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ABSTRACT OF THESIS

AN ALIGNMENT-FREE METHOD FOR SEQUENCE

IDENTIFICATION USING CHAOS GAME REPRESENTATION

Recent events in the area of public health have lead to the need for ad-

vancements in techniques to better understand viruses. A method of graph-

ically representing biological sequences known as chaos game representation

(CGR) was proposed by H.J. Jeffrey in 1990 [1] and has proved useful even

today in the field of bioinformatics. CGR uses the midpoint distance for-

mula to transform a sequence of characters into a graph that can help dis-

tinguish between biological sequences through pattern recognition. Initially,

CGR was apllied to DNA sequences, but in our case we apply it to protein

sequences. For this report CGR is used for the identification of several hun-

dred protein sequences into their respective viral groups through feature ex-

traction using python programming language. These features include, CGR

centroid, amino acid frequency, compounded frequency, Shannon entropy,

and Kullback-Lieber Discrimination Information. In turn better classifica-

tion and identification of viruses is achieved.
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1 Introduction and Review of Literature

The Central Dogma of Biology revolves around the transcription of deoxyri-

bonucleic acid (DNA) into ribonucleic acid (RNA) and the translation of

that RNA into proteins. DNA serves as the language in which organisms are

written and studying features about it along with RNA and proteins can help

to answer many biological questions. Proteins are complex molecules that

play a critical role in several functions of the body as well as the structure of

tissue and organs. They are comprised of amino acids which are connected

in long chains ranging from a few hundred to several thousand depending on

the protein. These chains of amino acids determine the structure and func-

tion of a protein, which include transport, storage to structural components,

and enzymes [10]. By studying the structure and function of proteins we can

hurdle some of the obstacles in understanding evolutionary relationships of

organisms.

The 20 amino acids that occur naturally in nature are Alanine (A), Argi-

nine ( R), Asparagine (N), Aspartic Acid (D), Cysteine (C ), Glutamic acid

(E ), Glutamine(Q), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L),

Lysine (K), Methionine (M), Phenylalanine (F), Proline (P), Serine (S), Thre-

onine (T), Tryptophan (W), Tyrosine (Y), and Valine (V) [10]. Each amino

acid has certain physical and chemical properties which distinguish it from

others and in this report we focus the polarity and charge. This method of

grouping of proteins was shown to be useful for sequence identification in
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comparison to random grouping of proteins [2]. It was noted by Rigden [9]

that similar protein sequences have similar functions. This leads to difficulty

when comparing closely and distantly related sequences.

As mentioned above, DNA is transcribed into RNA and RNA is then

translated into proteins, but some viruses use an enzyme known as reverse

transcriptase to reverse transcribe their RNA into complimentary DNA (cDNA)

for the host to use. These viruses that belong to the viral family Retroviri-

dae are referred to as retroviruses and some of the common examples that

impact humans include Human T-Cell Leukemia Virus Type 1 (HTLV 1),

Human Immunodeficiency Virus Type 1 (HIV 1), and Human Immunode-

ficiency Virus Type 2 (HIV 2) [7]. For this report, HTLV 1, HIV 1, HIV

2, Ebola, Dengue, Middle Eastern Respiratory Syndrome (MERS), Severe

Acute Res- piratory Syndrome Coronavirus (SARS-COV), and Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-COV2) were used for protein

sequence comparison. SARS-COV2 has been detrimental to the human pop-

ulation over the past year. At the time of this report, more than 90 million

people have contracted the virus with over 50 million recoveries, and over

2 million deaths. The first pathogenic novel coronavirus, discovered in 2003

and named SARS-CoV, caused SARS, a serious and atypical pneumonia. The

second, MERS-CoV, emerged a decade later in the Middle East and caused a

similar respiratory ailment called Middle East respiratory syndrome (MERS).

Since its identification, 2494 cases of MERS-CoV infection and nearly 900

deaths have been documented. The SARS-CoV epidemic proved larger but
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less deadly, with approximately 8000 cases and nearly 800 deaths. There

are other four coronaviruses that cause colds in humans—known as HCoV-

229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1 [29]. SARS-COV2 is the

third pathogenic novel coronavirus. Identifying ways to better understand

such viruses is of grave importance to the human population. Such major

outbreaks demand classification and origin of the virus genomic sequence,

for planning, containment, and treatment. Motivated by the above need,

we report several alignment-free methods combining with CGR to perform

clustering analysis and create a phylogenetic tree based on it.

Viral sequences and other biological sequences tend to have variation

within a species and this leads to variation in representing a particular group

of viruses. In order to create dendrograms within python, certain parame-

ters must be met such as the distance measure used in unweighted pair group

method using arithmetic averages (UPGMA). These measures are referred

to as distance based, which differ from other methods such as maximum

likelihood and maximum parsimony [22], [23]. It is because of this varia-

tion multiple sequences from a particular group must be examined as well

as sequences from different regions [4]. Comparing sequences can help to

study the variation of viruses as well as the structure and function of pro-

teins [6]. One method of comparison is alignment based in which a scoring

system picks the best alignment. Such methods have shown some progress

in sequence identification using global and local alignment [11] [12], but it

has been noted this method has several drawbacks [2], [6], [5]. These include
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sequence variation from distantly related sequences and high computation

costs when aligning multiple sequences. Other methods of phylogenetic tree

construction involve gene order [13] or gene family content and are helpful

when complete genomes of the sequences are available. Some setbacks to this

method include the small size of viral genomes and sequences that do not

have a complete genome available.

Finally, another method of sequence comparison, which overcomes these

drawbacks is alignment-free (AF). AF methods have been particular useful

for sequence comparison due to their low computation cost and speed of

analysis. The field of bioinformatics has seen an uptick in the use of these

methods due to advancements in sequencing technology which have allowed

for access to far more biological data than previously obtainable. Current

AF methods in use today include iterated-function systems and chaos theory

for sequence representation such as chaos game representation [1], informa-

tion theory such as shannon information index [19], Fourier transformations

such as digital signal processing [18], and moments of the positions of the

nucleotides [20],[21]. Of the alignment-free methods mentioned, graphical

representations have proved to be the most useful [24] [14], [15], [16],[6], [4],

[5], [3], [2]. Descriptors are used for each protein based on numerical charac-

terizations obtained from these graphical representations. The k-mer based

methods are AF and have been among the most used [3], [5]. K-mer refers

to subsequences of length k of a biological sequence. Applications of these

methods have been utilized for phylogenetic analysis of viral and bacterial
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genomes. The frequency feature profile (FPP) is an example of such meth-

ods and has been found to perform well when compared to natural vector

methods. [5].

For this report, CGR was applied to protein sequences to distinguish be-

tween several species of viruses. It is used as a basis to obtain information

about the viruses being studied. The protein sequences of the viruses were

obtained from the National Center for Biotechnology Information (NCBI)

website. Due to the scale independence of CGR, smaller components of the

CGR graph can be used to help explain the bigger picture. This points to

the potential of extracting smaller features of the graph and using them to

better explain the protein sequence as a whole. After application of our pro-

posed methods we apply multidimensional scaling (MDS) to the data. With

this 2D and 3D projections of the data can be obtained for clustering anal-

ysis. Kruskal[36] first introduced this method of information visualization

which takes the distance matrices computed from our methods as input. In

turn a representation of each viral sequence is created in euclidean space

with corresponding distances between sequences that are equivalent to their

distance given in the matrix. Therefore, similar viral sequences should be

relatively close in this representation which was has been previously shown

using different methods [31].
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2 Previous Work

2.1 Capstone

Computational biology deals with the use of mathematical tools to extract

useful information from biological data. In this report we aim to use chaos

game representation (CGR) as a means to identify organisms based on sim-

ilarities they show in their graphs. The CGR graph can have recog- niz-

able patterns in the nucleotide sequences, obtained from NCBI website. The

graphs are constructed by considering a DNA sequence as strings com- posed

of four units, A, T, C and G. Similarities and differences in the CGR graphs

can be quantified mathematically. This mathematical formula being used is

the distance between points. The CGR graphs can also be a way to visualize

fractals. Several different order Markov Chains were applied to genomes to

help predict the occurrence of oligonucleotides with varying lengths. Proba-

bility matrices as well as kmer heat maps and DNA centroids were addition-

ally extracted from the CGR graphs.

