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An example is given of a software algorithm that implements its specification in linear time 
temporal logic (LTL), but not in branching time temporal logic (CTL). In LTL, a prophecy of 
future behaviour is needed to prove the simulation. Eternity variables are used for this 
purpose. The final phase of the proof is a refinement mapping in which two threads 
exchange roles.
The example is a software implementation of trylock in a variation of the fast mutual 
exclusion algorithm of Lamport (1987). It has been used fruitfully for the construction of 
software algorithms for high performance mutual exclusion.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When Dijkstra [4] proposed the mutual exclusion problem in 1965, he more or less apologized for its academic character. 
With the advent of multithreading and multicore computing in the last years, however, the importance of mutual exclusion 
or locking is no longer in doubt.

The problem of locking has two sides: granting exclusive access to one thread, and letting the other interested threads 
wait. This asks for a separation of concerns. One can separate the subproblem of granting exclusive access. This means that 
a thread asks for exclusive access and either gets it, or receives the answer no. This variation is known as trylock. It is 
described here as the system Try.

The system Try can easily be implemented in hardware. Here, a software solution TryL is proposed with shared variables 
and atomic read and write operations, based on Lamport’s fast mutual exclusion algorithm [13]. In branching time temporal 
logic, CTL, however, TryL does not implement system Try. The implementation is valid only in linear time temporal logic, 
LTL. The fact that CTL rejects a suitable implementation of system Try, while LTL accepts it, provides an example where LTL 
is to be preferred over CTL in concurrency verification. This is in line with the arguments of Vardi and Nain [19,17].

The LTL proof of validity of the implementation is based on simulation, in several phases. The first phase is a standard 
analysis of the invariants of the algorithm. The second phase consists of proofs of two progress properties of the algorithm. 
This is done with UNITY logic [2,16]. Note that UNITY logic can be expressed in LTL. In some sense [11], it is even equivalent 
to LTL.

The third phase deals with the problem that the construction of a simulation requires a prophecy of future behaviour. 
Abadi and Lamport [1] have introduced prophecy variables for this purpose. Prophecy variables are based on König’s Lemma, 
have restricted applicability, and induce rather complicated proof obligations. We therefore prefer to use an eternity variable 
[6,8,9]. Eternity variables have been applied earlier, e.g., in [5,7], but the present application is more illustrative.
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The construction of a prophecy by means of an eternity variable is not enough, because it turns out that the crucial 
command is often executed by the wrong thread. The fourth phase consists of a refinement mapping with a subtle pas de 
deux of two threads to correct the mismatch.

The proof has been verified with the proof assistant PVS [18]. The proof script is available at [10]. For the sake of 
readability, there are minor differences between the presentation here and the proof script.

System TryL has been used previously in the construction of the Triangle Algorithm [12], a mutual exclusion algorithm 
that is very efficient both under high contention and under low contention.

This case studies combines and illustrates several aspects of the treatment of shared-variable fine-grain concurrency: 
temporal logic, simulation, theorem proving, and UNITY.

Overview

Specification Try is presented in Section 2. In Section 3, the implementation TryL of Try is given. In Section 4, it is shown 
that TryL does not implement system Try in branching time temporal logic. This section also introduces the linear-time 
theory of specifications and simulations that is needed. Section 5 proves that TryL implements Try in LTL, in the four phases 
described above. Conclusions are drawn in Section 6.

Acknowledgments. The fruitful collaboration with Peter Buhr and Dave Dice on efficiently implementable mutual exclusion 
algorithms is gratefully acknowledged. The present paper is a theoretical offshoot of this work. The draft version of this 
paper has been greatly improved due to suggestions of the anonymous reviewers.

2. The system Try

In a shared-memory system with a finite number of threads, system Try offers functions trylock and unlock; a call of 
trylock(p) tries to obtain exclusive access for thread p, it does not wait, and returns a boolean to indicate its success. The 
second function unlock releases the lock. The typical application is that every thread is in the loop

loop of thread p:
NCS ;
if trylock(p) then

CS ;
unlock(p)

endif
endloop .

Here NCS and CS are program fragments, CS stands for the critical section in which never more than one thread is allowed, 
NCS stands for the noncritical section. CS is supposed always to terminate, NCS need not terminate. CS and NCS do not refer 
to variables that are used in the implementation of trylock and unlock.

We take thread as the set of the thread identifiers, a finite subset of the integers. The system can be specified by means 
of a shared specification variable:

shared variable
mu : thread⊥ = ⊥ ;

trylock(p : thread) : boolean =
〈 if mu= ⊥ then mu := p ; return true else return false endif 〉 .

unlock(p : thread) = 〈 mu := ⊥ 〉 .

This functionality is the same as for tryLock in Java; similar functions exist for pthreads. The abstract variable mu is called 
the mutex. If mu �= ⊥, its value is the identifier of the thread with exclusive access. The angular brackets indicate that the 
actions enclosed are performed atomically, i.e., without interference.

