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ABSTRACT 

AUXIN-BASED HERBICIDE PROGRAM AND RHIZOBIA APPLICATION 

FOR WEED CONTROL AND NODULATION POTENTIAL IN AUXIN 

TOLERANT SOYBEAN 

JOY AMAJIOYI 

2021 

Foliar-applied Bradyrhizobia to V4 soybean has been reported to increase yield 

up to 5%. However, a stand-alone product application may not be practical. Applying 

with other treatments such as post-emergence herbicide application may be economical 

but herbicide and/or additives may be deleterious to rhizobial growth. A laboratory study 

investigated the impact of herbicides (glyphosate and dicamba), additives (an oil to 

improve absorption and spreading; and AMS used to overcome hard water impacts on 

glyphosate), and herbicide + additives on bacterial growth. Optical density (OD) 

measurements at the wavelength of 650 nm assessed solution turbidity, a surrogate 

measure of bacterial growth. Glyphosate, dicamba, and AMS, as stand-alone treatments, 

reduced OD values by 98, 64 and 100%, respectively, compared to control (deionized 

water + inoculant) after 72-hr. Herbicide + additives, however, had OD values 25 % 

greater than the control. Therefore, applying bradyrhizobia with post-emergence 

herbicide applications at labeled rates with typical mixtures of surfactants/additives 

should not be harmful to the bacteria.  

Field experiments were conducted at three South Dakota locations for two years 

where Enlist E3 or Xtend soybean varieties were planted early, mid, or late season. 



xxi 
 

 

 

Treatments included preemergence (pre), pre + post emergence auxin herbicides (2,4-D 

or dicamba), or herbicide solutions mixed with bradyrhizobia to examine weed control, 

soybean nodulation and activity, yield, and seed protein. Pre-only herbicides resulted in 

poor weed control and reduced yields. Pre + post emergence treatments improved weed 

control and yield, with early and mid-planting having greater yields than late planting. 

Uncontrolled weeds in the pre and pre + auxin-based treatments were mostly grasses 

including barnyardgrass (Echinochloa crus-galli), volunteer wheat (Triticum aestivum), 

large crabgrass (Digitaria sanguinalis), green foxtail (Setaria viridis) and volunteer corn 

(Zea mays). Rhizobia application did not impact soybean nodulation, yield, or seed 

protein in 27 out of 30 treatments. The exception was dicamba + glyphosate + rhizobia 

that enhanced nodulation numbers (+30%) and activity (+54%) in one location in one 

year for all three planting dates compared to dicamba + glyphosate, although yield and 

seed protein content were similar among these treatments.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1. Overview of soybean production and utilization  

Soybean [Glycine max (L.) Merr.] is a member of the Leguminosae family and is 

the most widely grown oilseed and legume crop in the world (Lee et al. 2011). The 

Soyinfo Center has documented information on soybean history, use and bibliographies 

(www.soyinfocenter. com). Global production of soybean increased from 80.9 million 

metric tons in 1980 to 337 million metric tons in 2019. Farmers in the United States in 

2019 produced 97 million metric tons of soybeans on 30 million hectares of land with a 

value of $31 billion (USDA-NASS, 2019). South Dakota’s share of this production was 

about 4 million metric tons soybeans on 1.4 million hectares with a value of $1.2 billion 

(USDA-NASS, 2019). In May of 2020, Brazil became the leading soybean producing 

country with approximately 124 million metric tons production 

(https://www.worldatlas.com/articles/largest -soybean-producing-countries.html). When 

compared to 2019, soybean production in the United States and South Dakota in 2020 

increased by 16% and 50% respectively (USDA-NASS, 2020a). The 2019 South Dakota 

growing season was a very wet year with rainfall amounts exceeding the 30-year average 

by 50% (https://mesonet.sdstate.edu/archive). The early rains in 2019 prevented planting 

of most crops as the fields were too wet thereby leaving most fields uncultivated. Also, 

the mid-summer rains in 2019 drowned out many areas and the few acres that were 

planted got flooded in July thus resulting in low crop yields.   

