

 University of Groningen

Julia Data Science
Storopoli, Jose; Huijzer, Rik; Alonso, Lazaro

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Storopoli, J., Huijzer, R., & Alonso, L. (2021). Julia Data Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://research.rug.nl/en/publications/ef9ebf53-6cb4-4899-aac6-e75163f89f3e

Julia Data Science

Jose Storopoli

Rik Huijzer

Lazaro Alonso

Jose Storopoli
Universidade Nove de Julho - UNINOVE
Brazil

Rik Huijzer
University of Groningen
the Netherlands

Lazaro Alonso
Max Planck Institute for Biogeochemistry
Germany

First edition published 2021

https://juliadatascience.io

ISBN: 9798489859165

2021-11-06

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://juliadatascience.io

Contents

1 Preface 3

1.1 What is Data Science? . 4

1.2 Software Engineering . 5

1.3 Acknowledgements . 6

2 Why Julia? 7

2.1 For Non-Programmers . 7

2.2 For Programmers . 8

2.3 What Julia Aims to Accomplish? 9

2.4 Julia in the Wild . 16

3 Julia Basics 19

3.1 Development Environments . 19

3.2 Language Syntax . 20

3.3 Native Data Structures . 33

3.4 Filesystem . 61

3.5 Julia Standard Library . 63

4 DataFrames.jl 77

4.1 Load and Save Files . 82

4.2 Index and Summarize . 87

4.3 Filter and Subset . 89

4.4 Select . 94

4.5 Types and Missing Data . 97

4.6 Join . 101

4.7 Variable Transformations . 105

4.8 Groupby and Combine . 108

4.9 Performance . 111

2 JULIA DATA SCIENCE

5 Data Visualization with Makie.jl 117

5.1 CairoMakie.jl . 118

5.2 Attributes . 119

5.3 Themes . 125

5.4 Using LaTeXStrings.jl . 130

5.5 Colors and Colormaps . 132

5.6 Layouts . 137

5.7 GLMakie.jl . 148

6 Appendix 159

6.1 Packages Versions . 159

6.2 Notation . 159

References 163

1 1 exabyte (EB) =
1,000,000 terabyte (TB).

1 Preface

There are many programming languages and each and every one of them has
its strengths and weaknesses. Some languages are very quick, but verbose.
Other languages are very easy to write in, but slow. This is known as the two-
language problem and Julia aims at circumventing this problem. Even though
all three of us come from different fields, we all found the Julia language more
effective for our research than languages that we’ve used before. We discuss
some of our arguments in Section 2. However, compared to other languages,
Julia is one of the newest languages around. This means that the ecosystem
around the language is sometimes difficult to navigate through. It’s difficult
to figure out where to start and how all the different packages fit together.
That is why we decided to create this book! We wanted to make it easier for
researchers, and especially our colleagues, to start using this awesome lan-
guage.

As discussed above, each language has its strengths and weaknesses. In our
opinion, data science is definitely a strength of Julia. At the same time, all three
of us used data science tools in our day to day life. And, probably, you want
to use data science too! That is why this book has a focus on data science.

In the next part of this section, we emphasize the “data” part of data science
and why data skills are, and will remain, in high demand in industry as well
as in academia. We make an argument for incorporating software engineer-
ing practices into data science which should reduce friction when updating
and sharing code with collaborators. Most data analyses are collaborative en-
deavors; that is why these software practices will help you.

1.0.1 Data is Everywhere

Data is abundant and will be even more so in the near future. A report from
late 2012 concluded that, from 2005 to 2020, the amount of data stored digi-
tally will grow by a factor of 300, from 130 exabytes1 to a whopping 40,000
exabytes (Gantz & Reinsel, 2012). This is equal to 40 trillion gigabytes and, to
put it into perspective, more than 5.2 terabytes for every living human cur-
rently on this planet! In 2020, on average, every person created 1.7MB of data
per second (Domo, 2018). A recent report predicted that almost two thirds
(65%) of national GDPs will have undergone digitization by 2022 (Fitzger-
ald et al., 2020).

4 JULIA DATA SCIENCE

2 https://en.wikipedia.o
rg/wiki/Data_literacy

Every profession will be impacted by the increasing availability of data and
data’s increased importance (Chen et al., 2014; Khan et al., 2014). Data is used
to communicate and build knowledge, and tomake decisions. This iswhy data
skills are important. If you become comfortable with handling data, you will
become a valuable researcher or professional. In other words, youwill become
data literate.

1.1 What is Data Science?

Data science is not only machine learning and statistics, and it’s not all about
prediction. Alas, it is not even a discipline fully contained within STEM (Sci-
ence, Technology, Engineering, and Mathematics) fields (Meng, 2019). But
one thing that we can assert with high confidence is that data science is always
about data. Our aims of this book are twofold:

• We focus on the backbone of data science: data.
• We use the Julia programming language to process the data.

We cover why Julia is an extremely effective language for data science in Sec-
tion 2. For now, let’s turn our attention towards data.

1.1.1 Data Literacy

According to Wikipedia2, the formal definition of data literacy is “the ability
to read, understand, create, and communicate data as information.”. We also
like the informal idea that, being data literate, you won’t feel overwhelmed
by data, but instead can use it to make the right decisions. Data literacy can
be seen as a highly competitive skill to possess. In this book we’ll cover two
aspects of data literacy:

1. Data Manipulation with DataFrames.jl (Section 4). In this chapter you will
learn how to:

1. Read CSV and Excel data into Julia.
2. Process data in Julia, that is, learn how to answer data questions.
3. Filter and subset data.
4. Handle missing data.
5. Join multiple data sources together.
6. Group and summarize data.
7. Export data out of Julia to CSV and Excel files.

2. DataVisualizationwith Makie.jl (Section 5). In these chapter youwill learn
how to:

https://en.wikipedia.org/wiki/Data_literacy
https://en.wikipedia.org/wiki/Data_literacy

PREFACE 5

1. Plot data with different Makie.jl backends.
2. Save visualizations in several formats such as PNG or PDF.
3. Use different plotting functions to make diverse data visualizations.
4. Customize visualizations with attributes.
5. Use and create new plotting themes.
6. Add 𝐿A𝑇E𝑋 elements to plots.
7. Manipulate color and palettes.
8. Create complex figure layouts.

1.2 Software Engineering

Unlike most books on data science, this book lays more emphasis on properly
structuring code. The reason for this is that we noticed that many data sci-
entists simply place their code into one large file and run all the statements
sequentially. You can think of this like forcing book readers to always read
it from beginning to end, without being allowed to revisit earlier sections or
jump to interesting sections right away. This works fine for small and sim-
ple projects, but, as the project becomes bigger or more complex, more prob-
lems will start to arise. For example, in a well-written book, the book is split
into distinctly-named chapters and sections which contain several references
to other parts in the book. The software equivalent of this is splitting code into
functions. Each function has a name and some contents. By using functions,
you can tell the computer at any point in your code to jump to some other place
and continue from there. This allows you to more easily re-use code between
projects, update code, share code, collaborate, and see the big picture. Hence,
with functions, you can save time.

So, while reading this book, you will eventually get used to reading and using
functions. Another benefit of having good software engineering skills is that it
will allow you to more easily read the source code of the packages that you’re
using, which could be greatly beneficial when you are debugging your code
or wondering how exactly the package that you’re using works. Finally, you
can rest assured that we did not invent this emphasis on functions ourselves.
In industry, it is common practice to encourage developers to use “functions
instead of comments”. This means that, instead of writing a comment for hu-
mans and some code for the computer, the developers write a function which
is read by both humans and computers.

Also, we’ve put much effort into sticking to a consistent style guide. Program-
ming style guides provide guidelines for writing code; for example, about
where there should be whitespace and what names should be capitalized or
not. Sticking to a strict style guide might sound pedantic and it sometimes is.

6 JULIA DATA SCIENCE

3 https://orcid.org/0000
-0002-8178-7313
4 https://orcid.org/0000
-0003-0430-950X
5 https://orcid.org/0000
-0001-8599-9009
6 https://www.rug.nl/s
taff/peter.de.jonge/
7 https://www.rug.nl/s
taff/j.r.den.hartigh/
8 https://frankblaauw.
nl/

However, the more consistent the code is, the easier it is to read and under-
stand the code. To read our code, you don’t need to know our style guide.
You’ll figure it out when reading. If you do want to see the details of our style
guide, check out Section 6.2.

1.3 Acknowledgements

Many people have contributed directly and indirectly to this book.

Jose Storopoli would like to thank his family, especially his wife for the sup-
port and love during the writing and reviewing process. He would also like
to thank his colleagues, especially Fernando Serra3, Wonder Alexandre Luz
Alves4 and André Librantz5, for their encouragement.

Rik Huijzer would first like to thank his PhD supervisors at the University of
Groningen, Peter de Jonge6, Ruud den Hartigh7 and Frank Blaauw8 for their
support. Second, he would like to thank his parents and girlfriend for being
hugely supportive during the holiday and all the weekends and evenings that
were involved in this book.

Lazaro Alonso would like to thank his wife and daughters for their encour-
agement to get involved in this project.

https://orcid.org/0000-0002-8178-7313
https://orcid.org/0000-0002-8178-7313
https://orcid.org/0000-0003-0430-950X
https://orcid.org/0000-0003-0430-950X
https://orcid.org/0000-0001-8599-9009
https://orcid.org/0000-0001-8599-9009
https://www.rug.nl/staff/peter.de.jonge/
https://www.rug.nl/staff/peter.de.jonge/
https://www.rug.nl/staff/j.r.den.hartigh/
https://www.rug.nl/staff/j.r.den.hartigh/
https://frankblaauw.nl/
https://frankblaauw.nl/

1 no C++ or FORTRAN
API calls.

2 Why Julia?

The world of data science is filled with different open source programming
languages.

Industry has, mostly, adopted Python and academia R. Why bother learning
another language? To answer this question, we will address two common
backgrounds:

1. Did not program before – see Section 2.1.

2. Did program before – see Section 2.2.

2.1 For Non-Programmers

In the first background, we expect the common underlying story to be the fol-
lowing.

Data science has captivated you, making you interested in learning what is it
all about and how can you use it to build your career in academia or industry.
Then, you try to find resources to learn this new craft and you stumble into a
world of intricate acronyms: pandas, dplyr, data.table, numpy, matplotlib, ggplot2,
bokeh, and the list goes on and on.

Out of the blue you hear a name: “Julia.” What is this? How is it any different
from other tools that people tell you to use for data science?

Why should you dedicate your precious time into learning a language that
is almost never mentioned in any job listing, lab position, postdoc offer, or
academic job description? The answer is that Julia is a fresh approach to both
programming and data science. Everything that you do in Python or in R, you
can do it in Julia with the advantage of being able to write readable1, fast, and
powerful code. Therefore, the Julia language is gaining traction, and for good
reasons.

So, if you don’t have any programming background knowledge, we highly
encourage you to take up Julia as a first programming language and data sci-
ence framework.

8 JULIA DATA SCIENCE

2 and sometimes
milliseconds.

3 numba, or even Rcpp or
cython?

4 have a look at some
deep learning libraries
in GitHub and you’ll be
surprised that Python
is only 25%-33% of the
codebase.
5 this is mostly a Python
ecosystem problem,
and while R doesn’t
suffer heavily from this,
it’s not blue skies either.
6 or with little effort
necessary.

2.2 For Programmers

In the second background, the common underlying story changes a little bit.
You are someone who knows how to program and probably does this for a
living. You are familiar with one or more languages and can easily switch
between them. You’ve heard about this new flashy thing called “data science”
and youwant to jump on the bandwagon. You begin to learn how to do stuff in
numpy, how tomanipulate DataFrames in pandas andhow toplot things in matplotlib
↪→. Or maybe you’ve learned all that in R by using the tidyverse and tibbles,
data.frames, %>% (pipes) and geom_∗…

Then, from someone or somewhere you become aware of this new language
called “Julia.” Why bother? You are already proficient in Python or R and
you can do everything that you need. Well, let us contemplate some plausible
scenarios.

Have you ever in Python or R:

1. Done something andwere unable to achieve the performance that youneeded?
Well, in Julia, Python or R minutes can be translated to seconds2. We re-
served Section 2.4 for displaying successful Julia use cases in both academia
and industry.

2. Tried to do something different from numpy/dplyr conventions and discov-
ered that your code is slow and you’ll probably have to learn dark magic3
to make it faster? In Julia you can do your custom different stuff without
loss of performance.

3. Had todebug code and somehowyou see yourself reading Fortran orC/C++
source code and having no idea what you are trying to accomplish? In Julia
you only read Julia code, no need to learn another language to make your
original language fast. This is called the “two-language problem” (see Sec-
tion 2.3.2). It also covers the use case for when “you had an interesting idea
and wanted to contribute to an open source package and gave up because
almost everything is not in Python or R but in C/C++ or Fortran”4.

4. Wanted to use a data structure defined in another package and found that
doesn’t work and that you’ll probably need to build an interface5. Julia
allows users to easily share and reuse code from different packages. Most
of Julia user-defined types and functions work right out of the box6 and
some users marvelled upon discovering how their packages are being used
by other libraries in ways that they could not have imagined. We have some
examples in Section 2.3.3.

5. Needed to have a better project management, with dependencies and ver-
sion control tightly controlled, manageable, and replicable? Julia has an

WHY JULIA? 9

7 sometimes even faster
than C.

8 https://julialang.org/
blog/2012/02/why-we-
created-julia/

9 https://www.hpcwire.
com/off-the-wire/julia
-joins-petaflop-club/
10 a petaflop is one
thousand trillion,
or one quadrillion,
operations per second.
11 https://www.nextpl
atform.com/2017/11/2
8/julia-language-deliv
ers-petascale-hpc-perf
ormance/

amazing project management solution and a great package manager. Un-
like traditional packagemanagers, which install andmanage a single global
set of packages, Julia’s packagemanager is designed around “environments”:
independent sets of packages that can be local to an individual project or
shared between projects. Each project maintains its own independent set of
package versions.

If we got your attention by exposing somewhat familiar or plausible situations,
you might be interested to learn more about this newcomer called Julia.

Let’s proceed then!

2.3 What Julia Aims to Accomplish?

NOTE: In this section we will explain the details of what makes Julia shine as a
programming language. If it becomes too technical for you, you can skip and go
straight to Section 4 to learn about tabular data with DataFrames.jl.

The Julia programming language (Bezanson et al., 2017) is a relatively new
language, first released in 2012, and aims to be both easy and fast. It “runs like
C7 but reads like Python” (Perkel, 2019). It wasmade for scientific computing,
capable of handling large amounts of data and computation while still being
fairly easy to manipulate, create, and prototype code.

The creators of Julia explainedwhy they created Julia in a 2012 blogpost8. They
said:

We are greedy: we want more. We want a language that’s open source, with a
liberal license. We want the speed of C with the dynamism of Ruby. We want a
language that’s homoiconic, with true macros like Lisp, but with obvious, famil-
iar mathematical notation like Matlab. We want something as usable for general
programming as Python, as easy for statistics as R, as natural for string process-
ing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs
together as the shell. Something that is dirt simple to learn, yet keeps the most
serious hackers happy. We want it interactive and we want it compiled.

Most users are attracted to Julia because of the superior speed. After all, Julia
is a member of a prestigious and exclusive club. The petaflop club9 is com-
prised of languages who can exceed speeds of one petaflop10 per second at
peak performance. Currently only C, C++, Fortran, and Julia belong to the
petaflop club11.

But, speed is not all that Julia can deliver. The ease of use, Unicode support,
and a language that makes code sharing effortless are some of Julia’s features.

https://julialang.org/blog/2012/02/why-we-created-julia/
https://julialang.org/blog/2012/02/why-we-created-julia/
https://julialang.org/blog/2012/02/why-we-created-julia/
https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/
https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/
https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/
https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/

10 JULIA DATA SCIENCE

12 LLVM stands for Low
Level Virtual Machine,
you can find more
at the LLVM website
(http://llvm.org).

We’ll address all those features in this section, butwewant to focus on the Julia
code sharing feature for now.

The Julia ecosystem of packages is something unique. It enables not only code
sharing but also allows sharing of user-created types. For example, Python’s
pandas uses its own Datetime type to handle dates. The same with R tidyverse’s
lubridate package, which also defines its own datetime type to handle dates.
Julia doesn’t need any of this, it has all the date stuff already baked into its
standard library. This means that other packages don’t have to worry about
dates. They just have to extend Julia’s DateTime type to new functionalities by
defining new functions and do not need to define new types. Julia’s Datesmod-
ule can do amazing stuff, but we are getting ahead of ourselves now. Let’s talk
about some other features of Julia.

2.3.1 Julia Versus Other Programming Languages

In Figure 2.1, a highly opinionated representation is shown that divides the
main open source and scientific computing languages in a 2x2 diagram with
two axes: Slow-Fast and Easy-Hard. We’ve omitted closed source languages
because there are many benefits to allowing other people to run your code for
free as well as being able to inspect the source code in case of issues.

We’ve put C++ and FORTRAN in the hard and fast quadrant. Being static lan-
guages that need compilation, type checking, and other professional care and
attention, they are really hard to learn and slow to prototype. The advantage
is that they are really fast languages.

R and Python go into the easy and slow quadrant. They are dynamic lan-
guages that are not compiled and they execute in runtime. Because of this,
they are really easy to learn and fast to prototype. Of course, this comes with
a disadvantage: they are really slow languages.

Julia is the only language in the easy and fast quadrant. We don’t know any
other serious language that would want to be hard and slow, so this quadrant
is left empty.

Julia is fast! Very fast! It was designed for speed from the beginning. It ac-
complishes this by multiple dispatch. Basically, the idea is to generate very
efficient LLVM12 code. LLVM code, also known as LLVM instructions, are
very low-level, that is, very close to the actual operations that your computer
is executing. So, in essence, Julia converts your hand written and easy to read
code to LLVM machine code which is very hard for humans to read, but easy
for computers to read. For example, if you define a function taking one argu-
ment and pass an integer into the function, then Julia will create a specialized
MethodInstance. The next time that you pass an integer to the function, Julia will

http://llvm.org

WHY JULIA? 11

Figure 2.1: Scientific
Computing Language
Comparisons: logos
for FORTRAN, C++,
Python, R and Julia.

13 if you like to learn
more about how
Julia is designed you
should definitely check
Bezanson et al. (2017).
14 https://julialang.org/
benchmarks/
15 please note that the
Julia results depicted
above do not include
compile time.
16 https://julialang.org/
benchmarks/

look up the MethodInstance that was created earlier and refer execution to that.
Now, the great trick is that you can also do this inside a function that calls a
function. For example, if some data type is passed into function f and f calls
function g and the data types passed to g are known and always the same, then
the generated function g can be hardcoded into function f! This means that
Julia doesn’t even have to lookup MethodInstances any more, and the code can
run very efficiently. The trade-off, here, is that there are cases where earlier
assumptions about the hardcoded MethodInstances are invalidated. Then, the
MethodInstance has to be recreated which takes time. Also, the trade-off is that
it takes time to infer what can be hardcoded and what not. This explains why
it can often take very long before Julia does the first thing: in the background,
it is optimizing your code.

The compiler in turns doeswhat it does best: it optimizesmachine code13. You
can find benchmarks14 for Julia and several other languages here. Figure 2.2
was taken from Julia’s website benchmarks section15,16. As you can see Julia
is indeed fast.

We really believe in Julia. Otherwise, we wouldn’t be writing this book. We
think that Julia is the future of scientific computing and scientific data anal-
ysis. It enables the user to develop rapid and powerful code with a simple
syntax. Usually, researchers develop code by prototyping using a very easy,

https://julialang.org/benchmarks/
https://julialang.org/benchmarks/
https://julialang.org/benchmarks/
https://julialang.org/benchmarks/

12 JULIA DATA SCIENCE

Figure 2.2: Julia versus
other programming
languages.

but slow, language. Once the code is assured to run correctly and fulfill its
goal, then begins the process of converting the code to a fast, but hard, lan-
guage. This is known as the “Two-Language Problem” and we discuss next.

2.3.2 The Two-Language Problem

The “Two-Language Problem” is a very typical situation in scientific comput-
ing where a researcher devises an algorithm or a solution to tackle a desired
problem or analysis at hand. Then, the solution is prototyped in an easy to
code language (like Python or R). If the prototypeworks, the researcherwould
code in a fast language that would not be easy to prototype (C++ or FOR-
TRAN). Thus, we have two languages involved in the process of developing
a new solution. One which is easy to prototype but is not suited for imple-
mentation (mostly due to being slow). And another which is not so easy to
code, and consequently not easy to prototype, but suited for implementation
because it is fast. Julia avoids such situations by being the same language that
you prototype (ease of use) and implement the solution (speed).

Also, Julia lets you use Unicode characters as variables or parameters. This
means nomore using sigma or sigma_i, and instead just use 𝜎 or 𝜎𝑖 as youwould
in mathematical notation. When you see code for an algorithm or for a math-
ematical equation, you see almost the same notation and idioms. We call this
feature “One-To-One Code and Math Relation” which is a powerful feature.

We think that the “Two-Language problem” and the “One-To-One Code and
Math Relation” are best described by one of the creators of Julia, Alan Edel-

WHY JULIA? 13

17 https://youtu.be/q
GW0GT1rCvsman, in a TEDx Talk17 (TEDx Talks, 2020).

2.3.3 Multiple Dispatch

Multiple dispatch is a powerful feature that allows us to extend existing func-
tions or to define custom and complex behavior for new types. Suppose that
you want to define two new structs to denote two different animals:� �
abstract type Animal end
struct Fox <: Animal

weight::Float64
end
struct Chicken <: Animal

weight::Float64
end� �
Basically, this says “define a fox which is an animal” and “define a chicken
which is an animal.” Next, we might have one fox called Fiona and a chicken
called Big Bird.� �
fiona = Fox(4.2)
big_bird = Chicken(2.9)� �
Next, wewant to knowhowmuch theyweight together, forwhichwe canwrite
a function:� �
combined_weight(A1::Animal, A2::Animal) = A1.weight + A2.weight� �
combined_weight (generic function with 1 method)

And we want to know whether they go well together. One way to implement
that is to use conditionals:� �
function naive_trouble(A::Animal, B::Animal)

if A isa Fox && B isa Chicken
return true

elseif A isa Chicken && B isa Fox
return true

elseif A isa Chicken && B isa Chicken
return false

end
end� �
naive_trouble (generic function with 1 method)

https://youtu.be/qGW0GT1rCvs
https://youtu.be/qGW0GT1rCvs

14 JULIA DATA SCIENCE

Now, let’s see whether leaving Fiona and Big Bird together would give trouble:� �
naive_trouble(fiona, big_bird)� �
true

Okay, so this sounds right. Writing the naive_trouble function seems to be easy
enough. However, usingmultiple dispatch to create a new function trouble can
have their benefits. Let’s create our new function as follows:� �
trouble(F::Fox, C::Chicken) = true
trouble(C::Chicken, F::Fox) = true
trouble(C1::Chicken, C2::Chicken) = false� �
trouble (generic function with 3 methods)

After defining thesemethods, trouble gives the same result as naive_trouble. For
example:� �
trouble(fiona, big_bird)� �
true

And leaving Big Bird alone with another chicken called Dora is also fine� �
dora = Chicken(2.2)
trouble(dora, big_bird)� �
false

So, in this case, the benefit of multiple dispatch is that you can just declare
types and Julia will find the correct method for your types. Even more so, for
many cases whenmultiple dispatch is used inside code, the Julia compiler will
actually optimize the function calls away. For example, we could write:� �
function trouble(A::Fox, B::Chicken, C::Chicken)

return trouble(A, B) || trouble(B, C) || trouble(C, A)
end� �
Depending on the context, Julia can optimize this to:� �
function trouble(A::Fox, B::Chicken, C::Chicken)

return true || false || true
end� �

WHY JULIA? 15

because the compiler knows that A is a Fox, B is a chicken and so this can be
replaced by the contents of the method trouble(F::Fox, C::Chicken). The same
holds for trouble(C1::Chicken, C2::Chicken). Next, the compiler can optimize this
to:� �
function trouble(A::Fox, B::Chicken, C::Chicken)

return true
end� �
Another benefit of multiple dispatch is that when someone else now comes by
andwants to compare the existing animals to their animal, a Zebra, then that’s
possible. In their package, they can define a Zebra:� �
struct Zebra <: Animal

weight::Float64
end� �
and also how the interactions with the existing animals would go:� �
trouble(F::Fox, Z::Zebra) = false
trouble(Z::Zebra, F::Fox) = false
trouble(C::Chicken, Z::Zebra) = false
trouble(Z::Zebra, F::Fox) = false� �
trouble (generic function with 6 methods)

Now, we can see whether Marty (our zebra) is safe with Big Bird:� �
marty = Zebra(412)
trouble(big_bird, marty)� �
false

Even better, we can also calculate the combined weight of zebra’s and other
animals without defining any extra function at our side:� �
combined_weight(big_bird, marty)� �
414.9

So, in summary, the code that was written with only Fox and Chicken in mind
works even for types that it has never seen before! In practise, this means that
Julia makes it often easy to re-use code from other projects.

16 JULIA DATA SCIENCE

18 https://storopoli.io
/Bayesian-Julia/pages/
1_why_Julia/#example
_one-hot_vector
19 https://www.chrisrac
kauckas.com/
20 https://youtu.be/m
oyPIhvw4Nk?t=2107
21 https://diffeq.sciml.a
i/dev/

22 https://youtu.be/kc9
HwsxE1OY

23 https://exoplanets.n
asa.gov/news/1669/se
ven-rocky-trappist-1-p
lanets-may-be-made-o
f-similar-stuff/
24 https://clima.caltech.
edu/
25 https://youtu.be/19z
m1Fn0S9M
26 https://juliacomputi
ng.com/case-studies/pf
izer/
27 https://chrisrackauc
kas.com/assets/Posters
/ACoP11_Poster_Abstr
acts_2020.pdf
28 https://web.arch
ive.org/web/2021
0121164011/https:
//www.go-acop.org/ab
stract-awards
29 https://discourse.juli
alang.org/t/julia-and-
the-satellite-amazonia
-1/57541

If you are excited as much as we are by multiple dispatch, here are two more
in-depth examples. The first is a fast and elegant implementation of a one-
hot vector18 by Storopoli (2021). The second is an interview with Christopher
Rackauckas19 at Tanmay Bakshi YouTube’s Channel20 (see from time 35:07 on-
wards) (tanmaybakshi, 2021). Chrismentions that, while using DifferentialEquations
↪→.jl21, a package that he developed and currently maintains, a user filed an
issue that his GPU-based quaternion ODE solver didn’t work. Chris was quite
surprised by this request since he would never have expected that someone
would combine GPU computations with quaternions and solving ODEs. He
was even more surprised to discover that the user made a small mistake and
that it all worked. Most of the merit is due to multiple dispatch and high user
code/type sharing.

To conclude, we think that multiple dispatch is best explained by one of the
creators of Julia: Stefan Karpinski at JuliaCon 201922.

2.4 Julia in the Wild

In Section 2.3, we explained whywe think Julia is such a unique programming
language. We showed simple examples about the main features of Julia. If
you would like to have a deep dive on how Julia is being used, we have some
interesting use cases:

1. NASAuses Julia in a supercomputer to analyze the “Largest Batch of Earth-
Sized Planets Ever Found”23 and achieve a whopping 1,000x speedup to
catalog 188 million astronomical objects in 15 minutes.

2. The Climate Modeling Alliance (CliMa)24 is using mostly Julia to model
climate in the GPU and CPU. Launched in 2018 in collaboration with re-
searchers at Caltech, the NASA Jet Propulsion Laboratory, and the Naval
Postgraduate School, CliMA is utilizing recent progress in computational
science to develop an Earth system model that can predict droughts, heat
waves, and rainfall with unprecedented precision and speed.

