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1 Introduction

Over many decades, economists have sought to understand the drivers underlying the time series

evolution of series of interest through the analysis of seasonally adjusted data. The notion that

a series can be meaningfully decomposed into components that are not directly observed is,

therefore, deeply embedded in empirical economic analyses.

An important strand of literature employs so-called unobserved components (UC) models to

study trends and cycles as separate phenomena of economic interest. While conventional UC

models, including those underlying seasonal adjustment, assume that the individual components

are uncorrelated, a substantial literature questions this in the context of analyzing trend and

cyclical movements in seasonally adjusted data; important contributions include Clark (1989),

Morley, Nelson and Zivot (2003, henceforth MNZ), Morley (2007), Sinclair (2009), Dungey et al.

(2013, 2015). Very recently, Hindrayanto, Jacobs, Osborn and Tian (2019, henceforth HJOT)

extend the analysis to include a seasonal component, showing (in the univariate context) that

the assumption of uncorrelated trend, cycle and seasonal components can be questionable.

Multivariate analysis of economic time series can throw important light on underlying eco-

nomic phenomena, including trend and cyclical movements. In order to analyze such movements

when they are potentially correlated with seasonality, a correlated multivariate UC model with

a seasonal component is required. Building on HJOT, the present paper studies such a model,

focusing on the case of quarterly data and examining sets of economic restrictions, including

common trends and common cycles, that can be used to ensure identification. To our know-

ledge, no previous analysis has examined identification conditions for a correlated multivariate

UC trend-cycle-seasonal model.

The model is applied to study seasonal gender employment in Australia. Gender issues in

employment are a focus of interest for economists, including the gender wage gap (Blau and

Kahn, 2017) and occupational differences (Preston and Whitehouse, 2004). Our analysis is

distinctive, in examining quarterly aggregate employment by gender. A bivariate male/female

model with a common cycle is preferred to both univariate correlated component and bivariate

uncorrelated component specifications. This model evidences distinct gender-based seasonal

patterns with seasonality declining over time for females and (if anything) increasing for males.

The paper proceeds as follows. Section 2 discusses multivariate correlated seasonal UC

models. It is shown that while the general model is not identified, plausible economic restrictions

can allow identification in the presence of non-zero correlations between trend, cycle and seasonal
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shocks. Section 3 then applies the approach to gender employment in Australia. The final section

concludes.

2 Multivariate UC Models

This section describes the model and discusses its identification, including economically plausible

restrictions that may apply.

2.1 Seasonal UC model

Many macroeconomic variables exhibit trend, cycle and seasonal characteristics. Hence, for an

observed k × 1 vector Yt, consider a multivariate UC model that explicitly recognizes these

characteristics through the measurement equation

Yt = Tt +Ct + St (1)

in which the trend, cycle and seasonal components (Tt, Ct and St, respectively) are, in general,

each k × 1 vectors.

Following MNZ and many others, we assume that the trend for each variable is I(1) and can

be represented as a random walk with drift, so that

Tt = Tt−1 + β + ηt, (2)

where ηt = (η1t, . . . , ηkt)
′, β = (β1, . . . , βk) and the k × k covariance matrix E[ηtη

′
t] = Σηη is

not a priori assumed to be diagonal. The multivariate cyclical component of (1) is represented

by the AR processes

Φ(L)Ct = εt, (3)

where Φ(L) is a k×k matrix in the lag operator L, with Φ(L) = Ik−Φ1L− . . .−ΦpLP (Ik being

a k × k identity matrix) having all roots strictly outside the unit circle and, with εt defined in

the obvious way, E[εtε
′
t] = Σεε. As usual in economic applications of multivariate UC models,

such as Morley (2007), Sinclair (2009) or Ma and Wohar (2013), Φ(L) is assumed diagonal

with the cycle in each variable having the same univariate order p. Empirical analyses typically

employ p = 2, since this can both adequately capture short-term nonseasonal movements in

economic data while also allowing the parameters of the correlated UC trend-cycle model to be
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identified; see MNZ for the univariate case and Trenkler and Weber (2016), hereafter TW, for a

multivariate analysis1.

As in HJOT and many other papers, seasonality is modeled using the so-called “dummy

variable” form

Ψ(L)St = ωt (4)

where Ψ(L) is the scalar annual summation polynomial over a year (Ψ(L) = 1 +L+L2 +L3 for

quarterly data) and, in an obvious notation, E[ωtω
′
t] = Σωω.

To facilitate later discussion, stack the UC model disturbances of (2)-(4) to form the 3k× 1

vector Ut as

Ut = [η′t, ε
′
t,ω
′
t]
′, (5)

and define the 3k × 3k covariance matrix

E[UtU
′
t ] = Σ =


Σηη Σηε Σηω

Σ′ηε Σεε Σεω

Σ′ηω Σ′εω Σωω

 (6)

where, in an obvious notation,

E[ηtε
′
t] = Σηε, E[ηtω

′
t] = Σηω, E[εtω

′
t] = Σεω. (7)

Although the disturbances are possibly cross-correlated at t, they are assumed uncorrelated over

time, so that

E[Ut1U
′
t2 ] = 0, t1 6= t2.

2.2 Reduced form

As a preliminary to identification, we consider the reduced form and autocovariances of the

multivariate seasonal UC model for quarterly data2. It is straightforward to see that the system

(1)-(4) implies the reduced form

Φ(L)∆4Yt = Φ(1)Ψ(1)β +Φ(L)Ψ(L)ηt + ∆4εt +Φ(L)∆1ωt (8)

1With seasonal data, it is also important that the cycle component is not conflated with the seasonal component.
A low order, such as p = 2 can be important for this purpose, especially for quarterly data.