The global demand for soy as food, vegetable oil, and animal feed has grown 

steadily over time. About 85 % of the world’s soybean are processed into soybean meal 

and oil for livestock and aquaculture feed (Ali, 2010), whereas 2% are consumed directly 

http://www.soyinfocenter.com/
https://www.worldatlas.com/articles/largest%20-soybean-producing-countries.html
https://mesonet.sdstate.edu/archive).
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by man as food (Goldsmith, 2008; Hartman et al. 2011). The soybean plant provides a 

complete protein as it contains all nine amino acids (histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan, and valine) essential for human health. 

Natto, soy milk, soy flour, tempeh, tofu, edamame, and miso are examples of food 

products made from soybeans (www.soyinfocenter.com). Soybean oil can be used 

industrially in the manufacture of products such as paints, fertilizers, adhesives, linoleum 

backing, as well as in biofuels (Liu, 2008). 

1.2. Growing Soybean in South Dakota 

Soybean is among the top five crops grown in South Dakota with most hectares in 

eastern South Dakota (USDA-NASS, 2020b) Unlike many other crops, soybean varieties 

are either determinate or indeterminate. In South Dakota, most varieties are indeterminate 

and continue to develop leaves on the main stem and branches throughout flowering. 

Determinate soybean varieties characteristically stop vegetative growth and do not 

produce nodes on the main stem soon after flowering begins and are typically grown in 

southern United States. The soybean plant thrives best on warm, fertile, moist but well-

drained sandy loam soil (Martin, 1988). Timely planting of soybean is important to 

optimize yields in the northern Corn Belt regions. In South Dakota, soybean is planted no 

earlier than when soil temperature is at least 10 degrees Celsius, at a depth of 3 to 5 cm 

(Clay et al. 2013). When planted too early, soybean may be exposed to a spring killing 

frost, early season weeds, and insects and seedling diseases. These factors may result in 

suboptimal stands.  

In recent years, scientists in the seed industry have focused on developing new 

soybean varieties with improved quality, including high yield, nematode resistance, 

http://www.soyinfocenter.com/
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reduced lodging and pod shattering traits, and herbicide tolerance 

(https://www.ilsoyadvisor.com/on-farm/ilsoyadviso r/soybean-breeding-today). The 

selection of an appropriate planting variety is the first step towards the successful 

production of soybean. However, during the selection process, care should be taken to 

balance the yield potentials with other management costs. There is a very short window 

available for growing soybean in South Dakota. Planting begins in early May/June, and it 

is harvested in September or early October (Clay et al. 2013). Planting dates may vary 

depending on location and maturity groups. Soybean varieties that maximize the entire 

growing season for a particular region have been reported to produce higher yield (Muller 

et al. 2013; Mourtzinis et al. 2015; Wu et al. 2017). Maturity ratings of soybean grown in 

the United States range from Group 00 (in the far north which includes northern 

Minnesota and North Dakota) to Group IX (in the far south which includes Florida, and 

the southern parts of the Gulf Coast states) (Mourtzinis and Conley, 2017). Group 00 

matures in about 115 days or less while group IX have about 195 days to maturity. The 

number of days to reach maturity as group numbers increase is about 10 days 

(https://www.farmprogress.com/soybeans/soybean-maturity-group-planting-date-and-

development-related). Relative maturity group I has a predicted maturity of around 127 

days and is used in northeast South Dakota whereas group II, with 137 days to maturity, 

is better adapted to southeast South Dakota (Hall et al. 2012).  

Row spacing and seeding rates have been reported to impact soybean yields in the 

Upper Midwest region of the United States. There are, however, different reports of 

increased yield or no difference in yield due to narrow row spacing. A marked increase in 

yield from 134 kg ha-1 to 604 kg ha-1 has been reported when soybean was planted in 

https://www.ilsoyadvisor.com/on-farm/ilsoyadviso%20r/soybean-breeding-today
https://www.farmprogress.com/soybeans/soybean-maturity-group-planting-date-and-development-related
https://www.farmprogress.com/soybeans/soybean-maturity-group-planting-date-and-development-related


4 
 

 

 

narrow rows (< 50 cm) than in wider rows (50 to 76 cm) (Lambert and Lowenberg-

DeBoer, 2003; De Bruin and Pedersen, 2008a; Cox et al. 2012) while no yield difference 

was reported in another study (Pedersen and Lauer, 2003). Most soybean in South Dakota 

are grown in wider row (76 cm) spacing. About 69% of South Dakota soybean farmers 

grow the crop in a row spacing of 76 cm or more (USDA-NASS, 2015). Planting in wide 

rows delays canopy closure, reduces canopy density around the time of soybean 

flowering, and thus prevents favorable conditions for white mold development (https: 

//extension.sdstate.edu/start-flowering-ideal-time-white-mold-management-soybeans). 

