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Abstract

Background: In this study, we investigated CD20+ TILs in triple-negative breast cancer (TNBC) and their
relationship with T lymphocyte subsets (CD4+, CD8+, CD25+, and FOXP3+), including their combined prognostic
value using an immunohistochemical staining method.

Methods: We investigated 107 patients with TNBC for whom a full-face section stained by hematoxylin and eosin
between 2006 and 2018 at Dokkyo Medical University Hospital was available.

Results: The strongest association of infiltrating CD20+ TILs was with CD4+ TILs. There was a significant relationship
between CD20+ and CD4+ TILs (r = 0.177; p < 0.001), CD8+ TILs (r = 0.085; p = 0.002), and FOXP3+ TILs (r = 0.0043;
p = 0.032). No significant relationships were observed between the CD20+ and CD25+ TILs (r = 0.012; p = 0.264).
Multivariate analysis revealed that only the CD20+/FOXP3 ratio was an independent factor for relapse-free survival
(p < 0.001) and overall survival (p < 0.001). Patients with tumors highly infiltrated by CD4+, CD8+, and CD20+ TILs
had a good prognosis. In contrast, those with tumors weakly infiltrated by CD20+ TILs but highly infiltrated by
CD25+ and FOXP3+ TILs had a poor prognosis.

Conclusions: CD20+ TILs may support an increase in CD4+ and CD8+ TILs, which altered the anti-tumor response,
resulting in a positive prognosis. CD20+ TILs correlated with FOXP3+ Treg lymphocytes, which were reported to be
correlated with a poor prognosis. Our study suggested that TIL-B cells have dual and conflicting roles in TIL-T
immune reactions in TNBC.
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Background
Tumor-infiltrating lymphocytes (TILs) are a major factor
in the tumor microenvironment, which is important in
the development and progression of cancer. A correl-
ation with prognosis in patients with breast cancer
highly infiltrated by TILs was previously reported [1–3].

Furthermore, several immunohistochemical studies con-
cluded that tumor – infiltrating T lymphocytes (TILs-T)
have antitumor activity in mammary glands. Most TILs
in cancer are T lymphocytes, and include CD4+ (helper)
and CD8+ (cytotoxic) lymphocytes [4–9]. CD4+ TILs
are necessary to activate proliferation and memory in
tumor-specific CD8+ TILs [10]. We previously found
that CD4+ and CD8+ TILs are correlated with a favor-
able prognosis in triple-negative breast cancer (TNBC)
[11]. Although the prognostic correlation of TILs-T has
been widely reported, there are few studies on
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infiltrating B lymphocytes (TILs-B) in breast cancer and
there is no consensus on their prognostic impact [12–
20]. In addition, few studies have investigated TILs-B
and TILs-T in combination [21–24]. Indeed, TILs that
contain both TIL-B and TIL-T are correlated with
lymphocyte proliferation and a good prognosis, suggest-
ing that TIL-B cooperate with TIL-T in an anti-tumor
reaction [25]. Among T lymphocytes, T regulatory
(Treg) lymphocytes suppress effector T lymphocytes and
control immune responses [26]. The mechanisms gov-
erning Treg lymphocyte proliferation and function re-
cently attracted attention because of their importance in
suppressing the expansion of autoimmunity and their
therapeutic viability. In animal models, immune-related
tumor clearance and heightened response to immuno-
therapy were improved by the removal of Treg lympho-
cytes [27]. Furthermore, high infiltration of Treg
lymphocytes was reported to be correlated with a nega-
tive prognosis in human cancers, including breast can-
cer, and they may represent a new therapeutic target
[26–31]. Forkhead box protein 3 (FOXP3) and CD25,
which are considered the most reliable markers of Treg
lymphocytes play an important role in immune-
suppression, thereby inducing immune tolerance. How-
ever, TIL-B and Treg lymphocyte involvement in human
cancer remains unclear.
The correlation between CD20+ TILs and TNBC has

not been clarified, and their relationship with other im-
mune cell subsets (CD4+, CD8+, CD25+, FOXP3+) in
TNBC has not been reported. This study was carried out
to evaluate the behavior of CD20+ TILs in TNBC and
their relationship with T lymphocyte subsets (CD4+,
CD8+, CD25+, FOXP3+), assessing their prognostic
value using an immunohistochemical staining method.

