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Humans are covered with approximately the same number of 
bacteria as body cells1, and the gut microbiota, in particular, 
influences various aspects of human health2. Intestinal bac-

teria elicit a multitude of innate and adaptive immune responses to 
prevent overgrowth and their passage into the bloodstream, where 
they could potentially cause sepsis3. Mucosal immunoglobulin-A 
(IgA) antibodies play a pivotal role in exerting this immune system–
microbiota equilibrium by protecting the host from pathogens and 
maintaining intestinal homeostasis4. A growing number of studies 
have demonstrated that gut microbiota antigens also elicit systemic 
IgG5–7 and IgA5,8 responses in blood9 and describe how mucosal 
and systemic antibody responses relate to each other10. Despite 
considerable progress in understanding microbiota-driven anti-
body responses in animal models5–8,10, it is incompletely understood 
which microbial antigens/epitopes are targeted by human antibod-
ies and how these responses associate with health and disease11.

Recent B-cell receptor sequencing studies have provided unprec-
edented insights into the role of antibodies in the adaptive immune 
system12,13 relating to gut microbiota10,14, as well as pointing toward 
connections of immune-mediated diseases and microbial antigens15. 
While unraveling the clonal diversity16 and the changes caused by 
microbiota10 of the underlying Ig-epitope repertoires, their func-
tional capacity toward antigen recognition in humans has remained 
largely elusive.

The complexity of human microbiota is a key challenge for sys-
tematic investigations of antibody–antigen interactions. Humans 
bear thousands of bacterial species17, with each species’ genome 
encoding thousands of genes, representing an enormous space 
for potential protein antigens. Conventional methods for studying 

antibody binding of microbiota, such as enzyme-linked immuno-
sorbent assay (ELISAs) and peptide arrays, are limited to testing 
hundreds to thousands of antigens in parallel. Concomitantly, bac-
terial flow cytometry combined with microbiome sequencing9,18–20 
informs on antibody-coated species, but not the exact antigens 
bound. Hence, there is a lack in our understanding of the ‘dark matter’  
of the antigenic space represented by human microbiota.

Phage immunoprecipitation sequencing (PhIP-Seq)21 allows 
the evaluation of antibody responses to hundreds of thousands of 
antigens in parallel, as successfully demonstrated primarily with 
autoimmune diseases22–24 and viruses25–27. As the chemical synthe-
sis of peptide antigens is limited by short lengths and high costs, 
PhIP-Seq relies on antigen libraries encoded by synthetic DNA 
oligonucleotides. These libraries are cloned into, and displayed on 
the surface of, T7 phages. Antibody-bound phages are enriched by 
immunoprecipitation and identified by next-generation sequencing  
(Fig. 1a)21.

In this article, we have created a PhIP-Seq library repre-
senting 244,000 peptide antigens of the microbiota to profile 
population-wide systemic immunoglobulin epitope repertories in 
997 healthy individuals. We have correlated these antibody profiles 
with metadata available for this cohort28, including clinical data as 
well as gut metagenomic data, to evaluate associations with age, 
gender and high longitudinal stability.

Results
Microbiota peptide library design. We designed a library includ-
ing commensal, pathogenic and probiotic bacterial species as well 
as positive and negative controls (Fig. 1b and Methods). Potential 
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gut microbiota antigens were selected from metagenomics sequenc-
ing of 953 stool samples of individuals28 for whom serum samples 
for antibody testing were also available. In addition to proteins 
of several gut pathogens, we also included the entire Virulence 
Factor Database (VFDB)29 and pathogens causing infectious dis-
eases as well as human autoantigens from the Immune Epitope 
Database (IEDB)30. Furthermore, proteins of bacterial strains com-
monly applied as probiotics31 and of strains previously reported to 
be coated by antibodies19 were included (Supplementary Table 1).  
Approximately 28,000 proteins were split into 244,000 peptides 
(length of 64 amino acids with overlaps of 20 amino acids), allowing 
for high-resolution, epitope-resolved analysis of antibody-targeted 
protein segments. Each peptide was encoded with Escherichia coli 
codon usage and barcoded within the coding sequence for identifi-
cation (Methods). We enriched the library for secreted and surface 
proteins, which are more likely to be bound by antibodies.

After optimizing the experimental PhIP-Seq workflow21 for 
our liquid-handling robots (Extended Data Fig. 1a), we assessed 
assay performance with a series of controls. Technical (Extended 
Data Fig. 1b,c) and biological (Extended Data Fig. 1d,e) replicates 
showed high reproducibility (average Pearson R2 = 0.96, Extended 
Data Fig. 1b) and the employed barcoding strategy also proved reli-
able, introducing no systematic bias (Supplementary Fig. 1). We 
observed little to no potential unspecific binding against random 
peptides or negative controls of human proteins (which should 

not elicit auto-antibody responses in our healthy cohort; Extended 
Data Fig. 2a), while antibody responses against positive controls of 
common viral epitopes25 were reliably reproduced (Extended Data 
Fig. 2b). We also tested seven antibodies generated with immuno-
gens of full-length proteins and bacterial cells as well as two anti-
bodies specific for human self-antigens as negative controls. We 
robustly detected binding of these antibody preparations to pep-
tide representations of the respective immunogens included within 
the library in six out of seven cases, as well as little evidence for 
cross-reactivity (Extended Data Fig. 3 and Supplementary Table 2). 
Taken together, these results validate the accuracy and reproduc-
ibility of our PhIP-Seq assay implementation.

Population-wide antibody profiling. We measured the serum 
antibody responses of 997 individuals (including the 953 individu-
als of whom metagenomic data had been employed to select the gut 
microbiota antigens of the library; Methods)28. This healthy cohort 
spanned a range of 17–70 years of age and had clinical metadata 
such as blood tests available (Fig. 1c). In total, we assayed for over 
200 million antibody–peptide interactions (244,000 epitopes in each 
of the 997 individuals). Employing strict Bonferroni correction, on 
average ~800 peptides were significantly enriched (after scoring 
against input reads; Methods) per individual (Fig. 1d). Tens of thou-
sands of peptides were enriched in less than 1% of the population, 
indicating individual-specific, private antibody responses. We also 
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Fig. 1 | PhIP-Seq of microbiota directed antibody epitope repertoires. a, The PhIP-Seq21 workflow applied to measure serum antibody epitope repertoires. 
b, Content of the 244,000-variant antigen library. IEDB, Immune Epitope Database30. See Methods, Supplementary Table 1 and Extended Data Figs. 1–3 for 
lists of the exact strains included and details on controls. c, Antibody epitope repertoire measurements were performed on a cohort of 997 individuals with 
diverse metadata available (see Methods for details on the blood tests). d, On average, ~800 peptides of the microbiota library are significantly enriched 
per individual. The center line shows the median. Box limits indicate the 25th and 75th percentiles as determined by R software49. Whiskers extend to 1.5 
times the interquartile range from the 25th and 75th percentiles. All data points are plotted; n = 997 individuals. e, Antibody epitope repertoires of 997 
individuals recognize private (occurring in single individuals) and public (shared in up to 99% of the cohort) microbiota antigens. f, Public microbiota 
antigens are not limited to pathogens but extend to diverse microbiota including commensal and probiotic bacteria (controls and IEDB30 epitopes are not 
included in e and f). The coloring in f is the same as in b.
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detected overlapping antibody responses against microbiota anti-
gens between individuals, as 10,750 bound peptides were shared in 
>1% of individuals, 1,556 in >5%, 130 in >50% and 39 peptides in 
>90% (Fig. 1e). Public epitopes were not limited to pathogens such 
as Staphylococcus/Streptococcus species26 and viruses25,26, but also 
extended to antigens and strains from other subgroups of the library 
(Fig. 1f and Extended Data Fig. 4), including common gut micro-
biota such as Bacteroidales incl. Prevotella copri eliciting antibody 
responses in more than 95% of individuals. Antigens of Blautia 
producta (80%), Parabacteroides merdae (75%), Eubacterium rectale 
(60%), Enterococcus faecalis (43%), Lactobacillus plantarum (41%, 
a common probiotic) and Dorea formicigenerans (35%) were also 
frequently detected (Supplementary Table 3 provides a detailed list 
of antigens), supporting that gut microbiota commonly elicits sys-
temic antibody responses beyond the mucosa10 in humans.

Similar public epitopes have been reported for viruses25, which 
were included as controls in our library (Extended Data Fig. 2b). 
Our results demonstrate that antibody responses shared among 
healthy individuals extend to gut microbiota antigens and probiot-
ics, suggesting that population-wide convergent antibody recogni-
tion is not limited to pathogens. The vast majority of microbiota 
antigens were bound by IgG isotypes, as illustrated by probing anti-
body binding separately with magnetic beads coated with protein A 
and G (Extended Data Fig. 5a–c and Supplementary Table 4). We 
also measured a subset of samples with IgG- and IgA-specific cap-
ture antibodies27 (Extended Data Fig. 5d), suggesting that some pep-
tides are more frequently bound by IgG or IgA, whereas for other 
peptides the two antibody classes overlap to varying extents. Among 
the functional groups of bound peptides, flagella and secreted pro-
teins were significantly over-represented (Supplementary Fig. 2), in 
line with their known role as dominant bacterial antigens. A few 
antigens bound nearly universally appeared to represent antibody 
binding proteins such as Staphylococcus protein A and a homolog of 
a recently reported antibody binding protein from gut microbiota32, 
as inferred from isotype control experiments (Fig. 2a–c). The bind-
ing peptides of protein A cover B-domains known to bind the Fc 
region of IgG33 (Fig. 2d). When phages displayed protein A pep-
tides covering a complete B-domain (that is, peptides #221096 and 
#133222), we observed the strongest binding to IgG in our PhIP-Seq 
assay. Weaker interactions were observed when the phage-displayed 
peptides contained shortened/permutated B-domains. These 
results are in full agreement with the expected binding behavior of 
B-domains33.

