A mathematical model of the rear-trailed top harvester and an evaluation of its motion stability

J. Olt ${ }^{1, *}$, V. Bulgakov ${ }^{2}$, H. Beloev ${ }^{3}$, V. Nadykto ${ }^{4}$, Ye. Ihnatiev ${ }^{4}$, O. Dubrovina ${ }^{2}$ M. Arak ${ }^{1}$, M. Bondar ${ }^{2}$ and A. Kutsenko ${ }^{2}$
${ }^{1}$ Estonian University of Life Sciences, Institute of Technology, 56 Kreutzwaldi Str., EE 51006 Tartu, Estonia
${ }^{2}$ National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony Str., UA 03041 Kyiv, Ukraine
${ }^{3}$ University of Ruse "Angel Kanchev", 5, Studentska Str., BG 7017 Ruse, Bulgaria ${ }^{4}$ Dmytro Motornyi Tavria State Agrotechnological University, 18^{B} Khmelnytsky Ave, UA 72310 Melitopol, Zaporozhye Region, Ukraine
*Correspondence: jyri.olt@emu.ee

Received: October $7^{\text {th }}, 2021$; Accepted: December 10 th, 2021 ; Published: December $10^{\text {th }}, 2021$

Abstract

Improving the quality of sugar beet harvesting to a great extent depends on the first operation in the process, which involves cutting and harvesting sugar beet tops. This technological process is performed with the use of either the haulm harvesting modules of beet harvesters or top harvesting machines as separate agricultural implements, which are aggregated with a tractor. At the same time, front-mounted harvesters are as widely used as trailed asymmetric implements, in which case the aggregating tractor moves on the already harvested area of the field. The purpose of this work is to determine the optimal design and kinematic parameters that would improve the stability in the performance of the technological process of harvesting sugar beet tops by means of developing the basic theory of the plane-parallel motion performed by the rear-trailed asymmetric top harvester. As a result of the analytical study, an equivalent scheme has been composed, on the basis of which a new computational mathematical model has been developed for the plane-parallel motion of the asymmetric top harvester in the horizontal plane on the assumption that the connection between the wheeled tractor and the rear-trailed top harvester is made in the form of a cylindrical hinge joint. Using the results of mathematical modelling, the system of linear second-order differential equations that determines the transverse movement of the centre of mass of the aggregating wheeled tractor and the rotation of its longitudinal symmetry axis by a certain angle about the said centre of mass as well as the angle of deviation of the rear-trailed asymmetric top harvester from the longitudinal symmetry axis of the tractor at an arbitrary instant of time has been obtained. The solving of the obtained system of differential equations provides for determining the stability and controllability of the motion performed by the asymmetric machine-tractor unit, when it performs the technological process of harvesting sugar beet tops.

Key words: harvesting machine, plane-parallel motion, stability of movement, sugar beet tops.

INTRODUCTION

One of the current problems in the beet industry is the high-quality harvesting of the tops (Gruber, 2005; Sarec et al., 2009; Boson et al., 2019), which implies cutting and harvesting the green mass, which is used later, as completely as possible and cutting the root crowns without causing damage to or loss of root bodies (loss of sugar-bearing mass in case of sugar beets). This applies almost equally to the harvesting of sugar beets and fodder beets, carrots and other root crops, the parts of which are harvested separately first the tops are cut from the roots, then the roots are lifted from the soil (Bulgakov et al., 2017a). The technological process of haulm harvesting is carried out by either the harvesting modules of beet harvesters or top harvesting machines as separate agricultural implements aggregated with tractors, mostly row-crop tractors. Throughout the world, both front-mounted topping implements and trailed asymmetric top gathering machines are widely used, in the latter case the aggregating tractor moving on the already harvested section of the field. Such asymmetric units are especially widely used, when harvesting fodder beet tops Pogorely \& Tatyanko, 2004).

It should be noted that today trailed asymmetric agricultural machines are produced in the agricultural industries of many countries in the world and such asymmetric units are successfully used. This primarily applies to the units with trailed asymmetrically positioned harvesting machines, such as the mentioned machines for harvesting sugar and fodder beet tops, rotary windrowers, rotary mowers, trailed forage harvesters and the like (Boson et al., 2019).

While there is an acute need to perform the above-mentioned processes using the described design and it is necessary to ensure their high quality, asymmetric trailed harvesters have one significant disadvantage associated with the resulting unstable movement in the transverse-horizontal plane, which must be overcome in some way. The conditions of unstable movement of the aggregating tractor and the asymmetric harvester installed behind that arise in this case are due to the action of the turning moment produced by the external forces acting on the wheels and implements, when performing the given process (Bulgakov et al., 2020a).

The numerous scientific studies and subsequent engineering developments (Wang \& Zhang, 2013; Wu et al., 2013; Zhang et al., 2013; Gu et al., 2014) have made it possible to overcome this disadvantage by using various technical methods. Among the known ways to solve this problem there are two most widely used variants of aggregating asymmetric agricultural machines with aggregating tractors, which are able to provide the relatively stable movement of the unit. The first of them involves a rigid connection between the asymmetric machine and the aggregating tractor during their operation in the technological process. While this alternative provides, in general, the conditions for the stable movement of the asymmetric machine, the existing turning moment creates such conditions, under which the steer wheels of the aggregating tractor must constantly turn to the side opposite to the direction of the side slip. In this case, the controllability of such an asymmetric machine-tractor unit becomes much worse, which not only complicates the conditions of its operation, but can reduce the quality of the specified process overall (Vasilenko, 1996). The first option is most suitable for the operation of simple and light asymmetric machines, such as mowers with small working widths, with tractors of considerable weights.

In the second case, the connection between the rear-trailed asymmetric agricultural machine and the aggregating tractor, when performing the technological process, is provided by a cylindrical hinge, i.e. the conditions for the movement of the tractor and the machine relative to each other are created. Under these conditions, the controllability of the machine-tractor unit under consideration is significantly improved, but additional provisions are required to ensure that the aggregated asymmetric machine does not deviate in the horizontal plane in the process of its operational travelling under the action of the arising turning moment. That is, this method of aggregation is more effective, but it sets a problem of somehow reducing the generated turning-around moment or creating the conditions for its compensation by the 'moment of counteraction'.

Thus, there is an urgent need to find conditions for increasing the stability of motion of any asymmetric machine-tractor unit, and one of the ways is the theoretical research into its movement in the transverse-horizontal plane, i.e. its plane-parallel motion.

When conducting such theoretical research, it is necessary to remember that the stable movement and high-quality functioning of one or another asymmetric agricultural machine-tractor unit should be considered as its response to the input controlling and disturbing actions. In this case, the response of the machine-tractor unit to the controlling actions characterizes its controllability and the response to the disturbing actions - the stability of movement.

The authors have developed a new rotor-type top harvester, which can be used in the form of a front-mounted or rear-trailed aggregated machine. The design and process scheme of using the top harvesting machine hitched behind the aggregating wheeled tractor is presented in Fig. 1. Thus, the presented machine-tractor unit, in which harvesting machine (II) with a working width of 3 rows is asymmetrically attached to the aggregating wheeled tractor (I), is asymmetric.

