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A B S T R A C T   

Background: Self-reported alcohol consumption is an established risk factor for cardiovascular disease (CVD). 
Carbohydrate deficient transferrin (CDT) is an established objective marker of excessive alcohol consumption, 
but data on its prospective association with CVD are lacking. We aimed to evaluate the associations of self- 
reported alcohol consumption and CDT (expressed as %CDT, a more reliable marker than absolute CDT 
levels) with CVD risk. 
Materials and methods: In the PREVEND prospective study of 5,206 participants (mean age, 53 years; 47.7% 
males), alcohol consumption by self-reports, absolute CDT measured using the Siemens nephelometric assay and 
%CDT calculated as the percentage of total transferrin concentrations, were assessed at baseline. Alcohol con-
sumption was classified into 5 categories: abstention (reference), light, light–moderate, moderate and heavy 
alcohol consumption. Hazard ratios (HRs) (95% confidence intervals [CI]) for first CVD events were estimated. 
Results: Mean (SD) of %CDT was 1.59 (0.54) %. During a median follow-up of 8.3 years, 326 first CVD events 
were recorded. Compared with abstainers, the multivariable-adjusted HRs (95% CIs) of CVD for light, light-
–moderate, moderate and heavy alcohol consumption were 0.66 (0.46–0.95), 0.83 (0.62–1.11), 0.83 (0.61–1.14) 
and 0.80 (0.48–1.36), respectively. Light alcohol consumption was associated with reduced coronary heart 
disease risk 0.62 (0.40–0.96), whereas light-moderate alcohol consumption was associated with reduced stroke 
risk 0.45 (0.24–0.83). The association of %CDT with CVD risk was not significant. 
Conclusions: Our findings confirm the established association between self-reported light to moderate alcohol 
consumption and reduced CVD risk. However, %CDT within the normal reference range may not be a risk in-
dicator for CVD.   

1. Introduction 

Cardiovascular disease (CVD), which accounts for over 17 million 
deaths each year, is the leading cause of mortality in the world [1]. By 

2030, the World Health Organization estimates that almost 23.6 million 
people will die from CVD [2]. Major risk factors for CVD include blood 
lipids, blood pressure, a history of diabetes, smoking status as well as 
alcohol consumption [3]. Alcohol consumption is an established risk 
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factor for several chronic diseases including CVD [4,5]. A J-shaped 
relationship has consistently been described between alcohol con-
sumption and CVD in several epidemiological studies, with light to 
moderate alcohol consumption being associated with lower vascular risk 
and heavy consumption associated with increased vascular risk [5,6]. 
Several other studies have challenged the J-shaped relationship [6–8] 
giving rise to ambiguities regarding drinking risk thresholds, limits for 
safe drinking and varying alcohol consumption guidelines across the 
globe [8]. This is also complicated by the fact that data on alcohol 
consumption in these studies have mostly depended on self-reports. The 
use of self-reported alcohol consumption potentially leads to the un-
derestimation of the biological effects of alcohol exposure due to 
underreporting of consumption [9]. Objective biological markers of 
alcohol consumption are therefore needed to quantify the risk of CVD 
and other chronic diseases related to alcohol exposure. 

Carbohydrate deficient transferrin (CDT) is an established marker 
that has been shown to be more specific than other widely used 
biochemical tests such as gamma-glutamyltransferase (GGT), aspartate 
aminotransferase (AST) or mean cell volume (MCV), for detecting 
excessive alcohol consumption [10]. Its advantage is that it is formed by 
a direct effect of alcohol; it originates from disturbances in the glyco-
sylation of transferrin resulting from excessive drinking. Chronic alcohol 
consumption alters the glycosylation of many serum glycoproteins, 
resulting in the formation of abnormal isoforms that are responsible for 
microheterogeneity of these glycoproteins [11]. Carbohydrate deficient 
transferrin is the isoform of transferrin which is deficient in sialic acid 
residues [12]. The other biomarkers are indirect markers of alcohol 
consumption, as they do not directly represent metabolites of alcohol, 
but merely express the influence of alcohol on the liver. Carbohydrate 
deficient transferrin has been used for long term monitoring of early 
detection of relapse drinking during rehabilitation and in the assessment 
for reinstating driver licenses [13]. Given that CDT is known to vary 
with sex and age and to compensate for variations in the total transferrin 
concentration in various conditions (e.g., iron deficiency, iron overload) 
[14], the International Federation of Clinical Chemistry and Laboratory 
Medicine (IFCC) Working Group has proposed percent CDT (%CDT) (i. 
e., CDT as a percentage of total transferrin) as the preferred method of 
reporting, as it is superior to absolute CDT as an alcohol biomarker 
[15,16]. Data on the prospective association between CDT and CVD are 
lacking. In a study that evaluated the cross-sectional associations of 
CDT, GGT and self-reported drinking with prevalent coronary heart 
disease (CHD), Jousilahti and colleagues reported CDT levels to be 
inversely and GGT levels to be positively associated with CHD risk [17]. 
The authors postulated that these relationships may underlie the 
curvilinear dose-response relationship between alcohol consumption 
and CHD risk. We have recently shown in the Prevention of Renal and 
Vascular End-stage Disease (PREVEND) prospective cohort study that 
increased GGT is log-linearly associated with increased CVD risk [18], 
findings which are consistent with several previous studies [19]. 

