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The presence of manifolds is a common assumption in many applica-
tions, including astronomy and computer vision. For instance, in as-
tronomy, low-dimensional stellar structures, such as streams, shells, and
globular clusters, can be found in the neighborhood of big galaxies such
as the Milky Way. Since these structures are often buried in very large
data sets, an algorithm, which can not only recover the manifold but also
remove the background noise (or outliers), is highly desirable. While
other works try to recover manifolds either by pushing all points toward
manifolds or by downsampling from dense regions, aiming to solve one
of the problems, they generally fail to suppress the noise on manifolds
and remove background noise simultaneously. Inspired by the collective
behavior of biological ants in food-seeking process, we propose a new
algorithm that employs several random walkers equipped with a local
alignment measure to detect and denoise manifolds. During the walking
process, the agents release pheromone on data points, which reinforces
future movements. Over time the pheromone concentrates on the mani-
folds, while it fades in the background noise due to an evaporation proce-
dure. We use the Markov chain (MC) framework to provide a theoretical
analysis of the convergence of the algorithm and its performance. More-
over, an empirical analysis, based on synthetic and real-world data sets,
is provided to demonstrate its applicability in different areas, such as
improving the performance of t-distributed stochastic neighbor embed-
ding (t-SNE) and spectral clustering using the underlying MC formulas,
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596 M. Mohammadi, P. Tino, and K. Bunte

recovering astronomical low-dimensional structures, and improving the
performance of the fast Parzen window density estimator.

1 Introduction

New technological developments facilitate the collection of large amounts
of high-dimensional data in different fields, such as astronomy, sensor net-
works, medical science, and computer vision. A typical challenge in dealing
with high-dimensional data is the curse of dimensionality, where the data
space is sparse, such that data points are far from their neighbors. How-
ever, in practice, the high-dimensional data is often generated by a system
governed by a small number of underlying components (Dixit, 2019). In
other words, the high-dimensional data lie on a lower-dimensional topo-
logical structure called a manifold. Therefore, many dimensionality reduc-
tion methods (e.g., Roweis & Saul, 2000; Belkin & Niyogi, 2003; Donoho &
Grimes, 2003; Zhang & Zha, 2003; Coifman & Lafon, 2006) aim to identify
this underlying manifold from the data. However, such approaches might
be tremendously impeded in their performance because of the presence of
noise and outliers (Wang & Carreira-Perpinán, 2010). This led to the devel-
opment of methods aiming to deal with noisy manifolds and outliers.

There are different strategies to decrease the impact of noise on manifold
learning algorithms. The technique proposed in Little, Maggioni, and Mur-
phy (2020) denoises data sets via downsampling and picking samples in
high-dense regions, whereas others suppress the noise level via pushing all
instances toward regions with higher density. While the first category can
deal with background noise (or outliers not belonging to any manifold), the
basic assumption in the second category is that the noisy samples belong
to a manifold, and their deviations from the manifold are caused by mea-
surement noise. An example technique is manifold denoising (MD) (Hein &
Maier, 2006), where the denoising process is modeled as a diffusion process
on a neighborhood graph using the Laplacian to denoise the manifold. The
aim of Klicpera, Weissenberger, and Günnemann (2019) is to generalize the
notion of diffusion operator on graphs so that larger node neighborhoods
than one-hop in the neighborhood graph are considered. To this end, the au-
thors first construct a transition graph (that can be renormalized to define
a MC) that encompasses a variety of (potentially unbounded) node neigh-
borhoods, albeit strongly downweighting increasingly large ones. The re-
sulting dense transition graph then needs to be sparsified to consider only
(potentially) higher-order neighborhoods that “really matter” (i.e., have
strong support in the transition structure). The generalized diffusion con-
volution (GDC) is then formulated in such a new neighborhood structure.
Wang and Carreira-Perpinán (2010) propose manifold blurring mean shift
(MBMS), where the mean shift directions are only allowed to be paral-
lel to manifold normals. Although increasing the number of iterations in
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Manifold Alignment Aware Ants 597

the above algorithms may cause a better result, they eventually partition
the manifold into local clusters. To overcome this problem, locally linear
denoising (LLD) (Gong, Sha, & Medioni, 2010) proposes a noniterative
method, assuming that a manifold can be explained as a set of overlapping
linear patches. While it denoises each patch separately, it simultaneously
uses the graph Laplacian to achieve a smooth manifold. However, such de-
noising methods may fail in applications, such as astronomy, where noisy
manifolds are buried inside point clouds. Thus, a method capable of han-
dling both types of noise, along with a manifold and background, is highly
desirable.

Natural systems, such as ant colonies, have motivated many swarm al-
gorithms in computer science. For instance, the cooperation among ants
in the food-seeking process has inspired many solutions for optimization
problems (Dorigo, Maniezzo, & Colorni, 1991, 1996; Dorigo, 1992; Stützle
& Hoos, 2000; Maniezzo, 1999; Blum, Roli, & Dorigo, 2001) and clustering
(Tsai, Tsai, Wu, & Yang, 2004; Chu, Roddick, Su, & Pan, 2004; Runkler, 2005).
In nature, when an ant leaves its nest to find food, it deposits a chemical
substance called pheromone on its path, which serves as information for
other ants that are attracted to it. Each ant’s decision is influenced by the
pheromone: the higher the concentration is on a particular route, the more
likely it is chosen as a path to follow. This seemingly uncoordinated local
behavior in collection assists the hive to find the shortest path to the food
source. Following this strategy, several algorithms were proposed and ap-
plied to optimization problems. Their simplicity and flexibility make these
methods desirable for many optimization tasks that include graphs, such as
vehicle/Internet routing (Rizzoli, Oliverio, Montemanni, & Gambardella,
2004) and water distribution systems (Gil et al., 2011).

Unfortunately, the strategies explained above fail to denoise data com-
prising noisy manifolds contained in point clouds, which are often faced in
application domains involving particle simulations, such as astronomy. In
this contribution, we propose a new algorithm to uncover noisy manifolds
buried in high-dimensional background noise. Motivated by ant colony op-
timization strategies, our method employs multiple artificial ants that jump
from point to point based on defined preferences and release pheromone. In
previous work we proposed a strategy in which ants were allowed to trans-
port data points toward the manifolds and hence denoising and “cleaning”
them (Mohammadi & Bunte, 2020). In contrast, this contribution aims to
detect noisy manifolds in potentially large amounts of background noise.
Here, the position of data points is not changed; instead, the ants prefer to
move toward low-dimensional structures and deposit pheromone on the
points they visit. The latter serves as positive feedback that accumulates
and concentrates on the manifolds, leaving the noisy points with relatively
less pheromone and hence highlighting the structures. Both our approach
and GDC are built on a notion of a stochastic transition matrix reflecting the
connection structure of a given graph. While in our case, the neighborhood
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598 M. Mohammadi, P. Tino, and K. Bunte

graph represents local geometric structures of a point cloud, in GDC, pair-
wise relationships are used (even though in applications, the graphs do of-
ten represent point clouds). In general, our approach differs from graph
diffusion (GD) in several important aspects:

1. In our approach, the adjacency structure of the neighborhood graph
by itself is not sufficient. We explicitly enforce a preference for neigh-
bors that are aligned with low-dimensional structures in the point
cloud the neighborhood graph represents.

2. Motivated by ant colony algorithms, we allow for an addi-
tional mechanism of positive reinforcement when discovering
low-dimensional point structures in a noisy background, namely,
pheromone accumulation and evaporation.

3. We do not perform any graph convolution; instead, we associate the
“importance values” of each node with the amount of accumulated
pheromone. Note that these values potentially reflect large-scale geo-
metric structures as the pheromone is deposited over long-range ant
walks. In this sense, our approach shares the ambition of GDC for
representing larger-scale “important” neighborhoods. However, in
GDC, the larger-scale structures are rapidly weighted down, whereas
in our case, the pheromone deposits can survive over large-scale
structures, if frequently visited by the ants.

With empirical experiments, we demonstrate the ability of our algorithm
to highlight manifolds in synthetic and real-world applications. Further-
more, we show that the pheromone distribution can be used to improve
the performance of the fast Parzen window density estimator. In addition
to an empirical analysis, we provide a thorough theoretical analysis to ver-
ify the ability of pheromone to encode information about distances of data
points to the underlying manifold. First, we only focus on a linear man-
ifold and use the Markov chain framework to study the behavior of the
algorithm. In order to extend our analysis to nonlinear manifolds, we as-
sume that a manifold can be approximated by locally linear patches, and
we analyze how the pheromone distribution asymptotically behaves. Our
analysis shows that the pheromone sorts data points according to their dis-
tances to the linear patch: the closer a data point is to the linear patch, the
higher pheromone level it has. In summary, we propose an algorithm that
provides valuable information, called pheromone, about how far points are
from the underlying manifolds. This information is beneficial not only to ex-
tract noisy manifolds buried in point clouds, but also to build more effective
density estimators.

The organization of this article is as follows. In section 2, we provide
background information to study random walks in general. Section 3 con-
tains three alternative transition probabilities for random walks, and our
proposed method to extract manifolds from a point cloud is exhibited
in section 4. A theoretical analysis of the role of the pheromone and its
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Manifold Alignment Aware Ants 599

convergence is presented in section 5. Section 6 contains an empirical analy-
sis on synthetic data sets and real-world application examples, demonstrat-
ing the performance in recovering manifolds and improving visualization
and density estimation techniques.

2 Background and Notation

Let X = [x1 x2 · · · xN] ∈ R
D×N be the data matrix storing N D-

dimensional data points in its columns. Given a number r > 0, we define
the neighborhood of any point xi as

Br(xi) = {x j| ‖xi − x j‖2 < r, 1 ≤ j ≤ N}, (2.1)

where ‖.‖ denotes the Euclidean norm. This definition of neighborhood has
an advantage of being geometrically motivated (Belkin & Niyogi, 2003),
which also inspires our theoretical analysis. Alternatives are methods such
as k-nearest neighbor and mutual k-nearest neighbor (Von Luxburg, 2007).
In the neighborhood, graph nodes correspond to the data points from X,
and (xi, xk) represents the directed edge connecting xi to xk, with the associ-
ated weight w(xi, xk) ≥ 0. The usual way to describe a Markov chain (MC)
is to use a weighted graph where the nodes denote the states of the MC,
and its weights represent the probability of transitions between the states.
Thus, from the above neighborhood graph, one can construct an MC by row
normalization,

pi j = w(xi, x j )∑
k∈Br(xi ) w(xi, xk)

, (2.2)

where pi j is the transition probability of jumping from xi to x j. A popular
MC process is the random walk where a walker follows the transition prob-
abilities to move on the graph. We now review some of the key results and
notions from the MC theory that will be needed in our study.