3. US Federal Aviation Administration (FAA) is developing anAirborne Col-
lision Avoidance System (ACAS-X) using Julia25. This is a nice example
of the “Two-Language Problem” (see Section 2.3). Previous solutions used
Matlab to develop the algorithms and C++ for a fast implementation. Now,
FAA is using one language to do all this: Julia.

4. 175x speedup for Pfizer’s pharmacology models using GPUs in Julia26. It
was presented as a poster27 in the 11th American Conference of Pharmaco-
metrics (ACoP11) and won a quality award28.

5. TheAttitude andOrbit Control Subsystem (AOCS) of the Brazilian satellite
Amazonia-1 is written 100% in Julia29 by Ronan Arraes Jardim Chagas (ht
tps://ronanarraes.com/).

https://storopoli.io/Bayesian-Julia/pages/1_why_Julia/#example_one-hot_vector
https://storopoli.io/Bayesian-Julia/pages/1_why_Julia/#example_one-hot_vector
https://storopoli.io/Bayesian-Julia/pages/1_why_Julia/#example_one-hot_vector
https://storopoli.io/Bayesian-Julia/pages/1_why_Julia/#example_one-hot_vector
https://www.chrisrackauckas.com/
https://www.chrisrackauckas.com/
https://youtu.be/moyPIhvw4Nk?t=2107
https://youtu.be/moyPIhvw4Nk?t=2107
https://diffeq.sciml.ai/dev/
https://diffeq.sciml.ai/dev/
https://youtu.be/kc9HwsxE1OY
https://youtu.be/kc9HwsxE1OY
https://exoplanets.nasa.gov/news/1669/seven-rocky-trappist-1-planets-may-be-made-of-similar-stuff/
https://exoplanets.nasa.gov/news/1669/seven-rocky-trappist-1-planets-may-be-made-of-similar-stuff/
https://exoplanets.nasa.gov/news/1669/seven-rocky-trappist-1-planets-may-be-made-of-similar-stuff/
https://exoplanets.nasa.gov/news/1669/seven-rocky-trappist-1-planets-may-be-made-of-similar-stuff/
https://exoplanets.nasa.gov/news/1669/seven-rocky-trappist-1-planets-may-be-made-of-similar-stuff/
https://clima.caltech.edu/
https://clima.caltech.edu/
https://youtu.be/19zm1Fn0S9M
https://youtu.be/19zm1Fn0S9M
https://juliacomputing.com/case-studies/pfizer/
https://juliacomputing.com/case-studies/pfizer/
https://juliacomputing.com/case-studies/pfizer/
https://chrisrackauckas.com/assets/Posters/ACoP11_Poster_Abstracts_2020.pdf
https://chrisrackauckas.com/assets/Posters/ACoP11_Poster_Abstracts_2020.pdf
https://chrisrackauckas.com/assets/Posters/ACoP11_Poster_Abstracts_2020.pdf
https://chrisrackauckas.com/assets/Posters/ACoP11_Poster_Abstracts_2020.pdf
https://web.archive.org/web/20210121164011/https://www.go-acop.org/abstract-awards
https://web.archive.org/web/20210121164011/https://www.go-acop.org/abstract-awards
https://web.archive.org/web/20210121164011/https://www.go-acop.org/abstract-awards
https://web.archive.org/web/20210121164011/https://www.go-acop.org/abstract-awards
https://web.archive.org/web/20210121164011/https://www.go-acop.org/abstract-awards
https://discourse.julialang.org/t/julia-and-the-satellite-amazonia-1/57541
https://discourse.julialang.org/t/julia-and-the-satellite-amazonia-1/57541
https://discourse.julialang.org/t/julia-and-the-satellite-amazonia-1/57541
https://discourse.julialang.org/t/julia-and-the-satellite-amazonia-1/57541
https://ronanarraes.com/
https://ronanarraes.com/

WHY JULIA? 17

30 https://youtu.be/N
Y0HcGqHj3g

31 https://juliacomputi
ng.com/case-studies/

6. Brazil’s national development bank (BNDES) ditched a paid solution and
opted for open-source Julia modeling and gained a 10x speedup.30

If this is not enough, there are more case studies in Julia Computing website31.

https://youtu.be/NY0HcGqHj3g
https://youtu.be/NY0HcGqHj3g
https://juliacomputing.com/case-studies/
https://juliacomputing.com/case-studies/

3 Julia Basics

NOTE: In this chapter we cover the basics of Julia as a programming language.
Please note that this is not strictly necessary for you to use Julia as a tool for data
manipulation and data visualization. Having a basic understanding of Julia will
definitely make you more effective and efficient in using Julia. However, if you
prefer to get started straight away, you can jump to Section 4 to learn about tabular
data with DataFrames.jl.

This is going to be a very brief and not an in-depth overview of the Julia lan-
guage. If you are already familiar and comfortable with other programming
languages, we highly encourage you to read Julia’s documentation (https:
//docs.julialang.org/). The docs are an excellent resource for taking a deep
dive into Julia. It covers all the basics and corner cases, but it can be cumber-
some, especially if you aren’t familiar with software documentation.

We’ll cover the basics of Julia. Imagine that Julia is a fancy feature-loaded car,
such as a brand-new Tesla. We’ll just explain to you how to “drive the car, park
it, and how to navigate in traffic.” If you want to knowwhat “all the buttons in
the steering wheel and dashboard do,” this is not the resource you are looking
for.

3.1 Development Environments

Before we can dive into the language syntax, we need to answer how to run
code. Going into details about the various options is out of scope for this book.
Instead, we will provide you with some pointers to various solutions.

The simplest way is to use the Julia REPL. This means starting the Julia exe-
cutable (julia or julia.exe) and running code there. For example, we can start
the REPL and execute some code:� �
julia> x = 2
2

julia> x + 1
3� �
This works all very well, but what if we want to save the code that we wrote?
To save our code, one can write “.jl” files such as “script.jl” and load these into
Julia. Say, that “script.jl” contains:

https://docs.julialang.org/
https://docs.julialang.org/

20 JULIA DATA SCIENCE

1 https://github.com/t
imholy/Revise.jl

2 https://github.com/f
onsp/Pluto.jl

� �
x = 3
y = 4� �
We can load this into Julia:� �
julia> include("script.jl")

julia> y
4� �
Now the problem becomes that we would like Julia to re-read our script every
time before executing code. This can be done via Revise.jl1. Because compila-
tion time in Julia is often long, Revise.jl is a must-have for Julia development.
For more information, see the Revise.jl documentation or simply Google a bit
if you have specific questions.

We are aware that Revise.jl and the REPL requires somemanual actions which
aren’t super clearly documented. Luckily, there is Pluto.jl2. Pluto.jl automat-
ically manages dependencies, runs code, and reacts to changes. For people
who are new to programming, Pluto.jl is by far the easiest way to get started.
The main drawback of the package is that it is less suitable for larger projects.

Other options are to use Visual Studio Code with various Julia extensions or
manage your own IDE. If you don’t knowwhat an IDE is, but do want to man-
age large projects choose Visual Studio Code. If you do know what an IDE is,
then you might like building your own IDE with Vim or Emacs and the REPL.

So, to summarize:

• Easiest way to get started -> Pluto.jl
• Larger projects -> Visual Studio Code
• Advanced users -> Vim, Emacs and the REPL

3.2 Language Syntax

Julia is a dynamic-typed language with a just-in-time compiler. This means
that you don’t need to compile your program before you run it, like youwould
do in C++ or FORTRAN. Instead, Julia will take your code, guess types where
necessary, and compile parts of code just before running it. Also, you don’t
need to explicitly specify each type. Julia will guess types for you on the go.

https://github.com/timholy/Revise.jl
https://github.com/timholy/Revise.jl
https://github.com/fonsp/Pluto.jl
https://github.com/fonsp/Pluto.jl

JULIA BASICS 21

The main differences between Julia and other dynamic languages such as R
and Python are the following. First, Julia allows the user to specify type dec-
larations. You already saw some types declarations in Why Julia? (Section 2):
they are those double colons :: that sometimes come after variables. However,
if you don’t want to specify the type of your variables or functions, Julia will
gladly infer (guess) them for you.

Second, Julia allows users to define function behavior across many combina-
tions of argument types via multiple dispatch. We also covered multiple dis-
patch in Section 2.3. We defined a different type behavior by defining new
function signatures for argument types while using the same function name.

3.2.1 Variables

Variables are values that you tell the computer to store with a specific name,
so that you can later recover or change its value. Julia has several types of
variables but, in data science, we mostly use:

• Integers: Int64
• Real Numbers: Float64
• Boolean: Bool
• Strings: String

Integers and real numbers are stored by using 64 bits by default, that’s why
they have the 64 suffix in the name of the type. If you need more or less pre-
cision, there are Int8 or Int128 types, for example, where higher means more
precision. Most of the time, this won’t be an issue so you can just stick to the
defaults.

We create new variables by writing the variable name on the left and its value
in the right, and in the middle we use the = assignment operator. For example:� �
name = "Julia"
age = 9� �
9

Note that the return output of the last statement (age) was printed to the con-
sole. Here, we are defining two new variables: name and age. We can recover
their values by typing the names given in the assignment:� �
name� �

22 JULIA DATA SCIENCE

Julia

If you want to define new values for an existing variable, you can repeat the
steps in the assignment. Note that Julia will now override the previous value
with the newone. Supposed, Julia’s birthday has passed and now it has turned
10:� �
age = 10� �
10

We can do the same with its name. Suppose that Julia has earned some titles
due to its blazing speed. We would change the variable name to the new value:� �
name = "Julia Rapidus"� �
Julia Rapidus

We can also do operations on variables such as addition or division. Let’s see
how old Julia is, in months, by multiplying age by 12:� �
12 ∗ age� �
120

We can inspect the types of variables by using the typeof function:� �
typeof(age)� �
Int64

The next question then becomes: “What else can I do with integers?” There is
a nice handy function methodswith that spits out every function available, along
with its signature, for a certain type. Here, I will restrict the output to the first
5 rows:� �
first(methodswith(Int64), 5)� �
[1] connect(manager::Distributed.ClusterManager, pid::Int64, config::Distributed

↪→.WorkerConfig) in Distributed at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Distributed/src/managers.jl:516

JULIA BASICS 23

[2] ft_latex_sn(m_digits::Int64) in PrettyTables at /home/runner/.julia/packages
↪→/PrettyTables/6VdCp/src/predefined_formatters.jl:137

[3] ft_latex_sn(m_digits::Int64, columns::AbstractVector{Int64}) in PrettyTables
↪→ at /home/runner/.julia/packages/PrettyTables/6VdCp/src/
↪→predefined_formatters.jl:139

[4] ft_printf(ftv_str::String, column::Int64) in PrettyTables at /home/runner/.
↪→julia/packages/PrettyTables/6VdCp/src/predefined_formatters.jl:28

[5] ft_round(digits::Int64) in PrettyTables at /home/runner/.julia/packages/
↪→PrettyTables/6VdCp/src/predefined_formatters.jl:78

3.2.2 User-defined Types

Having variables around without any sort of hierarchy or relationships is not
ideal. In Julia, we can define that kind of structured data with a struct (also
known as a composite type). Inside each struct, you can specify a set of fields.
They differ from the primitive types (e.g. integer and floats) that are by default
defined already inside the core of Julia language. Since most structs are user-
defined, they are known as user-defined types.

For example, let’s create a struct to represent scientific open source program-
ming languages. We’ll also define a set of fields along with the corresponding
types inside the struct:� �
struct Language

name::String
title::String
year_of_birth::Int64
fast::Bool

end� �
To inspect the field names you can use the fieldnames andpass the desired struct
as an argument:� �
fieldnames(Language)� �
(:name, :title, :year_of_birth, :fast)

To use structs, we must instantiate individual instances (or “objects”), each
with its own specific values for the fields defined inside the struct. Let’s in-
stantiate two instances, one for Julia and one for Python:� �
julia = Language("Julia", "Rapidus", 2012, true)
python = Language("Python", "Letargicus", 1991, false)� �

24 JULIA DATA SCIENCE

Language("Python", "Letargicus", 1991, false)

One thing to notewith structs is that we can’t change their values once they are
instantiated. We can solve this with a mutable struct. Also, note that mutable
objects will, generally, be slower and more error prone. Whenever possible,
make everything immutable. Let’s create a mutable struct.� �
mutable struct MutableLanguage

name::String
title::String
year_of_birth::Int64
fast::Bool

end

julia_mutable = MutableLanguage("Julia", "Rapidus", 2012, true)� �
MutableLanguage("Julia", "Rapidus", 2012, true)

Suppose that we want to change julia_mutable’s title. Now, we can do this since
julia_mutable is an instantiated mutable struct:� �
julia_mutable.title = "Python Obliteratus"

julia_mutable� �
MutableLanguage("Julia", "Python Obliteratus", 2012, true)

3.2.3 Boolean Operators and Numeric Comparisons

Now that we’ve covered types, we canmove to boolean operators and numeric
comparison.

We have three boolean operators in Julia:

• !: NOT
• &&: AND
• ||: OR

Here are a few examples with some of them:� �
!true� �

JULIA BASICS 25

false� �
(false && true) || (!false)� �
true� �
(6 isa Int64) && (6 isa Real)� �
true

Regarding numeric comparison, Julia has three major types of comparisons:

1. Equality: either something is equal or not equal another

• == “equal”
• != or ≠ “not equal”

2. Less than: either something is less than or less than or equal to

• < “less than”
• <= or ≤ “less than or equal to”

3. Greater than: either something is greater than or greater than or equal to

• > “greater than”
• >= or ≥ “greater than or equal to”

Here are some examples:� �
1 == 1� �
true� �
1 >= 10� �
false

It evens works between different types:� �
1 == 1.0� �
true

26 JULIA DATA SCIENCE

We can also mix and match boolean operators with numeric comparisons:� �
(1 != 10) || (3.14 <= 2.71)� �
true

3.2.4 Functions

Now that we already know how to define variables and custom types as struct
↪→s, let’s turn our attention to functions. In Julia, a functionmaps argument’s
values to one or more return values. The basic syntax goes like this:� �
function function_name(arg1, arg2)

result = stuff with the arg1 and arg2
return result

end� �
The function declaration begins with the keyword function followed by the
function name. Then, inside parentheses (), we define the arguments sepa-
rated by a comma ,. Inside the function, we specify what we want Julia to do
with the parameters that we supplied. All variables that we define inside a
function are deleted after the function returns. This is nice because it is like an
automatic cleanup. After all the operations in the function body are finished,
we instruct Julia to return the final result with the return statement. Finally, we
let Julia know that the function definition is finished with the end keyword.

There is also the compact assignment form:� �
f_name(arg1, arg2) = stuff with the arg1 and arg2� �
It is the same function as before butwith a different, more compact, form. As a
rule of thumb, when your code can fit easily on one line of up to 92 characters,
then the compact form is suitable. Otherwise, just use the longer form with
the function keyword. Let’s dive into some examples.

Creating new Functions

Let’s create a new function that adds numbers together:� �
function add_numbers(x, y)

return x + y
end� �

JULIA BASICS 27

add_numbers (generic function with 1 method)

Now, we can use our add_numbers function:� �
add_numbers(17, 29)� �
46

And it works also with floats:� �
add_numbers(3.14, 2.72)� �
5.86

Also, we can define custom behavior by specifying type declarations. Sup-
pose that we want to have a round_number function that behaves differently if its
argument is either a Float64 or Int64:� �
function round_number(x::Float64)

return round(x)
end

function round_number(x::Int64)
return x

end� �
round_number (generic function with 2 methods)

We can see that it is a function with multiple methods:� �
methods(round_number)� �
2 methods for generic function "round_number":
[1] round_number(x::Float64) in Main at none:1
[2] round_number(x::Int64) in Main at none:5

There is one issue: what happens if we want to round a 32-bit float Float32? Or
a 8-bit integer Int8?

If you want something to function on all float and integer types, you can use
an abstract type as the type signature, such as AbstractFloat or Integer:

28 JULIA DATA SCIENCE

� �
function round_number(x::AbstractFloat)

return round(x)
end� �
round_number (generic function with 3 methods)

Now, it works as expected with any float type:� �
x_32 = Float32(1.1)
round_number(x_32)� �
1.0

NOTE: We can inspect types with the supertypes and subtypes functions.

Let’s go back to our Language struct that we defined above. This is an example of
multiple dispatch. We will extend the Base.show function that prints the output
of instantiated types and structs.

By default, a struct has a basic output, which you saw above in the python case.
We can define a new Base.show method to our Language type, so that we have
some nice printing for our programming languages instances. We want to
clearly communicate programming languages’ names, titles, and ages in years.
The function Base.show accepts as arguments a IO type named io followed by the
type you want to define custom behavior:� �
Base.show(io::IO, l::Language) = print(

io, l.name, " ",
2021 - l.year_of_birth, ", years old, ",
"has the following titles: ", l.title

)� �
Now, let’s see how python will output:� �
python� �
Python 30, years old, has the following titles: Letargicus

Multiple Return Values

Afunction can, also, return twoormore values. See the new function add_multiply
↪→ below:

JULIA BASICS 29

� �
function add_multiply(x, y)

addition = x + y
multiplication = x ∗ y
return addition, multiplication

end� �
add_multiply (generic function with 1 method)

In that case, we can do two things:

1. We can, analogously as the return values, define two variables to hold the
function return values, one for each return value:� �

return_1, return_2 = add_multiply(1, 2)
return_2

� �
2

2. Or we can define just one variable to hold the function’s return values and
access them with either first or last:� �

all_returns = add_multiply(1, 2)
last(all_returns)

� �
2

Keyword Arguments

Some functions can accept keyword arguments instead of positional arguments.
These arguments are just like regular arguments, except that they are defined
after the regular function’s arguments and separated by a semicolon ;. For ex-
ample, let’s define a logarithm function that bydefault uses base 𝑒 (2.718281828459045)
as a keyword argument. Note that, here, we are using the abstract type Real
so that we cover all types derived from Integer and AbstractFloat, being both
themselves subtypes of Real:� �
AbstractFloat <: Real && Integer <: Real� �

30 JULIA DATA SCIENCE

true� �
function logarithm(x::Real; base::Real=2.7182818284590)

return log(base, x)
end� �
logarithm (generic function with 1 method)

It works without specifying the base argument as we supplied a default argu-
ment value in the function declaration:� �
logarithm(10)� �
2.3025850929940845

And also with the keyword argument base different from its default value:� �
logarithm(10; base=2)� �
3.3219280948873626

Anonymous Functions

Often we don’t care about the name of the function and want to quickly make
one. What we need are anonymous functions. They are used a lot in Julia’s
data science workflow. For example, when using DataFrames.jl (Section 4) or
Makie.jl (Section 5), sometimes we need a temporary function to filter data
or format plot labels. That’s when we use anonymous functions. They are
especially useful when we don’t want to create a function, and a simple in-
place statement would be enough.

The syntax is simple. We use the −> operator. On the left of −> we define the
parameter name. And on the right of −> we define what operations we want to
perform on the parameter that we defined on the left of −>. Here is an example.
Suppose that we want to undo the log transformation by using an exponenti-
ation:� �
map(x -> 2.7182818284590^x, logarithm(2))� �
2.0

JULIA BASICS 31

Here, we are using the map function to conveniently map the anonymous func-
tion (first argument) to logarithm(2) (the second argument). As a result, we
get back the same number, because logarithm and exponentiation are inverse
(at least in the base that we’ve chosen – 2.7182818284590)

3.2.5 Conditional If-Else-Elseif

In most programming languages, the user is allowed to control the computer’s
flowof execution. Depending on the situation, wewant the computer to do one
thing or another. In Julia we can control the flow of execution with if, elseif,
and else keywords. These are known as conditional statements.

The if keyword prompts Julia to evaluate an expression and, depending on
whether it’s true or false, execute certain portions of code. We can compound
several if conditionswith the elseif keyword for complex control flow. Finally,
we can define an alternative portion to be executed if anything inside the if or
elseifs is evaluated to true. This is the purpose of the else keyword. Finally,
like all the previous keyword operators that we saw, we must tell Julia when
the conditional statement is finished with the end keyword.

Here’s an example with all the if-elseif-else keywords:� �
a = 1
b = 2

if a < b
"a is less than b"

elseif a > b
"a is greater than b"

else
"a is equal to b"

end� �
a is less than b

We can even wrap this in a function called compare:� �
function compare(a, b)

if a < b
"a is less than b"

elseif a > b
"a is greater than b"

else
"a is equal to b"

end
end

32 JULIA DATA SCIENCE

compare(3.14, 3.14)� �
a is equal to b

3.2.6 For Loop

The classical for loop in Julia follows a similar syntax as the conditional state-
ments. You begin with a keyword, in this case for. Then, you specify what
Julia should “loop” for, i.e., a sequence. Also, like everything else, you must
finish with the end keyword.

So, to make Julia print every number from 1 to 10, you can use the following
for loop:� �
for i in 1:10

println(i)
end� �
3.2.7 While Loop

The while loop is a mix of the previous conditional statements and for loops.
Here, the loop is executed every time the condition is true. The syntax follows
the same form as the previous one. We begin with the keyword while, followed
by a statement that evaluates to true or false. As usual, you must end with the
end keyword.

Here’s an example:� �
n = 0

while n < 3
global n += 1

end

n� �
3

As you can see, we have to use the global keyword. This is because of variable
scope. Variables defined inside conditional statements, loops, and functions
exist only inside them. This is known as the scope of the variable. Here, we
had to tell Julia that the n inside while loop is in the global scope with the global
keyword.

JULIA BASICS 33

Finally, we also used the += operator which is a nice shorthand for n = n + 1.

3.3 Native Data Structures

Julia has several native data structures. They are abstractions of data that rep-
resent some form of structured data. We will cover the most used ones. They
hold homogeneous or heterogeneous data. Since they are collections, they can
be looped over with the for loops.

We will cover String, Tuple, NamedTuple, UnitRange, Arrays, Pair, Dict, Symbol.

When you stumble across a data structure in Julia, you can find methods that
accept it as an argument with the methodswith function. In Julia, the distinction
betweenmethods and functions is as follows. Every function can havemultiple
methods like we have shown earlier. The methodswith function is nice to have in
your bag of tricks. Let’s see what we can do with a String for example:� �
first(methodswith(String), 5)� �
[1] getaddrinfo(host::String, T::Type{var"#s814"} where var"#s814"<:Sockets.

↪→IPAddr) in Sockets at /opt/hostedtoolcache/julia/1.6.3/x64/share/julia/
↪→stdlib/v1.6/Sockets/src/addrinfo.jl:130

[2] getalladdrinfo(host::String) in Sockets at /opt/hostedtoolcache/julia/1.6.3/
↪→x64/share/julia/stdlib/v1.6/Sockets/src/addrinfo.jl:66

[3] join_multicast_group(sock::Sockets.UDPSocket, group_addr::String) in Sockets
↪→ at /opt/hostedtoolcache/julia/1.6.3/x64/share/julia/stdlib/v1.6/Sockets/
↪→src/Sockets.jl:761

[4] join_multicast_group(sock::Sockets.UDPSocket, group_addr::String,
↪→interface_addr::Union{Nothing, String}) in Sockets at /opt/
↪→hostedtoolcache/julia/1.6.3/x64/share/julia/stdlib/v1.6/Sockets/src/
↪→Sockets.jl:761

[5] leave_multicast_group(sock::Sockets.UDPSocket, group_addr::String) in
↪→Sockets at /opt/hostedtoolcache/julia/1.6.3/x64/share/julia/stdlib/v1.6/
↪→Sockets/src/Sockets.jl:780

3.3.1 Broadcasting Operators and Functions

Before we dive into data structures, we need to talk about broadcasting (also
known as vectorization) and the “dot” operator ..

We can broadcast mathematical operations like ∗ (multiplication) or + (addi-
tion) using the dot operator. For example, broadcasted addition would imply
a change from + to .+:� �
[1, 2, 3] .+ 1� �

34 JULIA DATA SCIENCE

[2, 3, 4]

It also works automatically with functions. (Technically, the mathematical op-
erations, or infix operators, are also functions, but that is not so important to
know.) Remember our logarithm function?� �
logarithm.([1, 2, 3])� �
[0.0, 0.6931471805599569, 1.0986122886681282]

Functions with a bang !

It is a Julia convention to append a bang ! to names of functions thatmodify one
or more of their arguments. This convention warns the user that the function
is not pure, i.e., that it has side effects. A function with side effects is useful
when you want to update a large data structure or variable container without
having all the overhead from creating a new instance.

For example, we can create a function that adds 1 to each element in a vector
V:� �
function add_one!(V)

for i in 1:length(V)
V[i] += 1

end
return nothing

end� �� �
my_data = [1, 2, 3]

add_one!(my_data)

my_data� �
[2, 3, 4]

3.3.2 String

Strings are represented delimited by double quotes:� �
typeof("This is a string")� �

JULIA BASICS 35

String

We can also write a multiline string:� �
text = "
This is a big multiline string.
As you can see.
It is still a String to Julia.
"� �
This is a big multiline string.
As you can see.
It is still a String to Julia.

But it is usually clearer to use triple quotation marks:� �
s = """

This is a big multiline string with a nested "quotation".
As you can see.
It is still a String to Julia.
"""� �

This is a big multiline string with a nested "quotation".
As you can see.
It is still a String to Julia.

Whenusing triple-backticks, the indentation andnewline at the start is ignored
by Julia. This improves code readability because you can indent the block in
your source code without those spaces ending up in your string.

String Concatenation

A common string operation is string concatenation. Suppose that you want
to construct a new string that is the concatenation of two or more strings. This
is accomplished in Julia either with the ∗ operator or the join function. This
symbol might sound like a weird choice and it actually is. For now, many
Julia codebases are using this symbol, so it will stay in the language. If you’re
interested, you can read a discussion from 2015 about it at https://github.com
/JuliaLang/julia/issues/11030.� �
hello = "Hello"
goodbye = "Goodbye"

https://github.com/JuliaLang/julia/issues/11030
https://github.com/JuliaLang/julia/issues/11030

36 JULIA DATA SCIENCE

hello ∗ goodbye� �
HelloGoodbye

As you can see, we are missing a space between hello and goodbye. We could
concatenate an additional " " string with the ∗, but that would be cumbersome
for more than two strings. That’s where the join function comes in handy. We
just pass as arguments the strings inside the brackets [] and the separator:� �
join([hello, goodbye], " ")� �
Hello Goodbye

String Interpolation

Concatenating strings can be convoluted. We can be much more expressive
with string interpolation. It works like this: you specify whatever you want
to be included in your string with the dollar sign $. Here’s the example before
but now using interpolation:� �
"$hello $goodbye"� �
Hello Goodbye

It evenworks inside functions. Let’s revisit our test function fromSection 3.2.5:� �
function test_interpolated(a, b)

if a < b
"$a is less than $b"

elseif a > b
"$a is greater than $b"

else
"$a is equal to $b"

end
end

test_interpolated(3.14, 3.14)� �
3.14 is equal to 3.14

JULIA BASICS 37

3 https://docs.julialang
.org/en/v1/manual/st
rings/#Regular-Express
ions

String Manipulations

There are several functions tomanipulate strings in Julia. Wewill demonstrate
the most common ones. Also, note that most of these functions accept a Reg-
ular Expression (RegEx)3 as arguments. We won’t cover RegEx in this book,
but you are encouraged to learn about them, especially if most of your work
uses textual data.

