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ARTICLE

Multi Locus View: an extensible web-based tool for
the analysis of genomic data.
Martin J. Sergeant 1, Jim R. Hughes 1,2, Lance Hentges 1, Gerton Lunter1,3, Damien J. Downes 2 &

Stephen Taylor 1✉

Tracking and understanding data quality, analysis and reproducibility are critical concerns in

the biological sciences. This is especially true in genomics where next generation sequencing

(NGS) based technologies such as ChIP-seq, RNA-seq and ATAC-seq are generating a flood

of genome-scale data. However, such data are usually processed with automated tools and

pipelines, generating tabular outputs and static visualisations. Interpretation is normally made

at a high level without the ability to visualise the underlying data in detail. Conventional

genome browsers are limited to browsing single locations and do not allow for interactions

with the dataset as a whole. Multi Locus View (MLV), a web-based tool, has been developed

to allow users to fluidly interact with genomics datasets at multiple scales. The user is able to

browse the raw data, cluster, and combine the data with other analysis and annotate the data.

User datasets can then be shared with other users or made public for quick assessment from

the academic community. MLV is publically available at https://mlv.molbiol.ox.ac.uk.
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Next generation sequencing (NGS) technologies such as
ChIP-seq, RNA-seq and ATAC-seq generate vast
amounts of data, which, once mapped, is analysed with

programs such as MACS1 and DESeq22 to extract biologically
meaningful signals. The final output of these pipelines is usually a
list of genomic regions filtered by an enrichment level or fold
change and a statistical threshold, such as p-value, q-value or
FDR. Selecting thresholds in absence of the ability to effectively
see their effect on the final dataset can lead to the loss of biolo-
gically meaningful signal or the inclusion of noise and common
bioinformatic mapping artefacts depending on the stringency
used.

Understanding the effectiveness of the parameters used for a
given dataset, data type or analytical tool is extremely challenging
and effective quality control of such outputs may require the user
to manually go through tens of thousands of regions to validate
that the chosen thresholds, which is extremely time consuming in
traditional genome browsers. Importantly, with the advent and
high impact of machine learning in the genomics field, there is a
critical need for a platform to generate curated high quality
training sets of genomic regions which match specific criteria.
Although many excellent genome browsers exist for looking at
genomic locations, such as the UCSC genome browser3, the
WashU Epigenome Browser4, IGV5 and HiGlass6, these are
designed for sequential visualisation of specific individual loci of
interest, rather than looking at an experiment as a whole.

Multi Locus View (MLV) allows rapid filtering of hundreds of
thousands of locations based on their metadata, combined with
the genome views of regions of interest. MLV additionally allows
for interaction with the complete dataset via the use of a highly
customisable range of interactive charts fully linked up with the
embedded genome browser. Going beyond data interaction MLV
also provides the ability to run commonly required procedures,
such as intersection between genomic annotations, but also
advanced analyses, such as dimensionality reduction. This pro-
vides a powerful and easy to use way to discover new insights and
quality control large ‘omics data sets. We demonstrate the power
of MLV by showing examples of false positive inclusion with
ENCODE datasets and characterisation of enhancers and pro-
moters in a large published dataset7. Importantly, MLV only
requires BED and bigWig tracks as an input, which unlike BAM
files, are lightweight but extremely flexible and information rich
summaries of the data that allow for extremely fast and fluid
interactions with complete datasets.