Whether a prospective relationship exists between CDT (expressed as 
%CDT) and risk of CVD is not known. We therefore aimed to evaluate 
the associations of self-reported alcohol consumption and %CDT with 
the risk of CVD using the PREVEND study. 

2. Methods 

2.1. Study design and population 

This study was conducted using STROBE (STrengthening the 
Reporting of OBservational studies in Epidemiology) guidelines for 
reporting observational studies in epidemiology (Supplementary Mate-
rial 1) [20]. The participants in this analysis were part of the PREVEND 
general population-based prospective cohort study, which was designed 
to evaluate the natural course of urinary albumin excretion and its 
relationship to renal disease and CVD. Several previous reports have 
provided detailed description of the study design and recruitment 

methods [18,21–23]. Briefly, participants in the PREVEND study 
comprised of a representative sample of inhabitants living in the city of 
Groningen in the Netherlands. The cohort for this study comprised of 
6,894 individuals aged 28–75 years who were invited for the second 
screening phase of the study, for which baseline assessments were per-
formed between 2001 and 2003. We excluded participants with a his-
tory of CVD at baseline. The analytic sample is based on 5,206 
participants with complete information on self-reported alcohol con-
sumption, CDT and incident cardiovascular outcomes. The derivation of 
the analytic sample is reported in Supplementary Material 2. The PRE-
VEND study was approved by the Medical Ethics Committee of the 
University Medical Center Groningen (#: MEC 96/01/022) and it was 
conducted in accordance with the Declaration of Helsinki. Written 
informed consent was provided by all participants. 

2.2. Assessment of exposures and other risk markers 

Baseline data on sociodemographics, physical measures, medical 
history and medication use and circulating blood biomarkers were 
assessed during two outpatient visits by study participants. Following an 
overnight fast and 15 min of rest, plasma and serum venous samples 
were taken from participants for biochemical measurements. Plasma 
samples were prepared by centrifugation at 4 ◦C. Plasma and serum 
samples were stored at − 80 ◦C until measurements were done. Total 
cholesterol, high-density lipoprotein cholesterol (HDL-C), high sensi-
tivity C-reactive protein (hsCRP) and triglycerides were measured using 
standard laboratory protocols [24–28]. Serum creatinine was deter-
mined by Kodak Ektachem dry chemistry (Eastman Kodak, Rochester, 
New York) and serum cystatin C level by nephelometry (BN II N) (Dade 
Behring Diagnostic, Marburg, Germany). In 2001–2003 (which was the 
period of baseline measurements), creatinine assays were non-IDMS 
calibrated. To allow for the calculation of estimated glomerular filtra-
tion rate (eGFR) based on the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) combined creatinine-cystatin C equation, we 
performed re-measurements of approximately 28,000 available plasma 
samples of the five PREVEND screenings in 2010–2012 using an IDMS 
traceable enzymatic Roche assay. Estimated glomerular filtration rate 
was calculated using the CKD-EPI combined creatinine-cystatin C 
equation [29]. Plasma glucose was measured by dry chemistry (Eastman 
Kodak, Rochester, New York). Circulating levels of ferritin, transferrin 
and CDT concentrations were measured in serum. For these measure-
ments, sampling was performed at the screening phase in 2001–2003. 
Samples were then aliquoted and stored frozen at − 80 ◦C. These aliquots 
were retrieved from frozen storage for batchwise analyses. Serum 
ferritin was measured using an electrochemiluminescence immunoassay 
(Roche Cobas Diagnostics GmbH, Mannheim Germany). Transferrin was 
analyzed by immunoturbidimetric assay on a Cobas analyzer (Roche 
Diagnostics GmbH, Mannheim Germany). The transferrin assay was 
standardized against the reference preparation of the Institute for 
Reference Materials and Measurements BCR470/CRM470. The intra- 
assay and inter-assay coefficients of variation were 1.4 to 1.9 at a 
level of 1.8 g/L and 1.8% to 1.8% at a level of 2.8 g/L. The detection 
limit of the assay was 0.1 g/L. Absolute CDT was analyzed and measured 
in mg/L on a BNII nephelometer (Siemens Healthcare GmbH, Marburg, 
Germany) [30]. Our approach using the BNII nephelometer did allow for 
automatic calculation of CDT value as a percentage of total transferrin, 
because transferrin measurements had already been made on the Roche 
Modular system. Reference values for absolute CDT ranged from 28.1 to 
76.0 mg/L. Its intra-assay and inter-assay coefficients of variation were 
2.8% to 4.9% and 1.5% to 7.6%, respectively, depending on the level 
measured. The detection limit for absolute CDT was 20 mg/L. The %CDT 
was calculated as the percentage of total transferrin concentrations. The 
reference values for %CDT ranged from 1.19% to 2.47% (1st-99th 
percentile) [31]. In comparison, values for %CDT have been reported to 
range from 1.01 to 2.85% in healthy subjects with an upper reference 
limit of 2.35% (97.5th percentile) using the N latex CDT direct 
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immunonephelometric assay for serum CDT [30]. Blood pressure values 
were recorded as the mean of the last two readings of both visits. Alcohol 
consumption was obtained by self-report. Participants were asked about 
the frequency of their habitual alcohol consumption with the following 
answer categories: (i) no, almost never; (ii) 1–4 units/mo, (iii) 2–7 units/ 
wk, (iv) 1–3 units/d, or (v) > 3 units/d. Based on these 5 categories, 
alcohol consumption was defined as: abstention, light, light–moderate, 
moderate, and heavy alcohol consumption. 