Figure 1. Design and process scheme of asymmetric top harvesting unit in longitudinal-vertical plane: I - wheeled tractor; II - trailed asymmetric harvesting machine; 1 - frame; 2 - universaljoint drive; 3 -pneumatic support-and-finder wheel; 4-rotary haulm cutting device; 5 - conveying device; 6 - loading device.

In this case, the technological process of cutting the tops is carried out with the use of a rotary topping device (4), which performs the continuous cutting of the entire mass within the working width. In the process of work, the cutting device (4) is positioned relative to the crowns of root crops by means of two pneumatic support-and-finder
wheels (3), which move in the inter-row spacing. The cut-off green mass of the haulm is loaded with the use of an arc-shaped loading device (6) into the body of the vehicle moving on the harvested area of the beet field next to the harvester.

Thus, the search for the conditions that ensure the stable movement of this asymmetric top harvesting unit is an urgent and difficult task, the solution of which will significantly improve its technical and operational properties.

Many published works (Hac et al., 2008; Szakács, 2010; Yildiz, S. 2010; Demšar et al., 2012; Li et al, 2016; Anche \& Subramanian, 2018; Bulgakov et al., 2020a, 2020b) have been concerned with the research into the stability of the movement performed by trailed asymmetric agricultural machines as parts of various machine-tractor units, based on the generation of their analytical mathematical models. Most of these studies use the basic provisions from the classical theory of the stability of agricultural machine-tractor units in perturbed and unperturbed motion, which is analysed with the use of generated systems of differential equations of motion (Bulgakov et al., 2017b). In this case, the behavior of different machine-tractor units is considered, as a rule, in their plane-parallel motion together with the rear-trailed agricultural machine. Most of the above-mentioned known works are concerned with the research into the machine-tractor units that comprise a wheeled aggregating tractor and a rear-trailed rotary windrower.

Analytical studies on the asymmetric machine-tractor units that consist of a wheeled tractor and a rear-trailed top harvester have not been published until now. It should be noted that in such research it is necessary to take into account the properties of the elastically damping pneumatic tires on the aggregating tractor wheels and the forces arising at the points of contact between these wheels and the ground, which is deformed, as well as the design features of the trailed machine, its size and the external forces acting on the supporting wheels and tools of the machine, the generated traction resistance, the way the machine is attached to the rear hitch of the aggregating tractor, and so on.

The aim of the study was to determine the optimal kinematic and design parameters that will increase the stability of the technological process of harvesting sugar beet tops, basing on the development of the fundamentals for the theory of the plane-parallel motion performed by the rear-trailed asymmetric top harvester.

MATERIALS AND METHODS

The main provisions of the theory of plane-parallel motion performed by the asymmetric top harvesting machine-tractor unit will be considered by the example of an aggregating wheeled tractor, behind which a top harvesting machine is attached. The aggregating tractor moves along the harvested part of the sugar beet plantation, while the haulm harvesting machine, which is positioned to the right of the tractor, moves along the sugar beet crop area and cuts and collects the green mass of the haulm and loads it, through the loading device, into the body of the vehicle that moves next to the tractor (or scatters it on the field). The connection between the wheeled aggregating tractor and the specified haulm topper during the operation of this machine-tractor unit is provided by the vertical cylindrical hinge joint in the rear hitch device of the tractor.

Thus, this harvesting machine-tractor unit is asymmetric, because the top harvester trailed behind the aggregating tractor is offset to the right from its longitudinal axis.

For the analytical study of this machine-tractor unit, it is first necessary to generate its equivalent schematic model, considering the motion of all its points only in a plane parallel to the plane of the field surface. First of all, it should be noted at once that this asymmetric top harvesting machine-tractor unit is a complex dynamic system and due to its asymmetry its movement in the horizontal plane will certainly be unstable.

In addition, to study this movement, it is necessary to formalize some properties of such a machine-tractor unit and on the basis of that make some assumptions. These assumptions will not misrepresent the real process in any way, but will greatly simplify the analytical research. Namely, the main assumptions are as follows:

1. The surface of the field, on which this top harvesting unit moves, is horizontal, and therefore the heel and trim of this machine-tractor unit are neglected.
2. Wheeled aggregating tractor is presented in the form of a solid body having a longitudinal plane of symmetry, which passes through its centre of mass.
3. The oscillations of the traction resistance of the trailed top harvester do not have a significant effect on the speed of translational movement of this unit, as a result of which it is assumed in the first approximation to have a constant value.
4. Interaction between the pneumatic tires on the running wheels of the aggregating tractor and the support-and-finder wheels of the trailed top harvesting machine, on the one hand, and the soil surface, on the other hand, especially in lateral directions, completely corresponds to the so-called hypothesis of side slip applied to the pneumatic tires on the wheels.
5. As only small values of the gyroscopic and stabilizing moments acting on the pneumatic tires on the running wheels of the aggregating tractor and the support-andfinder wheels of the top harvester as well as the moments of their twisting about the vertical axes are observed during the movement of the given unit, they will be left out of consideration.
6. The slip angles of the pneumatic tires on the running wheels of the aggregating tractor, which are located on the same geometric axis, as well as the lateral forces acting on them, are assumed to be quite small.
7. The turn angles of the left and right steer wheels of the aggregating tractor are assumed to be small and equal to each other, because it is reasonable to consider the main movement of this top harvesting machine-tractor unit, when it performs the technological process of harvesting sugar beet tops, to be straight.

Theory and modelling

Taking into account the above-mentioned assumptions, the aggregating wheeled tractor in the equivalent scheme can be presented in an arbitrary position. In this case, its main points are selected and designated with the corresponding letters: the tractor's centre of mass - point S; the centre of the steer wheel axle - point A; the centre of the driving wheel axle - point B; the hitching point of the aggregated top harvester is designated by the point C. At the same time, the stub axles of the steer wheels of the aggregating tractor are included, because of their small size, in the total length of the front wheel axle.

Further, the systems of coordinate axes have to be chosen for this dynamic system and shown in the equivalent diagram with an aim of analysing its movements relative to these systems. First of all, the fixed Cartesian coordinate system XOYZ is rigidly connected to the surface of the beet field, which acts as the plane (the axis Z is not
shown), in which the plane-parallel motion of the machine-tractor unit takes place. The separate spatial system of coordinate axes $X_{T} S Y_{T} Z_{T}$ has its origin at the centre of mass of the aggregating tractor (point S). Its axis $S Y_{T}$ coincides with the longitudinal axis of the tractor, the axis $S X_{T}$ is directed normally to the right with respect to the direction of the tractor's movement, and axis $S Z_{T}$ is directed vertically upwards. For the direction of motion of the tractor's front steer wheels, the movable coordinate system $X_{A} A Y_{A}$ with its centre located at the point A is assigned. The axis $A Y_{A}$ always coincides with the direction of motion of the tractor's front steer wheels (parallel to the planes of these wheels), while the axis $A X_{A}$ is directed perpendicular to the axis $A Y_{A}$ and to the right with respect to the course of motion of the tractor.