Results
Identification of ChIP-seq false positives with MLV. ChIP-seq
experiments are performed to identify sites of chromatin mod-
ification or protein binding, visualised as peaks. For genome wide
analysis, peaks are identified bioinformatically, most commonly
with MACS2, though newer methods use digital signal
processing8 and Machine Learning9. Often these peak callers use
arbitrary statistical thresholds which can lead to inclusion of
false positives, affecting downstream analysis. To demonstrate the
ability of MLV to filter true- and false-positive peaks, we looked at
data from H3K27ac ChIP-seq (a marker of active transcription)
in the human prostate cancer cell line 22Rv1 (ENCSR391NPE).
We uploaded 46,030 MACS2 peak calls and associated bigWig
files to MLV (see Supplementary Methods 1). Sorting by -log10 q-
value showed that 12,000 of the identified peaks (26%), those with
a value less than 10, were little more than background noise
(Fig. 1). This demonstrates the ability of MLV to visually inter-
rogate peak calling results and complement statistical analysis by
determining an appropriate q or p value threshold for filtering
high quality peak calls. This allows for easy and intuitive

segregation of the basic analysis into strong or weak peaks, pro-
ducing stringent or more generous annotation, quickly and on the
fly.

Functional annotation of regulatory elements. The genome
contains three main types of regulatory elements (promoters,
enhancers and boundaries) whose position can be detected in
open chromatin assays such as DNase-seq10 and ATAC-seq10,11.
Open chromatin is common to all these classes and so cannot
determine a specific element’s identity alone. However epigenetic
marks (H3K4me1, H3K4me3, H3K27ac) and transcription factor
binding (CTCF) have been used to annotate elements, such as
likely promoters and enhancers using the ratio of H3K4me1 to
H3K4me37. To demonstrate how MLV can be used to fluidly
explore and classify all the open chromatin elements in a given
cell-type, we used chromatin marks to cluster and annotate ery-
throid open chromatin peaks identified from ATAC-seq based on
their relative enrichment of ChIP-seq signals (see Supplementary
Methods 2 and Fig. 2). Filtering for peaks with a high H3K4me1
to H3Kme3 ratio (Fig. 2c(iii)), characteristic of enhancers, iden-
tifies a distinct cluster with few peaks overlapping TSSs, low levels
of CTCF and a range of H3K27ac - expected traits of enhancer
regulatory elements (Fig. 2b(ii), (iv), (v)). Conversely, putative
promoter peaks with a low H3K4me1 to H3K4me3 ratio showed
a high proportion of TSS overlap (61%), and higher levels of both
H3K27ac and CTCF, again confirming the expected traits of
promoters (Fig. 2c). The tagging functionality could then be used
to append classes to each class of open chromatin region. Using
MLV we were able to quickly and efficiently categorise, and
annotate peaks, whilst filtering out actual peaks from background
noise. These peaks can then be exported for use in downstream
statistical analysis such as motif discovery or nearest gene
analysis.

Analysis of cohesin/CTCF interactions. The 3D structure of the
genome is thought to be mediated via the cohesin complex and
CTCF, which bring distal regions of DNA together via a process
of loop extrusion12. In a recent paper13, the authors mutated
CTCF such that it abolished interaction with SCC1, a member of
the cohesin complex, in the human HAP1 cell line. They then
carried out ChIP-seq of CTCF and SCC1 in both the wild type
and the mutant cells. This revealed that in the main CTCF
binding to DNA was unaffected in the mutant, whereas cohesin
(SCC1) was reduced, especially at locations where CTCF was also
bound, hence supporting the hypothesis that CTCF stabilizes
cohesin on chromatin. To explore these datasets dynamically, the
peak locations and bigWig tracks from the ChIP-Seq experiments
were loaded into MLV along with histone mark data from
Hap1 cells (see Supplementary Methods 3 and Fig. 3).