Assume S = {1, 2, . . . , N} represents the state space of a system. Let Xn

denote the random variable of the state of the system in the nth time step.
In an MC, we assume that the next state of the system only depends on
the current state, and the system’s behavior is described through transition
probabilities,

pi j = P(X1 = j|X0 = i), ∀i, j ∈ S, (2.3)

with X0 being the initial state of the system. In this section, we only con-
sider homogeneous MCs where the transition probabilities are indepen-
dent of the time n. Now, let P = [pi j] be a matrix containing the transition
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600 M. Mohammadi, P. Tino, and K. Bunte

probabilities. While P includes the transition probabilities for one time step,
it can be extended to an arbitrary number of steps:

Theorem 1. For a MC with the transition probability matrix P, we have

P(Xn = j|X0 = i) = p(n)
i j

where p(n)
i j is (i, j)th element of the nth power of the matrix P, that is, Pn =

P × . . . × P︸ ︷︷ ︸
n times

(Kulkarni, 1999).

This distribution is used to study an MC in a limited time interval. Let Nj(n)
denote the number of visits state j accumulates over (n + 1) steps, includ-
ing the initial state. To study the behavior of a chain in this interval the
occupancy time is defined as follows:

Definition 1. For any state j and initial state i, the occupancy time of state j up
to n is the expected number of times the system spends in state j in a random walk
of n + 1 steps starting in i,

mi j(n) = E[Nj(n)|X0 = i],

where E[·] denotes the expectation operator.

Let M(n) = [mi j(n)] denote the occupancy time matrix. The following theo-
rem connects the occupancy time to the power of transition matrix (Kulka-
rni, 1999):

Theorem 2. Given an MC, its occupancy time matrix is

M(n) =
n∑

q=0

Pq. (2.4)

While this theorem helps to study an MC in a finite number of time steps,
we would like to investigate the long-term behavior of the chain, which is
encoded in the stationary distribution:

Definition 2. For an MC with the transition probability matrix P, the distribu-
tion π = [π1, . . . , πN] is called its stationary distribution if the following balance
equation holds:

πP = π. (2.5)

Here, we only focus on a specific class of Markov chains called ergodic chains:
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Manifold Alignment Aware Ants 601

Definition 3. An MC is called ergodic if the following condition holds:

∃T ∈ N : ∀n > T,∀i, j ∈ S P(Xn = j|X0 = i) > 0.

In other words, for sufficiently large time steps n, the system can be found
in any state. The following theorem shows that the stationary distribution
captures all information about the long-term behavior of an ergodic MC
(Cinlar, 2013; Kulkarni, 1999):

Theorem 3. For an ergodic MC its stationary distribution π is unique with:

∀i ∈ S; lim
n→∞ P(Xn = j|X0 = i) = π j, (2.6)

lim
n→∞ P(Xn = j) = π j, (2.7)

and the expected return time to state j is μ j = 1
π j

. (2.8)

3 Homogeneous Markov Chain

An important class of manifold learning techniques relies on weighted
graph representations of data. Markov chains constructed on graphs of-
fer a powerful tool to represent nonlinear manifolds and are used in
several dimensionality-reduction techniques. This is exemplified by a
well-known family of dimensionality-reduction techniques called “kernel
eigenmap methods,” which includes local linear embedding (Roweis &
Saul, 2000), Laplacian eigenmaps (Belkin & Niyogi, 2003), Hessian eigen-
maps (Donoho & Grimes, 2003), local tangent space alignment (Zhang &
Zha, 2003), and diffusion map (Coifman & Lafon, 2006). The general idea
is that the eigenvectors of Markov transition matrices are used to project
high-dimensional data to a lower-dimensional Euclidean space preserving
the main structures of the data (Coifman & Lafon, 2006). Therefore, apply-
ing MCs in the context of manifold learning has been employed in several
techniques.

Although manifold learning techniques assume that the data lie on a
lower-dimensional topological structure, in practice, it rarely is clear due
to the presence of noise. One way to improve their performance is to use
“less noisy data” closely aligned with the underlying manifold. In this con-
tribution, the goal is to perform a random walk that places emphasis on
such manifold aligned subsamples. In the following, we introduce three
MCs that can recover a manifold by highlighting sample points closer to it.

3.1 Weights Based on Kernels. A common way to construct an MC on
a data set is to use kernel functions (Berry & Sauer, 2016), that is, a map
K : RD × R

D → R that fulfills
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602 M. Mohammadi, P. Tino, and K. Bunte

Figure 1: An illustration of a curved manifold. In contrast to x2, the points x
and x1 lie on the curved manifold. The Euclidean distance (dashed) to both x1

and x2 is equal (see panel a). As shown in panel b, the distance to the tangent
(dashed) reflects the closeness to the manifold much better.

• ∀x, y ∈ R
D K(x, y) = K(y, x)

• ∀x, y ∈ R
D K(x, y) ≥ 0

and quantifies a “similarity” between pairs of data points. The most popular
kernel function is the gaussian, which for two points xi and x j is defined as

Kσ (xi, x j ) = exp

(
−‖xi − x j‖2

2σ 2

)
, (3.1)

with the Euclidean distance ‖.‖ and scale parameter σ > 0. Based on the
gaussian kernel, the transition probability reads

pi j = Kσ (xi, x j )∑
k∈Ni

Kσ (xi, xk)
,

with Ni being the set of point xi’s neighbors. This definition of transi-
tion probabilities reinforces random walkers to spend more time in denser
regions.

3.2 Weights Based on Tangent Spaces. Assuming the presence of a
manifold, the noise level of a data point can be related to its distance from
the manifold. Thus, to form an MC that encourages random walkers to
spend more time on the manifold, the walkers need to know how far data
points are from the manifold. As depicted in Figure 1a, the Euclidean dis-
tance fails to reveal this information. There, if a random walker resides on
point x, the gaussian kernel gives the walker the same chance to stay on the
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Manifold Alignment Aware Ants 603

manifold (point x1) or leave it (jumping to point x2).1 In order to overcome
this drawback, we need to define a favorable measure that improves the
approximate distances to the manifold.

A manifold can be approximated locally at a point x by its tangent space
(Tu, 2011). Hence, we propose to use the tangent space to estimate the dis-
tance of x’s neighbors to the manifold (see Figure 1b). Let N represent the
set of x’s neighbors, for example, enclosed in Br(x). The tangent space at x
is typically approximated by principal component analysis (PCA) on N 2,
yielding a set of eigenvalues and unit orthogonal eigenvectors of the local
covariance matrix, {(λk, uk)}D

k=1. Without loss of generality, we assume that
the eigenvalues are in descending order with λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0 and
normalized to

∑
k λk = 1. Then for a d-dimensional manifold, the subspace

spanned by the columns of U1 = [
u1, u2, . . . , ud

]
provides an estimation for

the tangent space and locally for the manifold.
Since we consider noisy data sets we only have access to a noisy version

of the tangent space Û1. Hence, depending on the noise level, the difference
between U1 and Û1 may be small or high. For more details, see Kaslovsky
and Meyer (2014) and Little, Maggioni, and Rosasco (2017). In the follow-
ing we introduce two ways to define MCs highlighting samples close to
manifold structures.

3.2.1 A Manifold with Known Intrinsic Dimensionality. Consider a d-
dimensional manifold in x’s neighborhood. For any xi ∈ N , one can esti-
mate the distance to the tangent space by

δMi = ‖(I − Û1ÛT
1

)
(xi − x′)‖, (3.2)

where x′ determines the place where the tangent space touches the mani-
fold in the neighborhood. Based on these quantities, we define the weight
values to be used in the calculation of transition probabilities equation 2.2
as follows:

wd(x, xi) =
⎧⎨
⎩ 1 − δMi

α
if α ≥ δMi

0 if α < δMi ,
(3.3)

where α is a factor to ensure the weight values are positive. Here, we deter-
mine α such that only p percent of neighbors have nonzero weights. This

1
A similar problem holds for the GDC, introduced in Klicpera et al. (2019). Since it

enforces symmetric weights between every point pair, it uses a similar weight for jumping
from x to x2 and vice versa.

2
Note that methods, such as Lerman, McCoy, Tropp, and Zhang (2015), provide better

estimation for the tangent spaces. However, since in this contribution we consider big
data sets, we use the less costly PCA.
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604 M. Mohammadi, P. Tino, and K. Bunte

definition constructs a random walk favoring jumps closer to the manifold.
In other words, the random walker observes a flat region and is more likely
to move to a point close to it.

3.2.2 A Manifold with Unknown Intrinsic Dimensionality. In most applica-
tions, the dimensionality of a manifold d is unknown, and eigenvalues are
typically used to estimate it. As suggested in Wang, Tino, and Fardal (2008),
the intrinsic dimensionality may be estimated by

d̂ = arg max
d

Sd,

where Sd = d · (λd − λd+1), d ∈ {1, . . . , D − 1}, and SD = D · λD. However,
the performance of these types of criteria highly depends on the neighbor-
hood size, which is related to the noise level and the manifold curvature. In
order to tackle this problem, we consider all possible values of d instead of
picking a specific value. The basic idea is to compute the weight values for
any d ∈ {1, . . . , D}, according to equation 3.3, followed by the calculation of
their mean,

w(x, xi) =
D∑

d=1

Sd · wd(x, xi), (3.4)

where the eigengap Sd indicates the importance of each intrinsic dimension-
ality. Since Sd ≥ 0 and

∑D
d=1 Sd = 1, we may interpret Sd as the “probability”

of the manifold being d-dimensional and the weight value w as the expected
weight with respect to this distribution over manifold dimensionalities.