2The expressions in this subsection can be easily generalized to monthly data, but the consequent identification
issues are left for future research.
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where ∆4 = 1− L4 is the annual difference and ∆1 is the usual first difference. In this general

model, each element of Yt is seasonally integrated (see, for example, Ghysels and Osborn, 2001,

Chapter 4), due to the presence of a zero frequency unit root in its trend component (2) and the

full set of unit roots at seasonal frequencies through the nonstationary seasonal process of (4).

Hence annual differencing is required to reduce each univariate process in Yt to stationarity, but

this does not rule out cointegration across the components of Yt.

To focus on the disturbances, define from (8)

Zt = A(L)ηt + (1− L4)εt +B(L)ωt

= H(L)Ut (9)

where

A(L) = (1 + L+ L2 + L3)Φ(L) = Ik +A1L+ ...+Ap+3L
p+3,

B(L) = (1− L)Φ(L) = Ik +B1L+ ...+Bp+1L
p+1 (10)

while Ut is defined in (5) and H(L) is the k × 3k matrix

H(L) ≡
[
A(L) (1− L4)Ik B(L)

]
= H0 +H1L+H2L

2 + ...+HqH
q (11)

where q = max (p+ 3, 4).

For the specific case of interest in our application, with p = 2 and quarterly data, then q = 5.

Also noting that Φ1, Φ2 are diagonal and hence symmetric, it can easily be seen that

H0 =

[
Ik Ik Ik

]
,

H1 =

[
A1 0 B1

]
=

[
(Ik −Φ1) 0 −(Ik +Φ1)

]
,

H2 =

[
A2 0 B2

]
=

[
(Ik −Φ1 −Φ2) 0 (Φ1 −Φ2)

]
,

H3 =

[
A3 0 B3

]
=

[
(Ik −Φ1 −Φ2) 0 Φ2

]
,

H4 =

[
A4 −Ik 0

]
=

[
−(Φ1 +Φ2) −Ik 0

]
,

H5 =

[
A5 0 0

]
=

[
−Φ2 0 0

]
.
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Since Φ(L) is of order p and Zt is the sum of moving averages, the reduced form (8) is a

VARMA(p, q) process, with q = p + 3 for p > 0. Ruling out the AR and MA polynominals in

each equation i = 1, ..., k having any factor in common3, this VARMA process with diagonal

Φ(L) is identified (Dufour and Pelletier (2021, Theorem 3)). An immediate consequence is that

the AR parameters in Φ(L) are identified from the reduced form. Also, noting that Ψ(L) is

the (known) annual summation operator, the drift parameter vector β is identified through the

reduced form intercept vector.

Therefore, the primary issue for identification (and discussed in the next subsection) concerns

whether the elements of the covariance matrix (6) can be estimated given the values of Φ(L)

and β. For this purpose, we consider the non-zero autocovariance matrices of Zt, namely

Γ` =

q−∑̀
i=0

Hi+`ΣH
′
i ` = 0, 1, ..., q. (12)

Using (6) and (11), (12) then yields the autocovariances of Zt in terms of the elements of Σ

and Φ(L).

2.3 Covariance matrix identification

Identification proceeds by considering the relationship between the autocovariances of the mov-

ing average component of the reduced form and the covariance matrix (6) of the underlying

model. MNZ show that p ≥ 2 is sufficient for the identification of the univariate trend-cycle

model, while TW generalize this result to the multivariate context. The addition of seasonal-

ity complicates identification, with HJOT showing not only that univariate models of the form

(1)-(6) for quarterly data with k = 1 are under-identified for p ≤ 1, but also that an additional

disturbance covariance restriction is required for identification when p = 2.

Following the line of analysis used by the above authors, the previous subsection has already

noted that Φ(L) and β are identified from the multivariate ARMA reduced form. Since, from

(10) and (11), the only unknowns in the matrices Hi (i = 0, . . . , q) are the AR coefficients of

Φ(L), these are also identified from the reduced form. Therefore, the autocovariances of Zt

defined by (12) can be used to provide information about the 3k(3k + 1)/2 distinct elements

of Σ, effectively treating the other parameters as given. The order condition for identification

then requires Γ` of (12) for ` = 0, 1, . . . , q to contain at least 3k(3k + 1)/2 distinct elements.

3The AR polynomial φi(L) in the ith equation will cancel in (8) when the corresponding cycle disturbance has
zero variance. However, this implies the absence of a stochastic cycle component in the variable and hence φi(L)
is not identified.
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The q + 1 non-null autocovariance matrices of (12) have qk2 + k(k + 1)/2 distinct elements,

of which k(k+1)/2 are contributed by the contemporaneous covariance matrix Γ0. As discussed

above, the VMA order q is a consequence of both the data frequency and cycle order p. For

quarterly data and p ≤ 1, q = 4 and hence the number of distinct autocovariance elements in Γ`

for ` = 0, ..., q, namely (9k2+k)/2, is less than the number of distinct elements ofΣ, (9k2+3k)/2.

Consequently, as for the univariate case, the parameters of the quarterly unrestricted correlated

multivariate UC model with seasonality are not identified when p ≤ 1. We therefore concentrate

on the case p = 2, which is of interest for empirical as well as theoretical reasons.

With p = 2, the number of distinct elements in Γ` of (12) for ` = 0, ..., 5 is 5k2 + k(k+ 1)/2.