Associations of antibody responses and metagenomics data. 
Systemic antibody responses against commensal microbiota have 
been reported in mouse models and cohorts of dozens of humans5–10. 
These studies have specifically detected serum antibodies against 
certain gut microbiota species. However, the degree to which serum 
Ig-epitope repertoires correlate with the gut microbiota present in an 
individual has, to the best of our knowledge, not been investigated 
with large human cohorts. We previously generated metagenomics 
sequencing data for more than 900 individuals28 for whom we had 
profiled serum Ig-epitope repertoires (Fig. 1c). The metagenomics 
reads were mapped to species-level genome bins (SGBs)17, represent-
ing a large reference database of bacterial species. To test for similari-
ties between antibody responses and gut microbiome compositions, 
we compared the Hamming distances of serum antibody responses 
of different individuals and the Bray–Curtis distances of corre-
sponding gut microbiota abundances in metagenomics sequencing 
(Fig. 3a). We also tested for specific associations between peptides 
significantly bound by antibodies and bacterial SGBs (Fig. 3b,  
Extended Data Fig. 6 and Supplementary Table 5). Although there 
was no general association between Ig-epitope repertoire and 
metagenomics abundances on an individual-specific level (Fig. 3a), 
we found 1,706 significant population-scale associations between 

pairs of bound peptides and SGBs (after false discovery rate (FDR) 
correction for ~4.7 million tests; Fig. 3b and Extended Data Fig. 6). 
Some of the most significant associations include common com-
mensal gut microbiota such as Clostridiaceae but also pathogens 
(Staphylococcus and Streptococcus). Some of the SGBs are correlated 
with antibody binding of up to 23 peptides per species. These SGBs 
include common gut microbiota from the Firmicutes phylum such 
as Clostridiales and Ruminococcaceae (Fig. 3b and Extended Data 
Fig. 6), as well as unknown species.

Ig-epitope repertoires associate with age and gender. We next 
leveraged metadata previously collected28,34 for the 997 individu-
als profiled in this study to mine for possible associations to their 
Ig-epitope repertoires. Abundances of antibody responses (that is, 
population-wide presence or absence of antibodies against spe-
cific peptides) showed some age (Fig. 4a) and gender (Fig. 4b) 
related differences. Antibody responses against several proteins of 
Shigella species that are part of a type III secretion system (T3SS)35 
were approximately 10-fold over-represented in elderly individuals  
(Fig. 4c and Supplementary Table 6). Up to six different peptides  
per Shigella protein were bound with detectable antibody responses 
in up to 78% of individuals older than 61 years but in only up to 9% 
of individuals less than 28 years of age (representing approximately 
the youngest and oldest deciles of the studied cohort, passing multi-
ple hypothesis testing; raw correlations are shown in Supplementary 
Fig. 3). The peptides bound significantly more frequently in older 
individuals included effector proteins such as ipaC and ipB, which 
are required for binding to human host cells, as well as the auto-
transporter icsA (Fig. 4c). Antibody binding against ipaC and icsA 
as well as other peptides detected with PhIP-Seq was significantly 
associated with binding in peptide ELISAs (Extended Data Fig. 7). 
Elderly individuals also showed more frequent antibody responses 
against proteins of commensal bacteria such as Bacteroidales and 
Clostridiales. Younger individuals showed more frequent anti-
body responses against antigens of Staphylococcus aureus and 
Streptococcus species, although differences to older individuals 
were less pronounced (~1.5-fold opposed to ~10-fold differences 
for Shigella antigens). We also detected age-related differences in 
the binding of viral antigens that had been included as controls, 
including proteins of influenza and herpes viruses. Independent of 
age, women showed significantly increased binding against anti-
gens of Lactobacillus acidophilus and Lactobacillus johnsonii strains  
(Fig. 4b,d), suggesting also gender differences in the Ig-epitope 
repertoires against bacteria. Although cell wall-associated proteins 
such as S-layer proteins36 or an N-acetylmuramidase were bound in 
up to 6% of males, binding of these antigens was detected in up to 
40% of females (Fig. 4d).

Machine learning predictions from Ig-epitope repertoires. 
Next, we examined whether machine learning algorithms can 
uncover any additional associations. Gradient boosting decision 
trees37 based on the serum Ig-epitope repertoires showed associa-
tions with age (R2 = 0.56, Fig. 5a) and gender (area under the curve 
(AUC) = 0.77; Fig. 5b). A significant association, albeit with low 
predictive power, was also observed for the inflammation marker 
C-reactive protein (CRP; Extended Data Fig. 8). These results point 
toward even broader associations with human health, which may 
be predicted with greater accuracy leveraging larger antigen librar-
ies. Furthermore, Ig-epitope repertoire-based associations of age 
and gender exceeded the accuracy of models trained on metage-
nomics microbiome sequencing data of the same group of indi-
viduals (Fig. 5c,e). By contrast, antibody responses against human 
self-proteins and random peptides carried virtually no predictive 
power (Extended Data Fig. 9), precluding that self-reactivity or 
potential cross-reactivity against random peptides underlies these 
strong associations. Machine learning predictions from subgroups 
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of the microbiota library (such as antigens selected from metage-
nomics data alone and so on; Supplementary Fig. 4) also yielded 
high accuracy for age (Fig. 5d) and gender (Fig. 5f), demonstrating 
that the predictive power from the measured Ig-epitope repertoires 
is not limited to pathogens but includes antigens of the commensal 
gut microbiota of healthy individuals.

Temporal stability of Ig-epitope repertoires. The stability of the 
serological response to infection or vaccination is well known. 
Although antibody-secreting plasma cells have been shown to per-
sist in the human intestines for decades38, the stability of systemic 
antibody responses to gut microbiota antigens is unclear. For 213 
individuals of the cohort, follow-up blood samples were collected 

after approximately five years. We measured their Ig-epitope rep-
ertoires and noticed high individual-specific stability compared to 
the baseline sample (Fig. 6a). Sample pairs of the same individual 
showed a higher average correlation than random pairs (Pearson 
correlations of log(fold change) of 0.78 versus 0.27; Fig. 6b). All 
except one follow-up sample could be accurately matched to 
individuals’ baseline serum samples collected five years apart (by 
simply picking the closest matching sample). Employing a greedy 
matching algorithm (taking the closest match for every sample) 
yielded perfect matches for all samples. The longitudinal stability 
of these Ig-epitope repertoires was not limited to pathogens, indi-
cating that gut microbiota can also elicit lasting systemic antibody 
responses: matching individuals’ samples on antigens from the 
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199945 Eubacterium rectale, flagellar M-ring portein (UniRef derived annotation) 398 0 0/3 3/4 0/4 3/11
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Fig. 2 | Functional antibody-binding proteins within the phage-displayed microbiota antigen library. a,b, Canonical binding of phage-displayed antigens 
with the Fab of antibodies compared to interactions of potential phage-displayed antibody-binding proteins with the Fc part of antibodies. c, Testing 
antibodies with known specificity suggest functional antibody-binding proteins present in the phage-displayed antigen library. Two monoclonal antibodies 
(IgG1-HER2 and IgG1-TNFa) and an IgG-Fc preparation were mixed with the phage-displayed antigen library and processed in the same way as serum 
samples. Reaction mixtures were set up in triplicate (IgG-Fc) or quadruplicate (IgG1-HER and IgG1-TNFa). Significantly bound peptides occurring in at least 
three reactions overall are listed. aa, amino acid. SBI, second binding protein for immunoglobulins. d, For two variants of the Staphylococcal protein  
A antibody-binding protein, we compared biochemical and structural information to the binding peptides, indicating that binding is mediated by B-domains 
known to bind the Fc region of IgG33. The alignment of two highly similar proteins with accession numbers WP_000728751 and WP_000728715 is shown 
(details on the proteins are provided in c). The dark lines to the right of the accession numbers represent the protein sequences, showing gaps in the 
consensus alignment where applicable. The numbers to the right of the dark lines are the protein lengths in terms of amino acids. B-domains are highlighted 
according to the information deposited in the NCBI entries of the respective accession numbers. The peptides binding to the antibodies listed in c are 
marked with their identifying number.
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entire microbiota library correlated with an average Pearson corre-
lation coefficient (using log(fold change)) of R = 0.78, antigens only 
from gut microbiota sequencing matched with R = 0.76 and anti-
gens of pathogens (VFDB) with R = 0.83 (Fig. 6c and Extended Data 
Fig. 10). However, VFDB antigens also showed a greater correla-
tion between unmatched samples (R = 0.38) than antigens selected 
from microbiome sequencing (R = 0.23) or the complete microbiota 
library (R = 0.27), suggesting a higher convergence of individu-
als’ antibody responses against pathogens and less discriminatory 
power than commensal antigens.

For 188 of the 213 individuals with longitudinal antibody data 
we also obtained longitudinal microbiome sequencing data. We 
compared the longitudinal stability of gut microbiome composition 
derived from metagenomics sequencing of the same individuals five 
years apart (Fig. 6d) and we observed lower correlations over time 
than with the matched Ig-epitope repertoires. The average Bray–
Curtis metagenomic distance was 0.34 between two samples of the 
same individual five years apart, and 0.19 between two samples of 
two different individuals. A greedy algorithm could only match 
38% of individuals’ longitudinal samples (71 of 188) based on 
metagenomics data based on abundances. As relative abundances 
may show higher fluctuation than presence/absence of bacterial 
species, we also evaluated the stability of the existence of genes in 
metagenomics data (Extended Data Fig. 10h). In this case, a greedy 
algorithm could match 49% of individuals’ longitudinal samples 
(92 of 188), representing an improvement over the use of relative 
abundances. However, using Ig-epitope repertoire data allowed us 
to match 100% of individuals’ longitudinal samples. Microbiome 
stability may change considerably depending on the region of the 
gut sampled. Thus, the stool samples analyzed in these experiments 
may be less stable on a per-individual level than serum antibody 
repertoires.

discussion
By measuring functional serum Ig-epitope repertoires against 
244,000 peptides in 997 individuals, we detected a multitude of  

private and public antibody responses against antigens of gut 
microbiota. Our work offers a population-scale perspective on 
anti-microbiota Ig-epitope repertoires, whereas previous studies 
focused on smaller cohorts of dozens of individuals9,19,20 and did not 
include the analysis of clinical metadata28 integrated within this study.