Materials and methods
Patients
We investigated 107 patients with TNBC for whom a
full-face section stained by hematoxylin and eosin
(H&E) between 2006 and 2018 at Dokkyo Medical Uni-
versity Hospital was available. All patients received pre-
operative chemotherapy. The clinicopathological vari-
ables, including age at the time of diagnosis, tumor size,
histology, tumor grade, Mib-1 index, and TILs status,
were reviewed.

Immunohistochemistry (IHC)
IHC was performed using monoclonal antibodies against
estrogen receptor (ER) (clone SP1, Novocastra (Leica),
prediluted, nuclear), progesterone receptor (PgR) (clone
1E2, Novocastra (Leica), prediluted, nuclear), human
epidermal growth factor receptor 2 (HER2) (clone 4B5,
Roche (Ventana), prediluted, membranous), CD4 (CD4,
clone 1F6, Novocastra (Leica), 1:40), CD8 (CD8, clone

4B11, Novocastra (Leica), prediluted), CD20 (CD20,
clone L26, Nichirei), CD25 (CD25, clone 4C9 Novocas-
tra (Leica), prediluted), and FOXP3 (FOXP3, clone
236A/E7, Abcam, 1:50). Hematoxylin was used as a
counterstain. ER and PgR expression was estimated,
and > 1% nuclear-stained tumor cells was considered
positive according to the American Society of Clinical
Oncology and the College of American Pathologist
(ASCO/CAP) guidelines [32]. HER2-negative status was
confirmed as a staining score of 0/1+. In cases with an
IHC score of 2, fluorescence in situ hybridization (FISH)
was used to determine the HER2 status, and it was con-
sidered positive when the ratio of HER2 to chromosome
enumeration probe 17 (CEP17) was > 2.0 [33]. The mib-
1 index was estimated using a semiquantitative visual
method and the threshold was set at 20% based on a
previous report [34]. Tumor cells were considered posi-
tive for mib-1 only when nuclear staining was notable.
TILs in H&E-stained sections were assessed according
to the International Immuno-Oncology Biomarkers
Working Group [35] and the threshold was set at 30%
[36]. Stromal TILs were defined as the percentage of im-
mune cells in the tumor stroma and outside the tumor
nests. To evaluate CD4+, CD8+, CD20+, CD25+, and
FOXP3+ TILs, the number of positive cells was calcu-
lated from IHC staining. Each specimen was screened at
low magnification (× 100), and the five areas with the
greatest number of positively stained cells in the stroma
were selected for further analysis. The mean TIL count
in these areas in each case was estimated at high (× 400)
magnification. Moreover, the ratios of CD20/CD4,
CD20/CD8, CD20/CD25, and CD20/FOXP3 were calcu-
lated. Statistically, the number of positive cells was clas-
sified into low and high groups based on a threshold
assessed by the median (Table 1). Each specimen was
analyzed by two investigators (TJ and HK) who were
blinded to the clinicopathological information, and an
average of the results was obtained.

Statistical analysis
The correlation between the number of immune cells
(CD4+, CD8+, CD20+, CD25+, and FOXP3+) and the
clinicopathological variables was analyzed using the chi

Table 1 Distribution pattern of stromal TILs in TNBC

Variables Mean SE Median Range

CD4+ TILs 105.07 5.56 104 273

CD8+ TILs 91.79 5.02 81 251

CD20+ TILs 79.43 7.19 60 276

CD25+ TILs 21.47 1.49 16 66

FOXP3+ TILs 38.27 2.89 31 153

TILs tumor-infiltrating lymphocytes, TNBC triple-negative breast cancer, SE
standard error
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square test. The Wilcoxon signed ranks test was per-
formed to compare the B and T cell markers. We ex-
plored the association between CD20 and T cell markers
using a linear regression model. The Kaplan–Meier
method was used to estimate relapse-free survival (RFS)
and overall survival (OS), and differences were analyzed
by the log-rank test. Univariate and multivariate Cox
proportional hazard models were used to assess the haz-
ard ratios (HRs) with a confidence interval (CI) of 95%
for survival and p < 0.05 was considered significant. We
converted continuous variables into categorical variables
in the Cox regression model, which was adjusted for
relevant clinical covariates, including age, tumor size,
histological grade, and lymph node status. Statistical
analyses were carried out using IBM SPSS Statistics 26
(IBM, Armonk, NY, United States).