It is easily seen that this can be written as (11k2 + k)/2 = (9k2 + 3k)/2 for k = 1 (the case

discussed by HJOT) and (11k2 + k)/2 > (9k2 + 3k)/2 for k > 1. Therefore, the order condition

for identification is satisfied for the correlated UC model for all values of k. However, the rank

condition also needs to be satisfied and HJOT show that this fails in the univariate case.

Using a similar notation to TW, define γ∗0 = vech(Γ0), where the vech operator columnwise

stacks the elements of Γ0 on and below the main diagonal into the k(k+1)/2 vector γ∗0 , starting

with the first column of Γ0 and with the elements of each subsequent column placed below

the immediately preceding one. Also define the k2 vectors γi = vec(Γi), i = 1, . . . , 5, where

the conventional vec operator stacks all elements in the columns of the relevant matrix below

each other. The vector γ∗ = [γ∗′0 ,γ
′
1,γ
′
2,γ
′
3,γ
′
4,γ
′
5]
′ then contains the (11k2 + k)/2 distinct

autocovariance elements for Zt at lags ` = 0, . . . , 5. Similarly, define the vector σ∗ = vech(Σ)

containing the (9k2 + 3k)/2 distinct elements of the component covariance matrix Σ and it is

also possible to define a (11k2 + k)/2× (9k2 + 3k)/2 matrix D whose elements depend only on

Φ1 and Φ2 to write the relationships as the system of equations

γ∗ = Dσ∗ (13)

in which the elements of σ∗ are unknown. Consequently, the rank condition for identification

in the multivariate correlated UC model is that D has a rank of at least (9k2 + 3k)/2.

HJOT show that a linear dependence exists between the autocovariances when k = 1 in the

correlated seasonal UC model, and hence the rank condition for identification fails. A single

covariance restriction on the component disturbances is then required for identification. In the

multivariate case, although explicit expressions can be obtained for the elements of D, these

are substantially more complicated for the seasonal multivariate model than those presented by
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TW for the trend-cycle model or HJOT in the univariate seasonal case.

Therefore, in order to check the rank condition relevant to our empirical analysis where k = 2,

we construct the 23×21 matrixD for two sets of plausible values for Φ1 and Φ2, namely the pairs

of estimated values from the two sets univariate correlated UC models of Table 2 below, one pair

assuming zero trend-seasonal correlations and the other assuming perfect negative trend-cycle

correlations. In both cases the rank of D is 19 and hence, with 21 distinct elements in Σ, the

model is under-identified and at least two restrictions need to be imposed on this matrix for

identification.

2.4 Restricted models

A conventional multivariate UC model, as used by Harvey (1989), among many others, allows

the disturbances for a specific component to be correlated across variables, but imposes zero cor-

relations across components. With trend, cycle and seasonal components, the covariance matrix

of (6) is then block diagonal, with 6k2 zero restrictions thereby imposed on the 9k2 elements of

Σ. The discussion of the preceding subsection implies that this uncorrelated multivariate UC

specification is over-identified.

Although some previous studies employing UC models (including Morley (2007), Ma and

Wohar (2013), Clark (1989), Fleischman and Roberts (2011) and McElroy (2017)) employ re-

strictions across variables to improve efficiency of estimation, the inclusion of seasonality in the

correlated UC model requires restrictions for identification. Rather than making a priori as-

sumption on the appropriate restrictions, the application of the next section considers a range

of models and judges the economic plausibility of the results ex post.

To be specific, for our bivariate model of male/female employment, for which Tt = (τ1t, τ2t)
′,

Ct = (c1t, c2t)
′. St = (s1t, s2t)

′, we consider:

1. Common trends, which imposes in (2)

τ2t = dτ1t

= dτ1,t−1 + dβ1 + dη1t

so that both the deterministic and stochastic trend components of τ2t are the same scalar

multiple d of τ1t.
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2. Common cycles, for which c2t = bc1t, implying that in (3) Φ(L) = Φ(L)I2 and

ε2t = bε1t. (14)

3. Common seasonals, with s2t = as1t, so that

ω2t = aω1t. (15)

4. Perfectly correlated trend shock, which places no restriction on the drift parameters but

imposes

η2t = dη1t. (16)

5. Perfectly correlated cycle shock, in which no cross-equation restrictions are placed on the

AR parameters, but the cycle shocks satisfy (14).

6. Same trend shock, which imposes the additional restriction d = 1 in the perfectly correlated

trend shock model.

7. Same cycle shock, which imposes the restriction b = 1 in the perfectly correlated cycle

shock model.

Of these specifications, models 1, 4 and 6 all imply cointegration between the two observed

series. The common trends model is used by Morley (2007) and Ma and Wohar (2013), with

the perfectly correlated trend shock specification relaxing the implied restriction across the

stochastic and deterministic trends. Clearly, the same trend shock specification restricts the

stochastic trends of the two series to be the same without restricting the deterministic trends.

The common cycle specification of 2 is used by Clark (1989), Harvey and Trimbur (2003) and

Fleischman and Roberts (2011), with the perfectly correlated cycle shock specification relaxing

the restriction of identical AR coefficients across variables. While the studies just mentioned

consider trend and cycle components, the reduced rank specification of seasonality employed by

McElroy (2017) implies common seasonality in a bivariate context.
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Table 1 sets out the restrictions implied for each case considered, including the model where

the only non-zero correlations are within components, which is the conventional bivariate UC

model. The number of restrictions imposed by each specification is noted, with each substantially

exceeding the minimum of two required for identification. Although a same seasonal shock

imposing a = 1 in (15) could also be considered, this was not relevant for our empirical analysis,

as discussed in the next section.