We have not detected clear individual-specific associations 
between serum antibody responses and abundances of corre-
sponding gut microbiota species in metagenomics sequencing 
(Fig. 3a), although antibody responses against ~1,700 peptides 
were significantly associated with abundance of bacterial spe-
cies in metagenomic data on the population scale (Fig. 3b). Most 
of these associations were detected between species and peptides 
that appear in a small fraction (2–5%) of individuals. Despite 
SGBs from metagenomics sequencing associating significantly 
with antibody-bound peptides, these associations are sparse and 
not sufficient to match individuals’ metagenomics abundances to 
antibody responses (which could be demonstrated for longitudinal 
metagenomics/Ig-epitope repertoire data; Fig. 6). These results are 
limited by detection thresholds. Small amounts of bacteria that are 
present in the body but not detectable in microbiome sequencing 
may elicit weak antibody responses that could show associations 
in a larger fraction of individuals. In our experiments, microbiota 
commonly detected in metagenomics sequencing of stool samples 
do not elicit strong serum antibody responses and vice versa, pos-
sibly due to eradication of bacterial species whose products reach 
the bloodstream in parallel by the mucosal immune system. Owing 
to the higher temporal stability of Ig-epitope repertoires targeting 
microbiota than microbiome abundances suggested by metage-
nomics sequencing data of stool samples (Fig. 6), potential trans-
location of transient gut microbiota could provoke lasting systemic 
responses, detected with our assay but missed by metagenomics 
sequencing. Overall, changes in the gut microbiome may not be 
directly reflected by the serum Ig-epitope repertoire against gut 
microbiota-specific antigens. Serum antibody responses could also 
be affected by factors beyond the gut microbiome (such as exposure 
from other body sites).
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this antigen library do not associate with Bray–Curtis distances computed between the same pairs from metagenomics gut microbiome sequencing data 
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The population-wide serum Ig-epitope repertoires of this study 
were strongly associated with age and gender, suggesting that that 
they could carry a wealth of biological information related to human 
health. Antibody responses against antigens of Lactobacillus species 
were over-represented in women. L. acidophilus and L. johnsonii are 
common in the intestinal and vaginal microbiome, pointing toward 
a gender-specific impact of the urogenital tract or a difference in 
the consumption of probiotics. Also, for other bacterial species such 
as Prevotella, exposure at other body sites beyond the gut, as well as 
cross-reactivity, may potentially contribute to the observed systemic 
antibody responses. Antibody responses in the peripheral blood of 
healthy individuals against gut microbes may putatively originate 

from different mechanisms. Although the healthy individuals pro-
filed in our study are expected to have an intact intestinal barrier, 
small amounts of gut microbial products may nonetheless reach the 
bloodstream and elicit antibody production by systemic B cells. The 
dominance of the IgG isotype in the detected antibodies supports 
this notion, although we also detected IgA responses when ana-
lyzing a subset of samples at greater depth (Extended Data Fig. 5).  
Systemic IgA responses potentially originate from gut-derived plas-
mablasts and plasma cells secreting IgA or IgM39 that may recircu-
late back to the effector site of the lamina propria. IgG responses 
against the antigens detected with PhIP-Seq may originate from 
class switching, from peripheral exposure to antigens or gut-derived 
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B cells, which eventually home to the bone marrow40. Further stud-
ies will be required to elucidate these aspects, with potentially mul-
tiple mechanisms being at work in parallel.

Elderly individuals more frequently exhibited antibody responses 
against Shigella species (gut pathogens causing diarrhea)35 as well 
as various gut microbiota. These differences could be explained by 
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older individuals having encountered more antigens throughout 
their lifetime or by increased gut permeability and potential trans-
location of microbiota products in the elderly41,42. Another possible 
explanation is that a change in environment and habits or the year 
of birth could be linked to different exposures to microbiota (for 
example if all individuals born in the 1960s were exposed to an out-
break of a certain pathogen). Epidemiological data on shigellosis in 
Israel43 is in this respect somewhat inconclusive: while cases peaked 
in the 1980s, infections have remained higher after this peak than 
before it. A combination of exposures throughout an individual’s 
lifespan together with aforementioned factors such as increased gut 
permeability and potential translocation in the elderly may account 
for the antibody responses observed.

PhIP-Seq Ig-epitope repertoire data represent a unique layer 
of information compared to other methods of studying antibody 
responses against gut microbiota. Fluorescence-activated cell sort-
ing (FACS) and DNA sequencing-based methods to elucidate the 
antibody coating of resident gut microbiota9,18–20 capture a snap-
shot of microbes currently present or panels of cultivatable organ-
isms. Our approach offers a complementary strategy to study 
protein-based antigens and their epitopes at high resolution, as well 
as the immunological memory of antigens previously encountered. 
This temporal aspect provides an additional layer of information 
beyond microbiome DNA sequencing (which is also limited to the 
detection of bacteria present at the time of sample collection) and 
could inform on the lasting immune effects of microbiota44.

Our study is limited by the technical characteristics of PhIP-Seq, 
as previously discussed in depth21,22,25,26, most notably the length 
constraints of the presented peptides (64 amino acids for our 
library). This length is expected to adequately represent linear epit-
opes, whereas conformational epitopes requiring correct folding of 
larger protein regions may be missed, impacting the sensitivity of 
our assay. The ratio of linear/conformational epitopes recognized by 
human antibodies is not exactly known and is experimentally chal-
lenging to determine. Furthermore, the length distribution of con-
formational epitopes is unknown and it is unclear which percentage 
of conformational epitopes will be covered by 64-amino-acid pep-
tides. Previous use of the PhIP-Seq workflow has relied on similar 
peptide lengths22,25,26,45 and yielded reliable results primarily related 
to autoimmunity22,45 and viruses25–27. Yet, even if our PhIP-Seq 

approach could only detect 10% of antibody–antigen interactions 
targeting bacteria, the fact that our library covers more than 28,000 
proteins would still surpass the throughput of current ELISA or pep-
tide array-based approaches by an order of magnitude. Interestingly, 
peptides originating from known antibody-binding proteins (such 
as protein A) within our library interacted with the Fc region of 
antibodies (Fig. 2), suggesting correct folding, despite the incom-
plete length. Antibody-binding events of single peptides identified 
by PhIP-Seq need to be interpreted with care and should be vali-
dated with orthogonal methods (Extended Data Fig. 7). However, 
the associations reported in this study are corroborated by binding 
against multiple proteins per species or even multiple peptides per 
protein (Fig. 4c,d), making random associations highly unlikely.

Several other antibody-profiling methods have been used to 
generate serological classifiers of disease and assess other biological 
parameters46. In our opinion, PhIP-Seq provides a good compro-
mise among peptide length, library size, amenability for parallel-
ized measurements and cost, while allowing for rational selection 
of the presented peptides (that is, not requiring the use of random 
peptides).

Our study is also limited to protein antigens. Microbiota antigens 
also include glycans, lipids and post-translational modifications. 
Non-protein products such as lipopolysaccharides can exert pow-
erful immune-modulatory effects on innate and adaptive immune 
cells47. Protein antigens are thought to elicit T cell-dependent anti-
bodies of high specificity, whereas non-protein antigens are gen-
erally targeted by low-affinity, high-avidity, T cell-independent 
antibodies4. Therefore, the protein antigens used in our study may 
allow for more sensitive detection and could represent more prom-
ising biomarkers than low-affinity antibodies against non-protein 
antigens. Although our experimental approach informs on the 
functional antigens recognized by antibodies, linking these to the 
associated B-cell receptor sequences or demonstrating causality 
necessitates alternate experimental approaches (for example, ref. 48 
or ref. 10).

It is increasingly appreciated that gut microbiota affect the 
immune system beyond the intestines, and antibody responses 
against microbes have been implicated in several immune-mediated 
diseases other than inflammatory bowel diseases11,15, yet the actual 
antigens bound remain unknown. The microbiota antigen library 
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created here could represent a powerful, broadly applicable tool to 
mine for systemic biomarkers and targets in these settings.
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Methods
Serum samples, clinical data and metagenomics. A total of 1,051 serum samples 
of 1,007 individuals were collected in Israel in 2013 and 2014 for previous 
studies28,34, along with clinical and metagenomics data. Various phenotypes 
and blood test results were available for most (>900 for phenotype/blood test) 
individuals28, with the results of a few tests missing in some individuals. We 
focused most of the antibody epitope repertoire analysis on baseline samples (the 
first sample collected per individual). Ten samples did not pass the threshold 
of >200 peptides significantly bound and were excluded from analyses (section 
‘Data analysis’), leaving data of 997 individuals for analysis. The 213 longitudinal 
serum samples and 188 stool samples for metagenomics sequencing were obtained 
from participants of one of the previous studies28 after approximately five years, 
in 2019 and 2020. Research with these samples has been approved by the Tel Aviv 
Sourasky Medical Center (#0658-12-TLV) and the Weizmann Institute of Science’s 
institutional review board (#1079-1) and the participants had consented to using 
the samples.

Processing of antigen sequences and cloning of the phage library. See the 
section ‘Content and design of the PhIP-Seq microbiota antigen library’ for a 
detailed description of the content of the antigen phage library. The final list of 
proteins was cut to peptides of 64 amino acids (aa) with 20-aa overlaps (to cover 
all possible epitopes of the maximal length of the linear epitope, depending on 
the definition, between 5 to 9 up to 20 aa51–53) between adjacent peptides. The 
peptide amino-acid sequences were reverse-translated to DNA using E. coli codon 
usage (of highly expressed proteins), aiming to preserve the original codon usage 
frequencies, excluding restriction sites for cloning (EcoRI and HindIII) within 
the coding sequence (CDS). The coding was re-performed, if needed, so that two 
possible barcodes were formed in the CDS by the 44/75 nt at the 3′ end of each 
oligo. Every such barcode is a unique sequence at Hamming distance three (with 
a 44-nt read, or five with a 75-nt read) from all prior sequences in the library, 
which allows for correcting of a single read error in sequencing the barcode with 
a 44-nt read (reading 75 nt continuously would allow to correct two read errors). 
Eventually, we used the 44-nt read option and also sequenced a section of the 5′ 
end (to verify matching 5′ and 3′ sequences and exclude the potential presence 
of multiple inserts). For similar peptide sequences, alternate codons were used 
following E. coli codon usage to achieve discrimination. Including the sequencing 
barcode as part of the CDS, rather than a separate barcode, allowed the use of 
the entire oligo for encoding a peptide (and, as opposed to completely omitting 
a barcode, it did not require sequencing of the complete CDS). For encoding 
peptides shorter than 64 aa, a random sequence was added after the stop codon 
with addition of the restriction site Swal (allowing removal of short peptides by 
restriction enzyme digestion on the oligo level in case they would take over the 
signal, which was eventually not observed and digestion was thus not required). 
After finalizing the peptide sequence, the EcoRI and HindIII restriction sites, stop 
codon and annealing sequences for library amplification were added and ordered 
from Agilent Technologies as a 230-mer pool (library amplification primers: fwd, 
GATGCGCCGTGGGAATTCT; rev, GTCGGGTGGCAAGCTTTCA) and cloned 
into T7 phages following the manufacturers recommendations (Merck, T7Select 
10-3 cloning kit, product no. 70550-3).