Results
We investigated the populations of infiltrating immune
cells in TNBC. Immune cell subsets were distinguished
by staining of CD4 (T helper lymphocytes), CD8 (cyto-
toxic T lymphocytes), CD20 (B lymphocytes), and CD25
or FOXP3 (Treg lymphocytes) (Fig. 1). The strongest as-
sociation of infiltrating CD20+ TILs was with CD4+
TILs (Fig. 2). There was a significant relationship be-
tween CD20+ and CD4+ TILs (r2 = 0.177; p < 0.001),
CD8+ TILs (r2 = 0.085; p = 0.002), and FOXP3+ TILs
(r2 = 0.043; p = 0.032). However, no significant relation-
ships were observed between the CD20+ and CD25+
TILs (r2 = 0.012; p = 0.264) (Fig. 2). The correlation with
CD20+ TILs of the total number of CD4+, CD8+,
CD25+, and FOXP3+ TILs (p < 0.001, p = 0.04, p <
0.001, and p < 0.001) in patients with TNBC was

Fig. 1 Representative photomicrographs of TILs in patients with TNBC. A patient with a high level of TILs on HE staining (a). IHC using primary
antibodies against CD4 (b), CD8 (c), CD20 (d), CD25 (e), and FOXP3 (f) to characterize TILs in the same section of tumor tissue (original
magnification, × 400)
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examined (Fig. 3). Overall, T helper lymphocytes were
the main immune cells infiltrating the TNBC stromal re-
gion, and these included cytotoxic T lymphocytes, B lym-
phocytes, and Treg lymphocytes. Infiltration of CD20+
TILs was separated into low and high groups to adapt to
the median threshold, and analyzed for correlations with
the clinicopathological features (Tables 1 and 2). As a re-
sult, the threshold was 104, 81, 60, 16, and 31 for CD4,
CD8, CD20, CD25, and FOXP3, respectively. A high dens-
ity of CD20+ TILs was significantly related to a high dens-
ity of TILs (p < 0.001). However, there was no significant
relationship between a high density of CD20+ TILs and
other clinicopathological characteristics (age at the time of
diagnosis, tumor size, tumor grade, histology, lymph node
metastasis, and mib-1 index).
Next, we analyzed the correlation of infiltrating

CD20+ TILs with RFS (p = 0.007) and OS (p = 0.004) in
patients with TNBC. Patients with tumors highly infil-
trated by CD20+ TILs had a good prognosis (Fig. 4). We
analyzed the prognostic value of CD20 + TILs compared

with other investigated immune cell subsets (Table 3). In
univariate survival analyses, the CD20+/CD4+ and
CD20+/CD8+ ratios were not significantly associated
with RFS (p = 0.348, and p = 0.319) or OS (p = 0.406 and
p = 0.274). However, lower CD20+/CD25+ and/or
CD20+/FOXP3 ratios were correlated with a poorer RFS
(p = 0.009, and p = 0.001) and OS (p = 0.007 and p =
0.001). By multivariate analysis, only a lower CD20+/
FOXP3+ ratio was an independent factor for a poorer
RFS (p < 0.001) and OS (p < 0.001).
To analyze the prognostic value of TILs-B in correl-

ation with infiltrating TILs-T, we investigated the prog-
nostic impact of groups of CD20+ TILs (high or low)
compared with that of CD4+, CD8+, CD25+, and
FOXP3+ TILs (high or low). Patients with tumors highly
infiltrated by CD4+ and CD20+ TILs had a better prog-
nosis than those with tumors highly infiltrated by CD4+
TILs but weakly infiltrated by CD20+ TILs (Fig. 5a and
b). In patients with tumors weakly infiltrated by CD4+
TILs, the prognostic value of CD20+ TILs decreased.