Previous research found that optimum seeding rate varied from 194 000 to 291 000 seeds 

ha-1 in narrow rows but from 157 000 to 212 000 seeds ha-1 in wide rows (De Bruin and 

Pedersen, 2008b). 

The impact of delayed planting on the yield of soybean has been well studied 

(Staton, 2011; Roozeboom, 2012; Licht et al. 2013; Nleya et al. 2020). Research indicates 

that in the northern Corn Belt regions, high yielding soybean varieties would lose 17 to 

67 kilograms of yield per hectare per day when planted after the optimum planting date, 

which is targeted for May 15 in South Dakota (https://www.sdsoybean.org/scoop-on-

soybean-blog/early-does-it-optimal-soybean-yields-come-with-time-planting/). In 

Lincoln Nebraska, research has shown that soybean loses 17 to 42 kilograms per hectare 

for each day planting was delayed after the optimum planting timing of mid to late April 

(Bastidas et al. 2008). In 2014, delaying the planting of soybean by 42 days (from May 

15 to June 27) resulted in a 29 % and 42 % decrease in the number of growing degree 

days during the reproductive phase (R1 – R8) for maturity groups 1.4 and 2.4, 

respectively (Nleya et al. 2020). Also, when soybean was planted late, 51 and 72 

https://extension.sdstate.edu/start-flowering-ideal-time-white-mold-management-soybeans
https://extension.sdstate.edu/start-flowering-ideal-time-white-mold-management-soybeans
https://www.sdsoybean.org/scoop-on-soybean-blog/early-does-it-optimal-soybean-yields-come-with-time-planting/
https://www.sdsoybean.org/scoop-on-soybean-blog/early-does-it-optimal-soybean-yields-come-with-time-planting/
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kilograms per hectare per day reduction in grain yield was reported for maturity groups 

1.4 and 2.4, respectively. In addition, seed oil content for both maturity groups were 

reduced by 14% and 18% respectively, with late planting, whereas protein content was 

variable among planting dates (which ranged from May to early July) and between 

maturity groups (Nleya et al. 2020). 

In another study conducted at Aberdeen (northern South Dakota) and Beresford 

(southeast South Dakota), Schutte and Nleya (2018) investigated the impact of row 

spacing and seeding rate on soybean performance. Results from the study showed that 

soybeans when planted in narrow rows (19 cm) yielded 0.8% to 10% more than those 

planted in wider rows (76 cm). The study also reported 3 to 7 % increase in soybean yield 

when the seeding rate was increased from 247,000 to 506,500 seeds per hectare. 

However, indeterminate varieties of soybean can compensate for space in the canopy as 

the plant adds branches when planted in wider rows.  

1.3. Weeds: A major issue in soybean production 

Weeds reduce soybean yields 37% worldwide (Oerke 2006, Vivian et al. 2013), 

and in the United States and Canada, weeds reduce yields up to 52% yield loss with an 

estimated monetary loss valued at $17 billion (Soltani et al. 2017). Weeds reduce harvest 

efficiency, decrease crop quality, produce seed that can impact future crops, and increase 

the cost of production. It has been found that crops have a critical weed free period which 

is defined as the interval in the life cycle of a crop when it must be kept weed-free to 

prevent yield loss (Zimdahl 1980; Zimdahl 1987). The impact of weed interference 

during the critical weed-free periods of many crops has been researched in many studies 

(Knezevic et al. 2002; Zimdahl, 2004; Clay et al. 2009; Moriles et al. 2012; Osipitan et 
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al. 2013; Osipitan, 2016; Adigun et al. 2017; Horvath et al. 2018, Daramola et al. 2020). 

It is difficult to predict the exact time for the critical weed free period because it is 

dependent on many factors including soil moisture, weed emergence relative to crop 

emergence, weed density, and weed species.  

