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Nosocomial infections by drug-resistant 
gram-negative bacteria and Staphylococcus 
aureus—especially methicillin-resistant 
S. aureus (MRSA)—impose a huge public 
health threat [1]. Mortality increases if ini-
tial antimicrobial therapy is inappropriate 
[2]. Doctors are aware of this daunting per-
spective, and fueled by their fear to leave 
such organisms uncovered, they often feel 
seduced to prescribe excessive, and some-
times, even inappropriate antimicrobials 
[3]. The ensuing cumulative antimicro-
bial pressure has long been recognized as 
the main driver of drug resistance [4, 5]. 
A policy to use reserve antimicrobials in a 
cycling pattern, rather than in a random, 
mixed pattern, does not help to reduce 
bacterial resistance in the high-risk en-
vironment of Intensive Care Units (ICU) 
[6]. In Dutch ICUs, oral and intestinal 
nonresorbable antimicrobials—colistin, 
tobramycin and amphotericin—combined 
with systemic cefotaxime for 4 consecutive 
days—resulted in a small but significant 
survival advantage [7]. However, in ICUs 
with a high pressure of resistant bacteria, 
selective digestive decontamination did 
not reduce blood stream infections caused 
by these bacteria, compared to standard 

care, chlorhexidine mouth and skin treat-
ment, or oral selective decontamination 
[8]. Education on the risks of antimicro-
bial pressure, with instructions on updated 
guidelines for the treatment and preven-
tion of nosocomial infections do not in-
variably address the emotional component 
of prescribers. 

“Antimicrobial Stewardship,” a term 
that has been used for more than 2 
decades now [3], has been designed 
to address both cognitive, or intellec-
tual, and emotional factors, that make 
prescribers change their behavior [9]. 
Antibiotic Stewardship Programs (APS) 
that included a direct feedback to pre-
scribing clinicians, with information on 
culture and susceptibility results, epi-
demiological information, and updated 
guideline information, seem to work best. 
Two days after starting empirical anti-
microbial treatment, by the time culture 
and susceptibility testing are available, 
a team of hospital pharmacists, clinical 
microbiologists, and infectious disease 
specialists consult with prescribers [10]. 

APS have been shown to reduce anti-
microbial use, both in terms of redu-
cing duration and choice of reserve 
antimicrobials [11]. These programs ap-
pear safe and cost-effective [12], and im-
portantly, help to reduce the burden of 
high-risk pathogens, including resistant 
(extended spectrum beta-lactamase, 
ESBL) gram-negative Enterobacteriaceae, 
and MRSA [13]. These programs might 
be supplemented by acute-phase assess-
ments, (eg, procalcitonin- or C-reactive 

protein-driven decisions to stop anti-
microbial therapy if response to therapy 
seems favorable). Using an algorithm with 
procalcitonin resulted in a significant re-
duction of treatment duration by 2 days in 
one multicenter trial in ICU patients [14]. 

In one study among mechanically 
ventilated ICU patients with suspected 
ventilator-associated pneumonia (VAP), 
undergoing bronchoscopic broncho-
alveolar lavage (BAL), researchers hy-
pothesized that IL-1β and IL-8 in BAL 
might be a good predictor of VAP; they 
advised stopping empirical antimicrobial 
treatment if biomarker levels were below 
a predefined threshold. This approach did 
not result in earlier discontinuation of 
antimicrobial treatment in the interven-
tion group [15]; the authors suspected, 
that emotional factors driving antimicro-
bial use could not be addressed by this 
algorithm. The advice given was perhaps 
smart and safe, but prescribing behavior 
did not change; indeed, stopping a suc-
cessful antimicrobial regimen (“never 
change a winning team”) appears difficult. 
APS surely is an important approach to re-
duce antimicrobial pressure, and thereby, 
to fight ever-increasing antimicrobial re-
sistance. Any time soon, we will be run-
ning out of antimicrobial options, with no 
novel antimicrobial products in the pipe-
line to salvage this problem [16]. A way to 
safely refrain from using reserve drugs in 
empirical antimicrobial treatment for our 
vulnerable patients is to use surveillance 
culture results in individual patients, col-
lected earlier during hospital admission, 
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or general information on surveillance 
data. Using this information, an educated 
guess of the offending micro-organism for 
the current febrile episode can be made, 
to select empirical antimicrobials [17–19]. 
Could we improve the quality of advice on 
empirical antimicrobial treatment using 
machine learning with artificial intelligence 
(AI) software? Computer-aided pattern 
recognition has become an integral part of 
our everyday life. Indeed, AI is involved in 
prioritizing our likes by analyzing our pat-
tern of internet searching using search en-
gines. Even when I check my smart phone, 
it opens by recognizing my face, all the re-
sult of AI software, that recognizes my face 
under different angles, even with light only 
produced by the screen, using machine 
learning that requires only seconds. AI was 
perhaps first introduced by space scientists 
[20], but has become an integral part of our 
everyday life. AI has entered medicine over 
3 decades ago [21], and has impacted on 
a vast array of diagnostic and therapeutic 
decisions [22].

In this issue of the Journal, Ohad Lewin-
Epstein et  al. report a machine-learning 
model to predict antimicrobial resistance to 
5 commonly used antimicrobial agents—
Ceftazidime, Gentamicin, Imipenem-
cilastin, Ofloxacin, and Cotrimoxazole 
[23]. To predict the presence of resistant 
bacteria causing infection to any of these 
drugs, they used a large database of culture 
and susceptibility testing from thousands 
of electronic in-patient records between 
May, 2013, and December, 2015, in the 
Rabin Medical Center in Israel. A  large 
part of the data set was used to train the 
model; they next tested the model in a 
separate batch of medical records. Should 
the prediction models be perfect, the area 
under the receiver-operator curve (AUC) 
would be equal to 1.  Unfortunately, the 
precision of their prediction model was 
less than what we need in the clinic; 
though better than usual care, AUC was 
only around 0.7. Using information of 
the typing of the offending organism, the 
AUC increased to 0.8, but using pheno-
typic culture-based data, this would result 
in a considerable delay to start effective 

treatment. The authors argue that this 
delay might be overcome using molecular 
tools to identify the offending organism 
within hours, but this was not part of their 
work flow. The study followed the code of 
conduct to develop this machine learning 
tool, with large datasets to train, and to val-
idate the model; what should happen next, 
is testing it prospectively. Could the model 
be flawed by the time elapsed between the 
development and the final prospective 
testing? Should perhaps more data be en-
tered into the model, including comorbid 
conditions, surveillance data, epidemio-
logical data, genomic, metabolomic, or 
microbiome data? Is the model, developed 
for this single medical center, applicable 
to other locales and settings? Although 
many questions remain unanswered, this 
study represents a hallmark in this novel 
approach, and deserves to be followed by 
similar approaches with even more sophis-
tication. Perhaps, other technologies might 
be added, such as breath analysis of vola-
tile organic compounds using machine 
learning and neural networks [24], an ap-
proach that eventually might be developed 
as a point-of-care test, as has been explored 
to detect tuberculosis [25, 26]. This work 
shows, that machine learning—although 
not yet ready for prime time—will one day 
help guide initial antimicrobial selection 
in nosocomial infections. One problem 
that needs to be addressed, is that clinical 
decisions are only partly driven by cog-
nition—emotions are equally important. 
AI-driven machine learning may one day 
provide overwhelming scientific, cogni-
tive evidence, but prescribers should feel 
comfortable about it, or else, they would 
not follow the evidence-driven advice. To 
incorporate these novel tools, interactive 
training is required to overcome these 
emotional barriers, to improve antimicro-
bial prescription behavior.
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