4 Ant Colony: Nonhomogeneous Markov Chain

The group behavior of decentralized natural systems, such as ant colony
and bird flocking, has inspired many methods in computer science and is
often summarized under the key term swarm intelligence (SI). For instance,
the biological behavior of ants in the food-seeking process has motivated
several methods in combinatorial optimization and clustering. In the pro-
cess, two mechanisms, one behavioral and one environmental, help to find
the shortest path to a food source:

• Deposition: When a bio-ant walks to (and from) a food source, it
releases a substance called pheromone on the ground. Ants are at-
tracted by it when they choose a path to follow. The more ants use
a route, the more pheromone accumulates, increasing the chance for
the path to be selected by subsequent ants as well.

• Evaporation: The pheromone evaporates over time, and hence, less
attractive trails with less pheromone eventually disappear.
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Manifold Alignment Aware Ants 605

Thus, although there is no central authority to control the ants’ behavior,
their indirect form of local interactions, via pheromone, helps them find the
shortest path to the closest food source.

In this article, we propose a new algorithm that aims to recover mani-
folds from noisy samples. The basic idea is that a set of ant-like agents is
released in the data space to search for manifolds based on the following
elements:

O1: An MC that highlights underlying manifolds in the data set
O2: Deposition and evaporation mechanisms to update the pheromone

The aim is that ants are more likely to visit points close to manifolds and de-
posit pheromone. Higher pheromone levels function as a positive feedback
mechanism, reinforcing further visitations. Eventually, by extracting points
with more pheromone, potential manifolds can be uncovered. In the fol-
lowing, we formally define and illustrate the two elements outlined above.

4.1 Manifold Alignment Aware Ants (M3A). Inspired by swarm intel-
ligence, M3A uses several ants that walk in the data space and search for
manifolds. During the search process, the ants interact with one another
through pheromone and with the environment. In section 3, we proposed
possible formulations of transition probabilities for the random walk. How-
ever, they consider only the distribution of data points in the environment
and do not provide any form of communication among ants. Thus, we mod-
ify the transition probabilities by adding a pheromone factor f . Given any
data point xi, let fi denote the amount of pheromone on it, andNi represents
the set of its neighbors. The new transition probability is defined as

pi j =
(
wi j
)1−γ

(
f̂ j

)γ

∑
xk∈Ni

(wik)1−γ
(

f̂k

)γ , (4.1)

where wi j = w(xi, x j ). To ensure that the weights w and the pheromone f
are in the same scale, [0, 1], the pheromone is normalized within the neigh-
borhood by f̂ j = f j∑

xk∈Ni
fk

. The γ ∈ [0, 1] effectively controls how much ants

are attracted to structures already found or are able to explore the data space
for new regions. For instance, if we set γ to zero, there would be no interac-
tion among ants, and as a result, every ant could independently explore the
data space. Hence, the new transition probability takes into account both
types of interactions O1 and O2.

Pheromone is an indirect form of communication among artificial ants
that release it on the visited points. Therefore, the amount of pheromone on
a sample varies, and it should be updated over time. In order to make the
algorithm suitable for parallelization, the pheromone values are updated
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when the ants finish their walks of a predefined number of steps n, called
one round.3 Thus, the transition probability for the (t + 1)th round can be
rewritten as

p(t+1)
i j =

(
wi j
)1−γ

(
f̂ (t)

j

)γ

∑
k∈Ni

(wik)1−γ
(

f̂ (t)
k

)γ , (4.2)

where f (t)
j denotes the amount of pheromone on x j after t rounds. Since the

amount of pheromone on a data point depends on the number of visits and
the extent of evaporation, the updating rule consists of two parts:

• Deposition based on the number of times a point has been visited
• Evaporation depends on the environment and is controlled by hyper-

parameter ρ

Therefore, the pheromone level on any sample xi can be updated as

f (t+1)
i = c

M

M∑
a=1

Na
i (n)

n + 1
+ (1 − ρ) · f (t)

i , (4.3)

where M is the number of ants and Na
i (n) is the number of times the ath

ant visits xi over n + 1 steps (including initial state) in the (t + 1)th round.
Note that the deposition term is divided by M(n + 1) to prevent unlimited
increase of the pheromone level (especially for big M or n). The constant
c > 0 specifies the amount of pheromone a single ant deposits on a point in
a single visit. The pseudocode of the M3A4 is provided in algorithm 2. In
summary, we can highlight the following points:

• The proposed ant algorithm uses transition probabilities (see equa-
tion 4.2) based on local tangent alignment and pheromone to high-
light manifold structures, with the latter also reinforcing the agents
to stay close.

• In contrast to previous works with the ant colony, the pheromone
is deposited on the nodes instead of edges. This vastly reduces the
number of pheromone values that need to be stored. Moreover, the
pheromone associated with each data point can be used to extract
points close to manifolds.

3
In one round, we can distribute the agents among several processors and update the

pheromone after n steps. Otherwise, communications between processors would be nec-
essary to synchronize pheromone values in every step, which would cause unnecessary
overhead.

4
M3A implementation is provided at https://github.com/mohammadimathstar/

M3A.
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• The amount of pheromone is updated after a predefined number of
steps n. In practice, this allows distributing the computations among
several processors and parallelize the random walks.

4.2 Complexity Analysis. As a preprocessing step for the M3A algo-
rithm, we implement two operations on each data point: (1) finding its
neighbors and (2) performing PCA on its neighborhood. To perform the
neighbor search we need to calculate the distances of all pairs of N samples,
which leads to the complexity of O(N2). However, there are approximate
nearest neighbor search strategies to reduce the complexity. For instance,
the k-d tree algorithm (Bentley, 1975) with the complexity O(N log N) can
significantly decrease the computational costs. Besides the neighbor search,
we perform local PCA using singular value decomposition. In the worst
case, its implementation for any point x scales cubic with the dimensionality
of the data and quadratic with the size of its neighborhood |Nx|. Nonethe-
less, approximate strategies decrease the computational complexity (Golub
& Van Loan, 2012). In addition to speeding up the preprocessing step via
approximate strategies, the execution of the M3A can be accelerated via par-
allelization. We only need to distribute the ants (i.e., function OneAnt intro-
duced in algorithm 1) among several processors.

5 Theoretical Analysis

Many metaheuristic methods suffer from the lack of theoretical analysis.
Therefore, their behavior and the effects of parameters on them are typically
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investigated only empirically. In this section, we provide an analysis of the
convergence and the impact of hyperparameters of the proposed algorithm
in exemplary situations. More precisely, we consider a data set containing
a noisy d-dimensional manifold and we use equation 3.3 to compute the
weight values with α determined such that p = 100% of neighbors having
nonzero weight values. First, we study the effect of noise on the perfor-
mance of PCA and, as a result, on the M3A algorithm. Then we examine the
pheromone distribution and demonstrate its convergence to the stationary
distribution and its capability in recovering a linear manifold. Finally, we
study the performance of the algorithm on nonlinear manifolds under the
assumption that they can be approximated by local linear patches. We con-
centrate our analysis on a single patch and consider the other patches as
conceptually grouped in a single state representing “the outside.”

5.1 Spectral Analysis. An important subject in perturbation theory is
to study the effect of noise on the eigenvalues and eigenvectors of ma-
trices (Kaslovsky & Meyer, 2014). Since we use principal directions of
covariance matrices to define the MCs, it is important to know the effect of
noise on the eigenvectors of covariance matrices. Let M be a d-dimensional
vector subspace embedded in a higher-dimensional space.5 In the case of

5
The assumptions are made since we only focus on linear manifolds in the next sub-

section. For a more general case, nonlinear manifold, we refer to Kaslovsky and Meyer
(2014) where the effect of curvature on the covariance matrices is studied.
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noise-free samples, it can be exactly recovered via PCA. However, in the
presence of noise, the recovered subspace M̂ is perturbed. Here, the goal is
to see the impact of noise on M̂.

Without loss of generality, let us consider the first d coordinates that
span the subspace M. We assume the set {li}N

i=1 contains N realizations
of M, such that their first d coordinates (l(1)

i , . . . , l(d)
i ) are uniformly dis-

tributed within Br(0). Thus, every point li on the subspace M has the form
(l(1)

i , . . . , l(d)
i , 0, . . . , 0). Now, suppose these realizations are disrupted by

gaussian noise with mean zero and standard deviation σ ID. If xi denotes
a noisy observation, then we have

xi = li + ei,

where ei is the noise vector. In this setting, the design matrix X can be de-
scribed as

X = L + E, (5.1)

where the columns of L and E keep the noise-free realizations and noise
vectors, respectively. Let us denote the centered version of a matrix H =
[h1, h2, . . . , hN] as

H̃ = H − μh1N,

where μh = 1
N

∑
i hi and 1N = [

1, 1, . . . , 1
]

with N entries. Then the data
covariance matrix can be written as

1
N

X̃X̃T = 1
N

L̃L̃T + 	,

with the matrix 	 representing the perturbation caused by the noise:

	 = 1
N

(L̃ẼT + ẼL̃T + ẼẼT ).

From eigendecomposition, we obtain

1
N

L̃L̃T = U
UT = [
U1 U2

] [
1 0

0 0

] [
U1 U2

]T
,

where 
1 is a d × d diagonal matrix containing nonzero eigenvalues in de-
scending order and U1 includes their corresponding eigenvectors. Note that
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U2 can be any orthogonal basis for the last D − d coordinates. Similarly, we
can write

1
N

X̃X̃T = Û
ÛT = [
Û1 Û2

] [ 
̂1 0

0 
̂2

] [
Û1 Û2

]T
.

The subspace M is spanned by U1, and the recovered subspace M̂ is
spanned by Û1. The orthogonal projectors onto M and M̂ are derived as
follows:

Q = U1UT
1 Q̂ = Û1ÛT

1 .

Here, the Frobenius distance ‖Q − Q̂‖F is used to compare two subspaces
because it corresponds to the sum of the squared sines of the principal
angles between M and M̂ (Kaslovsky & Meyer, 2014). If the number of
samples N and the probability constants ε and ελ satisfy the following
inequalities,

N > 4
(

max(
√

d,
√

D − d) + ε
)

, ε < 0.7
√

d(D − d), ελ <
3√

d + 2

√
N

(5.2)

then the following theorem offers a bound on the angle between M and M̂.