Soybeans can sense weeds before they emerge and may change their morphology 

in response (https://www.syngenta.ca/smw/articles/critical-weed-free-period-soybeans) 

(Horvath et al. 2015) although this may not reduce yield. The start of the critical weed-

free period in soybean is typically between the first to the third trifoliate growth stage (14 

to 43 days after emergence), and it continues to the beginning bloom growth stage (R1) 

(Eaton et al. 1976; Harris and Ritter, 1987; Stoller et al. 1987; Zimdahl, 1987; Van Acker 

et al. 1993). To avoid yield losses, weeds should be removed before the onset of the 

reproductive growth stages R1 (Halford et al. 2001). Changes in gene expression, 

decreased photosynthetic pigment contents, nitrogen content in roots and leaves, reduced 

nodulation as well as increased oxidative stress levels, among other effects, have been 

detected due to early weed presence in soybeans (Afifi and Swanton, 2012; Horvath et al. 

2015; Mckenzie-Gopsill et al. 2016). However, these changes may be subtle and not 

directly reduce soybean yield.  

Weeds can have a mixed impact on soybean yields. Weeds that emerge and grow 

with soybean during the first three weeks, but are then removed, may or may not 

negatively impact yield. However, when weeds remain in the crop from three to eight 

weeks after soybean emergence (VE), they have the greatest potential to reduce yield. 

Late emerging weeds in soybean fields that have been kept weed-free up to eight weeks 

after crop emergence are unlikely to result in yield reductions or have a negative 

https://www.syngenta.ca/smw/articles/critical-weed-free-period-soybeans
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economic impact relative to the cost of in-season treatment. However, these late 

emerging weeds can cause harvest problems, decrease crop quality, or produce more 

weed seeds (Clay et al. 2005; Uscanga-Mortera et al. 2007; Moechnig et al. 2013). 

Smooth pigweed (Amaranthus hybridus) interference with soybeans has been reported to 

cause an average yield loss of 55% (Moolani et al. 1964). Also, 25 to 30% soybean yield 

reduction was reported by Nave and Wax (1971) with one smooth pigweed 0.3 m-1 in 76 

cm-1 spaced soybean rows.  

Common waterhemp [Amaranthus tuberculatus - a common weed in eastern South 

Dakota] interference up to 10 weeks after soybean unifoliate leaf expansion has been 

reported to cause an average yield loss of 43% during a study in Illinois (Hager et al. 

2002). Another study in Nebraska reported 40-76% yield losses with two common 

ragweed (Ambrosia artemisiifolia) plants per 0.9 m of soybean row (Barnes et al. 2018). 

In South Dakota, common ragweed interference with soybean at low density (2 or fewer 

plants m-2) has been reported to cause a 10% yield reduction (Clay et al. 2006; Clay 

2013). Also, 51% yield loss was reported when volunteer corn competed with soybean at 

an average density of 4 plants m-2 (Alms et al. 2016). A recent study on soybean weed 

management indicates high yield losses with Palmer amaranth (Amaranthus palmeri) 

emergence even after an early weed control effort. According to the findings of Van De 

Stroet and Clay (2019), 35% to 45% yield losses occurred with moderate Palmer 

amaranth densities (6 to 10 plants m-2) most likely due to intraspecific Palmer amaranth 

competition, whereas Bensch et al. (2003) reported up to 91 % yield loss with a single 

Palmer amaranth per 0.13 m of row in soybean in Kansas. 
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Herbicides provide a convenient, economical, and effective method to control weeds 

in row crops, where they are applied as pre- or post-emergence to maximize crop 

productivity by minimizing other vegetation. In the United States, herbicides make up 

60% of the volume and 65% of the expenditures for all pesticides used by growers 

(Donaldson et al. 2002). Although found to be an important weed control tool, the use of 

herbicides has been implicated in several health and environmental issues, non-selective 

vegetation removal, crop injury concerns and herbicide drift injury to neighboring fields. 