2.1.1 Introduction

Nucleic acids are the genetic code in which all organisms are comprised. One

specific nucleic acid is known as deoxyribonucleic acid(DNA). Studying the

structure and patterns in DNA can help with understanding the functionality

of different genes. DNA has a double helix structure comprised of nitrogenous

bases, phosphate groups, and sugar molecules. The four nitrogenous bases
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are adenine(A), thymine(T), guanine(G), and cytosine(C). These serve as

the alphabet in which DNA is written as well as the focus of this research.

2.1.2 Methods - CGR

The recursive function being used to produce the CGR is

(xi+1, yi+1) = (
xi ± 1

2
,
yi ± 1

2
)

where (x0, y0) = (0, 0) and depending on the current letter in the sequence

of DNA the next coordinate is half the distance between that letter and the

previous coordinate. In our research we let A = [-1,1] , T = [1,1], G = [-1,-1],

and C = [1,-1] be our vertices of the unit square for CGR on the xy plane.

Figure 1 shows the CGR of the sequence CACGTT.
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Figure 1: CGR of CACGTT

This method of recursive midpoint application to the mapping is what

creates the fractals and due to their nature, CGR allows for pattern recogni-

tion as a mechanism for organism identification. Several other metrics can be

obtained from the CGR mappings of different organisms and in turn be used

for genome comparison. These include DNA centroid, probability distance,

and kmer heat maps. Looking at the CGR of Ustilago maydis, a member of

the Fungi kingdom we can see the pattern formed from CGR. In Figure 2,

this organism shows less points toward the top of the CGR graph, showing

a lack of AT within its genome.

8



Figure 2: Ustilago maydis CGR

Initially we show that the pattern of CGR is unique for a particular

organism and that a random sequence of DNA will not generate such a

pattern. This is shown in Figure 3, the random sequence of DNA, 3a has no

real distinct pattern or structure whereas the sequence of human chromosome

21, 3b shows a distinct double scoop pattern which is common in the CGR of

vertebrates. The double scoop pattern was confirmed by Nick Goldman [3].

This also shows that while CGR can create fractals, it is not guaranteed to

occur with every organism. Patterns differ between organisms as well which

is shown in Figure 2. We note that the patterns formed by the CGR of

prokaryotes differs from that of eukaryotes due to less variation in DNA.
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(a) Random Sequence CGR (b) Human Chromosome 21 CGR

Figure 3: CGR

Python programming language was used for the implementation of CGR

and other techniques applied to the DNA sequences. These include the calcu-

lation of frequency chaos game representation,centroids, difference between

centroids and markov chain implementation. The sequences were obtained

from the National Center for Biotechnology Information(NCBI) website.

2.1.3 Methods - DNA Centroid

The centroid of a cluster of points is the mean of those points and is denoted

by

Cij =

(∑n
k=1 xk
n

,

∑n
k=1 yk
n

)
, 0 ≤ i, j ≤ 9. We first partition our CGR mapping of DNA into a 10 x 10

grid. This gives 100 cells of points and the centroid is then calculated for

each cell. The distance between the centroids of a two CGR mappings is
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denoted as

dij =
√

(x− x′)2 + (y − y′)2

where x,y are the coordinates of the centroid at position i,j in a CGR mapping

and x’,y’ are the coordinates of the centroid at that same position of another

CGR mapping. The resulting distance from the 100 comparisons is then

summed into,

D =
9∑
i=0

9∑
j=0

dij

The method of calculating the centroid of CGR was previously applied by

[30]

2.1.4 Methods - FCGR

Frequency chaos game representation (FCGR) is a method of graphically

representing the kmers of a genome. A kmer is a nucleotide of length k

and there are 4k possible kmers. The probability of kmers can be used for

frequency chaos game representation. Initially, the CGR mapping is divided

into a 2k x 2k grid populated by frequency or probability of kmers. This is

denoted by

pij =
number of kmer occurrences

total number of kmers

,0 ≤ i, j ≤ 4k − 1, k = kmer length. Using the distance denoted by

dij = |pij − p
′

ij|
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, i, j ≥ 0. D is found by summing up all dij as the same done for DNA

centroid. A sequence of DNA is read through and a count is kept of each

possible kmer, or nucleotide sequence. An example of FCGR representation

of the sequence CACGTTA is shown step by step below in Figure 4. A

similar approach was used in 2016 [31].

Figure 4: FCGR of CACGTTA

The FCGR of Severe Acute Respiratory Syndrome Cornonavirus 2 (SARS-

COV2) Wuhan is shown in Figure 5.
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Figure 5: SARS-COV2 Wuhan 2mer Heat Map

2.1.5 Methods - Markov Model

Markov models are used as a means for predicting the state in a system

given certain transition probabilities. These models are special because they

exhibit the Markov property, which is that the transition to the next state

is based solely on the current state and not any states prior. For DNA, the

states are the kmers of length k. The order of a Markov model is denoted by

m, where the m preceding residues determine the probability of each residue,

ri at position i

= P (ri|Si−m,i−1) =
F (ri|S1..m)∑
j∈A F (rj|S1..m)

=
F (S1..mri)∑
j∈A F (S1..mrj)

, 1 ≤ i, m ≥ 0. ri is the suffix while Si−m,i−1 is the prefix. These probabilities

are used to populate the transition matrix, which is necessary for determining

the next state of the system. A model of order 0 is referred to as a Bernoulli

model and this model assumes independence between successive nucleotides
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and uses the probability of kmers of length one. The Bernoulli model is

simple, but not realistic when it comes to patterns in DNA. To find the

genomic signature, a higher order markov model is needed. A model of order

1 uses the probabilities of the prefixes of length 1 to determine the resulting

suffix, while a 2nd order model uses prefixes of length 2. The frequency of

kmers of higher lengths can in turn be predicted by training the background

markov model with a portion of the organisms genome.

2.1.6 Results - Similarities in CGR

When comparing the CGR of several different genomes we tend to find a

distinguishable difference from the CGR of eukaryotes, prokaryotes, and

viruses. Below are the CGR graphs of SARS COV2 Wuhan, SARS COV2

HKU, Cricetulus griseus, Rousettus aegyptiacus, Natronomonas pharaonis,

and Haloferax volcanii in Figures 6, 7, and 8 respectively. We notice a low

GC content in the two viral strains and their graphs look almost identical.

Next the CGR of eukaryotes shows the double scoop pattern mentioned ear-

lier as well as a lack of GC content within the genome. In comparison the

CGR graphs of prokaryotes show a lack of AT content with a high content

of GC.
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(a) SARS COV 2 Wuhan CGR (b) SARS COV 2 HKU CGR

Figure 6: Viruses

(a) Cricetulus griseus CGR (b) Rousettus aegyptiacus CGR

Figure 7: Eukaryotes

15



(a) Natronomonas pharaonis CGR (b) Haloferax volcanii CGR

Figure 8: Prokaryotes

It is important to note that two eukaroytes can have vastly different CGR

graphs. For example, take the CGR of Bos taurus on the left and Candida

albicans on the right in Figure 9. This is mostly due to the differences in

kingdoms of the two organisms as Bos taurus belongs to Animalia while

Candida albicans belongs to the kingdom Fungi.