A Histogram of CTCF peak height fold change (Fig. 3a(ii))
generally supported the paper’s observation that the mutation did
not reduce CTCF chromatin binding. Indeed, the shape of the
histogram indicated an average log2 fold change value of around
0.5, suggesting the mutation may cause a modest increase in
CTCF binding. The cohesin (SCC1) histogram (Fig. 3a(ii))
showed a skew to the left indicating reduced binding in the
mutant and this region contained mainly locations with high
CTCF binding. Again, this was in accordance with the paper’s
findings that in the CTCF mutant, cohesin binding was generally
reduced, especially at locations where CTCF was also bound.
Further exploration of data was carried out by selecting those
locations with ‘high’ CTCF (see Supplementary Methods 3) but
where SCC1 binding in the mutant did not decrease (Fig. 3b(ii))
These regions showed a bi-modal distribution in CTCF change
(Fig. 3b(i)). The smaller peak mainly contained black listed
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regions and indeed images from these locations showed these
areas with the abnormal peak structure associated with the
bioinformatic artefacts found in these regions (Fig. 3c(i)).
However, the larger histogram peak represented regions contain-
ing what looked like genuine peak calls (Fig. 3c(ii)). Moreover, the
SCC1 peaks in these regions exhibited a different pattern, being
broader and flatter than the majority of peaks at other locations
(Fig. 3c(iii)) and, in many cases, the corresponding CTCF peak
was at the edge of the cohesin peak. These peaks also appeared to
be enriched for promoters due to their association with TSSs and
regions that have greater levels of H3K4em3 (Supplementary
Fig. 2). Such regions could be marked in MLV and exported into
RStudio or a Jupyter notebook to check their statistical
significance. The above analysis shows the ease with which
MLV can be used to explore important published data, to both
confirm the basic findings and to add extra insights. as was
exhibited by the discovery of a putative class of CTCF binding
elements associated with promoters.

Discussion
The massive expansion in NGS data generation and the
increasing complexity of datasets and data types makes it difficult
to interpret and validate the results without referring back to the
underlying data. To tackle this challenge requires better ways of
analysing and humanly interacting with such large multi-
dimensional datasets. Importantly, such methods should have
very low barriers to use, not requiring specialised computational
skills and so allowing for their general use in the biological
community. Similarly, they need to have quick, fluid, and above
all intuitive interfaces to allow researchers to concentrate on

asking the pertinent biological questions rather than on the
computational tasks required to ask them.

MLV is able to complement existing statistical packages in the
following ways. Firstly, results containing p values from programs
such as MACS2, can be visually examined to see if they are
biologically meaningful in the context of the experiment. This
may help with selecting an appropriate cut off. Secondly, if certain
patterns become evident whilst visualising the data, regions can
be appropriately annotated and the data exported to packages in
R and Python to ascertain whether they are statistically
significant.

MLV provides a more holistic way of interacting with complex
NGS data sets. By combining the use of common lightweight data
formats (e.g. BED, bigWig and tab delimited text) with a fully
featured JavaScript frontend with powerful server-side Python
flask frameworks and PostgreSQL relational databases, MLV
provides a powerful and agile web-based interface to complex
datasets. The inbuilt and dynamically linked dimensionality
reduction functionality, table, graph and image based interfaces
within MLV allows a user to simultaneously analyse the dataset as
a whole and also quickly drill down to subsets with specific
characteristics or behaviours. By allowing for the clustering and
subsequent fine grained inspection of multiple genome regions of
similar characteristics in a single view, MLV affords a powerful
way to look for trends in results data traditionally represented in
tables and static figures. Also with MLVs dynamic filtering,
graphing and data brushing, it is possible to visually inspect and
understand the effects of parameter selection. Importantly, to aid
transparency, the data, analysis and visualisations can be shared
via online URL to provide a powerful supplement to any
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Fig. 1 Summary of peaks in encode project ENCSR391NPE. https://mlv.molbiol.ox.ac.uk/projects/multi_locus_view/1434 a Workflow (see
supplementary methods 1 for full details). b Locations with −log10 q values less than 10 have been selected using the histogram (i), clearly showing regions
(ii) which are misidentified as peaks. c Locations with high −log10 q values selected (i), showing genuine peaks (ii). The two alignment tracks
ENCFF025ZEN and ENCFF421QFK are orange and brown respectively and the corresponding input tracks, ENCFF483ELD and ENCFF769UET are grey.
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publication, which gives the reader or manuscript reviewer
immediate access to the datasets and analysis that underpins the
findings of the work. Such interfaces will be critical to enable
greater transparency and reproducibility in research. Further-
more, we have shown that data files or analyses released with
published datasets can be rapidly incorporated into MLV to allow
for the re-exploration of existing data and analyses to validate the
conclusions of the manuscript, to discover new trends in the data
or to ask new biological questions with the inclusion of further
datasets or annotations.

