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Introduction
Head and neck cancer survival rates are increasing as a result of more advanced treatment

regimens [1–7]. The increasing number of head and neck cancer survivors stresses the

importance of preventing late radiation-induced toxicities, which may persist or occur years

after treatment, gravely impacting the quality of life [8]. Owing to the intrinsic properties of

particles, proton therapy has the ability to deliver dose more conformal to the tumor,

consequently sparing more normal tissue surrounding it [9–11]. While proton therapy

arguably can be beneficial for a large proportion of head and neck cancer patients, it is

currently still limited in availability and there is a benefit gradient with regard to the

estimated toxicities [12, 13]. Introduced by Langendijk et al [14], the model-based approach

is a systematic way to identify patients that may benefit most from proton therapy based on

the predicted toxicity risk, that is, normal tissue complication probability (NTCP). In other

words, NTCP can be considered the individual percentile risk for a patient to develop a

certain radiation-associated toxicity (eg, risk of 40% to develop feeding tube dependence).

NTCP-guided treatment decision support requires reliable NTCP models, which

generally embody the toxicity’s association with organ-at-risk (OAR)-specific dose-

volume histogram parameters. The development of (semi)auto-contouring of head and

neck OARs has facilitated more time-efficient and robust extraction of dose-volume

histogram information, particularly from OARs that are not contoured for clinical planning

purposes [15–18]. In addition, clinical factors (eg, chemotherapy, smoking status, age,

xerostomia before radiotherapy) can contribute to or interact with the effect of radiation

dose in developing radiation-induced toxicities [15–17, 19–21].

The aims of this systematic review were (1) to describe how NTCP models are

developed and validated, (2) to perform and present a systematic review of existing

NTCP models for photon or proton therapy for head and neck cancers, and (3) to explore

and propose future directions, concerning novel NTCP model types, as well as

methodologic development.

Normal Tissue Complication Probability Model Development and
Validation

NTCP models are classifiers, meaning they aim to stratify between patients at high risk and low

risk for developing a toxicity. In contrast to the historically used Lyman–Kutcher–Burman NTCP

models [18, 22, 23], which are only based on a single-dose variable, multivariable logistic

regression represents the current modeling preference as shown in the following equation:

NTCP ¼ 1

1� e�s
;

where s¼b0þb1�variable1þb2�variable2. . .þbn�variablen.
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The b0 is the intercept coefficient, which is a constant; the other b are the coefficients multiplied by, thus linked to, a

specific variable, which could be for example the mean contralateral parotid gland dose or baseline xerostomia

complaints.

Model development is performed by ‘‘training’’ on training data to (1) select an optimal set of variables that are significantly

associated with the predicted toxicity, and (2) estimate the model coefficients (b) to fit the model to the data. Figure 1 illustrates

Figure 1. Normal tissue complication probability model optimization.
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a hypothetical example of an NTCP classification (ie, the equation); with a so-called loss function, the most optimal distinction

is sought to separate patients with and without a toxicity. The linear prediction (s in the equation) that is obtained from this

optimization process is the basis of the resulting logistic regression NTCP model (visual representation in Figure 1).

One of the commonly used variable selection approaches is the forward (or Step-Up) Stepwise selection, which adds

variables to the model, while testing the significance of model improvement. Alternatively, backward Stepwise selection

operates in a reverse manner, by entering the full pool of variables to the model and subsequently removing variables. This

significant improvement is often tested with a likelihood-ratio test, or alternatively with Akaike Information Criterion. Another

popular variable selection method is the L1, or Lasso, regularization where, like backward selection, all variables are

presented to the model and by increasing the penalization term lambda, the regularization shrinks the coefficients of the

variables. Consequently, the effect size is reduced for the variables that do not contribute to the model, and thereby

procedurally excluding variables when their coefficient approaches zero [22, 24].

The inherent aim of developing an NTCP model is that the model is ‘‘generalizable’’ to new data. Internal validation can

improve the robustness of the NTCP model by iteratively subsampling the training data and repeating the entire training

process, by which robust variable selection and coefficient can be obtained. The most common variants are cross-validation

and bootstrapping [25]. The Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis

statement group has excellent modeling guidelines, and is a supply source to consult for consistent train and test modeling [26,

27].

