
 

 

 University of Groningen

A comparative study of predictive models for Nafion-117 IPMC soft actuators
Burawudi, Kenny K. ; D'Anniballe, Riccardo; Langius, Ruben G.; Carloni, Raffaella

Published in:
IEEE/ASME International Conference on Advanced Intelligent Mechatronics

DOI:
10.1109/AIM46487.2021.9517466

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Burawudi, K. K., D'Anniballe, R., Langius, R. G., & Carloni, R. (2021). A comparative study of predictive
models for Nafion-117 IPMC soft actuators. In IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (pp. 1124-1129). IEEE. https://doi.org/10.1109/AIM46487.2021.9517466

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.1109/AIM46487.2021.9517466
https://research.rug.nl/en/publications/3533ccb5-96fe-48f9-aa58-ec3e0c5a1ad5
https://doi.org/10.1109/AIM46487.2021.9517466


A Comparative Study of Predictive Models
for Nafion-117 IPMC Soft Actuators

Kenny K. Burawudi, Riccardo D’Anniballe, Ruben G. Langius, and Raffaella Carloni

Abstract—Ionic polymer-metal composites are electro-active
soft actuators that, when stimulated by an electric field, convert
electrical energy into mechanical energy. This study focuses on
an ionic polymer-metal composite soft actuator that has been
realized with Nafion-117 and platinum electrodes. Three black-
box models, i.e., curve fitting, multi-layer perceptron, and long
short-term memory recurrent neural network, are designed based
on the forces exerted by the soft actuator at fixed displacements
when stimulated by different voltages. The capability of the
three black-box models to predict unseen forces is evaluated
and compared. This study shows that the multi-layer perceptron
has the best predictive capability in capturing the dynamics of
unseen force data, with a root mean square error of 0.109 mN
and computation time of 13 µs.

I. INTRODUCTION

Ionic polymer metal composites (IPMCs) are a class of
electro-active soft actuators, for which the conversion from
electrical to mechanical energy is based on mass transfer, i.e.,
an applied electric field causes the migration of the cations
carrying a solvent in the polymer. IPMC are promising soft
actuators for bio-medical and bio-robotic applications that
require low actuation voltages, slow actuation, large displace-
ments, and the need to work in wet conditions [1].

IPMC soft actuators are complex multi-domain (i.e., me-
chanical, electrical, thermal, and chemical) dynamical systems.
As a consequence, the development of competent models,
which can capture the highly nonlinear behaviour they exhibit,
results in a challenging task [2]. Current research focuses
on modeling the bending response of IPMC soft actuators
when stimulated by different voltages. Specifically, the tip
displacement has been described either by white-box models,
i.e., a set of mathematical relations based on physical princi-
ples [3], [4], [5], or by black-box models, i.e., identification
methods that fit experimental input-output data by means of,
e.g., nonlinear autoregressions [6], [7] or neural networks [8],
[9]. To the author’s knowledge, research effort has not been
put yet in designing or black-box models for the prediction
of the dynamic behaviour of the forces exerted by the tip of
IPMC soft actuators, when stimulated by different voltages,
even if it constitutes a fundamental performance measure in
soft robotic applications [10].

This study focuses on designing and comparing three dif-
ferent black-box models for an IPMC soft actuator realized
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with Nafion-117 and platinum electrodes. The models should
be able to predict the dynamics of the tip forces exerted by
the IPMC soft actuator at fixed displacements, when stimu-
lated by different voltages. Specifically, as observed during
the experiments, the models should capture the following
behaviour: when a voltage is applied, the soft actuator is in its
region of actuation, in which the force increases until a peak
actuation force. Afterwards, the soft actuator is in its region of
dehydration, in which the force decreases due to electrolysis.
In the Nafion-117 IPMC soft actuator under investigation, the
region of actuation lasts ∼20 s, while the region of dehydration
∼60 s. Three black-box models are designed and compared
in this study, i.e., a curve fitting model (CFM) optimized
by the Levenberg-Marquardt Algorithm (LMA) [11], a feed-
forward Multi-Layer Perceptron (MLP), and a Long Short-
Term Memory (LSTM) recurrent neural network. The models
are build on experimental force data that have been col-
lected from one IPMC soft actuator, when placed at different
fixed displacements and stimulated by different voltages. The
prediction capability of the models is evaluated on unseen
force data (at different displacements and voltages) and are
compared by using the root-mean square error, sanity check,
and computation time for the prediction. The study concludes
that the MLP has the best predictive capability with a final
root mean square error of 0.109 mN (i.e., a final scaled root
mean square error of 0.0570), and computation time of 13 µs,
which guarantees its usability in real-time control.