Thread p is only allowed to call unlock when it holds the mutex, i.e., when mu = p. When it holds the mutex, it must 
not call trylock, but it must call unlock eventually.

The system Try can be implemented practically with a compare-and-swap instruction. This implementation is called 
TryH, with the letter H for hardware. Below, we give a software implementation TryL of system Try, based on the use of 
variables with atomic read and write instructions.

3. Implementing system Try, following Lamport

The system TryL, proposed now, implements system Try of Section 2. It is derived from Lamport’s fast algorithm [13].
2
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shared variables
x : thread ;
y : thread⊥ = ⊥ ;
bb[thread] : bool = (false, . . . ) .

trylockL(p : thread) : boolean =
if y �= ⊥ then return false endif ;
bb[p] := true ;
x := p ;
if y �= ⊥ then

bb[p] := false ; return false endif ;
y := p ;
if x= p then return true endif ;
bb[p] := false ;
for each kk ∈ thread while y= p do

await y �= p ∨ ¬bb[kk] endfor ;
return (y= p) .

unlockL(p : thread) =
y := ⊥ ;
bb[p] := false .

A proof of correctness is given in Section 5.
The entry function can be explained as follows. If there is no interference, thread p sets x := p, observes x = p, and 

returns true. In case of contention, the last thread that sets x := p, may observe y �= ⊥, and fail. In that case, the last thread 
that has set y := p waits in its for loop until all competing threads have failed, and then returns true.

The initial test of y �= ⊥ is necessary to preclude livelock. Indeed, if the initial test y �= ⊥ is removed, there is the 
following livelock scenario. It starts with y= ⊥ and all threads idle. Two threads p1 and p2 call trylock and proceed to the 
assignment of y. At this point x= p2, say. Then p2 does the assignment to y, and its call of trylock succeeds. It calls unlock
and resets y := ⊥. Then p1 sets y := p1. As x= p2 �= p1, thread p1 enters the for loop with y= p1. Here the cycle starts. 
Thread p2 calls trylockL. As the initial test is absent, the thread sets bb[p2]. Then thread p1 tests bb[kk] with kk = p2, 
and remains waiting. Then p2 observes y �= ⊥, resets bb[p2], and becomes idle. This cycle is repeated indefinitely. Thread 
p2 modifies bb[p2] infinitely often, and thread p2 cannot proceed because it always finds bb[p2] = false. As y = p1 �= ⊥
remains true, every subsequent call of trylockL by any thread fails. This is livelock.

Lamport’s algorithm [13] is a mutual exclusion algorithm with essentially

acquire(p) ≈
while ¬ trylock(p) do pause() endwhile .

In the code of [13], the initial test of y �= ⊥ is absent, and livelock is precluded by placing the test y �= ⊥ at other points.
A second, less important deviation from Lamport’s code is the disjunct y �= p in the await condition. If this disjunct 

is omitted, a thread can be kept indefinitely in the waiting loop, giving starvation, see [12, Section 3.2]. The condition 
while y= p is added only for performance. These two modifications are useless in the context of Lamport’s algorithm.

If one wants to implement the algorithm on current hardware, one has to reckon with the fact that compilers and 
hardware optimize programs as if they are sequential. Code for concurrent algorithms therefore needs additional directives 
to prevent incorrect optimizations. How this is done for the present algorithm is explained in [12, Section 6].

4. Some theory

The question whether TryL implements Try depends on the type of temporal logic one uses. The answer is no in branch-
ing time temporal logic, but yes in linear time temporal logic. Branching time is treated in Section 4.1. Section 4.2 introduces 
linear time. The specification formalism is given in Section 4.3. This section also treats invariants, and the way to find and 
prove them. Section 4.4 introduces simulation relations between specifications. Finally, eternity variables are introduced in 
Section 4.5.

4.1. Branching time

In branching time temporal logic, more specifically in CTL [3], the system TryL does not implement system Try. In 
CTL, computation tree logic, the computation of the algorithm is represented by a tree, rooted in the start state, in which 
every nondeterministic choice gives rise to branching. In CTL, one might prove that system TryL implements system Try by 
showing that the systems are (weakly) bisimilar. To show that they are not (weakly) bisimilar, and even that TryL does not 
implement Try, it suffices to give a CTL formula that holds for TryL and is invalid for Try.
3
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In CTL, EFϕ means that there is a directed path in the computation tree from the present node to a node where ϕ
holds. Let there be three threads p1, p2, p3 that each call trylock once. The winner is the first thread that obtains the 
mutex. Let w(p) express that thread p is the winner, and t(p) that the call of thread p has terminated. It is clear that these 
propositions should be observable. Consider the CTL-formula

� : EF(t(p1) ∧ EFw(p2) ∧ EFw(p3))

Formula � expresses that a path exists from the root to a node where thread p1 has terminated, and where two paths 
continue, one towards a node where p2 is the winner and one towards a node where p3 is the winner.