Finally, the intrinsic ability to cluster data, or to input clustered
data, combined with the fine grained visualisation and ability to
tag collections of data points means MLV can quickly generate
extremely large high-quality training datasets for machine
learning approaches. The generation of such validated training
sets is extremely laborious on the operator and so represent the
biggest bottleneck to the wide-scale implementation of these
powerful methods in genomics research.

Methods
MLV takes as input, a tsv or csv file, where the first three columns specify the
genomic location and an unlimited number of additional columns containing
metadata for that location. Examples include a simple BED file, the output of
MACS21 or an Excel file that has been saved in csv or tsv format. The data can then
be combined with annotations (e.g. transcription start sites [TSS]) and sequencing
data (e.g. bigWig files). Dimension reduction (UMAP, tSNE) can also be carried
out to identify clusters. In addition dynamic graphs, genomic tracks and images
can be added to further aid visualisation/analysis. After sorting and filtering,

locations can be annotated (tagged) and then exported and links generated for
sharing, such as with reviewers or with a publication. Figure 4 shows a general
summary of MLV and the functions available to the user

Visualisation. The main view consists of three panels, a spreadsheet-like table
housing the genomic locations and all the metadata, a genome browser and a panel
showing dynamic graphs/charts. All three panels are linked - data can then be
filtered by selecting regions/sections on a graph or using the table, which instantly
updates the other graphs, table and browser.

The spreadsheet contains the genomic locations and any associated metadata.
In addition, if images have been generated, these can be displayed either as
thumbnails in the spreadsheet or as rows in their own table. This allows instant
visualisation of common elements in filtered data sets. When displayed on their
own, images are sorted in the same order as the table rows and can have their
border coloured according to any field in the data, further aiding the elucidation of
patterns. Clicking on a row/image will display the genomic location in the browser
and highlight its position on any scatter graphs present. Extra columns can also be
generated by applying simple arithmetic to existing columns, For example,
calculating the ratio between the signals in two bigWig tracks will produce a
column that can be sorted by relative enrichment or depletion between the two
datasets. Columns can also be deleted if the data is no longer required.

The internal browser is a lightweight JavaScript component based on igv.js
(https://github.com/igvteam/igv.js). Initially the internal browser displays a gene
track (if a genome was specified) and a track showing the uploaded genomic
features. To aid visualisation, these features can be coloured by any of the metadata
fields, positioned along the y-axis proportional to a numeric field and labelled with
another field. Only those features that are in the current filter are displayed and
clicking on a feature will highlight the relevant image/row in the table and highlight
the appropriate point on any scatter plots present. Tracks of common formats.
BAM, bigWig, bigBed, tabix indexed bed.gz files etc. and UCSC browser sessions
can be added to the browser. In addition, many of the analysis steps will also add
tracks. Thumbnails for every location (displayed in the table panel) can be
generated based upon the current browser tracks and settings.
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Fig. 2 Functional annotation of regulatory elements. https://mlv.molbiol.ox.ac.uk/projects/multi_locus_view/1590. a Workflow (see supplementary
methods 2 for full details) (b and c) show the clustering of putative enhancers and promoters respectively, based on enrichment for the two chromatin
marks and CTCF binding. (i) t-SNE targeting the density of all peaks, with green points showing regions which overlap with TSSs. The plot shows the large
enrichment for overlapping annotated TSSs with the H3K4me3 enriched cluster. (ii) UMAP targeting the density of all peaks. The plot is coloured by CTCF
peak density using a PuOr11 colour scale, from brown (most dense) to purple (least dense), identifies clusters of strongly and weakly bound elements. (iii)
Histogram of the H3K4Me1/H3K4m3 ratio of open chromatin sites allows for the interactive selection of differentially enriched elements. (iv) Histogram of
H3K27ac enrichment allows for the interactive selection of elements most enriched for this active chromatin mark. (v) Dynamically linked pie charts show
the enrichment of a given annotation (e.g., TSS overlap, green segment) for the selected or filtered objects.
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Graphs including scatter plots, histograms, box plots and pie charts can be added
to the view, showing any of the metadata fields that are appropriate to the graph. All
graphs respond to filtering, and can also be used to intuitively filter the data by
selecting appropriate regions. For example, selecting regions near TSS sites on a
histogram will also update a histogram displaying H3K4me3 ChIP-seq peak data,
showing an overall increase in height. Another example would be selecting regions
on a UMAP/t-SNE generated scatter plot, which updates graphs displaying fields
that were used to generate the clustering, therefore indicating which fields influence
different clusters. As well as users being able to add graphs and adjust their settings,
appropriate ones are automatically generated in many of the analysis methods.