3 Gender employment in Australia

In their recent analysis, Birch and Preston (2020) highlight a number of gender-specific aspects

of the Australian labour market. They note, in particular, that the female labour force parti-

cipation rate reached an all-time high of 61.3% in 2019, only 10 percentage points below the

male rate. In line with this, the current century has seen the participation rate for females

increase more sharply than for males across all groups aged at 25 or more (Birch and Preston,

2020, Figure 1, p.346). These authors (see especially Table 3, p.349) also note important differ-

ences across industries in the gender composition of employees and in the proportion who work

part-time.

Although it does not rule out cointegration, these findings suggest that the number of fe-

male and male employees in Australia have followed different (deterministic) trends over recent

decades. Further, since more than twice as many females as males work part-time while many

part-time workers in Australia are employed on a casual basis (Birch and Preston, 2020, pp.348-

350), it is plausible that females employment may be more susceptible overall to cyclical and/or

seasonal movements than that of males.

Recent studies relating to the US indicate that cyclical movements have gender-specific

employment consequences, with both Hoynes, Miller and Schaller (2012) and Guisinger (2020)

finding cyclical movements to be more marked for males than females. However, neither considers

seasonal aspects of employment and, although Guisinger (2020) uses a correlated UC model as

one of three decomposition techniques, the methods she applies are univariate.

In order to exploit communality across male and female employment, while not making

the essentially arbitrary assumption that seasonal movements are uncorrelated with other time

series characteristics, we apply a bivariate correlated UC model to examine the trend, cyclical

and seasonal characteristics of male and female employment in Australia.
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3.1 Preliminary analysis

Our data consists of the total number of employed persons (in thousands) by gender in Australia,

provided by the Australian Bureau of Statistics4. We use quarterly data from 1986:Q3 to

2020:Q1, with the end-date avoiding issues arising from the Coronavirus pandemic. As usual,

the original values are transformed by taking natural logarithms and, in order to more clearly

show cyclical and seasonal movements, are multiplied by 100.

Figure 1 shows the key features of the series are the upward trends, with that for females

steeper than for males5, the downswings in both series during the early 1990s and the seasonality

evident in quarter-to-quarter changes, especially for females.

1990:1 2000:1 2010:1 2020:1
Dates

790
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0l

n

100ln(male)
100ln(female)

Figure 1: Male and female employment in Australia in natural logarithm times 100, from 1986:Q3 to
2020:Q1.

4The Australian labour force data can be downloaded at https://www.abs.gov.au/statistics/labour/

employment-and-unemployment/labour-force-australia-detailed-quarterly/feb-2020#data-download
5The trends in Figure 1 suggest that female employment may be converging towards male employment. This

possibility might be captured using the long-run convergence framework proposed by Dungey and Osborn (2020),
but such an investigation is beyond the scope of the present paper.
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As a preliminary to a bivariate model, Table 2 reports estimation results for two univariate

UC models6. From HJOT we know that estimation of a correlated univariate UC trend-cycle-

seasonal model requires the imposition of at least one covariance restriction. The first model for

each series assumes zero correlation between trend and seasonal disturbances (ρηω = 0). Since

estimation for both series delivers estimated trend-cycle correlations (ρηε) very close to -1, this

restriction is imposed in the second model estimated for each.

Table 2: Estimation results for univariate UC models for male and female employment
in Australia 1986:Q3 to 2020:Q1

Parameter Males Females
ρη1ω1 = 0 ρη1ε1 = −1 ρη2ω2 = 0 ρη2ε2 = −1

Males:
ση1 1.043 (0.334) 1.068 (0.921)
σε1 1.124 (0.397) 0.785 (1.072)
σω1 0.019(0.010) 0.018 (0.010)
ρη1ε1 -0.992 (0.014) -1 (-)
ρη1ω1 0 (-) -0.993 (0.043)
ρε1ω1 -0.125 (0.112) 0.993 (0.043)

Females:
ση2 0.823 (0.054) 0.969 (0.405)
σε2 0.215 (0.096) 0.402 (0.577)
σω2 0.040 (0.012) 0.041 (0.013)
ρη2ε2 -1.000 (0.000) -1 (-)
ρη2ω2 0 (-) 0.157 (0.741)
ρε2ω2 0.000 (0.004) -0.157 (0.741)

Others:
β1 0.359 (0.083) 0.340 (0.110)
β2 0.619 (0.017) 0620 (0.094)
φ11 0.588 (0.167) 1.308 (0.250)
φ12 0.136 (0.052) -0.489 (0.398)
φ21 1.865 (0.008) 1.388 (0.113)
φ22 -0.868 (0.003) -0.732 (0.303)

Log Lik. -114.669 -113.693 -159.331 -161.404
AIC 245.337 243.386 334.662 338.808
BIC 268.582 266.628 357.905 362.050

Note: Standard errors are shown in parentheses.

6The maximum likelihood estimation results of all the UC models in this paper are obtained using MATLAB,
version R2019b, with the Econometrics ToolboxTM state-space functionality for building the UC models in state-
space forms. The elements in the covariance matrices Σ are computed via nonlinear transformation of the
parameters from the state-space forms, and the delta method is used for computing the standard errors of the
estimated variances and correlations for component shocks.
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Although some estimates for both series appear quite sensitive to the covariance restriction

imposed, it should be borne in mind that the identification conditions for these models are only

just satisfied. Identification requires the AR(2) coefficient to be non-zero and it is reassuring that

the estimated values are generally significant at conventional levels, although the t-ratio in the

second specification for male employment is only around 1.2. The estimated drift coefficients

in Table 2 point to the steeper overall trend increase already noted for female employment

compared with males.