It is also assumed, taking into account the previously made assumptions, that the aggregating wheeled tractor on its working run performs translational and uniform motion with the speed V_{o} relative to the stationary coordinate system $X O Y$. However, in the process of performing the work movement, under the influence of external random factors, the aggregating wheeled tractor deviates from its original position, receives an additional speed and begins its relative motion in the plane $X O Y$. In this case, the plane $Y_{T} S X_{T}$ associated with the centre of mass of the tractor rotates in the plane $X O Y$ around the vertical axis $S Z_{T}$ that passes through the point S. The angle φ formed by the longitudinal axis of symmetry of the wheeled tractor and the axis $O Y$ is the characteristic of this rotation.

During the relative motion of the tractor, its centre of mass moves along the axis $O X$, which is represented by the change in coordinate X_{S} (Fig. 2).

Thus, the wheeled aggregating

Figure 2. Equivalent scheme of asymmetric top harvesting machine-tractor unit. tractor has two degrees of freedom relative to the plane $X O Y$, namely: linear coordinate X_{S} and angular coordinate φ, which are further used as the generalized coordinates.

The next step is to show on the equivalent diagram the external forces acting on the wheeled aggregating tractor during its plane-parallel motion and determine their physical attributes. These forces are as follows. First of all, it is the driving force \bar{F}_{B}, which is generated by the rear two driving wheels of the tractor and can be applied at the point B.

The driving force \bar{F}_{B} forms the slip angle δ_{B} with the longitudinal axis of symmetry of the aggregating tractor. The tractor is also affected by the rolling resistance force $\bar{P}_{f A}$ generated by the two front steer wheels, applied at the point of intersection between their axis and the longitudinal axis $S Y_{T}$ (point A) and deflected from the direction of movement of the tractor's running gear through the slip angle δ_{A}. There are also lateral forces acting on the tractor from the two axles: $\bar{P}_{L A}$ and $\bar{P}_{L B}$ and applied respectively at points A and B. Finally, the draught resistance force $\bar{P}_{K R}$ is applied to the wheeled aggregating tractor by the top harvester at the point C and deflected from the longitudinal axis of the tractor, that is, from the axis $S Y_{T}$, through the angle β.

It should be noted at once that the main moment (i. e. the turning moment M_{t} relative to the point C) of all the external forces acting on the rear-trailed top harvester is not transferred to the aggregating tractor due to the hinge connection of the aggregated asymmetric machine at the point C.

As a result, the influence of the trailed asymmetric machine on the aggregating wheeled tractor is represented only by its traction resistance $\bar{P}_{K R}$ and the angle β of turn (deviation) in the horizontal plane.

Following the above considerations, there is the complete basis for generating the differential equations of the plane-parallel motion performed by the wheeled aggregating tractor. For that purpose, the original Lagrange equations of the second kind of the following form can be used (Dreizler \& Lüdde, 2010):

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T_{T}}{\partial \dot{q}_{i}}\right)-\frac{\partial T_{T}}{\partial q_{i}}=Q_{i} \tag{1}
\end{equation*}
$$

where T_{T} - kinetic energy of a wheeled aggregate tractor; q_{i} - generalized coordinates; $Q_{i}-$ generalized forces, according to the corresponding generalized coordinates q_{i}.

The kinetic energy T_{T} of the aggregate wheeled tractor relative to the horizontal plane $X O Y$ is defined as:

$$
\begin{equation*}
T_{T}=\frac{M_{T} \cdot V_{S}^{2}+J_{S} \cdot \omega_{T}^{2}}{2} \tag{2}
\end{equation*}
$$

where M_{T} - mass of the aggregate tractor; V_{S} - linear velocity of the center of mass of the tractor in the plane $X O Y ; J_{s}$ - the moment of inertia of the tractor relative to the vertical axis $S Z_{T} ; \omega_{T}$ - angular speed of rotation of the tractor around the axis $S Z_{T}$.

If we express linear V_{S} and angular ω_{T} velocity through generalized coordinates X_{S} and φ, we obtain:

$$
\begin{align*}
& V_{S}=\dot{X}_{S}, \tag{3}\\
& \omega_{T}=\dot{\varphi} . \tag{4}
\end{align*}
$$

Taking into account expressions (3) and (4), the kinetic energy T_{T} of the wheeled aggregate tractor can be determined as follows:

$$
\begin{equation*}
T_{T}=\frac{M_{T} \cdot \dot{X}_{S}^{2}+J_{S} \cdot \dot{\varphi}^{2}}{2} \tag{5}
\end{equation*}
$$

Since the kinetic energy T_{T} of the tractor due to expression (5) depends only on velocities \dot{X}_{S} and $\dot{\varphi}$ and does not depend on the most generalized coordinates q_{i}, the partial derivative will be:

$$
\begin{equation*}
\frac{\partial T_{T}}{\partial q_{i}}=0 \tag{6}
\end{equation*}
$$

At the same time, the partial derivatives of the velocities \dot{X}_{S} and $\dot{\varphi}$ the corresponding generalized coordinates \dot{X}_{S} and φ will be equal to:

$$
\begin{gather*}
\frac{\partial T_{T}}{\partial \dot{X}_{S}}=M_{T} \cdot \dot{X}_{S} \tag{7}\\
\frac{\partial T_{T}}{\partial \dot{\varphi}}=J_{S} \cdot \dot{\varphi} \tag{8}
\end{gather*}
$$

The time derivatives of expressions (7) and (8) are determined by the following expressions:

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial T_{T}}{\partial \dot{X}_{S}}\right)=M_{T} \cdot \ddot{X}_{S} \tag{9}\\
& \frac{d}{d t}\left(\frac{\partial T_{T}}{\partial \dot{\varphi}}\right)=J_{S} \cdot \ddot{\varphi} \tag{10}
\end{align*}
$$

Using the values obtained from expressions (9) and (10), taking into account expression (6) for the two generalized coordinates X_{S} and φ and substituting them into expression (1), we obtain the following system of differential equations for the planeparallel motion of the aggregate wheeled tractor in this form:

$$
\left.\begin{array}{l}
M_{T} \cdot \ddot{X}_{S}=Q_{X_{S}}, \tag{11}\\
J_{S} \cdot \ddot{\varphi}=Q_{\varphi} \cdot
\end{array}\right\}
$$

The next step is to determine the right-hand sides of the differential equations of system (11), i.e., the generalized forces: $Q_{X_{S}}$ and Q_{φ}.

First, the value of the generalized force $Q_{X_{S}}$ with reference to the generalized coordinate X_{S} has to be determined. For that purpose, the dynamical system under consideration is imparted a virtual displacement and the expression is generated for the elementary work of the forces on the virtual displacement δX_{S}. The result is as follows:

$$
\begin{align*}
& \delta A_{X_{S}}=P_{L A} \cdot \cos (\varphi+\alpha) \cdot \delta X_{S}-P_{f A} \cdot \sin \left(\varphi+\alpha-\delta_{A}\right) \cdot \delta X_{S}+ \tag{12}\\
& +P_{L B} \cdot \cos \varphi \cdot \delta X_{S}-F_{B} \sin \left(\delta_{B}-\varphi\right) \cdot \delta X_{S}-P_{K R} \cdot \sin (\varphi+\beta) \cdot \delta X_{S}
\end{align*}
$$

where α - the angle of rotation of the steered wheels of the tractor.
From expression (12) we obtain that the generalized force $Q_{X_{S}}$ on the generalized coordinate X_{S} will be:

$$
\begin{align*}
Q_{X_{S}}= & \frac{\delta A_{X_{S}}}{\delta X_{S}}=P_{L A} \cdot \cos (\varphi+\alpha)-P_{f A} \cdot \sin \left(\varphi+\alpha-\delta_{A}\right)+ \tag{13}\\
& +P_{L B} \cdot \cos \varphi-F_{B} \sin \left(\delta_{B}-\varphi\right)-P_{K R} \cdot \sin (\varphi+\beta)
\end{align*}
$$

Thus, this generalized force $Q_{X_{S}}$ is equal to the sum of the projections of all active external forces applied to the wheeled tractor on the axis $O X$.