To summarize, the three main contributions of this study
are: (i) To design three black-box models for the prediction of
the tip forces (which are varying in time) exerted by an IPMC
soft actuator. (ii) To compare three different black-box models.
(iii) To use artificial neural networks for the prediction of the
tip force of an IPMC soft actuator.

The remainder of the paper is organized as follows. Sec-
tion II describes the fabrication of the Nafion-117 IPMC soft
actuator, measurement set-up, and data collection. Section III
presents the data pre-processing and three black-box models.
Section IV reports the results, which are discussed in Sec-
tion V. Finally, concluding remarks are drawn in Section VI.

II. MATERIALS

This Section describes the process for the fabrication of the
Nafion-117 IPMC soft actuator, the measurement set-up, and
the data collection, which consists in measuring the forces
exerted by the tip of the soft actuator at fixed displacement
when stimulated by different voltages.
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(a) A roughened and washed
Nafion-117 sheet.

(b) Nafion-117 submerged in a
salt solution.

(c) Metal ion reduction to form
the primary plating.

(d) Secondary plating and the
two identical samples of the
Nafion-117 IPMC soft actuator.

Fig. 1: Fabrication steps of the Nafion-117 IPMC soft actuator.

A. Fabrication of the Nafion-117 IPMC Soft Actuator

The IPMC soft actuator is realized with a composite sand-
wich structure made of Nafion-117 and platinum electrodes.
The actuator is fabricated by a number of chemical processes
following the methodology presented in [12]. As summarized
in Figure 1, the fabrication steps are: (a) Surface Treatment:
The Nafion-117 is roughened with sandpaper. The roughening
increases the surface area of the polymer that is in contact
with the platinum electrodes. Then, the Nafion-117 is washed
by immersing it in a boiling acidic solution to ensure that
the polymer is completely saturated with protons. (b) Ion
Exchange: The Nafion-117 is submerged in a salt solution
containing platinum ions so that they are absorbed into the
polymer. (c) Primary Plating: The absorbed platinum ions
are reduced to the platinum metallic state, which form the
primary electrode. (d) Secondary Plating: The primary plating
is developed by additional coating of platinum to form the
secondary plating, which reduces the electrode’s resistance
by increasing the mass transfer capability. The produced
composite sandwich structure is cut to obtain samples of the
Nafion-117 IPMC soft actuator, which have length of 65 mm
and width of 5 mm.

B. Measurement Set-up

The measurement set-up consists of the InstronTM Elec-
troPuls E1000 (www.instron.us, USA) test instrument,
equipped with an optical encoder for the linear actuator, and
with the InstronTM 2530-5N static load cell (capacity of ±5
N, sensitivity of 1.6 mV/V to 2.4 mV/V at static rating).

The Nafion-117 IPMC soft actuator sample is placed inside
the Instron testing instrument by means of a clamp, internally

Fig. 2: The soft actuator sample is placed horizontally inside the testing
instrument on the load cell by means of a clamp (rigidly attached to the
instrument linear actuator with a 3D-printed mount). The DC power supply
applies the voltage to the sample through copper tape inside the clamp.

covered with copper tape. The clamp is rigidly attached to the
linear actuator of the Instron test instrument with a 3D-printed
custom mount, and it holds the sample horizontally on the
load cell [13]. A Basetech BT-305 0-30V DC power supply
applies the voltage to the soft actuator through the copper
tape connectors, in contact with the platinum electrodes. The
forces, exerted by the tip of the soft actuator on the load
cell, are recorded by the InstronTM Wavematrix software at
a sampling frequency of 10 Hz. The measurement set-up is
shown in Figure 2.