2.3. Ascertainment of outcomes 

First-onset composite CVD was the primary outcome, with incident 
CHD and stroke as secondary outcomes. All CVD cases were coded ac-
cording to the International Classification of Diseases, Ninth Revision 
(ICD-9) until 01–01-2009. The outcomes were coded according to ICD- 
10 codes after this date. Information on hospitalization for cardiovas-
cular morbidity was retrieved from PRISMANT, the Dutch national 
registry of hospital discharge diagnoses [32]. First-onset CVD was 
defined as acute myocardial infarction (MI), the combined endpoint of 
acute and subacute ischemic heart disease (IHD), coronary artery bypass 
grafting (CABG) or percutaneous transluminal coronary angioplasty 
(PTCA), subarachnoid hemorrhage, intracerebral hemorrhage, other 
intracranial hemorrhage, occlusion or stenosis of the precerebral or 
cerebral arteries and other vascular interventions such as percutaneous 
transluminal angioplasty or bypass grafting of peripheral vessels and 
aorta. Coronary heart disease was defined as fatal or nonfatal IHD, fatal 

or nonfatal MI, CABG and PTCA. Stroke was defined as subarachnoid 
hemorrhage, intracerebral hemorrhage, other and unspecified intra-
cranial hemorrhage, occlusion and stenosis of precerebral or cerebral 
arteries and carotid obstruction. 

2.4. Statistical analyses 

Skewed variables (e.g., triglycerides, hsCRP and creatinine) were 
natural logarithm (loge) transformed to achieve normality. Descriptive 
statistics were used to summarize baseline characteristics of partici-
pants. Normally distributed and skewed variables are presented as 
means (standard deviation, SD) and median (interquartile range, IQR), 
respectively. Cross-sectional associations of %CDT with risk markers for 
CVD were assessed using linear regression models adjusted for age and 
sex. Time-to-event Cox proportional hazards models were used to assess 
the associations of self-reported alcohol consumption and %CDT with 
the risk of cardiovascular outcomes, after confirmation of no major 
departure from the proportionality of hazards assumptions [33]. Hazard 
ratios were adjusted for in four progressive models: (Model 1) age and 
sex; (Model 2) plus other established CVD risk factors (smoking status, 
history of diabetes, SBP, total cholesterol and HDL-C); (Model 3) plus 
other potential confounders (triglycerides, body mass index (BMI), 
fasting glucose and eGFR) and (Model 4) plus hsCRP. To minimize risk of 
bias due to reverse causation, we performed sensitivity analyses that 
excluded the first two years of follow-up or participants on cholesterol 
lowering medication. All statistical analyses were conducted using Stata 

Table 1 
Baseline participant characteristics overall and according to self-reported alcohol consumption.   