In order to determine the generalized force Q_{φ} with reference to the generalized coordinate φ, again, a virtual displacement of the given dynamical system is assumed,
but this time an angular one, and the expression is generated for the elementary work of the forces on the virtual displacement $\delta \varphi$. The following is obtained:

$$
\begin{align*}
& \delta A_{\varphi}=P_{L A} \cdot\left(L-a_{T}\right) \cos \alpha \cdot \delta \varphi-P_{f A} \cdot\left(L-a_{T}\right) \sin \left(\alpha-\delta_{A}\right) \cdot \delta \varphi- \\
& -P_{L B} \cdot a_{T} \cdot \delta \varphi+F_{B} \cdot a_{T} \sin \delta_{B} \cdot \delta \varphi+P_{K R} \cdot\left(a_{T}+a_{M}\right) \sin \beta \cdot \delta \varphi . \tag{14}
\end{align*}
$$

From expression (14), it is derived that the generalized force Q_{φ} with reference to the generalized angular coordinate φ will be:

$$
\begin{align*}
& Q_{\varphi}=\frac{\delta A_{\varphi}}{\delta \varphi}=P_{L A} \cdot\left(L-a_{T}\right) \cos \alpha-P_{f A} \cdot\left(L-a_{T}\right) \sin \left(\alpha-\delta_{A}\right)- \tag{15}\\
& -P_{L B} \cdot a_{T}+F_{B} \cdot a_{T} \sin \delta_{B}+P_{K R} \cdot\left(a_{T}+a_{M}\right) \sin \beta .
\end{align*}
$$

That is, the generalized force Q_{φ} on the generalized coordinate φ is equal to the algebraic sum of the moments of all external forces relative to the point S.

Let us further analyze obtained expressions (13) and (15) for generalized forces $Q_{X_{S}}$ and Q_{φ} and find possibilities for their simplification. These expressions can be simplified because for small angles the value of cosines can be approximately considered as equal to unities, and the value of sines can be considered as equal to the most angles.

Therefore, expression (13) can be represented as follows:

$$
\begin{equation*}
Q_{X_{S}}=P_{L A}-P_{f A}\left(\varphi+\alpha-\delta_{A}\right)+P_{L B}-F_{B}\left(\delta_{B}-\varphi\right)-P_{K R}(\varphi+\beta), \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{X_{S}}=P_{L A}+P_{L B}-P_{f A} \alpha+P_{f A} \delta_{A}-F_{B} \delta_{B}+\left(F_{B}-P_{f A}-P_{K R}\right) \varphi-P_{K R} \beta \tag{17}
\end{equation*}
$$

Given that $F_{B}-F_{f 4}-P_{K R}=0$, then in the final form we obtain an expression for determining the generalized force $Q_{X_{S}}$ of the following form:

$$
\begin{equation*}
Q_{X_{S}}=P_{L A}+P_{L B}-P_{f A} \alpha+P_{f A} \delta_{A}-F_{B} \delta_{B}-P_{K R} \beta . \tag{18}
\end{equation*}
$$

Let us perform similar transformations for expression (15), taking into account small values of angles α and β. Finally, we obtain an expression for the generalized force Q_{φ} of the following form:

$$
\begin{align*}
Q_{\varphi}= & P_{L A}\left(L-a_{T}\right)-P_{f A} \cdot \alpha\left(L-a_{T}\right)-P_{L B} \cdot a_{T}+P_{f A} \cdot \delta_{A}\left(L-a_{T}\right)+ \\
& +F_{B} \cdot \delta_{B} \cdot a_{T}+P_{K R} \cdot \beta\left(a_{T}+a_{M}\right) . \tag{19}
\end{align*}
$$

Forces $P_{L A}$ and $P_{L B}$, which are included in dependencies (18) and (19), can be replaced by expressions formed on the basis of the so-called hypothesis of 'lateral input' of pneumatic wheel tires (Macmillan, 2002; Kutkov, 2014; Abyzov \& Berezin, 2018) of this form:

$$
\begin{align*}
& P_{L A}=k_{A} \cdot \delta_{A}, \tag{20}\\
& P_{L B}=k_{B} \cdot \delta_{B}, \tag{21}
\end{align*}
$$

where k_{A}, k_{B} - coefficients of lateral input of pneumatic tires of running wheels of the aggregating wheeled tractor.

In expressions (20) and (21) it is necessary to substitute the values of the input angles δ_{A} and δ_{B}, which are determined on the basis of the construction of velocity plans of points A and B, that is, the middle of the front (controlled) and rear (traction) axles of the aggregate tractor at their plane and parallel motion in the horizontal plane XOY .

Using the technique outlined in (Hwang et al., 2021), we constructed the above velocity plans, allowed us to graphically find the values of velocities V_{A} and V_{B}, then through their projections on the axes X and Y, as well as the corresponding tangents of angles and based on the neglect of small quantities, find the angles themselves δ_{A} and δ_{B}. As a result, the final expressions for the lateral forces $P_{L A}$ and $P_{L B}$ of this type:

$$
\begin{gather*}
P_{L A}=k_{A} \cdot\left[\frac{-\dot{X}_{S}-\left(L-a_{T}\right) \dot{\varphi}}{V_{o}}+\varphi+\alpha\right], \tag{22}\\
P_{L B}=k_{B} \cdot\left[-\frac{\dot{X}_{S}-a_{T} \cdot \dot{\varphi}}{V_{o}}+\varphi\right] . \tag{23}
\end{gather*}
$$

To determine the position of the supporting copying wheels of the topper at an arbitrary moment of time, consider its diagram separately and show on it a movable coordinate system $Y_{K} C_{1} X_{K}$, rigidly connected with the left supporting copying wheel of the topper (Fig. 3). The axis $C_{1} Y_{K}$ is always parallel to the plane $C_{1} X_{K}$ of the support wheel, but perpendicular to it and pointing to the right in the direction of the mower harvester's movement. These directions of movement for the right support wheels of the hitch machine in the first approximation can be considered similar. However, the moving coordinate system is not shown here.

Figure 3. Equivalent diagram of an aggregated harvester.
As presented, the trailed harvester as a dynamic system can be regarded as a physical pendulum with only one degree of freedom - the angle β of rotation in the horizontal plane. This angle β of rotation will be the generalized coordinate in the subsequent differential equations in the form of the original Lagrange equations of dynamics of the form (1).