Ultimately, the highest form of validation is obtained by performing external validation on data from multiple centers.

Following the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis statement

classification [28] and the Dutch proton indication protocol [29], Table 1 details the different levels of evidence for NTCP

models.

Materials and Methods

For the systematic review of existing NTCP models, the inclusion criteria were NTCP models that predict late toxicity after

radiotherapy in head and neck cancer patients. The article search was performed on PubMed, by 2 board-certified radiation

oncologists (PB and SS), using the following 2 search equations: ‘‘([‘head neck neoplasms’(MeSH Terms)] AND

[(NTCP)[MeSH Terms] or ‘normal tissue complication’])’’ and ‘‘(‘head neck neoplasms’[MeSH Terms] AND ‘normal tissue

complication probability’).’’ After removal of duplicates the references were reviewed by the 2 investigators (PB and SS) and

discrepancies were discussed with a third radiation oncologist (AL). The flow chart is presented in Figure 2 [30]. Most articles

excluded were using NTCP models to quantify the clinical meaning of differences according to variation in treatment planning

systems. Sixty-one articles were retrieved that presented NTCP modeling. Twenty were finally excluded because of focus on

acute toxicity, reirradiation, or because of focus on planning. The overall quality of the NTCP models was ranked as poor, fair,

good, or excellent according to criteria pertaining to endpoint definition and collection, sample size, and data analysis/

validation.

Table 1. Level of evidence for NTCP-models, based on TRIPOD [28] and NVRO [29].

Level Description

1a NTCP model that is externally validated on an independent multi-institute dataset with different treatment

modality (proton therapy)

1b NTCP model that is externally validated on independent data from another institute

2a NTCP model trained and externally validated on nonrandomly split of single-center data

2b NTCP model trained and externally validated on randomly split of single-center data

3 NTCP model developed with internal validation

4a Multivariable NTCP model without internal/external validation

4b Univariable NTCP model without internal/external validation

Abbreviations: NTCP, normal tissue complication probability; TRIPOD, transparent reporting of a multivariable prediction model for individual prognosis or diagnosis; NVRO,

Nederlandse Vereniging voor Radiotherapie en Oncologie.
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Review of Current Normal Tissue Complication Probability Models

In total, 48 studies and 8 validation studies were found with NTCP modeling to predict late radiation-associated toxicity after

irradiation of tumors in the head and neck area (Figure 2, Supplemental Table). The majority of these studies developed

models for the prediction of late xerostomia (n¼ 25), followed by dysphagia/feeding tube dependency/esophageal stricture (n

¼ 7), and brain necrosis/nerve palsy (n¼ 6) fewer studies investigated prediction of toxicities, such as hypothyroidism (n¼ 3),

hearing loss/tinnitus (n ¼ 3), trismus (n ¼ 2), taste impairment (n ¼ 1), dry eye (n ¼ 1), laryngeal edema (n ¼ 1), and

hypopituitarism (n ¼ 1) (2 studies developed models for 2 different toxicities, respectively). No study was found to report on

models predicting late fibrosis/skin changes, osteoradionecrosis, hoarseness, aspiration/choking, weight loss, carotid artery

calcification, fatigue, or second malignancies. The mean dose parameters that were generally selected for late toxicities were

related to glandular structures (eg, parotid, submandibular, or thyroid gland) and muscular structures (eg, superior pharyngeal

constrictor muscles or masseter). The maximum dose, or robust representation (eg, D1cc) were selected in the final models of

severe neurologic injury (eg, brain necrosis or nerve palsy), while this was not the case for hearing loss. Some of the final

NTCP models included clinical variables, that is, for xerostomia, the baseline scores for dry mouth showed to be of importance

[12, 20], while for tube feeding weight loss and chemotherapy were included in the final model [31]. Nevertheless, most studies

did not select clinical variables in the NTCP model, which may be owing to most being Lyman–Kutcher–Burman models, the

relatively small number of patients, or that potential variables were not included in the variable selection pool (eg, many studies

did not include baseline symptom scores).