Overall (N =
5,206) Mean (SD) 
or median (IQR) 
or n (%) 

No, almost never 
(N = 1,278) Mean 
(SD) median (IQR) 
or n (%) 

1–4 units/mth (N 
= 889) Mean (SD) 
or median (IQR) or 
n (%) 

2–7 units/wk (N =
1,655) Mean (SD) 
or median (IQR) or 
n (%) 

1–3 units/day (N =
1,158) Mean (SD) 
or median (IQR) or 
n (%) 

>3 units/day (N =
226) Mean (SD) or 
median (IQR) or n 
(%) 

P-value for 
heterogeneity 

%CDT 1.59 (0.54) 1.47 (0.36) 1.46 (0.35) 1.58 (0.50) 1.73 (0.59) 2.22 (1.05) <0.001 
Questionnaire        
Male 2,485 (47.7) 428 (33.5) 368 (41.4) 858 (51.8) 657 (56.7) 52 (23.0) <0.001 
Age at survey (years) 53.0 (11.8) 55.1 (12.6) 53.3 (12.7) 50.8 (11.3) 53.3 (10.8) 54.1 (10.0) <0.001 
History of diabetes 281 (5.4) 113 (8.8) 41 (4.6) 65 (3.9) 54 (4.7) 8 (3.5) <0.001 
Current smoking 1,440 (27.7) 334 (26.1) 207 (23.3) 439 (26.5) 345 (29.8) 115 (50.9) <0.001 
Regular use of anti- 

hypertensive 
medication 

767 (15.7) 265 (21.7) 128 (15.1) 186 (12.2) 151 (13.8) 37 (17.3) <0.001 

Regular use of lipid- 
lowering 
medication 

119 (2.8) 38 (3.5) 17 (3) 31 (2.4) 33 (3.5) 0 (0) 0.04 

Physical 
measurements        

BMI (kg/m2) 26.5 (4.3) 27.5 (5.0) 26.8 (4.4) 26.1 (3.9) 26.0 (3.6) 26.5 (4.2) <0.001 
SBP (mmHg) 126 (18) 127 (20) 124 (18) 124 (17) 127 (18) 131 (17) <0.001 
DBP (mmHg) 73 (9) 73 (9) 72 (9) 73 (9) 74 (9) 78 (8) <0.001 
Lipid markers        
Total cholesterol 

(mmol/l) 
5.47 (1.04) 5.43 (1.07) 5.40 (1.05) 5.45 (1.02) 5.52 (1.01) 5.79 (1.13) <0.001 

HDL-C (mmol/l) 1.27 (0.32) 1.21 (0.29) 1.24 (0.28) 1.28 (0.32) 1.32 (0.33) 1.33 (0.37) <0.001 
Triglycerides (mmol/ 

l) 
1.11 (0.80–1.60) 1.17 (0.84–1.67) 1.11 (0.80–1.58) 1.07 (0.77–1.53) 1.09 (0.80–1.59) 1.22 (0.85–1.98) 0.48 

Metabolic, 
inflammatory, and 
renal function 
markers        

Transferrin (mg/L) 2582 (405) 2605 (436) 2579 (407) 2577 (402) 2567 (383) 2568 (349) 0.21 
hsCRP (mg/L) 1.32 (0.61–2.96) 1.67 (0.76–3.58) 1.34 (0.62–3.02) 1.15 (0.55–2.68) 1.14 (0.55–2.53) 1.64 (0.77–3.56) <0.001 
Fasting plasma 

glucose (mmol/l) 
5.00 (1.10) 5.10 (1.28) 4.90 (0.86) 4.96 (1.11) 5.01 (1.09) 5.05 (0.77) <0.001 

Creatinine (µmol/l) 71 (62–80) 69 (60–78) 69 (61–79) 71 (63–80) 72 (63–81) 74 (64–81) <0.001 
Cystatin C (mg/L) 8.98 (1.95) 9.32 (2.03) 9.00 (1.88) 8.81 (1.63) 8.84 (2.29) 9.00 (1.67) <0.001 
eGFR (ml/min/1.73 

m2) 
84.6 (9.8) 82.3 (11.6) 84.4 (9.9) 85.7 (8.4) 85.5 (9.4) 86.1 (8.3) <0.001 

Continuous variables are reported as mean ± SD or median (interquartile range) and categorical variables are reported as n (%); BMI, body mass index; CDT, car-
bohydrate deficient transferrin; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate (as calculated using the Chronic Kidney Disease Epidemiology 
Collaboration combined creatinine-cystatin C equation); HDL-C, high-density lipoprotein cholesterol; hsCRP, high sensitivity C-reactive protein; IQR, interquartile 
range; SBP, systolic blood pressure; SD, standard deviation. 
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MP version 16 (Stata Corp, College Station, Texas). 