Let us define in this case the components necessary for expression (1). Thus, the kinetic energy T_{H} of the aggregated harvesting machine will be:

$$
\begin{equation*}
T_{H}=\frac{J_{C} \cdot \dot{\beta}^{2}}{2}, \tag{24}
\end{equation*}
$$

where $J_{C}-$ the moment of inertia of the hitch harvester relative to the vertical axis passing through the point $C ; \dot{\beta}$ - the angular velocity of rotation of the harvesting machine around the point C.

In this case, the necessary partial derivatives included in the original Lagrange equations of the second kind (1) are from the following expressions:

$$
\begin{gather*}
\frac{\partial T_{H}}{\partial \dot{\beta}}=J_{C} \cdot \dot{\beta}, \tag{25}\\
\frac{\partial T_{H}}{\partial \beta}=0, \tag{26}\\
\frac{d}{d t}\left(\frac{\partial T_{H}}{\partial \dot{\beta}}\right)=J_{C} \cdot \ddot{\beta} . \tag{27}
\end{gather*}
$$

Given expressions (22) and (23), the differential equation of motion of a trailed harvester will look like this:

$$
\begin{equation*}
J_{C} \cdot \ddot{\beta}=Q_{\beta} \tag{28}
\end{equation*}
$$

To determine the generalized force Q_{β}, included in expression (28), let us denote the external forces acting on the trailed harvester. External forces acting on the harvester during its technological process include longitudinal \bar{R}_{l} and transverse \bar{R}_{d} ' components of the resistance force \bar{R} of the harvested haulm array, which are applied to the machine at a point $C_{o} ; \bar{P}_{f 1}$ rolling resistance force of the left copying wheel of the harvester, applied at a point C_{1} and deflected from the wheel plane at the entry angle $\delta_{1} ; \bar{P}_{f 2}-$ rolling resistance force of the right copying wheel of the tillage machine applied at the point C_{2} and deflected from the wheel plane by the entry angle δ_{2}; lateral forces $\bar{P}_{L 1}$ and $\bar{P}_{L 2}$, applied according to the left and right copying wheels of the tillage machine at the points C_{1} and C_{2}.

To determine the generalized force Q_{β} by coordinate β let us use the expression for the elementary work of forces on a possible displacement $\delta \beta$. Then:

$$
\begin{align*}
\delta A_{\beta} & =R_{l} \cdot d \cdot \delta \beta-R_{d}\left(l-d_{M}\right) \cdot \delta \beta+P_{f 1} \cos \left(\alpha_{1}-\delta_{1}\right) \cdot h \cdot \delta \beta+ \\
& +P_{f 2} \cdot \cos \left(\alpha_{2}-\delta_{2}\right) \cdot b \cdot \delta \beta+P_{f 1} \sin \left(\alpha_{1}-\delta_{1}\right) \cdot l \cdot \delta \beta+ \\
& +P_{f 2} \cdot \sin \left(\alpha_{2}-\delta_{2}\right) \cdot l \cdot \delta \beta-P_{L 1} \cdot \cos \alpha_{1} \cdot l \cdot \delta \beta- \tag{29}\\
& -P_{L 2} \cdot \cos \alpha_{2} \cdot l \cdot \delta \beta+P_{L 1} \cdot \sin \alpha_{1} \cdot h \cdot \delta \beta+P_{L 2} \cdot \sin \alpha_{2} \cdot b \cdot \delta \beta
\end{align*}
$$

where d, l, d_{M}, h and b - construction parameters of the harvesting machine (Fig. 3); a_{1} and a_{2} - the angles of the left and right gauge wheels of the harvester respectively.

From expression (29) we obtain that the generalized force Q_{β} on the generalized angular coordinate β will be equal to:

$$
\begin{align*}
Q_{\beta}= & \frac{\delta A_{\beta}}{\delta \beta}=R_{l} \cdot d-R_{d}\left(l-d_{M}\right)+P_{f 1} \cos \left(\alpha_{1}-\delta_{1}\right) \cdot h+ \\
& +P_{f 2} \cdot \cos \left(\alpha_{2}-\delta_{2}\right) \cdot b+P_{f 1} \sin \left(\alpha_{1}-\delta_{1}\right) \cdot l+ \tag{30}\\
& +P_{f 2} \cdot \sin \left(\alpha_{2}-\delta_{2}\right) \cdot l-P_{L 1} \cdot \cos \alpha_{1} \cdot l- \\
& -P_{L 2} \cdot \cos \alpha_{2} \cdot l+P_{L 1} \cdot \sin \alpha_{1} \cdot h+P_{L 2} \cdot \sin \alpha_{2} \cdot b .
\end{align*}
$$

Analysing the obtained expression (30). As in the previous case, the cosines of small angles can be replaced by units, and the sines by the angles themselves. Moreover, if we take into account the small values of angles a_{1} and a_{2}, then expression (30) can be presented in the following form:

$$
\begin{align*}
Q_{\beta}= & R_{l} \cdot d-R_{d}\left(l-d_{M}\right)+P_{f 1} \cdot h+P_{f 2} \cdot b+P_{f 1} \cdot l\left(\alpha_{1}-\delta_{1}\right)+ \\
& +P_{f 2} \cdot l\left(\alpha_{2}-\delta_{2}\right)-P_{L 1} \cdot l-P_{L 2} \cdot l+P_{L 1} \cdot \alpha_{1} \cdot h+P_{L 2} \cdot \alpha_{2} \cdot b \tag{31}
\end{align*}
$$

Moreover, from Fig. 3 it is clear that $R_{d}=R_{l} \cdot \tan \beta$. And since the value of the angle β is small $\tan \beta \approx \beta$, and therefore:

$$
\begin{equation*}
R_{d}=R_{l} \cdot \beta \tag{32}
\end{equation*}
$$

As in the case of an aggregate wheeled tractor, the lateral forces $P_{L 1}$ and $P_{L 2}$, acting on the supporting copying wheels of the tiller can be replaced by expressions formed on the basis of the hypothesis of 'lateral input' of its pneumatic wheel tires. Namely:

$$
\begin{gather*}
P_{L 1}=k_{1} \cdot \delta_{1} \tag{33}\\
P_{L 2}=k_{2} \cdot \delta_{2} \tag{34}
\end{gather*}
$$

where k_{1}, k_{2} - coefficients of lateral input of pneumatic tires of basic copying wheels of the harvesting machine; δ_{1}, δ_{2} - angles of input of pneumatic basic copying wheels of the harvesting machine.

As in the previous case, to determine the lateral forces $P_{L 1}$ and $P_{L 2}$ need to find the input angles δ_{1}, δ_{2} respectively the left and right supporting coping wheels of the harvester. For this purpose, we constructed velocity plans for finding the velocities of points C_{1} and C_{2}, their projections on the axes X and Y taking into account the tangents of the angles and neglecting the small values. As a result, we found the final expressions for these input angles of this form:

$$
\begin{align*}
& \delta_{1}=\frac{-\dot{X}_{S}+\dot{\varphi}\left(a_{T}+a_{M}\right)+\dot{\beta}\left(l^{2}+h^{2}\right)^{\frac{1}{2}}}{V_{o}}+\varphi+\beta+\alpha_{1} \tag{35}\\
& \delta_{2}=\frac{-\dot{X}_{S}+\dot{\varphi}\left(a_{T}+a_{M}\right)+\dot{\beta}\left(l^{2}+b^{2}\right)^{\frac{1}{2}}}{V_{o}}+\varphi+\beta+\alpha_{2} \tag{36}
\end{align*}
$$

If we substitute the values of expressions (35) and (36) in expressions (33) and (34), it is possible to obtain the value of lateral forces $P_{L 1}$ and $P_{L 2}$, taking into account the input angles δ_{1} and δ_{2}, which can then be used to find the generalized force Q_{β}.