According to AIC and BIC, the perfectly correlated trend-cycle model is preferred for male

employment while the uncorrelated trend-seasonal specification is preferred for female employ-

ment. However, the estimated trend component (see Figure 2) for female employment with

ρηω = 0 is implausible, with a ‘hump’ in the early 1990s. On the other hand, imposing the

restriction ρηε = −1 for female employment yields an estimated trend that closely tracks the ac-

tual data and leaves small cyclical fluctuations. The estimated components for male employment

are, however, very similar from the two models.

We now turn to a bivariate analysis with the aim of exploiting information in both series to

obtain a clearer representation of the underlying components.
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Figure 2: Estimated components of the univariate UC models for Australian male and female employ-
ments. The black lines are estimated components and the red lines are the employment data in natural
logarithm times 100. The univariate model for the left column assumes zero correlation of trend and sea-
sonal disturbances, i.e., ρηω = 0, and the univariate model for the right column restricts the correlation
of trend and cycle disturbances to be -1, i.e., ρηε = −1.
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3.2 Bivariate analysis

Table 3 presents estimation results for bivariate seasonal UC models for employment by gender

in Australia. Four specifications are included in the table, with the first being the standard

uncorrelated model, which allows nonzero disturbance correlations across variables only within

each component, so that all cross-component correlations are assumed to be zero. The other

three models presented are the common trend, common cycle and common seasonal models

which allow cross-component correlations to be nonzero but impose restrictions as discussed in

subsection 2.4 and specified in Table 1. Results for the other specifications discussed there are

presented in Appendix Table A.1.

Two models stand out in Table 3 in terms of the balance of goodness-of-fit and parameters

estimated, namely in terms of information criteria values: these are the uncorrelated compon-

ents and common cycle models, which are preferred by BIC and AIC respectively. Figure 3

compares the estimated components from these two models for the male and female employ-

ment series. Restricting the cross-component correlations to zero leads to the estimated trends

for both series closely tracking the observed series, hence implying very small estimated cyclical

variations. In contrast, the trend series extracted from the common cycle model are smooth

and cyclical variation is evident. In particular, two downturns are detected during the 1990s,

but with relatively little cyclical variation from early in the current century. These results for

employment reflect the long period of growth experienced by the Australian economy since the

1990s7. Interestingly, and unlike results for the US (Hoynes, Miller and Schaller (2012), Gui-

singer (2020)), the estimate b̂ = 1.3 for the common cycle model in Table 3 implies that cyclical

variation in Australian employment is more marked for females than for men.

It is also notable that the bivariate common cycle model yields much smoother cyclical

components than any of the univariate UC models in Figure 2, indicating the value of combining

information available in the two series alongside a flexible covariance structure. Also note that

some (albeit fairly subtle) differences can be seen in the estimated seasonal component for each

series across the models of Figures 2 and 3.

7World Bank data (https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=AU) shows pos-
itive annual GDP growth for Australia in each year from 1991 to 2019.

15



Table 3: Estimation results for bivariate UC models with uncorrelated and common components
for male and female employment in Australia from 1986:Q3 to 2020:Q1

Parameter Uncorrelated Common Trend Common Cycle Common Seasonal

Males:
ση1 0.544 (0.039) 0.631 (0.051) 0.489 (0.107) 0.741 (0.145)
σε1 0.025 (0.043) 0.296 (0.034) 0.041 (0.040) 0.268 (0.322)
σω1 0.015 (0.009) 0.020 (0.014) 0.011 (0.017) 0.016 (0.004)
ρη1ε1 0 (-) -0.813 (0.058) -0.170 (4.300) -0.895 (0.173)
ρη1ω1 0 (-) -0.896 (0.245) -0.719 (0.560) -0.271 (0.821)
ρε1ω1 0 (-) 0.963 (0.189) -0.399 (4.034) 0.599 (0.428)

Females:
ση2 0.635 (0.041) d× ση1 0.681 (0.056) 1.459 (0.519)
σε2 0.138 (0.043) 0.831 (0.062) b× σε1 1.125 (0.508)
σω2 0.038 (0.011) 0.039 (0.011) 0.042 (0.025) a× σω1

ρη2ε2 0 (-) ρη1ε2 ρη2ε1 -0.917 (0.103)
ρη2ω2 0 (-) ρη1ω2 0.519 (0.623) ρη2ω1

ρε2ω2 0 (-) 0.404 (1.413) ρε1ω2 ρε2ω1

Cross-Series:
ρη1η2 0.678 (0.056) 1 (-) 0.461 (0.207) -0.478 (0.160)
ρη1ε2 0 (-) -0.505(0.067) ρη1ε1 0.785 (0.166)
ρη1ω2 0 (-) -0.556 (0.753) -0.239 (0.865) ρη1ω1

ρη2ε1 0 (-) ρη1ε1 -0.953 (1.256) 0.507 (0.280)
ρη2ω1 0 (-) ρη1ω1 0.138 (1.121) -0.191 (0.301)
ρε1ε2 -0.995 (0.031) 0.911 (0.043) 1 (-) -0.731 (0.249)
ρε1ω2 0 (-) 0.562 (1.122) -0.658 (1.407) ρε1ω1