C. Preparation of the Nafion-117 IPMC Soft Actuator

Before starting each round of measurements of the tip force
exerted at a fixed displacement for different voltages, the soft
actuator is prepared as follows: (i) It is immersed in water
for 60 s to fully hydrate it, with the same hydration level for
each measurement. The hydration allows the ion migration
in the thickness direction of the actuator and, therefore, its
bending when a voltage is applied. (ii) It is blotted in filter
paper to eliminate the excess of water. (iii) It is placed in the
test instrument. (iv) The load cell is calibrated to read 0 N
with the weight of the hydrated sample.

D. Data Collection

The linear actuator of the test instrument is controlled to
incrementally change its position, which causes also the base
of the soft actuator to move. For each fixed displacement
of the base of the soft actuator, the force (exerted by its
tip) is measured by the load cell when different voltages
are applied. The displacement varies from 0 to 20 mm, with
increments of 2 mm (so for a total of 11 displacements), while
the applied voltages are 2, 3, and 4 V, making it 33 force
measurements (one for each voltage-displacement pair). As
each measurement is performed three times, 33×3 = 99 force
measurements have been collected in total. Each measurement
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is limited to 100 s, i.e., a sufficient amount of time to observe
the soft actuator’s force response in time. Specifically, when
the voltage is applied, the actuator is in its region of actuation
(0−∼20 s), in which the force increases until a peak actuation
force. Afterwards, the actuator is in its region of dehydration
(∼20−∼80 s), in which the force decreases due to electrolysis.

The force data collected from one IPMC soft actuator
sample are used to train, validate, and test the thee black-box
models developed in this study. Specifically, the data-set of the
total force measurements has been divided as follows: 80% for
training and 20% for testing. Within the training set, 10% has
been used for validation. The testing data-set is unknown to
the three black-box models during training and validation, as
it is used to evaluate their prediction capability.

III. METHODS

This Section presents the data pre-processing and the three
black-box models, i.e., the curve fitting model, multi-layer
perceptron, and long short-term memory recurrent neural
network, for the Nafion-117 IPMC soft actuator.

A. Data Pre-processing
The collected force data have been pre-processed before

presenting them to the black-box models. The pre-processing
consists of: (i) Removing the calibration offset due to the load
cell so that each measurement begins from 0 N. (ii) Extracting
data from the first 80 s of the measurements, since the last
20 s of the measurements do not contain new information to
be learned by the models. Since data are collected at 10 Hz,
there are 800 data points for each measurement and, therefore,
there are 800 × 33 × 3 = 79.200 data points collected in the
three rounds of measurements for the different displacement
and voltages combinations. It should be noted that, since the
load cell is calibrated to read 0 N with the weight of the
hydrated sample, the forces becomes negative as result of
the sample losing mass due to dehydration. (iii) Adding 0
N forces at the beginning of the measurement since the load
cell is not able to record the initial low forces. (iv) Running a
rolling median sampling window over the data to smooth the
force measurements. To account for the increasing noise due
to dehydration, the sampling window increases in size with
respect to time as b2.5tc + 5, where t is the time (logged
at 10 Hz), and b·c is the floor function. Figure 3 shows an
example of pre-processed data overlaid on the measured data.

Fig. 3: Example of pre-processed force data overlaid on the measured data.

B. Training Data-set

The original training data-set consists of the 80% of the
complete measurement data-set, i.e., 63.360 data points. In
this study, two different training data-set have been considered
for the training of the three black-box models. Specifically,
the two training data-sets are: the unaugmented training data-
set that contains only the pre-processed data, as described
in the previous subsection, i.e., 63.360 data points, and the
augmented training data-set in which each one of the 63.360
data points has been augmented by a factor 4 for a total of
63.360× 4 = 253.440 data points.

C. Curve Fitting Model

The CFM has been chosen because of the characteristic
shape of the data observed in the experiments, in which the
soft actuator achieves a peak force and, afterwards, it loses the
ability to exert a force due to dehydration.