First, let us define a string for us to play around with:� �
julia_string = "Julia is an amazing opensource programming language"� �
Julia is an amazing opensource programming language

1. occursin, startswith and endswith: A conditional (returns either true or false)
if the first argument is a:

• substring of the second argument� �
occursin("Julia", julia_string)

� �
true

• prefix of the second argument� �
startswith("Julia", julia_string)

� �
false

• suffix of the second argument� �
endswith("Julia", julia_string)

� �
false

2. lowercase, uppercase, titlecase and lowercasefirst:� �
lowercase(julia_string)

� �

https://docs.julialang.org/en/v1/manual/strings/#Regular-Expressions
https://docs.julialang.org/en/v1/manual/strings/#Regular-Expressions
https://docs.julialang.org/en/v1/manual/strings/#Regular-Expressions
https://docs.julialang.org/en/v1/manual/strings/#Regular-Expressions

38 JULIA DATA SCIENCE

julia is an amazing opensource programming language

� �
uppercase(julia_string)

� �
JULIA IS AN AMAZING OPENSOURCE PROGRAMMING LANGUAGE

� �
titlecase(julia_string)

� �
Julia Is An Amazing Opensource Programming Language

� �
lowercasefirst(julia_string)

� �
julia is an amazing opensource programming language

3. replace: introduces a new syntax, called the Pair� �
replace(julia_string, "amazing" => "awesome")

� �
Julia is an awesome opensource programming language

4. split: breaks up a string by a delimiter:� �
split(julia_string, " ")

� �
SubString{String}["Julia", "is", "an", "amazing", "opensource", "

↪→programming", "language"]

JULIA BASICS 39

String Conversions

Often, we need to convert between types in Julia. To convert a number to a
string we can use the string function:� �
my_number = 123
typeof(string(my_number))� �
String

Sometimes, we want the opposite: convert a string to a number. Julia has a
handy function for that: parse.� �
typeof(parse(Int64, "123"))� �
Int64

Sometimes, we want to play safe with these conversions. That’s when tryparse
↪→ function steps in. It has the same functionality as parse but returns either
a value of the requested type, or nothing. That makes tryparse handy when we
want to avoid errors. Of course, you would need to deal with all those nothing
values afterwards.� �
tryparse(Int64, "A very non−numeric string")� �
nothing

3.3.3 Tuple

Julia has a data structure called tuple. They are really special in Julia because
they are often used in relation to functions. Since functions are a important
feature in Julia, every Julia user should know the basics of tuples.

A tuple is a fixed-length container that can hold multiple different types. A
tuple is an immutable object, meaning that it cannot be modified after instan-
tiation. To construct a tuple, use parentheses () to delimit the beginning and
end, along with commas , as delimiters between values:� �
my_tuple = (1, 3.14, "Julia")� �
(1, 3.14, "Julia")

40 JULIA DATA SCIENCE

Here, we are creating a tuple with three values. Each one of the values is a
different type. We can access them via indexing. Like this:� �
my_tuple[2]� �
3.14

We can also loop over tuples with the for keyword. And even apply functions
to tuples. But we can never change any value of a tuple since they are im-
mutable.

Remember functions that return multiple values back in Section 3.2.4? Let’s
inspect what our add_multiply function returns:� �
return_multiple = add_multiply(1, 2)
typeof(return_multiple)� �
Tuple{Int64, Int64}

This is because return a, b is the same as return (a, b):� �
1, 2� �
(1, 2)

So, now you can see why they are often related.

Onemore thing about tuples. When youwant to passmore than one variable
to an anonymous function, guess what you would need to use? Once again:
tuples!� �
map((x, y) -> x^y, 2, 3)� �
8

Or, even more than two arguments:� �
map((x, y, z) -> x^y + z, 2, 3, 1)� �
9

JULIA BASICS 41

3.3.4 Named Tuple

Sometimes, you want to name the values in tuples. That’s when named tu-
ples comes in. Their functionality is pretty much same as tuples: they are
immutable and can hold any type of value.

The construction of named tuples is slightly different from that of tuples. You
have the familiar parentheses () and the comma , value separator. But now
you name the values:� �
my_namedtuple = (i=1, f=3.14, s="Julia")� �
(i = 1, f = 3.14, s = "Julia")

We can access a named tuple’s values via indexing like regular tuples or, al-
ternatively, access by their names with the .:� �
my_namedtuple.s� �
Julia

To finish our discussion of named tuples, there is one important quick syntax
that you’ll see a lot in Julia code. Often Julia users create a named tuple by
using the familiar parenthesis () and commas ,, but without naming the val-
ues. To do so you begin the named tuple construction by specifying first a
semicolon ; before the values. This is especially useful when the values that
would compose the named tuple are already defined in variables or when you
want to avoid long lines:� �
i = 1
f = 3.14
s = "Julia"

my_quick_namedtuple = (; i, f, s)� �
(i = 1, f = 3.14, s = "Julia")

3.3.5 Ranges

A range in Julia represents an interval between start and stop boundaries. The
syntax is start:stop:� �
1:10� �

42 JULIA DATA SCIENCE

1:10

As you can see, our instantiated range is of type UnitRange{T}where T is the type
inside the UnitRange:� �
typeof(1:10)� �
UnitRange{Int64}

And, if we gather all the values, we get:� �
[x for x in 1:10]� �
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can also construct ranges for other types:� �
typeof(1.0:10.0)� �
StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64

↪→}}

Sometimes, we want to change the default interval stepsize behavior. We can
do that by adding a stepsize in the range syntax start:step:stop. For example,
suppose we want a range of Float64 from 0 to 1 with steps of size 0.2:� �
0.0:0.2:1.0� �
0.0:0.2:1.0

If you want to “materialize” a range into a collection, you can use the function
collect:� �
collect(1:10)� �
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We have an array of the type specified in the range between the boundaries
that we’ve set. Speaking of arrays, let’s talk about them.

JULIA BASICS 43

3.3.6 Array

In itsmost basic form, arrays holdmultiple objects. For example, they can hold
multiple numbers in one-dimension:� �
myarray = [1, 2, 3]� �
[1, 2, 3]

Most of the time you would want arrays of a single type for performance
issues, but note that they can also hold objects of different types:� �
myarray = ["text", 1, :symbol]� �
Any["text", 1, :symbol]

They are the “bread and butter” of data scientist, because arrays are what un-
derlies most of data manipulation and data visualization workflows.

Therefore, Arrays are an essential data structure.

Array Types

Let’s start with array types. There are several, but we will focus on the two
most used in data science:

• Vector{T}: one-dimensional array. Alias for Array{T, 1}.
• Matrix{T}: two-dimensional array. Alias for Array{T, 2}.

Note here that T is the type of the underlying array. So, for example, Vector{Int
↪→64} is a Vector in which all elements are Int64s, and Matrix{AbstractFloat} is a
Matrix in which all elements are subtypes of AbstractFloat.

Most of the time, especially when dealing with tabular data, we are using ei-
ther one- or two-dimensional arrays. They are both Array types for Julia. But,
we can use the handy aliases Vector and Matrix for clear and concise syntax.

Array Construction

How do we construct an array? In this section, we start by constructing arrays
in a low-level way. This can be necessary to write high performing code in

44 JULIA DATA SCIENCE

some situations. However, in most situations, this is not necessary, and we can
safely use more convenient methods to create arrays. These more convenient
methods will be described later in this section.

The low-level constructor for Julia arrays is the default constructor. It accepts
the element type as the type parameter inside the {} brackets and inside the
constructor you’ll pass the element type followed by the desired dimensions.
It is common to initialize vector and matrices with undefined elements by us-
ing the undef argument for type. A vector of 10 undef Float64 elements can be
constructed as:� �
my_vector = Vector{Float64}(undef, 10)� �
[6.946248161949e−310, 0.0, 6.9462479536343e−310, 6.94624793387643e−310, 0.0, 6.9

↪→462479536343e−310, 6.94624816194266e−310, 0.0, 6.9462479536343e−310, 6.94
↪→624800964713e−310]

For matrices, since we are dealing with two-dimensional objects, we need to
pass two dimension arguments inside the constructor: one for rows and an-
other for columns. For example, a matrix with 10 rows and 2 columns of undef
elements can be instantiated as:� �
my_matrix = Matrix{Float64}(undef, 10, 2)� �
10×2 Matrix{Float64}:
6.94625e−310 0.0
0.0 6.94625e−310
6.94625e−310 6.94625e−310
6.94625e−310 0.0
0.0 6.94625e−310
6.94625e−310 6.94625e−310
6.94625e−310 0.0
0.0 6.94625e−310
6.94625e−310 6.94625e−310
6.94625e−310 0.0

We also have some syntax aliases for the most common elements in array con-
struction:

• zeros for all elements being initialized to zero. Note that the default type is
Float64 which can be changed if necessary:� �

my_vector_zeros = zeros(10)

� �

JULIA BASICS 45

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

� �
my_matrix_zeros = zeros(Int64, 10, 2)

� �
10×2 Matrix{Int64}:
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

• ones for all elements being initialized to one:� �
my_vector_ones = ones(Int64, 10)

� �
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

� �
my_matrix_ones = ones(10, 2)

� �
10×2 Matrix{Float64}:
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0

For other elements, we can first instantiate an array with undef elements and
use the fill! function to fill all elements of an array with the desired element.
Here’s an example with 3.14 (𝜋):

46 JULIA DATA SCIENCE

� �
my_matrix_π = Matrix{Float64}(undef, 2, 2)
fill!(my_matrix_π, 3.14)� �
2×2 Matrix{Float64}:
3.14 3.14
3.14 3.14

We can also create arrays with array literals. For example, here’s a 2x2 matrix
of integers:� �
[[1 2]
[3 4]]� �

2×2 Matrix{Int64}:
1 2
3 4

Array literals also accept a type specification before the [] brackets. So, if we
want the same 2x2 array as before but now as floats, we can do so:� �
Float64[[1 2]

[3 4]]� �
2×2 Matrix{Float64}:
1.0 2.0
3.0 4.0

It also works for vectors:� �
Bool[0, 1, 0, 1]� �
Bool[0, 1, 0, 1]

You can even mix and match array literals with the constructors:� �
[ones(Int, 2, 2) zeros(Int, 2, 2)]� �
2×4 Matrix{Int64}:
1 1 0 0
1 1 0 0� �

[zeros(Int, 2, 2)
ones(Int, 2, 2)]� �

JULIA BASICS 47

4×2 Matrix{Int64}:
0 0
0 0
1 1
1 1

� �
[ones(Int, 2, 2) [1; 2]
[3 4] 5]� �
3×3 Matrix{Int64}:
1 1 1
1 1 2
3 4 5

Another powerful way to create an array is to write an array comprehension.
This way of creating arrays is better in most cases: it avoids loops, indexing,
and other error-prone operations. You specify what you want to do inside the
[] brackets. For example, say we want to create a vector of squares from 1 to
10:� �
[x^2 for x in 1:10]� �
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

They also support multiple inputs:� �
[x∗y for x in 1:10 for y in 1:2]� �
[1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, 7, 14, 8, 16, 9, 18, 10, 20]

And conditionals:� �
[x^2 for x in 1:10 if isodd(x)]� �
[1, 9, 25, 49, 81]

Aswith array literals, you can specify your desired type before the [] brackets:� �
Float64[x^2 for x in 1:10 if isodd(x)]� �
[1.0, 9.0, 25.0, 49.0, 81.0]

48 JULIA DATA SCIENCE

Finally, we can also create arrayswith concatenation functions. Concatenation
is a standard term in computer programming and means “to chain together.”
For example, we can concatenate strings with “aa” and “bb” to get “aabb”:� �
"aa" ∗ "bb"� �
aabb

And, we can concatenate arrays to create new arrays:

• cat: concatenate input arrays along a specific dimension dims� �
cat(ones(2), zeros(2), dims=1)

� �
[1.0, 1.0, 0.0, 0.0]

� �
cat(ones(2), zeros(2), dims=2)

� �
2×2 Matrix{Float64}:
1.0 0.0
1.0 0.0

• vcat: vertical concatenation, a shorthand for cat(...; dims=1)� �
vcat(ones(2), zeros(2))

� �
[1.0, 1.0, 0.0, 0.0]

• hcat: horizontal concatenation, a shorthand for cat(...; dims=2)� �
hcat(ones(2), zeros(2))

� �
2×2 Matrix{Float64}:
1.0 0.0
1.0 0.0

JULIA BASICS 49

Array Inspection

Once we have arrays, the next logical step is to inspect them. There are a lot
of handy functions that allow the user to have an insight into any array.

It is most useful to know what type of elements are inside an array. We can
do this with eltype:� �
eltype(my_matrix_π)� �
Float64

After knowing its types, one might be interested in array dimensions. Julia
has several functions to inspect array dimensions:

• length: total number of elements� �
length(my_matrix_π)

� �
4

• ndims: number of dimensions� �
ndims(my_matrix_π)

� �
2

• size: this one is a little tricky. By default it will return a tuple containing the
array’s dimensions.� �

size(my_matrix_π)

� �
(2, 2)

You can get a specific dimension with a second argument to size. Here, the
the second axis is columns

50 JULIA DATA SCIENCE

� �
size(my_matrix_π, 2)

� �
2

Array Indexing and Slicing

Sometimes, we want to inspect only certain parts of an array. This is called
indexing and slicing. If you want a particular observation of a vector, or a
row or column of a matrix, you’ll probably need to index an array.

First, I will create an example vector and matrix to play around:� �
my_example_vector = [1, 2, 3, 4, 5]

my_example_matrix = [[1 2 3]
[4 5 6]
[7 8 9]]� �

Let’s start with vectors. Suppose that you want the second element of a vector.
You append [] brackets with the desired index inside:� �
my_example_vector[2]� �
2

The same syntax follows with matrices. But, since matrices are 2-dimensional
arrays, we have to specify both rows and columns. Let’s retrieve the element
from the second row (first dimension) and first column (second dimension):� �
my_example_matrix[2, 1]� �
4

Julia also has conventional keywords for the first and last elements of an ar-
ray: begin and end. For example, the second to last element of a vector can be
retrieved as:� �
my_example_vector[end-1]� �

JULIA BASICS 51

4

This also works for matrices. Let’s retrieve the element of the last row and
second column:� �
my_example_matrix[end, begin+1]� �
8

Often, we are not only interested in just one array element, but in a whole
subset of array elements. We can accomplish this by slicing an array. It uses
the same index syntax, but with the added colon : to denote the boundaries
that we are slicing through the array. For example, suppose we want to get the
2nd to 4th element of a vector:� �
my_example_vector[2:4]� �
[2, 3, 4]

We could do the same with matrices. Particularly with matrices if we want to
select all elements in a following dimension we can do so with just a colon :.
For example, to get all the elements in the second row:� �
my_example_matrix[2, :]� �
[4, 5, 6]

You can interpret thiswith something like “take the 2nd rowand all the columns.”

It also supports begin and end:� �
my_example_matrix[begin+1:end, end]� �
[6, 9]

Array Manipulations

There are several ways we could manipulate an array. The first would be to
manipulate a singular element of the array. We just index the array by the
desired element and proceed with an assignment =:

52 JULIA DATA SCIENCE

� �
my_example_matrix[2, 2] = 42
my_example_matrix� �
3×3 Matrix{Int64}:
1 2 3
4 42 6
7 8 9

Or, you can manipulate a certain subset of elements of the array. In this case,
we need to slice the array and then assign with =:� �
my_example_matrix[3, :] = [17, 16, 15]
my_example_matrix� �
3×3 Matrix{Int64}:
1 2 3
4 42 6
17 16 15

Note that we had to assign a vector because our sliced array is of type Vector:� �
typeof(my_example_matrix[3, :])� �
Vector{Int64} (alias for Array{Int64, 1})

The second way we could manipulate an array is to alter its shape. Suppose
that you have a 6-element vector and you want to make it a 3x2 matrix. You
can do this with reshape, by using the array as the first argument and a tuple of
dimensions as the second argument:� �
six_vector = [1, 2, 3, 4, 5, 6]
tree_two_matrix = reshape(six_vector, (3, 2))
tree_two_matrix� �
3×2 Matrix{Int64}:
1 4
2 5
3 6

You can convert it back to a vector by specifying a tuple with only one dimen-
sion as the second argument:� �
reshape(tree_two_matrix, (6,))� �

JULIA BASICS 53

[1, 2, 3, 4, 5, 6]

The third way we could manipulate an array is to apply a function over every
array element. This is where the “dot” operator ., also known as broadcasting,
comes in.� �
logarithm.(my_example_matrix)� �
3×3 Matrix{Float64}:
0.0 0.693147 1.09861
1.38629 3.73767 1.79176
2.83321 2.77259 2.70805

The dot operator in Julia is extremely versatile. You can even use it to broadcast
infix operators:� �
my_example_matrix .+ 100� �
3×3 Matrix{Int64}:
101 102 103
104 142 106
117 116 115

An alternative to broadcasting a function over a vector is to use map:� �
map(logarithm, my_example_matrix)� �
3×3 Matrix{Float64}:
0.0 0.693147 1.09861
1.38629 3.73767 1.79176
2.83321 2.77259 2.70805

For anonymous functions, map is usually more readable. For example,� �
map(x -> 3x, my_example_matrix)� �
3×3 Matrix{Int64}:
3 6 9

12 126 18
51 48 45

is quite clear. However, the same broadcast looks as follows:

54 JULIA DATA SCIENCE

� �
(x -> 3x).(my_example_matrix)� �
3×3 Matrix{Int64}:
3 6 9
12 126 18
51 48 45

Next, map works with slicing:� �
map(x -> x + 100, my_example_matrix[:, 3])� �
[103, 106, 115]

Finally, sometimes, and specially when dealing with tabular data, we want to
apply a function over all elements in a specific array dimension. This can
be done with the mapslices function. Similar to map, the first argument is the
function and the second argument is the array. The only change is thatwe need
to specify the dims argument to flag what dimension we want to transform the
elements.

For example, let’s use mapslice with the sum function on both rows (dims=1) and
columns (dims=2):� �
rows
mapslices(sum, my_example_matrix; dims=1)� �
1×3 Matrix{Int64}:
22 60 24� �

columns
mapslices(sum, my_example_matrix; dims=2)� �
3×1 Matrix{Int64}:
6
52
48

Array Iteration

One common operation is to iterate over an array with a for loop. The regular
for loop over an array returns each element.

The simplest example is with a vector.

JULIA BASICS 55

4 or, that the memory
address pointers to the
elements in the column
are stored next to each
other

� �
simple_vector = [1, 2, 3]

empty_vector = Int64[]

for i in simple_vector
push!(empty_vector, i + 1)

end

empty_vector� �
[2, 3, 4]

Sometimes, you don’t want to loop over each element, but actually over each
array index. We can use the eachindex function combined with a for loop to
iterate over each array index.

Again, let’s show an example with a vector:� �
forty_twos = [42, 42, 42]

empty_vector = Int64[]

for i in eachindex(forty_twos)
push!(empty_vector, i)

end

empty_vector� �
[1, 2, 3]

In this example, the eachindex(forty_twos) returns the indices of forty_twos, namely
[1, 2, 3].

Similarly, we can iterate over matrices. The standard for loop goes first over
columns then over rows. It will first traverse all elements in column 1, from
the first row to the last row, then it will move to column 2 in a similar fashion
until it has covered all columns.

For those familiar with other programming languages: Julia, like most scien-
tific programming languages, is “column-major.” Column-major means that
the elements in the column are stored next to each other in memory4. This
also means that iterating over elements in a column is much quicker than over
elements in a row.

Ok, let’s show this in an example:

56 JULIA DATA SCIENCE

� �
column_major = [[1 3]

[2 4]]

row_major = [[1 2]
[3 4]]� �

If we loop over the vector stored in column-major order, then the output is
sorted:� �
indexes = Int64[]

for i in column_major
push!(indexes, i)

end

indexes� �
[1, 2, 3, 4]

However, the output isn’t sorted when looping over the other matrix:� �
indexes = Int64[]

for i in row_major
push!(indexes, i)

end

indexes� �
[1, 3, 2, 4]

It is often better to use specialized functions for these loops:

• eachcol: iterates over an array column first� �
first(eachcol(column_major))

� �
[1, 2]

• eachrow: iterates over an array row first

JULIA BASICS 57

5 it is easier because
first and last also
work on many other
collections, so you need
to remember less.

� �
first(eachrow(column_major))

� �
[1, 3]

3.3.7 Pair

Compared to the huge section on arrays, this section on pairs will be brief. Pair
↪→ is a data structure that holds two objects (which typically belong to each
other). We construct a pair in Julia using the following syntax:� �
my_pair = "Julia" => 42� �
"Julia" => 42

The elements are stored in the fields first and second.� �
my_pair.first� �
Julia� �
my_pair.second� �
42

But, in most cases, it’s easier use first and last5:� �
first(my_pair)� �
Julia� �
last(my_pair)� �
42

Pairs will be used a lot in data manipulation and data visualization since both
DataFrames.jl (Section 4) or Makie.jl (Section 5) take objects of type Pair in their
main functions. For example, with DataFrames.jlwe’re going to see that :a => :b
can be used to rename the column :a to :b.

58 JULIA DATA SCIENCE

3.3.8 Dict

If you understood what a Pair is, then Dictwon’t be a problem. For all practical
purposes, Dicts aremappings fromkeys to values. Bymapping, wemean that
if you give a Dict some key, then the Dict can tell you which value belongs to
that key. keys and values can be of any type, but usually keys are strings.

There are two ways to construct Dicts in Julia. The first is by passing a vector
of tuples as (key, value) to the Dict constructor:� �
name2number_map = Dict([("one", 1), ("two", 2)])� �
Dict{String, Int64} with 2 entries:
"two" => 2
"one" => 1

There is a more readable syntax based on the Pair type described above. You
can also pass Pairs of key => values to the Dict constructor:� �
name2number_map = Dict("one" => 1, "two" => 2)� �
Dict{String, Int64} with 2 entries:
"two" => 2
"one" => 1

You can retrieve a Dicts value by indexing it by the corresponding key:� �
name2number_map["one"]� �
1

To add a new entry, you index the Dict by the desired key and assign a value
with the assignment = operator:� �
name2number_map["three"] = 3� �
3

If you want to check if a Dict has a certain key you can use keys and in:� �
"two" in keys(name2number_map)� �
true

JULIA BASICS 59

To delete a key you can use either the delete! function:� �
delete!(name2number_map, "three")� �
Dict{String, Int64} with 2 entries:
"two" => 2
"one" => 1

Or, to delete a key while returning its value, you can use pop!:� �
popped_value = pop!(name2number_map, "two")� �
2

Now, our name2number_map has only one key:� �
name2number_map� �
Dict{String, Int64} with 1 entry:
"one" => 1

Dicts are also used for data manipulation by DataFrames.jl (Section 4) and for
data visualization by Makie.jl (Section 5). So, it is important to know their basic
functionality.

There is another useful way of constructing Dicts. Suppose that you have two
vectors and you want to construct a Dictwith one of them as keys and the other
as values. You can do that with the zip function which “glues” together two
objects (just like a zipper):� �
A = ["one", "two", "three"]
B = [1, 2, 3]

name2number_map = Dict(zip(A, B))� �
Dict{String, Int64} with 3 entries:
"two" => 2
"one" => 1
"three" => 3

For instance, we can now get the number 3 via:� �
name2number_map["three"]� �
3

60 JULIA DATA SCIENCE

3.3.9 Symbol

Symbol is actually not a data structure. It is a type and behaves a lot like a string.
Instead of surrounding the text by quotation marks, a symbol starts with a
colon (:) and can contain underscores:� �
sym = :some_text� �
:some_text

We can easily convert a symbol to string and vice versa:� �
s = string(sym)� �
some_text

� �
sym = Symbol(s)� �
:some_text

One simple benefit of symbols is that you have to type one character less, that
is, :some_text versus "some text". We use Symbols a lot in datamanipulationswith
the DataFrames.jl package (Section 4) and data visualizations with the Makie.jl
package (Section 5).

3.3.10 Splat Operator

In Julia we have the “splat” operator ... which is used in function calls as a
sequence of arguments. We will occasionally use splatting in some function
calls in the data manipulation and data visualization chapters.

Themost intuitiveway to learn about splatting iswith an example. The add_elements
↪→ function below takes three arguments to be added together:� �
add_elements(a, b, c) = a + b + c� �
add_elements (generic function with 1 method)

Now, suppose that we have a collection with three elements. The naïve way
to this would be to supply the function with all three elements as function
arguments like this:

JULIA BASICS 61

� �
my_collection = [1, 2, 3]

add_elements(my_collection[1], my_collection[2], my_collection[3])� �
6

Here is where we use the “splat” operator ... which takes a collection (often
an array, vector, tuple, or range) and converts it into a sequence of arguments:� �
add_elements(my_collection...)� �
6

The ... is included after the collection that we want to “splat” into a sequence
of arguments. In the example above, the following are the same:� �
add_elements(my_collection...) == add_elements(my_collection[1], my_collection

↪→[2], my_collection[3])� �
true

Anytime Julia sees a splatting operator inside a function call, it will be con-
verted on a sequence of arguments for all elements of the collection separated
by commas.

It also works for ranges:� �
add_elements(1:3...)� �
6

3.4 Filesystem

In data science, most projects are undertaken in a collaborative effort. We share
code, data, tables, figures and so on. Behind everything, there is the operating
system (OS) filesystem. In a perfect world, the same programwould give the
same output when running on different operating systems. Unfortunately,
that is not always the case. One instance of this is the difference between Win-
dows paths, such as C:\\user\john\, and Linux paths, such as /home/john. This is
why it is important to discuss filesystem best practices.

62 JULIA DATA SCIENCE

Julia has native filesystem capabilities that handle the differences between
operating systems. They are located in the Filesystem6 module from the core
Base Julia library.

Whenever you are dealing with files such as CSV, Excel files or other Julia
scripts, make sure that your code works on different OS filesystems. This is
easily accomplished with the joinpath, @__FILE__ and pkgdir functions.

If you write your code in a package, you can use pkgdir to get the root directory
of the package. For example, for the Julia Data Science (JDS) package that we
use to produce this book:

/home/runner/work/JuliaDataScience/JuliaDataScience

as you can see, the code to produce this book was running on a Linux com-
puter. If you’re using a script, you can get the location of the script file via� �
root = dirname(@__FILE__)� �
The nice thing about these two commands is that they are independent of how
the user started Julia. In otherwords, it doesn’tmatterwhether the user started
the program with julia scripts/script.jl or julia script.jl, in both cases the
paths are the same.

The next step would be to include the relative path from root to our desired
file. Since different OS have different ways to construct relative paths with
subfolders (some use forward slashes / while other might use backslashes \),
we cannot simply concatenate the file’s relative path with the root string. For
that, we have the joinpath function, which will join different relative paths and
filenames according to your specific OS filesystem implementation.

Suppose that you have a script named my_script.jl inside your project’s direc-
tory. You can have a robust representation of the filepath to my_script.jl as:� �
joinpath(root, "my_script.jl")� �
/home/runner/work/JuliaDataScience/JuliaDataScience/my_script.jl

joinpath also handles subfolders. Let’s now imagine a common situationwhere
you have a folder named data/ in your project’s directory. Inside this folder
there is a CSV file named my_data.csv. You can have the same robust represen-
tation of the filepath to my_data.csv as:� �
joinpath(root, "data", "my_data.csv")� �

JULIA BASICS 63

/home/runner/work/JuliaDataScience/JuliaDataScience/data/my_data.csv

It’s a good habit to pick up, because it’s very likely to save problems for you or
other people later.

3.5 Julia Standard Library

Julia has a rich standard library that is available with every Julia installation.
Contrary to everything that we have seen so far, e.g. types, data structures and
filesystem; you must load standard library modules into your environment
to use a particular module or function.

This is done via using or import. In this book, we will load code via using:� �
using ModuleName� �
After doing this, you can access all functions and types inside ModuleName.

3.5.1 Dates

Knowing how to handle dates and timestamps is important in data science. As
we said in Why Julia? (Section 2) section, Python’s pandas uses its own datetime
type to handle dates. The same is true in the R tidyverse’s lubridate package,
which also defines its own datetime type to handle dates. In Julia packages
don’t need to write their own dates logic, because Julia has a dates module in
its standard library called Dates.