Theorem 4 (Kaslovsky & Meyer, 2014). Let

δ = r2

d + 2

(
1 − 1√

N
ζ1(ελ)

)
− σ

1√
N

ζ2(ελ) − σ 2
(√

d +
√

D − d + 1√
N

ζ3(ε)
)

and

β = 1√
N

[
σ
√

d(D − d)η(ε, ελ) + 1√
N

ζnumer(ε)
]

.

Additionally, if the following conditions hold:

• (Condition 1) δ > 0,
• (Condition 2) β < 1

2δ

then

‖Q − Q̂‖ ≤ 2
√

2β

δ
(5.3)
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with probability greater than

1 − 2de−ε2
λ − 9e−ε2

(5.4)

over the joint random selection of the sample points and random realization of the
noise, where the following definitions have been made to ease the presentation:

ζ1(ελ) = 2√
N

− 1

N
3
2

+
(

1 − 1
N

)
ελ

√
8(d + 2),

ζ2(ε, ελ) = 2rd√
d + 2

(
1 + ελ

5
√

d + 2√
N

)(
1 + 6ε

5d

)
,

ζ3(ε) = 5
2

(√
d + ε

√
2
) (√

D − d + ε
√

2),

η(ε, ελ) =
(

1 + 6
5

ε√
d(D − d)

)[
σ + r√

d + 2

(
1 + ελ

5
√

d + 2√
N

)]
,

ζnumer(ε) = σ 2
√

d(D − 2)

(
1 + 6

5
ε√

d(D − d)

)(√
D − d + ε

√
2
)

.

This theorem provides an upper bound for the difference between the
true manifold M and the recovered subspace M̂. Therefore, it is safe to
say that the definition of weights, in equation 3.3, is reasonable in keep-
ing a random walker close to the M (by encourage to stay close to M̂).
Moreover, theorem 4 can help us to explain the relation between the qual-
ity of the recovered subspace M̂ and the hyperparameters N, σ and r. An
empirical example demonstrates the relationship in practice. We generate
samples from a noisy one-dimensional linear manifold embedded in R

10 for
various (hyper-) parameter settings. Their influence is demonstrated in Fig-
ure 2. Figure 2a shows that the approximation performance increases with
a growing number of samples N. On the other hand, there is a direct con-
nection between the noise level σ and the approximation error as shown
in Figure 2b. Moreover, Figure 2c demonstrates that a bigger neighborhood
radius r recovers an increasingly accurate subspace, which is not the case
for nonlinear manifolds, where this also depends on the curvature.

5.2 Pheromone Distribution for a Linear Manifold. The proposed
M3A algorithm associates a pheromone value with each sample. In this sec-
tion, we show that the pheromone values encode distances of the samples
to the reconstructed subspace M̂. Let the data set fulfill the conditions just
explained—that the noisy data points are uniformly distributed along a lin-
ear manifold inside Br(0). In order to simplify our analysis, we make the
following assumptions in constructing the MC:
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612 M. Mohammadi, P. Tino, and K. Bunte

Figure 2: The effect of (hyper-)parameters on the quality of the recovered sub-
spaces: (a) the effect of the number of samples N within the neighborhood
(σ = 0.01, r = 1), (b) the role of the noise level σ (N = 1000, r = 1), and (c) the
impact of neighborhood radius r (N = 1000, σ = 0.01).

• The radius r is big enough such that all pairs of samples are neighbors
and any sample belongs to its neighborhood. Therefore, instead of
using local PCA for each point, we apply PCA on the whole data set.

• In equation 3.2 we set x′, to the origin 0. Thus, for any point xi, its
distance to M̂ is

δMi = ‖(I − Û1ÛT
1

)
xi‖,

and with equation 3.3, the weight values are computed as

wki = 1 − δMi
α

= wi 1 ≤ k ≤ N. (5.5)

We define wi = wki since wki does not depend on k.
• Since the presence of powers in the transition probabilities (i.e., γ

and 1 − γ ) makes our analysis intractable, we analyze the special case
with removed powers, such that our arguments can be presented in
a tractable manner:

p(t+1)
ji = wi f (t)

i∑
k wk f (t)

k

. (5.6)

• The pheromone values are uniformly initialized by

f (0)
i = 1

N
∀i. (5.7)

• In the updating rule of pheromone, equation 4.3, we set the constant
c to the evaporation rate ρ:

f (t+1)
i = ρ

M

M∑
a=1

Na
i (n)

n + 1
+ (1 − ρ) f (t)

i . (5.8)
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Without loss of generality we re-label the data points by {1, . . . , N}
such that

w1 ≥ w2 ≥ · · · ≥ wN. (5.9)

Thus, the new labels sort samples according to their closeness to the sub-
space M̂.

Corollary 1. The pheromone values across the samples form a probability distri-

bution called pheromone distribution denoted by f(t) =
[

f (t)
1 , f (t)

2 , . . . , f (t)
N

]
.

Proof. It can be proven by induction over t. From equation 5.7, we have∑N
i=1 f (0)

i = 1, and if we assume that the statement is valid for t, that is,∑N
i=1 f (t)

i = 1, we can rewrite equation 5.8:

N∑
i=1

f (t+1)
i = ρ

M

M∑
a=1

( =1︷ ︸︸ ︷
1

n + 1

N∑
i=1

Na
i (n)

)
+ 1 − ρ = 1.

Note that the expression inside the parentheses is equal to 1 since∑N
i=1 Na

i (n) equals to the number of steps (i.e., n) plus 1 (for the initial
point). �

In this setting we show that:

• The pheromone values on sample points are sorted by their distances
to the subspace M̂.

• The pheromone distribution f(t) converges as t → ∞.

Our analysis is based on the Markov chain framework, and we consider two
cases. First, we assume there is only one ant that walks for an unbounded
number of steps in every round (i.e., n → ∞). Second, we assume an un-
bounded number of ants (i.e., M → ∞) that walk for n steps each in every
round. In other words, we study the long-term and the short-term behavior
of random walks, respectively.

5.2.1 Single Ant, Unbounded Path Length. We assume a single ant (i.e.,
M = 1) performing n → ∞ steps in each round. From theorem 3, the long-
term fraction of time spending in a point xi is equal to its stationary distri-
bution value πi. Therefore, for any point xi, its pheromone value is updated
according to

f (t+1)
i = ρ

M

M∑
a=1

π
(t+1)
i + (1 − ρ) f (t)

i

= (1 − ρ) f (t)
i + ρ · π

(t+1)
i , (5.10)
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where π (t+1) is the stationary distribution associated to the transition prob-
ability matrix in the (t + 1)th round. The stationary distribution can be com-
puted via the balance equation:

π
(t+1)
i =

∑
j

π
(t+1)
j p(t+1)

ji

=
∑

j

π
(t+1)
j

wi f (t)
i∑

k wk f (t)
k

= wi f (t)
i∑

k wk f (t)
k

= p(t+1)
ji ∀ j. (5.11)

From equations 5.7 and 5.9, it can be shown (by induction) for any t > 0:

π
(t)
1 ≥ π

(t)
2 ≥ · · · ≥ π

(t)
N (5.12)

and by equation 5.10,

f (t)
1 ≥ f (t)

2 ≥ · · · ≥ f (t)
N . (5.13)

Since the weight values encode the distance of samples to the subspace M̂
(see equation 3.3), the following corollary holds.

Corollary 2. The pheromone values are sorted according to their closeness to the
linear manifold M̂.

In the next step, we would like to prove the convergence of the pheromone
distribution, but we need to first establish the following lemma:

Lemma 1. The sequence {a(t)}∞t=0 with

a(t) =
∑

k

wk f (t)
k (5.14)

• Is monotonically increasing (i.e., a(t+1) ≥ a(t))
• Is convergent (i.e., a(t) → a for some a ≥ 0)

Proof. (a) To demonstrate that the sequence {a(t)}∞t=0 is monotonically in-
creasing, we need to show

I(t) = a(t+1) − a(t) =
∑

k

wk · 	(t) fk ≥ 0,
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where 	(t) fi = f (t+1)
i − f (t)

i . We can write

	(t) fi
Eq. (25)= ρ(π (t+1)

i − f (t)
i )

Eq. (26)= ρ

(
wi∑

k wk f (t)
k

− 1

)
f (t)
i

= ρ

a(t)

(
wi − a(t)

)
f (t)
i . (5.15)

For every fixed t, we have: { f (t)
i }N

i=1 and {wi − a(t)}N
i=1

6 that are monotonically
decreasing sequences. Thus, the sequence {	(t) fi}N

i=1 will be decreasing as
well. Therefore, we have

I(t) =
∑
k≤k∗

wk ·
≥0︷ ︸︸ ︷

	(t) fk +
∑
k>k∗

wk ·
<0︷ ︸︸ ︷

	(t) fk,

where k∗ = max{k : 	(t) fk ≥ 0}, and we define the following values:

w = min
k≤k∗

wk, w′ = max
k>k∗

wk.

Since {wi}N
i=1 is decreasing, we have w > w′:

I(t) ≥ w ·
∑
k≤k∗

≥0︷ ︸︸ ︷
	(t) fk +w′ ·

∑
k>k∗

<0︷ ︸︸ ︷
	(t) fk

w>w′
> w ·

∑
k≤k∗

	(t) fk + w ·
∑
k>k∗

	(t) fk

= w ·
∑

k

	(t) fk = w ·
∑

k

( f (t+1)
k − f (t)

k )

= w ·
(∑

k

f (t+1)
k −

∑
k

f (t)
k

)
= 0.

(b) We know that

0 ≤ wi ≤ 1, 0 ≤ f (t)
i ≤ 1

6
From inequality 5.9, we know that {wi}N

i=1 is a decreasing sequence. Therefore, the
sequence {wi − a(t)}N

i=1 is also decreasing, since a(t) is a constant number for a fixed t.
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and therefore

0 ≤ a(t) ≤ N.

Since a(t) is an increasing and bounded sequence, it is convergent. �

The following theorem states that the pheromone values are convergent
over time, and, as a result, the algorithm is convergent to a unique
distribution.

Theorem 5. For any point xi, its pheromone value f (t)
i is convergent as t → ∞.