Fig. 2 Absolute counts of CD20+ TILs and CD4+, CD8+, CD25, and FOXP3+ TILs in the peripheral stroma of patients with TNBC. The horizontal and vertical
reference lines display absolute numbers of CD20+ TILs and CD4+, CD8+, CD25+, and FOXP3+ TILs. As shown by the regression lines, counts of CD4+, CD8+,
and FOXP3+ TILs increased along with CD20+ TILs in TNBC. However, the counts of CD25+ were not related to CD20+ TILs
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Almost identical correlations were noted between
CD20+ TIL infiltration and CD8+ TIL infiltration (Fig.
5c and d). Of note, in patients with tumors weakly infil-
trated by CD20+ TILs but highly infiltrated by CD25+
and FOXP3+ TILs, the opposite effect was observed
(Fig. 5e-h).

Discussion
In this study, we investigated TILs-B in TNBC and their
relationships with T lymphocyte subsets. We examined
the prognostic role of groups of CD20 (high and low)
combined with those of CD4 (high or low) and CD8
(high or low) in the stromal component using Kaplan-
Meier curves. CD20+ TILs were associated with CD4+
and CD8+ TILs. A good prognosis was observed in
TNBC in which tumors were highly infiltrated by
CD20+ TILs combined with CD4+ and CD8+ TILs;
therefore, CD20+ TILs may support CD4+ and CD8+
TILs in altering the anti-tumor response.
Correlations of TILs-B with TILs-T were previously

reported in liver, ovary, and colon carcinomas [21–24].
Shi et al. used IHC to examine the population and prog-
nostic significance of CD20+ TILs in a hepatocellular
carcinoma series [23]. A high density of TILs-B in the
tumor margin induced an increase in stromal CD8+
TILs. Nielsen et al. also reported an association between
stromal CD20+ and CD8+ TILs in ovarian carcinoma
[21]. Recently, CD20+ TILs were reported to be highly
and positively correlated with CD8+ TILs in large colon
cancer series [24]. As mentioned above, there are several
reports of an association between TIL-B and CD8+ TILs

Fig. 3 Box plots displaying the correlation of CD20+ TILs with the absolute numbers of CD4+, CD8+, FOXP3+, and CD25 TILs in patients with
TNBC. The bars are median values, the box displays the interquartile range (25–75%), and the whiskers extend to 1.5 x the interquartile range

Table 2 Clinicopathological characteristics of TNBC and the
status of stromal CD20 (n = 107)

Clinicopathological
characteristics

Total no.
of cases

CD20

Low High P value

Age (years) 0.499

< 60 53 25 28

≥ 60 54 29 25

Tumor size (cm) 0.087

≤ 2 66 29 37

> 2 41 25 16

Tumor grade 0.564

I & II 31 17 14

III 76 37 39

Histology 0.806

IDC 82 40 42

ILC 2 1 1

other types 23 13 10

Lymph node metastasis 0.952

absent 77 39 38

present 30 15 15

Mib-1 index 0.475

< 20% 19 11 8

≥ 20% 88 43 45

TILs < 0.001

low 58 44 14

high 49 10 39

TNBC triple-negative breast cancer, IDC invasive ductal carcinoma, ILC
invasive lobular carcinoma, TILs Tumor-infiltrating lymphocytes
χ2 test
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in human diseases, including cancer. However, there are
few reports on TILs-B and their influence on CD4+
TILs. Similar to CD8+ TILs, CD20+ TILs were reported
to be associated with CD4+ TILs in non-small cell lung
cancer [37]. B lymphocytes can support anti-tumor ac-
tivity through several mechanisms. This concept is sup-
ported by studies demonstrating that deficient T cell
responses are correlated with B cell deficiency in gene-
disrupted mice [38, 39]. B lymphocytes from tumor-
bearing or naïve donors played similar roles in suppress-
ing tumor growth when transplanted with T lympho-
cytes [39]. Furthermore, in B lymphocyte-deficient mice
produced by continuous injection of anti B antibodies, T
lymphocytes activated in lymph nodes relied on antigen
presentation by B lymphocytes. This suggests that B
lymphocytes capture antigens and present them to T
lymphocytes after transplantation into the recipient
mice. B lymphocytes are assumed to bind tumor anti-
gens through surface immunoglobulin (Ig) molecules,
process them, and then present tumor-derived antigens
through major histocompatibility complex classes I and
II to induce the activation of both CD8+ cells and CD4+
T lymphocytes [40].
In vivo, coordinated B and T lymphocyte reactions