To begin, let’s load the Dates module:� �
using Dates� �
Date and DateTime Types

The Dates standard library module has two types for working with dates:

1. Date: representing time in days and
2. DateTime: representing time in millisecond precision.

We can construct Date and DateTime with the default constructor either by spec-
ifying an integer to represent year, month, day, hours and so on:

64 JULIA DATA SCIENCE

� �
Date(1987) # year� �
1987−01−01� �
Date(1987, 9) # year, month� �
1987−09−01� �
Date(1987, 9, 13) # year, month, day� �
1987−09−13� �
DateTime(1987, 9, 13, 21) # year, month, day, hour� �
1987−09−13T21:00:00� �
DateTime(1987, 9, 13, 21, 21) # year, month, day, hour, minute� �
1987−09−13T21:21:00

For the curious, September 13th 1987, 21:21 is the official time of birth of the
first author, Jose.

We can also pass Period types to the default constructor. Period types are the
human-equivalent representation of time for the computer. Julia’s Dates have
the following Period abstract subtypes:� �
subtypes(Period)� �
DatePeriod

TimePeriod

which divide into the following concrete types, and they are pretty much self-
explanatory:� �
subtypes(DatePeriod)� �
Day

JULIA BASICS 65

Month

Quarter

Week

Year� �
subtypes(TimePeriod)� �
Hour

Microsecond

Millisecond

Minute

Nanosecond

Second

So, we could alternatively construct Jose’s official time of birth as:� �
DateTime(Year(1987), Month(9), Day(13), Hour(21), Minute(21))� �
1987−09−13T21:21:00

Parsing Dates

Most of the time, we won’t be constructing Date or DateTime instances from
scratch. Actually, we will probably be parsing strings as Date or DateTime types.

The Date and DateTime constructors can be fed a string and a format string. For
example, the string "19870913" representing September 13th 1987 can be parsed
with:� �
Date("19870913", "yyyymmdd")� �

66 JULIA DATA SCIENCE

7 https://docs.julialang
.org/en/v1/stdlib/Date
s/#Dates.DateFormat

8 https://docs.julialang
.org/en/v1/stdlib/Date
s/#Constructors

1987−09−13

Notice that the second argument is a string representation of the format. We
have the first four digits representing year y, followed by two digits for month
m and finally two digits for day d.

It also works for timestamps with DateTime:� �
DateTime("1987−09−13T21:21:00", "yyyy−mm−ddTHH:MM:SS")� �
1987−09−13T21:21:00

You can find more on how to specify different date formats in the Julia Dates’
documentation7. Don’t worry if you have to revisit it all the time, we ourselves
do that too when working with dates and timestamps.

According to Julia Dates’ documentation8, using the Date(date_string, format_string
↪→) method is fine if it’s only called a few times. If there are many similarly
formatted date strings to parse, however, it is much more efficient to first cre-
ate a DateFormat type, and then pass it instead of a raw format string. Then, our
previous example becomes:� �
format = DateFormat("yyyymmdd")
Date("19870913", format)� �
1987−09−13

Alternatively, without loss of performance, you can use the string literal prefix
dateformat"...":� �
Date("19870913", dateformat"yyyymmdd")� �
1987−09−13

Extracting Date Information

It is easy to extract desired information from Date and DateTime objects. First,
let’s create an instance of a very special date:� �
my_birthday = Date("1987−09−13")� �

https://docs.julialang.org/en/v1/stdlib/Dates/#Dates.DateFormat
https://docs.julialang.org/en/v1/stdlib/Dates/#Dates.DateFormat
https://docs.julialang.org/en/v1/stdlib/Dates/#Dates.DateFormat
https://docs.julialang.org/en/v1/stdlib/Dates/#Constructors
https://docs.julialang.org/en/v1/stdlib/Dates/#Constructors
https://docs.julialang.org/en/v1/stdlib/Dates/#Constructors

JULIA BASICS 67

1987−09−13

We can extract anything we want from my_birthday:� �
year(my_birthday)� �
1987� �
month(my_birthday)� �
9� �
day(my_birthday)� �
13

Julia’s Dates module also has compound functions that return a tuple of val-
ues:� �
yearmonth(my_birthday)� �
(1987, 9)� �
monthday(my_birthday)� �
(9, 13)� �
yearmonthday(my_birthday)� �
(1987, 9, 13)

We can also see the day of the week and other handy stuff:� �
dayofweek(my_birthday)� �
7� �
dayname(my_birthday)� �

68 JULIA DATA SCIENCE

9 https://github.com/J
uliaFinance/Business
Days.jl

Sunday� �
dayofweekofmonth(my_birthday)� �
2

Yep, Jose was born on the second Sunday of September.

NOTE: Here’s a handy tip to just recover weekdays from Dates instances. Just
use a filter on dayofweek(your_date) <= 5. For business day you can checkout
the BusinessDays.jl9 package.

Date Operations

We can perform operations in Dates instances. For example, we can add days to
a Date or DateTime instance. Notice that Julia’s Dates will automatically perform
the adjustments necessary for leap years, and for months with 30 or 31 days
(this is known as calendrical arithmetic).� �
my_birthday + Day(90)� �
1987−12−12

We can add as many as we like:� �
my_birthday + Day(90) + Month(2) + Year(1)� �
1989−02−11

In case you’re ever wondering: “What can I do with dates again? What is
available?” then you can use methodswith to check it out. We show only the first
20 results here:� �
first(methodswith(Date), 20)� �
[1] firstdayofmonth(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/

↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:84
[2] firstdayofquarter(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64

↪→/share/julia/stdlib/v1.6/Dates/src/adjusters.jl:157
[3] firstdayofweek(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/

↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:52

https://github.com/JuliaFinance/BusinessDays.jl
https://github.com/JuliaFinance/BusinessDays.jl
https://github.com/JuliaFinance/BusinessDays.jl

JULIA BASICS 69

[4] firstdayofyear(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:119

[5] lastdayofmonth(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:100

[6] lastdayofquarter(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:180

[7] lastdayofweek(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:68

[8] lastdayofyear(dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/adjusters.jl:135

[9] +(t::Time, dt::Date) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share/
↪→julia/stdlib/v1.6/Dates/src/arithmetic.jl:20

[10] +(dt::Date, t::Time) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share
↪→/julia/stdlib/v1.6/Dates/src/arithmetic.jl:19

[11] +(dt::Date, y::Year) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share
↪→/julia/stdlib/v1.6/Dates/src/arithmetic.jl:27

[12] +(dt::Date, z::Month) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/arithmetic.jl:54

[13] +(x::Date, y::Quarter) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/arithmetic.jl:73

[14] +(x::Date, y::Week) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share/
↪→julia/stdlib/v1.6/Dates/src/arithmetic.jl:77

[15] +(x::Date, y::Day) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share/
↪→julia/stdlib/v1.6/Dates/src/arithmetic.jl:79

[16] −(dt::Date, y::Year) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share
↪→/julia/stdlib/v1.6/Dates/src/arithmetic.jl:35

[17] −(dt::Date, z::Month) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/arithmetic.jl:66

[18] −(x::Date, y::Quarter) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/
↪→share/julia/stdlib/v1.6/Dates/src/arithmetic.jl:74

[19] −(x::Date, y::Week) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share/
↪→julia/stdlib/v1.6/Dates/src/arithmetic.jl:78

[20] −(x::Date, y::Day) in Dates at /opt/hostedtoolcache/julia/1.6.3/x64/share/
↪→julia/stdlib/v1.6/Dates/src/arithmetic.jl:80

From this, we can conclude that we can also use the plus + and minus − oper-
ator. Let’s see how old Jose is, in days:� �
today() - my_birthday� �
12473 days

The default duration of Date types is a Day instance. For the DateTime, the default
duration is Millisecond instance:� �
DateTime(today()) - DateTime(my_birthday)� �
1077667200000 milliseconds

70 JULIA DATA SCIENCE

Date Intervals

One nice thing about Dates module is that we can also easily construct date
and time intervals. Julia is clever enough to not have to define the whole in-
terval types and operations that we covered in Section 3.3.5. It just extends the
functions and operations defined for range to Date’s types. This is known as
multiple dispatch and we already covered this in Why Julia? (Section 2).

For example, suppose that you want to create a Day interval. This is easy done
with the colon : operator:� �
Date("2021−01−01"):Day(1):Date("2021−01−07")� �
2021−01−01

2021−01−02

2021−01−03

2021−01−04

2021−01−05

2021−01−06

2021−01−07

There is nothing special in using Day(1) as the interval, we can use whatever
Period type as interval. For example, using 3 days as the interval:� �
Date("2021−01−01"):Day(3):Date("2021−01−07")� �
2021−01−01

2021−01−04

2021−01−07

Or even months:� �
Date("2021−01−01"):Month(1):Date("2021−03−01")� �

JULIA BASICS 71

2021−01−01

2021−02−01

2021−03−01

Note that the type of this interval is a StepRange with the Date and concrete
Period type we used as interval inside the colon : operator:� �
date_interval = Date("2021−01−01"):Month(1):Date("2021−03−01")
typeof(date_interval)� �
StepRange{Date, Month}

We can convert this to a vector with the collect function:� �
collected_date_interval = collect(date_interval)� �
2021−01−01

2021−02−01

2021−03−01

And have all the array functionalities available, like, for example, indexing:� �
collected_date_interval[end]� �
2021−03−01

We can also broadcast date operations to our vector of Dates:� �
collected_date_interval .+ Day(10)� �
2021−01−11

2021−02−11

2021−03−11

Similarly, these examples work for DateTime types too.

72 JULIA DATA SCIENCE

10 https://docs.julialang
.org/en/v1/stdlib/Ra
ndom/

3.5.2 Random Numbers

Another important module in Julia’s standard library is the Random module.
This module deals with random number generation. Random is a rich library
and, if you’re interested, you should consult Julia’s Random documentation10.
We will cover only three functions: rand, randn and seed!.

To begin, we first load the Randommodule. Since we know exactly what wewant
to load, we can just as well explicitly load the methods that we want to use:� �
using Random: rand, randn, seed!� �
We have two main functions that generate random numbers:

• rand: samples a random element of a data structure or type.
• randn: generates a random number that follows a standard normal distri-

bution (mean 0 and standard deviation 1) of a specific type.

NOTE: Note that those two functions are already in the Julia Base module. So,
you don’t need to import Random if you’re planning to use them.

rand

By default, if you call rand without arguments it will return a Float64 in the
interval [0, 1), which means between 0 inclusive to 1 exclusive:� �
rand()� �
0.07049535216533798

You can modify rand arguments in several ways. For example, suppose you
want more than 1 random number:� �
rand(3)� �
[0.2094907152212917, 0.40469567071308, 0.33896009954478545]

Or, you want a different interval:� �
rand(1.0:10.0)� �
5.0

https://docs.julialang.org/en/v1/stdlib/Random/
https://docs.julialang.org/en/v1/stdlib/Random/
https://docs.julialang.org/en/v1/stdlib/Random/

JULIA BASICS 73

You can also specify a different step size inside the interval and a different type.
Here we are using numbers without the dot . so Julia will interpret them as
Int64:� �
rand(2:2:20)� �
12

You can also mix and match arguments:� �
rand(2:2:20, 3)� �
[10, 4, 8]

It also supports a collection of elements as a tuple:� �
rand((42, "Julia", 3.14))� �
Julia

And also arrays:� �
rand([1, 2, 3])� �
2

Dicts:� �
rand(Dict(:one => 1, :two => 2))� �
:one => 1

To finish off all the rand arguments options, you can specify the desired random
number dimensions in a tuple. If youdo this, the returned typewill be an array.
For example, here’s a 2x2 matrix of Float64 numbers between 1.0 and 3.0:� �
rand(1.0:3.0, (2, 2))� �
2×2 Matrix{Float64}:
3.0 3.0
3.0 3.0

74 JULIA DATA SCIENCE

randn

randn follows the same general principle from rand but now it only returns num-
bers generated from the standard normal distribution. The standard normal
distribution is the normal distribution with mean 0 and standard deviation 1.
The default type is Float64 and it only allows for subtypes of AbstractFloat or
Complex:� �
randn()� �
0.742934522080263

We can only specify the size:� �
randn((2, 2))� �
2×2 Matrix{Float64}:
1.38141 −1.46156
0.355285 −1.16494

seed!

To finish off the Random overview, let’s talk about reproducibility. Often, we
want to make something replicable. Meaning that, we want the random num-
ber generator to generate the same random sequence of numbers. We can do
so with the seed! function:� �
seed!(123)
rand(3)� �
[0.7684476751965699, 0.940515000715187, 0.6739586945680673]

� �
seed!(123)
rand(3)� �
[0.7684476751965699, 0.940515000715187, 0.6739586945680673]

In order to avoid tedious and inefficient repetition of seed! all over the place,
we can instead define an instance of a seed! and pass it as a first argument of
either rand or randn.

JULIA BASICS 75

11 https://github.com/J
uliaDataScience/JuliaD
ataScience

� �
my_seed = seed!(123)� �
MersenneTwister(123)� �
rand(my_seed, 3)� �
[0.3954531123351086, 0.3132439558075186, 0.6625548164736534]� �
rand(my_seed, 3)� �
[0.3954531123351086, 0.3132439558075186, 0.6625548164736534]

NOTE: If you want your code to be reproducible you can just call seed! in the be-
ginning of your script. This will take care of reproducibility in sequential Random
operations. No need to use it all rand and randn usage.

3.5.3 Downloads

One last thing from Julia’s standard library for us to cover is the Download mod-
ule. It will be really brief because we will only be covering a single function
named download.

Suppose you want to download a file from the internet to your local stor-
age. You can accomplish this with the download function. The first and only
required argument is the file’s url. You can also specify as a second argument
the desired output path for the downloaded file (don’t forget the filesystem
best practices!). If you don’t specify a second argument, Julia will, by default,
create a temporary file with the tempfile function.

Let’s load the download method:� �
using Download: download� �
For example, let’s download our JuliaDataScience GitHub repository11 Project.
↪→toml file. Note that download function is not exported by Downloads module, so
we have to use the Module.function syntax. By default, it returns a string that
holds the file path for the downloaded file:� �
url = "https://raw.githubusercontent.com/JuliaDataScience/JuliaDataScience/main/

↪→Project.toml"

my_file = Downloads.download(url) # tempfile() being created� �

https://github.com/JuliaDataScience/JuliaDataScience
https://github.com/JuliaDataScience/JuliaDataScience
https://github.com/JuliaDataScience/JuliaDataScience

76 JULIA DATA SCIENCE

12 https://github.com/J
uliaWeb/HTTP.jl

/tmp/jl_1QtNCx

With readlines, we can look at the first 4 lines of our downloaded file:� �
readlines(my_file)[1:4]� �
4−element Vector{String}:
"name = \"JDS\""
"uuid = \"6c596d62−2771−44f8−8373−3ec4b616ee9d\""
"authors = [\"Jose Storopoli\", \"Rik Huijzer\", \"Lazaro Alonso\"]"
"version = \"0.1.0\""

NOTE: For more complex HTTP interactions such as interacting with web APIs,
see the HTTP.jl package12 package.

https://github.com/JuliaWeb/HTTP.jl
https://github.com/JuliaWeb/HTTP.jl

4 DataFrames.jl

Data comes mostly in a tabular format. By tabular, we mean that the data con-
sists of a table containing rows and columns. Columns are usually of the same
data type, whereas rows have different types. The rows, in practice, denote
observations while columns denote variables. For example, we can have a ta-
ble of TV shows containing the country in which each was produced and our
personal rating, see Table 4.1.

Table 4.1: TV shows.name country rating

Game of Thrones United States 8.2
The Crown England 7.3

Friends United States 7.8
… … …

Here, the dots mean that this could be a very long table and we only show a
few rows. While analyzing data, often we come up with interesting questions
about the data, also known as data queries. For large tables, computers would
be able to answer these kinds of questions much quicker than you could do it
by hand. Some examples of these so-called queries for this data could be:

• Which TV show has the highest rating?
• Which TV shows were produced in the United States?
• Which TV shows were produced in the same country?

But, as a researcher, real science often startswith havingmultiple tables or data
sources. For example, if we also have data from someone else’s ratings for the
TV shows (Table 4.2):

Table 4.2: Ratings.name rating

Game of Thrones 7
Friends 6.4

… …

Now, questions that we could ask ourselves could be:

78 JULIA DATA SCIENCE

• What is Game of Thrones’ average rating?
• Who gave the highest rating for Friends?
• What TV shows were rated by you but not by the other person?

In the rest of this chapter, we will show you how you can easily answer these
questions in Julia. To do so, we first show why we need a Julia package called
DataFrames.jl. In the next sections, we show how you can use this package and,
finally, we show how to write fast data transformations (Section 4.9).

Let’s look at a table of grades like the one in Table 4.3:

Table 4.3: Grades for
2020.

name age grade_2020

Bob 17 5.0
Sally 18 1.0
Alice 20 8.5
Hank 19 4.0

Here, the column name has type string, age has type integer, and grade has
type float.

So far, this book has only handled Julia’s basics. These basics are great for
many things, but not for tables. To show that we need more, lets try to store
the tabular data in arrays:� �
function grades_array()

name = ["Bob", "Sally", "Alice", "Hank"]
age = [17, 18, 20, 19]
grade_2020 = [5.0, 1.0, 8.5, 4.0]
(; name, age, grade_2020)

end� �
Now, the data is stored in so-called column-major form, which is cumbersome
when we want to get data from a row:� �
function second_row()

name, age, grade_2020 = grades_array()
i = 2
row = (name[i], age[i], grade_2020[i])

end
second_row()� �
("Sally", 18, 1.0)

Or, if you want to have the grade for Alice, you first need to figure out in what
row Alice is:

DATAFRAMES. JL 79

� �
function row_alice()

names = grades_array().name
i = findfirst(names .== "Alice")

end
row_alice()� �
3

and then we can get the value:� �
function value_alice()

grades = grades_array().grade_2020
i = row_alice()
grades[i]

end
value_alice()� �
8.5

DataFrames.jl can easily solve these kinds of issues. You can start by loading
DataFrames.jl with using:� �
using DataFrames� �
With DataFrames.jl, we can define a DataFrame to hold our tabular data:� �
names = ["Sally", "Bob", "Alice", "Hank"]
grades = [1, 5, 8.5, 4]
df = DataFrame(; name=names, grade_2020=grades)� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

which gives us a variable df containing our data in table format.

NOTE: This works, but there is one thing that we need to change straight away.
In this example, we defined the variables name, grade_2020 and df in global scope.
This means that these variables can be accessed and edited from anywhere. If
we would continue writing the book like this, we would have a few hundred
variables at the end of the book even though the data that we put into the variable

80 JULIA DATA SCIENCE

name should only be accessed via DataFrame! The variables name and grade_2020
where never meant to be kept for long! Now, imagine that we would change the
contents of grade_2020 a few times in this book. Given only the book as PDF, it
would be near impossible to figure out the contents of the variable by the end.
We can solve this very easily by using functions.

Let’s do the same thing as before but now in a function:� �
function grades_2020()

name = ["Sally", "Bob", "Alice", "Hank"]
grade_2020 = [1, 5, 8.5, 4]
DataFrame(; name, grade_2020)

end
grades_2020()� �

Table 4.5: Grades 2020.name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Note that name and grade_2020 are destroyed after the function returns, that is,
they are only available in the function. There are two other benefits of doing
this. First, it is now clear to the readerwhere name and grade_2020 belong to: they
belong to the grades of 2020. Second, it is easy to determine what the output
of grades_2020() would be at any point in the book. For example, we can now
assign the data to a variable df:� �
df = grades_2020()� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Change the contents of df:� �
df = DataFrame(name = ["Malice"], grade_2020 = ["10"])� �

DATAFRAMES. JL 81

name grade_2020

Malice 10

And still recover the original data back without any problem:� �
df = grades_2020()� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Of course, this assumes that the function is not re-defined. We promise to not
do that in this book, because it is a bad idea exactly for this reason. Instead of
“changing” a function, we will make a new one and give it a clear name.

So, back to the DataFrames constructor. As youmight have seen, theway to create
one is simply to pass vectors as arguments into the DataFrame constructor. You
can come up with any valid Julia vector and it will work as long as the vectors
have the same length. Duplicates, Unicode symbols and any sort of numbers
are fine:� �
DataFrame(σ = ["a", "a", "a"], δ = [π, π/2, π/3])� �

σ δ

a 3.141592653589793
a 1.5707963267948966
a 1.0471975511965976

Typically, in your code, you would create a function which wraps around one
or more DataFrames’ functions. For example, we can make a function to get the
grades for one or more names:� �
function grades_2020(names::Vector{Int})

df = grades_2020()
df[names, :]

end
grades_2020([3, 4])� �

82 JULIA DATA SCIENCE

1 http://csv.juliadata.or
g/latest/

name grade_2020

Alice 8.5
Hank 4.0

This way of using functions to wrap around basic functionality in program-
ming languages and packages is quite common. Basically, you can think of
Julia and DataFrames.jl as providers of building blocks. They provide very
generic building blocks which allow you to build things for your specific use
case like this grades example. By using the blocks, you can make a data anal-
ysis script, control a robot or whatever you like to build.

So far, the exampleswere quite cumbersome, becausewehad to use indexes. In
the next sections, we will show how to load and save data, andmany powerful
building blocks provided by DataFrames.jl.

4.1 Load and Save Files

Having only data inside Julia programs and not being able to load or save it
would be very limiting. Therefore, we start by mentioning how to store files
to and load files from disk. We focus on CSV, see Section 4.1.1, and Excel,
see Section 4.1.2, file formats since those are the most common data storage
formats for tabular data.

4.1.1 CSV

Comma-separated values (CSV) files are are very effective way to store ta-
bles. CSV files have two advantages over other data storage files. First, it does
exactly what the name indicates it does, namely storing values by separating
them using commas ,. This acronym is also used as the file extension. So, be
sure that you save your files using the “.csv” extension such as “myfile.csv.”
To demonstrate how a CSV file looks, we can install the CSV.jl1 package:� �
julia>]

pkg> add CSV� �
and load it via:� �
using CSV� �
We can now use our previous data:� �
grades_2020()� �

http://csv.juliadata.org/latest/
http://csv.juliadata.org/latest/

DATAFRAMES. JL 83

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

and read it from a file after writing it:� �
function write_grades_csv()

path = "grades.csv"
CSV.write(path, grades_2020())

end� �� �
path = write_grades_csv()
read(path, String)� �
name,grade_2020
Sally,1.0
Bob,5.0
Alice,8.5
Hank,4.0

Here, we also see the second benefit of CSV data format: the data can be read
by using a simple text editor. This differs from many alternative data formats
which require proprietary software, e.g. Excel.

This works wonders, but what if our data contains commas , as values? If
we were to naively write data with commas, it would make the files very hard
to convert back to a table. Luckily, CSV.jl handles this for us automatically.
Consider the following data with commas ,:� �
function grades_with_commas()

df = grades_2020()
df[3, :name] = "Alice,"
df

end
grades_with_commas()� �

Table 4.12: Grades with
commas.

name grade_2020

Sally 1.0
Bob 5.0

Alice, 8.5
Hank 4.0

84 JULIA DATA SCIENCE

If we write this, we get:� �
function write_comma_csv()

path = "grades−commas.csv"
CSV.write(path, grades_with_commas())

end
path = write_comma_csv()
read(path, String)� �
name,grade_2020
Sally,1.0
Bob,5.0
"Alice,",8.5
Hank,4.0

So, CSV.jl adds quotation marks " around the comma-containing values. An-
other commonway to solve this problem is to write the data to a tab-separated
values (TSV) file format. This assumes that the data doesn’t contain tabs,
which holds in most cases.

Also, note that TSV files can also be read using a simple text editor, and these
files use the “.tsv” extension.� �
function write_comma_tsv()

path = "grades−comma.tsv"
CSV.write(path, grades_with_commas(); delim='\t')

end
read(write_comma_tsv(), String)� �
name grade_2020
Sally 1.0
Bob 5.0
Alice, 8.5
Hank 4.0

Text file formats like CSV and TSV files can also be found that use other de-
limiters, such as semicolons “;” spaces “ ,” or even something as unusual as
“π.”� �
function write_space_separated()

path = "grades−space−separated.csv"
CSV.write(path, grades_2020(); delim=' ')

end
read(write_space_separated(), String)� �
name grade_2020

DATAFRAMES. JL 85

Sally 1.0
Bob 5.0
Alice 8.5
Hank 4.0

By convention, it’s still best to give files with special delimiters, such as “;” the
“.csv” extension.

Loading CSV files using CSV.jl is done in a similar way. You can use CSV.read
and specify inwhat kind of format youwant the output. We specify a DataFrame.� �
path = write_grades_csv()
CSV.read(path, DataFrame)� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Conveniently, CSV.jl will automatically infer column types for us:� �
path = write_grades_csv()
df = CSV.read(path, DataFrame)� �
4×2 DataFrame
Row | name grade_2020

| String7 Float64
─────┼─────────────────────

1 | Sally 1.0
2 | Bob 5.0
3 | Alice 8.5
4 | Hank 4.0

It works even for far more complex data:� �
my_data = """

a,b,c,d,e
Kim,2018−02−03,3,4.0,2018−02−03T10:00
"""

path = "my_data.csv"
write(path, my_data)
df = CSV.read(path, DataFrame)� �
1×5 DataFrame

86 JULIA DATA SCIENCE

2 https://csv.juliadata.
org/stable
3 https://csv.juliadata.
org/stable/#CSV.File

4 https://github.com/fel
ipenoris/XLSX.jl

Row | a b c d e
| String3 Date Int64 Float64 DateTime

─────┼──
1 | Kim 2018−02−03 3 4.0 2018−02−03T10:00:00

These CSV basics should cover most use cases. For more information, see the
CSV.jl documentation2 and especially the CSV.File constructor docstring3.

4.1.2 Excel

There are multiple Julia packages to read Excel files. In this book, we will only
look at XLSX.jl4, because it is the most actively maintained package in the Julia
ecosystem that deals with Excel data. As a second benefit, XLSX.jl is written in
pure Julia, which makes it easy for us to inspect and understand what’s going
on under the hood.

Load XLSX.jl via� �
using XLSX:

eachtablerow,
readxlsx,
writetable� �

To write files, we define a little helper function for data and column names:� �
function write_xlsx(name, df::DataFrame)

path = "$name.xlsx"
data = collect(eachcol(df))
cols = names(df)
writetable(path, data, cols)

end� �
Now, we can easily write the grades to an Excel file:� �
function write_grades_xlsx()

path = "grades"
write_xlsx(path, grades_2020())
"$path.xlsx"

end� �
When reading it back, we will see that XLSX.jl puts the data in a XLSXFile type
and we can access the desired sheet much like a Dict:� �
path = write_grades_xlsx()
xf = readxlsx(path)� �

https://csv.juliadata.org/stable
https://csv.juliadata.org/stable
https://csv.juliadata.org/stable/#CSV.File
https://csv.juliadata.org/stable/#CSV.File
https://github.com/felipenoris/XLSX.jl
https://github.com/felipenoris/XLSX.jl

DATAFRAMES. JL 87

5 https://felipenoris.gi
thub.io/XLSX.jl/stable/

XLSXFile("grades.xlsx") containing 1 Worksheet
sheetname size range

−−−
Sheet1 5x2 A1:B5� �

xf = readxlsx(write_grades_xlsx())
sheet = xf["Sheet1"]
eachtablerow(sheet) |> DataFrame� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Notice that we cover just the basics of XLSX.jl but more powerful usage and
customizations are available. For more information and options, see the XLSX.
↪→jl documentation5.