Common soybean herbicides used in the United States include the WSSA group 1 

ACCase inhibitors (e.g. fluazifop, quizalofop) for grass control, WSSA group 2 ALS 

inhibitors (e.g. imazamox, cloransulam), WSSA group 4 synthetic auxins (e.g. 2,4-D, 

dicamba; mainly applied PRE until the recent development of the auxin resistant (GMO) 

soybean which allows for POST application), WSSA group 5 photosynthesis inhibitors 

(e.g. metribuzin, bentazon), WSSA group 9 amino acid inhibitors (e.g. glyphosate), 

WSSA group 10 Glutamine synthetase inhibitors (e.g. glufosinate), WSSA group 14 Cell 

membrane disrupter or PPO inhibitors (e.g. acifluorfen, flumioxazin, sulfentrazone), and 

the WSSA group 15 Seedling shoot inhibitors (e.g. acetochlor, metolachlor) (Shaner, 

2014).  

1.4. Glyphosate and glyphosate tolerant crop technology 

Glyphosate [N-(phosphonomethyl) glycine), formulated and marketed as 

Roundup by Monsanto in 1974 (Duke and Powles, 2008) is widely used to control 

dicotyledonous and monocot weeds (Anonymous, 2014b) in both cropping and non-

cropping situations. This non-selective WSSA group 9 herbicide can be applied in a 

variety of forms including isopropylamine salt, ammonium salt, diammonium salt, 



9 
 

 

 

dimethylammonium salt, and potassium salt (Dill et al. 2010). After its introduction in the 

mid-1970s, glyphosate was used primarily for burndown of emerged weeds and for 

perennial weed control in corn and soybeans. Prior to GMO crop introduction, the non-

selectivity of glyphosate limited the number of applications and acres sprayed. 

Glyphosate has no soil activity and therefore allows for flexible crop rotations. The 

herbicide has been considered to have low environment and human health risks until 

recent reports challenged these perceptions. Glyphosate kills plants by inhibiting the 

EPSPS (5-enolpyruvyl-shikimate-3-phosphate synthase) enzymes, the shikimic acid 

pathway vital for synthesizing the three essential aromatic amino acids phenylalanine, 

tyrosine, and tryptophan (Schonbrunn et al. 2001; Reddy, 2001). The EPSPS enzyme is 

present only in plants and microorganisms but absent in humans (Bentley 1990; Richards 

et al. 2006).  

Glyphosate tolerant crops (commonly referred to as Roundup Ready crops) were 

first approved for planting in the United States in 1996. This cutting-edge technology 

simplified weed management and no-till practices in agronomic cropping systems. 

Roundup Ready crops like soybean, corn, and cotton are tolerant to the herbicide 

glyphosate, and have enabled growers to spray glyphosate postemergence during the crop 

season to achieve excellent, broad spectrum weed control. Additional crops with the 

tolerance trait include canola and sugar beet. Weed management in glyphosate tolerant 

crops had been excellent. The technology gave farmers a simpler, inexpensive means of 

weed control using glyphosate-based herbicides. However, with several glyphosate 

applications over space (millions of hectares) and time (5 to 7 years) came the 

widespread selection for weed populations that are resistant to glyphosate. As resistant 
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weed biotypes increased, growers in response, also increased their rate of glyphosate 

application, as well as the number of applications (Benbrook, 2012; Mortensen et al. 

2012; Duke, 2014; Heap, 2014; USDA-NASS, 2014) while many other growers 

integrated additional herbicides into their spray programs (Christoffoleti et al. 2008; 

Mortensen et al. 2012; Owen et al. 2014; Heap, 2014). In 2021, thirty-eight weed species 

worldwide have been reported in both crop and non-crop situations to have resistance to 

glyphosate, out of which seventeen cases are recorded in the United States (Heap, 2021). 

In South Dakota, glyphosate resistance has been confirmed in four weed species 

including common ragweed (Ambrosia artemisiifolia), kochia (Bassia scoparia), tall or 

common waterhemp (Amaranthus tuberculatus) and marestail or horseweed (Conyza 

canadensis) (Moechnig et al. 2013; Heap, 2021).  

The economic losses from glyphosate-resistant weeds pose a serious threat to crop 

production and have highlighted the need to consider alternatives for weed management 

in field crop production. To control resistant weeds in soybean fields, glyphosate may be 

tank-mixed with other postemergence (POST) herbicides. In order to achieve a more 

consistent and effective control of most resistant weeds, applying preemergence (PRE) 

followed by postemergence (POST) herbicides, tank-mixing herbicides with multiple 

modes of action, and herbicide rotation are some herbicide programs that have been 

adopted by soybean growers. However, additional herbicide applications, and combining 

herbicide chemistries increase weed management costs. 