3. Results 

3.1. Baseline characteristics 

Baseline descriptive characteristics of the participants overall and by 
categories of self-reported alcohol consumption are shown in Table 1. 
The mean age of participants at study entry was 53 (SD 12) years and 
47.7% were males. Mean (SD) of %CDT was 1.59 (0.54) %. Heavy 
consumers of alcohol had higher levels of %CDT, blood pressure, total 
cholesterol, hsCRP, fasting glucose and creatinine and were more likely 
to smoke compared to other categories; whereas abstainers were older, 
had higher BMI and were more likely to have pre-existing disease such as 
diabetes and hypertension. When the two alcohol consumption cate-
gories “No, almost never” and “1–4 units/mth” were combined, baseline 
characteristics across categories of self-reported alcohol consumption 
remained similar except for fasting glucose levels, (Supplementary 
Material 3). 

Percent CDT was weakly and inversely correlated with BMI, tri-
glycerides and transferrin; with weak positive correlations observed 
with hsCRP and cystatin C (Table 2). A moderately strong positive 
correlation was observed with HDL-C (r = 0.19). There was a modest 
positive correlation between self-reported alcohol consumption and % 
CDT (Spearman’s rho = 0.25, p < 0.001). 

3.2. Self-reported alcohol consumption, %CDT and incident CVD 

During a median follow-up of 8.3 (interquartile range, 7.7–8.9) 
years, corresponding to 40,671 person-years at risk, 326 incident CVD 
events (annual rate 8.02/1,000 person-years at risk; 95% CI: 7.19–8.93) 
were recorded. Table 3 shows the associations of alcohol consumption 
assessed by self-reports and %CDT with the risk of CVD. Compared with 
abstainers, the HRs (95% CIs) of CVD for light, light–moderate, mod-
erate and heavy alcohol consumption were 0.65 (0.46–0.94), 0.82 
(0.61–1.10), 0.80 (0.59–1.10) and 0.81 (0.48–1.36), respectively, in an 
analysis adjusted for established cardiovascular risk factors. The asso-
ciation remained consistent on additional adjustment for triglycerides, 
BMI, glucose, and eGFR and was not attenuated following further 
adjustment for loge hsCRP. In separate analyses for CHD and stroke 
endpoints, the associations of self-reported alcohol consumption with 
CHD were generally similar to that of the composite CVD outcome; 
however, for stroke, the association was significant for self-reported 
light-moderate alcohol consumption (Supplemental Materials 4–5). In 
sensitivity analyses using the composite CVD endpoint, the associations 
remained similar on exclusion of the first two years of follow-up or 
people on cholesterol lowering medication (Supplemental Tables 6–7). 
In additional analysis that combined the two alcohol consumption cat-
egories “No, almost never” and “1–4 units/mth”, no associations were 
observed for alcohol consumption and CVD risk (Supplemental Material 
8). 

No significant associations were observed for %CDT with composite 
CVD (Table 3) and individual CHD and stroke endpoints (Supplemental 
Materials 4–5). 

4. Discussion 

4.1. Summary of main findings 

In this large general population-based prospective study, we sought 
to evaluate the associations of self-reported alcohol consumption and 
CDT (expressed as %CDT) with the risk of CVD. Correlational analyses 
demonstrated mostly weak to moderately strong correlations between % 
CDT and several cardiovascular risk markers. A significant and moder-
ately strong positive correlation was observed between self-reported 
alcohol consumption and %CDT. Categories of increasing alcohol 

consumption were continually associated with %CDT values. We 
confirmed previous consistently reported associations of self-reported 
alcohol consumption with cardiovascular risk; light to moderate 
alcohol consumption was associated with decreased cardiovascular risk. 
However, we could not confirm the association between heavy alcohol 
consumption and increased risk of CVD [34]. Notably, the association of 
%CDT with CVD risk was not significant. Findings were robust in 
sensitivity analyses. 

4.2. Comparison with previous work 

We are unable to directly compare the current findings with previous 
work, as our search of the literature did not identify any prospective 

Table 2 
Cross-sectional correlates of percent carbohydrate deficient transferrin.   