ρε2ω1 0 (-) 0.795 (0.356) ρε1ω1 0.067 (0.268)
ρω1ω2 1.000 (0.001) 0.685 (0.244) 0.835 (0.445) 1 (-)

Others:
β1 0.366 (0.046) 0.386 (0.051) 0.345 (0.043) 0.386 (0.053)
β2 0.605 (0.054) d× β1 0.594 (0.061) 0.782 (0.142)
b 1.296 (1.134)
a 2.269 (0.489)
d 0.948 (0.002)
φ11 0.181 (0.169) 1.655 (0.008) 1.872 (0.022) 0.037 (0.306)
φ12 0.733 (0.154) -0.713 (0.011) -0.943 (0.029) 0.508 (0.171)
φ21 -0.879 (0.313) 0.952 (0.012) 1.359 (0.013)
φ22 -0.503 (0.312) 0.057 (0.012) -0.354 (0.000)

Log Lik. -257.512 -251.697 -248.193 -270.395
AIC 545.024 545.393 536.385 584.785
BIC 588.603 606.404 594.491 648.701

Note: The standard errors are included in parentheses.
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Figure 3: Comparison of the estimated trend, cycle and seasonal components for an uncorrelated UC
model and a common cycle model for Australian male and female employment. The black lines are
estimated components and the red lines are employment values in natural logarithm times 100.
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Returning to the bivariate UC model estimates of Table 3, it is useful to discuss each model

in turn. We have already commented above that male and female employment in Australia have

exhibited different deterministic trends over time, and hence it is unsurprising that the common

trend model is not a preferred specification. While the less restricted version of the perfectly

correlated trend shock model in Appendix Table A.1 yields improved values for the information

criteria, the common cycle model is still preferred to this specification and also to the same

trend shock model. In the light of the estimated seasonal patterns for the two series across a

range of specifications, it is also unsurprising that the common seasonal model leads to relatively

poor information criteria values. Further, note that the common cycle model is preferred to the

perfectly correlated cycle shock and the same cycle shock models (Table A.1).

Figure 4 zooms in on the estimated seasonal components for male and female employment

from the bivariate UC model with a common cycle. The evolution of the seasonal patterns

over time is interesting, with the extent of seasonality declining over time for females and (if

anything) increasing for males. By the end of the sample period, the two seasonals are much

more similar than they are in the early period. Nevertheless some gender differences remain

even in the latter part of the sample.
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Figure 4: Estimated seasonal components for male and female employment using the bivariate UC model
with a common cycle component.
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The female pattern is of alternatively decline (in first and third quarters) and increase (second

and fourth quarters). Although the pattern effectively repeats each two quarters, it is a little

more marked in the second half of the year. The basic pattern for females effectively remains

the same over time, but it has reduced substantially in magnitude since the 1990s. On the other

hand, male employment follows an annual pattern, with positive seasonal contributions in the

first and second quarters, followed by a third quarter decline and little seasonal contribution

in the fourth quarter. While the relative magnitudes of the first and second quarter effects for

male employment change a little over time, the third quarter effect is relatively constant from

around 1990. It is interesting that the second and third quarter seasonal patterns are similar

for males and females, including in magnitude, while those of the fourth and first quarters (the

summer months in Australia) are quite different. This presumably reflects the different sectors

and occupations in which males and females tend to be employed. Although further analysis to

understand these differences is beyond the scope of the present paper, we note that both the

Health Care and Social Assistance and the Education and Training sectors are female-dominated,

with at least 70 percent of employees being female; indeed, gender segregation by industry and

occupation has remained persistent in Australia over at least the last two decades8.

In summary, the common cycle model produces plausible outcomes for trend, cycle and

seasonal components for males and females and gives the lowest AIC value of all the bivariate

models considered. The results suggest that males and females do not have the same seasonality.

Explanations might be the sectors in which females work or that they prefer part-time to full-

time.

3.3 Bivariate analysis for seasonally adjusted employment series

Here we investigate whether our finding above regarding the common cycle producing plausible

outcomes for male and female employment also holds for seasonally adjusted data.

Economic time series are typically seasonally adjusted before being used in economic, econo-

metric and policy analyses, where seasonality is defined as systematic, although not necessarily

regular or unchanging, intrayear movement that is caused by climatic changes, timing of reli-

gious festivals, business practices, and expectations (Hylleberg 1986). Seasonal adjustment (SA)

consists of the estimation of the seasonal component and, when applicable, also trading day and

moving holiday effects, followed by their removal from the time series. The goal is usually to

8Further information can be found in the report “Gender segregation in Australia’s workforce”, pub-
lished by the Australian Government’s Workplace Gender Equality Agency, April 2019, available at
https://www.wgea.gov.au/publications/gender-segregation-in-australias-workforce.
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produce series whose movements are easier to analyze over consecutive time intervals and to

compare to the movements of other series in order to detect co-movements (U.S. Census Bureau

Basic Seasonal Adjustment Glossary; Wright 2013).

Several SA methods exist, but we use the industry standard Census X13ARIMA-SEATS

(henceforth X13) here: the combination of X12-ARIMA and TRAMO-Seats (Department of

Commerce Census Bureau http://www.census.gov/srd/www/x13as/).