Now, given expressions (33), (34), which are transformed with expressions (35) and (36), the generalized force Q_{β}, due to expression (31) can be represented by the following expression:

$$
\begin{align*}
Q_{\beta}= & R_{l} \cdot d-R_{d}\left(l-d_{M}\right) \beta+P_{f 1} \cdot h+P_{f 2} \cdot b+P_{f 1} \cdot l\left(\alpha_{1}-\delta_{1}\right)+ \\
& +P_{f 2} \cdot l\left(\alpha_{2}-\delta_{2}\right)-k_{1} \cdot \delta_{1} \cdot l-k_{2} \cdot \delta_{2} \cdot l+k_{1} \cdot \delta_{1} \cdot \alpha_{1} \cdot h+k_{2} \cdot \delta_{2} \cdot \alpha_{2} \cdot b \tag{37}
\end{align*}
$$

If we consider that the product of two small quantities is even smaller, the sum of the last two terms ($k_{1} \cdot \delta_{1} \cdot \alpha_{1} \cdot h$) $+\left(k_{2} \cdot \delta_{2} \cdot \alpha_{2} \cdot b\right)$ in expression (37) can be neglected. In this case we have:

$$
\begin{align*}
Q_{\beta}= & R_{l}\left[d-\left(l-d_{M}\right) \beta\right]+P_{f 1}\left[h+\left(\alpha_{1}-\delta_{1}\right) \cdot l\right]+ \\
& +P_{f 2}\left[b+\left(\alpha_{2}-\delta_{2}\right) \cdot l\right]-k_{1} \cdot \delta_{1} \cdot l-k_{2} \cdot \delta_{2} \cdot l \tag{38}
\end{align*}
$$

If we now take into account all of the last expressions, we get the final value for the generalized force Q_{β} of the trailed harvester in the following form:

$$
\begin{align*}
& Q_{\beta}=R_{l}\left[d-\left(l-d_{M}\right) \beta\right]+ \\
& +P_{f 1}\left\{h+\left(\alpha_{1}-\left[\frac{-\dot{X}_{S}+\dot{\varphi}\left(a_{T}+a_{M}\right)+\dot{\beta}\left(l^{2}+h^{2}\right)^{\frac{1}{2}}}{V_{o}}+\varphi+\beta+\alpha_{1}\right]\right) \cdot l\right\}+ \\
& +P_{f 2}\left\{b+\left(\alpha_{2}-\left[\frac{-\dot{X}_{S}+\dot{\varphi}\left(a_{T}+a_{M}\right)+\dot{\beta}\left(l^{2}+b^{2}\right)^{\frac{1}{2}}}{V_{o}}+\varphi+\beta+\alpha_{2}\right]\right) \cdot l\right\}- \tag{39}\\
& -k_{1} \cdot l\left[\frac{-\dot{X}_{S}+\dot{\varphi}\left(a_{T}+a_{M}\right)+\dot{\beta}\left(l^{2}+h^{2}\right)^{\frac{1}{2}}}{V_{o}}+\varphi+\beta+\alpha_{1}\right]- \\
& -k_{2} \cdot l\left[\frac{-\dot{X}_{S}+\dot{\varphi}\left(a_{T}+a_{M}\right)+\dot{\beta}\left(l^{2}+b^{2}\right)^{\frac{1}{2}}}{V_{o}}+\varphi+\beta+\alpha_{2}\right] .
\end{align*}
$$

Substituting expressions (18), (19) and (39) for generalized forces $Q_{X_{s}}, Q_{\varphi}$ and Q_{β} taking into account expressions (22) and (23), which should be substituted into expressions (11) and (28) respectively, and discarding terms of higher order of smallness, after a number of transformations we obtain a system of second order linear differential equations describing the motion of an asymmetric machine-tractor unit in the horizontal plane:

$$
\left.\begin{array}{l}
A_{11} \cdot \ddot{X}_{S}+A_{12} \cdot \dot{X}_{S}+A_{13} \cdot \dot{\varphi}+A_{14} \cdot \varphi+A_{15} \cdot \beta=f_{11} \cdot \alpha \tag{40}\\
A_{21} \cdot \ddot{\varphi}+A_{22} \cdot \dot{\varphi}+A_{23} \cdot \varphi+A_{24} \cdot \dot{X}_{S}+A_{25} \cdot \beta=f_{21} \cdot \alpha \\
A_{31} \cdot \ddot{\beta}+A_{32} \cdot \dot{\beta}+A_{33} \cdot \beta+A_{34} \cdot \dot{\varphi}+A_{35} \cdot \varphi+A_{36} \cdot \dot{X}_{S}=f_{31},
\end{array}\right\}
$$

where $A_{11}=M_{T}$;

$$
\begin{aligned}
& A_{12}=\frac{k_{A}+k_{B}+P_{f A}-F_{B}}{V_{o}} ; \\
& A_{13}=\frac{\left(k_{A}+P_{f A}\right) \cdot\left(L-\alpha_{T}\right)+\left(F_{B}-k_{B}\right) \cdot \alpha_{T}}{V_{o}} ; \\
& A_{14}=F_{B}-k_{A}-k_{B}-P_{f A} ; \\
& A_{15}=P_{K R} ; \\
& A_{21}=J_{S} ;
\end{aligned}
$$

$$
\begin{aligned}
& A_{22}=\frac{\left(k_{A}+P_{f A}\right) \cdot\left(L-\alpha_{T}\right)^{2}+\left(k_{B}-F_{B}\right) \cdot \alpha_{T}^{2}}{V_{o}} ; \\
& A_{23}=-A_{13} \cdot V_{o} ; \\
& A_{24}=A_{13} ; \\
& A_{25}=P_{R R}\left(\alpha_{T}+\alpha_{M}\right) ; \\
& A_{31}=J_{c} ; \\
& A_{32}=\frac{l \cdot\left[\left(k_{1}+P_{f 1}\right) \cdot\left(l^{2}+h^{2}\right)^{\frac{1}{2}}+\left(k_{2}+P_{f 2}\right) \cdot\left(l^{2}+b^{2}\right)^{\frac{1}{2}}\right]}{V_{o}} ; \\
& A_{33}=R_{l}\left(l-d_{M}\right)+l\left(k_{1}+k_{2}+P_{f 1}+P_{f 2}\right) ; \\
& A_{34}=\frac{l \cdot\left(\alpha_{T}+\alpha_{M}\right) \cdot\left(k_{1}+k_{2}+P_{f 1}+P_{f 2}\right)}{V_{o}} ; \\
& A_{35}=l\left(k_{1}+k_{2}+P_{f 1}+P_{f 2}\right) ; \\
& A_{36}=\frac{A_{35}}{V_{o}} ; \\
& f_{11}=k_{A} ; \\
& f_{21}=\left(L-\alpha_{T}\right) \cdot k_{A} ; \\
& f_{31}=R_{l} \cdot d+P_{f 1} \cdot h+P_{f 2} \cdot b-\alpha_{1} \cdot l \cdot k_{1}-\alpha_{2} \cdot l \cdot k_{2} .
\end{aligned}
$$