4.2 Index and Summarize

Let’s go back to the example grades_2020() data defined before:� �
grades_2020()� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

To retrieve a vector for name, we can access the DataFrame with the ., as we did
previously with structs in Section 3:� �
function names_grades1()

df = grades_2020()
df.name

end
names_grades1()� �
["Sally", "Bob", "Alice", "Hank"]

https://felipenoris.github.io/XLSX.jl/stable/
https://felipenoris.github.io/XLSX.jl/stable/

88 JULIA DATA SCIENCE

or we can index a DataFrame much like an Array with symbols and special char-
acters. The second index is the column indexing:� �
function names_grades2()

df = grades_2020()
df[!, :name]

end
names_grades2()� �
["Sally", "Bob", "Alice", "Hank"]

Note that df.name is exactly the same as df[!, :name], which you can verify your-
self by doing:� �
julia> df = DataFrame(id=[1]);

julia> @edit df.name� �
In both cases, it gives you the column :name. There also exists df[:, :name]which
copies the column :name. In most cases, df[!, :name] is the best bet since it is
more versatile and does an in-place modification.

For any row, say the second row, we can use the first index as row indexing:� �
df = grades_2020()
df[2, :]� �

name grade_2020

Bob 5.0

or create a function to give us any row i we want:� �
function grade_2020(i::Int)

df = grades_2020()
df[i, :]

end
grade_2020(2)� �

name grade_2020

Bob 5.0

We can also get only names for the first 2 rows using slicing (again similar to an

DATAFRAMES. JL 89

Array):� �
grades_indexing(df) = df[1:2, :name]
grades_indexing(grades_2020())� �
["Sally", "Bob"]

If we assume that all names in the table are unique, we can alsowrite a function
to obtain the grade for a person via their name. To do so, we convert the table
back to one of Julia’s basic data structures (see Section 3.3) which is capable of
creating mappings, namely Dicts:� �
function grade_2020(name::String)

df = grades_2020()
dic = Dict(zip(df.name, df.grade_2020))
dic[name]

end
grade_2020("Bob")� �
5.0

which works because zip loops through df.name and df.grade_2020 at the same
time like a “zipper”:� �
df = grades_2020()
collect(zip(df.name, df.grade_2020))� �
("Sally", 1.0)

("Bob", 5.0)

("Alice", 8.5)

("Hank", 4.0)

However, converting a DataFrame to a Dict is only useful when the elements are
unique. Generally that is not the case and that’s why we need to learn how to
filter a DataFrame.

4.3 Filter and Subset

There are twoways to remove rows froma DataFrame, one is filter (Section 4.3.1)
and the other is subset (Section 4.3.2). filterwas added earlier to DataFrames.jl,

90 JULIA DATA SCIENCE

6 According to Bogumił
Kamiński (lead devel-
oper and maintainer
of DataFrames.jl
↪→) on Discourse
(https://discourse.julial
ang.org/t/pull-datafra
mes-columns-to-the-f
ront/60327/5).

is more powerful and more consistent with syntax from Julia base, so that is
whywe start discussing filter first. subset is newer and oftenmore convenient.

4.3.1 Filter

From this point on, we start to get into themore powerful features of DataFrames
↪→.jl. To do this, we need to learn some functions, such as select and filter.
But don’t worry! It might be a relief to know that the general design goal of
DataFrames.jl is to keep the number of functions that a user has to learn to a
minimum6.

Like before, we resume from the grades_2020:� �
grades_2020()� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

We can filter rows by using filter(source => f::Function, df). Note how this
function is very similar to the function filter(f::Function, V::Vector) from Julia
Base module. This is because DataFrames.jl uses multiple dispatch (see Sec-
tion 2.3.3) to define a new method of filter that accepts a DataFrame as argu-
ment.

At first sight, defining and working with a function f for filtering can be a bit
difficult to use in practice. Hold tight, that effort is well-paid, since it is a very
powerful way of filtering data. As a simple example, we can create a function
equals_alice that checks whether its input equals “Alice”:� �
equals_alice(name::String) = name == "Alice"
equals_alice("Bob")� �
false� �
equals_alice("Alice")� �
true

Equipped with such a function, we can use it as our function f to filter out all
the rows for which name equals “Alice”:

https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/5
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/5
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/5
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/5

DATAFRAMES. JL 91

� �
filter(:name => equals_alice, grades_2020())� �

name grade_2020

Alice 8.5

Note that this doesn’t only work for DataFrames, but also for vectors:� �
filter(equals_alice, ["Alice", "Bob", "Dave"])� �
["Alice"]

We can make it a bit less verbose by using an anonymous function (see Sec-
tion 3.2.4):� �
filter(n -> n == "Alice", ["Alice", "Bob", "Dave"])� �
["Alice"]

which we can also use on grades_2020:� �
filter(:name => n -> n == "Alice", grades_2020())� �

name grade_2020

Alice 8.5

To recap, this function call can be read as “for each element in the column :name,
let’s call the element n, check whether n equals Alice.” For some people, this
is still too verbose. Luckily, Julia has added a partial function application of ==.
The details are not important – just know that you can use it just like any other
function:� �
filter(:name => ==("Alice"), grades_2020())� �

name grade_2020

Alice 8.5

To get all the rows which are not Alice, == (equality) can be replaced by !=
(inequality) in all previous examples:

92 JULIA DATA SCIENCE

� �
filter(:name => !=("Alice"), grades_2020())� �

name grade_2020

Sally 1.0
Bob 5.0

Hank 4.0

Now, to show why anonymous functions are so powerful, we can come up
with a slightly more complex filter. In this filter, we want to have the people
whose names start with A or B and have a grade above 6:� �
function complex_filter(name, grade)::Bool

interesting_name = startswith(name, 'A') || startswith(name, 'B')
interesting_grade = 6 < grade
interesting_name && interesting_grade

end� �� �
filter([:name, :grade_2020] => complex_filter, grades_2020())� �

name grade_2020

Alice 8.5

4.3.2 Subset

The subset function was added to make it easier to work with missing values
(Section 4.5). In contrast to filter, subset works on complete columns instead
of rows or single values. If we want to use our earlier defined functions, we
should wrap it inside ByRow:� �
subset(grades_2020(), :name => ByRow(equals_alice))� �

name grade_2020

Alice 8.5

Also note that the DataFrame is now thefirst argument subset(df, args...), whereas
in filter it was the second one filter(f, df). The reason for this is that Julia
defines filter as filter(f, V::Vector) and DataFrames.jl chose to maintain consis-
tency with existing Julia functions that were extended to DataFrames types by
multiple dispatch.

DATAFRAMES. JL 93

NOTE: Most of native DataFrames.jl functions, which subset belongs to, have a
consistent function signature that always takes a DataFrame as first argument.

Just like with filter, we can also use anonymous functions inside subset:� �
subset(grades_2020(), :name => ByRow(name -> name == "Alice"))� �

name grade_2020

Alice 8.5

Or, the partial function application for ==:� �
subset(grades_2020(), :name => ByRow(==("Alice")))� �

name grade_2020

Alice 8.5

Ultimately, let’s show the real power of subset. First, we create a dataset with
some missing values:� �
function salaries()

names = ["John", "Hank", "Karen", "Zed"]
salary = [1_900, 2_800, 2_800, missing]
DataFrame(; names, salary)

end
salaries()� �

Table 4.27: Salaries.names salary

John 1900
Hank 2800
Karen 2800

Zed missing

This data is about a plausible situation where you want to figure out your col-
leagues’ salaries, and haven’t figured it out for Zed yet. Even though we don’t
want to encourage these practices, we suspect it is an interesting example. Sup-
pose we want to know who earns more than 2000. If we use filter, without
taking the missing values into account, it will fail:� �
filter(:salary => >(2_000), salaries())� �

94 JULIA DATA SCIENCE

TypeError: non−boolean (Missing) used in boolean context
Stacktrace:
[1] (::DataFrames.var"#89#90"{Base.Fix2{typeof(>), Int64}})(x::Missing)
@ DataFrames ~/.julia/packages/DataFrames/vuMM8/src/abstractdataframe/
↪→abstractdataframe.jl:1043

...

subset will also fail, but it will fortunately point us towards an easy solution:� �
subset(salaries(), :salary => ByRow(>(2_000)))� �
ArgumentError: missing was returned in condition number 1 but only true or false

↪→ are allowed; pass skipmissing=true to skip missing values
Stacktrace:
[1] _and(x::Missing)
@ DataFrames ~/.julia/packages/DataFrames/vuMM8/src/abstractdataframe/subset
↪→.jl:11

...

So, we just need to pass the keyword argument skipmissing=true:� �
subset(salaries(), :salary => ByRow(>(2_000)); skipmissing=true)� �

names salary

Hank 2800
Karen 2800

4.4 Select

Whereas filter removes rows, select removes columns. However, select is
much more versatile than just removing columns, as we will discuss in this
section. First, let’s create a dataset with multiple columns:� �
function responses()

id = [1, 2]
q1 = [28, 61]
q2 = [:us, :fr]
q3 = ["F", "B"]
q4 = ["B", "C"]
q5 = ["A", "E"]
DataFrame(; id, q1, q2, q3, q4, q5)

end
responses()� �

DATAFRAMES. JL 95

Table 4.29: Responses.id q1 q2 q3 q4 q5

1 28 us F B A
2 61 fr B C E

Here, the data represents answers for five questions (q1, q2, …, q5) in a given
questionnaire. We will start by “selecting” a few columns from this dataset.
As usual, we use symbols to specify columns:� �
select(responses(), :id, :q1)� �

id q1

1 28
2 61

We can also use strings if we want:� �
select(responses(), "id", "q1", "q2")� �

id q1 q2

1 28 us
2 61 fr

To select everything except one or more columns, use Not with either a single
column:� �
select(responses(), Not(:q5))� �

id q1 q2 q3 q4

1 28 us F B
2 61 fr B C

Or, with multiple columns:� �
select(responses(), Not([:q4, :q5]))� �

id q1 q2 q3

1 28 us F
2 61 fr B

96 JULIA DATA SCIENCE

7 thanks to Sudete
on Discourse (https:
//discourse.julialan
g.org/t/pull-datafra
mes-columns-to-the-f
ront/60327/4) for this
suggestion.

8 https://bkamins.gith
ub.io/julialang/2021/0
2/06/colsel.html

It’s also fine tomix andmatch columns that wewant to preserve with columns
that we do Not want to select:� �
select(responses(), :q5, Not(:id))� �

q5 q1 q2 q3 q4

A 28 us F B
E 61 fr B C

Note how q5 is now the first column in the DataFrame returned by select. There
is a more clever way to achieve the same using :. The colon : can be thought
of as “all the columns that we didn’t include yet.” For example:� �
select(responses(), :q5, :)� �

q5 id q1 q2 q3 q4

A 1 28 us F B
E 2 61 fr B C

Or, to put q5 at the second position7:� �
select(responses(), 1, :q5, :)� �

id q5 q1 q2 q3 q4

1 A 28 us F B
2 E 61 fr B C

NOTE: As you might have observed there are several ways to select a column.
These are known as column selectors8.
We can use:

• Symbol: select(df, :col)

• String: select(df, "col")

• Integer: select(df, 1)

Even renaming columns is possible via select using the source => target pair
syntax:� �
select(responses(), 1 => "participant", :q1 => "age", :q2 => "nationality")� �

https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/4
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/4
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/4
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/4
https://discourse.julialang.org/t/pull-dataframes-columns-to-the-front/60327/4
https://bkamins.github.io/julialang/2021/02/06/colsel.html
https://bkamins.github.io/julialang/2021/02/06/colsel.html
https://bkamins.github.io/julialang/2021/02/06/colsel.html

DATAFRAMES. JL 97

participant age nationality

1 28 us
2 61 fr

Additionally, thanks to the “splat” operator ... (see Section 3.3.10), we can
also write:� �
renames = (1 => "participant", :q1 => "age", :q2 => "nationality")
select(responses(), renames...)� �

participant age nationality

1 28 us
2 61 fr

4.5 Types and Missing Data

As discussed in Section 4.1, CSV.jl will do its best to guess what kind of types
your data have as columns. However, this won’t always work perfectly. In
this section, we show why suitable types are important and we fix wrong data
types. To be more clear about the types, we show the text output for DataFrames
instead of a pretty-formatted table. In this section, we work with the following
dataset:� �
function wrong_types()

id = 1:4
date = ["28−01−2018", "03−04−2019", "01−08−2018", "22−11−2020"]
age = ["adolescent", "adult", "infant", "adult"]
DataFrame(; id, date, age)

end
wrong_types()� �
4×3 DataFrame
Row | id date age

| Int64 String String
─────┼───────────────────────────────

1 | 1 28−01−2018 adolescent
2 | 2 03−04−2019 adult
3 | 3 01−08−2018 infant
4 | 4 22−11−2020 adult

Because the date column has the wrong type, sorting won’t work correctly:� �
sort(wrong_types(), :date)� �

98 JULIA DATA SCIENCE

4×3 DataFrame
Row | id date age

| Int64 String String
─────┼───────────────────────────────

1 | 3 01−08−2018 infant
2 | 2 03−04−2019 adult
3 | 4 22−11−2020 adult
4 | 1 28−01−2018 adolescent

To fix the sorting, we can use the Date module from Julia’s standard library as
described in Section 3.5.1:� �
function fix_date_column(df::DataFrame)

strings2dates(dates::Vector) = Date.(dates, dateformat"dd−mm−yyyy")
dates = strings2dates(df[!, :date])
df[!, :date] = dates
df

end
fix_date_column(wrong_types())� �
4×3 DataFrame
Row | id date age

| Int64 Date String
─────┼───────────────────────────────

1 | 1 2018−01−28 adolescent
2 | 2 2019−04−03 adult
3 | 3 2018−08−01 infant
4 | 4 2020−11−22 adult

Now, sorting will work as intended:� �
df = fix_date_column(wrong_types())
sort(df, :date)� �
4×3 DataFrame
Row | id date age

| Int64 Date String
─────┼───────────────────────────────

1 | 1 2018−01−28 adolescent
2 | 3 2018−08−01 infant
3 | 2 2019−04−03 adult
4 | 4 2020−11−22 adult

For the age column, we have a similar problem:� �
sort(wrong_types(), :age)� �

DATAFRAMES. JL 99

4×3 DataFrame
Row | id date age

| Int64 String String
─────┼───────────────────────────────

1 | 1 28−01−2018 adolescent
2 | 2 03−04−2019 adult
3 | 4 22−11−2020 adult
4 | 3 01−08−2018 infant

This isn’t right, because an infant is younger than adults and adolescents. The
solution for this issue and any sort of categorical data is to use CategoricalArrays
↪→.jl:� �
using CategoricalArrays� �
With the CategoricalArrays.jl package, we can add levels that represent the or-
dering of our categorical variable to our data:� �
function fix_age_column(df)

levels = ["infant", "adolescent", "adult"]
ages = categorical(df[!, :age]; levels, ordered=true)
df[!, :age] = ages
df

end
fix_age_column(wrong_types())� �
4×3 DataFrame
Row | id date age

| Int64 String Cat…
─────┼───────────────────────────────

1 | 1 28−01−2018 adolescent
2 | 2 03−04−2019 adult
3 | 3 01−08−2018 infant
4 | 4 22−11−2020 adult

NOTE:Also note thatwe are passing the argument ordered=truewhich tells CategoricalArrays
↪→.jl’s categorical function that our categorical data is “ordered.” Without this
any type of sorting or bigger/smaller comparissons would not be possible.

Now, we can sort the data correctly on the age column:� �
df = fix_age_column(wrong_types())
sort(df, :age)� �

100 JULIA DATA SCIENCE

4×3 DataFrame
Row | id date age

| Int64 String Cat…
─────┼───────────────────────────────

1 | 3 01−08−2018 infant
2 | 1 28−01−2018 adolescent
3 | 2 03−04−2019 adult
4 | 4 22−11−2020 adult

Because we have defined convenient functions, we can now define our fixed
data by just performing the function calls:� �
function correct_types()

df = wrong_types()
df = fix_date_column(df)
df = fix_age_column(df)

end
correct_types()� �
4×3 DataFrame
Row | id date age

| Int64 Date Cat…
─────┼───────────────────────────────

1 | 1 2018−01−28 adolescent
2 | 2 2019−04−03 adult
3 | 3 2018−08−01 infant
4 | 4 2020−11−22 adult

Since age in our data is ordinal (ordered=true), we can properly compare cate-
gories of age:� �
df = correct_types()
a = df[1, :age]
b = df[2, :age]
a < b� �
true

which would give wrong comparisons if the element type were strings:� �
"infant" < "adult"� �
false

DATAFRAMES. JL 101

9 https://DataFrames.j
uliadata.org/stable/ma
n/joins/

4.6 Join

At the start of this chapter, we showed multiple tables and raised questions
also related to multiple tables. However, we haven’t talked about combining
tables yet, which we will do in this section. In DataFrames.jl, combining multi-
ple tables is done via joins. Joins are extremely powerful, but it might take a
while to wrap your head around them. It is not necessary to know the joins be-
low by heart, because the DataFrames.jl documentation9, along with this book,
will list them for you. But, it’s essential to know that joins exist. If you ever
find yourself looping over rows in a DataFrame and comparing it with other data,
then you probably need one of the joins below.

In Section 4, we’ve introduced the grades for 2020 with grades_2020:� �
grades_2020()� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Now, we’re going to combine grades_2020 with grades from 2021:� �
grades_2021()� �

name grade_2021

Bob 2 9.5
Sally 9.5
Hank 6.0

To do this, we are going to use joins. DataFrames.jl lists no less than seven kinds
of join. This might seem daunting at first, but hang on because they are all
useful and we will showcase them all.

4.6.1 innerjoin

This first is innerjoin. Suppose that we have two datasets A and B with respec-
tively columns A_1, A_2, ..., A_n and B_1, B_2, ..., B_m and one of the columns
has the same name, say A_1 and B_1 are both called :id. Then, the inner join on
:id will go through all the elements in A_1 and compare it to the elements in B_
↪→1. If the elements are the same, then it will add all the information from

https://DataFrames.juliadata.org/stable/man/joins/
https://DataFrames.juliadata.org/stable/man/joins/
https://DataFrames.juliadata.org/stable/man/joins/

102 JULIA DATA SCIENCE

A_2, ..., A_n and B_2, ..., B_m after the :id column.

Okay, so no worries if you didn’t get this description. The result on the grades
datasets looks like this:� �
innerjoin(grades_2020(), grades_2021(); on=:name)� �

name grade_2020 grade_2021

Sally 1.0 9.5
Hank 4.0 6.0

Note that only “Sally” and “Hank” are in both datasets. The name inner join
makes sense since, in mathematics, the set intersection is defined by “all ele-
ments in 𝐴, that are also in 𝐵, or all elements in 𝐵 that are also in 𝐴.”

4.6.2 outerjoin

Maybe you’re now thinking “aha, if we have an inner, then we probably also
have an outer.” Yes, you’ve guessed right!

The outerjoin is much less strict than the innerjoin and just takes any row it can
find which contains a name in at least one of the datasets:� �
outerjoin(grades_2020(), grades_2021(); on=:name)� �

name grade_2020 grade_2021

Sally 1.0 9.5
Hank 4.0 6.0
Bob 5.0 missing

Alice 8.5 missing
Bob 2 missing 9.5

So, thismethod can create missingdata even thoughnone of the original datasets
had missing values.

4.6.3 crossjoin

We can get even more missing data if we use the crossjoin. This gives the Carte-
sian product of the rows, which is basically multiplication of rows, that is, for
every row create a combination with any other row:� �
crossjoin(grades_2020(), grades_2021(); on=:id)� �

DATAFRAMES. JL 103

MethodError: no method matching crossjoin(::DataFrame, ::DataFrame; on=:id)
Closest candidates are:
crossjoin(::DataFrames.AbstractDataFrame, ::DataFrames.AbstractDataFrame;

↪→makeunique) at /home/runner/.julia/packages/DataFrames/vuMM8/src/join/
↪→composer.jl:1332 got unsupported keyword argument "on"

crossjoin(::DataFrames.AbstractDataFrame, ::DataFrames.AbstractDataFrame, !
↪→Matched::DataFrames.AbstractDataFrame...; makeunique) at /home/runner/.
↪→julia/packages/DataFrames/vuMM8/src/join/composer.jl:1343 got unsupported
↪→ keyword argument "on"

...

Oops. Since crossjoin doesn’t take the elements in the row into account, we
don’t need to specify the on argument for what we want to join:� �
crossjoin(grades_2020(), grades_2021())� �
ArgumentError: Duplicate variable names: :name. Pass makeunique=true to make

↪→them unique using a suffix automatically.
Stacktrace:
[1] add_names(ind::DataFrames.Index, add_ind::DataFrames.Index; makeunique::

↪→Bool)
@ DataFrames ~/.julia/packages/DataFrames/vuMM8/src/other/index.jl:323

[2] merge!(x::DataFrames.Index, y::DataFrames.Index; makeunique::Bool)
...

Oops again. This is a very common error with DataFrames and joins. The tables
for the 2020 and 2021 grades have a duplicate column name, namely :name.
Like before, the error that DataFrames.jl outputs shows a simple suggestion that
might fix the issue. We can just pass makeunique=true to solve this:� �
crossjoin(grades_2020(), grades_2021(); makeunique=true)� �

name grade_2020 name_1 grade_2021

Sally 1.0 Bob 2 9.5
Sally 1.0 Sally 9.5
Sally 1.0 Hank 6.0
Bob 5.0 Bob 2 9.5
Bob 5.0 Sally 9.5
Bob 5.0 Hank 6.0

Alice 8.5 Bob 2 9.5
Alice 8.5 Sally 9.5
Alice 8.5 Hank 6.0
Hank 4.0 Bob 2 9.5
Hank 4.0 Sally 9.5
Hank 4.0 Hank 6.0

104 JULIA DATA SCIENCE

So, now, we have one row for each grade from everyone in grades 2020 and
grades 2021 datasets. For direct queries, such as “who has the highest grade?”
the Cartesian product is usually not so useful, but for “statistical” queries, it
can be.

4.6.4 leftjoin and rightjoin

More useful for scientific data projects are the leftjoin and rightjoin. The left
join gives all the elements in the left DataFrame:� �
leftjoin(grades_2020(), grades_2021(); on=:name)� �

name grade_2020 grade_2021

Sally 1.0 9.5
Hank 4.0 6.0
Bob 5.0 missing

Alice 8.5 missing

Here, grades for “Bob” and “Alice” were missing in the grades 2021 table, so
that’s why there are also missing elements. The right join does sort of the op-
posite:� �
rightjoin(grades_2020(), grades_2021(); on=:name)� �

name grade_2020 grade_2021

Sally 1.0 9.5
Hank 4.0 6.0
Bob 2 missing 9.5

Now, grades in 2020 are missing.

Note that leftjoin(A, B) != rightjoin(B, A), because the order of the columns
will differ. For example, compare the output below to the previous output:� �
leftjoin(grades_2021(), grades_2020(); on=:name)� �

name grade_2021 grade_2020

Sally 9.5 1.0
Hank 6.0 4.0
Bob 2 9.5 missing

DATAFRAMES. JL 105

4.6.5 semijoin and antijoin

Lastly, we have the semijoin and antijoin.

The semi join is even more restrictive than the inner join. It returns only the
elements from the left DataFrame which are in both DataFrames. This is like a
combination of the left join with the inner join.� �
semijoin(grades_2020(), grades_2021(); on=:name)� �

name grade_2020

Sally 1.0
Hank 4.0

The opposite of the semi join is the anti join. It returns only the elements from
the left DataFrame which are not in the right DataFrame:� �
antijoin(grades_2020(), grades_2021(); on=:name)� �

name grade_2020

Bob 5.0
Alice 8.5

4.7 Variable Transformations

In Section 4.3.1, we saw that filterworks by taking one ormore source columns
and filtering it by applying a “filtering” function. To recap, here’s an example
of filter using the source => f::Function syntax: filter(:name => name −> name ==
↪→"Alice", df).

In Section 4.4, we saw that select can take one or more source columns and
put it into one or more target columns source => target. Also to recap here’s an
example: select(df, :name => :people_names).

In this section, we discuss how to transform variables, that is, how to modify
data. In DataFrames.jl, the syntax is source => transformation => target.

Like before, we use the grades_2020 dataset:� �
function grades_2020()

name = ["Sally", "Bob", "Alice", "Hank"]
grade_2020 = [1, 5, 8.5, 4]
DataFrame(; name, grade_2020)

106 JULIA DATA SCIENCE

end
grades_2020()� �

name grade_2020

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0

Suppose we want to increase all the grades in grades_2020 by 1. First, we define
a function that takes as argument a vector of data and returns all of its elements
increased by 1. Then we use the transform function from DataFrames.jl that, like
all native DataFrames.jl’s functions, takes a DataFrame as first argument followed
by the transformation syntax:� �
plus_one(grades) = grades .+ 1
transform(grades_2020(), :grade_2020 => plus_one)� �

name grade_2020 grade_2020_plus_one

Sally 1.0 2.0
Bob 5.0 6.0

Alice 8.5 9.5
Hank 4.0 5.0

Here, the plus_one function receives the whole :grade_2020 column. That is the
reason why we’ve added the broadcasting “dot” . before the plus + operator.
For a recap on broadcasting please see Section 3.3.1.

Likewe said above, the DataFrames.jlminilanguage is always source => transformation
↪→ => target. So, if we want to keep the naming of the target column in the
output, we can do:� �
transform(grades_2020(), :grade_2020 => plus_one => :grade_2020)� �

name grade_2020

Sally 2.0
Bob 6.0

Alice 9.5
Hank 5.0

We can also use the keyword argument renamecols=false:� �
transform(grades_2020(), :grade_2020 => plus_one; renamecols=false)� �

DATAFRAMES. JL 107

name grade_2020

Sally 2.0
Bob 6.0

Alice 9.5
Hank 5.0

The same transformation can also be written with select as follows:� �
select(grades_2020(), :, :grade_2020 => plus_one => :grade_2020)� �

name grade_2020

Sally 2.0
Bob 6.0

Alice 9.5
Hank 5.0

where the :means “select all the columns” as described in Section 4.4. Alterna-
tively, you can also use Julia’s broadcasting and modify the column grade_2020
by accessing it with df.grade_2020:� �
df = grades_2020()
df.grade_2020 = plus_one.(df.grade_2020)
df� �

name grade_2020

Sally 2.0
Bob 6.0

Alice 9.5
Hank 5.0

But, although the last example is easier since it builds on more native Julia
operations,we strongly advise to use the functions provided by DataFrames.jl
in most cases because they are more capable and easier to work with.

4.7.1 Multiple Transformations

To show how to transform two columns at the same time, we use the left joined
data from Section 4.6:� �
leftjoined = leftjoin(grades_2020(), grades_2021(); on=:name)� �

108 JULIA DATA SCIENCE

name grade_2020 grade_2021

Sally 1.0 9.5
Hank 4.0 6.0
Bob 5.0 missing

Alice 8.5 missing

With this, we can add a column saying whether someone was approved by the
criterion that all of their grades were above 5.5:� �
pass(A, B) = [5.5 < a || 5.5 < b for (a, b) in zip(A, B)]
transform(leftjoined, [:grade_2020, :grade_2021] => pass; renamecols=false)� �

name grade_2020 grade_2021 grade_2020_grade_2021

Sally 1.0 9.5 true
Hank 4.0 6.0 true
Bob 5.0 missing missing

Alice 8.5 missing true

We can clean up the outcome and put the logic in a function to get a list of all
the approved students:� �
function only_pass()

leftjoined = leftjoin(grades_2020(), grades_2021(); on=:name)
pass(A, B) = [5.5 < a || 5.5 < b for (a, b) in zip(A, B)]
leftjoined = transform(leftjoined, [:grade_2020, :grade_2021] => pass => :
↪→pass)
passed = subset(leftjoined, :pass; skipmissing=true)
return passed.name

end
only_pass()� �
["Sally", "Hank", "Alice"]

4.8 Groupby and Combine

In the R programming language, Wickham (2011) has popularized the so-
called split-apply-combine strategy for data transformations. In essence, this
strategy splits a dataset into distinct groups, applies one or more functions to
each group, and then combines the result. DataFrames.jl fully supports split-
apply-combine. We will use the student grades example like before. Suppose
that we want to know each student’s mean grade:� �
function all_grades()

DATAFRAMES. JL 109

df1 = grades_2020()
df1 = select(df1, :name, :grade_2020 => :grade)
df2 = grades_2021()
df2 = select(df2, :name, :grade_2021 => :grade)
rename_bob2(data_col) = replace.(data_col, "Bob 2" => "Bob")
df2 = transform(df2, :name => rename_bob2 => :name)
return vcat(df1, df2)

end
all_grades()� �

name grade

Sally 1.0
Bob 5.0

Alice 8.5
Hank 4.0
Bob 9.5
Sally 9.5
Hank 6.0

The strategy is to split the dataset into distinct students, apply the mean func-
tion to each student, and combine the result.