Controls for the effect of different DNA encodings of the same amino-acid sequence. 
Employing different DNA sequences to encode the same amino-acid sequence 
yielded generally good agreement both when comparing fold change (Supplementary 
Fig. 1a,b, top) and population-wide abundance (Supplementary Fig. 1a,b, bottom). 
The vast majority of peptides were reproducibly not bound in any individuals 
(95% of comparisons, Supplementary Fig. 1c). For peptides bound in at least one 
individual (Supplementary Fig. 1d), all triplicates were in agreement in 71% of cases. 
Comparing the calculated P values for each encoding of a peptide with the other 
two encodings in all individuals (three encodings of 347 peptides in 997 individuals 
representing ~1 million comparisons) yielded good agreement (R2 = 0.77). There 
were a few peptides for which one DNA encoding strongly differed from the other 
two. For example, the 11th peptide of the human gamma herpesvirus 4 EBNA 1 
protein appeared in two of three encodings in ~30% of individuals, but the third 
encoding was not detectable at all (Supplementary Fig. 1a, bottom), with direct 
effects on the observed fold changes (Supplementary Fig. 1a, top).

These results are not solely impacted by the DNA encodings, but also by the 
different abundances of DNA oligos within the manufacturing process. Care 
should be applied when comparing different oligos (as the absolute values can be 
impacted by DNA encodings or oligo manufacturing).

As expected, encoding viral and bacterial peptides with different DNA 
sequences yielded rather frequent antibody binding (Supplementary Fig. 1a), while 
peptides originating from human proteins displayed very little binding (indicating 
that different encodings do not represent a major source for false positives). These 
triplicate encoding results also confirm the results from single encoding controls 
(Extended Data Fig. 2a).

Overall, the variability between different encodings was surpassed by the 
variability in antibody binding between individuals (standard deviations are shown 
at the top of Supplementary Fig. 1a,b), indicating little bias for the population-scale 
analysis performed in this work.

Content and design of the PhIP-Seq microbiota antigen library. Given the 
enormous complexity of the potential antigens from human microbiota (for 
example, the integrated reference catalog of the human gut microbiome (IGC) 
is composed of 107 genes54), it is, with current DNA synthesis technologies, not 
possible to represent the entire human microbiome. We aimed to broadly cover 
both potential uncharacterized antigens as well as previously reported bacterial 
strains and proteins eliciting antibody responses by rationally choosing potential 
antigens (section ‘Library content’). Antibody binding of live bacteria is focused 
on the exposed surface or secreted proteins, so we enriched the library for these 
protein groups (section ‘Selection of microbiota protein targets’). Moreover, 
because of the current limits of DNA oligo synthesis (230 nt for this library), most 
proteins were split into peptides. These peptides’ amino-acid sequences were 
reverse-translated to E. coli codon usage (Methods). Ultimately, we generated a 
library representing 244,000 peptides derived from 28,668 proteins (thereof 27,837 
microbiota proteins, excluding proteins from the IEBD and controls).

Library content. Bacterial species and databases. About 60% (147,061 oligos) of the 
library content (Fig. 1b) was dedicated in an unbiased manner to potential antigens 
from the microbiome of healthy individuals. We used gene and species abundances 
from the metagenomics data of 953 stool samples of the same cohort (personalized 
nutrition project, PNP28) on whom we eventually performed the antibody epitope 
repertoire profiling. Another 25% (61,250 oligos) were dedicated to pathogenic 
bacteria, probiotic bacteria and gut microbiota previously reported to be coated by 
antibodies19. We also included the entire VFDB29, making up 10% (24,164 oligos) 
of the library, and left 5% (11,525 oligos) of the library for various controls (such as 
infectious disease and autoimmune human proteins from the IEDB30 and technical 
controls).

Metagenomics data of the cohort and selection of genes and species (MetaPhlAn2). 
The metagenomics data from shotgun sequencing of healthy individuals of our 
cohort were processed in two ways to select antigens. First, mapping to the IGC 
database and calculation of the relative abundance of each gene was performed as 
previously described28,55,56. The genes data of the PNP cohort contained ~4 × 106 
different genes that were mapped to the IGC54. Fifty percent of the library content 
was filled with peptides derived from the proteins encoded by these genes (exact 
selection criteria are described in the following). Second, in addition to this gene 
database, we dedicated another 10% of the library to abundant strains identified 
by MetaPhlAn2 (MPA), a computational tool for profiling the phylogenetic 
composition of microbial communities from metagenomic shotgun sequencing 
data57. We included this strain-based approach to mimic the selection process of 
pathogenic, probiotic and antibody-coated strains described in the following. After 
sorting for the 10 most abundant bacterial strains using MetaPhlAn2, fasta files of 
the bacteria’s proteins were downloaded from the NCBI (Supplementary Table 1) 
and processed as outlined below to select potential antigens.

Pathogenic, probiotic and antibody-coated bacterial species. In addition to 
commensal bacteria of healthy individuals, we added three more groups of 
bacterial species: gut pathogens, probiotic strains and bacteria reported to be 
coated with IgA in previous studies19, accounting together for 25% of the library 
content (Fig. 1b).

Seventeen bacterial species known to be (gut) pathogens were chosen based 
on their likelihood to have been encountered by our Israeli cohort. We focused on 
gut pathogens and chose the most prevalent ones (for example, Campylobacter, 
Shigella and Salmonella) according to a report of the central laboratories of the 
Israeli Ministry of Health from 2015. In addition, we added Listeria, which can 
cause serious illness in pregnant women, newborns, adults with weakened immune 
systems and the elderly (Supplementary Table 1).

Probiotic strains (Supplementary Table 1) were chosen based on a recent 
review by Lebeer and others31.

Bacterial species coated by antibodies were chosen based on the work of  
Palm et al.19, who examined the microbiota coated by IgA in healthy individuals 
and patients with Crohn’s disease and ulcerative colitis. Bacteria passing a 
threshold of relative abundance of greater than 10−6 and IgA coating index >10 
in at least three patients were chosen. In total, nine such bacterial species were 
selected, five species that were abundantly bound in healthy individuals, two from 
patients with Crohn’s disease and two from patients with ulcerative colitis.

All the genomes, from pathogenic, probiotic and IgA-coated bacteria, were 
downloaded from the NCBI and are summarized in Supplementary Table 1 
(including accession numbers).

Virulence factor database. In addition to these bacterial species, we included the 
VFDB29 to represent pathogenic species at greater depth, accounting for 10% of 
the library. The proliferation of pathogenic bacteria in their host depends on their 
ability to deploy virulence factors to establish infections, survive in the hostile 
host environment and, as a result, cause disease. We included the entire ‘set A’ of 
the VFDB, which covers genes associated with experimentally verified virulence 
factors representing 2,624 gene sequences.

Positive and negative controls. We benchmarked and validated the antibody 
reactivities against microbiota proteins (described above) with several control 
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antigens. We therefore included 12,025 oligos covering proteins from the following 
groups: (1) proteins of various infectious diseases, (2) human proteins known 
as targets in autoimmune diseases and (3) technical controls (such as identical 
amino-acid sequences coded by differently codon-optimized DNA sequences and 
random amino-acid sequences).

Positive and negative controls of infectious diseases and human proteins. We 
have included subsets of B-cell antigens from the IEDB, the most comprehensive 
repository covering various antigens reported in the literature30. As positive controls, 
we selected all antigen epitopes from B-cell assays labeled as infectious diseases 
(excluding parasites) with a human host. These 290 proteins have been reported in 
the literature to be targets of antibody responses and were covered with 4,250 oligos.

As negative controls, antigens from B-cell assays of human autoimmune 
diseases were included (as these proteins should not lead to a strong response in 
our healthy cohort), representing 430 proteins and 7,700 oligos. As well as the exact 
epitopes reported in the IEDB, the full-length protein sequences (obtained from 
UniProt by the accession numbers listed in the IEDB) were used and divided into 
overlapping oligos as described in the following.

In addition to these IEDB positive and negative controls, we included 
additional control antigens. We added viral proteins that have previously been 
reported to elicit recurrent antibody responses in 47.9–97.2% of humans using 
a similar phage display approach (table S2 in ref. 25). Both full-length proteins 
divided into overlapping oligos and the exact short peptides reported by Xu et al.25 
were included.

We also included negative controls that should not have been encountered by 
our cohort and hence not elicit antibody responses, such as several Ebola proteins. 
In addition to human proteins from the IEDB (with known auto-reactivities), 
we also included several other abundant human proteins that should not evoke 
antibody reactivities in healthy individuals (such as serum albumin, histone 
proteins, glycolysis enzymes and ribosomal proteins). These sequences are 
represented by 300 oligos. Results of positive and negative controls are shown and 
discussed in Extended Data Fig. 2a,b.

Technical controls. In addition to these biological positive and negative controls with 
expectation toward antibody binding, we also included 450 control oligos to assess 
the technical aspects of the experimental system and 100 oligos encoding random 
amino-acid sequences (without internal stop codons) that should not be recognized 
by antibodies (the results are shown and discussed in Extended Data Fig. 2a).

Furthermore, we included codon optimization replicate controls (350 oligos) to 
test for biases of representing the same amino-acid sequence with different DNA 
sequences. Oligos from both the microbiota library and the positive and negative 
controls were chosen and encoded by three different codon-optimized sequences 
coding for the same amino-acid sequence (results are shown in Supplementary  
Fig. 1). Additionally, 50 oligos representing short peptides (<45 aa) were included 
to test for additional effects of varying the random sequence at the 3′ end (a 
detailed explanation is given in the following).