Proof. Since we know that the pheromone values f (t)
i are bounded from

below and above for all t, it is enough to show that { f (t)
i }∞t=1 is a monotonic

sequence. From equation 5.15, we just need to show that wi − a(t) becomes
only positive or only negative after some round T. Let us define the se-
quence {b(t)} as b(t) = wi − a(t). From lemma 1 we know sequence a(t) is in-
creasing and a(t) → a (as t → ∞). Thus, b(t) will be a decreasing sequence
and convergent to wi − a:

• If wi ≥ a, then b(t) ≥ 0 for any t. Thus, from equation 5.15, we get
	(t) fi ≥ 0 and then f (t)

i is a monotonically increasing sequence.
• If wi < a, then there exists T ∈ N such that

∀t > T : a(t) > wi ⇒ b(t) < 0,

so f (t)
i is a decreasing sequence for t > T.

�
Corollary 3. From the convergence of pheromone values and the updating rule
in equation 5.10 it is clear that π

(t)
i is convergent (as t → ∞) for any i ∈

{1, 2, . . . , N}.
After proving the convergence of the pheromone distribution and sta-

tionary distribution, we show in the following that the pheromone distribu-
tion (coming from the algorithm) converges to the stationary distribution.

Theorem 6. The pheromone distribution f (t) converges to the stationary distri-
bution π (t) as t → ∞, that is, for any ε > 0, there exists T ∈ N such that

∀i ∈ {1, . . . , N}, ∀t > T → |π (t)
i − f (t)

i | < ε.

Proof. Theorem 5 states that the pheromone distribution converges (i.e.,
∀i f (t)

i → fi as t → ∞). Therefore, the update rule can be written as

fi = (1 − ρ) fi + ρ · lim
t→∞

π
(t)
i ⇒ lim

t→∞
π

(t)
i = fi.
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Figure 3: 1D manifold consisting of 2000 data points disrupted by gaussian
noise (N(0, 0.1)) depicted as gray points in panels a and b. The 120 points with
highest density (using a gaussian kernel) and pheromone values (resulting from
equation 5.5) are highlighted in red in panels a and b, respectively. The develop-
ment of the pheromone values over iterations t for points close to the manifold
is steeply increasing (shown in panel c), while it is abruptly dropping to zero
for points far away (see panel d). Panel e shows the evolution of the mean value
of weights a(t) (see equation 5.14) and f the KL-divergence from the stationary
to the pheromone distribution over the iterations t.

Thus, the pheromone and stationary distribution converge toward the same
distribution. �

Theorems 5 and 6 indicate two important points: that the pheromone dis-
tribution is convergent and that f (t) converges to a well-known distribution
called the stationary distribution.

In order to demonstrate the above results with an example, we gener-
ate a 1D manifold such that 2000 data points are uniformly distributed on
a line and disrupted by gaussian noise N(0, 0.1)7 (gray points as shown
in Figures 3a and 3b). In Figure 3a, the gaussian kernel with σ = 1 and

7
Other noise models, such as uniform noise (“tubes” around the manifold) or the

Laplace distribution (strongly concentrating points along the manifold) can be alterna-
tive scenarios dependent on the process with which the manifolds are sampled. How-
ever, here we concentrate on gaussian noise that is suitable for our applications to keep
the article more concise.
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618 M. Mohammadi, P. Tino, and K. Bunte

r = 0.18 is used to detect 120 samples with the highest density highlighted
in red. Figure 3b shows the samples with the highest pheromone values us-
ing the weights defined in equation 5.5. With the gaussian kernel failing,
we clearly see the superiority of the new algorithm in recovering the linear
manifold nearly perfectly, since it uses PCA in the creation of the MC. Fig-
ures 3c and 3d depict the evolution of pheromone values of samples close
to and far from the underlying 1D manifold, respectively. Closer samples
to the manifold exhibiting lower noise levels receive more and more vis-
its in smaller time intervals (from theorem 3) and thus accumulate more
and more pheromone over time. Figure 3e displays that the mean of weight
values a(t) = ∑

k wk fk is monotonic increasing and convergent, as explained
in lemma 1. Finally, Figure 3f uses the Kullback-Leibler (KL) divergence to
show that the pheromone distribution converges toward the stationary dis-
tribution, confirming theorem 6.

5.2.2 Unbounded Number of Ants, Fixed Bounded Path Length. Since our
algorithm allows employing multiple ants, we study its performance in the
presence of a swarm of ants, which walk for a limited number of steps n
in every round. Let M denote the number of ants and Nj(n) represents the
number of times a random walker visits point x j during n steps on (t + 1)th
round. For a specific case M = 1, we have (according to definition 1),

E[Nj(n)] = EP(X0=xi )[mi j(n)], (5.16)

and assuming uniform distribution over the initial states (sample points),

E[Nj(n)] = 1
N

N∑
i=1

mi j(n). (5.17)

For M > 1, we still have the above equality for each ant since pheromone
values are kept fixed over one round. Hence, in each round, an ant walks
independently and others do not have any impact on it. Initializing each
ant on one of the sample points with probability P(X0 = xi), we obtain by
the law of large numbers,

∑M
a=1 Na

j (n)

M
→ E[Nj(n)], as M → ∞. (5.18)

8
Note that we select r such that the red points are more distributed along the mani-

fold. For bigger value for r, the red points are more concentrated around x = 0 and fail to
recover the 1D manifold.
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Manifold Alignment Aware Ants 619

As the number of ants M goes to infinity and from equations 5.17 and 5.18,
the updating rule, in equation 5.8, can be rewritten as

f (t+1)
j = (1 − ρ) f (t)

j + ρ

N

N∑
i=1

mi j(n)
n + 1

. (5.19)

The following corollary says that, like the weight values, the pheromone
values form a decreasing sequence.

Corollary 4. For each t, the sequence of pheromone values { f (t)
i }N

i=1 is monotoni-
cally decreasing.

Proof. We use induction on t to show that the following statement holds
for any arbitrary pair of points xi and x j with i < j:

f (t)
i ≥ f (t)

j . (5.20)

For simplicity, we drop the exponent t in the following computations. In the
first round, t = 1, we have

f (0)
i = f (0)

j = 1
N

wi≥w j⇒ pki ≥ pk j ∀k

and

p(2)
ki =

∑
l

pkl pli ≥
∑

l

pkl pl j = p(2)
k j ,

where p(2)
ki is the (k, i)th element of the second power of the transition matrix

P. Similarly, it can be generalized for any q:

p(q)
ki ≥ p(q)

k j ∀k.

As a result of theorem 2, we derive

mki(n) ≥ mk j(n) ∀k.

Thus, the updating rule (see equation 5.19) shows that the inequality equa-
tion 5.20 holds in the first round. Now let the statement hold up to the tth
round (i.e., f (t)

i ≥ f (t)
j ). In the (t + 1)th round, we have

pki = wi fi∑
wk fk

wi≥w j≥ w j f j∑
wk fk

= pk j.
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Similar to the first round, we obtain for any q:

∀k p(q)
ki ≥ p(q)

k j ⇒ mki(n) ≥ mk j(n) ⇒ f (t+1)
i ≥ f (t+1)

j .

�
Therefore, the pheromone values, similar to weights, encode informa-

tion about how close the individual sample points are to the subspace M̂.
Analogous to theorems 5 and 6, theorem 7 guarantees the convergence of
the pheromone and the stationary distributions.

Theorem 7. The following statements hold for the pheromone distribution:

(a) For any point xi its pheromone values f (t)
i converge in time t (i.e., f (t)

i → fi

as t → ∞).
(b) The pheromone distribution f (t) converges to the stationary distribution

π (t) as t → ∞, i.e., for any ε > 0 there exists T ∈ N such that

∀i ∈ {1, . . . , N},∀t > T → |π (t)
i − f (t)

i | < ε.

Proof. The proof of part a follows that of theorem 5.
(b) From the convergence of pheromone values and the updating rule

equation 5.19, we can write:

fi = 1
N(n + 1)

N∑
i=1

lim
t→∞

m(t)
ji (n).

From equation 5.11, we know

∀i, j; p(t)
ji = π

(t)
i ⇒ p(t)(q)

ji = π
(t)
i ∀q, (5.21)

where p(t)(q)
ji is the ( j, i)th element of (P(t) )q in the tth round. Therefore, we

have

fi = lim
t→∞

(
1

N(n + 1)

N∑
i=1

m(t)
ji (n)

)
theo. (2)= lim

t→∞

⎛
⎝ 1

N(n + 1)

N∑
i=1

n∑
q=0

p(t)(q)
ji

⎞
⎠

Eq. (36)= lim
t→∞

1
N(n + 1)

N∑
i=1

n∑
q=0

π
(t)
i = lim

t→∞
π

(t)
i .

�
Hence, it can be said that both scenarios (n → ∞ or M → ∞) result in the
same pheromone structure and are asymptotic:

• Pheromone values are sorted according to their closeness to the re-
covered linear manifold.
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Manifold Alignment Aware Ants 621

Figure 4: (a) Approximation of a piece of nonlinear manifolds with a linear
patch. (b) The linear patch with an external node (o), simulating points outside
the neighborhood.

• They are convergent to the stationary distribution of the Markov
chain.

5.3 Pheromone Distribution for a Nonlinear Manifold. For nonlinear
manifolds, we consider a simplified scenario for our analysis. Although it is
slightly different from the algorithm’s definition, we use it as an example to
explain the success of M3A in recovering nonlinear manifolds. Motivated
by the assumption that a nonlinear manifold can locally be approximated
by linear patches (see Figure 4a), we focus on a small part of the manifold
(red circle), and we model all points outside via a single state called o. There-
fore, we assume that the random walker can jump from any point inside the
red circle to o with a probability proportional to the fixed-number ν and vice
versa with a probability proportional to the fixed-number ω (see Figure 4b).
Consequently, the transition probabilities are defined as

p′(t+1)
o j =

{
ω
N , if j �= o

1 − ω if j = o
and p′(t+1)

i( �=o) j =

⎧⎪⎨
⎪⎩

ν∑
k �=o wk f (t)

k +ν
, if j = o

w j f (t)
j∑

k �=o wk f (t)
k +ν

, if j �= o
,

where N is the number of data points inside the red circle. Note that in order
to differentiate the transition probabilities and the stationary distribution in
this section from the previous one, we use the prime symbol (′).