The split is called groupby and we give as second argument the column ID that
we want to split the dataset into:� �
groupby(all_grades(), :name)� �� �
GroupedDataFrame with 4 groups based on key: name
Group 1 (2 rows): name = "Sally"
Row | name grade

| String Float64
─────┼─────────────────

1 | Sally 1.0
2 | Sally 9.5

Group 2 (2 rows): name = "Bob"
Row | name grade

| String Float64
─────┼─────────────────

1 | Bob 5.0
2 | Bob 9.5

Group 3 (1 row): name = "Alice"
Row | name grade

| String Float64
─────┼─────────────────

1 | Alice 8.5
Group 4 (2 rows): name = "Hank"
Row | name grade

| String Float64

110 JULIA DATA SCIENCE

─────┼─────────────────
1 | Hank 4.0
2 | Hank 6.0� �

We apply the mean function from Julia’s standard library Statistics module:� �
using Statistics� �
To apply this function, use the combine function:� �
gdf = groupby(all_grades(), :name)
combine(gdf, :grade => mean)� �

name grade_mean

Sally 5.25
Bob 7.25

Alice 8.5
Hank 5.0

Imagine having to do this without the groupby and combine functions. Wewould
need to loop over our data to split it up into groups, then loop over each split
to apply a function, and finally loop over each group to gather the final result.
Therefore, the split-apply-combine technique is a great one to know.

4.8.1 Multiple Source Columns

But what if we want to apply a function to multiple columns of our dataset?� �
group = [:A, :A, :B, :B]
X = 1:4
Y = 5:8
df = DataFrame(; group, X, Y)� �

group X Y

A 1 5
A 2 6
B 3 7
B 4 8

This is accomplished in a similar manner:� �
gdf = groupby(df, :group)
combine(gdf, [:X, :Y] .=> mean; renamecols=false)� �

DATAFRAMES. JL 111

group X Y

A 1.5 5.5
B 3.5 7.5

Note that we’ve used the dot . operator before the right arrow => to indicate
that the mean has to be applied to multiple source columns [:X, :Y].

To use composable functions, a simple way is to create a function that does
the intended composable transformations. For instance, for a series of values,
let’s first take the mean followed by round to a whole number (also known as an
integer Int):� �
gdf = groupby(df, :group)
rounded_mean(data_col) = round(Int, mean(data_col))
combine(gdf, [:X, :Y] .=> rounded_mean; renamecols=false)� �

group X Y

A 2 6
B 4 8

4.9 Performance

So far, we haven’t thought about making our DataFrames.jl code fast. Like ev-
erything in Julia, DataFrames.jl can be really fast. In this section, we will give
some performance tips and tricks.

4.9.1 In-place operations

Like we explained in Section 3.3.1, functions that end with a bang ! are a com-
mon pattern to denote functions that modify one or more of their arguments.
In the context of high performance Julia code, thismeans that **functions with
! will just change in-place the objects that we have supplied as arguments.

Almost all the DataFrames.jl functions that we’ve seen have a ”! twin”. For ex-
ample, filter has an in-place filter!, select has select!, subset has subset!, and so
on. Notice that these functions do not return a new DataFrame, but instead they
update the DataFrame that they act upon. Additionally, DataFrames.jl (version
1.3 onwards) supports in-place leftjoin with the function leftjoin!. This func-
tion updates the left DataFramewith the joined columns from the right DataFrame.
There is a caveat that for each row of left table there must match at most one
row in right table.

112 JULIA DATA SCIENCE

If you want the highest speed and performance in your code, you should def-
initely use the ! functions instead of regular DataFrames.jl functions.

Let’s go back to the example of the select function in the beginning of Sec-
tion 4.4. Here is the responses DataFrame:� �
responses()� �

id q1 q2 q3 q4 q5

1 28 us F B A
2 61 fr B C E

Now, let’s perform the selection with the select function, like we did before:� �
select(responses(), :id, :q1)� �

id q1

1 28
2 61

And here is the in-place function:� �
select!(responses(), :id, :q1)� �

id q1

1 28
2 61

The @allocatedmacro tells us howmuchmemorywas allocated. In otherwords,
how much new information the computer had to store in its memory while
running the code. Let’s see how they will perform:� �
df = responses()
@allocated select(df, :id, :q1)� �� �
7808� �� �
df = responses()
@allocated select!(df, :id, :q1)� �� �
7520� �

DATAFRAMES. JL 113

As we can see, select! allocates less than select. So, it should be faster, while
consuming less memory.

4.9.2 Copying vs Not Copying Columns

There are twoways to access aDataFrame column. They differ in how they are
accessed: one creates a “view” to the column without copying and the other
creates a whole new column by copying the original column.

The first way uses the regular dot . operator followed by the column name,
like in df.col. This kind of access does not copy the column col. Instead df.col
creates a “view”which is a link to the original columnwithout performing any
allocation. Additionally, the syntax df.col is the same as df[!, :col] with the
bang ! as the row selector.

The second way to access a DataFrame column is the df[:, :col] with the colon
: as the row selector. This kind of access does copy the column col, so beware
that it may produce unwanted allocations.

As before, let’s try out these two ways to access a column in the responses
DataFrame:� �
df = responses()
@allocated col = df[:, :id]� �� �
417450� �� �
df = responses()
@allocated col = df[!, :id]� �� �
0� �
When we access a column without copying it we are making zero allocations
and our code should be faster. So, if you don’t need a copy, always access your
DataFrames columns with df.col or df[!, :col] instead of df[:, :col].

4.9.3 CSV.read versus CSV.File

If you take a look at the help output for CSV.read, you will see that there is
a convenience function identical to the function called CSV.File with the same
keyword arguments. Both CSV.read and CSV.Filewill read the contents of a CSV
file, but they differ in the default behavior. CSV.read, by default, will not make

114 JULIA DATA SCIENCE

copies of the incoming data. Instead, CSV.read will pass all the data to the sec-
ond argument (known as the “sink”).

So, something like this:� �
df = CSV.read("file.csv", DataFrame)� �
will pass all the incoming data from file.csv to the DataFrame sink, thus return-
ing a DataFrame type that we store in the df variable.

For the case of CSV.File, the default behavior is the opposite: it will make
copies of every column contained in the CSV file. Also, the syntax is slightly
different. We need to wrap anything that CSV.File returns in a DataFrame con-
structor function:� �
df = DataFrame(CSV.File("file.csv"))� �
Or, with the pipe |> operator:� �
df = CSV.File("file.csv") |> DataFrame� �
Like we said, CSV.File will make copies of each column in the underlying CSV
file. Ultimately, if youwant themost performance, youwoulddefinitely use CSV
↪→.read instead of CSV.File. That’swhywe only covered CSV.read in Section 4.1.1.

4.9.4 CSV.jl Multiple Files

Now let’s turn our attention to the CSV.jl. Specifically, the case when we have
multiple CSV files to read into a single DataFrame. Since version 0.9 of CSV.jl we
can provide a vector of strings representing filenames. Before, we needed to
perform some sort of multiple file reading and then concatenate vertically the
results into a single DataFrame. To exemplify, the code below reads from mul-
tiple CSV files and then concatenates them vertically using vcat into a single
DataFrame with the reduce function:� �
files = filter(endswith(".csv"), readdir())
df = reduce(vcat, CSV.read(file, DataFrame) for file in files)� �
One additional trait is that reduce will not parallelize because it needs to keep
the order of vcat which follows the same ordering of the files vector.

With this functionality in CSV.jlwe simply pass the files vector into the CSV.read
function:

DATAFRAMES. JL 115

10 also notice that
regular data (up to
10 000 rows) is not
big data (more than
100 000 rows). So,
if you are dealing
primarily with big
data please exercise
caution in capping your
categorical values.

� �
files = filter(endswith(".csv"), readdir())
df = CSV.read(files, DataFrame)� �
CSV.jl will designate a file for each thread available in the computer while it
lazily concatenates each thread-parsed output into a DataFrame. So we have the
additional benefit ofmultithreading thatwedon’t havewith the reduce option.

4.9.5 CategoricalArrays.jl compression

If you are handling data with a lot of categorical values, i.e. a lot of columns
with textual data that represent somehowdifferent qualitative data, youwould
probably benefit by using CategoricalArrays.jl compression.

By default, CategoricalArrays.jl will use an unsigned integer of size 32 bits
UInt32 to represent the underlying categories:� �
typeof(categorical(["A", "B", "C"]))� �� �
CategoricalVector{String, UInt32, String, CategoricalValue{String, UInt32},

↪→Union{}}� �
Thismeans that CategoricalArrays.jl can represent up to 232 different categories
in a given vector or column, which is a huge value (close to 4.3 billion). You
probablywould never need to have this sort of capacity in dealingwith regular
data10. That’s why categorical has a compress argument that accepts either true
or false to determine whether or not the underlying categorical data is com-
pressed. If you pass compress=true, CategoricalArrays.jl will try to compress the
underlying categorical data to the smallest possible representation in UInt.
For example, the previous categorical vector would be represented as an un-
signed integer of size 8 bits UInt8 (mostly because this is the smallest unsigned
integer available in Julia):� �
typeof(categorical(["A", "B", "C"]; compress=true))� �� �
CategoricalVector{String, UInt8, String, CategoricalValue{String, UInt8}, Union

↪→{}}� �
What does this all mean? Suppose you have a big vector. For example, a vector
with one million entries, but only 4 underlying categories: A, B, C, or D. If you
do not compress the resulting categorical vector, you will have one million
entries stored as UInt32. On the other hand, if you do compress it, youwill have
one million entries stored instead as UInt8. By using Base.summarysize function

116 JULIA DATA SCIENCE

we can get the underlying size, in bytes, of a given object. So let’s quantify how
much more memory we would need to have if we did not compress our one
million categorical vector:� �
using Random� �� �
one_mi_vec = rand(["A", "B", "C", "D"], 1_000_000)
Base.summarysize(categorical(one_mi_vec))� �� �
4000612� �
4 million bytes, which is approximately 3.8 MB. Don’t get us wrong, this is a
good improvement over the raw string size:� �
Base.summarysize(one_mi_vec)� �� �
8000076� �
We reduced 50% of the raw data size by using the default CategoricalArrays.jl
underlying representation as UInt32.

Now let’s see how we would fare with compression:� �
Base.summarysize(categorical(one_mi_vec; compress=true))� �� �
1000564� �
We reduced the size to 25% (one quarter) of the original uncompressed vector
size without losing information. Our compressed categorical vector now has
1 million bytes which is approximately 1.0 MB.

So whenever possible, in the interest of performance, consider using compress=
↪→true in your categorical data.

1 http://makie.juliaplots
.org/stable/index.html

2 http://makie.juliaplots
.org/stable/documentat
ion/backends_and_out
put/

5 Data Visualization with Makie.jl

From the japanese word Maki-e, which is a technique to sprinkle lacquer with
gold and silver powder. Data is the gold and silver of our age, so let’s spread it
out beautifully on the screen!
Simon Danisch, Creator of Makie.jl

Makie.jl1 is a high-performance, extendable, andmulti-platformplotting ecosys-
tem for the Julia programming language. In our opinion, it is the prettiest and
most versatile plotting package.

Like many plotting packages, the code is split into multiple packages. Makie.jl
is the front end package that defines all plotting functions required to create
plot objects. These objects store all information about the plots, but still need
to be converted to an image. To convert these plot objects to an image, you
need one of the Makie back ends. By default, Makie.jl is reexported by every
backend, so you only need to install and load the back end that you want to
use.

There are three main back ends which concretely implement all abstract ren-
dering capabilities defined in Makie. One for non-interactive 2D publication-
quality vector graphics: CairoMakie.jl. Another for interactive 2D and 3D plot-
ting in standalone GLFW.jl windows (also GPU-powered), GLMakie.jl. And the
third one, a WebGL-based interactive 2D and 3D plotting that runs within
browsers, WGLMakie.jl. See Makie’s documentation for more2.

In this book we will only show examples for CairoMakie.jl and GLMakie.jl.

You can activate any backend by using the appropriate package and calling its
activate! function. For example:� �
using GLMakie
GLMakie.activate!()� �
Now, we will start with publication-quality plots. But, before going into plot-
ting it is important to know how to save our plots. The easiest option to save a
figure fig is to type save("filename.png", fig). Other formats are also available
for CairoMakie.jl, such as svg and pdf. The resolution of the output image can
easily be adjusted by passing extra arguments. For example, for vector formats
you specify pt_per_unit:

http://makie.juliaplots.org/stable/index.html
http://makie.juliaplots.org/stable/index.html
http://makie.juliaplots.org/stable/documentation/backends_and_output/
http://makie.juliaplots.org/stable/documentation/backends_and_output/
http://makie.juliaplots.org/stable/documentation/backends_and_output/
http://makie.juliaplots.org/stable/documentation/backends_and_output/

118 JULIA DATA SCIENCE

3 https://makie.juliaplo
ts.org/stable/document
ation/backends_and_o
utput/

� �
save("filename.pdf", fig; pt_per_unit=2)� �
or� �
save("filename.pdf", fig; pt_per_unit=0.5)� �
For png’s you specify px_per_unit. See Backends & Output3 for details.

Another important issue is to actually visualize your output plot. Note that for
CairoMakie.jl the Julia REPL is not able to show plots, so you will need an IDE
(IntegratedDevelopment Environment) such as VSCode, Jupyter or Pluto that
supports png or svg as output. On the other hand, GLMakie.jl can open interactive
windows, or alternatively display bitmaps inline if Makie.inline!(true) is called.

5.1 CairoMakie.jl

Let’s start with our first plot, some scatter points with lines between them:� �
using CairoMakie
CairoMakie.activate!()� �� �
fig = scatterlines(1:10, 1:10)� �

Figure 5.1: First plot.

Note that the previous plot is the default output, which we probably need to
tweak by using axis names and labels.

Also note that every plotting function like scatterlines creates and returns a
new Figure, Axis and plot object in a collection called FigureAxisPlot. These are
known as the non−mutating methods. On the other hand, the mutating methods

https://makie.juliaplots.org/stable/documentation/backends_and_output/
https://makie.juliaplots.org/stable/documentation/backends_and_output/
https://makie.juliaplots.org/stable/documentation/backends_and_output/
https://makie.juliaplots.org/stable/documentation/backends_and_output/

DATA VISUALIZATION WITH MAKIE. JL 119

(e.g. scatterlines!, note the !) just return a plot object which can be appended
into a given axis or the current_figure().

The next question that one might have is: how do I change the color or the
marker type? This can be done via attributes, which we do in the next section.

5.2 Attributes

A custom plot can be created by using attributes. The attributes can be set
through keyword arguments. A list of attributes for every plotting object can
be viewed via:� �
fig, ax, pltobj = scatterlines(1:10)
pltobj.attributes� �
Attributes with 14 entries:
color => black
colormap => viridis
colorrange => Automatic()
inspectable => true
linestyle => nothing
linewidth => 1.5
marker => Circle{T} where T
markercolor => black
markercolormap => viridis
markercolorrange => Automatic()
markersize => 9
model => Float32[1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.0; 0.0 0.0 0.

↪→0 1.0]
strokecolor => black
strokewidth => 0

Or as a Dict calling pltobject.attributes.attributes.

Asking for help in the REPL as ?lines or help(lines) for any given plotting func-
tion will show you their corresponding attributes plus a short description on
how to use that specific function. For example, for lines:� �
help(lines)� �
lines(positions)
lines(x, y)
lines(x, y, z)

Creates a connected line plot for each element in (x, y, z), (x, y) or
positions.

120 JULIA DATA SCIENCE

| Tip
|
| You can separate segments by inserting NaNs.

lines has the following function signatures:

(Vector, Vector)
(Vector, Vector, Vector)
(Matrix)

Available attributes for Lines{T} where T are:

ambient
color
colormap
colorrange
cycle
diffuse
inspectable
lightposition
linestyle
linewidth
nan_color
overdraw
shininess
specular
ssao
transparency
visible

Not only the plot objects have attributes, also the Axis and Figure objects do. For
example, for Figure, we have backgroundcolor, resolution, font and fontsize and
the figure_padding which changes the amount of space around the figure con-
tent, see the grey area in the plot, Figure (Figure 5.2). It can take one number
for all sides, or a tuple of four numbers for left, right, bottom and top.

Axis has a lot more, some of them are backgroundcolor, xgridcolor and title. For
a full list just type help(Axis).

Hence, for our next plot we will call several attributes at once as follows:� �
lines(1:10, (1:10).^2; color=:black, linewidth=2, linestyle=:dash,

figure=(; figure_padding=5, resolution=(600, 400), font="sans",
backgroundcolor=:grey90, fontsize=16),

axis=(; xlabel="x", ylabel="x²", title="title",
xgridstyle=:dash, ygridstyle=:dash))

current_figure()� �

DATA VISUALIZATION WITH MAKIE. JL 121

Figure 5.2: Custom plot.

This example has already most of the attributes that most users will normally
use. Probably, a legend will also be good to have. Which for more than one
function will make more sense. So, let’s append another mutation plot object
↪→ and add the corresponding legends by calling axislegend. This will collect
all the labels you might have passed to your plotting functions and by default
will be located in the right top position. For a different one, the position=:ct
argument is called, where :ct means let’s put our label in the center and at the
top, see Figure Figure 5.3:� �
lines(1:10, (1:10).^2; label="x²", linewidth=2, linestyle=nothing,

figure=(; figure_padding=5, resolution=(600, 400), font="sans",
backgroundcolor=:grey90, fontsize=16),

axis=(; xlabel="x", title="title", xgridstyle=:dash,
ygridstyle=:dash))

scatterlines!(1:10, (10:-1:1).^2; label="Reverse(x)²")
axislegend("legend"; position=:ct)
current_figure()� �

Figure 5.3: Custom plot
legend.

Other positions are also available by combining left(l), center(c), right(r) and
bottom(b), center(c), top(t). For instance, for left top, use :lt.

However, having to write this much code just for two lines is cumbersome.

122 JULIA DATA SCIENCE

So, if you plan on doing a lot of plots with the same general aesthetics, then
setting a themewill be better. We can do this with set_theme!() as the following
example illustrates.

Plotting the previous figure should take the new default settings defined by
set_theme!(kwargs):� �
set_theme!(; resolution=(600, 400),

backgroundcolor=(:orange, 0.5), fontsize=16, font="sans",
Axis=(backgroundcolor=:grey90, xgridstyle=:dash, ygridstyle=:dash),
Legend=(bgcolor=(:red, 0.2), framecolor=:dodgerblue))

lines(1:10, (1:10).^2; label="x²", linewidth=2, linestyle=nothing,
axis=(; xlabel="x", title="title"))

scatterlines!(1:10, (10:-1:1).^2; label="Reverse(x)²")
axislegend("legend"; position=:ct)
current_figure()
set_theme!()
caption = "Set theme example."� �

Figure 5.4: Set theme
example.

Note that the last line is set_theme!(), which will reset the default settings of
Makie. For more on themes please go to Section 5.3.

Before moving on into the next section, it’s worthwhile to see an example
where an array of attributes are passed at once to a plotting function. For this
example, we will use the scatter plotting function to do a bubble plot.

The data for this could be an arraywith 100 rows and 3 columns, herewe gener-
ated these at random from a normal distribution. Here, the first column could
be the positions in the x axis, the second one the positions in y and the third
one an intrinsic associated value for each point. The later could be represented
in a plot by a different color or with a different marker size. In a bubble plot
we can do both.� �
using Random: seed!
seed!(28)
xyvals = randn(100, 3)

DATA VISUALIZATION WITH MAKIE. JL 123

xyvals[1:5, :]� �
5×3 Matrix{Float64}:
−0.294668 1.27304 1.20005
−0.8177 1.28339 −0.408239
−0.936189 1.50032 1.65924
−0.334106 0.395313 −1.4814
1.81839 0.351304 0.261416

Next, the corresponding plot can be seen in Figure 5.5:� �
fig, ax, pltobj = scatter(xyvals[:, 1], xyvals[:, 2]; color=xyvals[:, 3],

label="Bubbles", colormap=:plasma, markersize=15 ∗ abs.(xyvals[:, 3]),
figure=(; resolution=(600, 400)), axis=(; aspect=DataAspect()))

limits!(-3, 3, -3, 3)
Legend(fig[1, 2], ax, valign=:top)
Colorbar(fig[1, 2], pltobj, height=Relative(3 / 4))
fig
caption = "Bubble plot."� �

Figure 5.5: Bubble plot.

where we have decomposed the tuple FigureAxisPlot into fig, ax, pltobj, in or-
der to be able to add a Legend and Colorbar outside of the plotted object. We will
discuss layout options in more detail in Section 5.6.

We have done some basic but still interesting examples to show how to use
Makie.jl and by now you might be wondering: what else can we do? What
are all the possible plotting functions available in Makie.jl? To answer this
question, a cheat sheet is shown in Figure 5.6. These work especially well with
CairoMakie.jl backend.

For completeness, in Figure 5.7, we show the corresponding functions cheat
sheet for GLMakie.jl, which supports mostly 3D plots. Those will be explained
in detail in Section 5.7.

124 JULIA DATA SCIENCE

Figure 5.6: Plotting
functions: Cheat
Sheet. Output given by
Cairomakie.

DATA VISUALIZATION WITH MAKIE. JL 125

Figure 5.7: Plotting
functions: Cheat
Sheet. Output given by
GLMakie.

4 http://makie.juliaplots
.org/stable/documentat
ion/theming/predefin
ed_themes/index.html

Now, thatwe have an idea of all the thingswe cando, let’s go back and continue
with the basics. It’s time to learn how to change the general appearance of our
plots.

5.3 Themes

There are several ways to affect the general appearance of your plots. Either,
you could use a predefined theme4 or your own custom theme. For example,
use the predefined dark theme via with_theme(your_plot_function, theme_dark()).
Or, build your ownwith Theme(kwargs) or even update the one that is activewith
update_theme!(kwargs).

You can also do set_theme!(theme; kwargs...) to change the current default theme
to theme and override or add attributes given by kwargs. If you do this and want
to reset all previous settings just do set_theme!() with no arguments. See the
following examples, where we had prepared a test plotting function with dif-
ferent characteristics, such that most attributes for each theme can be appreci-
ated.� �
using Random: seed!
seed!(123)

http://makie.juliaplots.org/stable/documentation/theming/predefined_themes/index.html
http://makie.juliaplots.org/stable/documentation/theming/predefined_themes/index.html
http://makie.juliaplots.org/stable/documentation/theming/predefined_themes/index.html
http://makie.juliaplots.org/stable/documentation/theming/predefined_themes/index.html

126 JULIA DATA SCIENCE

y = cumsum(randn(6, 6), dims=2)� �
6×6 Matrix{Float64}:
1.19027 2.17124 1.2823 0.56489 0.842615 −0.0284417
2.04818 1.9727 2.29991 1.52484 3.04876 3.39449
1.14265 1.41647 2.00887 1.02933 −0.748397 −0.904251
0.459416 0.265187 0.633189 0.893591 −2.03947 0.293544
−0.396679 −0.736045 −1.01718 −1.48567 −0.70341 −1.70176
−0.664713 −1.50859 −2.24348 −3.12437 −0.810794 −0.743838

A matrix of size (20, 20) with random entries, so that we can plot a heatmap.
The range in 𝑥 and 𝑦 is also specified.� �
using Random: seed!
seed!(13)
xv = yv = LinRange(-3, 0.5, 20)
matrix = randn(20, 20)
matrix[1:6, 1:6] # first 6 rows and columns� �
6×6 Matrix{Float64}:
−0.410261 0.755685 1.84697 0.0645615 1.53034 0.557182
−2.06413 1.2311 0.330232 −0.793936 −1.10552 −2.1084
0.0749639 −3.42235 0.392709 2.47305 −1.10597 0.962373
0.803344 1.78866 −0.81155 −1.70707 0.00106256 0.297236
−1.24842 1.4372 1.11774 −0.952159 −0.0887516 0.0106082
−1.43937 1.31755 0.631643 0.261686 −0.402386 0.233161

Hence, our plotting function looks like follows:� �
function demo_themes(y, xv, yv, matrix)

fig, _ = series(y; labels=["$i" for i = 1:6], markersize=10,
color=:Set1, figure=(; resolution=(600, 300)),
axis=(; xlabel="time (s)", ylabel="Amplitude",

title="Measurements"))
hmap = heatmap!(xv, yv, matrix; colormap=:plasma)
limits!(-3.1, 8.5, -6, 5.1)
axislegend("legend"; merge=true)
Colorbar(fig[1, 2], hmap)
fig

end� �
Note that the series function has been used to plot several lines and scatters at
once with their corresponding labels. Also, a heatmap with their colorbar has
been included. Currently, there are two dark themes, one called theme_dark()
and the other one theme_black(), see Figures.

DATA VISUALIZATION WITH MAKIE. JL 127

� �
with_theme(theme_dark()) do

demo_themes(y, xv, yv, matrix)
end
with_theme(theme_black()) do

demo_themes(y, xv, yv, matrix)
end� �

Figure 5.8: Theme dark.

Figure 5.9: Theme
black.

And three more white-ish themes called, theme_ggplot2(), theme_minimal() and
theme_light(). Useful for more standard publication type plots.� �
with_theme(theme_ggplot2()) do

demo_themes(y, xv, yv, matrix)
end
with_theme(theme_minimal()) do

demo_themes(y, xv, yv, matrix)
end
with_theme(theme_light()) do

demo_themes(y, xv, yv, matrix)
end� �
Another alternative is defining a custom Theme by doing with_theme(your_plot,
↪→your_theme()). For instance, the following theme could be a simple version
for a publication quality template:� �
publication_theme() = Theme(

fontsize=16, font="CMU Serif",
Axis=(xlabelsize=20, xgridstyle=:dash, ygridstyle=:dash,

xtickalign=1, ytickalign=1, yticksize=10, xticksize=10,

128 JULIA DATA SCIENCE

Figure 5.10: Theme
ggplot2.

Figure 5.11: Theme
minimal.

Figure 5.12: Theme
light.

DATA VISUALIZATION WITH MAKIE. JL 129

xlabelpadding=-5, xlabel="x", ylabel="y"),
Legend=(framecolor=(:black, 0.5), bgcolor=(:white, 0.5)),
Colorbar=(ticksize=16, tickalign=1, spinewidth=0.5),

)� �
Which, for simplicity we use it to plot scatterlines and a heatmap.� �
function plot_with_legend_and_colorbar()

fig, ax, _ = scatterlines(1:10; label="line")
hm = heatmap!(ax, LinRange(6, 9, 15), LinRange(2, 5, 15), randn(15, 15);

colormap=:Spectral_11)
axislegend("legend"; position=:lt)
Colorbar(fig[1, 2], hm, label="values")
ax.title = "my custom theme"
fig

end� �
Then, using the previously define Theme the output is shown in Figure (Fig-
ure 5.13).� �
with_theme(plot_with_legend_and_colorbar, publication_theme())� �

Figure 5.13: Themed
plot with Legend and
Colorbar.