Selection of microbiota protein targets. The pool of microbiota genes derived 
from metagenomics (approximately four million) and all proteins of the selected 
pathogenic, probiotic and antibody-coated strains (Supplementary Table 1) 
exceeded the library size of 244,000 variants. We thus enriched the library for 
proteins expected to elicit more frequent binding (such as highly abundant genes 
and bacterial genes identified as flagella, membrane or secreted proteins that are 
more likely to be exposed to antibody binding than intracellular proteins).

Selection by abundance and annotation. Using the metagenomics data of relative 
abundance of genes, subsets of sequences were chosen solely based on abundances 
in the cohort, starting with a cutoff of 10−6 relative abundance as the criterion for 
presence in our cohort. Three percent of the library was dedicated to the most 
abundant genes occurring in >95% of the cohort (highly abundant), 3% of the 
library was dedicated to genes that appeared in half of the cohort (moderately 
abundant) and 3% was dedicated to genes that appeared in less than 1% of the 
cohort (rarely abundant).

Another set of genes was selected based on annotations and cellular 
localization predictions focusing on proteins with a higher chance to be exposed 
to the host’s immune system. We started with genes that were present in more 
than 20% of our cohort, resulting in a list of ~140,000 genes. We focused on three 
groups: membrane proteins, secreted proteins and motility proteins/flagella, as 
these proteins are surface exposed58 and have previously been reported to be bound 
by antibodies in small-scale studies7.

To assign these functionalities/localizations to gene sequences (to select 
membrane/secreted/motility proteins), we applied Blast2GO, a bioinformatics 
platform for the high-throughput and automatic functional annotation of DNA or 
protein sequences based on the Gene Ontology database59. The BLAST step was 
done locally against the NCBI non-redundant protein database with up to 10 hits 
per sequence. Analysis of the GO was done locally (database updated to January 
2017) using the 2.8 version of Blast2GO. Proteins that were assigned GO terms of 
membrane localization or extracellular localization or secretion or motility were 
filtered out. This step resulted in a list of ~34,000 membrane proteins, 461 secreted 
proteins and ~100 motility proteins.

Membrane protein selection. Membrane proteins contain three distinct parts: 
transmembrane domains, extracellular domains and intracellular domains. 
We focused on the extracellular domains, as these are more likely to be bound 
by antibodies, and we avoided hydrophobic transmembrane domains. We 
used TopGraph for the prediction of intracellular, membrane and extracellular 
sequences of the membrane proteins. Extracellular domains with a length of >20 
amino acids were included in the library (alongside a control set of full-length 
membrane proteins representing ~600 proteins).

Secreted protein selection. In addition to the Blast2GO approach, SignalP 4.0 
was used for the prediction of signal peptides. The 140,000 genes (appearing in 
>20% of the cohort) were analyzed by SignalP 4.0 for both Gram-positive and 
Gram-negative signal peptides. The sequences that were predicted to have signal 
peptides were filtered out and the mature sequences (without signal peptides) were 
included in the library (~7,000 proteins).

Not all secretory proteins carry signal peptides. Some proteins, including 
various virulence factors, enter a non-classical secretory pathway without any 
currently known sequence motif. In Gram-negative bacteria, type I, III, IV and 
VI secretion systems function without signal peptides. As another approach to 
select for secreted proteins, we used DIAMOND, an alignment algorithm that is 
potentially more than 20,000 times faster than BLASTX, but which maintains a 
similar sensitivity. First, reference databases were created by searching the UniProt 
website (http://www.uniprot.org/) for bacterial toxins and flagella proteins (only 
reviewed sequences were chosen). We searched for hits between the entire IGC 
database of human gut microbiome genes and these well-characterized reference 
databases of bacterial toxins and flagella using DIAMOND. Genes in the IGC 
with at least one match with an E value of <10−6 were filtered out. This approach 
resulted in an additional 324 predicted toxins and 1,265 predicted flagella proteins.

The same approaches for selecting membrane and secreted proteins applied 
to the metagenomics data were also applied to the pathogenic, probiotic and 
antibody-coated strains, and so on (Supplementary Table 1), to enrich for proteins 
potentially targeted by antibodies.

Clustering by CDhit. To avoid redundancy due to sequences that are highly similar 
in the library, we used CDhit for clustering. All the metagenomics data (genes 
and strains) were concatenated in two groups, TopGraph sequences (membrane 
proteins) and the rest. Sequences of pathogenic, probiotic and antibody-coated 
strains were treated in the same manner. Each group was clustered to 70% 
homology and the cluster representatives were chosen for the next step. Membrane 
and secreted proteins from metagenomics data were selected based on the original 
abundances of the genes. All predicted secreted proteins from the genomes of 
selected bacteria were included, but membrane protein sequences were randomly 
selected from a subset of the strains (indicated in Supplementary Table 1).

Immunoprecipitation and sequencing. The PhIP-Seq experiments were performed 
as outlined in a published protocol21 with the following modifications: polymerase 
chain reaction (PCR) plates for the transfer of beads and washing were blocked 
with 150 µl of BSA (30 g l−1 in Dulbecco’s phosphate-buffered saline (DPBS) buffer, 
incubated overnight at 4 °C) and BSA was added to diluted phage/buffer mixtures 
for immunoprecipitations (IPs) to 2 g l−1. Phage wash buffer for IPs was prepared 
as outlined in ref. 21 with 0.1% (wt/vol) IPEGAL CA 630 (Sigma-Aldrich cat. no. 
I3021). To determine the optimal ratio of phages and antibodies per reaction, we 
mixed phage amounts ranging from a 2,000- to a 16,000-fold coverage per variant 
with antibody amounts ranging from 0 to 16 µg. The optimal concentrations 
appeared to be a 4,000-fold coverage of phages per variant and between 2 and 4 µg 
of antibodies. Although the optimal antibody amount used is similar to previous 
PhIP-Seq applications (2 µg recommended by Mohan et al.21), the number of 
phages per library variant is lower (105 phages per variant recommended by Mohan 
et al.). This difference may be due to the different binding potential of this novel 
microbiota antigen library or additional blocking steps performed (we added 
BSA to the diluted reaction mixtures and also blocked the PCR plate used for the 
washing steps with BSA). After optimizing the phage and antibody amounts for IPs 
(Extended Data Fig. 1a), 3 µg of serum IgG antibodies (measured by ELISA) were 
mixed with the phage library (4,000-fold coverage of phages per library variant). As 
technical replicates of the same sample were in excellent agreement (average Pearson 
R2 = 0.96, n = 191; Extended Data Fig. 1b), measurements were performed in single 
reactions. The microbiota library was mixed in a 2:1 ratio with a 200-mer 100,000 
variant pool (S.L., manuscript in preparation).

The phage library and antibody mixtures were incubated in 96 deep well 
plates at 4 °C with overhead mixing on a rotator. A 1:1 mixture of protein A 
and G magnetic beads (40 μl; Thermo Fisher Scientific, cat. nos. 10008D and 
10009D, washed according to the manufacturer’s recommendations) was 
added after overnight incubation and incubated on a rotator at 4 °C. After 
4 h, the beads were transferred to PCR plates and washed twice, as previously 
reported21, using a Tecan Freedom Evo liquid-handling robot with filter tips. 
The following PCR amplifications for pooled Illumina amplicon sequencing 
were performed with Q5 polymerase (New England Biolabs, cat. no. M0493L) 
according to the manufacturer’s recommendations (primer pairs PCR1: 
tcgtcggcagcgtcagatgtgtataagagacagGTTACTCGAGTGCGGCCGCAAGC and 
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gtctcgtgggctcggagatgtgtataagagacagATGCTCGGGGATCCGAATTC; PCR2: 
Illumina Nextera combinatorial dual index primers; PCR3 (of PCR2 pools): 
AATGATACGGCGACCACCGA and CAAGCAGAAGACGGCATACGA21). 
PCR3 products were cut from agarose gel and purified twice (1× QIAquick gel 
extraction kit, 1× QIAquick PCR purification kit; Qiagen cat. nos. 28704 and 
28104) and sequenced on an Illumina NextSeq machine (custom primers for R1: 
ttactcgagtgcggccgcaagctttca; for R2: tgtgtataagagacagatgctcggggatccgaattct; R1/R2 
44/31 nt). Paired-end reads were processed as described in the following.

Data analysis. All analysis code was written in Python (3.7.4), using the libraries 
sklearn (0.23.2), scipy (1.5.4), statsmodels (0.12.1), pandas (1.1.5), numpy (1.18.5), 
matplotlib (3.3.3) and seaborn (0.11.0). Also, xgboost (1.18.5) and shap (0.37.0) 
implementations were used. Additional data analysis software included BoxPlotR/R 
software49 and MetaPhlAn257. DNA sequencing (performed on the Illumina 
NextSeq platform) reads of IPs were downsampled to 1.25 million ID-able reads per 
sample, that is, reads with a barcode within one error of the set of possible barcodes 
of the two mixed libraries for which the paired end matched the ID-ed oligo. When 
not enough reads were obtained, a minimal threshold of 750,000 reads was enforced 
for data analysis. Enriched peptides were calculated by comparing the number of 
reads per oligo to that of input coverage (library sequencing of phages before IPs). 
Scoring was done assuming each input level creates an output level distribution 
that is a generalized Poisson distribution. Parameters for this generalized Poisson 
distribution were estimated for each input level of each sample separately, then 
fitted to three parameters for the whole samples, extrapolated for each input level 
and scored22. Derived P values were subject to Bonferroni correction (P = 0.05) 
for multiple hypothesis testing, and log(fold change) (number of reads of bound 
peptides versus baseline sequencing of phages not undergoing IPs) was computed 
for all peptides that passed the threshold P value, and all other peptides were given a 
log(fold change) value of 0. Samples for which fewer than 200 peptides significantly 
bound were excluded from analyses. The input sequencing of the phage library was 
before IP was performed at >100-fold coverage. For the calculation of fold changes, 
input reads were set to a minimum of 25 reads.

We used the gradient boosting trees regressor from Xgboost37 as the algorithm 
for the regression predictive model for different phenotypes. We used the gradient 
boosting trees classifier from Xgboost as the algorithm for the classification 
predictive model for phenotypes with binary values.