were previously reported in both auto-immunity and
allograft rejection [41, 42]. In allograft rejection and
chronic infection, B lymphocytes are observed in the

central tertiary lymphoid structures in affected tissues
[43]. In a xenograft model of rheumatoid arthritis, the
loss of B lymphocytes reduced T lymphocyte activation
and proliferation in stroma according to anti-CD20 anti-
body staining. Furthermore, the loss of T lymphocytes
induced the breakdown of tertiary lymphoid structures
and depletion of Ig immunoglobulin production by B
lymphocytes [44]. These reports support our results that
TILs-B are associated with stroma CD4+ and CD8+
TILs in TNBC. TILs-B may induce Treg lymphocyte de-
velopment and proliferation, and affect the prognosis. In
our study, CD20+ TILs were associated with FOXP3+
TILs expression, but not with CD25+ TILs. However, in
the multivariate analysis, CD20+ and FOXP3+ TILs had
an opposing relationship. Furthermore, CD25+ and
FOXP3+ TILs had no prognostic advantage based on
Kaplan-Meier curves. High infiltration of Treg lympho-
cytes was reported to correlate with the prognosis in hu-
man cancers [11, 26–31]. We previously reported that
TNBC is associated with FOXP3+ TILs [11]. In addition,
the distribution of circulating CD4 + CD25 + FOXP3+
Treg lymphocytes and CD19 + CD24 + CD38 + B lym-
phocytes significantly increased in breast cancer patients
compared with healthy controls using blood samples
[45]. CD19+ B lymphocytes induced the expansion of
Treg lymphocytes expressing FOXP3 in in vitro assays
[46]. Furthermore, stimulated B lymphocytes were used

Fig. 4 Kaplan-Meier plots showing RFS and OS in TNBC according to infiltration of CD20+ TILs. Log-rank tests were used to estimate P-values

Table 3 Cox regression analyses of infiltrating immune cells in RFS and OS of TNBC patients

Immune
cell
markers

Univariate analysis Multivariate analysis

RFS OS RFS OS

HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value

CD20/CD4 1.618 0.592–4.419 0.348 1.532 0.560–4.190 0.406 2.797 0.855–9.151 0.089 1.898 0.557–6.467 0.306

CD20/CD8 0.643 0.270–1.532 0.319 0.615 0.258–1.468 0.274 2.915 0.941–9.031 0.064 3.147 0.936–10.57 0.064

CD20/CD25 0.261 0.095–0.717 0.009 0.247 0.090–0.678 0.007 1.082 0.303–3.857 0.903 0.694 0.191–2.527 0.58

CD20/FOXP3 0.085 0.020–0.367 0.001 0.083 0.019–0.361 0.001 0.028 0.005–0.166 < 0.001 0.044 0.008–0.246 < 0.001

RFS relapse-free survival, OS overall survival, TNBC triple-negative breast cancer, HR hazard ratio, CI confidence interval
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to induce Treg lymphocytes [47]. Co-culture of CD40L-
activated B lymphocytes resulted in an increased number
of CD4+ T lymphocytes that also expressed CD25 and
FOXP3. These Treg lymphocytes inhibited the

development of T lymphocytes by reacting with the ori-
ginal target alloantigens expressed on the B lymphocytes.
This tolerance theory is reasonable based on our study
demonstrating that CD20+ TILs are correlated with a