�• •
root t(p1)

����

����

•

•

w(p2)

w(p3)

In the systems Try and TryH, formula � is false, because when thread p1 has terminated, the mutex mu has some value 
�= ⊥, so that the winner is determined, although this may not yet be observable.

In system TryL, however, formula � is true. This is shown in the following scenario, with one additional thread p4. 
Initially y= ⊥. The threads enter. Thread p1 proceeds to the assignment x := p; the threads p2, p3, p4 proceed to the first 
assignment y := p. Then p4 executes y := p. Subsequently p1 does x := p, establishing x = p1. It then observes y = p4, 
fails and terminates, establishing t(p1). Now the winner will be p2 or p3, dependent on which of the two does the last 
assignment to y. Therefore � holds.

As � is a CTL-formula about the observable tree of the system and is valid for TryL but not for Try, system TryL does not 
implement Try for branching time temporal logic.

4.2. LTL, linear time temporal logic

In LTL, computations are infinite sequences of consecutive states. Some notation is needed to reason about these se-
quences. If X is a set (a state space), let Xω be the set of the infinite sequences xs of elements of X , regarded as functions 
N → X . If xs ∈ Xω and k ∈ N , the kth suffix of xs is defined as the sequence (xs|k) with (xs|k)(n) = xs(k + n). Let P (X)

denote the set of the subsets of X , identified with the predicates on X . For P ∈ P (X) and R ∈ P (X2) and U ∈ P (Xω), one 
defines

[P ] = {xs ∈ Xω | xs(0) ∈ P } ,
[R] = {xs ∈ Xω | (xs(0), xs(1)) ∈ R} ,�U = {xs ∈ Xω | ∀ k : (xs|k) ∈ U } ,�U = {xs ∈ Xω | ∃ k : (xs|k) ∈ U }

A state sequence xs satisfies a relation R under weak fairness iff it always holds that eventually R is taken by xs or is disabled. 
This is formally expressed in

weakFair(R) = ��([R] ∨ [dis(R)]) ,

where dis(R) = {x ∈ X | ∀ y ∈ X : (x, y) /∈ R}. The leads-to relation of UNITY [2,16] is defined by

(P 
→ Q ) = �(¬[P ] ∨ �[Q ]) .

4.3. Computational definitions

The following definitions are more liberal than those of [8] to avoid unnecessary proof obligations. Indeed, the additional 
requirements of [8] can be regarded as healthiness conditions that are usually satisfied automatically in the applications.

A specification K is a tuple (X, X0, N, P ) where X is a set, X0 is a subset of X , N is a binary relation on X , and P is 
a subset of Xω , the set of the infinite sequences over X . The set X is called the state space, the elements of X0 are called 
initial states, relation N is called the next-state relation, and P is called the supplementary property.

The pairs in relation N are called steps of the specification. An initial execution of K is an infinite sequence xs of elements 
of X with xs(0) ∈ X0, such that every pair of consecutive elements is a step. A behaviour of K is an initial execution that 
also belongs to P . Therefore, the set of behaviours of K is Beh(K ) = [X0] ∩ �[N] ∩ P . A predicate Q ∈ P (X) is called an 
invariant of K if it contains all states of all behaviours of K .

A subrelation of the next-state relation N is called a command. For a command S and predicates P and Q , the Hoare 
triple {P }S{Q } is the proposition that

∀ x, y : (x, y) ∈ S ∧ x ∈ P ⇒ y ∈ Q , or equivalently
[P ⇒ wp(S, Q )] ,
4
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where wp stands for Dijkstra’s weakest precondition.
A predicate P is said to be preserved by command S iff {P }S{P }. Predicate P is called stable if it is preserved by N . A 

predicate is called inductive iff it is stable and holds initially. Every inductive predicate is an invariant. A predicate implied 
by an inductive predicate is an invariant; it is called a forward invariant.

A predicate P is said to be threatened by a command S iff it is not preserved by S . If predicate P is threatened by 
command S , a predicate Q is called a remedy for P and S iff {P ∧ Q }S{P }.

Let C be a set of commands such that N = ⋃
C . If one has a family of predicates such that any member of the family 

that is threatened by any command in C , has some remedy consisting of members of the family, then the conjunction of 
the family is stable. If moreover all members hold initially, the conjunction is inductive, and each member of the family is 
a forward invariant. This is the method used below to obtain and prove forward invariants.

When one invokes the proof assistant to prove that command S preserves predicate P , it essentially calculates the 
weakest remedy. In terms of Dijkstra’s weakest precondition wp, this is ¬P ∨ wp(S, P ), because, for every Q ,

[P ∧ Q ⇒ wp(S, P )] ≡ [Q ⇒ ¬P ∨ wp(S, P )] .

Human intelligence, however, is needed to replace the weakest remedy by a remedy that is both manageable and provable.

4.4. Relating specifications

The principal way to relate specifications is by means of (strict) simulation relations, which formalize that the first 
specification implements the second one.