While many of the included studies were based on low patient numbers, 28 studies (29 models) (58%) had cohorts of over

100 patients. In addition, most studies lacked internal and/or external validation as follows: only 9 studies performed internal, 8

external validation, and 5 studies both, internal and external validation. Ten studies included patients treated with

Figure 2. PRISMA flow chart.
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nonadvanced treatment techniques only, and in 10 other studies at least a certain proportion of patients were included with 3-

dimensional conformal radiation therapy. Only 4 studies (5 models) included patients with proton therapy. With these

considerations, an overview of the most complete studies is depicted per symptom category in Table 2. Most of the models

were rated as good or fair; none of the models was rated as excellent due to the reasons described above.

Normal Tissue Complication Probability Models for the Selection of Proton Therapy

The patients that benefit the most from proton therapy would ideally be identified with NTCP models that are trained on larger

intensity modulated radiation therapy/volumetric modulated arc therapy–treated patient cohorts and subsequently validated in

proton therapy patients. Unfortunately, these models do not currently exist (Supplemental Table). Two studies have

developed NTCP models predicting brain necrosis in a proton therapy cohort only [46, 47]. Nevertheless, even with current

challenges of determining the generalizability of NTCP models for both treatment modalities, NTCP differences (DNTCP) are

still anticipated to be a better representation of the clinical importance (ie, expected clinical symptom burden reduction) than

direct dose-volume histogram parameter differences. Consequently, DNTCP are considered a better marker to identify

patients that will benefit most from proton compared with photon therapy. This is the foundation of the model-based approach

[14], where validated models can serve as a tool to assess the late toxicity DNTCP between a photon and proton therapy plan.

If the NTCP or DNTCP of a specific or multiple OARs exceed a clinically relevant toxicity-specific threshold, proton therapy

might be the preferred treatment modality for that patient. Herein lies a weighting factor of the severity of toxicities, and some

toxicities may be negligible of influence, such as hypothyroidism, which is treatable with medical substitution.

A recently published paper by Tambas et al [48] describes a practical institutional workflow of proton-photon plan

comparison decision-making in a patient cohort from the University Medical Center Utrecht. Patients who have a � 10% higher

risk of developing grade 2þxerostomia, grade 2þdysphagia, � 5% risk for feeding tube dependency, or a � 15% higher risk in

the combination of those toxicities with photon compared with proton radiotherapy will be considered for proton therapy. The

models used for this estimate [19, 20, 31] are predicting the toxicities at 6 months postradiotherapy and are externally

validated. There is still a need to develop models for later time points, as Janssens et al [49], for example, showed a decrease

in incidence of xerostomia from over 40% at 6 months postradiotherapy to approximately 25% 24 months postradiotherapy.

Despite the usefulness of NTCP models in guidance of patient selection for proton therapy, the final decision regarding the

treatment modality may still be influenced by individual factors of the patient (ie, cost, travel, scheduling) and proton therapy

capacity; thus, clinical prioritization and insurance issues should ultimately be left to the discretion of the patient and treating

physician, taking into account the patient’s goals and limitations of the NTCP models.

Normal Tissue Complication Probability Model Considerations

While dose-volume histogram parameters extraction comes with its challenges (eg, OAR definitions [50, 51], corrupt dose

information, treatment plan system differences), the limiting factor in NTCP model data accumulation is the availability of

qualitative toxicity data. While standardized follow-up programs are slowly being introduced [52, 53], many radiotherapy

centers do not systematically collect toxicity information, leading to sparsely available and retrospectively collected data.

Introduction of proton therapy has provoked improved toxicity collection, owing to the need to show the beneficial OAR sparing

with proton therapy compared with photon therapy. Therefore, NTCP model development based on big data cohort is expected

in years to follow.

The inclusion of a wide spectrum of different head and neck tumor subsites and stages into the modeling process can

improve the model performance, as it provides a greater variability in dose administered to specific OARs. The downside of

wide-inclusion criteria is that therapy patients receive may differ, such as receipt of induction and/or concurrent chemotherapy.