(a) Bos taurus CGR (b) Candida albicans CGR

Figure 9: Differences in CGR of Eukaryotes
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These differences can also be seen in the CGR of prokaryotes belonging to

different kingdoms. Archaeoglobus fulgidus is a memeber of the Archaea king-

dom and Acidovorax citrulli is a bacteria. Both organisms are prokaryotes,

yet their graphs in Figure 10 are different. Lastly we show the differences in

the CGR of viruses in Figure 11.

(a) Archaeoglobus fulgidus CGR (b) Acidovorax citrulli CGR

Figure 10: Differences in CGR of Prokaryotes

(a) Human Coronavirus 229E CGR (b) Ebola CGR

Figure 11: Differences in CGR of Viruses
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2.1.7 Results - Similarities in FCGR Heat Maps

The FCGR graphs also show similarities for comparison. Figures 12a, 12,

and 13 show the FCGR heat maps of SARS COV2 Wuhan, SARS COV2

HKU, Cricetulus griseus, Rousettus aegyptiacus, Natronomonas pharaonis,

and Haloferax volcanii respectively.

(a) SARS COV2 Wuhan FCGR (b) SARS COV2 HKU FCGR

Figure 12: FCGR of Viruses

(a) Cricetulus griseus FCGR (b) Rousettus aegyptiacus FCGR

Figure 13: FCGR of Eukaryotes
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(a) Natronomonas pharaonis FCGR (b) Haloferax volcanii FCGR

Figure 14: FCGR of Prokaryotes

The FCGR graphs for prokaryotes show both organisms have a high CG

content. In contrast, the FCGR graphs of Eukaryotes show an abundance

of the 2mers AA, AT, TA, and TT in their genomes whie CG content is the

lowest amongst all other 2mers. The FCGR of viruses tells a similar story of

an abundance of AA, AT, TA, and TT with a lack of CG content.

2.1.8 Results - DNA Centroid Comparison

Comparison of the centroids of several genomes was useful for distinguishing

between them. In Figure 15, we see that the centroids of the two prokaryotes

were both over 1.6 away from the two eukaryotes. Also, the two strains

of virus show a distance greater than 1 from the eukaryotes. In fact, the

two strains of virus show very similar distances when compared to all other

genomes. The lines in the graph are almost on top of each other. We can

see that both eukaryotes and prokaryotes show similar distances from the
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viruses. Overall, the seperation necessary for classification can be seen when

comparing the centroids of genomes.

Figure 15: DNA Centroid Comparison

2.1.9 Results - Probability Distance

The probability distance was a useful method for distinguishing between

genomes. The below figure shows the probability distance matrix for the

genomes of several viruses and bacteria. Theses viruses are listed in Figure

17.
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Figure 16: Probability Distance Matrix
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Figure 17: Genome ID

From the table we can see that similar probabilities tend to be relatively

close to each other in terms of distances. SARS COV2 HKU, SARS COV,

SARS COV are all within 0.1 of each other which is due to how close relation

of the strains. They also show close relation with MERS NL140455, MERS
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NL13892, and Human Cornonavirus 229E as they are within 0.2. Both strains

of HIV showed very similar probabilites as well. The two strains of influenzae

showed a distance of 0.007. Overall, shorter distances equate to similar

genomes.

2.1.10 Results - Markov Model

Using the transition probabilities shown in Figure 18, a Markov model of

order 1 was created. The first 10,000 nucleotides of the sequence were used

to train the model on 2mer frequency. The nucleotides of the sequence are

selected based on the transition probabilities and the actual frequency of

3mers is compared with the test 3mer frequency. This is seen in the figure

below.

Figure 18: Transition matrix of Rousettus aegyptiacus

Figure 19: Actual 3mer frequency of first 10,000 nucleotides of Rousettus
aegyptiacus
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Figure 20: Test 3mer frequency of 10,000 nucleotides

We find our markov model to be simple, but on the right path in terms

of predicting 3mer probability. By comparing the above probabilities we find

a distance of 0.2111. This distance isn’t too far from the actual genome but

more training of the model is needed to further decrease this distance.

2.1.11 Conclusion

It has been shown that the pattern of CGR can help to classify organisms

based on how diverse these graphs are between eukaryotes, prokaryotes, and

viruses. The eukaryotes CGR showed recognizable patterns with some hav-

ing the double scoop feature. Prokaryotes show very different CGR graphs as

a pattern can be hard at times to recognize depending on the genome. The

CGR of some viruses shows a somewhat similar pattern to the organisms

they attack. In the case of SARS COV2, both strains showed a lack in GC

content which is also found in the CGR of human chromosome 21. FCGR

also proved useful for comparing genomes, but a longer kmer may prove

necessary for better identification. DNA centroid calculations did allow for

distinguishing between the organisms, but more is needed to be done in opti-
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mizing this. Some of these include adjusting the length of the sequences being

used as well as applying different partitioning to the CGR graph. Probabil-

ity distance was also helpful for comparisons. A longer kmer however could

help better correlate the distance with the genomes. Finally, a higher order

markov model will be applied moving forward to more accurately predict

kmer frequency within genomes.

2.2 Publication

Chaos Game Representation (CGR) was first proposed by H. J. Jeffrey in

1990 [1] as a novel scale independent graphical representation of a biologi-

cal sequence. This representation is created through the use of an iterative

process in which a one dimensional sequence is converted into a two dimen-

sional array of points within a confined space. This method has proved to be

helpful in the area of bioinformatics as it allows for more efficient sequence

storage as well as sequence identification through pattern recognition of the

CGR image. The efficient storage is due to the iterative process that al-

lows for an entire sequence to be obtained through the last coordinate of the

CGR. In Jeffrey’s report CGR was applied to DNA sequences, so the string

of characters being used included adenine (A), cytosine ( C), guanine (G),

and thymine (T) [1].
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2.2.1 Background

DNA sequences analysis, is one of the most important parts of bioinformat-

ics, which was considered to reveal the essence of all life phenomenon, has

been developing rapidly in recent years. Sequence comparison is crucial to

understand the evolutionary relationships among organisms. Using the anal-

ysis of the similarity/dissimilarity of biological sequences has been shown

useful in understanding organisms [6]. CGR has mostly been restricted to

a visualization tool representing nucleotide sequences, in which patterns like

over-or underrepresentation of nucleotides, dinucleotides, trinucleotides, etc.

can be visually ascribed. Goldman concluded that the patterns exhibited

by CGR are sufficient to evaluate word length composition of three, i.e., the

frequencies of nucleotides, dinucleotides and trinucleotides. However, it was

shown later that longer oligonucleotide frequencies also influence the patterns

seen in CGR. Later, a spectrum of word lengths, in addition to nucleotide

and dinucleotide, in CGRs were identified as factors that can differentiate be-

tween genomes of different species. Several distance measures were proposed

to compare two or more CGRs and it was employed for studying phylogenetic

relationships among diverse species. However, it is not clear if intra-species

genomic variability, which is much less than between-species variation, can

be resolved using CGRs with similar word lengths. Later it was found in,

the value k = 7 achieved the highest accuracy scores for HIV-1 subtypes

classification [29].