RESULTS AND DISCUSSION

The obtained mathematical model (40) is the basis for studying the influence of the rotation angle β of the trailed tillage machine on the oscillations of the course angle φ of the tractor, by constructing the amplitude-frequency and phase-frequency characteristics. It is known (David et al., 2009) that the amplitude-frequency response should be as small as possible when the dynamic system works out any perturbation. Ideally, it should be equal to zero. At the same time, the phase-frequency shift (i. e., the delay of the response of the dynamic system to the disturbing influence) should be as large as possible. As a result, the desired amplitude-frequency characteristics should be equal to 0 , while the phase-frequency characteristics, on the contrary, should tend to 0 when the dynamic system is working out the perturbation ∞.

Those parameters and modes of operation of the investigated asymmetric machinetractor unit, which in the working range of oscillations of controlling and disturbing input influences maximally approximate the actual amplitude-frequency and phase-frequency characteristics to the desired ones - will therefore be considered optimal.

To perform numerical calculations of differential equations (40) on the computer, a program was developed. Methodology of practical use of obtained mathematical model (40) is considered on example of analysis of stability of motion in horizontal plane of asymmetric machine-tractor unit developed by us with the following construction parameters: $M_{T}=4,250 \mathrm{~kg}, J_{S}=4.6 \mathrm{kN} \mathrm{m} \mathrm{s}{ }^{2}, P_{K R}=7.3 \mathrm{kN}, P_{F A}=1.7 \mathrm{kN}, L=2.45 \mathrm{~m}$, $\alpha_{T}=0.98 \mathrm{~m} ; \alpha_{M}=1.20 \mathrm{~m} ; k_{A}=80 \mathrm{kN} \mathrm{rad}{ }^{-1}, k_{B}=120 \mathrm{kN} \mathrm{rad}^{-1}$.

It should be noted at once that we used for aggregation of the asymmetric mower harvester the power tool of the integral scheme, in which about 60% of the weight is on the front axle, and the rest (40%) - on the rear axle. The driving wheels of both axles in this case, as a rule, are active-primitive and equipped with pneumatic tires of the same size. In this case, the wheels of the front and rear axles of the aggregate tractor are
equipped with the same pneumatic tires of size 16.9 R 30 . At air pressure in pneumatic tires equal to 130 kPa coefficient k_{A} of input resistance of front wheels is $120 \mathrm{kN} \mathrm{rad}^{-1}$. The air pressure in the pneumatic tires of the rear engines is 100 kPa , which corresponds to the value of a similar coefficient k_{B}, equal to $90 \mathrm{kN} \mathrm{rad}^{-1}$.

As a result of these numerical calculations on the PC of the obtained mathematical model, we plotted the amplitude and phase frequency characteristics, which allow us to estimate the stability of the working motion of the asymmetric machine-tractor unit (Fig. 4 and Fig 5).

On the basis of the obtained graphical dependencies, we will analyze how some construction and technological factors of the given harvester machine affect the amplitude and phase frequency characteristics of oscillations of the course angle φ of the wheel tractor when changing the frequency of oscillations of the angle β of deviation of the trailed harvester in the horizontal plane.

First, we consider the influence of the translational velocity V_{o} of a given harvesting machine. The analysis of the obtained amplitude-frequency characteristics testifies to the following. First, as the frequency of the disturbing oscillations (i.e., the angle β) increases, the amplification factor of the considered dynamic system of this input effect at each speed mode of motion of the harvesting machine gradually decreases (Fig. 4).

There is every reason to believe that this result is logical, since the greater the frequency of oscillations of perturbation ω, the greater the stabilizing role played by the inertial properties of the dynamic system,

Figure 4. Amplitude-frequency characteristic of the course angle φ of the tractor of the integral configuration when it works out disturbances in the form of oscillations of the turn angle β of the mower harvester at different speeds of the machine: 1) $V_{o}=1.5 \mathrm{~m} \mathrm{~s}^{-1}$; 2) $V_{o}=2.0 \mathrm{~m} \mathrm{~s}^{-1}$; 3) $V_{o}=2.5 \mathrm{~m} \mathrm{~s}^{-1}$. which is considered.

Secondly, with the increase of speed V_{o} of the harvesting machine movement, it becomes more sensitive to perturbing influences. For example, at frequency of oscillations of the angle β at a level $\omega=4 \mathrm{~s}^{-1}$ and speed of machine movement $1.5 \mathrm{~m} \mathrm{~s}^{-1}$ its amplitude-frequency characteristic makes 0.09 (curve 1, Fig. 4). In simplified to understand form, this means that for the vibration amplitude of the perturbation (angle β) at 5° (and this is palpable) the vibration amplitude of the course angle φ of the aggregate tractor is only 0.5°, which is almost imperceptible.

At a speed V_{o} of movement of the harvesting machine at the level of $2.5 \mathrm{~m} \mathrm{~s}^{-1}$ and the same frequency of vibration perturbation $\omega=4 \mathrm{~s}^{-1}$ the amplitude-frequency characteristic of the dynamic system increases to a mark 0.15 (curve 3, Fig. 4). Compared with the previous velocity mode (when the amplitude-frequency response is equal to 0.09) this is almost 1.5 times greater. However, by the same amplitude of
oscillations of the angle $\beta=5^{\circ}$ the amplitude of oscillations of the course angle of the tractor φ does not exceed 0.7°.

Thus, at a speed of $2.5 \mathrm{~m} \mathrm{~s}^{-1}$ in a range of vibration frequency of disturbing influences (angle β fluctuations) $\omega=0-10 \mathrm{~s}^{-1}$ the amplitude-frequency characteristic of the given machine-tractor at application of the integral aggregate tractor changes already in a range $0.163-0.152$ (curve 3, Fig. 4).

As we see, in qualitative terms, an increase in the speed V_{o} of the machine-tractor unit under consideration leads to an undesirable increase in the amplitude-frequency response when it reproduces the external disturbing influence in the form of oscillations of the angle β of rotation of the harvester. In quantitative terms, this influence is such that it cannot worsen the practical stability of motion of the given harvesting machine.

Now, as for the delayed response of the considered dynamic system to the disturbing influence. Under the condition of increasing its frequency, the phase-frequency response at each speed mode of the machine-tractor unit movement increases (Fig. 5).