The CFM assumes that the forces observed at time t
are described by F (t) = g(~x, t) + ε, where ε is an error
(assumed to be drawn from a normal distribution), g is a
predefined function whose parameters ~x need to be fitted.
Specifically, the forces of the soft actuator can be described
by a lognormal probability density function in time for a
given voltage-displacement combination, i.e., the function g
is thus defined as g(~x, t) = lognorm(t, a) + b, where a is
a distribution scaling parameter, b is a translation parameter,
and lognorm(t, a) = a2/(s t

√
2π)exp

(
−ln2

(
t
a

)
/(2s2)

)
is

the standardized probability density function, where s is the
shape parameter for the lognormal function. The optimal pa-
rameters have been found for individual voltage-displacement
combinations on the training data-set.

The CFM has to fit three parameters, i.e., a that scales
the range of the lognormal function to the range of the
exerted force, b that accounts for some of the experimental
errors that could not be removed in the pre-processing stage,
and s that determines the shape of the lognormal function.
To fit the parameters, the LMA is used as damped least-
squares optimizer. This optimization process is iterative and
the parameters ~x = [a b s]T are adjusted at each step until
the LMA finds a local minimum of the gradient function. In
this study, the model parameters are initialized to 1 and the
iterations are limited to a maximum of 1000.

D. Multi-Layer Perceptron

The second black-box model is the feed-forward MLP,
which has been chosen because it is a simple and powerful
method for function approximation [14], [15].

In this study, the MLP has three inputs, i.e., a fixed
displacement of the soft actuator, a fixed applied voltage, and
the time, and one output, i.e., the exerted force in time. The
chosen architecture has three hidden layers, with 250, 10, 250
neurons, respectively, with a 20% dropout [16]. The hidden
and output neurons have a sigmoid activation function. The
MLP is trained for 20 epochs, the loss function is the mean
square error, and the optimizer is Adam [17]. The inputs and
output data are scaled to [0,1] by the min-max scaler.

1126

Authorized licensed use limited to: University of Groningen. Downloaded on August 30,2021 at 12:13:48 UTC from IEEE Xplore.  Restrictions apply. 



E. Long Short-Term Memory

The third black-box model is a recurrent neural network,
and, specifically, a LSTM network [18]. It has been chosen
for its ability to model long-term dependencies in data by
exploiting a memory cell at each neuron, and to represent
differential equations.

In this study, the LSTM network has three inputs, i.e., a
fixed displacement of the soft actuator, a fixed applied voltage,
and the time, and one output, i.e., the exerted force in time.
The chosen architecture has three hidden layers, with 100, 10,
100 LSTM units, respectively, with a 20% dropout. The LSTM
network is trained for 7 epochs, the loss function is the mean
square error, and the optimizer is Adam. The inputs and output
are scaled to [0,1] by the min-max scaler.

F. Models’ Evaluation

The root mean square error (RMSE) is one of the perfor-
mance metrics used to evaluate and compare the models as it
represents the average prediction error.

1) RMSE in Training, Validation, and Testing: The pre-
dictive capability of each model to predict unseen data is
evaluated by comparing the RMSE on the testing data-set with
the RMSE on the training and validation data-sets. If similar,
it means that the models can predict unseen data.

2) RMSE in Testing: The comparison between the models
is made by comparing their RMSEs on the testing data-set.

3) RSME in the Region of Actuation and in the Region of
Dehydration: From the data collection, it was noted that the
soft actuator has a region of actuation in the first ∼20 s, after
which a region of dehydration starts. The region of actuation
is very important and the models must capture this dynamic
response. Therefore, an additional condition to the models’
evaluation is a second RMSE on the testing data-set for the
prediction made in the first 20 s of each measurement. A
lower RMSE in the region of actuation than for the whole
measurement (i.e., 80 s after pre-processing) indicates that the
model learns to predict the sample’s dynamics in the region
of actuation. A higher RMSE than for the whole measurement
indicates that the model does not learn the sample’s dynamics
in the region of actuation and, instead, it minimizes the error
when the sample is in the region of dehydration (mostly static
behaviour).

4) Sanity Check: The RMSE can be misleading because
the models can learn a noisy relation, which brings to a low
RMSE. A sanity check is, therefore, necessary which consists
in overlaying the models’ predictions on the measurement
data. Only if the predictions show both the region of actuation
and of dehydration, the RMSE can be used as performance
metric.