CGR was performed on complete genomes of 15 corona viruses and two
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alignment-free methods emerged which clustering analysis was applied to cre-

ate a phylogenetic tree. A list of these viruses is found in Table 12. To each

DNA sequence we associate a matrix then define distance between two DNA

sequences to be the distance between their associated matrix. These meth-

ods are being used for phylogenetic analysis of coronavirus sequences. Our

approach provides a powerful tool for analyzing and annotating genomes and

their phylogenetic relationships. We also compare our tool to ClustalX algo-

rithm which is one of the most popular alignment methods. Our alignment-

free methods are shown to be capable of finding closest genetic relatives

of coronaviruses. The two methods, probability matrix method and centroid

matrix method are combined with CGR to construct distance matrix between

two genomes, and then create dendrogram using Hierarchical Agglomerative

Clustering (HAC) analysis. Our dendrogram can accurately identify the ge-

netic relationship of different biology, and this method is generally applicable

to various organisms [29].

2.2.2 Methods

The method we used to analyze and classify the 15 sequences of the dataset

has three steps: 1) generate graphical representations (images) of each DNA

sequence using CGR and define FCGR probability matrix and CGR centroid

method using the features of CGR; 2) compute all pairwise distance to obtain

two distance matrices; and 3) create the dendrogram of the distance matrix

using Hierarchical Agglomerative Clustering (HAC) analysis. CGR is an
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Virus name NCBI/GISAID Accession number

1) hCov-19/bat/Yunnan EPI ISL 412976
2) hCov-19/pangolin/Guangdong EPI IS 410721
3) hCov-19/bat/Yunnan/RaTG13 EPI ISL 402131
4) hCov-19/India EPI ISL 431117
5) hCov-19/Italy EPI ISL 417446
6) hCov-19/Iran EPI ISL 437512
7) hCov-19/Spain EPI ISL 428684
8) hCov-19/USA EPI ISL 431086
9) hCov-19/Wuhan EPI ISL 412980
10) Human Coronavirus-229E KF-514433
11) Human Coronavirus-HKU1 KF-430201
12) Human Coronavirus-NL63 KF-530114
13) Human Coronavirus-OC43 KF-530099
14) SARS-Cov NC 004718
15) MERS KT-026456

Table 1: Dataset for experiment

iterative method introduced by Jeffery [1] to visualize the structure of a DNA

sequence. A CGR associates an image to each DNA sequence as follows:

starting from a square with corner labeled four nucleotides C, G, A and T,

and the center of the square as the starting point, the image is obtained

by successively plotting nucleotide as the middle point between the current

point and the corner labeled by the nucleotide to be plotted. If the generated

square image has a size of 2k 2k pixels, then every pixel represents a distinct

k-mer: A pixel is color red if the k-mer it represents appears in the DNA

sequence, otherwise it is white. CGR images of generating DNA sequences

coming from various species show pattern such as squares, parallel lines,

rectangles, triangles, and also complex fractal patterns. We have created
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CGR of all 15 virus genomes and visually they look similar (see Figure 1

below). For step (1), we will use a slight modification version of the original

CGR, a k-th order FCGR (Frequency Chaos Game Representation) is a 2k

2k matrix that can be constructed by dividing the CGR plot into a 2k 2k grid,

and defining the element |aij| as the number of points that are situated in the

corresponding grid square. A first-order FCGR and a second-order FCGR

have the structure shown below, where Nw is the number of occurrences of

the k-mer w, in the sequence s is

FCGR1(s) =

NC NG

NA NT

 and FCGR2(s) =



NCC NGC NCG NGG

NAC NTC NAG NTG

NCA NGA NCT NGT

NAA NTA NAT NTT


The (k+1)th order FCGRk+1(s) can be obtained by replacing each element

NX in FCGRk(s) with four elements

NCX NGX

NAX NTX

 where X is the sequence

of length k over the alphabet {A,C,G,T}. For each k ≥ 1, we can define a

probability matrix of FCGRk(s) by taking each entry of FCGRk(s) dividing

by the total counts of all k-mers. We denote the FCGR probability matrix

by (Pij), 1 ≤ i, j ≤ 2k. Note that
∑

i,j Pij = 1. Probability matrix can be

interpreted as probability of distribution.

Since the CGR captures the information of the whole genome data, ex-

tracting the global features from the CGR may not be efficient enough to
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distinguish the genomes. In CGR Centroid method, we concentrate on ex-

tracting the local features as shown in [30]. We partition the CGR into

sub-regions so that it re- veals local information of the interested areas. If

two dots are within the same quadrant, they correspond to sequences with

the same last mononucleotide; if they are in the same sub-quadrant, the se-

quences have the same last dinucleo- tides; and so on. This can demonstrate

the structure of the sequences yielding the points in the CGR. Chaos Cen-

troid method utilizes this biological signi- ficance by computing the centroid

of the distributed points of each sub-region.

For Chaos Centroid method, the CGR is partitioned into 1010 equal

subre- gion. The choice of 10 is to minimize the computation time. For each

partition, we compute the centroidas follows. Let (xk, yk be the coordinates

of a point in the CGR. We define the centroid in each of the 1010 grid as

follows:

cij = (

∑|aij |
k=1 x

k

|aij|
,

∑|aij |
k=1 y

k

|aij|
), 1 ≤ i, j ≤ 10.

For step (2), after computing FCGR probability matrices and computing

cen- troid for each of the sequences in the dataset, the goal was to mea-

sure “distance” between two CGR images. There are many distances as it is

given in [31],[30] that can be defined for our purpose. One of the goals of this

study was to identify what distance is better able to differentiate the struc-

tural differences of various genomic DNA sequences. In this paper we use two

different distances: FCGR Probability Matrix distance and CGR Centroid
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Figure 21: CGR of some of the viruses from Table 12
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distance. Both use the Euclidean distance. For step (3), after computing

all pairwise distances we obtained two different distance matrices. Then, we

created the dendrogram of the distance ma- trices using Hierarchical Ag-

glomerative Clustering (HAC) analysis.

In this section we formally define each of two distances. For two FCGR

probability matrices (pij) and (p′ij) we define dij = |pij − p′ij|. The distance

between two probability matrices denoted by DPM =
∑2k

i=1

∑2k

j=1 dij. For

two genomes, we calculate 100 centroids cij = (xij, yij) and c′ij = (x′ij, y
′
ij)

respectively for 1 ≤ i, j ≤ 10. Then we found Euclidean distance between

them dij =
√

(xij − x′ij)2 + (yij − y′ij)2. Then calculated the centroid dis-

tance between two genomes denoted by Dcd =
∑10

i=1

∑10
j=1 dij.

2.2.3 Results

For our dataset we used k = 7, that is, each DNA sequence represented as

a 27 27 FCGR matrix. In [32], it was found highest accuracy in HIV-1

classification and this value is being used here as it is relevant for our viral

analysis. Table 2 display the pairwise distance among 15-virus genomes in

the dataset using probability matrix distance while Table 3 display the same

using centroid distance.
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Figure 22 shows the phylogenetic tree obtained using Table 2 distances by

py- thon Hierarchical Agglomerative Clustering (HAC) analysis. Similarly

Figure 23 shows the phylogenetic tree using Table 3. Figure 4 is the Neigh-

bor Joining Phylogenetic tree using traditional Clustal X method. From
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Figure 22: HAC phylogenetic tree using probability matrix distance.

Figure 22 and Figure 24, we can see that the cluster results between Clustal

X method and probability distance method are essentially same. Similar

Phylogenetic analysis of bat coronaviruses with other coronaviruses and the

phylogenetic tree was constructed using Clustal W also done in [33].
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Figure 23: HAC phylogenetic tree using CGR centroid distance.
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Figure 24: Phylogenetic Tree was created by Clustal X by aligning 15 DNA
sequences using Neighborhood Joining Method.
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Figure 25: Shannon Entropy of 57-virus genomes.