That is, the greater the value of the perturbation frequency ω, the more influential are the inertial properties of the unit and the greater is its delay (in this case, the phase shift) to the action of perturbing influences. The same inertial properties of the tillage machine are also responsible for the fact that its

Figure 5. Phase-frequency characteristic of the course angle φ of the tractor of the integral configuration when it works out disturbances in the form of oscillations of the tiller turning angle β at different speeds of the machine: 1) $V_{o}=1.5 \mathrm{~m} \mathrm{~s}^{-1}$; 2) $V_{o}=2.0 \mathrm{~m} \mathrm{~s}^{-1}$; 3) $V_{o}=2.5 \mathrm{~m} \mathrm{~s}^{-1}$. reaction time to disturbances increases as its speed V_{o} increases. So, if at $V_{\mathrm{o}}=1.5 \mathrm{~m} \mathrm{~s}^{-1}$ and $\omega=10 \mathrm{~s}^{-1}$ the phase shift of dynamic system (i.e. phase-frequency characteristic) makes - 15° (curve 1, Fig. 5), then already at speed $V_{0}=2.5 \mathrm{~m} \mathrm{~s}^{-1}$ and at the same frequency ω this parameter increases to a mark -25° (curve 3, Fig. 5). The phase shift difference in this case is 10° or 0.17 rad .

CONCLUSIONS

1. Using the developed equivalent scheme (Fig. 2) of motion of an asymmetric harvesting machine-tractor unit, a new calculated mathematical model of its planeparallel motion in the horizontal plane is constructed.
2. A new system of linear differential equations (40) of the second order is obtained, which describes the dynamics of the transverse displacement of the center of mass of the aggregate wheeled tractor, its course angle, and the angle of deviation of the trailed hitch from the longitudinal axis of the tractor at any time.
3. The obtained system of differential equations (40) after its solution on the PC made it possible to establish the stability and controllability of the movement of the asymmetric harvesting machine-tractor unit when performing the technological process of harvesting sugar beet tops.

REFERENCES

Abyzov, A.A. \& Berezin, I.Ya. 2018. Calculating curvilinear motion of transport vehicles based on a finite element modeling of track-ground interaction. Buletin of the South Ural University. Series: Mechanical Ingineering Industry 18(4). doi: 10.14529/engin 180408
Anche, M. \& Subramanian, C., 2018. Model Based Compensator Design for Pitch Plane Stability of a Farm Tractor with Implement. IFAC-PapersOnLine 51, 208-213. https://doi.org/10.1016/j.ifacol.2018.05.043
Boson, E.S., Verniaev, O.V., Smirnov, I.I. \& Sultan-Shach, E.G. 2019. Theory, Construction and Calculation of Agricultural Machines. $2^{\text {nd }}$ Ed., Scientific Publisher, 810 pp . ISBN: 9789388399838
Bulgakov, V., Adamchuk, V., Arak, M. \& Olt, J. 2017a. A theoretical study of haulm loss resulting from rotor topper oscillation. Chemical Engineering Transactions 58, 223-228. doi: 10.3303/CET1758038.
Bulgakov, V., Adamchuk, V., Nadykto, V., Kistechok, O. \& Olt, J. 2017b. Theoretical research into the stability of motion of the ploughing tractor-implement unit operating on the "pushpull" principle. Agronomy Research 15(4), 1517-1529. doi: 10.15159/AR.17.069
Bulgakov, V., Holovach, I., Nadykto, V., Parakhin, O., Kaletnik, N., Shymko, L. \& Olt, J. 2020 a. Motion stability estimation for modular traction vehicle-based combined unit. Agronomy Research 18(4), 2340-2352. doi: 10.15159/AR.20.183
Bulgakov, V., Kuvachov, V. \& Olt, J. 2020b. Theory of smoothness of movement of multipleaxle agricultural combined tractor-implement units, Proceedings of the 31 $3{ }^{\text {st }}$ DAAAM International Symposium, pp. 0056-0065, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-29-7, ISSN 1726-9679, Vienna, Austria. doi: $10.2507 / 31$ st.daaam.proceedings. 008
Demšar, I., Bernik, R. \& Duhovnik, J., 2012. A Mathematical Model and Numerical Simulation of the Static Stability of a Tractor. Agric. Conspec. Sci. 77, 143-150.
Dreizler, R.M. \& Lüdde, C.S. 2010. Theoretical Mechanics. Springer, 402 pp. doi: 10.1007/978-3-642-11138-9
Gruber, W. 2005. Trends in sugar beet harvesting. Landtechnik 60(6), 320-321.
Gu F., Hu Z., Wu H., Peng B., Gao X. \& Wang S. 2014. Development and experiment of 4LT-A staggered-dig sugar beet combine. Nongye Gongcheng uebao/Transactions of the Chinese Society of Agricultural Engineering 30(23), 1-9.
David, M.-F., Voicu, G., David, L. \& Rusanescu, C.-O. 2009. Experimental analysis considered the dynamics of mobiles agricultural aggregates. Bulletin UASVM Agriculture 66(1), 51-58. doi: 10.15835/buasvmen-agr:3727
Hac, A., Fulk, D. \& Chen, H., 2008. Stability and Control Considerations of Vehicle-Trailer Combination. SAE Int. J. Passeng. Cars - Mech. Syst. 1, 925-937. https://doi.org/10.4271/2008-01-1228
Hwang, S-J, Jang, M-K. \& Nam, J.-S. 2021. Application of Lateral Overturning and Backward Rollover Analysis in a Multi-Purpose Agricultural Machine Developed in South Korea. Agronomy 11(2), 297. https://doi.org/10.3390/agronomyl 1020297
Kutkov, G.M. 2014. Tractors and Automobiles: the theory and the technological properties, Moscow, Kolos, 506 pp. (in Russian).

Li, Z., Mitsuoka, M., Inoue, E., Okayasu, T., Hirai, Y. \& Zhu, Z., 2016. Parameter sensitivity for tractor lateral stability against Phase I overturn on random road surfaces. Biosystems Engineering 150, 10-23. https://doi.org/10.1016/j.biosystemseng.2016.07.004
Macmillan, R.H., 2002. The Mechanics of Tractor - Implement Performance. University of Melbourne, 165 pp . http://eprints.unimelb.edu.au.
Pogorely, L.V. \& Tatyanko, N.V. 2004. Beet-harvesting machines: History, Construction, Theory, Prognosis, Feniks, Kyiv, 232 pp. (in Ukrainian).
Sarec, P., Sarec, O., Przybyl, J. \& Srb, K. 2009. Comparison of sugar beet harvesters. Listy cukrovarnicke a reparske 125(7-8), 212-216 (in Czech).
Szakács, T., 2010. Developing stability control theories for agricultural transport systems. Acta Polytechnica Hungarica 7(2), 25-37.
Vasilenko, P.M. 1996. Introduction to agricultural mechanics. Agricultural Education, Kiev, 252 pp. (in Russian).
Yildiz, S. 2010. Improving high speed lateral stability of longer and heavier vehicles by active steering. Master's Thesis, Eindhoven University og Technology, 78 pp . http://mate.tue.nl/mate/pdfs/12270.pdf.
Wang, F. \& Zhang, D. 2013. Design and experiment of disc-dig sugar beet combine. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 29(13), 7-14.
Wu, H., Hu, Z., Peng, B., Wang, H. \& Wang, B. 2013. Development of auto-follow row system employed in pull-type beet combine harvester. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 29(12), 17-24.
Zhang, G., Xu, W. \& Fan, S. 2013. Analysis and parameter optimization of adjustable beet top cutting mechanism. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 29(18), 26-33.