Now, if something needs to be changed after set_theme!(your_theme), we can do
it with update_theme!(resolution=(500, 400), fontsize=18), for example. Another
approach will be to pass additional arguments to the with_theme function:� �
fig = (resolution=(600, 400), figure_padding=1, backgroundcolor=:grey90)
ax = (; aspect=DataAspect(), xlabel=L"x", ylabel=L"y")
cbar = (; height=Relative(4 / 5))
with_theme(publication_theme(); fig..., Axis=ax, Colorbar=cbar) do

plot_with_legend_and_colorbar()
end� �
Now, let’s move on and do a plot with LaTeX strings and a custom theme.

130 JULIA DATA SCIENCE

Figure 5.14: Theme
with extra args.

5.4 Using LaTeXStrings.jl

LaTeX support in Makie.jl is also available via LaTeXStrings.jl:� �
using LaTeXStrings� �
Simple use cases are shown below (Figure 5.15). A basic example includes
LaTeX strings for x-y labels and legends:� �
function LaTeX_Strings()

x = 0:0.05:4π
lines(x, x -> sin(3x) / (cos(x) + 2) / x; label=L"\frac{\sin(3x)}{x(\cos(x)
↪→+2)}",

figure=(; resolution=(600, 400)), axis=(; xlabel=L"x"))
lines!(x, x -> cos(x) / x; label=L"\cos(x)/x")
lines!(x, x -> exp(-x); label=L"e^{−x}")
limits!(-0.5, 13, -0.6, 1.05)
axislegend(L"f(x)")
current_figure()

end� �� �
with_theme(LaTeX_Strings, publication_theme())� �
A more involved example will be one with some equation as text and increas-
ing legend numbering for curves in a plot:� �
function multiple_lines()

x = collect(0:10)
fig = Figure(resolution=(600, 400), font="CMU Serif")
ax = Axis(fig[1, 1], xlabel=L"x", ylabel=L"f(x,a)")
for i = 0:10

lines!(ax, x, i .∗ x; label=latexstring("$(i) x"))
end
axislegend(L"f(x)"; position=:lt, nbanks=2, labelsize=14)

DATA VISUALIZATION WITH MAKIE. JL 131

Figure 5.15: Plot with
LaTeX strings.

5 http://makie.juliaplo
ts.org/stable/document
ation/theming/index.ht
ml#cycles

text!(L"f(x,a) = ax", position=(4, 80))
fig

end
multiple_lines()� �

Figure 5.16: Multiple
lines.

But, some lines have repeated colors, so thats no good. Adding some markers
and line styles usually helps. So, let’s do that using Cycles5 for these types.
Setting covary=true allows to cycle all elements together:� �
function multiple_scatters_and_lines()

x = collect(0:10)
cycle = Cycle([:color, :linestyle, :marker], covary=true)
set_theme!(Lines=(cycle=cycle,), Scatter=(cycle=cycle,))
fig = Figure(resolution=(600, 400), font="CMU Serif")
ax = Axis(fig[1, 1], xlabel=L"x", ylabel=L"f(x,a)")
for i in x

lines!(ax, x, i .∗ x; label=latexstring("$(i) x"))
scatter!(ax, x, i .∗ x; markersize=13, strokewidth=0.25,

label=latexstring("$(i) x"))
end
axislegend(L"f(x)"; merge=true, position=:lt, nbanks=2, labelsize=14)
text!(L"f(x,a) = ax", position=(4, 80))
set_theme!() # reset to default theme

http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles

132 JULIA DATA SCIENCE

6 http://makie.juliaplo
ts.org/stable/document
ation/theming/index.ht
ml#cycles

7 https://github.com/J
uliaGraphics/Colors.jl
8 https://juliagraphics.
github.io/Colors.jl/late
st/namedcolors/
9 https://github.com/J
uliaGraphics/ColorSc
hemes.jl
10 https://github.com/p
eterkovesi/PerceptualC
olourMaps.jl

fig
end
multiple_scatters_and_lines()� �

Figure 5.17: Multiple
Scatters and Lines.

And voilà. A publication quality plot is here. What more canwe ask for? Well,
what about different default colors or palettes. In our next section, we will see
how to use again Cycles6 and know a little bit more about them, plus some
additional keywords in order to achieve this.

5.5 Colors and Colormaps

Choosing an appropiate set of colors or colorbar for your plot is an essen-
tial part when presenting results. Using Colors.jl7 is supported in Makie.jl
so that you can use named colors8 or pass RGB or RGBA values. Additionally,
colormaps from ColorSchemes.jl9 and PerceptualColourMaps.jl10 can also be
used. It is worth knowing that you can reverse a colormap by doing Reverse(:
↪→colormap_name) and obtain a transparent color or colormap with color=(:red,0
↪→.5) and colormap=(:viridis, 0.5).

Different use cases will be shown next. Then we will difine a custom theme
with new colors and a colorbar palette.

By default Makie.jl has a predefined set of colors in order to cycle trough them
automatically. As shown in the previous figures, where no specific color was
set. Overwriting these defaults is done by calling the keyword color in the
plotting function and specifying a new color via a Symbol or String. See this in
action in the following example:� �
function set_colors_and_cycle()

Epicycloid lines
x(r, k, θ) = r ∗ (k .+ 1.0) .∗ cos.(θ) .- r ∗ cos.((k .+ 1.0) .∗ θ)
y(r, k, θ) = r ∗ (k .+ 1.0) .∗ sin.(θ) .- r ∗ sin.((k .+ 1.0) .∗ θ)
θ = LinRange(0, 6.2π, 1000)

http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
http://makie.juliaplots.org/stable/documentation/theming/index.html#cycles
https://github.com/JuliaGraphics/Colors.jl
https://github.com/JuliaGraphics/Colors.jl
https://juliagraphics.github.io/Colors.jl/latest/namedcolors/
https://juliagraphics.github.io/Colors.jl/latest/namedcolors/
https://juliagraphics.github.io/Colors.jl/latest/namedcolors/
https://github.com/JuliaGraphics/ColorSchemes.jl
https://github.com/JuliaGraphics/ColorSchemes.jl
https://github.com/JuliaGraphics/ColorSchemes.jl
https://github.com/peterkovesi/PerceptualColourMaps.jl
https://github.com/peterkovesi/PerceptualColourMaps.jl
https://github.com/peterkovesi/PerceptualColourMaps.jl

DATA VISUALIZATION WITH MAKIE. JL 133

axis = (; xlabel=L"x(\theta)", ylabel=L"y(\theta)",
title="Epicycloid", aspect=DataAspect())

figure = (; resolution=(600, 400), font="CMU Serif")
fig, ax, _ = lines(x(1, 1, θ), y(1, 1, θ); color="firebrick1", # string

label=L"1.0", axis=axis, figure=figure)
lines!(ax, x(4, 2, θ), y(4, 2, θ); color=:royalblue1, #symbol

label=L"2.0")
for k = 2.5:0.5:5.5

lines!(ax, x(2k, k, θ), y(2k, k, θ); label=latexstring("$(k)")) #cycle
end
Legend(fig[1, 2], ax, latexstring("k, r = 2k"), merge=true)
fig

end
set_colors_and_cycle()� �

Figure 5.18: Set colors
and cycle.

Where, in the first two lines we have used the keyword color to specify our
color. The rest is using the default cycle set of colors. Later, we will learn how
to do a custom cycle.

Regarding colormaps, we are already familiar with the keyword colormap for
heatmaps and scatters. Here, we show that a colormap can also be specified
via a Symbol or a String, similar to colors. Or, even a vector of RGB colors. Let’s
do our first an example by calling colormaps as a Symbol, String and cgrad for
categorical values. See ?cgrad for more information.� �
figure = (; resolution=(600, 400), font="CMU Serif")
axis = (; xlabel=L"x", ylabel=L"y", aspect=DataAspect())

134 JULIA DATA SCIENCE

fig, ax, pltobj = heatmap(rand(20, 20); colorrange=(0, 1),
colormap=Reverse(:viridis), axis=axis, figure=figure)

Colorbar(fig[1, 2], pltobj, label = "Reverse colormap Sequential")
fig� �

Figure 5.19: Reverse
colormap sequential
and colorrange.

When setting a colorrangeusually the values outside this range are coloredwith
the first and last color from the colormap. However, sometimes is better to
specify the color you want at both ends. We do that with highclip and lowclip:� �
using ColorSchemes� �� �
figure = (; resolution=(600, 400), font="CMU Serif")
axis = (; xlabel=L"x", ylabel=L"y", aspect=DataAspect())
fig, ax, pltobj=heatmap(randn(20, 20); colorrange=(-2, 2),

colormap="diverging_rainbow_bgymr_45_85_c67_n256",
highclip=:black, lowclip=:white, axis=axis, figure=figure)

Colorbar(fig[1, 2], pltobj, label = "Diverging colormap")
fig� �

Figure 5.20: Diverging
Colormap with low and
high clip.

But wementioned that also RGB vectors are valid options. For our next example
you could pass the custom colormap perse or use cgrad to force a categorical
Colorbar.

DATA VISUALIZATION WITH MAKIE. JL 135

� �
using Colors, ColorSchemes� �
� �
figure = (; resolution=(600, 400), font="CMU Serif")
axis = (; xlabel=L"x", ylabel=L"y", aspect=DataAspect())
cmap = ColorScheme(range(colorant"red", colorant"green", length=3))
mygrays = ColorScheme([RGB{Float64}(i, i, i) for i in [0.0, 0.5, 1.0]])
fig, ax, pltobj = heatmap(rand(-1:1, 20, 20);

colormap=cgrad(mygrays, 3, categorical=true, rev=true), # cgrad and Symbol,
↪→mygrays,
axis=axis, figure=figure)

cbar = Colorbar(fig[1, 2], pltobj, label="Categories")
cbar.ticks = ([-0.66, 0, 0.66], ["−1", "0", "1"])
fig� �

Figure 5.21: Categorical
Colormap.

Lastly, the ticks in the colorbar for the categorial case are not centered by de-
fault in each color. This is fixed by passing custom ticks, as in cbar.ticks = (
↪→positions, ticks). The last situation is when passing a tuple of two colors to
colormap as symbols, strings or a mix. You will get an interpolated colormap
between these two colors.

Also, hexadecimal coded colors are also accepted. So, on top or our heatmap
let’s put one semi-transparent point using this.� �
figure = (; resolution=(600, 400), font="CMU Serif")
axis = (; xlabel=L"x", ylabel=L"y", aspect=DataAspect())
fig, ax, pltobj = heatmap(rand(20, 20); colorrange=(0, 1),

colormap=(:red, "black"), axis=axis, figure=figure)
scatter!(ax, [11], [11], color=("#C0C0C0", 0.5), markersize=150)
Colorbar(fig[1, 2], pltobj, label="2 colors")
fig� �

136 JULIA DATA SCIENCE

Figure 5.22: Colormap
from two colors.

5.5.1 Custom cycle

Here, we could define a global Theme with a new cycle for colors, however that
is not the recommendway to do it. It’s better to define a new theme and use as
shown before. Lets define a new one with a cycle for :color, :linestyle, :marker
↪→ and a new colormap default. Lets add this new attributes to our previous
publication_theme.� �
function new_cycle_theme()

https://nanx.me/ggsci/reference/pal_locuszoom.html
my_colors = ["#D43F3AFF", "#EEA236FF", "#5CB85CFF", "#46B8DAFF",

"#357EBDFF", "#9632B8FF", "#B8B8B8FF"]
cycle = Cycle([:color, :linestyle, :marker], covary=true) # alltogether
my_markers = [:circle, :rect, :utriangle, :dtriangle, :diamond,

:pentagon, :cross, :xcross]
my_linestyle = [nothing, :dash, :dot, :dashdot, :dashdotdot]
Theme(

fontsize=16, font="CMU Serif",
colormap=:linear_bmy_10_95_c78_n256,
palette=(color=my_colors, marker=my_markers, linestyle=my_linestyle),
Lines=(cycle=cycle,), Scatter=(cycle=cycle,),
Axis=(xlabelsize=20, xgridstyle=:dash, ygridstyle=:dash,

xtickalign=1, ytickalign=1, yticksize=10, xticksize=10,
xlabelpadding=-5, xlabel="x", ylabel="y"),

Legend=(framecolor=(:black, 0.5), bgcolor=(:white, 0.5)),
Colorbar=(ticksize=16, tickalign=1, spinewidth=0.5),

)
end� �
And apply it to a plotting function like the following:� �
function scatters_and_lines()

x = collect(0:10)
xh = LinRange(4, 6, 25)
yh = LinRange(70, 95, 25)
h = randn(25, 25)

DATA VISUALIZATION WITH MAKIE. JL 137

fig = Figure(resolution=(600, 400), font="CMU Serif")
ax = Axis(fig[1, 1], xlabel=L"x", ylabel=L"f(x,a)")
for i in x

lines!(ax, x, i .∗ x; label=latexstring("$(i) x"))
scatter!(ax, x, i .∗ x; markersize=13, strokewidth=0.25,

label=latexstring("$(i) x"))
end
hm = heatmap!(xh, yh, h)
axislegend(L"f(x)"; merge=true, position=:lt, nbanks=2, labelsize=14)
Colorbar(fig[1, 2], hm, label="new default colormap")
limits!(ax, -0.5, 10.5, -5, 105)
colgap!(fig.layout, 5)
fig

end� �� �
with_theme(scatters_and_lines, new_cycle_theme())� �

Figure 5.23: Custom
theme with new cycle
and colormap.

At this point you should be able to have complete control over your colors,
line styles, markers and colormaps for your plots. Next, we will dive into how
to manage and control layouts.

5.6 Layouts

A complete canvas/layout is defined by Figure, which can be filled with content
after creation. We will start with a simple arrangement of one Axis, one Legend
and one Colorbar. For this task we can think of the canvas as an arrangement of
rows and columns in indexing a Figure much like a regular Array/Matrix. The Axis
content will be in row 1, column 1, e.g. fig[1, 1], the Colorbar in row 1, column
2, namely fig[1, 2]. And the Legend in row 2 and across column 1 and 2, namely
fig[2, 1:2].� �
function first_layout()

seed!(123)

138 JULIA DATA SCIENCE

x, y, z = randn(6), randn(6), randn(6)
fig = Figure(resolution=(600, 400), backgroundcolor=:grey90)
ax = Axis(fig[1, 1], backgroundcolor=:white)
pltobj = scatter!(ax, x, y; color=z, label="scatters")
lines!(ax, x, 1.1y; label="line")
Legend(fig[2, 1:2], ax, "labels", orientation=:horizontal)
Colorbar(fig[1, 2], pltobj, label="colorbar")
fig

end
first_layout()� �

Figure 5.24: First
Layout.

This does look good already, it could be better. We could fix spacing problems
using the following keywords and methods:

• figure_padding=(left, right, bottom, top)
• padding=(left, right, bottom, top)

Taking into account the actual size for a Legend or Colorbar is done by

• tellheight=true or false
• tellwidth=true or false

Setting these to true will take into account the actual size (height or width) for a Legend
or Colorbar. Consequently, things will be resized accordingly.

The space between columns and rows is specified as

• colgap!(fig.layout, col, separation)
• rowgap!(fig.layout, row, separation)

Column gap (colgap!), if col is given then the gap will be applied to that specific
column. Row gap (rowgap!) ,if row is given then the gap will be applied to that
specific row.

DATA VISUALIZATION WITH MAKIE. JL 139

Also, we will see how to put content into the protrusions, i.e. the space re-
served for title: x and y; either ticks or label. We do this by plotting into fig[i,
↪→ j, protrusion] where protrusion can be Left(), Right(), Bottom() and Top(), or
for each corner TopLeft(), TopRight(), BottomRight(), BottomLeft(). See below how
these options are being used:� �
function first_layout_fixed()

seed!(123)
x, y, z = randn(6), randn(6), randn(6)
fig = Figure(figure_padding=(0, 3, 5, 2), resolution=(600, 400),

backgroundcolor=:grey90, font="CMU Serif")
ax = Axis(fig[1, 1], xlabel=L"x", ylabel=L"y",

title="Layout example", backgroundcolor=:white)
pltobj = scatter!(ax, x, y; color=z, label="scatters")
lines!(ax, x, 1.1y, label="line")
Legend(fig[2, 1:2], ax, "Labels", orientation=:horizontal,

tellheight=true, titleposition=:left)
Colorbar(fig[1, 2], pltobj, label="colorbar")
additional aesthetics
Box(fig[1, 1, Right()], color=(:slateblue1, 0.35))
Label(fig[1, 1, Right()], "protrusion", textsize=18,

rotation=pi / 2, padding=(3, 3, 3, 3))
Label(fig[1, 1, TopLeft()], "(a)", textsize=18, padding=(0, 3, 8, 0))
colgap!(fig.layout, 5)
rowgap!(fig.layout, 5)
fig

end
first_layout_fixed()� �

Figure 5.25: First
Layout Fixed.

Here, having the label (a) in the TopLeft() is probably not necessary, this will
onlymake sense formore than two plots. For our next example let’s keep using
the previous tools and some more to create a richer and complex figure.

You can hide decorations and axis’ spines with:

• hidedecorations!(ax; kwargs...)

140 JULIA DATA SCIENCE

• hidexdecorations!(ax; kwargs...)
• hideydecorations!(ax; kwargs...)
• hidespines!(ax; kwargs...)

Remember, we can always ask for help to see what kind of arguments we can
use, e.g.,� �
help(hidespines!)� �
hidespines!(la::Axis, spines::Symbol... = (:l, :r, :b, :t)...)

Hide all specified axis spines. Hides all spines by default, otherwise
choose with the symbols :l, :r, :b and :t.

hidespines! has the following function signatures:

(Vector, Vector)
(Vector, Vector, Vector)
(Matrix)

Available attributes for Combined{Makie.MakieLayout.hidespines!, T} where T
are:

Alternatively, for decorations� �
help(hidedecorations!)� �
hidedecorations!(la::Axis)

Hide decorations of both x and y−axis: label, ticklabels, ticks and grid.

hidedecorations! has the following function signatures:

(Vector, Vector)
(Vector, Vector, Vector)
(Matrix)

Available attributes for Combined{Makie.MakieLayout.hidedecorations!, T}
where T are:

For elements that youdon’twant to hide, just pass themwith false, i.e. hideydecorations!
↪→(ax; ticks=false, grid=false).

Synchronizing your Axis is done via:

• linkaxes!, linkyaxes! and linkxaxes!
This could be usefulwhen shared axis are desired. Anotherway of getting shared
axis will be by setting limits!.

DATA VISUALIZATION WITH MAKIE. JL 141

Setting limits at once or independently for each axis is done by calling

• limits!(ax; l, r, b, t), where l is left, r right, b bottom, and t top.

You can also do ylims!(low, high) or xlims!(low, high), and even open ones by
doing ylims!(low=0) or xlims!(high=1).

Now, the example:� �
function complex_layout_double_axis()

seed!(123)
x = LinRange(0, 1, 10)
y = LinRange(0, 1, 10)
z = rand(10, 10)
fig = Figure(resolution=(600, 400), font="CMU Serif", backgroundcolor=:
↪→grey90)
ax1 = Axis(fig, xlabel=L"x", ylabel=L"y")
ax2 = Axis(fig, xlabel=L"x")
heatmap!(ax1, x, y, z; colorrange=(0, 1))
series!(ax2, abs.(z[1:4, :]); labels=["lab $i" for i = 1:4], color=:Set1_4)
hm = scatter!(10x, y; color=z[1, :], label="dots", colorrange=(0, 1))
hideydecorations!(ax2, ticks=false, grid=false)
linkyaxes!(ax1, ax2)
#layout
fig[1, 1] = ax1
fig[1, 2] = ax2
Label(fig[1, 1, TopLeft()], "(a)", textsize=18, padding=(0, 6, 8, 0))
Label(fig[1, 2, TopLeft()], "(b)", textsize=18, padding=(0, 6, 8, 0))
Colorbar(fig[2, 1:2], hm, label="colorbar", vertical=false, flipaxis=false)
Legend(fig[1, 3], ax2, "Legend")
colgap!(fig.layout, 5)
rowgap!(fig.layout, 5)
fig

end
complex_layout_double_axis()� �

Figure 5.26: Complex
layout double axis.

142 JULIA DATA SCIENCE

So, now our Colorbar needs to be horizontal and the bar ticks need to be in the
lower part. This is done by setting vertical=false and flipaxis=false. Addition-
ally, note that we can call many Axis into fig, or even Colorbar’s and Legend’s,
and then afterwards build the layout.

Another common layout is a grid of squares for heatmaps:� �
function squares_layout()

seed!(123)
letters = reshape(collect('a':'d'), (2, 2))
fig = Figure(resolution=(600, 400), fontsize=14, font="CMU Serif",

backgroundcolor=:grey90)
axs = [Axis(fig[i, j], aspect=DataAspect()) for i = 1:2, j = 1:2]
hms = [heatmap!(axs[i, j], randn(10, 10), colorrange=(-2, 2))

for i = 1:2, j = 1:2]
Colorbar(fig[1:2, 3], hms[1], label="colorbar")
[Label(fig[i, j, TopLeft()], "($(letters[i, j]))", textsize=16,

padding=(-2, 0, -20, 0)) for i = 1:2, j = 1:2]
colgap!(fig.layout, 5)
rowgap!(fig.layout, 5)
fig

end
squares_layout()� �

Figure 5.27: Squares
layout.

where all labels are in the protrusions and each Axis has an AspectData() ratio.
The Colorbar is located in the third column and expands from row 1 up to row
2.

The next case uses the so called Mixed() alignmode, which is especially useful
when dealingwith large empty spaces between Axisdue to long ticks. Also, the
Dates module from Julia’s standard library will be needed it for this example.� �
using Dates� �� �
function mixed_mode_layout()

DATA VISUALIZATION WITH MAKIE. JL 143

seed!(123)
longlabels = ["$(today() − Day(1))", "$(today())", "$(today() + Day(1))"]
fig = Figure(resolution=(600, 400), fontsize=12,

backgroundcolor=:grey90, font="CMU Serif")
ax1 = Axis(fig[1, 1])
ax2 = Axis(fig[1, 2], xticklabelrotation=pi / 2, alignmode=Mixed(bottom=0),

xticks=([1, 5, 10], longlabels))
ax3 = Axis(fig[2, 1:2])
ax4 = Axis(fig[3, 1:2])
axs = [ax1, ax2, ax3, ax4]
[lines!(ax, 1:10, rand(10)) for ax in axs]
hidexdecorations!(ax3; ticks=false, grid=false)
Box(fig[2:3, 1:2, Right()], color=(:slateblue1, 0.35))
Label(fig[2:3, 1:2, Right()], "protrusion", rotation=pi / 2, textsize=14,

padding=(3, 3, 3, 3))
Label(fig[1, 1:2, Top()], "Mixed alignmode", textsize=16,

padding=(0, 0, 15, 0))
colsize!(fig.layout, 1, Auto(2))
rowsize!(fig.layout, 2, Auto(0.5))
rowsize!(fig.layout, 3, Auto(0.5))
rowgap!(fig.layout, 1, 15)
rowgap!(fig.layout, 2, 0)
colgap!(fig.layout, 5)
fig

end
mixed_mode_layout()� �

Figure 5.28: Mixed
mode layout.

Here, the argument alignmode=Mixed(bottom=0) is shifting the bounding box to
the bottom, so that this will align with the panel on the left filling the space.

Also, see how colsize! and rowsize! are being used for different columns and
rows. You could also put a number instead of Auto() but then everything will
be fixed. And, additionally, one could also give a height or width when defining
the Axis, as in Axis(fig, heigth=50) which will be fixed as well.

144 JULIA DATA SCIENCE

5.6.1 Nested Axis (subplots)

It is also possible to define a set of Axis (subplots) explicitly, and use it to build
a main figure with several rows and columns. For instance, the following its a
“complicated” arrangement of Axis:� �
function nested_sub_plot!(fig)

color = rand(RGBf0)
ax1 = Axis(fig[1, 1], backgroundcolor=(color, 0.25))
ax2 = Axis(fig[1, 2], backgroundcolor=(color, 0.25))
ax3 = Axis(fig[2, 1:2], backgroundcolor=(color, 0.25))
ax4 = Axis(fig[1:2, 3], backgroundcolor=(color, 0.25))
return (ax1, ax2, ax3, ax4)

end� �
which, when used to build a more complex figure by doing several calls, we
obtain:� �
function main_figure()

fig = Figure()
Axis(fig[1, 1])
nested_sub_plot!(fig[1, 2])
nested_sub_plot!(fig[1, 3])
nested_sub_plot!(fig[2, 1:3])
fig

end
main_figure()� �

Figure 5.29: Main
figure.

Note that different subplot functions can be called here. Also, each Axis here
is an independent part of Figure. So that, if you need to do some rowgap!’s or
colsize!’s operations, you will need to do it in each one of them independently
or to all of them together.

DATA VISUALIZATION WITH MAKIE. JL 145

For grouped Axis (subplots) we can use GridLayout() which, then, could be used
to composed a more complicated Figure.

5.6.2 Nested GridLayout

By using GridLayout() we can group subplots, allowing more freedom to build
complex figures. Here, using our previous nested_sub_plot! we define three
sub-groups and one normal Axis:� �
function nested_Grid_Layouts()

fig = Figure(backgroundcolor=RGBf0(0.96, 0.96, 0.96))
ga = fig[1, 1] = GridLayout()
gb = fig[1, 2] = GridLayout()
gc = fig[1, 3] = GridLayout()
gd = fig[2, 1:3] = GridLayout()
gA = Axis(ga[1, 1])
nested_sub_plot!(gb)
axsc = nested_sub_plot!(gc)
nested_sub_plot!(gd)
[hidedecorations!(axsc[i], grid=false, ticks=false) for i = 1:length(axsc)]
colgap!(gc, 5)
rowgap!(gc, 5)
rowsize!(fig.layout, 2, Auto(0.5))
colsize!(fig.layout, 1, Auto(0.5))
fig

end
nested_Grid_Layouts()� �

Figure 5.30: Nested
Grid Layouts.

Now, using rowgap! or colsize! over each group is possible and rowsize!, colsize!
can also be applied to the set of GridLayout()s.

146 JULIA DATA SCIENCE

5.6.3 Inset plots

Currently, doing inset plots is a little bit tricky. Here, we show two possible
ways of doing it by initially defining auxiliary functions. The first one is by
doing a BBox, which lives in the whole Figure space:� �
function add_box_inset(fig; left=100, right=250, bottom=200, top=300,

bgcolor=:grey90)
inset_box = Axis(fig, bbox=BBox(left, right, bottom, top),

xticklabelsize=12, yticklabelsize=12, backgroundcolor=bgcolor)
bring content upfront
translate!(inset_box.scene, 0, 0, 10)
elements = keys(inset_box.elements)
filtered = filter(ele -> ele != :xaxis && ele != :yaxis, elements)
foreach(ele -> translate!(inset_box.elements[ele], 0, 0, 9), filtered)
return inset_box

end� �
Then, the inset is easily done, as in:� �
function figure_box_inset()

fig = Figure(resolution=(600, 400))
ax = Axis(fig[1, 1], backgroundcolor=:white)
inset_ax1 = add_box_inset(fig; left=100, right=250, bottom=200, top=300,

bgcolor=:grey90)
inset_ax2 = add_box_inset(fig; left=500, right=600, bottom=100, top=200,

bgcolor=(:white, 0.65))
lines!(ax, 1:10)
lines!(inset_ax1, 1:10)
scatter!(inset_ax2, 1:10, color=:black)
fig

end
figure_box_inset()� �

Figure 5.31: Figure box
inset.

where the Box dimensions are bound by the Figure’s resolution. Note, that an
inset can be also outside the Axis. The other approach, is by defining a new

DATA VISUALIZATION WITH MAKIE. JL 147

Axis into a position fig[i, j] specifying his width, height, halign and valign. We
do that in the following function:� �
function add_axis_inset(; pos=fig[1, 1], halign=0.1, valign=0.5,

width=Relative(0.5), height=Relative(0.35), bgcolor=:lightgray)
inset_box = Axis(pos, width=width, height=height,

halign=halign, valign=valign, xticklabelsize=12, yticklabelsize=12,
backgroundcolor=bgcolor)

bring content upfront
translate!(inset_box.scene, 0, 0, 10)
elements = keys(inset_box.elements)
filtered = filter(ele -> ele != :xaxis && ele != :yaxis, elements)
foreach(ele -> translate!(inset_box.elements[ele], 0, 0, 9), filtered)
return inset_box

end� �
See that in the following example the Axiswith gray backgroundwill be rescaled
if the total figure size changes. The insets are bound by the Axis positioning.� �
function figure_axis_inset()

fig = Figure(resolution=(600, 400))
ax = Axis(fig[1, 1], backgroundcolor=:white)
inset_ax1 = add_axis_inset(; pos=fig[1, 1], halign=0.1, valign=0.65,

width=Relative(0.3), height=Relative(0.3), bgcolor=:grey90)
inset_ax2 = add_axis_inset(; pos=fig[1, 1], halign=1, valign=0.25,

width=Relative(0.25), height=Relative(0.3), bgcolor=(:white, 0.65))
lines!(ax, 1:10)
lines!(inset_ax1, 1:10)
scatter!(inset_ax2, 1:10, color=:black)
fig

end
figure_axis_inset()� �

Figure 5.32: Figure axis
inset.