Partial correlation r 
(95% CI)†

Percentage difference 
(95% CI) in %CDT‡

%CDT – – 
Sex   

Female – ref 
Male – 0.11% (0.08, 0.14)*** 

Age at survey (years) 0.00 (− 0.02, 0.03) 0.00% (− 0.01, 0.02) 
Questionnaire   
History of diabetes   

No – ref 
Yes – − 0.04% (− 0.11, 0.03) 

Smoking status   
Never and former smokers – ref 
Current smokers – 0.15% (0.12, 0.18)*** 

Alcohol consumption   
No – ref 
Yes – 0.16% (0.12, 0.19)*** 

Use of anti-hypertensive 
medication   
No – ref 
Yes – 0.05% (0.00, 0.09)* 

Use of lipid-lowering medication   
No  ref 
Yes  − 0.03% (− 0.13, 0.07) 
Physical measurements   
BMI (kg/m2) − 0.09 (− 0.12, 

− 0.06)*** 
− 0.05% (− 0.07, − 0.03) 
*** 

SBP (mmHg) 0.01 (− 0.02, 0.03) 0.00% (− 0.01, 0.02) 
DBP (mmHg) 0.04 (0.01, 0.06)* 0.02% (0.00, 0.04)* 
Lipid markers   
Total cholesterol (mmol/l) − 0.01 (− 0.03, 

0.02) 
− 0.00% (− 0.02, 0.01) 

HDL-C (mmol/l) 0.19 (0.17, 0.22) 
*** 

0.11% (0.10, 0.13)*** 

Triglycerides (mmol/l) − 0.03 (− 0.06, 
− 0.00)* 

− 0.02% (− 0.03, − 0.00) 
* 

Metabolic, inflammatory, and 
renal function markers   

Transferrin (mg/L) − 0.14 (− 0.16, 
− 0.11)*** 

− 0.07% (− 0.09, − 0.06) 
*** 

hsCRP (mg/L) 0.04 (0.01, 0.07)* 0.02% (0.01, 0.04)* 
Fasting plasma glucose (mmol/l) − 0.02 (− 0.05, 

0.01) 
− 0.01% (− 0.03, 0.01) 

Creatinine (µmol/l) − 0.02 (− 0.05, 
0.01) 

− 0.01% (− 0.03, 0.01) 

Cystatin C (mg/L) 0.05 (0.02, 0.08)** 0.03% (0.01, 0.05)** 
eGFR (ml/min/1.73 m2) 0.01 (− 0.02, 0.03) 0.00% (− 0.01, 0.02) 

BMI, body mass index; CDT, carbohydrate deficient transferrin; DBP, diastolic 
blood pressure; eGFR, estimated glomerular filtration rate (as calculated using 
the Chronic Kidney Disease Epidemiology Collaboration combined creatinine- 
cystatin C equation); HDL-C, high-density lipoprotein cholesterol; hsCRP, 
high-sensitivity C-reactive protein; Ref, reference; SD, standard deviation; SBP, 
systolic blood pressure. 
Asterisks indicate the level of statistical significance: *, p < 0.05; **, p < 0.01; 
***, p < 0.001; †Partial correlation coefficients between %CDT and the row 
variables; ‡Percentage change in %CDT per 1 SD increase in the row variable (or 
for categorical variables, the percentage difference in mean %CDT for the 
category versus the reference) adjusted for age and sex. 

S.K. Kunutsor et al.                                                                                                                                                                                                                             



Clinica Chimica Acta 520 (2021) 1–7

5

study that has evaluated the associations of self-reported alcohol con-
sumption and %CDT with the risk of composite CVD. However, in a 
longitudinal study conducted as part of the Prospective Urban and Rural 
Epidemiology (PURE) study in South Africa, self-reported alcohol con-
sumption was only associated with an increased risk of hypertension, 
but not all-cause mortality or CVD mortality, with no evidence of an 
association of %CDT with any of the outcomes [35]. In a cross-sectional 
evaluation of CDT, GGT and self-reported drinking with CHD, Jousilahti 
and colleagues demonstrated that CDT levels were inversely associated 
with CHD risk [17]. In the same study, self-reported alcohol consump-
tion was inversely associated with CHD risk in age-adjusted analysis, but 
this was attenuated to null on further adjustment for several established 
risk factors including smoking status [17], which has been shown to 
coincide with heavy alcohol consumption [36]. 