The parameters of the predictors when using microbiome features  
were colsample_bylevel=0.075, max_depth=6, learning_rate=0.0025,  
n_estimators=4000, subsample=0.6, min_child_weight=20. These parameters 
were used for regression as well as classification. The rest of the parameters had  
the default values of Xgboost.

All analysis was performed by 10-fold cross-validation so that any overfitting 
would only worsen prediction accuracy.

In general, adding irrelevant features to an Xgboost model will inevitably 
worsen predictions, as some of the trees will not have any relevant features in 
them, which will add noise to the prediction. This effect is stronger the larger the 
proportion of irrelevant features, so it is expected that prediction of any phenotype 
by age and gender alone would be much better than the same prediction with many 
extra features (in our case log(fold changes) of peptides), if they do not have a 
significant contribution to the phenotype.

Raw data and code. Raw data files. library_content_info.csv. This file is directly 
available online at Nature Medicine, as well as details on the 244,000 peptides 
contained within the PhIP-Seq microbiota library. Every line represents a 
phage-displayed peptide numbered consecutively (column ‘peptide_number’). 
‘pos’ refers to the starting position of the peptide within the originating protein. 
‘len_seq’ indicates the full length of the originating protein. ‘aa_seq’ is the amino-acid 
sequence of the peptide. The subsequent columns indicate the origin of the selected 
proteins including the immune epitope database (is_IEDB), positive controls 
(is_pos_cntrl), negative controls (is_neg_cntrl), random peptides (is_rand_cntrl), 
the virulence factor database (is_VFDB), sequences selected from gut microbiota 
metagenomics sequencing (is_gut_microbiome), pathogenic strains (is_patho_strain), 
antibody-coated strains (is_IgA_coated_strain), probiotic strains (is_probio_strain) 
and, if applicable, the bacterial strain of origin (bac_src). Proteins functions were 
annotated by mapping to the UniRef90 database (uniref and uniref_func).

cohort_info.csv. This file is directly available via online at Nature Medicine, 
as well as details on the individuals and serum samples that were analyzed 
(including longitudinal samples of the same individual). The first column contains 
information on the individual and sample number in the format “individuals’ 
number” _X_ “sample number”. ‘yob’ – year of birth, gender: 0 = female,  
1 = male, ‘bmi’ – body mass index, ‘bt__crp_hs’ - C-Reactive Protein blood test, 
“bt__hba1c” - Hemoglobin A1C. ‘old_RegistrationCode’ is used for matching the 
213 longitudinal samples with their counterparts. ‘num_passed_total’ and ‘num_
passed_microbiota’ are the number of peptides significantly bound by antibodies in 
the PhIP-Seq assay (all peptides from the two mixed libraries versus only peptides 
from the microbiota library; Methods). When computing age ranges, the main text 
(for example Fig. 1c) only reports the age range for the 997 baseline samples, which 
is 17–70 years. For 213 individuals, we collected follow-up samples after ~5 years. 
Metadata for these follow-up samples are also provided in the cohort_info.csv 

file. By chance, one of the oldest individuals of the baseline cohort (70 years) was 
among the follow-up samples collected, so the total age range increases to 75 years 
when looking at the baseline + follow-up samples.

MB_composition.csv. Microbiome composition was inferred from metagenomics 
sequencing of stool samples of the respective individuals17,28,60. The same identifier 
as used in the information on the cohort can be used to match the antibody and 
metagenomics datasets.

PhIP-Seq_data directory. This .zip file is directly available online at Nature 
Medicine. The PhIP-Seq results of each sample measured are provided by applying 
the same identifiers given in ‘cohort_info.csv’. Every line represents a peptide 
significantly bound by antibodies (with the same identifiers as in the file ‘library_
content_info.csv’). ‘fold_change’ (from base input levels) and ‘p_value’ (−log10 
of the P value, based on input and output levels) metrics were computed with 
the generalized Poisson distribution approach as outlined in the Methods. Raw 
data of the PhIP-Seq experiments are deposited in the Harvard Dataverse public 
repository: https://doi.org/10.7910/DVN/3SOZCQ.

Code repository. Custom code used for analyzing the PhIP-Seq data is publicly 
available at https://github.com/erans99/PhIPSeq_external.

The code repository is subdivided into two subfolders as follows.

Analyse_Fastq. The first subfolder contains code to analyze a NextGen Sequencing 
plate, containing 96 wells, of which 80 are data wells and 16 are different types 
of controls of well quality (four negative controls, eight mocks and four positive 
control (‘anchor’) samples). The output of this is a file, per data well, of fold change 
and −log10(P value).

Analysis. The second subfolder contains code for executing different tests and 
analyses on the results of the PhIP-Seq output (as cached from files such as those in 
the PhIPSeq_data directory).

Validation experiments. Detection of epitopes recognized by antibody preparations 
generated against immunogens of full-length proteins and bacterial cells. We 
obtained antibody preparations generated by immunizing rabbits or goats either 
with single bacterial proteins or with inactivated bacterial strains (see the first sheet 
of Supplementary Table 2 for details on the antibodies and immunogens). These 
samples were processed following our standard PhIP-Seq workflow as also applied 
to human samples (Extended Data Fig. 3).

Antibody binding with protein A- and protein G-coated beads separately and 
antibody-coated beads capturing IgA and IgG separately. To gain understanding of 
by which antibody classes the antigens of our library are bound, we performed an 
experiment with altered IP conditions (Fig. 1a). In addition to using a mixture of 
protein A- and protein G-coated beads (which bind all antibody classes), we mixed 
the same serum samples separately with protein A alone and protein G alone. 
According to the manufacturer’s specifications of the superparamagnetic beads 
used in these experiments (Thermo Fisher Scientific, cat. nos. 10008D (protein A)  
and 10009D (protein G)), protein A binds strongly to human IgG1, 2, 4 and 
weakly/moderately to IgG3, IgA, IgM and IgE, while it does not bind IgD. By 
contrast, protein G binds strongly to human IgG1, 2, 4 as well as IgG3, but does not 
bind to IgA, IgM, IgE or IgD. We processed serum samples of 78 individuals each 
with a mixture of protein A and G (equivalent to the standard protocol used for 
serum measurements shown in this work), protein A alone and protein G alone.

Hence, antigens detected with both protein A and protein G indicate binding 
of IgG subclasses, whereas antigens bound by IgA, IgM and IgE can be identified 
by only binding to protein A beads (Extended Data Fig. 5a–c). In addition to the 
experiments with protein A and G separately, we also verified the same set of 80 
samples with beads covered with IgG and IgA capture antibodies (following a 
published PhIP-Seq protocol27). Rather than mixing the phage/antibody complexes 
with protein A + G, we mixed them with IgA- and IgG-specific biotinylated capture 
antibodies (mouse anti-human IgG Fc-BIOT and goat anti-human IgA-BIOT, 
Southern Biotech) by adding 6 µg of each capture antibody (in a separate reaction) 
prior to the overnight incubation step (outlined in the Methods). Sample IgG 
concentrations (3 µg used per reaction) were determined as outlined in the 
Methods, and for IgA concentration measurements we applied a human IgA ELISA 
kit (abcam, ab196263) and also used 3 µg per reaction. For the pulldown in the IP 
step, 25 µl of Pierce streptavidin magnetic beads (Thermo Fisher Scientific) were 
added per reaction (washed according to the manufacturer’s recommendations). 
The subsequent incubation/washing steps were performed identically to when 
using a mixture of protein A and G.

Following this protocol, we measured serum samples of 80 individuals with this 
IgA- and IgG-specific workflow (Extended Data Fig. 5d). These same 80 samples 
were measured with the standard protein A + G workflow and protein A and 
protein G separately (Extended Data Fig. 5a–c).

Isotype control experiments on antibody-binding proteins. We performed 
isotype control experiments (Fig. 2) that indicated the presence of 
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antibody-binding proteins within the microbiota antigen library. When studying 
antigens occurring nearly universally in our cohort (Fig. 1e), we noticed 
the frequent appearance of Staphylococcus protein A. Protein A (as well as 
Streptococcus protein G) is an antibody-binding protein interacting with the Fc 
region of antibodies. The magnetic beads used in this study are, for example, 
coated with proteins A and G to carry out the IP and washing steps (Figs. 2a and 
1a). We hypothesized that the frequent binding of these peptides may not be due 
to interactions of the antibodies’ Fab region (Fig. 2a), but rather their nature as 
antibody-binding proteins and interactions with the Fc part (Fig. 2b).

We thus performed isotype control experiments with commercial antibodies/
fragments to probe for interactions of our phage library beyond canonical 
Fab-dependent binding. We included two IgG monoclonal antibodies (mAbs) with 
different specificities (IgG1 anti-human HER2, R&D Systems, cat. no. MAB9589; 
IgG1 anti-human tumor necrosis factor-α, R&D Systems, cat. no. MAB9677). 
Additionally, an Fc preparation of IgG from human blood was included 
(Novus, cat. no. NBP2-47132). The two IgG mAbs could allow detection of the 
cross-reactivities of single Fabs, whereas the Fc preparation should completely 
eliminate any contribution of the Fab to the detected binding.

The mABs and the Fc preparation were mixed with the phage library and 
treated in the same way as regular serum samples (using also the identical amount 
of 3 µg per reaction).

Peptide ELISAs. To validate the PhIP-Seq results, we selected six peptides included 
within our PhIP-Seq library for analysis in a peptide ELISA (results are shown in 
Extended Data Fig. 7). We included a positive control of a viral peptide (Epstein–
Barr virus (EBV) nuclear antigen 1) with frequent population-scale antibody 
responses25 (corresponding peptide in the PhIP-Seq library: #3387) as well as a 
negative control of a human protein (SAPK4/MAPK13) that was expected not to 
elicit antibody binding in sera of healthy individuals (corresponding PhIP-Seq 
peptides #1575, #1576, #1577 (the identical peptide was encoded as negative 
control three times within the library, with neither DNA encoding of the peptide 
eliciting binding; see Supplementary Fig. 1b for details)).