From the balance equation, we can compute the stationary distribution.
Thus, for any state j (�= o), we have

π
′(t+1)
j =

∑
i �=o

π
′(t+1)
i p′(t+1)

i j + π ′(t+1)
o p′(t+1)

o j
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=
∑
i �=o

π
′(t+1)
i

w j f (t)
j∑

k wk f (t)
k + ν

+ π ′(t+1)
o

ω

N

=
w j f (t)

j∑
k wk f (t)

k + ν

∑
i �=o

π
′(t+1)
i + π ′(t+1)

o
ω

N

=
⎛
⎝ w j f (t)

j∑
k wk f (t)

k

⎞
⎠( ∑

k wk f (t)
k∑

k wk f (t)
k + ν

)
(1 − π ′(t+1)

o ) + π ′(t+1)
o

ω

N
. (5.22)

In the previous section, we found p(t+1)
i j = w j f (t)

j∑
k wk f (t)

k

and hence can rewrite the

terms above as follows:

π
′(t+1)
j = p(t+1)

i j

( ∑
k wk f (t)

k∑
k wk f (t)

k + ν

)
(1 − π ′(t+1)

o ) + π ′(t+1)
o

ω

N

= ap(t+1)
i j + b, where

a =
( ∑

k wk f (t)
k∑

k wk f (t)
k + ν

)
(1 − π ′(t+1)

o ) > 0

and b = π ′(t+1)
o

ω

N
> 0. (5.23)

From equation 5.11, we obtain

π
′(t+1)
j = aπ (t+1)

j + b, (5.24)

where π
(t+1)
j denotes the stationary distribution of the random walk in the

previous section. Thus, this equation connects the stationary distributions
of the new MC π ′ to π in the previous section. In other words, the new
distribution is monotonically increasing with respect to the previous one.

Theorem 3 connects the long-term behavior of a random walk to its
stationary distribution. From equations 5.12 and 5.24, we see that the sta-
tionary distribution (and similarly the pheromone distribution) is sorted
according to the distances of data points (inside the neighborhood) to the
linear patch constructed by PCA. From theorem 2, we know that the occu-
pancy time (i.e., the short-term behavior) is directly connected to the tran-
sition probabilities of the MC. For any i and j (�= o), we have

p′(t+1)
i j = w j f j∑

k wk fk + ν
=
(

w j f j∑
k wk fk

)( ∑
k wk fk∑

k wk fk + ν

)
= ap(t+1)

i j .
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Manifold Alignment Aware Ants 623

Thus, the new transition probabilities are a monotonically increasing func-
tion of the previous transition probabilities. Therefore, similar results as in
section 5.2.2 hold.

By simplifying the scenario, we show in this section that the algorithm
sorts data points according to their distances to the linear patches (as esti-
mators for a manifold). From Little et al. (2017), we can conclude that the
performance of the new algorithm depends on several factors, including
selecting an appropriate neighborhood size r. Note that r should be big
enough to include enough samples for recovering the tangent space and
small enough to prevent covering high curvature. Therefore, in the pres-
ence of an appropriate r value, our analysis shows that the pheromone
distribution contains valuable information in order to highlight nonlinear
manifolds.

6 Experiments

In this section, we use synthetic and real-world data sets to investigate the
performance of M3A in different scenarios. First, we discuss the influence
and specification of its hyperparameters. Furthermore, complementary to
our analysis in section 5.1, we empirically examine the impact of the new
MC formulations for denoising and visualization of nonlinear manifolds.
Moreover, we show how the proposed algorithm helps to discover mani-
folds and build better probabilistic models in the sense of sparseness, de-
scriptiveness, and preservation of structural details.

6.1 Strategy for Hyperparameter Selection. Our analysis in section 5
shows that the neighborhood size r, the number of ants M, and the num-
ber of steps n in one round play a major role for the performance of M3A.
Thus, an automatic strategy to find appropriate values for these quantities
is highly desirable. In the following, we present such strategies for practical
application.

In section 5.1, we demonstrate that a proper value for r depends on the
noise level σ of the manifold. We observe that a bigger r helps to reduce the
effect of the noise and achieve a better approximation for the linear man-
ifold. However, as shown in Kaslovsky and Meyer (2014) and Little et al.
(2017) for nonlinear manifolds, the presence of curvature encourages using
a smaller radius r such that the manifold looks almost linear within the lo-
cal neighborhood. Hence, the selection of r is a trade-off between the noise
level and curvature of the manifolds. Here, to specify a suitable value for
r, we use a mixture of gaussian models to assess quantitatively the recov-
ery of the manifold. First, we place the centers of gaussian distributions on
points with higher pheromone values, and then their covariance matrices
are computed based on the local neighbors. Finally, we use the average log-
likelihood (ALL) function to evaluate how good models (for each r) fit the
data set and to pick the best r (see Figure 5c).
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Figure 5: Two views of the noisy s-curve data set (a,b), radius selection via av-
erage log likelihood for different r (c), and 1200 points with highest stationary
distributions values for the MCs defined by equation 3.3 (e,h) and equation 3.4
(f,l), using r = 0.6.

In section 5.2 we investigate two strategies: using a few ants walking
many steps in every round, and using many ants walking a limited number
of steps. As a rule of thumb, to determine a suitable number of steps and
ants (n and M), we assume they fulfill the following inequality,

n · M ≥ z · N, (6.1)

for a constant z. Thus, one may use a small number of workers M (or proces-
sors/cores) with a big number of steps n or use many workers with a small
number of steps in each round. In our experimentation, we set the number
of steps and the number of ants to n = N and M = z = 50, respectively.
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Manifold Alignment Aware Ants 625

The pheromone determines how much the ants are reinforced to prefer
points frequently visited before. And the evaporation rate ρ and parameter
γ control the impact of the pheromone on the random walk process, and
thus their determination is connected to M and n. If M and n are both small,
it means the algorithm has neither enough ants nor enough time to high-
light manifolds; thus, our analysis in section 5.2 is not valid any more. In
this case, we suggest using smaller ρ and γ to prevent highlighting back-
ground noise. In this contribution, we set them to ρ = γ = 0.1 for all the
experiments.

Furthermore, the maximum amount of pheromone c added on a sam-
ple per round is fixed to 2, and the factor α for the weight wd, in equation
3.3, is determined such that only p = 50% of neighbors have nonzero val-
ues. Finally, for any sample xi, we approximate the point x′ that touches the
underlying manifold by x′ = 1

|Ni|
∑

xk∈Ni
xk (see equation 3.2).

6.2 Homogeneous Markov Chain. In this section we extend our the-
oretical analysis with an empirical analysis on nonlinear manifolds. First,
we demonstrate the denoising capability of the MCs defined in equations
3.3 and 3.4 on highlighting the underlying manifold. Second, we investi-
gate their impact on the performance of t-distributed stochastic neighbor
embedding (t-SNE) (Van der Maaten & Hinton, 2008), a widely used di-
mension reduction and visualization technique.

6.2.1 Denoising the Manifold. To check the success of the weighting meth-
ods (see section 3) in keeping ants close to the manifold, we need to study
the short, and long-term behavior of the random walk defined by equation
2.2. According to theorems 2 and 3, the short- and long-term behaviors of
MCs are directly connected to the power series of the transition probabil-
ity and to the stationary distribution, respectively. Here, we use a synthetic
data set to investigate the constructed MCs.

Figures 5a and 5b show 6000 samples generated from the s-curve man-
ifold disrupted by gaussian noise N(0, 0.2). In order to select r, we follow
the strategy introduced in section 6.1. We apply M3A with different r us-
ing 20% of the samples (1200 points) with the highest pheromone values
as means for gaussian distributions and their neighbors to determine the
covariance matrices. The quality of the models is computed by the aver-
age log-likelihood (ALL) function, and the results are shown in Figure 5c.
Figures 5d and 5l show 1200 points with the highest stationary distribution
values for different MCs. It can be seen that the MC based on the gaussian
kernel function fails to recover the manifold (see panels d and g). However,
the other methods are successful in keeping random walkers close to the
manifold (see panels e, f, h, and l). Note that panels e and f also show that
since we use our knowledge about the intrinsic dimensionality of the man-
ifold in equation 3.3 it gives a slightly better result than the MC defined
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by equation 3.4. A similar result is achieved for the short-term behavior of
the MCs where the formulation of equations 3.3 and 3.4 outperforms the
gaussian kernel function.

6.2.2 Manifold Aligned Similarities in t-SNE. A specific case of dimension-
ality reduction is the visualization where high-dimensional data are em-
bedded in two or three dimensions. A well-known nonlinear tool to visual-
ize high-dimensional data is a t-distributed stochastic neighbor embedding
(t-SNE) (Van der Maaten & Hinton, 2008). It transforms pairwise similarities
of data points to probability distributions of the high-dimensional data as
well as the low-dimensional embedding and then minimizes the Kullback-
Leibler divergence between them. While the original t-SNE is based on
the gaussian kernel function, equation 3.1, we replace it with the tangent
space dissimilarity measure defined in equations 3.3 and 3.4. Since high-
dimensional data spaces are typically sparse, we use a k-nearest neighbors
instead of radius neighborhood, and we set p = 100% (i.e., we normalize
the distances in equation 3.3 by dividing them by their maximum values).
Furthermore, we compare the results to the original t-SNE using the Eu-
clidean distance to compute the neighborhood probabilities and a t-SNE
version using the Mahalanobis distance instead. The latter is based on the
covariance of the data and can therefore align with global directions of ma-
jor variance. Therefore, the locally aligned formulation, in equations 3.3 and
3.4, is compared to “no alignment” and “global alignment.”

We demonstrate the strategy using two real nonlinear dimensionality-
reduction benchmark data sets: (1) COIL20 which consists of images (with
32 × 32 = 1024 pixels) of 20 objects rotated 72 times (5 degrees per image)
forming one-dimensional manifolds, and (2) USPS, which contains 9298
gray-scale images (with 16 × 16 pixels) of handwritten digits. As a prepro-
cessing step, we apply PCA to decrease the dimensionality to 20. The differ-
ent t-SNE outputs are compared and evaluated using the quality of group
compactness (QGC) (Gorban & Zinovyev, 2010) as a measure of how close
samples from the same class remain in the embedding space. Let c(i; k) de-
note the number of points in the k-neighborhood of xi with the same label;
then the compactness of a class is defined as

QGCk(l) = 1
k · N(l)

∑
yi=l

c(i; k),

where N(l) is the number of samples with the label l. If the QGC for a class is
close to one, it means the class is compact and well separated from others.
Since t-SNE is nonconvex, it generates different results for each run, and
hence we repeat the experiment 10 times and report the average quality.