All sequence data contain inherent information that can be measured

by Shan- non’s uncertainty theory. Measuring uncertainty may be used for

rapid screen- ing for sequences with matches in available database, prioritiz-

ing computational resources, and indicating which sequences with no known

similarities are likely to be important for more detailed analysis as seen in

[34]. We started with 57 genome sequences and then reduced to 15 based

on the Shannon Entropy and Shannon Entropy of 7-mers of the sequences,

see Figure 25 and Figure 26. All Covid-19 sequences have entropy close to

1.957. We choose only six Covid-19 sequences in the dataset along with all

other sequences with deviated entropy from 1.957 for our analysis of corona

viruses.
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Figure 26: 7-mers Shannon Entropy of 57 virus sequences.

2.2.4 Discussion and Conclusions

Our methods are comparable to many other alignment-free methods as shown

in [15], [30]. The proposed methods i.e. FCGR Probability and Chaos Cen-

troid, are based on Chaos game representation, which provides a unique and

scale-independent representation of DNA sequences through the statistical

distribution of k-mers along DNA sequences. An advantage of CGR over

alignment is that it has the potential to reveal the evolutionary and/or func-

tional relationships between the sequences having no significant homology,

as explained in [25]. Furthermore, it does not require prior knowledge of

consensus sequences, nor does it involve exhaustive searches for sequences

in databases. The limitation of CGR is that it takes a computational time

to generate the representations from DNA sequences. In conclusion, results

show that our method can accurately classify different genomic sequences.
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In terms of classification accuracy, our method is basically the same as the

state-of-the art Clustal X and compare with the traditional Clustal X phylo-

genetic tree construction method [18], our method is much faster. Further-

more, our dendrogram construct method can be widely applicable for vari-

ous kinds of organisms. This research may contribute to reveal the biological

evolu- tion process to some extent, as well as promote the further develop-

ment of bio- informatics. We may make efforts in our future work to provide

a webserver for the methods presented in this paper. All the codes in this

paper are written in python and can be available upon request.

3 Chaos Game Representation (CGR)

Biological systems tend to have quite a bit of entropy or chaos. In order

to represent such dynamical systems, one of the crux of statistical methods,

chaos theory is applied [4]. Chaos theory helps to sort out such dynamical

systems and lend potential information to better understand these processes.

Since Jeffrey’s report, several other applications of CGR to biological se-

quences have been explored including arbitrary sets of characters [26]. Other

studies applied CGR for studying such dynamical systems using interger

length resolutions [4]. Further use of the applications of CGR on protein

sequences have shown promising results[25]. One obstacle is deciding how to

represent the amino acid using CGR as there are 20 characters to represent

as opposed to 4. Fiser [27] was one of the first to find a method to improve
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such techniques by creating a 20-sided polygon with each vertex representing

one of the 20 amino acids. Another representation of the 20 amino acids was

applied by Randic [28] in which the CGR exists within the unit circle. This

approach ordered the amino acids alphabetically in comparison to organiza-

tion based on their physiochemical properties. The properties of the amino

acids serves as vital information for characterization of protein sequences and

this was noted by Randic. Another arrangement of the amino acids was pro-

posed by Basu [25] and included the separation of the 20 amino acids into

12 groups. His proposition also referred to as the 12-CGR was fruitful in

sequence comparison. Bhoumik [2] utilized the 4-CGR method which places

the amino acids into 4 groups based on their physiochemical properties. All

of the previously mentioned methods are graphical representations and can

be advantageous for sequence comparison [4], [6]. Goldman [3] noted that

the frequency of nucleotides plays a role in determining the complex patterns

in CGR of DNA. The similarity/dissimilarity of sequences has also been suc-

cessful in genome comparison as such vectors can be used for representation

of a group as opposed to an individual organism [6]. Other methods have

been proposed in the field of bioinformatics, to study the features of viral se-

quences some of which include frequency chaos game representation (FCGR),

positional distribution, and adjacency vectors [3],[5],[24].
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3.1 CGR of Proteins

To create a CGR graph, we first began with an initial point (0.5, 0.5), the

center of a unit square in quadrant 1 of the xy-plane. Let the vertices of

the unit square be: A = (0, 0), B = (0, 1), C = (1, 1), and D = (1, 0). The

20 amino acids are divided into four groups (A,B,C,D). Group A contains

the negatively charged amino acids Aspartic Acid (D) and Glutamic acid

(E ). Group B consists of the positively charged amino acids Lysine (K),

Arginine ( R), and Histidine (H). Group C contains the neutral polar amino

acids Serine (S), Threonine (T), Asparagine (N), Cysteine (C ), Tyrosine

(Y), and Glutamine(Q). Lastly, group D consists of the neutral non-polar

amino acids Alanine (A), Glycine (G), Isoleucine (I), Leucine (L), Methionine

(M), Phenylalanine (F), Proline (P), Tryptophan (W), and Valine (V). These

vertices are arbitrary and can have any label, such as A, U, C, and G for

RNA and in the case of DNA A, T, C, and G. We denote the next coordinate

in the CGR graph,

(xi+1, yi+1) =
xi + Tx(i)

2
,
yi + Ty(i)

2

where Tx(i) is the x coordinate and Ty(i) is the y coordinate of the vertex of

the corresponding group of the next amino acid in the sequence. A point is

plotted half the distance from this vertex and the previous coordinate. Some

examples of the CGR of several viruses used in this report are shown in figure

27.

41



(a) Dengue (b) Ebola (c) HTLV

Figure 27: CGR of Proteins

Figure 28: CGR of Bible
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CGR can, but is it not always guaranteed to create fractals which are

infinitely complex self-similar shapes on varying scales [35]. They are the

images of dynamical systems and are driven by an ongoing feedback loop.

Many common fractals include the Sierpinski Triangle, leaves, seashells, and

snowflakes. The Sierpinski triangle was first described by Polish mathemati-

cian Waclaw Sierpinski, a leading figure in point set topology in 1915. An

example of a Sierpinski Triangle created by looping through the Holy Bible

is shown in Figure 28. We denote the occurrences of the letters A, I, and E

by mapping a point half the distance to their vertex. Vertex A is located at

(0.5, 1), vertex I is located at (1, 0) and vertex E is located at (0, 0) on the

xy coordinate plane. The Sierpinski Triangle can also be made by repeatedly

removing the middle triangle of an equilateral triangle. A diagram of this

repeated process is shown in Figure 29. The nature of fractals allows for

continuous magnification to gather more detail as they are infinitely com-

plex. This magnification is limited to the processing power of the computer

being used for magnification, which for current technology is about 1016 or

ten quadrillion. To better understand the CGR, Goldman [3] showed that

the frequency of nucleotides plays a role in determining the complex patterns

in CGR of DNA.
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Figure 29: Sierpinski Triangle Creation
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4 Methods

For this report, CGR was applied to protein sequences to distinguish between

several species of viruses. It is used as a basis to obtain information about the

viruses being studied. Extracting as much information from the CGR is one

issue faced and is key in sequence identification and classification [24]. The

protein sequences of the viruses were obtained from the National Center for

Biotechnology Information (NCBI) website. Due to the scale independence of

CGR, smaller components of the CGR graph can be used to help explain the

bigger picture. This points to the potential of extracting smaller features of

the graph and use them to better explain the protein sequence as a whole. To

accomplish the goal of sequence identification, first a means of grouping the

amino acids to allow for CGR was decided. The choice of Bhoumik’s method

[2] was made on the basis of the results obtained from this grouping. Other

potential methods of grouping that have been previously studied, include Li’s

method [21] of a 12-sided polygon as well as a random grouping of 4 and 5

[2].