While chemotherapy as a variable is often not selected in the final model, it may in fact affect the toxicity development, but may

be too rudimentarily examined (Supplemental Table; eg, chemotherapy yes/no, no number of cycles), not adequately

represented (eg, adaptation of agent dosing), or without sufficient patient numbers to measure the effect. Furthermore, the

biological dose of OARs might be different according to the corresponding alpha/beta ratio, which might translate to a different

toxicity development; for example, in the case of hypofractionated/accelerated radiotherapy treatment schedules. Current

NTCP models are not designed to include altered fractionation, nevertheless some studies investigated the fractionation effect

[31, 39, 54] (Supplemental Table), whereas others did not [38]. Other studies showed the potential of improving NTCP

models with the addition of baseline imaging biomarkers [33, 55, 56], which represent patient-specific tissue characteristics.

These image biomarkers in NTCP models are still novel and are hampered by the availability of magnetic resonance imaging

or positron emission tomography–computed tomography for treatment planning in some institutions. None of the studies,
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Table 2. Selection of the best available NTCP models per symptom category in head and neck cancer patients.

Author

Patients, n,

(OARs)/events

Advanced RT

techniques

only

Endpoint � 12

m post-RT Model

Variables

included in final

model

Prospective

toxicity

collection

Prediction

probability Validation Others

Overall

quality

Xerostomia

Beetz 2012

[20]

17/83 Yes (IMRT) No (6 m) Logistic

regression

with

bootstrapping

Xerostomia:

Dmean PG

contra, BL

xerostomia

Sticky saliva:

Dmean SMG

contra, Dmean

SLG both,

Dmean soft

palate

Yes AUC 0.68

(xerostomia),

0.70 (sticky

saliva)

Yes (internal) Good

Lee 2014

[32]

158/52 Yes (IMRT) Yes (3 m and

12 m)

LASSO logistic

regression

with

bootstrapping

12 m: Dmean PG

ipsi/contra

Yes AUC 12 m:

0.98

(HNSCC),

0.96 (NPC)

Yes (internal) Good

van Dijk

2017 [33]

249/63 (sticky

saliva)/100

(xerostomia)

No (IMRT,

3DCRT,

VMAT)

Yes (1 y) LASSO

multivariate

logistic

regression

Xerostomia:

Dmean PG

contra, BL

xerostomia,

SRE GLRLM

PG contra;

Sticky saliva:

Dmean SMG

(both), BL

sticky saliva,

max HU both

SMG

Yes AUC

xerostomia

6 imaging

biomarker

0.77 and

0.75, sticky

saliva 6

imaging

biomarker

0.77 and

0.74

Yes (internal) Limited added

value of

imaging

biomarkers

Good

Dysphagia

Christianen

2012 [19]

354/NA No (3DRT,

IMRT)

No (6 m) Logistic

regression

Dmean SPC,

Dmean

supraglottic

larynx

Yes AUC 0.80 Yes (external) Good

Feeding tube

dependency

Wopken

2014 [31]

355/38 Yes (IMRT) No (6 m), but

clinically

relevant

Logistic

regression

T stage, weight

loss,

accelerated RT,

chemo,

Cetuximab,

Dmean inf.

PCM, Dmean

PG contra,

Dmean

cricopharyngeal

muscle

Yes AUC 0,88 Yes (internal) Good

Dysgeusia

Sapir 2016

[34]

73/26 Yes (IMRT) No (3 m) LKB Dmean oral cavity Yes NA No Oral cavity as

OAR

Fair

Esophageal

stricture

Mavroidis

2003 [35]

82/26 No (3DCRT) No 1–40 m

(median 7

m)

LKB Dmean

esophagus

No ROC ¼ 0.84,

X2 test ¼
0.95

No Poor
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Table 2. Continued.

Author

Patients,

n, (OARs)/

events

Advanced

RT

techniques

only

Endpoint

� 12 m

post-RT Model

Variables

included in

final model

Prospective

toxicity

collection

Prediction

probability Validation Others

Overall

quality

Brain necrosis

Wang 2019

[36]

749/38 Yes (IMRT) No (3.5–75 m,

median 49

m)

Lasso binary

regression

D0.5 cc and D10

selected for

final model

No AUC 0.68

(testing set)

Yes (internal) Good

Zeng 2015

[37]

351/29 Yes (IMRT) No (6–100 m,

median 76

m)

Logistic

regression

D1cc No NA No Fair

Nerve palsy

Chow 2019

[38]

330 nerves/46 Yes (IMRT) No (min. FU 6

m, median

8.1 y)