Figure 6 shows example t-SNE embeddings for COIL20 and USPS (pan-
els a and c), accompanied by results using equation 3.3 with d = 1 and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/3/595/1989495/neco_a_01478.pdf by BIBLIO
TH

EEK R
IJKSU

N
IVER

SITEIT (G
roningen) user on 15 Septem

ber 2022



Manifold Alignment Aware Ants 627

Figure 6: The impact of the new similarity measures on the t-SNE. Top row,
COIL20: (a) using original t-SNE (perpl. 20) and (b) tSNE+ using equation 3.3
(d = 1, k = 10). Middle row USPS: (c) using original t-SNE (perpl. = 30) and
(d) tSNE+ using equation 3.4 (k = 20). Bottom row: Average QGC measures for
COIL20 and USPS (panels e and f). (g) QGC curves for four classes of toy cars
in COIL20 and (h) of digits 3 and 5 in USPS.

k = 10 and equation 3.4 with k = 20 (panels b and d). Panels e and f de-
pict the average QGC curves for the different similarity measures, respec-
tively. It can be seen that the new similarity measures outperform others,
especially for COIL20, since we use our knowledge about the intrinsic di-
mensionality d = 1 of the manifolds. For the USPS, it is clear that it does a
better job for more global structures, with clusters visible for k > 200. Since
the new weights only consider the distance to the estimated manifold, it
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can recover more closed loops with less distortion (see panels a and b).
Moreover, the four objects corresponding to four types of toy cars cannot
be separated using the original t-SNE because it maps cars with the same
orientations close to each other. As seen in panel g, the new weights do a
better job in embedding them. Not knowing the intrinsic dimensionality of
manifolds in the handwritten digit data set, we use equation 3.4 to define
a similarity measure for t-SNE. Although t-SNE with the gaussian kernel
function can recover most classes, a strong overlap between samples from
digits 3 and 5 is visible. The new weights, however, successfully separate
them and increase the QGC measure, as seen in panels d and h.

6.3 Manifold Alignment Aware Ants. In this section, we analyze the
capability of M3A in recovering structures surrounded by background
noise. First, we compare it to related state-of-the-art techniques for denois-
ing low-dimensional manifolds. And second, we demonstrate the perfor-
mance of our algorithm on a real-world astronomical data set, the GAIA
DR2 catalog (Gaia Collaboration et al., 2018), to extract stellar structures.

6.3.1 Extracting Low-Dimensional Manifolds. Typically, manifold learning
assumes that data points are lying on a low-dimensional manifold embed-
ded in a higher-dimensional space. However, in practice, manifolds are dis-
rupted by high-dimensional noise, for example, stemming from equipment
or the presence of samples that do not belong to the manifolds. In those
cases, the goal is to extract the manifolds by removing the background noise
and simultaneously suppressing the noise level on the manifolds. To com-
pare the performance of denoising techniques, we create a synthetic 1D
manifold forming a circle (r = 6), which misses a part of its arc. Further-
more, we randomly select 3000 points from the manifold and add gaussian
noise N(0, 0.3). To model background noise, 3000 samples are generated
following a uniform distribution in the square [−15, 15] × [−10, 20] (see
Figure 7a).

In the following, we compare four denoising techniques to the proposed
M3A. We use (1) MD with hyperparameter settings δt = 0.1, Niter = 20; and
k = 40; (2) MBSM with k = 40 and Niter = 40; and (3) LLD with λ = 0.01, k =
40 and σ = 1. Finally, LLPD is deployed using a threshold of 0.15. Moreover,
in order to select r in M3A, we follow a two-step strategy. First, we apply
the algorithm using r = 3 to remove the background noise. Note that since
the density of the background is lower than the manifold, it can be done
using a wide range of r. Then we use the strategy explained in section 6.1
to find the best r for the remaining points.

Some techniques, such as MD, MBMS, and LLD, are not designed to
deal with the presence of the background noise and are therefore not di-
rectly suitable for the given situation, as shown in Figure 7. Since the man-
ifold denoising (MD) algorithm pushes samples toward dense regions, it
has two disadvantages: first, it creates some new dense structures in data
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Manifold Alignment Aware Ants 629

Figure 7: (a) 1D circular manifold embedded in uniform background noise. Best
results of (b) MD, (c) MBMS, (d) LLD, and (e) LLPD (containing 2000 samples,
i.e. 35%). (f): Denoised M3A result where gray and red points show 2700 (45%)
and 780 (%13) samples with r = 3 and r = 2.

space, and second, the real manifold becomes discontinuous (see Figure 7b).
Since manifold blurring mean shift (MBMS) limits the movement of sam-
ples to be parallel to the manifold normals, it can prevent discontinuity on
the manifold. However, it creates many artificial 1D manifolds and fails to
recover the missing arc in the circle structure of interest (see Figure 7c). Sim-
ilar to MBMS, the presence of background noise highly influences the result
of the LLD algorithm, which also fails to recover the manifold (see Figure
7d). In contrast to previous methods, LLPD considers the presence of the
background noise and extracts the samples in dense regions recovering the
noisy circle. Although it does not create new structures, it cannot denoise
the manifold. It also fragments the structure into smaller clusters (see Fig-
ure 7e). On the other hand, our method encourages random walkers to stay
close to the manifold and overcomes all three problems: (1) it recovers the
circle from the background noise, (2) it preserves the missing part in the arc
without creating artificial structures, and (3) it reduces the manifold noise
by subsampling based on the highest pheromone level (see Figure 7f).

6.3.2 Detecting Dense Structures in Real-World Data. An important task
in astronomy is to extract stellar structures, such as galaxies and globular
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Figure 8: Five clusters formed by 0.02% of samples with highest pheromone
values resulting from M3A (r = 0.1, Nsteps = 5 × 106) applied to a window in
the sky between right ascension (ra) ∈]180, 220[ and declination (dec)]15, 30[.
(b–e) The application of spectral clustering on the photometric data of two glob-
ular clusters (b,d) Using gaussian kernel as a similarity measure. (c,e) Using the
transition probability in equation 4.2 (r = 0.5).

clusters. Here, we apply M3A to a part of the GAIA DR2 catalog (Gaia Col-
laboration et al., 2018) containing 1,071,714 light sources. The data set con-
tains seven features, including five denoting positional information (right
ascension (ra), declination (dec), motion along ra and dec, and parallax), as
well as photometric information, that is, G-band magnitude and (B-R) color.
As a preprocessing step, we normalize the data set and select the k nearest
neighbor (with k = 20) to speed up the computation. First, we use the posi-
tional information to detect stellar structures. Figure 8a shows that M3A de-
tects five of the known globular clusters (GC): (1) NGC4147, (2) NGC5024,
(3) NGC5053, (4) NGC5272, and (5) NGC5466. Second, we would like to
cluster the members of a GC. To extract stars of a GC, we use objects that
are not farther than 0.05 degree from the center of the GC. Then we use their
photometric information since it reveals the stage of life a star is in (for more
details, see Mohammadi, Petkov, Bunte, Peletier, & Schleif, 2019). Figures 8b
and 8d display the clusters detected by spectral clustering using a gaussian
kernel (Von Luxburg, 2007). However, the resulting clusters do not corre-
late to any astrophysical meaning. If M3A is applied on the extracted light
sources, we obtain the transition probability matrix P. After symmetriza-
tion P′ = 1

2 (P + PT ), the spectral clustering can be implemented based on
P′. From Figures 8c and 8e, we see that the resulting clusters coincide with
the three known groups: Main Sequence (MS), Horizontal Branch (HB), and
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Red Giant Branch (RGB) (see Mohammadi et al., 2019). It can be seen that
MS is separable since it is a 2D manifold while HB and RGB are 1D mani-
folds. Moreover, since HB is almost a line perpendicular to RGB, the weight
values between these two clusters are small, and as a result, they are sep-
arable. In summary, M3A provides (1) a pheromone distribution that can
be used to find stellar structures and (2) a transition probability matrix that
can be used to group stars according to the stage of their life.

6.4 Improved Density Estimation. A common task in machine learn-
ing is to estimate the underlying probability density function (pdf) given a
limited number of data points. A typical way to model it is to use a finite
mixture model,

f̂ (x; θ) =
K∑

k=1

p(k) f̂ (x; θk),

where p(k) and θk are the mixture weight and the parameter values of the
kth component, respectively, while θ denotes the set of all parameters. If the
number of models (K) is much smaller than the number of samples (N), it
provides a sparse representation for the data set. A well-known algorithm
is the gaussian mixture model (GMM) (Bishop, 2006), which uses a mix-
ture of full-rank gaussian distributions to model the pdf. Its parameters are
learned via optimizing the likelihood function through an iterative process,
called expectation-maximization (EM). It is known that EM is sensitive to
the initialization step, and it may get stuck in local optima. Moreover, the
time needed for EM is dependent on the number of components and in-
creases for large data sets with many samples and dimensions. One way to
avoid this problem is to use a nonparametric method, such as Parzen win-
dow (PW), which is a special case of the finite mixture model with K = N,
and it has only one parameter σ ,

f̂ (x; σ ) = 1
N

N∑
k=1

K(x; xk, σ ),

where K is the gaussian kernel function. However, if the data points are
distributed along a low-dimensional manifold, the spherical gaussian ker-
nel is often not an optimal choice (Vincent & Bengio, 2003). Therefore, Vin-
cent and Bengio (2003) proposed the manifold Parzen window (MPW),
which allows the gaussian distributions to have elliptical shapes instead of
spherical. Whereas PW and MPW may provide a reliable estimation, both
suffer from high computational costs in the test phase due to the large num-
ber of gaussian models. To prevent this problem, several methods, such as
simplifying mixture models (SMM) (Zhang & Kwok, 2010) and hierarchical
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clustering of a mixture model (HCMM) (Goldberger & Roweis, 2005), were
proposed. They start with a large mixture model and then construct a
simpler model, such that the distance between the original model and
the simplified one is minimized. In contrast to these approaches, Wang,
Tino, Fardal, Raychaudhury, and Babul (2009) proposed a new method, fast
Parzen window (FPW), which partitions the data space via hyperballs posi-
tioned randomly with fixed radii rball. Then it fits a full-rank gaussian distri-
bution for each ball only. Extending the latter idea, we use the pheromone
values obtained by M3A to find the best position for the center of the hyper-
balls. We start with the whole data set D and pick the point xl with the high-
est pheromone as the center of a ball. Then we remove all points within the
ball from D. Then we continue picking the next point in D with the highest
pheromone as the new center and remove its neighbor from D. Following
this strategy, we obtain a more compact list of centers. Its pseudocode is
summarized in algorithm 3.