4.3. Possible explanations for findings 

Our findings add to the extensive evidence base on the significant 
cardioprotective effects of low to moderate alcohol consumption. 
Though the harmful effects of heavy alcohol consumption on cardio-
vascular risk and reduced life expectancy are well documented, we 
could not demonstrate this to be statistically significant in our study. In a 
recent combined analysis of individual participant data based on over 
half a million participants without previous CVD, it was demonstrated 
that there no clear risk thresholds below which lower alcohol con-
sumption stopped being associated with lower cardiovascular risk [8]. It 
has been reported that 40–60% of the beneficial effect of low to mod-
erate alcohol consumption on the risk of CVD is mediated through an 
increase in HDL-C alone, with further benefits through reduced hemo-
static factors such as fibrinogen levels and clotting factors [37]. In line 
with our previous report, an increase in alcohol consumption was 
associated with higher serum activity of the antioxidative enzyme 
paraoxonase-1 (PON-1), in close parallel with increases in HDL-C and its 
major apolipoprotein, apolipoprotein A-I (apoA-I); notably, there was no 
further increase in PON-1 activity, HDL-C and apoA-I when alcohol 
consumption was increased from moderate to heavy consumption [38]. 
In our study, the lack of an association between heavy alcohol con-
sumption and CVD risk could be attributed to reduced power in that 
category (n = 226, 18 CVD events). Given that %CDT has higher spec-
ificity for chronic excessive alcohol consumption than other markers 
such as GGT, AST or MCV, the lack of evidence is unexpected. A number 
of reasons may explain this observation. Usually, consumption of 50–60 
g of alcohol per day chronically (for at least 2 or 3 weeks) increases CDT 
levels [10]. This level of alcohol consumption is unlikely to be 

characteristic of the study participants, evidenced by the low mean % 
CDT values in the study population (1.59%). The levels of alcohol 
consumption in the study population are not excessive enough to exert 
cardiotoxic effects, hence, a lack of an association between %CDT and 
CVD risk. This is also consistent with the lack of an association between 
self-reported heavy alcohol use and CVD risk in our study participants. 
Furthermore, CDT is a relatively short-term biomarker, whose sensi-
tivity is decreased during abstinence [39]; it has a half-life of 14–17 days 
with values returning to normal 3–4 weeks after abstinence [10]. 
Though it has been demonstrated that hair samples of other objective 
markers such as ethyl glucuronide, represent a more long-term measure 
of alcohol consumption lasting several months [40], this has not been 
demonstrated for CDT [41]. In addition, though GGT and CDT are 
markers of excessive alcohol consumption, they may reflect different 
patterns of alcohol intake such as frequency or quantity on the risk of 
CVD [42]. There are suggestions that GGT levels reflect intensity of 
consumption, whereas CDT level is influenced by the frequency of 
consumption [42]. It has also been suggested that the effects of alcohol 
consumption on CDT may depend on the specific alcoholic beverage 
consumed. Whitfield and colleagues demonstrated that the effects of 
beer consumption on indices of iron stores such as aserum iron, trans-
ferrin, and ferritin, were greater than those of wine or spirits [43]. In a 
small 12-week randomized, diet-controlled crossover trial, a significant 
decrease of serum CDT concentration was observed after 3 weeks of 
daily consumption of red wine compared with water consumption; with 
no effect of beer or spirits [44]. CDT is a specific marker of excessive 
alcohol consumption, that has wide applications including routine 
detection of heavy alcohol consumption, treatment and monitoring of 
alcohol-dependent patients and as a screening tool [10]. Taking the 
overall evidence together, %CDT values within the normal range are 
unlikely to be a risk indicator for CVD in the general population. It ap-
pears data on %CDT may be insufficient to assess the effects of alcoholic 
beverage intake on CVD risk. 

4.4. Strengths and limitations 

This study is novel as it is the first comparative long-term prospective 
evaluations of the associations of self-reported alcohol consumption and 
%CDT with the risk of composite CVD as well as specific endpoints of 
CHD and stroke. Other strengths include the large sample size, exclusion 
of individuals with a baseline history of CVD thus minimizing reverse 
causation bias and access to a comprehensive panel of cardiovascular 
risk markers which enabled adjustment for potential confounding. The 
findings were also robust to several sensitivity analyses. Several 

Table 3 
Prospective associations of self-reported alcohol consumption and %CDT with risk of cardiovascular disease.  