1.5. Auxin herbicides (2,4-D and dicamba) and tolerant crop traits. 

WSSA group 4 herbicides 2,4-D (2,4-Dichlorophenoxyacetic acid) and dicamba 

(3,6-dichloro-2-methoxybenzoic acid) are growth regulators commonly used as post-
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emergence and inexpensive herbicide treatments to selectively control broadleaf weeds in 

corn, pastures, small grains such as wheat, and turf. They can also be used to kill existing 

broadleaf weeds prior to planting of other agronomic crops. Although in use for over 50 

years, 2,4-D and dicamba herbicide chemistries have shown excellent resilience with few 

herbicide-resistant weeds occurring. Both herbicides also provide excellent control of 

glyphosate-resistant broadleaf weeds like marestail, common and giant ragweed, 

common waterhemp, and other dicot weeds.  

Auxin tolerant soybean was introduced in the United States in 2016 (dicamba 

tolerant) and 2019 (2,4-D tolerant). Prior to the introduction of the genetically modified 

soybean varieties, growers planted their fields to conventional soybean varieties (USDA-

ERS, 2014; USDA-ERS, 2019a and 2019b). However, drift from adjacent fields or tank 

contamination was a major challenge as conventional soybean are very sensitive to auxin 

herbicides which causes cosmetic damage to total loss of crop depending on the amount 

and timing of exposure (Andersen et al. 2004). Also, the selection for glyphosate resistant 

weeds made broadleaf weed control in conventional soybean challenging. Growers dealt 

with this challenge by increasing their application rate or making double, and in some 

cases, triple applications of glyphosate to get the weeds under control. This promoted the 

buildup of more resistant weed biotypes in the population and increased production cost 

for growers.  

Agricultural chemical companies [Bayer and Corteva], in response to the rapid 

evolution of glyphosate-resistant weeds, introduced the Roundup Ready 2 Xtend® and 

EnlistTM tolerant soybean varieties in 2016 and 2019, respectively. These traits have 

provided new ways to maximize broadleaf weed control flexibility using the approved 
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auxin-based herbicides. The EnlistTM soybeans possesses gene modifications that make 

them tolerant to 2,4-D, glyphosate and glufosinate herbicides, whereas the Xtend® 

soybean type is resistant to dicamba and glyphosate herbicides. Tolerance to glyphosate 

in Enlist E3 soybean is conferred by the 2mepspsgene (Lepping et al., 2013), whereas in 

RR soybean, it is conferred by the cp4epspsgene (Padgette et al., 1995). The EnlistTM 

weed control systems allows for an over-the-top application of herbicides including 2,4-

D, glyphosate and glufosinate to Enlist™ soybean, whereas the Xtend weed control 

system allows for the POST applications of dicamba and glyphosate to Xtend® soybean 

for more efficacious management of problem dicot or broadleaf weeds in soybean fields 

(https://weedscience.missouri.edu/publications/Dicamba_24D_Factsheet.pdf).   

Auxin herbicides are a large family of herbicides that began with 2,4-D in the 

1940’s and have expanded since then to include the sub-families of phenoxy [2,4-D, 

MCPP, MCPA - (Circa 1945)], benzoic acid [dicamba (Circa 1965)] and pyridines 

[triclopyr, fluroxypyr, picloram, aminopyralid, clopyralid, aminocyclopyrachlor – (Circa 

1970)]. While each sub-family has a different chemical structure, they all act as auxins 

and are growth regulators. They regulate cell division and elongation, and they impact 

plant processes such as vascular tissue, meristem differentiation and leaf initiation. The 

Phenoxy herbicide, 2,4-D, works by mimicking a naturally occurring plant chemical 

called indole acetic acid (IAA). When applied to a target (susceptible) plant, 2,4-D causes 

unregulated IAA production which results in uncontrolled growth, twisting and 

elongation of the stem, thickening of the leaves and the eventual death of the plant. 