An observed time series yt can be decomposed into a trend-cycle ytct , seasonal yst , irregular

yit component, and deterministic effects due to the number of trading days ytdt , and holidays yht ,

such as Easter and Christmas (Ghysels and Osborn 2001, Section 4.2). Since our data are in

logs, we apply the additive version of the decomposition. Ignoring the irregular and deterministic

effects for convenience, this implies

yt = ytct + yst , t = 1, . . . , T. (17)

The SA values, therefore, estimate the component ytct . However, as noted in the Introduction,

the X13ARIMA-SEATS process assumes the components are orthogonal9.

Results in Table 4 and Figure 5 show that the common cycle model is also preferred for SA

data over the correlated model that allows for a general covariance matrix. In particular, the

common cycle model produces plausible outcomes for trend and cycle components for males and

females, as seen in the right-hand panel of the figure. Indeed, these components are very similar

to those obtained using data without seasonal adjustment.

Although the correlated model yields a marginally lower AIC value than the common cycle

model, it produces an implausible estimated trend for male employment; see the middle panel of

Figure 5. In particular, the trend lies above the observed values for most of the sample period,

with the estimated cyclical component being negative. It can also be noted that the Figures in

the Appendix give other examples of implausible estimated components, which may result from

the imposition of inappropriate restrictions.

The two bottom left panels of Figure 5 show the seasonal patterns as detected by X13 in male

and female employment. As found in our seasonal bivariate model above, males and females

do not have the same seasonality. However, the seasonals obtained by X13 appear markedly

different from those observed in Figures 2 and 3.

9We applied the additive procedure of the X13 procedure implemented in Eviews 9.
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Table 4: Estimation results for univarate and bivariate UC models for seasonally adjusted male and
female employment in Australia from 1986:Q3 to 2020:Q1

Parameter Univariate model Correlated bivariate model Common cycle model

Males:
ση1 0.476 (0.035) 0.496 (0.097) 0.454 (0.110)
σε1 0.033 (0.021) 0.243 (0.032) 0.043 (0.048)
ρη1ε1 -1.00 (0.023) -0.700 (0.089) -0.136 (4.549)

Females:
ση2 0.693 (0.084) 1.227 (0.465) 0.675 (0.049)
σε2 0.025 (0.105) 0.835 (0.680) b× σε1
ρη2ε2 -1.00 (0.000) -0.911 (0.035) ρη2ε1

Cross-Series:
ρη1η2 -0.227 (0.597) 0.430 (0.201)
ρη1ε2 0.597 (0.494) ρη1ε1
ρη2ε1 0.854 (0.357) -0.952 (1.331)
ρε1ε2 -0.987 (0.092) 1 (-)

Others:
β1 0.346 (0.043) 0.382 (0.130) 0.344 (0.042)
β2 0.605 (0.060) 0.691 (0.294) 0.592 (0.061)
b 1.303 (1.102)
φ11 1.857 (0.004) 1.866 (0.030) 1.872 (0.023)
φ12 -0.934 (0.004) -0.868 (0.014) -0.942 (0.033)
φ21 1.865 (0.018) 1.283 (0.249)
φ22 -0.944 (0.002) -0.403 (0.237)

Log Lik. -212.594 -217.605
AIC 457.187 457.210
BIC 503.672 489.168

Notes: The standard errors are included in parentheses.

21



1990:1 2000:1 2010:1 2020:1
830

850

870

890

10
0l

n(
M

al
e)

Univariate model: trend for male

1990:1 2000:1 2010:1 2020:1
830

850

870

890
Correlated model: trend for male

1990:1 2000:1 2010:1 2020:1
830

850

870

890
Common cycle model: trend for male

1990:1 2000:1 2010:1 2020:1
780

830

880

10
0l

n(
Fe

m
al

e)

Univariate model: trend for female

1990:1 2000:1 2010:1 2020:1
780

830

880
Correlated model: trend for female

1990:1 2000:1 2010:1 2020:1
780

830

880
Common cycle model: trend for female

1990:1 2000:1 2010:1 2020:1

-2

0

2

10
0l

n(
M

al
e)

Univariate model: cycle for male

1990:1 2000:1 2010:1 2020:1

-10

-5

0

5
Correlated model: cycle for male

1990:1 2000:1 2010:1 2020:1

-2

0

2

Common cycle model: cycle for male

1990:1 2000:1 2010:1 2020:1

-2
0
2
4
6
8

10
0l

n(
Fe

m
al

e)

Univariate model: cycle for female

1990:1 2000:1 2010:1 2020:1
Dates

-2
0
2
4
6
8

Correlated model: cycle for female

1990:1 2000:1 2010:1 2020:1
Dates

-2
0
2
4
6
8

Common cycle model: cycle for female

1990:1 2000:1 2010:1 2020:1

-1

0

1

10
0l

n(
M

al
e)

Census X13: seasonal for male

1990:1 2000:1 2010:1 2020:1
Dates

-1

0

1

10
0l

n(
Fe

m
al

e)

Census X13: seasonal for female

Figure 5: Estimated components by first using the Census X13 for seasonal adjustment and then decom-
posing trend and cycle based on the seasonally adjusted series. The black lines are estimated components
and the red lines are employment values in natural logarithm times 100. All of the UC models allow
correlation between trend and cycle disturbances to be estimated. The correlated model and common
cycle model refer to bivariate UC models, with the former assuming different trend and cycle processes
but the latter assuming a common cycle process shared between male and female employment.
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4 Conclusion

Multivariate analysis of economic time series can throw important light on underlying economic

phenomena, including trend, cyclical and seasonal movements. In order to analyze such move-

ments when they are potentially correlated, a correlated multivariate unobserved components

model is required. Although previously considered in a univariate context, to the best of our

knowledge the present paper is the first to study identification conditions for a multivariate

trend-cycle-seasonal model with correlated shocks. Although restrictions are required to deliver

identification, we believe that forms of cross-equation restrictions that we study (including com-

mon trends, common cycles and common seasonality) are intuitive and allow the approach to

be applied in a variety of real-world situations.