Let K = (X, X0, N, P ) and L = (X ′, X ′
0, N

′, P ′) be specifications. A relation F between X and X ′ is called a strict simulation
[8] from K to L if, for every xs ∈ Beh(K ), there exists ys ∈ Beh(L) with (xs(n), ys(n)) ∈ F for all n. In this paper, we can avoid 
the non-strict simulations of [8].

The composition of strict simulations is a strict simulation. Therefore simulations can be constructed in phases. For the 
phases, two constructions are available, refinement functions and extensions.

Let a function f : X → X ′ be called a refinement function from K to L iff, for every behaviour xs of K , the composition 
f ◦ xs is a behaviour of L. If f is a refinement function, its graph {(x, f (x)) | x ∈ X} is easily seen to be a strict simulation.

Abadi and Lamport [1] defined f : X → X ′ to be a refinement mapping from K to L iff it satisfies f (x) ∈ X ′
0 for every 

x ∈ X0, and ( f (x), f (y)) ∈ N ′ for every pair (x, y) ∈ N with x ∈ J and y ∈ J for some invariant J of K , and has f ◦ xs ∈ P ′
for every behaviour xs of K . It is easy to prove that every refinement mapping is a refinement function; the converse 
implication does not hold.

Let g be a function X ′ → X . Specification L is called an extension of K by g iff
(a) g is a refinement function from L to K ,
(b) for every xs ∈ Beh(K ), there is us ∈ Beh(L) with xs = g ◦ us.

If L is an extension of K by g , condition (b) implies that the cograph G given by G = {(g(u), u) | u ∈ X ′} is a strict 
simulation from K to L. Condition (a) ensures that no information is lost by going from K to L.

4.5. Eternity extensions

In order to prove that TryL implements Try, variables are needed that somehow prophesy future behaviour. Eternity 
extensions serve to make this possible and sound. They were introduced and treated in [5,8]. An eternity extension just 
adds an eternity variable to a specification. This variable gets its constant value initially, by a nondeterministic choice that 
is guided by the behaviour restriction. The formal definition is as follows.

Let K = (X, X0, N, P ) be a specification, and let M be an arbitrary set. A relation R ⊆ X × M is called a behaviour 
restriction of K at M iff, for every behaviour xs of K , there exists a value m ∈ M such that

∀ n ∈N : (xs(n),m) ∈ R .

Let fst : R → X be the projection function to the first component. Let R be a behaviour restriction of K at M . The corre-
sponding eternity extension W is defined as the specification W = (R, R0, N ′, P ′) with R0 = {(x, m) ∈ R | x ∈ X0} and

((x,m), (x′,m′)) ∈ N ′ ≡ (x, x′) ∈ N ∧ m = m′ ,

and P ′ = {ws ∈ Rω | fst ◦ ws ∈ P }. It is easy to verify that W is an extension of K by fst, see [8, Thm. 4.1]. Indeed, the 
definitions imply that every behaviour of W is mapped by fst to a behaviour of K . Conversely, as R is a behaviour restriction, 
for every behaviour xs of K , there is a value m ∈ M , such that ws given by ws(n) = (xs(n), m) for all n, is a behaviour of W , 
mapped by fst to xs.

Example. Let K be the specification with two shared integer variables i and n, both initially 0. There are two threads that 
under weak fairness concurrently do
5
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p0: loop 〈 if i= 0 then i := 1 endif 〉 endloop ,
p1: loop 〈 if i= 0 then n := n+ 1 endif 〉 endloop .

In this system, eventually, p0 does a step. After this step, both threads are disabled. Therefore, eventually, n has a constant 
value. An eternity extension can be used to prophesy this value. Indeed, take M =N . Let relation R be given by

((i,n),m) ∈ R ≡ i= 0 ∨ n= m .

It is easy to verify that R is a behaviour restriction: for any behaviour of K , one can choose for m the final value of n.

5. The simulation of Try by TryL

In this section, we prove that system TryL implements system Try. The specifications of Try and TryL are given in 
Sections 5.1 and 5.2. They are fairly similar. In both cases, all threads p have the same program, given by a list of atomic 
statements with consecutive line numbers. The current line number of thread p is given by the program counter pc.p. At 
each command of p, the value of pc.p is incremented with 1, unless it is modified because of an if, while, or goto statement. 
Every step of the algorithm leaves the state unchanged or is the state change induced by a single step of a single thread.

For both specifications, the boolean result of the function trylock is encoded in the location. This is possible, because 
when thread p has obtained a result true, the thread must eventually call unlock. Between the function calls the thread is 
either idle, i.e., at the noncritical section NCS, or, when it has obtained the result true, at the critical section CS.

The observable state of each thread thus has one of four possible values: 0 when the thread is at NCS, 1 when the thread 
is trying to enter, 2 when the thread is at CS, 3 when the thread is exiting from CS. When trylock returns false, the thread 
goes from observable state 1 to observable state 0. The observation space is therefore the set of functions from thread to 
{0, 1, 2, 3}.