4.1 CGR Centroid

Once the the CGR is created for a protein sequence, the CGR square is di-

vided into four cells. Each cell represents one of the four groups, {Ai, Bi, Ci, Di; i =

1, 2, ..., n} where n is the length of the sequence. These cells correspond to

the vertex located in that cell. The points in each cell are then averaged to
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find the centroid of each cell denoted by

Ck =

∑n
i=1 (ai(x), ai(y))

n

where ai(x) and ai(y) are the x and y coordinates respectively in a cell and k =

1, 2, 3, 4. This gives four centroids C1, C2, C3, and C4 for comparison of viral

sequences.

4.2 CGR Centroid Bisection

Upon calculation of the four CGR centroids, a rectangle is created from

these vertices. Next the diagonals of this rectangle are constructed and their

intersection is taken as the CGR Centroid Bisection denoted BC(x) of viral

sequence x.

BC(x) =
C1 + C4

2

4.3 Amino Acid Frequency

The next method of sequence comparison examined is the amino acid fre-

quency (AAF) of 2mers. A 2mer is subsequence of length 2 of a string of

characters and they are found by taking the cross product between the set

of amino acids and itself. This yields 202 = 400 possible 2mers and some

of these include: DE, MA, AR, HE, and RT. The frequency of each 2mer is
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calculated as follows:

pij =
Number of occurences of 2mer

400

, 1 ≤ i ≤ j ≤ 400. Several distance measures can then be obtained by

comparing the amino acid FCGR of viral sequences. One distance metric

that encompasses two others is the minkowski distance and is derived as

follows
n∑
i=1

(|pij − p′ij|t)
1
t

. Note that when t = 1, we have

M =
n∑
i=1

(|pij − p′ij|)

, which is manhattan distance and when t = 2, we have

E =

√√√√ n∑
i=1

(|pij − p′ij|2)

, euclidean distance.

4.4 Group Frequency Chaos Game Representation

Each cell in the CGR of protein contains an x amount of points and by

dividing this amount by four for the four cells, we have the group frequency

chaos game representation (GFCGR). This is the same as the FCGR defined
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previously with the only difference being the frequencies are defined for a

group of amino acids as opposed to just one. The GFCGR is defined as

follows:

GFCGR(z) =
Number of occurences of amino acid in a group z

Length of the sequence

where z = {A, B, C, D}.

4.5 Kullback-Lieber Discrimination Information

A previous method introduced by Li [8] utilized the Kullback-Lieber Dis-

crimination Information for sequence comparison. This comparison proved

useful and in this report we further extend this method to be applicable with

our previously mentioned methods. Given a discrete random variable Y, dif-

ferent distribution laws can be applied. For example under hypothesis 1, we

have (
Y

p1(y)

)
=

(
y1

p1(y1)

y2
p1(y2)

...

...

yn
p1(yn)

)
. Under hypothesis 2 we have

(
Y

p2(y)

)
=

(
y1

p2(y1)

y2
p2(y2)

...

...

yn
p2(yn)

)
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. These distributions can be compared by using the Kullback-Lieber Dis-

crimination Information denoted by

I(p1, p2) =
n∑
i=1

p1(ai)log
p1(ai)

p2(ai)

In this report, we let these distributions be the 2mer AAF of viral genomes.

So for viruses x and y we have I(x, y), but due to it’s directed divergence

I(x,y) might not necessarily equal I(y,x). For this reason, the metric J(a,b)

is defined as follows

J(x, y) = I(x, y) + I(y, x)

. Note that when x = y, J(x, y) = 0. We also note that for any two viral

sequences x and y, J(x, y) = J(y, x). Li [8] noted that this method can

accurately measure the dissimilarity between two sequences.

4.6 Compounded Frequency

Another method for sequence comparison that has been previously examined

is the compounded frequency. This method was proposed by Almeida [4]

for comparison of biological sequences. First we denote the compounded

frequency nw as follows

nw =
k∑
i=1

xi ∗ yi
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. The compounded frequency is then used in conjunction with the Pearson

correlation coefficient, rw for sequence comparison.

rw =

∑k
i=1

xi−µx√
sx
∗ yi−µy√

sy
∗ xi ∗ yi

nw

where

sx =

∑k
i=1 (xi − µx)2 ∗ xi ∗ yi

nw

and

sy =

∑k
i=1 (yi − µu)2 ∗ xi ∗ yi

nw

with µx and µy defined as follows

µx =

∑k
i=1 x

2
i ∗ yi

nw

µy =

∑k
i=1 y

2
i ∗ xi

nw

. Previous studies used this method for comparison of the FCGR of two

sequences. Similarly, we use the 2mer AAF to find the rw between two

sequences. By using the weight of nw, each 2mer is proportional to its fre-

quency. Now we define the sequence distance as d = 1−rw, which has values

from 0-2. For d > 1, a negative correlation exists and for d < 1 a positive

correlation exists. When d = 0, the sequences are exactly similar.
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4.7 Shannon Entropy

The Shannon information index has been used in some of our past work as

well as other studies. It is denoted

S2 = −
k∑
i=1

pi ∗ log2(pi) =
k∑
i=1

pi ∗ log2(
1

pi
)

where 2merAAF = p1, p2, ...pn, 1 ≤ i ≤ n. This method has been used

in some of our past works for sequence comparison. In this report we use

this method as a measure of the amount of information contained within a

sequence of proteins.

5 Data and Results

The data sets shown in figures 2, 3, 4, 5 consists of the accession numbers of

the 400 strains of 8 viral groups, so 50 strains per group.
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HIV 1 HIV 2

CAD59561 CAD48441 ALQ56957 Q89928.3
AZI72458 CAD48455 2120212B P18042.4
CAT00576 P03366.3 AIA59459 ATU79162
P04587.3 AZI72417 AAF82029 Q74120.3
P04588.3 AZI72491 ACH73021 P20876.3
AUO72800 AAN73511 BAH97695 P17757.3
AAD03225 AAN73835 ANG59323 AAC95341
Q9IDV9.3 AZI72386 ATU79172 APJ01827
AFB39387 AAD17072 APJ01785 ANG59330
BAC77486 BBC08805 AAT37062 ABV83026
Q79666.3 P12499.3 APJ01810 APJ01769
BAC77511 NP 057849 BAH97704 AAA64576
CAC86564 AZI72433 AAA43933 QLK12568
P20875.3 AZI72558 BAM76182 AYA94959
AAD03191 AUO72809 AAR98760 APJ01776
AAD03200 CAY83134 AIA59452 ALA65437
AAW68124 P0C6F2.1 QGV16580 AIA59451
AUO72845 O41798.3 Q76634.3 AIA59453
ABV00730 O93215.4 AAA43942 QGV16534
BBC08787 AAD03316 ATU79192 QGV16537
CAC38421 P18096.4
AZI72408 AAA76841
P03369.3 P12451.3
AAG30116 ANG59316
BBC08796 ALX35369
AUO72688 QGV16583
AAD03241 AYA94966
CAB96338 BAA00710
AAN73709 APJ01819
AAD03184 AIA59450