We also included peptides of two Shigella proteins, ipaC and icsA/virG, 
associated with age (Fig. 4c and Supplementary Table 6), as well as peptides 
of Staphylococcus (extracellular matrix protein-binding adhesin, Emp, 
WP_000728052.1) and Streptococcus proteins (CHAP domain-containing 
protein, WP_020916184.1) frequently bound in PhIP-Seq. As chemical synthesis 
of the 64-aa peptides displayed on the phages is costly, we aimed to reduce the 
peptide length. We thus selected 20-aa sections representing the overlap of 
adjacent peptides of the same protein bound in PhIP-Seq. This overlap can, for 
example, be observed in Fig. 4c and Supplementary Table 6 for Shigella ipaC 
peptides #226014 and #232269. Likewise, 20 aa from the overlap of peptides of 
icsA (#221918 and #235092), Staphylococcus Emp (#180309 and #24623) and 
Streptococcus CHAP (#110572 and #169922) were selected. As both of these 
peptides were bound in PhIP-Seq, they may share the same epitope covered by 
the overlap between them. The following amino-acid sequences were selected: 
EBV, PPPGRRPFFHPVAEADYFEY; SAPK4, KIMGMEFSEEKIQYLVYQML; 
Shig. ipaC, GKNPVLTTTLNDDQLLKLSE; Shig. icsA/virG, 
NGGDSITGSDLSIINQGMIL; Staph. Emp, ASEDKLNKIADPSAASKIVD; Strep. 
CHAP, SATSYINTILNSKSVSDAIN.

These amino-acid sequences were ordered from JPT Peptide Technologies as 
biotinylated chemically synthesized peptides and the peptide ELISA was performed 
according to the manufacturer’s guidelines with the recommended concentrations 
(Protocols BioTides Peptides Revision 1.0 and Peptide ELISA Revision 1.2). In 
short, the peptides were bound to streptavidin-coated plates (Thermo Scientific 
Nunc Immobilizer streptavidin plates, cat. no. 436014) and incubated with 
serum samples (diluted 1:1,000-fold). Antibody binding was detected with a 
horseradish peroxidase-conjugated anti-human IgG antibody (Southern Biotech, 
cat. no. 204205) and 3,3′,5,5′-tetramethylbenzidine (TMB) as substrate. Sera of 80 
individuals (for whom PhIP-Seq data were also available and the protein A/G and 
IgG/IgA experiments had been performed; Extended Data Fig. 5) were tested with 
each of the six peptides.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The data generated or analyzed during this study are included within the paper, its 
Supplementary Information files and public repositories. Detailed information on 
the cohort, library content and PhIP-Seq data are available in the Supplementary 
Data files (files: cohort_info.csv, MB_composition.csv, library_content_info.csv 
and PhIP-Seq_data.zip). Patient-related data not included in the paper may be 
subject to patient confidentiality. Extended Data Fig. 3, Fig. 1, Extended Data Fig. 5,  
Fig. 3a,b/Extended Data Fig. 6 and Fig. 4a,c have associated raw data provided, 
respectively, in Supplementary Table 2, Supplementary Table 3, Supplementary 
Table 4, Supplementary Table 5 and Supplementary Table 6. Raw data for the 
PhIP-Seq experiments are deposited in the Harvard Dataverse public repository at 
https://doi.org/10.7910/DVN/3SOZCQ. Antigens included in the PhIP-Seq library 
were obtained from the immune epitope database (IEDB, https://www.iedb.org/) 

and virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/), as well as other 
sources outlined in the Methods.

Code availability
Custom code used for analyzing the PhIP-Seq data is publicly available at https://
github.com/erans99/PhIPSeq_external. The code repository is subdivided into 
two subfolders: (1) Analyse_Fastq, code to analyze a NextGen Sequencing plate, 
containing 96 wells, of which 80 are data wells and 16 are different types of controls of 
well quality (four negative controls, eight mocks and four positive control (‘anchor’) 
samples). The output of this is a file, per data well, of fold change and −log10(P value); 
(2) Analysis, code for executing different tests and analyses on the results of the 
PhIP-Seq output (as cached from files like those in the PhIPSeq_data directory).
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Extended Data Fig. 1 | Control experiments of optimizing the ratio of phage/antibody amounts in IPs (a), the reproducibility of technical duplicates (b), 
examples of high technical (c) as well as biological reproducibility (d,e), and the > 1,000 samples reported in the main manuscript were processed in 
batches of 96 well plates, that were not biased by batch effects (f). a, ‘Phages per variant’ refers to the number of phages per library variant, ‘Phages per 
reaction’ refers to the number of total phages in a reaction mixture of the microbiota library (244,000 variants times the number of phages per variant). 
IP reactions were performed in duplicates (R1, R2), the numbers of significantly bound peptides are shown normalized as percent of the highest binding 
phage/antibody combination (4,000-fold phage coverage and 4 µg of IgG antibodies). A mixed pool of human serum samples was used as antibody 
material for this calibration. b, Technical replicates (n = 191 samples measured in duplicates) were in excellent agreement with an average Pearson R² 
(of FCs) of 0.96 between duplicates. 95% of duplicates correlated with R² greater than 0.90 (181/191) and 78% of duplicates even with an R² greater 
than 0.95 (149/191). Given this high reproducibility and little added information gained from duplicates, the exploratory experiments reported in this 
manuscript were carried out in single reactions. For potential diagnostic applications of PhIP-Seq technical replicates may be valuable to validate results. 
c-e, Examples of high technical reproducibility and low background binding (e) as well as biological reproducibility of samples collected 6 days (f) and 1.5 
years apart (g). In red in panel e low background binding of a negative control without antibodies (‘Mock IP’21) is illustrated. Samples collected days  
(f) or years (g) apart and processed in different PhIP-Seq runs show excellent reproducibility. f, Principle component analysis (PCA) of samples measured 
in different batches of PhIP-Seq experiments. PCs were computed on signals (log FC) against bound peptides of the entire antigen, the first six PCs are 
shown. Samples measured in the same batch do not cluster separately from other batches indicating no clear bias of batch effects for these samples.
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Extended Data Fig. 2 | Analysis of negative controls for estimating nonspecific background signal (a) and comparison of viral positive controls 
of this study to population wide responses previously reported25 (b). a, Negative controls indicate little nonspecific background-binding impacting 
population-scale interpretation of the measured antibody epitope repertoires. We had included negative controls of proteins that were expected to elicit 
little binding in healthy individuals. These included random amino acid sequences (100 peptides), as well as human proteins (autoimmune disease targets 
reported in the IEDB30 and various abundant housekeeping genes such as histones and glycolytic enzymes represented as 364 peptides). Analyzing 
binding to these negative controls in the cohort showed that a few random peptides were significantly enriched in up to 0.5% (5/997 individuals), 
indicating a low background of unspecific binding (or cross-reactivity) which can be eliminated by using a threshold for peptides bound in >1% of 
individuals. Peptides of human proteins were bound in up to 3.3% (33/997) of individuals, similar to results previously reported using PhIP-Seq23. It has 
been speculated that such antibody binding against human proteins may arise from cross-reactivity and are unlikely to have detrimental consequences 
in healthy individuals23. The following machine learning based predictions in this work were limited to peptides bound in at least 2% of the population. 
b, Controls of viral epitopes measured on our cohort match previously reported seroprevalences from a population scale study25. Xu et al25. employed a 
PhIP-Seq workflow with a library covering viral antigens (‘VirScan’) and detected near universal population wide targeting of certain viral peptides. They 
had reported a list of 11 viral peptides including the amino acid sequences and seroprevalences (supporting information, Table S2 of their publication25, % 
seroprevalences are reproduced from this table). We had included the exact same peptides and detected similar rates of seroprevalence, demonstrating 
the reproducibility of the PhIP-Seq workflow and sensitivity of our implementation. *: Xu et al. have analyzed in total sera of 569 individuals, although the 
exact number of individuals for calculating the seroprevalence is not specified in the caption of their supporting table S2.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The PhIP-Seq workflow robustly identifies peptide targets of antibodies generated against immunogens of full-length proteins 
and bacterial cells. a-i, Commercially available antibodies were measured with our PhIP-Seq microbiota library following the same standard approach 
applied to human serum samples. Antibody amounts were normalized by the concentrations specified by the manufacturers. Panels a-g represent 
antibody preparations targeting microbial antigens, panels h and i represent negative controls of monoclonal antibodies targeting human proteins. See 
the first sheet of supporting file.xlsx file Supplementary table 2 for details on immunogens and properties related to each antibody. Measurements of 
each antibody were performed in triplicates and peptides appearing in all replicates were used in the analysis. The correlation of Fold change values for 
two random replicates [Rep. 1, Rep. 2] are shown (Pearson R²). ‘Fold change’ refers to the ratio between reads in the IP reaction with antibodies vs. input 
sequencing of the phage library (a proxy for binding strength). Note the different scales on the axes and note the use of a logarithmic scale for the axes 
of panel f (to adequately represent weakly enriched peptides). ‘*’ in panel c denotes an antibody preparation, that was protein A purified according to 
the manufacturer. The exact bound peptides are listed in the second sheet of supporting file.xlsx file Supplementary table 2. Only peptides related to the 
bound antigens are listed (background reactivity of the whole sera from rabbit/goat omitted). j, Assessment of potential cross-reactivity or background 
reactivity of the antibody preparations. The list of bound peptides by each antibody preparation (marked in panels a-i) was searched among the bound 
peptides by every other antibody preparation (and is marked in all plots, only nearly identical E. coli and Shigella peptides show up in the other sample as 
well). The numbers of bound peptides are listed. Thereby we have verified that the marked peptides in panels a-i are not appearing due to background/
cross-reactivity of the whole animal sera, as they only appear in reactions of the respective antibodies.
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Extended Data Fig. 4 | Bacterial strains of different functional groups within the library (Fig. 1b, methods section and Supplementary table 1) all elicit 
substantial population wide antibody responses. The fraction of peptides per strain (out of all the strain’s peptides) bound in >3% of the cohort (n = 997) 
is shown. See Supplementary table 1 for details on the bacterial strains listed. Antibody responses are not limited to pathogenic strains, but extend 
to strains selected from healthy individuals’ gut microbiota (from metagenomics sequencing, see the methods section), probiotic strains, and strains 
previously reported to be coated by antibodies19. A large fraction of Staphylococcus aureus peptides were bound, possibly owing to its ubiquitous role in 
the upper respiratory tract and human skin microbiome along its large number of virulence factors potentially eliciting antibody responses29,61.