Exposure Events/Total Model 1  Model 2  Model 3  Model 4    
HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

Self-reported alcohol consumption 
No, almost never 102 / 1,278 ref  ref  ref  ref  
1–4 units/mth 42 / 889 0.58 (0.40 to 0.83) 0.003 0.65 (0.46 to 0.94) 0.02 0.66 (0.46 to 0.95) 0.03 0.66 (0.46 to 0.95) 0.02 
2–7 units/wk 91 / 1,655 0.77 (0.57 to 1.02) 0.07 0.82 (0.61 to 1.10) 0.19 0.84 (0.62 to 1.12) 0.23 0.83 (0.62 to 1.11) 0.21 
1–3 units/d 73 / 1,158 0.74 (0.54 to 1.00) 0.05 0.80 (0.59 to 1.10) 0.17 0.83 (0.60 to 1.14) 0.25 0.83 (0.61 to 1.14) 0.25 
>3 units/d 18 / 226 0.79 (0.48 to 1.32) 0.37 0.81 (0.48 to 1.36) 0.43 0.84 (0.50 to 1.41) 0.51 0.80 (0.48 to 1.36) 0.41 
Percent carbohydrate deficient transferrin 
Per 1 SD increase 303 / 4,953 1.02 (0.74 to 1.40) 0.92 1.10 (0.79 to 1.54) 0.58 1.10 (0.79 to 1.53) 0.56 1.06 (0.76 to 1.47) 0.75 
Quartile 1 80 / 1,520 ref  ref  ref  ref  
Quartile 2 74 / 1,211 1.17 (0.85 to 1.60) 0.34 1.15 (0.84 to 1.58) 0.39 1.17 (0.85 to 1.61) 0.33 1.16 (0.85 to 1.60) 0.35 
Quartile 3 87 / 1,280 1.26 (0.93 to 1.71) 0.13 1.22 (0.90 to 1.66) 0.20 1.25 (0.92 to 1.70) 0.15 1.21 (0.89 to 1.65) 0.22 
Quartile 4 62 / 942 1.13 (0.81 to 1.57) 0.49 1.20 (0.86 to 1.68) 0.29 1.26 (0.89 to 1.77) 0.19 1.21 (0.86 to 1.71) 0.27 

CDT, carbohydrate deficient transferrin; CI, confidence interval; HR, hazard ratio; SD, standard deviation. 
Model 1: Age and sex. 
Model 2: Model 1 plus smoking status, history of diabetes, systolic blood pressure, total cholesterol, and high-density lipoprotein-cholesterol. 
Model 3: Model 2 plus triglycerides, body mass index, glucose, and estimated glomerular filtration rate (as calculated using the Chronic Kidney Disease Epidemiology 
Collaboration combined creatinine-cystatin C equation). 
Model 4: Model 3 plus loge high sensitivity C-reactive protein. 
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limitations deserve consideration. Categories of alcohol consumption 
were based on self-reports, which provide limited information and have 
been criticised due to the potential for misclassification bias [45]. It is 
possible that some of the light drinkers were probably light-moderate 
drinkers while some moderate drinkers were likely to be heavy 
drinkers, due to the inclination of people to under-report consumption. 
Furthermore, habitual alcohol consumption was divided into 5 cate-
gories, and the time since last alcohol consumption was not recorded. 
Therefore, only the global distinction between abstinent, light, light-
–moderate, moderate, and heavy drinkers could be made. We could not 
evaluate the associations of specific types of alcohol beverages with CVD 
risk. It is well known that there have been inconsistencies regarding the 
specific effects of different types of beverages (wine, beer and spirits) on 
CVD risk, and also whether the possible protective effects of alcoholic 
beverages are due to their alcoholic content (ethanol) or to their non- 
alcoholic components (mainly polyphenols) [46]. A number of studies 
have demonstrated that polyphenols in wine and beer may lower CVD 
risk independent of ethanol [46]. We acknowledge that our %CDT 
values may not be precise as IFCC standardized procedures were not 
used. Our analyses were based on single baseline assessments of alcohol 
intake and %CDT, which may not accurately reflect participants’ true 
long-term “usual” or “average” exposures throughout the duration of the 
study, due to the phenomenon of regression dilution bias. Based on 
findings of studies that accounted for regression dilution bias by using 
information on repeat assessments of self-reported alcohol intake [37], 
evaluations that use single assessments of this exposure may systemat-
ically underestimate the true risk of disease associated with it. Given the 
limitations, the current findings need to be interpreted with caution. 

5. Conclusion 

Our findings in a general population cohort of Caucasian men and 
women confirm the established associations between self-reported light 
to moderate alcohol consumption and reduced CVD risk. However, % 
CDT within the normal reference range may not be a risk indicator for 
CVD. 
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