5) Computation Time: The computation time for each
model is also a metric to evaluate models. A lower prediction
time indicate an overall lower model complexity.

IV. RESULTS

This Section reports the training and validation results for
the three black-box model and the comparison between them.

A. Curve Fitting Model

The final RMSE of the CFM are reported in Table I. In the
case of augmented training data-set, the lower RMSE for the
testing data-set compared to the training and validation data-
sets indicates that the CFM can predict the unseen testing data.
On the contrary, in the case of unaugmented training data-set,
the RMSE of the testing data-set is higher and, therefore, the
CFM cannot predict the unseen testing data.

TABLE I: Final RMSE for the CFM (in mN).

augmented data-set unaugmented data-set
training 0.1208 0.1434
validation 0.1327 0.1334
testing 0.115 0.1537

B. Multi-Layer Perceptron

Figure 4 shows the RMSE losses of the MLP with respect
to the epochs for both the augmented and the unaugmented
training data-sets. It can be noted that the MLP learns the
relationship between the inputs (i.e., displacement, voltage,
time) and output (i.e., the forces), and that it performs better
in the case of the augmented data-set.

Fig. 4: The scaled RMSE loss of the MLP with respect to the epochs for the
augmented training data-set (top) and for the unaugmented training data-set
(bottom).

The final scaled RMSE (and the final RMSE) of the MLP
are reported in Table II. The lower RMSE for the testing data-
set compared to the training and validation data-set indicates
that the MLP model can predict the unseen testing data.

TABLE II: Final scaled RMSE (and the final RMSE) for the MLP.

augmented data-set unaugmented data-set
training 0.0610 (i.e., 0.1175 mN) 0.0800 (i.e., 0.128 mN)
validation 0.0648 (i.e., 0.1245 mN) 0.0920 (i.e., 0.1484 mN)
testing 0.0570 (i.e., 0.1095 mN) 0.1013 (i.e., 0.1633 mN)

C. Long Short-Term Memory

Figure 5 shows the RMSE losses of the LSTM with respect
to the epochs for both the augmented and the unaugmented
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training data-set. It can be noted that the LSTM learns the
relationship between the inputs (i.e., displacement, voltage,
time) and the output (i.e., forces), and that it performs better
in the case of the augmented data-set.

Fig. 5: The scaled RMSE loss of the LSTM with respect to the epochs for the
augmented training data-set (top) and for the unaugmented training data-set
(bottom).

The final scaled RMSE (and the final RMSE) of the LSTM
are reported in Table III. The lower RMSE for the testing data-
set compared to the training and validation data-sets indicates
that the LSTM can predict the unseen testing data.

TABLE III: Final scaled RMSE (and the final RMSE) for the LSTM.

augmented data-set unaugmented data-set
training 0.0669 (i.e., 0.1286 mN) 0.0924 (i.e., 0.1490 mN)
validation 0.0730 (i.e., 0.1402 mN) 0.1071 (i.e., 0.1727 mN)
testing 0.0595 (i.e., 0.1143 mN) 0.0937 (i.e., 0.1511 mN)

D. Comparison

For a complete evaluation and comparison of the prediction
capabilities of the three models on the testing data-set, this
study calculates the RMSE in the region of actuation, performs
a sanity check, and computes the prediction time.

1) RMSE in the Region of Actuation: Table IV shows the
RMSE for each model in both the region or actuation (first
∼20 s) and in the whole duration of the measurements (∼80
s) for both the augmented and unaugmented training data-set.
It can be noted that, in the case of augmented training data-
set, only the MLP predicts the dynamics of the forces in the
region of actuation better than for the entire duration of the
measurements. In the case of the unaugmented training data-
set, all the three models predict the dynamics of the forces in
the region of actuation better than for the entire duration of the
measurements. Moreover, in the case of augmented training
data-set, the MLP returns the lowest RMSE in both the region
of actuation and over the entire duration of the measurements.
In the case of unaugmented training data-set, the MLP returns
the lowest RMSE in the region of actuation, while the LSTM
returns the lowest RMSE over the entire duration of the

measurements. In general, the CFM performs worse than the
MLP and LSTM, except for the MLP in the prediction of the
forces in the entire duration of the measurements (in the case
of the unaugmented training data-set).