Logistic

regression

D1cc No AUC 0.83 No False high rate

of palsies:

min. FU all

patients 6 m/

healthy control

8 y

Fair

Trismus

Morimoto

2019 [39]

132/30 No (3DCRT,

IMRT

(percentage

unclear)

No (6 m) Logistic

regression

Dmean TMJ

contra, max.

intercisial

opening at BL

Yes P ¼ .182

(Hosmer and

Lemeshow

test)

No Collinearity

check; acc. fx

in 95 patients

Good

Lindblom

2014 [40]

121/50 No (3DCRT,

IMRT)

Yes for MID

(21–127 m,

median 66

m), unclear

for QoL

scores

Logistic

regression

Different models

with different

variables

studies; best fit

for ipsi

masseter for

both endpoints

No (MID), yes

(QoL)

0.77 and 0.73

for model

with

endpoint

MID and

QoL,

respectively

and ipsi

masseter as

variable

Yes (internal) 70 patients with

acc. fx

Good

Hypothyroidism

Rønjom

2013 [41]

203/35 Yes (IMRT) Yes (1 y, 2 y) Logistic

regression

Dmean thyroid

gland, thyroid

gland volume

No (but

objective

criterion)

NA No Good

Hearing loss

Marzi 2015

[42]

280 ears/73 Yes (PT) Yes (median

FU 26 m)

LKB Dmean inner ear Yes AUC 0.86 No Fair

Tinnitus

Lee 2015

[43]

422 ears/49 Yes (IMRT) Yes (51 m,

range 36–

77 m)

LKB

Logistic

regression

Dmean cochlea

ipsi

No LKB: 0.76,

Logistic:

0.76

No Influence of

chemotherapy

not accounted

for

Fair

Dry eye

Bhandare

2012 [44]

78/40 No (EBRT

1996–2000)

No (mean 0.9

y)

Logistic

regression

with

bootstrapping

Dmax lacrimal

gland

No NA No Fair

Laryngeal

edema

Rancati

2009 [45]

48/25 Yes (IMRT) Yes (15 m) Lyman

Logit

Dmean larynx No (but

objective

criterion)

NA No Fair
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however, has taken into account if the patient had major surgery before radiotherapy. For example, if a salivary gland had to be

removed because of tumor infiltration, this adds a significant risk to the development of xerostomia.

Future Directions

Radiation-induced toxicities are often difficult to predict before treatment, as they are patient-specific, complex,

interdependent, and nondeterministic. Currently, the vast majority of NTCP models rely on minimal input variables, making the

estimated risk of radiation-induced side effects relatively simplistic. New modeling approaches, such as machine and deep

learning, have the capacity to handle high-dimensional data, such as imaging, spatial localization of radiation dose, and

potentially alterations in intertoxicity interactions over time. Nevertheless, there will always remain patient-specific factors, that

are difficult to account for in modeling, like genetic susceptibility to radiotherapy toxicity, patient adherence with medication and

abstaining from smoking/alcohol, tolerability of concurrent chemotherapy or targeted therapy, unexpected treatment breaks,

and so on.

With modern photon techniques, like intensity modulated radiation therapy and volumetric modulated arc therapy, there is

increased heterogeneity of the dose within OARs [57], which can improve the NTCP, albeit with higher integral dose [58]. In

other words, the need to include the information from the entire dose-volume histogram curve or maybe even the full 3-

dimensional spatial distribution of dose may be needed to improve the performance of NTCP models in the current and future

era. Moreover, the applicability of intensity modulated radiation therapy studies to patients receiving proton therapy is limited

as the relative biological effectiveness function needs to be considered. Indeed, it has been demonstrated that relative

biological effectiveness varies along the beam path and depending on where the Bragg peaks are distributed, and this could

lead to increased toxicity. In a series of 34 children treated using proton therapy, Peeler and colleagues [59] showed that

showed T2-FLAIR hyperintensity was dependent on linear energy transfer dose, which indicated a possible variable biological

dose effectiveness with clinical implications. For photon models to be incorporated to proton therapy, relative biological

effectiveness–based weighting would ideally be needed although the validation of such models will require a lot of

prospectively followed patients. Furthermore, range uncertainty in proton therapy needs to be considered and anatomic