The state space X of the specification consists of all possible value assignments to the shared and private variables, as 
declared, including pc. Let stepk(p) be the set of pairs (x, y), such that state x is transformed into state y when thread p
executes line k of the program. At the lines k0 of NCS and k1 of CS, nothing more is done than incrementation of pc.p. Put 
step(p) = ⋃

k stepk(p). Initially, pc.p = k0 for all threads p. The next-state relation N is given by

(x, y) ∈ N ≡ x = y ∨ ∃ p : (x, y) ∈ step(p) .

Therefore, step(p) and stepk(p) are commands in the sense of Section 4.3.
The supplementary property expresses weak fairness: every thread always eventually does a step unless it is at NCS or 

is disabled. Indeed, a thread at NCS is allowed to do a step and go to the next line, but it is not expected to do so. Formally, 
the supplementary property is defined by

(0) prop = ∀ p : weakFair(fwd(p)) ,

where fwd(p) = ⋃
k �=k0

stepk(p).

5.1. The abstract specification Try

Specification Try of Section 2 is formalized as follows.
The state space consists of the tuples (mu, pc, c), where c is a private variable to hold the return value of trylock, and 

pc is the program counter. Initially mu = ⊥ and pc.p = 10 and c.p = false for all threads p. We use k0 = 10 and k1 = 13. 
The loop of Section 2 together with the abstract specification of the functions trylock and unlock gives rise to the following 
transition system for thread p:

10 NCS ;
11 if mu= ⊥ then mu := p ; c := true endif ;
12 if ¬ c then goto 10 endif ;
13 CS ;
14 mu := ⊥ ; c := false ;
15 goto 10 .

Here, and henceforth, each numbered line is an atomic command. The dummy locations 12 and 15 are introduced, because 
after commands 11 and 14 the result need not be immediately observable.

Specification Try has the obvious invariant c.p = (mu = p). One can therefore restrict the state space to the set where 
this invariant holds, replace line 12 by

12 if mu �= p then goto 10 endif ,

and remove the private variable c. This simplifies the specification.
6
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5.2. The specification of TryL

Specification TryL of Section 3 is formalized as follows. The shared variables are

x : thread ;
y : thread⊥ = ⊥ ;
bb : array [thread] of bool = (false, . . . ) .

We use k0 = 20 and k1 = 33. The code is translated into the transition system for thread p:

20 NCS ;
21 if y �= ⊥ then
22 goto 20 endif ;
23 bb[p] := true ;
24 x := p ;
25 if y �= ⊥ then
26 bb[p] := false ; goto 20 endif ;
27 y := p ;
28 if x �= p then
29 bb[p] := false ; lis := allthreads ;
30 while lis �= ∅ ∧ y= p do

choose some kk ∈ lis ;
31 await y �= p ∨ ¬bb[kk] ;

remove kk from lis endwhile ;
32 if y �= p then goto 20 endif endif ;
33 CS ;
34 y := ⊥ ;
35 bb[p] := false ; goto 20 .

In comparison with the version given in Section 3, line numbers have been added, and a set-valued private variable lis, 
which holds the threads kk for which the loop body 31 has not yet been executed. In line 29, allthreads stands for the set 
of all threads. We introduce the notations

q at � ≡ pc.q = � ,
q in L ≡ pc.q ∈ L ,

if � is a line number and L is a set of line numbers.
Unfortunately, the proof that TryL refines Try needs (in Section 5.3) one critical invariant of the system TryL. This in-

variant depends on mutual exclusion. We therefore first prove mutual exclusion for TryL. Indeed, mutual exclusion holds. In 
fact, something stronger is valid: there are never two different threads both in the lines 33 and 34:

Pq0: q in {33 . . . 34} ∧ r in {33 . . . 34} ⇒ q = r .

This is proved by means of a family of nine predicates. The proof is roughly the same as the proof given in a more 
complicated setting in [12, Section 4.2].

Predicate Pq0 is threatened only by the commands of the lines 28 and 32. Remedies for these commands (see Section 4.3) 
are, respectively, the predicates

Pq1: q in {27 . . . 28} ∧ r in {33 . . . 34} ⇒ x �= q ,
Pq2: q at 32 ∧ y= q ∧ r in {27 . . . 34} ⇒ r in {29 . . . 32} .

Predicate Pq1 is threatened only by the commands 25 and 32. Pq2 is a remedy for command 32. A remedy for command 25 
is

Pq3: q in {33 . . . 34} ⇒ y �= ⊥ .

Predicate Pq2 is threatened only by command 30. A remedy is the predicate

Pq4 : q in {30 . . . 31} ∧ y= q ∧ r in {27 . . . 34}
⇒ r in {29 . . . 32} ∨ r ∈ lis.q .

Predicate Pq3 is threatened only by the commands 28 and 34. Pq0 is a remedy for command 34. A remedy for command 28 
is
7
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Pq5: q at 28 ∧ x= q ⇒ y �= ⊥ .