To demonstrate the performance of the new strategy, we use three data
sets:

1. A synthetic spiral shape manifold with gaussian noise N(0, 0.04) for
which 1000 samples are generated as a training set (see Figure 9a)
and another 20000 samples as a test set.

2. Two intersected circular manifolds with radius 2. (a) In the above
circle, the density varies, and the noise level is 0.2. (b) At the bottom,
the noise level varies between 0 to 0.3 (see Figure 10a). We generated
3350 and 16,750 points for training and testing, respectively.
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Figure 9: (a) The noisy spiral data set. (b–h) The contour curves for the density
estimators: PW, MPW, GMM+rand, GMM+kmeans, SMM, HCMM, FPW, and
(l) M3A+FPW: neighborhood radius rrw = 0.13 and balls’ size rball = 0.21.

3. An astronomical simulation of a jellyfish galaxy that contains 3D po-
sition information of 58,531 particles.

To evaluate the performance, we use the average log likelihood (ALL) to
measure how well the adapted model can describe the data set. We fur-
thermore use 10-fold cross-validation on the training set to find the best
hyperparameter values.

Table 1 reports the results of the above algorithms on the spiral shape
manifold. From cross-validation, hyperparameters are found where m, k,
and σ are the number of components and neighbors and the scale of gaus-
sian kernel, respectively, and rrw is the neighbor size for M3A. Note that
GMMk is the gaussian mixture model when k-means is used to initialize
components. We repeat the experiment for M3A 10 times. While ALL for
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Figure 10: (a) Two circular manifolds with variation in density and noise level.
(b–l) The contour curves for the compared eight density estimators. Note that
black diamonds represent the means of the gaussian distributions.
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Table 1: Comparison of Density Estimators for the Spiral Data Set.

Algorithm Parameters ALL (std)

PW σ = 0.03 0.3130 (0.0)
MPW k = 45 0.3003 (0.0)
FPW rball = 0.18 (m = 20.8) 0.2851 (0.0092)
SMM m = 95 0.2762 (0.0116)
HCMM m = 35, σ = 0.06 0.2832 (0.0049)
GMM m = 20 0.2944 (0.0028)
GMMk m = 15 0.2802 (0.0049)
M3A+FPW rrw = 0.13, rball = 0.21 (m = 17.1 ± 1) 0.3101 (0.0052)

Table 2: Comparison of Density Estimators for the Two Circular Manifolds.

Algorithm Parameters ALL (std)

PW σ = 0.09 −2.668 (0.0)
MPW k = 140 −2.689 (0.0)
FPW rball = 0.75 (m = 31) −2.682 (0.0116)
SMM m = 800 −2.671 (0.0007)
HCMM m = 130, σ = 0.15 −2.700 (0.0014)
GMM m = 20 −2.620 (0.0036)
GMMk m = 20 −2.621 (0.0034)
M3A+FPW rrw = 0.6, rball = 0.95 (m = 20.6 ± 1) −2.650 (0.0027)

the M3A+FPW (i.e., algorithm 3) is comparable with PW, it provides a much
sparser representation for the data set and speeds up the computation in the
testing phase. Moreover, Figure 9 shows the contour curves of the pdfs. We
observe that most methods represent the center of the spiral fairly well, with
the exception of PW and SMM, which provide the noisiest model. Strik-
ingly, PW, SMM, and HCMM discontinue the manifold in the less dense
tail on the right side of the spiral, dividing it into several small clusters.
Our strategy M3A+FPW, on the other hand, not only provides a compact
model but also successfully tracks the underlying structure and stays very
close to the original manifold as compared to others.

In Table 2 we present the outputs of the studied algorithms on the two
circular manifolds. As in the previous examples, cross-validation is used to
tune hyperparameters, and then the performance of the algorithms on the
test set is reported. While the FPW+M3A yields a sparse representation for
the data, it also outperforms (in terms of ALL) others, except for the GMM
methods. However, since the M3A can be parallelized, it is more suitable
for big data sets, in comparison to GMM techniques. Moreover, we display
the contour curves of pdfs in Figure 10 where the true manifold (without
noise) is shown in red. It can be seen that the M3A helps FPW to be more
compact and more successful in tracking the manifolds, as indicated by the
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Figure 11: The simulated jellyfish galaxy (viewpoint a and b). (c–f) Contour
curves of density estimators projected by the first two principal directions of
gaussian covariance matrices for zoomed regions a (left) and b (right) using al-
gorithm 3 (c,e) and GMM initialized by k-means (d,f).

black diamond in the plot. In comparison to GMMs, FPW+M3A uniformly
distributes gaussian models on the manifolds, even in less dense regions.
It is especially important in some applications such as astronomy where
low-density streams have high importance in studying the evolution of as-
tronomical structures. Therefore, similar to previous experiments, we con-
clude that FPW+M3A builds a compact model, which is more successful in
following the manifolds, regardless of their densities.

Astronomical simulations are often used to study the evolution of as-
tronomical objects through time. Since a simulation often includes many
millions of particles, it is not possible to track each particle individually.
Therefore, it is desirable to encode the distribution of particles via a sparse
pdf and follow its evolution instead. Since our goal in this section is to com-
pare different density estimators, we only use one time snapshot of a sim-
ulated jellyfish galaxy, as shown in Figures 11a and 11b. This data set is
challenging since the density changes significantly in the data space.
While the head of the jellyfish is very dense, the outer parts depict much
lower density. Those parts contain some low-dimensional structures called
streams, as highlighted by boxes in Figures 11a and 11b. During the evo-
lution process, these structures are more affected by other astronomical ob-
jects and change over time. Thus, in addition to the dense regions, a suitable
density estimator should capture these lower density regions well.
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Table 3: Comparison of Density Estimators for the Simulated Jellyfish Galaxy.

Algorithm Parameters ALL (std) dH (std) time in s (std)

PW σ = 0.08 −3.775 (0.018) 0.264 (0.040) 0.2 (0.0)
FPW r = 0.4, m = 949 −3.855 (0.023) 0.633 (0.071) 9.2 (0.4)
SMM m = 4100 −3.815 (0.021) 0.699 (0.115) 144.8 (10.5)
SMM m = 600 −4.249 (0.032) 0.393 (0.053) 63.0 (5.2)
HCMM σ = 0.17, m = 600 −3.967 (0.014) 0.697 (0.091) 12.4 (0.5)
GMM m = 300 −3.772 (0.025) 2.916 (0.600) 1244.4 (257.4)
GMMk m = 300 −3.767 (0.024) 3.060 (0.654) 909.3 (63.1)
M3A+FPW rrw = 0.4, rball = 0.5, −3.838 (0.025) 0.737 (0.109) 165.5 (2.1)

m = 566
M3A+FPW rrw = 0.4, rball = 0.65, −3.882 (0.024) 0.823 (0.072) 151.2 (11.9)

m = 309

We compare our M3A+FPW algorithm with the result of GMM initial-
ized by k-means visually and additionally report the quality of all density
estimators as before.

From Table 3 it can be seen that the GMM outperforms the other methods
in terms of ALL, which is expected since it aims to optimize the likelihood
function. However, its optimization process is time-consuming for big data
sets, which makes it challenging to be applied in big simulations, as indi-
cated by large training times reported in the last column of Table 3.9 PW
as before provides an unnecessary complex model, which is not very desir-
able for this application. Alternatively, the M3A+FPW strategy presents a
sparse model while preserving a comparable ALL.

In addition to ALL we report the Hausdorff distance,

dH (A, B) = max
{

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)
}
,

where d denotes the Euclidean distance and A and B are the set of particles
and the set of centers of gaussian models, respectively.

It is informative since it shows how much the model captures the orig-
inal low-density structures. To compare our method to GMM, we increase
the balls’ radius to rball = 0.65. From the table, it is clear that the Hausdorff
distance of the proposed method is much lower than the one achieved by
GMM. To visually see its success, we added the contour plots (see panels
c–f). It can be seen that the new method is more successful in fitting the pdf
along with the low-dimensional structure. In summary, if selecting a model
is a trade-off between simplicity (sparsity) and capturing structural details,

9
Here, we distribute the M3A ants among 10 processors (i.e., 5 ants per CPU) and

restrict the number of step in each round to n = 10,000.
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the M3A+FPW strategy, outlined in algorithm 3, provides a sparse model
with a very competitive ALL value.

7 Conclusion

In some applications, such as astronomy, it is common to have low-
dimensional structures buried inside big data sets. Therefore, it is desir-
able to have a method that extracts these structures of varying density
while their continuity is kept unchanged. Although there are several meth-
ods, they often fail to either extract manifolds or keep their continuity. In-
spired by the ant colony algorithm, we propose a new method where a
value, called pheromone, is assigned to each sample. Later, these quan-
tities can be used to reveal manifolds without the undesirable effects. To
study the behavior of the algorithm and the effect of its hyperparame-
ters, we provide a theoretical analysis using the Markov chain framework,
where we consider a noisy manifold and apply the algorithm examining
two cases: a random walker with an unbounded number of steps and an
unbounded number of walkers with a fixed number of steps. We show for
both cases that the pheromone distribution captures information about the
distances of data points to the underlying manifold. In addition to the the-
ory, we empirically analyze the algorithm using synthetic and real data sets,
demonstrating three different scenarios: denoising and clustering mani-
folds, visualizing data, and density estimation. In all investigated scenarios
and application examples, strategies based using M3A exhibit comparable
or superior results in suppressing the noise, capturing the manifolds, and
providing sparser models.
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