Table 2: HIV 1 & HIV 2 data sets
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SARS COV SARS COV2
QLG75207 QOF14847 QQI07512 QLG76455
QPN97028 QOU98004 QPI70323 QJR91795
QOU93276 QOQ14978 QPF58140 QPM28262
QQJ94670 QJX74509 QIA98605 QPM28286
QPZ45698 QIK02963 QPJ72410 QPJ72398
QPP19202 YP 009724389 QIC53203 QPJ72422
QQH18637 QPJ58632 QHD43415 QPI70311
QPZ33349 QQJ94682 QQJ95078 QPG83249
QPZ33508 QQJ95306 QHZ87591 QPG83261
QPZ75589 QPZ56528 QHO62876 QPG02368
QPN97040 QPZ56540 QHU79171 BCN28299
QQI07500 QPZ56564 QHN73809 BCN28311
QKS66638 QPZ75577 QPI75812 QPG00682
QQJ95318 QPV51018 QHZ00378 QPF21470
QOU87996 QPX60397 QHO60603 QHN73794
QMJ01339 QPP19226 QIB84672 QIH45022
QOQ07719 QPN97052 QPF58152 QHS34545
QPZ56552 QPN97064 BCA87360 BCB15089
QPF54048 QPN53402 QPF49350 QIA98553
QPV51042 QPN53415 QPI71724 QII57267
QPV51030 QQJ95090
QPZ33361 QJR91771
QPP19214 QOU97164
QLJ57697 QNO98001
QQI07488 QHR84448
QMI94679 QPF49362
QMI93420 QPI70335
QQJ94103 QIG55993
QLJ57685 QMJ01279
QPJ58620 QPM28274

Table 3: SARS COV & SARS COV2 data sets
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MERS Dengue

AVN89429 AWH65952 QPZ88405 ANC57575
AID50417 AGR87639 QFS19562 ANC57576
ANC28665 YP007188577 QPB40131 ANC57581
AKM76247 QGW51400 QFS19150 ANC57582
AJD81449 QOU08495 ACK28184 ANC57584
QFQ59585 QLD98092 QHR82546 ANC57591
AKJ80135 QEJ82213 QCZ25008 QGQ59490
ARQ84744 QDI73607 QFS19149 QGQ59491
QBM11746 QAT98897 ACL99188 QPU83821
ATQ39389 QAT98908 QQC97219 QPI70486
QOU08506 ANC28676 QPZ88403 QPI11926
AIZ48758 AMO03400 BBH51315 QPB40126
AKM76237 ALD51902 AEF01518 QPB40128
ANI69822 AHY21468 AAW23164 QPB40129
AKS48060 AHB33324 ANC57587 QOW96372
AZU90729 AVN89311 QPZ88404 QIB99388
AYM48029 AVN89418 ANC57579 QCZ25007
AWH65941 AUM60013 QPU83820 QIS48855
QGV13489 AUM60023 QPB40125 QBQ58384
QGV13494 AWH65953 QFS19134 QCE20685
AVN89300 QPB40127
AHX71944 QGQ59492
AHZ64055 ANC57577
ANI69844 ANC57580
ANI69833 QPI11922
QGW51390 QIB99387
QKX95935 ANC57586
QBM11735 QBQ58385
AHZ58509 ANC57578
QJX19955 BBH51316

Table 4: MERS & Dengue data sets
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Ebola HTLV

ARU80343 QCH40643 ABM66546 P0C211.2
APT36405 QCH40651 AER08530 AAC82581
AWZ62332 AYP10283 ABM66560 P14078.3
AQA27316 QCF40472 QIZ31287 P03362.3
APA16576 ASU06439 QIZ31293 QIZ31284
APA16540 AXF48918 QIZ31278 QIZ31290
AYP66825 AXF48927 BAH85786 AAC00186
ATY51149 AXF48945 AYN25329 AAA85843
ARU80319 AXF48963 AOT98555 AAA96673
QEU56421 ARG43235 ABM66542 AYN25340
APT36396 APW30156 QIZ31299 AYN25351
ARC95311 APW30174 AOT98549 ATV90697
ASU06448 ARV89896 ABM66584 BAX76690
QNF60339 ARU80303 BBL33033 BAX76706
AYI50378 ARU80351 AOT98550 AHX00005
SCD11539 BAX08105 AAA85327 APR72307
AXE75594 AQS26699 AER08534 APR72311
ARU80359 AMY60341 AYN25362 ABM66540
APW30165 AMY60350 AOT98554 ABM66544
ARG43928 AMY60359 ATV90703 ABM66562
ARU80327 QIZ31296
AXF48954 AAB20769
ARG43937 BAA02931
ALR82674 QNL15179
AVQ09636 BAX76714
AVQ09627 QIZ31281
ARU80311 AAD50663
AXH37632 ABM66574
ALR82665 ABM66556
ARU80335 ATV90700

Table 5: Ebola HTLV data sets

First we construct the CGR graph for all 400 viruses and calculate the

2mer AAF. Next the pairwise distances between each of the viruses is com-
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puted for all of the previously mentioned methods. For the Shannon entropy,

2mer AAF and GFCGR the manhattan distance is used. From this several

distance matrices are obtained, snapshots of these are shown in figures 30,

31, 32. The euclidean distance is applied to both the CGR centroids and

CGR centroid bisections as shown in figures 33, 34 while J(x, y) and Pearson

correlation have the respective distance matrices 35, 36. MDS is then applied

to the distance matrices to create 2D and 3D projections shown in figures

37, 38, 39, 40, 41, 42.

Figure 30: Distance matrix of Shannon Entropy
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Figure 31: Distance matrix of 2mer AAF

Figure 32: Distance matrix of GFCGR
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Figure 33: Distance matrix of CGR Centroid

Figure 34: Distance matrix of CGR Centroid Bisection
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Figure 35: Distance matrix of J(x,y)

Figure 36: Distance matrix of D = 1-rw

To rank the effectiveness of each distance metric we define the [31], δ(x, y)
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function of two viral sequences x and y as follows:

δ(x, y) =


0, if x and y belong to same viral group

1, otherwise

With this function we create a 400x400 distance matrix of the viruses and

take the upper triangular matrix as a vector Uδ. Next, we take the upper

triangle matrix, Uα, α ∈ 2mer AAF, J(x,y), S2, D = 1-rw, GFCGR, CGR

Centroid, CGR Centroid Bisection of each of the 7 distance matrices for com-

parison with Uδ. The Pearson correlation coefficient is used to establish how

well a distance measure fits a particular viral sequence to its corresponding

group cluster. We denote this coefficient as

Pα =
σαδ
σασδ

with a range of [−1, 1]. Values of 1 indicate a linear correlation between Uδ

and Uα while a value of 0 indicates the pair are unrelated. The values of Pα

for each distance measure are shown in figure 6. We see that of the distance

measures, Kullback-lieber discrimination information, J(x,y) is most closely

related with Uδ. Further confirmation of this is shown in the 2D and 3D MDS

charts for J(x,y) 38, 41, which show a good separation of the viral sequences

into their respective groups. 2mer AAF also shows a linear correlation with

Uδ with a Pα of 0.62734. Similarly, the 2D and 3D MDS graphs of 2mer AAF

show a good separation and clustering of the viral sequences. It can also be
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Method Pα
J(a,b) 0.640972
2mer AAF 0.62734
D = 1-rw 0.558031
CGR Centroid 0.503566
GFCGR 0.48629
CGR Centroid Bisection 0.48301
S2 0.309167

Table 6: Pα of Distance metrics

noted that viruses belonging to the coronavirus family cluster close together

as do viruses belonging to the HIV family. We expect this as these viruses

are more closely related than say HTLV or Dengue. In fact, SARS COV

and SARS COV2 show a distance measure of almost 0 as their clusters are

overlapping. Other measures such as Shannon entropy and CGR Centroid

Bisection which have the lowest correlation with Uδ, Pα = 0.309167 and

0.48301 respectively, show a lack of separation between viral groups in their

MDS charts.
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Figure 38: 2D MDS of S2 and J(x,y)