Predicate Pq4 is threatened only by command 31. A remedy is formed by

Pq6 : q in {24 . . . 29} ⇒ bb[q] ,
Pq7 : q in {33 . . . 34} ⇒ bb[q] ∨ y= q .

Predicate Pq5 is threatened only by command 34. A remedy is Pq1. Predicate Pq6 is inductive. Predicate Pq7 is threatened 
only by the commands 27, 28, and 34. Remedies for commands 28 and 34 are Pq6 and Pq0, respectively. A remedy for 
command 27 is the new predicate

Pq8 : q at 27 ∧ r in {33 . . . 34} ⇒ bb[r] .

Predicate Pq8 is threatened only by the commands 25, 28, and 32. Remedies are Pq3, Pq6, and Pq2, respectively. It follows 
that the conjunction Pq* of the nine predicates is stable. As they all hold initially, the conjunction Pq* is inductive. Therefore 
all these predicates are forward invariants. This concludes the proof of mutual exclusion: Pq0.

The refinement proof also needs progress of system TryL. To prove this, we first note the inductive invariants

Qq0 : y= q ⇒ q in {28 . . . 34} ,
Qq1 : bb[q] ⇒ q in {24 . . . 29} ∪ {33 . . . 35} .

States where the invariants do not hold are irrelevant for the algorithm. They are therefore removed from the state space. 
This is formalized by introducing a specification TryL1 that only differs from TryL in its smaller state space. It has the same 
behaviours as TryL. Formally speaking, the identity function is an extension from TryL to TryL1.

The next thing is to prove that TryL1 has the progress property

(1) ��[y= ⊥] .

This formula means that in every behaviour every state with y �= ⊥ is followed eventually by a state where y = ⊥. It is 
proved as follows. Consider a state with y �= ⊥. In this and all following states, let S hold the set of the threads in {23 . . . 35}. 
If y �= ⊥, then S is nonempty because of Qq0. As long as y �= ⊥ holds, the set S cannot grow because of the test in line 21; 
the set S can only shrink. Now consider the function

vf (p) = 37 − pc.p + 2 · (pc.p < 30? #allthreads : #lis.p) .

If p ∈ S then vf (p) > 0. Whenever thread p ∈ S does a step and remains in S , it decreases vf (p) because the forward steps 
increase pc.p and the backward step from line 31 decreases #lis.p. Therefore, the sum vf = ∑

p∈S vf (p) decreases in every 
step of elements of S . Let S ′ be the subset of S of the threads that are enabled, i.e.,

S ′ = {q ∈ S | q at 31 ⇒ y �= q ∨ ¬bb[kk.q]} .

If the set S is nonempty, then S ′ is nonempty because of Qq1. If a step of some thread p modifies S ′ , then p ∈ S ′ and the 
step decreases vf . It follows that every thread q ∈ S ′ is continuously enabled until some thread p ∈ S ′ decreases vf .

In UNITY [2,16], an assertion P ensures Q means that, if P holds, this remains true unless Q holds, and that the system 
has a command that is continuously enabled while P ∧ ¬Q holds, and that establishes Q .

In the present case, the formal argument is

q ∈ S ′ ∧ vf ≤ k + 1 ∧ y �= ⊥ ensures vf ≤ k ∨ y= ⊥ .

Indeed, thread q ∈ S ′ remains enabled until it decreases vf or y= ⊥. Using the fact that ensures implies 
→ (leads-to), and 
the union rule for 
→, one obtains

vf ≤ k + 1 
→ vf ≤ k ∨ y= ⊥ .

By transitivity of 
→ and another application of the union rule, one obtains true 
→ y= ⊥, or equivalently ��[y= ⊥].
Finally, every thread p is always eventually idle, that is: true 
→ p at 20, or equivalently

(2) ��[p at 20] .

Indeed, if thread p is not at line 20, by weak fairness it proceeds until it is disabled at line 20 or line 31. If it waits at line 
31, eventually y becomes ⊥, and hence y �= p. The latter predicate remains true. Therefore, from then onward, thread p is 
continuously enabled and proceeds to line 20.

The progress properties (1) and (2) are valid only because of the modifications of Lamport’s code [13] mentioned at the 
end of Section 3. An alternative would be to postulate strong fairness.
8
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5.3. How to construct a prophecy?

Specification TryL uses the variable y as a gate, which is closed if and only if y �= ⊥. When the gate is open, y= ⊥, the 
first thread that executes line 27 closes the gate. In specification Try, the variable mu has the same role. TryL is therefore 
extended with a ghost variable mu that gets its value when the first thread executes line 27. In system Try, the value mu
gets, is the thread that succeeds. In TryL, this thread has not yet been decided. Therefore, a prophecy of the succeeding 
thread needs to be constructed.

