addison–Wesley, 1988.
[3] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: Logic of Programs, in: LNCS,

vol. 131, 1981, pp. 52–71.
[4] E.W. Dijkstra, Solution of a problem in concurrent programming control, Commun. ACM 8 (1965) 569.
[5] W.H. Hesselink, Using eternity variables to specify and prove a serializable database interface, Sci. Comput. Program. 51 (2004) 47–85.
[6] W.H. Hesselink, Eternity variables to prove simulation of specifications, ACM Trans. Comput. Log. 6 (2005) 175–201.
[7] W.H. Hesselink, A criterion for atomicity revisited, Acta Inform. 44 (2007) 123–151.
[8] W.H. Hesselink, Universal extensions to simulate specifications, Inf. Comput. 206 (2008) 108–128.
[9] W.H. Hesselink, Simulation refinement for concurrency verification, Sci. Comput. Program. 76 (2011) 739–755.

[10] W.H. Hesselink, PVS proof scripts for trylock, the rectangle algorithm, and access selection, http://wimhesselink.nl /mechver /trylock, 2020.
[11] W.H. Hesselink, UNITY and Büchi automata, Form. Asp. Comput. 33 (2021) 185–205, https://doi .org /10 .1007 /s00165 -020 -00528 -x.
[12] W.H. Hesselink, P.A. Buhr, D. Dice, Fast mutual exclusion by the Triangle algorithm, Concurr. Comput., Pract. Exp. 30 (4) (February 2018), https://

doi .org /10 .1002 /cpe .4183.
11

http://refhub.elsevier.com/S0167-6423(21)00160-X/bib1931465E198AAB83BF6064376D91D4A7s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib36558468262F5409228657E759FAED48s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib6C31A89316EC99A8A6FB59C163E0A5ECs1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib6C31A89316EC99A8A6FB59C163E0A5ECs1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib1B79C69DD69038F942C79CB5A2C74BBDs1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib56D31D3FA4E87BD771D6E9F1D0DD2A61s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bibED51F6A8BC0E1AB7F6428A3F2948850Es1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bibB2A328DE576C03E09CA32FB020F563BDs1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bibC63A2982C05724D14D4EFEBD782DDD89s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib8B0899CE6F9D3E5F60FE9F508CE17168s1
http://wimhesselink.nl/mechver/trylock
https://doi.org/10.1007/s00165-020-00528-x
https://doi.org/10.1002/cpe.4183
https://doi.org/10.1002/cpe.4183

W.H. Hesselink Science of Computer Programming 216 (2022) 102767
[13] L. Lamport, A fast mutual exclusion algorithm, ACM Trans. Comput. Syst. 5 (1987) 1–11.
[14] L. Lamport, Processes are in the eye of the beholder, Theor. Comput. Sci. 179 (1997) 333–351.
[15] N. Lynch, F. Vaandrager, Forward and backward simulations, part I: untimed systems, Inf. Comput. 121 (1995) 214–233.
[16] J. Misra, A Discipline of Multiprogramming: Programming Theory for Distributed Applications, Spinger V., New York, 2001.
[17] S. Nain, M.Y. Vardi, Branching vs. linear time: semantical perspective, in: K.S. Namjoshi, et al. (Eds.), Automated Technology for Verification and Analysis,

5th International Symposium, ATVA 2007, in: LNCS, vol. 4762, 2007, pp. 19–34.
[18] S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-Calvert, PVS version 7.1, system guide, prover guide, PVS language reference, http://pvs .csl .sri .com,

2020. (Accessed 1 December 2021).
[19] M.Y. Vardi, Branching versus linear time: final showdown, in: 7th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, TACAS, in: Lecture Notes in Computer Science, vol. 2031, Springer V., 2001, pp. 1–22.
12

http://refhub.elsevier.com/S0167-6423(21)00160-X/bibE55A758541202B3ECA4B5EF7CB69CD91s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib45D02927703A43A42031DD7183234D72s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bibF91D53C5D2EE10E49C716171359626B7s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib8462C525FBD606BB3F9997F6FD45F4ABs1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib8DFC766C90C29E5486EEEFA9CE33EB66s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib8DFC766C90C29E5486EEEFA9CE33EB66s1
http://pvs.csl.sri.com
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib3BD904E04F06EC041B65BBE2AF106C99s1
http://refhub.elsevier.com/S0167-6423(21)00160-X/bib3BD904E04F06EC041B65BBE2AF106C99s1

	Trylock, a case for temporal logic and eternity variables
	1 Introduction
	2 The system Try
	3 Implementing system Try, following Lamport
	4 Some theory
	4.1 Branching time
	4.2 LTL, linear time temporal logic
	4.3 Computational definitions
	4.4 Relating specifications
	4.5 Eternity extensions

	5 The simulation of Try by TryL
	5.1 The abstract specification Try
	5.2 The specification of TryL
	5.3 How to construct a prophecy?
	5.4 The construction of the refinement mapping

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