TABLE IV: RMSE on the testing data-set for both the augmented and
unaugmented training data-set. Units are in mN.

CFM MLP LSTM
<20 s augmented data-set 0.138 0.104 0.122

unaugmented data-set 0.180 0.140 0.145
0-80 s augmented data-set 0.115 0.109 0.114

unaugmented data-set 0.154 0.163 0.151

Figure 6 compares the RMSEs of the MLP and LSTM in
the region of actuation for the augmented training data-set. It
can be noted that the MLP is more reliable than the LSTM
when presented with the unseen data.

Fig. 6: The RMSEs of the MLP against the LSTM in the region of actuation,
for the augmented training data-set.

2) Sanity Check: Figure 7 shows the sanity check for the
MLP and, namely, the predicted dynamics of the tip forces for
different displacement/voltage combinations (in red) overlaid
on the testing data-set (in blue). The missing data are the ones
that were not in the testing data-set and, therefore, are not
reported for the sanity check.

3) Computation time: The computation time for the pre-
diction of a single input vector is 1.3 µs for the CFM, 13 µs
for the MLP, and 225 µs for the LSTM, making the CFM the
fastest model. However, all models are fast enough to be used
to predict the actuation forces in real-time.

V. DISCUSSION

This Section discusses the results and the limitations of the
models and suggests possible improvements.

The CFM has the lowest performance among the three
models, with a higher RMSE on the testing data-set when
predicting the dynamics of the forces in both the region
of actuation and over the entire process, except in the case
with the unaugmented data-set for the entire duration of the
experiments (see Table IV) in which, nevertheless, it cannot
predict the unseen testing data (see Table I). The CFM is the
simplest of the three investigated black-box models (with only
99 parameters), making the model worth investigating. The
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Fig. 7: MLP predicted forces in time for different displacement/voltage
combinations (in red) overlaid on the testing data-set (in blue).

simplicity of the CFM also makes it the most computationally
efficient in the prediction, which would be best suited for real-
time predictions. The MLP is a simplified adaptation of the
neural network designed in [9] for the prediction of the tip dis-
placement. It is the most consistent model with generally good
performance across all metrics of evaluation, and it returns
more reliable predictions. The model’s strongest point is its
relative simplicity as a universal function approximator [14].
The LSTM can learn dependencies with the training data-
set (similar RMSEs in the training and validation data-sets,
see Table III). It is difficult, however, to reconcile the added
complexity of the LSTM with a minor improvement in the
prediction capability and an higher computation time than in
the MLP.

A. Limitations and future Outlook

A first limitation in this study lies in the data collection. Due
to dehydration, the data collection results in a difficult process,
which makes the creation of a large experimental data-set
challenging for black-box models. Secondly, the sample’s loss
of mass over the course of a measurement, due to dehydration
in the experiments of this study, results in unpredictable errors
between repeated measurements. Modeling the weight loss of
the sample may help to reduce these errors as they could be
considered in the data pre-processing. Finally, the predictive
capabilities of the MLP and LSTM could be improved by
including the physical knowledge on the underlying dynamics
of the soft actuator.

VI. CONCLUSION

This study investigates three black-box models for the
prediction of the dynamics of the tip forces of a Nafion-117
IPMC soft actuator at fixed displacements and when stimulated
by different voltages. The models are the CFM (optimized by

the LMA), the MLP, and the LSTM. The study also proposed
a framework to compare the performances of these models
in relation to each other, contributing to a black-box model
selection paradigm for IPMC soft actuators.

The study showed that the assumption made by the CFM
does not hold for unseen testing data, and that the MLP and
the LSTM are better models that perform similarly with regard
to their prediction capabilities. However, the MLP is best
suited to model the actuation forces of a Nafion-117 IPMC
soft actuator. This observation was made on balance of three
factors. The first is the RMSE on the predictions of unseen
testing data of 0.104 mN in the region of actuation and a
RMSE of 0.109 mN (i.e., a final scaled RMSE of 0.0570)
over the entire sample response (when an augmented training
data-set is used). The second is the consistency of predictions
across all voltages conditions. The third is the prediction time
of 13 µs.
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