And this should cover most used cases for layouting with Makie. Now, let’s
do some nice 3D examples with GLMakie.jl.

148 JULIA DATA SCIENCE

11 http://www.opengl.o
rg/

5.7 GLMakie.jl

CairoMakie.jl supplies all our needs for static 2D images. But sometimes we
want interactivity, especially when we are dealing with 3D images. Visualiz-
ing data in 3D is also a common practice to gain insight from your data. This
is where GLMakie.jl might be helpful, since it uses OpenGL11 as a backend that
adds interactivity and responsiveness to plots. Like before, a simple plot in-
cludes, of course, lines and points. So, we will start with those and since we
already know how layouts work, we will put that into practice.

5.7.1 Scatters and Lines

For scatter plots we have two options, the first one is scatter(x, y, z) and the
second one is meshscatter(x, y, z). In the first one markers don’t scale in the
axis directions, but in the later they do because they are actual geometries in
3D space. See the next example:� �
using GLMakie
GLMakie.activate!()� �� �
function scatters_in_3D()

seed!(123)
xyz = randn(10, 3)
x, y, z = xyz[:, 1], xyz[:, 2], xyz[:, 3]
fig = Figure(resolution=(1600, 400))
ax1 = Axis3(fig[1, 1]; aspect=(1, 1, 1), perspectiveness=0.5)
ax2 = Axis3(fig[1, 2]; aspect=(1, 1, 1), perspectiveness=0.5)
ax3 = Axis3(fig[1, 3]; aspect=:data, perspectiveness=0.5)
scatter!(ax1, x, y, z; markersize=50)
meshscatter!(ax2, x, y, z; markersize=0.25)
hm = meshscatter!(ax3, x, y, z; markersize=0.25,

marker=FRect3D(Vec3f(0), Vec3f(1)), color=1:size(xyz)[2],
colormap=:plasma, transparency=false)

Colorbar(fig[1, 4], hm, label="values", height=Relative(0.5))
fig

end
scatters_in_3D()� �
Note also, that a different geometry can be passed asmarkers, i.e., a square/rect-
angle and we can assign a colormap for them as well. In the middle panel one
could get perfect spheres by doing aspect = :data as in the right panel.

And doing lines or scatterlines is also straightforward:� �
function lines_in_3D()

seed!(123)

http://www.opengl.org/
http://www.opengl.org/

DATA VISUALIZATION WITH MAKIE. JL 149

Figure 5.33: Scatters in
3D.

xyz = randn(10, 3)
x, y, z = xyz[:, 1], xyz[:, 2], xyz[:, 3]
fig = Figure(resolution=(1600, 400))
ax1 = Axis3(fig[1, 1]; aspect=(1, 1, 1), perspectiveness=0.5)
ax2 = Axis3(fig[1, 2]; aspect=(1, 1, 1), perspectiveness=0.5)
ax3 = Axis3(fig[1, 3]; aspect=:data, perspectiveness=0.5)
lines!(ax1, x, y, z; color=1:size(xyz)[2], linewidth=3)
scatterlines!(ax2, x, y, z; markersize=50)
hm = meshscatter!(ax3, x, y, z; markersize=0.2, color=1:size(xyz)[2])
lines!(ax3, x, y, z; color=1:size(xyz)[2])
Colorbar(fig[2, 1], hm; label="values", height=15, vertical=false,

flipaxis=false, ticksize=15, tickalign=1, width=Relative(3.55 / 4))
fig

end
lines_in_3D()� �

Figure 5.34: Lines in
3D.

Plotting a surface is also easy to do as well as a wireframe and contour lines in 3D.

5.7.2 Surfaces, wireframe, contour, contourf and contour3d

To show these cases we’ll use the following peaks function:� �
function peaks(; n=49)

x = LinRange(-3, 3, n)
y = LinRange(-3, 3, n)
a = 3 ∗ (1 .- x') .^ 2 .∗ exp.(-(x' .^ 2) .- (y .+ 1) .^ 2)
b = 10 ∗ (x' / 5 .- x' .^ 3 .- y .^ 5) .∗ exp.(-x' .^ 2 .- y .^ 2)
c = 1 / 3 ∗ exp.(-(x' .+ 1) .^ 2 .- y .^ 2)
return (x, y, a .- b .- c)

150 JULIA DATA SCIENCE

end� �
The output for the different plotting functions is� �
function plot_peaks_function()

x, y, z = peaks()
x2, y2, z2 = peaks(; n=15)
fig = Figure(resolution=(1600, 400), fontsize=26)
axs = [Axis3(fig[1, i]; aspect=(1, 1, 1)) for i = 1:3]
hm = surface!(axs[1], x, y, z)
wireframe!(axs[2], x2, y2, z2)
contour3d!(axs[3], x, y, z; levels=20)
Colorbar(fig[1, 4], hm, height=Relative(0.5))
fig

end
plot_peaks_function()� �

Figure 5.35: Plot peaks
function.

But, it can also be plotted with a heatmap(x, y, z), contour(x, y, z) or contourf(x
↪→, y, z):� �
function heatmap_contour_and_contourf()

x, y, z = peaks()
fig = Figure(resolution=(1600, 400), fontsize=26)
axs = [Axis(fig[1, i]; aspect=DataAspect()) for i = 1:3]
hm = heatmap!(axs[1], x, y, z)
contour!(axs[2], x, y, z; levels=20)
contourf!(axs[3], x, y, z)
Colorbar(fig[1, 4], hm, height=Relative(0.5))
fig

end
heatmap_contour_and_contourf()� �
Additionally, by changing Axis to an Axis3, these plots will be automatically be
in the x-y plane:� �
function heatmap_contour_and_contourf_in_a_3d_plane()

x, y, z = peaks()
fig = Figure(resolution=(1600, 400), fontsize=26)

DATA VISUALIZATION WITH MAKIE. JL 151

Figure 5.36: Heatmap
contour and contourf.

axs = [Axis3(fig[1, i]) for i = 1:3]
hm = heatmap!(axs[1], x, y, z)
contour!(axs[2], x, y, z; levels=20)
contourf!(axs[3], x, y, z)
Colorbar(fig[1, 4], hm, height=Relative(0.5))
fig

end
heatmap_contour_and_contourf_in_a_3d_plane()� �

Figure 5.37: Heatmap
contour and contourf in
a 3d plane.

Something else that is easy to do is to mix all these plotting functions into just
one plot, namely:� �
using TestImages� �� �
function mixing_surface_contour3d_contour_and_contourf()

img = testimage("coffee.png")
x, y, z = peaks()
cmap = :Spectral_11
fig = Figure(resolution=(1200, 800), fontsize=26)
ax1 = Axis3(fig[1, 1]; aspect=(1, 1, 1), elevation=pi / 6, xzpanelcolor=(:
↪→black, 0.75),

perspectiveness=0.5, yzpanelcolor=:black, zgridcolor=:grey70,
ygridcolor=:grey70, xgridcolor=:grey70)

ax2 = Axis3(fig[1, 3]; aspect=(1, 1, 1), elevation=pi / 6, perspectiveness
↪→=0.5)
hm = surface!(ax1, x, y, z; colormap=(cmap, 0.95), shading=true)
contour3d!(ax1, x, y, z .+ 0.02; colormap=cmap, levels=20, linewidth=2)
xmin, ymin, zmin = minimum(ax1.finallimits[])
xmax, ymax, zmax = maximum(ax1.finallimits[])

152 JULIA DATA SCIENCE

12 we are using the
LinearAlgebra module
from Julia’s standard
library.

contour!(ax1, x, y, z; colormap=cmap, levels=20, transformation=(:xy, zmax))
contourf!(ax1, x, y, z; colormap=cmap, transformation=(:xy, zmin))
Colorbar(fig[1, 2], hm, width=15, ticksize=15, tickalign=1, height=Relative
↪→(0.35))
transformations into planes
heatmap!(ax2, x, y, z; colormap=:viridis, transformation=(:yz, 3.5))
contourf!(ax2, x, y, z; colormap=:CMRmap, transformation=(:xy, -3.5))
contourf!(ax2, x, y, z; colormap=:bone_1, transformation=(:xz, 3.5))
image!(ax2, -3 .. 3, -3 .. 2, rotr90(img); transformation=(:xy, 3.8))
xlims!(ax2, -3.8, 3.8)
ylims!(ax2, -3.8, 3.8)
zlims!(ax2, -3.8, 3.8)
fig

end
mixing_surface_contour3d_contour_and_contourf()� �

Figure 5.38: Mixing
surface, contour3d,
contour and contourf.

Not bad, right? From there is clear that any heatmap’s, contour’s, contourf’s or
image can be plotted into any plane.

5.7.3 Arrows and Streamplots

arrows and streamplot are plots that might be useful when we want to know the
directions that a given variable will follow. See a demonstration below12:� �
using LinearAlgebra� �� �
function arrows_and_streamplot_in_3d()

ps = [Point3f(x, y, z) for x = -3:1:3 for y = -3:1:3 for z = -3:1:3]
ns = map(p -> 0.1 ∗ rand() ∗ Vec3f(p[2], p[3], p[1]), ps)
lengths = norm.(ns)
flowField(x, y, z) = Point(-y + x ∗ (-1 + x^2 + y^2)^2, x + y ∗ (-1 + x^2 +
↪→y^2)^2,

z + x ∗ (y - z^2))
fig = Figure(resolution=(1200, 800), fontsize=26)
axs = [Axis3(fig[1, i]; aspect=(1, 1, 1), perspectiveness=0.5) for i = 1:2]

DATA VISUALIZATION WITH MAKIE. JL 153

13 https://en.wikipedia
.org/wiki/Ray_tracing
_(graphics)

arrows!(axs[1], ps, ns, color=lengths, arrowsize=Vec3f0(0.2, 0.2, 0.3),
linewidth=0.1)

streamplot!(axs[2], flowField, -4 .. 4, -4 .. 4, -4 .. 4, colormap=:plasma,
gridsize=(7, 7), arrow_size=0.25, linewidth=1)

fig
end
arrows_and_streamplot_in_3d()� �

Figure 5.39: Arrows
and streamplot in 3d.

Other interesting examples are a mesh(obj), a volume(x, y, z, vals), and a contour
↪→(x, y, z, vals).

5.7.4 Meshes and Volumes

Drawing Meshes comes in handy when you want to plot geometries, like a
Sphere or a Rectangle, i. e. FRect3D. Another approach to visualize points in
3D space is by calling the functions volume and contour, which implements ray
tracing13 to simulate a wide variety of optical effects. See the next examples:� �
using GeometryBasics� �� �
function mesh_volume_contour()

mesh objects
rectMesh = FRect3D(Vec3f(-0.5), Vec3f(1))
recmesh = GeometryBasics.mesh(rectMesh)
sphere = Sphere(Point3f(0), 1)
https://juliageometry.github.io/GeometryBasics.jl/stable/primitives/
spheremesh = GeometryBasics.mesh(Tesselation(sphere, 64))
uses 64 for tesselation, a smoother sphere
colors = [rand() for v in recmesh.position]
cloud points for volume
x = y = z = 1:10
vals = randn(10, 10, 10)
fig = Figure(resolution=(1600, 400))
axs = [Axis3(fig[1, i]; aspect=(1, 1, 1), perspectiveness=0.5) for i = 1:3]

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

154 JULIA DATA SCIENCE

mesh!(axs[1], recmesh; color=colors, colormap=:rainbow, shading=false)
mesh!(axs[1], spheremesh; color=(:white, 0.25), transparency=true)
volume!(axs[2], x, y, z, vals; colormap=Reverse(:plasma))
contour!(axs[3], x, y, z, vals; colormap=Reverse(:plasma))
fig

end
mesh_volume_contour()� �

Figure 5.40: Mesh
volume contour.

Note that here we are plotting two meshes in the same axis, one transparent
sphere and a cube. So far, we have covered most of the 3D use-cases. Another
example is ?linesegments.

Taking as reference the previous example one can do the following customplot
with spheres and rectangles:� �
using GeometryBasics, Colors� �
For the spheres let’s do a rectangular grid. Also, wewill use a different color for
each one of them. Additionally, we can mix spheres and a rectangular plane.
Next, we define all the necessary data.� �
seed!(123)
spheresGrid = [Point3f(i,j,k) for i in 1:2:10 for j in 1:2:10 for k in 1:2:10]
colorSphere = [RGBA(i ∗ 0.1, j ∗ 0.1, k ∗ 0.1, 0.75) for i in 1:2:10 for j in

↪→1:2:10 for k in 1:2:10]
spheresPlane = [Point3f(i,j,k) for i in 1:2.5:20 for j in 1:2.5:10 for k in

↪→1:2.5:4]
cmap = get(colorschemes[:plasma], LinRange(0, 1, 50))
colorsPlane = cmap[rand(1:50,50)]
rectMesh = FRect3D(Vec3f(-1, -1, 2.1), Vec3f(22, 11, 0.5))
recmesh = GeometryBasics.mesh(rectMesh)
colors = [RGBA(rand(4)...) for v in recmesh.position]� �
Then, the plot is simply done with:� �
function grid_spheres_and_rectangle_as_plate()

fig = with_theme(theme_dark()) do
fig = Figure(resolution=(1200, 800))

DATA VISUALIZATION WITH MAKIE. JL 155

ax1 = Axis3(fig[1, 1]; aspect=:data, perspectiveness=0.5, azimuth=0.72)
ax2 = Axis3(fig[1, 2]; aspect=:data, perspectiveness=0.5)
meshscatter!(ax1, spheresGrid; color = colorSphere, markersize = 1,

shading=false)
meshscatter!(ax2, spheresPlane; color=colorsPlane, markersize = 0.75,

lightposition=Vec3f(10, 5, 2), ambient=Vec3f(0.95, 0.95, 0.95),
backlight=1.0f0)

mesh!(recmesh; color=colors, colormap=:rainbow, shading=false)
limits!(ax1, 0, 10, 0, 10, 0, 10)
fig

end
fig

end
grid_spheres_and_rectangle_as_plate()� �

Figure 5.41: Grid
spheres and rectangle
as plate.

Here, the rectangle is semi-transparent due to the alpha channel added to the
RGB color. The rectangle function is quite versatile, for instance 3D boxes are
easy do implement which in turn could be used for plotting a 3D histogram.
See our next example, where we are using again our peaks function and some
additional definitions:� �
x, y, z = peaks(; n=15)
δx = (x[2] - x[1]) / 2
δy = (y[2] - y[1]) / 2
cbarPal = :Spectral_11
ztmp = (z .- minimum(z)) ./ (maximum(z .- minimum(z)))
cmap = get(colorschemes[cbarPal], ztmp)
cmap2 = reshape(cmap, size(z))
ztmp2 = abs.(z) ./ maximum(abs.(z)) .+ 0.15� �
here 𝛿𝑥, 𝛿𝑦 are used to specified our boxes size. cmap2 will be the color for each
box and ztmp2 will be used as a transparency parameter. See the output in the
next figure.� �
function histogram_or_bars_in_3d()

156 JULIA DATA SCIENCE

fig = Figure(resolution=(1200, 800), fontsize=26)
ax1 = Axis3(fig[1, 1]; aspect=(1, 1, 1), elevation=π/6,

perspectiveness=0.5)
ax2 = Axis3(fig[1, 2]; aspect=(1, 1, 1), perspectiveness=0.5)
rectMesh = FRect3D(Vec3f0(-0.5, -0.5, 0), Vec3f0(1, 1, 1))
meshscatter!(ax1, x, y, 0∗z, marker = rectMesh, color = z[:],

markersize = Vec3f.(2δx, 2δy, z[:]), colormap = :Spectral_11,
shading=false)

limits!(ax1, -3.5, 3.5, -3.5, 3.5, -7.45, 7.45)
meshscatter!(ax2, x, y, 0∗z, marker = rectMesh, color = z[:],

markersize = Vec3f.(2δx, 2δy, z[:]), colormap = (:Spectral_11, 0.25),
shading=false, transparency=true)

for (idx, i) in enumerate(x), (idy, j) in enumerate(y)
rectMesh = FRect3D(Vec3f(i - δx, j - δy, 0), Vec3f(2δx, 2δy, z[idx, idy

↪→]))
recmesh = GeometryBasics.mesh(rectMesh)
lines!(ax2, recmesh; color=(cmap2[idx, idy], ztmp2[idx, idy]))

end
fig

end
histogram_or_bars_in_3d()� �

Figure 5.42: Histogram
or bars in 3d.

Note, that you can also call lines or wireframe over a mesh object.

5.7.5 Filled Line and Band

For our last example we will show how to do a filled curve in 3Dwith band and
some linesegments:� �
function filled_line_and_linesegments_in_3D()

xs = LinRange(-3, 3, 10)
lower = [Point3f(i, -i, 0) for i in LinRange(0, 3, 100)]
upper = [Point3f(i, -i, sin(i) ∗ exp(-(i + i))) for i in range(0, 3, length
↪→=100)]
fig = Figure(resolution=(1200, 800))
axs = [Axis3(fig[1, i]; elevation=pi/6, perspectiveness=0.5) for i = 1:2]

DATA VISUALIZATION WITH MAKIE. JL 157

band!(axs[1], lower, upper, color=repeat(norm.(upper), outer=2), colormap=:
↪→CMRmap)
lines!(axs[1], upper, color=:black)
linesegments!(axs[2], cos.(xs), xs, sin.(xs), linewidth=5, color=1:length(xs
↪→))
fig

end
filled_line_and_linesegments_in_3D()� �

Figure 5.43: Filled line
and linesegments in 3D.

Finally, our journey doing 3D plots has come to an end. You can combine
everything we exposed here to create amazing 3D images!

1 https://docs.julialang
.org/en/v1/manual/st
yle-guide/

6 Appendix

6.1 Packages Versions

This book is built with Julia 1.6.3 and the following packages:� �
Books 1.1.3
CSV 0.9.10
CairoMakie 0.6.6
CategoricalArrays 0.10.1
ColorSchemes 3.15.0
Colors 0.12.8
DataFrames 1.2.2
Distributions 0.25.24
FileIO 1.11.2
GLMakie 0.4.7
GeometryBasics 0.4.1
ImageMagick 1.2.2
LaTeXStrings 1.3.0
Makie 0.15.3
QuartzImageIO 0.7.4
Reexport 1.2.2
StatsBase 0.33.12
TestImages 1.6.2
XLSX 0.7.8� �
Build: 2021-11-06 18:4 UTC

6.2 Notation

In this book, we try to keep notation as consistent as possible. This makes
reading and writing code easier. We can define the notation into three parts.

6.2.1 Julia Style Guide

Firstly, we attempt to stick to the conventions from the Julia Style Guide1. Most
importantly, wewrite functions not scripts (see also Section 1.2). Furthermore,
we use naming conventions consistent with Julia base/, meaning:

https://docs.julialang.org/en/v1/manual/style-guide/
https://docs.julialang.org/en/v1/manual/style-guide/
https://docs.julialang.org/en/v1/manual/style-guide/

160 JULIA DATA SCIENCE

2 https://github.com/i
nvenia/BlueStyle

• Use camelcase for modules: module JuliaDataScience, struct MyPoint. (Note
that camelcase is so called because the capitalization of words, as in “iPad”
or “CamelCase,” makes the word look like a camel.)

• Write function names in lowercase letters and separate the words by under-
scores. It is also allowed to omit the separator when naming functions. For
example, these function names are all in linewith the conventions: my_function
↪→, myfunction and string2int.

Also, we avoid brackets in conditionals, that is, we write if a == b instead of
if (a == b) and use 4 spaces per indentation level.

6.2.2 BlueStyle

The Blue Style Guide2 adds multiple conventions on top of the default Julia
Style Guide. Some of these rules might sound pedantic, but we found that
they make the code more readable.

From the style guide, we attempt to adhere specifically to:

• At most 92 characters per line in code (in Markdown files, longer lines are
allowed).

• When loading code via using, load at most one module per line.

• No trailing whitespace. Trailing whitespace makes inspecting changes in
code more difficult since they do not change the behavior of the code but
do show up as changes.

• Avoid extraneous spaces inside brackets. So, write string(1, 2) instead of
string(1 , 2).

• Global variables should be avoided.

• Try to limit function names to one or two words.

• Use the semicolon to clarify whether an argument is a keyword argument
or not. For example, func(x; y=3) instead of func(x, y=3).

• Avoid using multiple spaces to align things. So, write� �
a = 1
lorem = 2� �
instead of� �
a = 1
lorem = 2� �

https://github.com/invenia/BlueStyle
https://github.com/invenia/BlueStyle

APPENDIX 161

• Whenever appropriate, surround binary operators with a space, for exam-
ple, 1 == 2 or y = x + 1.

• Indent triple-quotes and triple-backticks:� �
s = """

my long text:
[...]
the end.
"""� �

• Do not omit zeros in floats (even though Julia allows it). Hence, write 1.0
instead of 1. and write 0.1 instead of .1.

• Use in in for loops and not = or ∈ (even though Julia allows it).

6.2.3 Our additions

• In text, we reference the function call M.foo(3, 4) as M.foo and not M.foo(...)
or M.foo().

• When talking about packages, like the DataFrames package, we explicitly
write DataFrames.jl each time. This makes it easier to recognize that we are
talking about a package.

• For filenames, we stick to “file.txt” and not file.txt or file.txt, because it is
consistent with the code.

• For columnnames in tables, like the column x, we stick to column :x, because
it is consistent with the code.

• Do not use Unicode symbols in inline code. This is simply a bug in the PDF
generation that we have to workaround for now.

• The line before each code block ends with a colon (:) to indicate that the
line belongs to the code block.

Loading of symbols

Prefer to load symbols explicitly, that is, prefer using A: foo over using A when
not using the REPL (see also, JuMP Style Guide, 2021). In this context, a symbol
means an identifier to an object. For example, even if it doesn’t look like it
normally, internally DataFrame, π and CSV are all symbols. We notice this when
we use an introspective method from Julia such as isdefined:� �
isdefined(Main, :π)� �
true

162 JULIA DATA SCIENCE

Next to being explicit when using using, also prefer using A: foo over import A:
↪→foo because the latter makes it easy to accidentally extend foo. Note that this
isn’t just advice for Julia: implicit loading of symbols via from <module> import ∗
is also discouraged in Python (van Rossum et al., 2001).

The reason why being explicit is important is related to semantic versioning.
With semantic versioning (http://semver.org), the version number is related
to whether a package is so-called breaking or not. For example, a non-breaking
update for package A is when the package goes from version 0.2.2 to 0.2.3.
With such a non-breaking version update, you don’t need to worry that your
package will break, that is, throw an error or change behavior. If package A
goes from 0.2 to 1.0, then that’s a breaking update and you can expect that you
need some changes in your package tomake Awork again. However, exporting
extra symbols is considered a non-breaking change. So, with implicit loading
of symbols, non-breaking changes can break your package. That’s why it’s
good practice to explicitly load symbols.

http://semver.org

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh
approach to numerical computing. SIAM Review, 59(1), 65–98.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and
Applications, 19(2), 171–209.

Domo. (2018). Data never sleeps 6.0. https://www.domo.com/assets/downlo
ads/18_domo_data-never-sleeps-6+verticals.pdf

Fitzgerald, S., Jimenez, D. Z., S., F., Yorifuji, Y., Kumar, M., Wu, L., Carosella,
G., Ng, S., Parker, P., R. Carter, & Whalen, M. (2020). IDC FutureScape:
Worldwide digital transformation 2021 predictions. IDC FutureScape.

Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east. IDC iView: IDCAnalyze
the Future, 2007(2012), 1–16.

JuMP style guide. (2021). https://jump.dev/JuMP.jl/v0.21/developers/style/
#using-vs.-import

Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam,
M., Shiraz, M., & Gani, A. (2014). Big data: Survey, technologies, oppor-
tunities, and challenges. The Scientific World Journal, 2014.

Meng, X.-L. (2019). Data science: An artificial ecosystem. Harvard Data Science
Review, 1(1). https://doi.org/10.1162/99608f92.ba20f892

Perkel, J. M. (2019). Julia: Come for the syntax, stay for the speed. Nature,
572(7767), 141–142. https://doi.org/10.1038/d41586-019-02310-3

Storopoli, J. (2021). Bayesian statistics with julia and turing. https://storopoli.io
/Bayesian-Julia

tanmay bakshi. (2021). Baking Knowledge into Machine Learning ModelsChris
Rackauckas on TechLifeSkills w/ Tanmay Ep.55. https://youtu.be/moyPIhv
w4Nk

TEDx Talks. (2020). A programming language to heal the planet together: Julia |
Alan Edelman | TEDxMIT. https://youtu.be/qGW0GT1rCvs

van Rossum, G., Warsaw, B., & Coghlan, N. (2001). Style guide for Python code
(PEP No. 8). https://www.python.org/dev/peps/pep-0008/

https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
https://jump.dev/JuMP.jl/v0.21/developers/style/#using-vs.-import
https://jump.dev/JuMP.jl/v0.21/developers/style/#using-vs.-import
https://doi.org/10.1162/99608f92.ba20f892
https://doi.org/10.1038/d41586-019-02310-3
https://storopoli.io/Bayesian-Julia
https://storopoli.io/Bayesian-Julia
https://youtu.be/moyPIhvw4Nk
https://youtu.be/moyPIhvw4Nk
https://youtu.be/qGW0GT1rCvs
https://www.python.org/dev/peps/pep-0008/

164 JULIA DATA SCIENCE

Wickham, H. (2011). The split-apply-combine strategy for data analysis. Jour-
nal of Statistical Software, 40(1), 1–29.

	Preface
	What is Data Science?
	Software Engineering
	Acknowledgements

	Why Julia?
	For Non-Programmers
	For Programmers
	What Julia Aims to Accomplish?
	Julia in the Wild

	Julia Basics
	Development Environments
	Language Syntax
	Native Data Structures
	Filesystem
	Julia Standard Library

	DataFrames.jl
	Load and Save Files
	Index and Summarize
	Filter and Subset
	Select
	Types and Missing Data
	Join
	Variable Transformations
	Groupby and Combine
	Performance

	Data Visualization with Makie.jl
	CairoMakie.jl
	Attributes
	Themes
	Using LaTeXStrings.jl
	Colors and Colormaps
	Layouts
	GLMakie.jl

	Appendix
	Packages Versions
	Notation

	References