Although the application contains a browser which will display each selected
view, it is often more informative to visualise many locations at once, in order to
see if there is commonality in a filtered data set. To this end images based on the
browser view can be generated for every location. Once all images are created, they
can be viewed as thumbnails as part of a table row or in their own table.

Analysis methods. A number of methods can be employed to help interpret the
data. Most methods will add fields (columns) to the table, graphs and tracks to the
browser aiding the interpretation of the data. If a genome was specified, then the
nearest Transcription Start Site (TSS) based on the RefSeq annotation will be
calculated using bedtools14. The RefSeq id and common name of the gene is also
given and there is an option to include molecular function Gene Ontology (GO)
annotations15. These annotations were simplified by first obtaining all GO terms
for a RefSeq gene by using gene2go and gene2refseq files from NCBI. Next, using

the go-basic.obo file from http://geneontology.org/, multiple terms for each gene
were further expanded by traversing up the hierarchy and adding terms at each
level. Then at each hierarchical level, terms were collapsed by only keeping the
most frequent, resulting in a much simplified scheme, where each RefSeq gene had
a single term at each hierarchical level. Users can choose to include up to five levels
of GO annotations in the data returned from a TSS search.

In order to fully interpret some data sets, it is usually useful to combine the
existing data with other datasets. Hence MLV enables the user to intersect locations
with a list of genomic regions or the locations in other projects. This feature uses
bedtools14 behind the scenes and also allows information contained in the
intersecting data to be added to the data set, easily allowing other experiments to be
incorporated into the project.

BigWig files from experiments such as ChIP-Seq can be specified and MLV will
calculate the area, max height of the track’s signal for each genomic location. This
data can then be used to plot various graphs or used to generate UMAP/t-SNE
scatter plots (see below).