For this purpose, first, shared history variables time and log are introduced, such that log holds the sequence of 
consecutive threads that have succeeded, and time holds their number, as a discrete notion of time. So, initially time= 0
and log is the empty sequence, and these variables are modified (only) in the extended line

34 y := ⊥ ; log(time) := p ; time++ ;

Specification TryL1 is thus extended to specification TryL2 with additional variables log and time. The natural relation 
between the state spaces of TryL and TryL2 is the one where the common variables have the same values, while log and 
time are ignored. This relation is an extension from TryL1 to TryL2, a so-called history extension.

The next phase is to introduce an eternity extension. Let M be the set of the infinite sequences of threads. Let BR be the 
relation between the state space of TryL2 and M given by

(x,m) ∈ BR ≡ ∀ n : n < x.time ⇒ x.log(n) = m(n) .

As time never decreases and the values log(n) with n < time are never modified, every behaviour of TryL2 determines 
a unique finite or infinite limit sequence log. If the sequence is infinite, it determines m by BR; if it is finite, it can be 
extended to an infinite sequence m that satisfies BR. This proves that predicate BR is a behaviour restriction. The state space 
can therefore be extended with M while assuming validity of BR. This results in an eternity extension [8], a strict simulation 
from TryL2 to TryL3. In specification TryL3, we have the ghost variables log, time, and m, and they are connected by 
predicate BR.

The next phase is to introduce a ghost variable mu, initially equal to ⊥ which is modified in the lines 27 and 34.

27 y := p ; if mu= ⊥ then mu := m(time) endif ;
34 y := ⊥ ; log(time) := p ; time++ ; mu := ⊥ ;

Here, m(time) can be regarded as the prophecy of log(time).
The ghost variable mu satisfies the obvious inductive invariants

Mq0: mu �= ⊥ ≡ y �= ⊥ ,
Mq1: mu �= ⊥ ⇒ mu= m(time) .

Less obvious is the invariant that expresses that the value mu received in line 27, is a correct prophecy of the succeeding 
thread:

Bq0: q in {33 . . . 34} ⇒ mu= q .

This predicate is proved as follows. Bq0 holds trivially if q is at line 20. By property (2), every state is followed eventually 
by a state where Bq0 holds. By Section 4.3, it therefore suffices to prove that

(3) (u, v) ∈ step(p) ∧ Bq0(q, v) ⇒ Bq0(q, u) .

Here, we make it explicit that the predicate is about q and about either the post-state v or the pre-state u, and that p is 
the thread that performs the step. Moreover, in the proof of this implication, we may use that u and v satisfy the invariants 
that have been established earlier. Note that state variables u and v are used to avoid confusion with the program variables 
x and y.

Implication (3) holds trivially for all steps of thread p, except for the steps at line 34 and 27. The step at line 34 uses 
that the post-state v satisfies BR, in particular m(t) = log(t) = p for the value t of time in the pre-state. Moreover, the 
pre-state u satisfies mu= m(time) because of Pq3, Mq0, and Mq1. The proof for line 27 is easier; it only uses Pq3 and Mq0. 
Note, that the invariant Pq3 introduced in Section 5.2 is used here, twice.

Predicate Bq0 is called a backward invariant because of the proof by means of Formula (3).
There is one other backward invariant:

Bq1: mu= q ⇒ q in {27 . . . 34}
∧ (q in {29 . . . 32} ⇒ y= q)

∧ (q at 28 ⇒ x= q ∨ y= q) .
9
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The proof is similar to the proof of Bq0. The predicate holds always eventually because of Formula (1) and Mq0. The 
backward step relation analogous to Formula (3) holds because of Mq0 and Bq0.

5.4. The construction of the refinement mapping

In line 27, as refined in Section 5.3, the variable mu gets the value of the thread that gets access to the critical section 
because of Bq0. The assignment to mu, however, is done by the thread that is the first to modify y. This is not necessarily 
the thread that eventually gets the mutex, as it is the case in specification Try. If these two threads differ, we must somehow 
swap the roles of them; a modest application of Lamport’s dictum “Processes are in the Eye of the Beholder” [14].

In order to prepare the swapping, we introduce a ghost variable nu, which has to be swapped with mu. This variable is 
initially ⊥. It holds the number of the first thread that has executed line 27, as long as this thread is at line 28 and thread 
mu has not yet executed line 27. Therefore, the lines 27 and 28 become

27 y := p ;
if mu= ⊥ ∧ m(time) �= p then nu := p
elsif mu= p then nu := ⊥ endif ;
if mu= ⊥ then mu := m(time) endif ;

28 if nu= p then nu := ⊥ endif ;
if x= p then goto 33 endif ;

Note that, complicated as they are, the lines 27 and 28 are still executed atomically. This is possible because mu and nu are 
ghost variables (used in the proof, but omitted in implementation). In this way one obtains the specification TryL4 with the 
obvious extension from TryL3 to TryL4. The composition of extensions is an extension. Therefore specification TryL4 is an 
extension of TryL by the projection function that forgets the auxiliary variables log, time, m, mu, and nu. This extension 
induces a strict simulation from TryL to TryL4.