Fig. 5 Densities of TIL-B and TIL-T are associated with patient survival. Kaplan-Meier curves showing RFS and OS of the patients by combining
CD20+ with CD4+, CD8+, CD25+, and FOXP3+ TILs. a, b CD20-high CD4-high (n = 30), CD20-high CD4-low (n = 23), CD20-low CD4-high (n = 22),
CD20-low CD4-low (n = 32). c, d CD8-high CD4-high (n = 31), CD20-high CD8-low (n = 22), CD20-low CD8-high (n = 22), CD20-low CD8-low (n =
32). e, f CD20-high CD25-high (n = 27), CD20-high CD25-low (n = 26), CD20-low CD25-high (n = 26), CD20-low CD25-low (n = 28). g, h CD20-high
FOXP3-high (n = 28), CD20-high FOXP3-low (n = 25), CD20-low FOXP3-high (n = 23), CD20-low FOXP3-low (n = 31). Graph shows p = log-rank
test P-values
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positive prognosis and increase the number of FOXP3+
Treg lymphocytes. Therefore, our study suggested that
TILs-B have dual and conflicting roles in TILs-T im-
mune reactions in TNBC.
However, the counts of CD25+ TILs, which are also

considered to be a Treg lymphocyte marker, were not
related to CD20+ TILs. FOXP3 is considered to be the
most reliable Treg lymphocyte marker in human cancer
[48, 49]. However, it is expressed by Treg lymphocytes,
epithelial tumor cells, and primed CD4+ and CD8+ lym-
phocytes. Therefore, several previous studies included
CD25+ as a marker of Treg lymphocytes. Although
CD25 is expressed by effector T lymphocytes like
FOXP3, it is unclear whether CD25 more accurately esti-
mates Treg lymphocytes. Based on previous reports, the
differences in Treg lymphocytes may be due to the
marker used.
There are some limitations to this study. We found

only a weak-fair correlation by scatter plot and the re-
gression line among CD4, CD8, CD25, FOXP3, and
CD20 expression. A possible explanation is the small
number of TNBC cases examined in this study. The low
r2 graphs show that even noisy, high - variability data
can have a significant tendency. However, the tendency
indicates that CD20 still influences CD4, CD8, and
FOXP3. Therefore, the outcome would likely be clearer
if a greater number of TNBCs were examined.
Another limitation is that we used a visual assessment

of TILs. However, there is no standard visual assessment
estimation method for TILs as compared with a digital
assessment system. At present, the visual assessment
continues to have inherent limitations that cannot be
fully addressed through standardization and training.
In recent years, some researchers have estimated TILs
by digital assessment systems. However, they also
have some limitations. The International Immuno-
Oncology Biomarker Working Group recommended
that digital pathology algorithms need to account for
the complexity involved in TIL-scoring procedures by
a pathologist [50]. However, even validated stand-
alone digital assessment requires checks by patholo-
gists to prevent unexpected failures. Further, a Wou-
ters et al. meta-analysis article reported scoring of
CD20+ TIL either visually or digitally using various
software packages and found no differences in the
direction of the outcome data for either of these
methods [51]. Therefore, it is unavoidable that there
is some ambiguity with all methods. Currently, pa-
thologists need to accept that there is some ambiguity
in terms of estimation.

Conclusion
Our study provides evidence of a correlation between
TILs-B and TILs-T in TNBC patients. CD20+ TILs were

associated with CD4+, CD8+ and FOXP3+ TILs, but not
with CD25+ TILs. A good prognosis was observed for
patients with tumors that were highly infiltrated by
CD20+ combined with CD4+ and CD8+, suggesting that
CD20+ TILs support a CD4+ and CD8+ TIL-altered
anti-tumor response. However, CD25+ and FOXP3+
Treg lymphocytes had no prognostic advantage based on
Kaplan-Meier curves. Moreover, in multivariate analysis,
CD20+ and FOXP3+ TILs had an opposite effect on RFS
and OS. CD20+ TILs were correlated with a positive
prognosis, and increased CD4+ and CD8+ TILs and
FOXP3+ Treg lymphocytes. Therefore, our study sug-
gested that TILs-B have dual and conflicting roles in
TILs-T immune reactions in TNBC.
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