Figure 37: 2D MDS of 2mer AAF and GFCGR
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Figure 39: 2D MDS of Pearson Correlation, CGR Centroid, and CGR Cen-
troid Bisection
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Figure 40: 3D MDS of 2mer AAF and GFCGR

Figure 41: 3D MDS of S2 and J(x,y)
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Figure 42: 3D MDS of Pearson Correlation, CGR Centroid, and CGR Cen-
troid Bisection
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QNO98001.1 |Homo sapiens|Australia||2020-07-02

QPG00682.1 |Homo sapiens|USA|VA|2020-09

QPM28274.1 |Homo sapiens|Bahrain||2020-11-12

QPM28286.1 |Homo sapiens|Bahrain||2020-11-12

QQI07512.2 |Homo sapiens|Italy||2020-12-27

QPM28262.1 |Homo sapiens|Bahrain||2020-11-16

QPF21470.1 |Homo sapiens|USA|NM|2020-09-02

QPF58152.1 |Homo sapiens|Australia||2020-08-05

QPF58140.1 |Homo sapiens|Australia||2020-08-03

QHS34545.1 |Homo sapiens|India||2020-01-27

QPJ72410.1 |Homo sapiens|Turkey||2020-04

QHZ87591.1 |Homo sapiens|USA|CA|2020-01-27

QQJ95078.1 |Homo sapiens|USA|TX|2020-06-15

QPJ72422.1 |Homo sapiens|Turkey||2020-04

QPI70335.1 |Homo sapiens|Tunisia||2020-11-11

QPI70323.1 |Homo sapiens|Tunisia||2020-11-02

QPI70311.1 |Homo sapiens|Tunisia||2020-10-26

QPG83249.1 |Homo sapiens|USA|FL|2020-05-15

QPF49350.1 |Homo sapiens|Poland||2020-04-21

QPJ72398.1 |Homo sapiens|Turkey||2020-04

QPF49362.1 |Homo sapiens|Poland||2020-06-06

QPI71724.1 |Homo sapiens|China||2020-03-10

QIA98605.1 |Homo sapiens|Taiwan||2020-02-05

QHN73809.1 |Homo sapiens|China||2020-01-11

QIH45022.1 |Homo sapiens|China||2020-01-26

QIC53203.1 |Homo sapiens|Sweden||2020-02-07

QHO62876.1 |Homo sapiens|USA|IL|2020-01-21

QHZ00378.1 |Homo sapiens|South Korea||2020-01

QHR84448.1 |Homo sapiens|Australia||2020-01-25

QIB84672.1 |Homo sapiens|Nepal||2020-01-13

QHO60603.1 |Homo sapiens|USA||2020-01-19

QHD43415.1 |Homo sapiens|China||2019-12

QHU79171.2 |Homo sapiens|Finland||2020-01-29

BCB15089.1 |Homo sapiens|Japan||2020-01

QHN73794.1 |Homo sapiens|China||2020-01-10

QIA98553.1 |Homo sapiens|Italy||2020-01-30

QII57267.2 |Homo sapiens|USA||2020-02-24

QLG76455.1 |Homo sapiens|Australia||2020-06-19

QOU97164.1 |Homo sapiens|USA|CA|2020-03-15

QIG55993.1 |Homo sapiens|Brazil||2020-02-28

BCA87360.1 |Homo sapiens|||2020-02-10

QJR91771.1 |Homo sapiens|Australia||2020-03-27

QJR91795.1 |Homo sapiens|Australia||2020-03-29

BCN28299.1 |Homo sapiens|Japan||2020-08

BCN28311.1 |Homo sapiens|Japan||2020-08

QPI75812.1 |Homo sapiens|West Bank||2020-11-07

QPG02368.1 |Homo sapiens|West Bank||2020-11-07

QPG83261.1 |Homo sapiens|USA|FL|2020-05-18

QMJ01279.1 |Homo sapiens|Jordan||2020-03-30

QQJ95090.1 |Homo sapiens|USA|TX|2020-06-22

0.004

Figure 43: Phylogenetic Tree of SARS COV2 from NCBI website
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Figure 44: Phylogenetic Tree made using J(x,y)
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6 Conclusion

We set forth to accurately identify viral sequences and place them in their

respective groups. Several distance metrics were introduced for comparison

as well as a method of ranking these metrics. Our findings suggest that the

Kullback-Lieber Discrimination Information as well as the manhattan dis-

tance of 2mer AAF are best in clustering viruses into their respective groups.

This shows the importance of the frequency of 2mers in correctly identify-

ing viral sequences. Additional evidence of this is shown by the closeness in

the phylogenetic tree of SARS COV2 from NCBI and from J(x,y) figures 43,

44. Overall, we were able to distinguish between the viral groups as well as

cluster the sequences appropriately using our methods.

7 Future Works

Given our results, the next steps would be to further increase the size of the

datasets as well as look into other kmers lengths for amino acids. This would

allow for further testing into the impact of amino acid frequency. Another

aspect to look into is the grouping of viral sequences by geographical location

and also protein types. This would allow us to get an idea on how the virus

transfers from country to country in the world. Lastly, we would look at other

ways to verify the accuracy of the distance metrics and additional metrics

that could be used such as cosine distance.
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8 Pseudo-Code

Main Code

Loop through FASTA files of viral sequences
Get accession number and amino acid sequence of each strain from file
Call function to perform CGR and graph CGR
Call function to calculate CGR Centroid and CGR Centroid Bisection
Call function to calculate amino acid frequency
Call function to calculate GFCGR
Call function to calculate Shannon Entropy and J(x,y)

Table 7: Main Code

CGR Function

For each amino acid in a viral sequence

(xi+1, yi+1) = xi+Tx(i)
2

, yi+Ty(i)
2

where (Tx(i), Ty(i)) ∈ {(0, 1), (0, 0), (1, 1), (1, 0)}
and 0 ≤ i ≤ length of sequence
Append x and y values to a list
Set figure size to 18” x 18”
Graph x and y coordinates from CGR using scatter plot
Save CGR plot
Stop

Table 8: CGR Function
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CGR Centroid and CGR Centroid Bisection Function

For x,y coordinates in CGR
Cluster points into four quadrants of unit square
Calculate centroid for each quadrant as follows

Ck =
∑n

i=1 (ai(x),ai(y))

length of sequence

where (ai(x), ai(y)) are the x and y coordinates respectively in a cell
Draw rectangle using four vertices as well as draw diagonals of rectangle

Obtain BC(x) = C1+C4

2
asCGRCentroidBisection

Stop

Table 9: CGR Centroid and CGR Centroid Bisection Function

Amino Acid Frequency Function

Create Dictionary of all possible 2mers
For every 2 letters in viral sequence
Add 1 to count of 2mer present
Divide total for each 2mer by length of sequence
Stop

Table 10: AAF Function

GFCGR Function

For each quadrant of CGR
Count points in quadrant and divide by length of sequence
Stop

Table 11: GFCGR Function
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Shannon Entropy and J(x,y) Function

For each GFCGR

S2 =
∑k

i=1 pi ∗ log2(
1
pi

)

where pi are the frequencies of GFCGR
Stop
For each 2mer amino acid frequency

I(x,y) =
∑n

i=1 x(ai)log
x(ai)
y(ai)

where x and y are 2mer AAF
J(x,y) = I(x,y) + I(y,x)
Stop

Table 12: Shannon Entropy and J(x,y) Function
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