The variable nu in TryL4 satisfies the invariants

Nq0: nu �= ⊥ ⇒ nu at 28 ,
Nq1: nu �= ⊥ ⇒ mu �= ⊥ ∧ mu at 27 .

Indeed, Nq0 is inductive. Predicate Nq1 is a forward invariant which is threatened only by the commands 27 and 34. It is 
preserved by command 34 because of Bq0. It is preserved by command 27 because of Pq3, Pq4, and Mq0, and because Bq1
holds in the post-state.

Now everything is prepared to construct the refinement mapping from TryL4 to specification Try of Section 5.1, with 
private variable c eliminated. This is the function f that maps a state x of TryL4 to the state u of Try given by

u.mu= x.mu ,
u.pc.q = mpc(x.pc.q, x.mu= q, x.nu= q) where

mpc(k,b1,b2) =
(k = 20 ? 10
: 33 ≤ k ? k − 20
: k = 27 ∧ b1 ? 12
: k = 28 ∧ b2 ? 11
: k = 22 ∨ k = 26 ∨ 28 ≤ k ? 12
: 11 ) .

Here the booleans b1 and b2 serve in swapping the actions of mu and nu.
The correspondence between the line numbers of TryL4 and Try is suggested by lines between the two transition systems 

in the diagram. To avoid cluttering of arrows the letter Z represents NCS. Circles indicate the critical sections.

TryL4:
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23 24 25

Z 26�

27 28

11 12

29 30
	� 	

Z31

32

33

13

34

14

35

15

Z

Z� � �
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	 	 	 �

It is clear that function f maps start states of TryL4 to start states of Try. The hard work is to show that it maps steps 
of TryL4 to steps of Try.
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For the step of thread p at line 27 there are four different cases:
1. Under the precondition mu= ⊥, it is mapped to the step of Try from line 11 by the thread m(time). This assertion uses 
the invariants Pq3, Pq5, Mq0, Bq1, Nq1.
2. Under the precondition mu= p ∧ nu �= ⊥, it is mapped to step 11 of thread nu because of Nq0.
3. Under the precondition mu �= p ∧ mu �= ⊥, it is mapped to the step 11 of p because of Nq0.
4. In the case of the remaining precondition mu= p ∧ nu= ⊥, it is mapped to skip (no state change).

All other steps of thread p in TryL4 are mapped to skip or steps of p in Try. In particular, the steps of thread p from line 
28 are mapped to steps of p from lines 11 or 12, when nu= p or x= p, respectively, because of Bq0 and Nq1.

The steps of p from lines 21 and 25 when y �= ⊥ are mapped to the step from 11 because of Mq0. These steps are 
mapped to skip when y= ⊥ (in the second case because of Bq1).

The steps from lines 22 and 26 are mapped to steps from line 12 because of Bq1. The step from line 32 is mapped to 
the step from line 12 because of Bq0 and Bq1. The step from line 34 is mapped to the step from line 14 because of Bq0.

The remaining steps need no invariants. All steps of p to line 20 are mapped to steps of p from lines 12 or 15 to line 
10. The step from line 33 is mapped to the step from lines 13. All other steps are mapped to skip.

It remains to show that every behaviour xs of TryL4 is mapped to a state sequence of Try that satisfies the supplementary 
property of Try. Let sequence us be the image of the sequence xs. Let p be a thread. By Formula (0), it suffices to prove 
that us is weakly fair for fwd(p). Behaviour xs satisfies ��[p at 20] by Formula (2). Therefore, the sequence us satisfies ��[p at 10]. As fwd(p) is disabled at line 10, it follows that fwd(p) is always eventually disabled. This proves that us is 
weakly fair for fwd(p).

This concludes the proof that the function x 
→ u is a refinement mapping from TryL4 to Try. Composing it with the 
strict simulation from TryL to TryL4, one thus obtains:

Theorem. There is a strict simulation from system TryL to system Try.

6. Conclusions

Branching time temporal logic, CTL, rejects the useful implementation relation between TryL and Try, which is accepted 
by LTL, linear temporal logic. This supports the opinion of Vardi and Nain [19,17], that LTL is to be preferred over CTL in 
concurrency verification. The present case study further indicates that, in cases where a simulation relation for CTL does not 
exist, the construction of an LTL simulation may need prophecy or eternity variables.

Abadi and Lamport [1] used König’s lemma to justify prophecy variables. This lemma is also used for the backward 
simulations of Lynch and Vaandrager [15]. Therefore, the soundness of prophecy variables or backward simulations imposes 
finiteness conditions that limit the applicability and imply heavy proof obligations, compare [6]. We therefore prefer eternity 
variables. They are easier to prove sound and have wider applicability.

The mechanical proof, done with the proof assistant PVS [18], deviates marginally from the proof rendered here, for the 
sake of readability of the paper and simplicity of the proof script. The proof script is available at [10], but can only be 
advised for readers with a working version of PVS. The proof assistant was in particular indispensable for the treatment of 
the invariants and the final refinement mapping.
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