NATuRE MEdICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNAturE MEDIcINE

Extended Data Fig. 5 | Antibody binding with protein A and protein G coated beads separately (a-c) and antibody coated beads capturing IgA and IgG 
separately (d). Supplementary table 4 provides detailed lists on the respective peptides bound. a-c Relying on different binding affinities of protein A and 
G for antibody classes, we processed 80 serum samples each with 1.) a mixture of protein A and G, 2.) protein A alone, and 3.) protein G alone.  
a, Comparison of peptides bound by protein A vs. protein G. b, Comparison of peptides bound by a mixture of protein A and G vs. protein G. c, Comparison 
of peptides bound by a mixture of protein A and G vs. protein A. In panels a-c data of 78/80 samples are shown, as samples with <200 significantly 
enriched peptides per sample were excluded (same cutoff as for the other human sera measured). d Experimental workflow to detect IgA and IgG 
subclasses separately (following procedures reported in the literature27 and Methods). In panel d, a comparison of peptides bound by IgA vs. IgG specific 
beads is shown. Samples with IgG specific beads were sequences with 0.8 million reads, however we do not expect a strong impact thereof, as the 
number of detected peptides typically saturates22. e Comparison of peptides bound by a mixture of protein A and G vs. IgG specific beads. f Comparison 
of peptides bound by a mixture of protein A and G vs. IgA specific beads. In panels d-f data of 80 samples is shown (as for IgA many samples would not 
have passed the threshold of >200 peptides applied in other figures, see panel g). For the IgA vs. IgG experiments a different batch of phages was used. In 
panels a-f Pearson R² is shown. g Number of bound peptides per sample with each set of magnetic beads used. Center lines show the medians; box limits 
indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, 
outliers are represented by dots. n = 80 sample points.
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Extended Data Fig. 6 | Associations between serum antibody responses and abundances inferred from metagenomics sequencing. a, Testing 
antibody bound peptides which appeared in >2% of individuals (4469 peptides) vs. relative abundances of species (SGBs50) which appear in >2% of 
individuals (1056 SGBs). Of them, 1706 pairs (listed in Supplementary table 5) passed FDR correction (p-value <0.05) for multiple hypothesis testing 
(approximately 4.7 million tests). Most of these associations were from peptides and species that appeared in a small percentage (2-5%) of individuals. 
We also performed the same test of peptides and species which appear in >5% of individual (745 species and 1566 peptides) with 12 pairs passing FDR 
correction. Some of the species abundances are correlated with the fold change of up to 23 peptides per species (histogram in Fig. 3b). This analysis 
includes also associations of multiple SGBs with the same peptide. For example antibody binding of the Shigella IpaC protein (antibody binding against 
which we had found to be associated with age [Fig. 4c]) was associated with abundances of various SGBs, suggesting multiple factors contributing to its 
biological effects (for example potentially increased translocation as well as effects mediated by the adaptive immune system). These results are affected 
by detection thresholds of PhIP-Seq and metagenomics sequencing and we cannot rule out that small amounts of bacteria undetectable in microbiome 
sequencing eliciting weak antibody responses would associate in a larger fraction of individuals. Another technical consideration beyond the detection 
threshold is the library content size, with the option of creating PhIP-Seq antigen libraries specific to individuals potentially allowing to capture links 
between metagenomics data and antibody epitope repertoires at greater depth. b, Representation of the 1,706 significant population scale associations 
between antibody binding against peptides (x-axis) and detection in metagenomics sequencing (y-axis). Every dot represents one of the significant 
associations listed in (Supplementary table 5). Each dot is colored by the FDR-corrected p-value of the Spearman correlation (also listed in Supplementary 
table 5). c,d Correlation of every person’s metagenomics gut microbiome sequencing data with the antibody repertoire data (similar to Fig. 6a,b) on gut 
metagenomics antigens/genes (methods section).
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Extended Data Fig. 7 | Peptide ELISAs validations of PhIP-Seq results. Sections of 20 amino acids (aa) of six peptides included within our PhIP-Seq 
library were chemically synthesized and tested in a peptide ELISA against sera of 80 individuals, for whom also PhIP-Seq data was available (see M&Ms 
section “Peptide ELISAs” for the selection criteria and sequences of the peptides). a-f, Comparison of peptide ELISA and PhIP-Seq data for each peptide 
(as indicated by the title above each panel). Each dot represents data of one individual. Absorption values of ELISA data and p-values of significance of 
enrichment of binding in PhIP-Seq (for one peptide) are shown on the x and y axes respectively. Absorption values below the average of the negative 
control were normalized to 0. Spearman correlation (R) with associated p-value (Spearman rank-order correlation coefficient, nonparametric measure) 
was computed for each pair of PhIP-Seq and ELISA data (shown in each panel). The negative control peptides were not bound in PhIP-Seq, hence 
Spearman R/p-val are not applicable (n.a.). g, Summary of the results shown in panels a-f. The percentage of ELISA or PhIP-Seq binding in the 80 
individuals was calculated for each peptide with the standard Generalized Poisson cutoffs for PhIP-Seq (with binding of multiple peptides summarized if 
applicable, see text below) and the ELISA data was counted as positive when the absorption value was greater than the average of the negative control. 
The calculated Spearman correlation (R) between the frequency of antibody responses in PhIP-Seq and ELISA is shown in the panel.
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Extended Data Fig. 8 | Antibody epitope repertoires against the microbiota antigen library significantly predict C-reactive protein (CRP) levels 
(measured with a wide CRP range test) by machine learning, albeit with lower predictive power than age (Fig. 5a) or gender (Fig. 5b). a, Age and gender 
alone are confounding factors of machine learning based predictions of serum CRP levels (measured with a wide range test for ca. 400 individuals). As 
antibody epitope repertoires also carry a wealth of age/gender related information (Fig. 5) the contribution of age and gender alone vs. antibody epitope 
repertoires was assessed here. CRP levels were predicted using age and gender alone as features and with a combination of age, gender, and microbiota 
antibody epitope repertoires as features, using Ridge Regression 10-fold cross validation. Each model was repeated 100 times (different cross validation 
sets) and a histogram of the resulting 100 Pearson correlation coefficients (correlation of actual vs. predicted CRP values) are shown in panel a. The 
analysis has been corrected for multiple hypothesis testing: Pearson correlation of predicted (on antibody bound peptides + age + gender) to actual value 
is 0.12, with p-value of 0.011, which after FDR correction becomes 0.018 (<0.05, i.r. passes FDR correction). Pearson correlation of machine learning 
based prediction on age & gender alone to actual value is 0, so that all predictive power comes directly from antibody bound peptides, and not from their 
prediction of age and gender. Thereby a significant added predictive value of microbiota antibody epitope repertoires is demonstrated. b, For both 1.) other 
blood tests beyond CRP or 2.) anthropometrics such as body mass index (BMI), adding microbiota antibody epitope repertoire information rather worsens 
machine learning based predictions compared to age and gender alone (as additional meaningless features increase noise, see methods section) or did not 
pass FDR correction. This notion is exemplified with machine learning based prediction of BMI in panel b.
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Extended Data Fig. 9 | In contrast to antibody responses targeting microbiota antigens, reactivities against human self-proteins and random peptides 
carry virtually no predictive power by machine learning for age (a) and gender (b). This finding precludes that self-reactivity or potential cross-reactivity 
against random peptides underlie the strong associations observed. The machine learning based predictions based on human proteins and random 
peptides encompassed ca. 6,300 peptides included in the antigen library as part of the IEDB (autoantigens) or as controls (covering abundant proteins 
such histones, glycolytic enzymes etc., see the methods section and Supplementary table 1 for details). Average and standard deviation derived by 10 
repeats of XGBoost with 10-fold cross validation (as in Fig. 5). Ideally, the same number of controls as microbial peptides should have been used. However, 
that would have doubled the cost of the PhIP-Seq library as well as doubling the cost of every assay performed (as we would have had to sequence deeper 
and use more beads to retain the same signal strength). Given these cost considerations, we could not afford to include a set of nearly 250,000 controls. 
However, we believe that also the set of only 6,300 peptides serves as an important control: We detected very little binding against these controls 
(discussed in more detail in S2/S3), and they do not carry any predictive power by machine learning, demonstrating that there is no exceedingly large 
cross-reactivity or background signal with our PhIP-Seq system.
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Extended Data Fig. 10 | Additional analyses of longitudinal stability. Complete correlation diagrams for the five-year longitudinal antibody stability 
results of 213 individuals shown in Fig. 6 (panels a, c, e) and additional subgroups of the antigen library (c,d) as well as two different approaches to 
assess gut microbiome stability from metagenomics sequencing data (g,h). Pearson correlations of log fold changes of all baseline (t = 0) and follow up 
(t = 5 years) samples compared with each other are shown. Correlations based on antigens of the entire microbiota library (a) [also shown in Fig. 6a], 
only the VFDB (b), and the microbiota library excluding VDFB (c) are shown. In addition to these antigens obtained from databases, two analyses with 
antigens from microbiome sequencing of this cohort28 (Methods) were performed (d,e). f, Summary figure on the correlation coefficients of the stability 
of antibody epitope repertoires from antigen subgroups shown in panel a to e of this figure, comparing correlation of random pairs of samples and pairs 
of matched individual’s samples collected five years apart. Mean values and standard deviations of n = 213. Sample sizes: random pairs of samples: 
213²-213 comparisons; individuals’ matched samples: 213 comparisons (see Fig. 6b,c for details). Antigen groups sizes for panels a-f: All microbiota – 
231,975 peptides, VFDB – 24,164 peptides, Library excluding VFDB – 207,811 peptides, Metagenomics antigens - 147,061 peptides. g,h Gut microbiome 
stability inferred from metagenomics sequencing of stool samples collected five years apart of 188 individuals. In panel g, stability is calculated from 
gene abundances. The Bray Curtis distances for all baseline (t = 0) and follow up (t = 5 years) samples compared with each other are shown (the higher 
the value, the closer the samples resemble). In panel h, stability is calculated based on presence/absence (existence) of genes appearing in individuals 
(by applying a cutoff threshold to the gene abundances). The Normalized Hamming distances for all baseline (t = 0) and follow up (t = 5 years) samples 
compared with each other are shown (the higher the value, the closer the samples resemble).
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