The model is applied to study seasonal aggregate employment by gender in Australia. Spe-

cifically, quarterly data is used to estimate a bivariate male/female model of employment. Al-

though a formal comparison is undertaken with a range of specifications, including ones with

common trend or common seasonality and the uncorrelated component model, the common

cycle specification is preferred. Indeed, graphical and univariate analyses also point to a com-

mon cycle as the most plausible form of restriction to be imposed, with evidence of distinct

gender-based trend and seasonal patterns. Although the use of seasonally adjusted data also

supports the common cycle model, the seasonality implied by routine adjustment differs from

that of our preferred bivariate trend-cycle-seasonal specification.
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A Additional estimation results
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Figure A.1: A comparison of estimated trend, cycle and seasonal components for a common trend model
and a common seasonal component model. The Black lines are estimated components and the red lines
are employment values in natural logarithm times 100.
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Figure A.2: A comparison of estimated trend, cycle and seasonal components for the model with the
same cycle shock and the model with the same trend shock. The Black lines are estimated components
and the red lines are employment values in natural logarithm times 100.
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Figure A.3: A comparison of estimated trend, cycle and seasonal components between the univariate
models and a bivariate model, in which male and female employment share a common cycle component.
The Black lines are estimated components and the red lines are employment values in natural logarithm
times 100. In the univariate model the correlation between trend and cycle shocks is assumed equal to
-1.
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Figure A.4: A comparison of estimated trend, cycle and seasonal components between the bivariate model
with perfectly correlated cycle shocks and the bivariate model with perfectly correlated trend shocks. The
Black lines are estimated components and the red lines are employment values in natural logarithm times
100.
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Table A.1: Estimation results of four other bivariate UC models for male and female employment in
Australia from 1986:Q3 to 2020:Q1

Parameter Same cycle shock Same trend shock Perf-corr cycle shock Perf-corr trend shock

Males:
ση1 1.144 (0.323) 1.418 (0.409) 0.478 (0.076) 4.291 (0.121)
σε1 0.877 (0.362) 1.589 (0.272) 0.171 (0.207) 4.157 (0.125)
σω1 0.016 (0.013) 0.018 (0.013) 0.017 (0.227) 0.022 (0.012)
ρη1ε1 -0.992 (0.008) -0.942 (0.018) -0.155 (1.311) -0.994 (0.001)
ρη1ω1 -0.807 (0.672) 0.517 (0.641) -0.468 (2.335) -0.913 (0.242)
ρε1ω1 0.744 (0.754) -0.701 (0.615) -0.650 (0.535) 0.879 (0.278)

Females:
ση2 1.207 (0.309) ση1 1.045 (1.050) d× ση1
σε2 σε1 1.045 (0.332) b× σε1 9.536 (0.048)
σω2 0.041 (0.013) 0.041 (0.015) 0.043 (0.043) 0.043 (0.014)
ρη2ε2 ρη2ε1 ρη1ε2 ρη2ε1 ρη1ε2
ρη2ω2 0.030 (0.533) ρη1ω2 0.510 (1.286) ρη1ε2
ρε2ω2 ρε1ω2 -0.041 (0.962) ρε1ω2 0.435 (0.660)

Cross-Series:
ρη1η2 0.866 (0.074) 1 (-) 0.385 (0.199) 1 (-)
ρη1ε2 ρη1ε1 -0.919 (0.086) ρη1ε1 -0.999 (0.000)
ρη1ω2 -0.464 (0.474) 0.053 (0.913) 0.072 (1.465) -0.455 (0.649)
ρη2ε1 -0.912 (0.063) ρη1ε1 -0.971 (0.281) ρη1ε1
ρη2ω1 -0.497 (0.898) ρη1ω1 0.495 (1.270) ρη1ω1

ρε1ε2 1 (-) 0.998 (0.013) 1 (-) 0.997 (0.001)
ρε1ω2 0.353 (0.526) -0.041 (0.947) -0.527 (1.762) 0.473 (0.652)
ρε2ω1 ρε1ω1 -0.728 (0.646) ρε1ω1 0.894 (0.266)
ρω1ω2 0.744 (0.286) 0.580 (0.434) 0.751 (0.611) 0.630 (0.355)

Others:
β1 0.378 (0.082) 0.289 (0.113) 0.370 (0.081) 0.693 (0.061)
β2 0.620 (0.086) 0.740 (0.497) 0.668 (0.062) 1.155 (0.121)
b 3.783 (3.330)
d 2.147 (0.063)
φ11 1.254 (0.101) 1.024 (0.002) 1.784 (0.070) 0.978 (0.009)
φ12 -0.434 (0.127) -0.034 (0.019) -0.804 (0.029) -0.018 (0.011)
φ21 1.313 (0.100) 1.326 (0.001) 1.642 (0.012) 0.961 (0.001)
φ22 -0.462 (0.109) -0.322 (0.013) -0.648 (0.008) 0.021 (0.003)

Log Lik. -251.868 -252.705 -247.139 -247.142
AIC 545.735 547.409 538.279 538.285
BIC 606.746 608.42 602.195 602.201

Notes: The standard errors are included in parentheses.
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