changes, such as paranasal sinus filling, swelling of irradiated tissue, or weight loss under therapy can lead to a lack of

robustness in proton plans. This effect is minimized in photon therapy but can become quite significant in proton therapy,

especially if OARs are lying just behind the target/Bragg peak, and can vary from institution to institution and with differing

forms of proton delivery technique (passively beam scattered protons versus intensity modulated proton therapy). It has been

previously shown that NTCP models developed for photon therapy did retain discriminatory properties for proton therapy and

could hence be used to select patients [60]. Furthermore, the conformality afforded by proton therapy decreases concerns

such that an NTCP model can reliably score a radiation plan for both photons and protons [61, 62].

As dedicated NTCP modeling for particle therapy is being developed, the issue of modeling for reirradiation becomes

particularly salient as many centers are using proton therapy in this setting. The specific challenges in these cases include

incorporation of different fractionation schemes, accounting for normal tissue recovery and dose-volume overlap [32].

The various challenges with developing adequate models are numerous but one important step with the right study design

is through a multicenter approach. Van den Bosch and colleagues [58] from the Netherlands have discussed that consistent

definitions of predictor and outcomes variables as well as use of standardized scoring systems are needed to reduce

Table 2. Continued.

Author

Patients,

n, (OARs)/

events

Advanced

RT

techniques

only

Endpoint

� 12 m

post-RT Model

Variables

included in

final model

Prospective

toxicity

collection

Prediction

probability Validation Others

Overall

quality

Hypopituitarism

Marzi 2015

[42]

103/45 Yes (PT) Yes (median

26 m)

LKB Dmean pituitary

gland

Yes AUC 0.86 No Fair

Abbreviations: NTCP, normal tissue complication probability; OAR, organ at risk; RT, radiotherapy; prosp., prospective; IMRT, intensity modulated radiation therapy; Dmean, mean

dose; PG, parotid gland; Contra, contralateral; BL, baseline; SMG, submandibular gland; SLG, sublingual gland; AUC, area under curve; ipsi, ipsilateral; HNSCC, head neck

squamous cell cancer; NPC, nasopharyngeal cancer; 3DCRT, 3-dimensional conformal radiotherapy; VMAT, volumetric modulated arc therapy; SRE GLRLM, short run emphasis

gray level co-occurrence; HU, Hounsfield unit; NA, not assessed; PCM, Pharyngeal Constrictor Muscle; LKB, Lyman–Kutcher–Burman; ROC, receiver operator curve; min,

minimum; FU, follow-up; TMJ, temporomandibular joint; acc. fx, accelerated fractionation; MID, maximal interincisal distance; QoL, quality of life; PT, proton therapy; EBRT, external

beam radiotherapy.
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heterogeneity of data. Uniform delineation guidelines should also be used to improve consistency of OARs. To achieve this

aim, a multicenter prospective trial is needed so that the final models can be applicable in a variety of settings. Currently, there

are 2 ongoing head and neck multicenter, randomized trials (MD Anderson IMPT vs IMRT Trial, NCT01893307 [63] and UK

TORPEDO Trial, ISRCTN16424014 [64]) that have the potential to validate and expand these NTCP models to achieve a

more robust prediction of clinical benefit for appropriate patient selection and access to proton therapy. Novel NTCP modeling

and validation has significant health policy considerations for future head and neck cancer patients, and buy-in from the

scientific community is needed with government level funding to achieve this aim.

However, NTCP modeling will always be an estimation of risk, rather than a real prediction of toxicity. With all the

techniques described above (machine/deep learning, multicenter validation, etc.) models will significantly improve in the next

decades and can help as a tool to select patients most likely to benefit from proton therapy or to define organs at risk, which

should be spared with higher priority. However, these models will never incorporate all factors, which influence the outcome of

every single patient and should therefore never replace the physician’s clinical judgement.

In conclusion, we presented a systematic review of NTCP modeling studies performed for head and neck cancers. These

studies have improved in quality over time and will help define how to select a treatment modality for a given patient. Future

investigations with large number of cases are needed to apply NTCP models in practice and should also include reduction in

acute toxicity (ie, mucositis) to aid with improved selection of patients.
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