In order to group the genomic locations it may be useful to cluster them based
on specified fields. For example, clustering based on ChIP-Seq peaks for histone
marks may give an indication of promoters/enhancers. MLV enables this, by using
the dimension reduction algorithms, UMAP16 and t-SNE17 implemented with
scikit-learn18. Any number of numeric fields (columns) can be used as input and
these are reduced to a specified number (default 2) of output dimensions. Although
the initial graphs show the first two dimensions for each algorithm, the user can
produce different graphs by mixing and matching dimensions from different
algorithms.
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Fig. 3 Analysis of SCC1 and CTCF ChIP-seq data. https://mlv.molbiol.ox.ac.uk/projects/multi_locus_view/2057 Data taken from from the The Structural
Basis for Cohesin-CTCF-anchored Loops11. a Histograms of CTCF (i) and cohesin (ii) log2 fold changes. The bars are coloured by tags (green - high CTCF,
blue - low CTCF). b Filtering of strong CTCF binding sites with no decrease in SCC1 binding in the CTCF mutant. (i) Histogram showing the bimodal
distribution of the CTCF log2 fold changes between the mutant and the WT in the selected regions. The green bars show black listed regions. (ii)
Histogram of cohesin log2 fold change between the mutant and WT, the grey box shows the regions (those with a log2 fold change greater than 0) that
were selected. (iii) Pie chart showing the proportion of black listed regions (green) in the selected regions. (iv) Row chart showing tags, which was used to
select regions with strong CTCF binding (high CTCF). c Representative samples of genome browser images. The upper track shows CTCF ChIP-seq peaks
with the grey track being WT and the red track, the CTCF mutant. The lower track shows SCC1 (cohesin) data with the WT grey and the CTCF mutant and
green (i) the small left-hand peak in b(i) consisting of black listed regions, (ii) regions with strong CTCF binding, but no reduction of cohesin binding in the
CTCF mutant (the large right-hand peak in b(ii)), (iii) typical peaks for the majority of regions with strong CTCF binding.
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Output options. In order to communicate your findings with others, annotation of
each location is possible. Tasks such as naming clusters, marking outliers/
anomalies etc. can be quickly achieved by assigning tags to filtered sets. In addition,
individual images/table rows or ranges can be tagged. The data can be downloaded
as a tsv or csv file and current settings (graphs and browser layout) can be saved
and the view shared with other users, either with or without edit permissions or the
project can be made shared via URL such that even non users will be able to view it.
The whole data or filtered subsets can be cloned to produce new data sets.
Moreover, if images have been generated it can be exported to the visual data
exploration software Zegami (https://zegami.com/) for further analysis.

Implementation and extensibility. The backend of MLV is implemented using
the python framework flask (http://flask.pocoo.org/) and the relational database
PostgreSQL (https://www.postgresql.org/). It is composed of two main building
blocks: projects (analysis types) and jobs (pipelines), see supplementary Figure 1. It
was designed to be modular, with each independent module specifying the analysis
types (projects) and jobs (pipelines) required. In addition to MLV, two other
modules have been developed, LanceOtron (https://lanceotron.molbiol.ox.ac.uk/)
that calls peaks using machine learning and CaptureSee (http://capturesee.molbiol.
ox.ac.uk/19) for looking at highly multiplexed Capture C data20. The front end is
written in JavaScript and is built upon two stand-alone components, MLVPanel
(https://github.com/Hughes-Genome-Group/MLVPanel) and CIView (https://
github.com/Hughes-Genome-Group/CIView). MLVPanel is a lightweight, exten-
sible genome browser, based on igv.js (https://github.com/igvteam/igv.js), but with
the emphasis on displaying multiple genomic locations simultaneously. All tracks
are displayed compactly on the same canvas and many panels can be displayed on
the same web page, for example as thumbnails in a table. It is highly extensible,
making it simple for developers to create their own custom tracks to suit the needs
of a project and a node.js version allows images (png, svg or pdf) to be created
programmatically. CIView enables users to intuitively look at multivariate data,
visualising the effect that each parameter has on the dataset as a whole. It is based
upon dc charts (https://dc-js.github.io/dc.js/), which in turn uses d3 (https://d3js.
org/) and crossfilter (https://square.github.io/crossfilter/). However, to address the
problem of the slow rendering of large graphs in SVG which can only cope
with a few thousand points, the default scatter plots have been replaced with

those using WebGL technology and thus is able to cope with hundreds of thou-
sands of data points. It also allows users to dynamically create and manipulate
graphs in order to tailor the display to their dataset. Graphs can either be linked to
a spreadsheet (https://github.com/mleibman/SlickGrid), giving the ability to edit
the data or a table displaying images, enabling instant visual feedback at each
filtering step.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data in the examples is available for download from MLV, with the relevant links in
the figure legends.

Code availability
The code is freely available on GitHub https://github.com/Hughes-Genome-Group/mlv
under the GNU General public license.
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