Dicamba also works by stimulating abnormal cell growth in meristematic cells of 

susceptible plants, thus blocking the vascular tissue of the phloem. This destroys the 

https://weedscience.missouri.edu/publications/Dicamba_24D_Factsheet.pdf
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cambium and phloem cells near the meristems and plants are killed by starvation 

resulting from an inability to translocate photosynthates through the phloem to other parts 

of the plant (Tu et al. 2001). 

2,4-D and dicamba use are on the increase since the introduction of tolerant 

soybean varieties (Ganie and Jhala, 2017; Osipitan and Dille, 2017; Underwood et al. 

2017). In 2019 and 2020, the acres planted with genetically engineered soybeans in South 

Dakota was 93 and 95%, respectively (USDA-ERS, 2019b). An ever-present concern for 

the use of 2,4-D and dicamba herbicides for the control of dicotyledonous weeds in the 

newly developed EnlistTM and Xtend® weed control technology is the off-location 

movement of herbicide through particle drift or volatility to sensitive crops that do not 

carry the tolerance trait. Herbicide drift occurs when windy conditions are combined with 

poor application techniques whereas volatility involves a phase change and is the 

movement of the gaseous form of the herbicide after it has been deposited on its intended 

target as a liquid due to high temperatures evaporating the herbicide from the leaf. 

Regardless of efforts to reduce vapor drift though improved formulations, training of 

spray operators, and label restrictions, many cases of off-target movement of dicamba 

have been reported over the past years, even before the introduction of auxin tolerant 

soybeans. Dicamba drift has been reported in Missouri (Bradley 2017a and b), Illinois 

(Illinois DOA), Indiana (Office of Indiana State Chemist 2019), and South Dakota 

(Andersen et al. 2004). The effect of auxin drift to conventional soybean growth and 

yield performance has been well studied (Wax et al. 1969; Auch and Arnold, 1978; 

Andersen et al. 2004; Robinson et al. 2013a and b; Solomon and Bradley, 2014; Osipitan 
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et al. 2019; Costa et al. 2020). The injury caused by dicamba drift rates to non-tolerant 

soybeans may be slight to highly damaging with high yield losses (Andersen et al. 2004). 

2,4-D herbicide is less injurious to soybean than dicamba. Dicamba doses as low 

as 1/100 of the label rate (5.6 g a.e. ha−1) when applied to conventional soybean at V3 

stage of growth have been reported to reduce yield by up to 34%, whereas about 1/10 of 

2,4-D label rate (112 g a.e. ha−1) was necessary to reduce soybean productivity within a 

range of 25 to 32% (Andersen et al. 2004). In another study (Osipitan et al. 2019), 

dicamba drift to sensitive soybean, regardless of the dicamba product technology or 

formulation used, caused substantial crop injury (80%), plant height reduction (65%), 

delay in maturity (22 days) and yield loss (96%) when 1/10 of the dicamba label rate (56 

g a.e. ha−1) was applied at V7/R1 soybean growth stage. Similarly, crop injuries up to 

41% and 70%, plant height reduction of about 61%, and yield losses up to 29 % and 76 % 

was reported when low doses (1/10, 1/100, and 1/1000) of dicamba label rate (28 g a.e. 

ha−1) were applied to soybean at V4 and R2 growth stages, whereas injuries caused by the 

same low doses of 2,4-D were neither enough to damage the crop, nor affect yield 

(Andersen et al. 2004; Costa et al. 2020).  

1.6. Soybean nitrogen demand 

Nitrogen (N) is a primary essential nutrient required by plants in comparatively 

large amounts for proper growth and development. Among all 16 essential nutrients, 

nitrogen is a fertilizer component required by plants in the highest quantity. Nitrogen 

plays a vital role in photosynthesis and the manufacturing of protein. When deficient in 

plants, poor growth and yellowing of leaves occurs (Fageria and Baligar, 2005). Excess 

nitrogen can result in excessive vegetative growth at the expense of flowering and 
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fruiting in plants. Environmental problems can also arise when excess nitrogen from 

fertilizers is carried by runoff into groundwater or surface water. In surface waters, 

nitrogen pollutants can stimulate excessive algae growth 

(https://www.epa.gov/nutrientpollution/issue) and if found in aquifers used for drinking 

water, can cause methemoglobinemia in infants (“blue baby syndrome”) (Brender, 2020). 

Soybean, unlike other row crops, have a high demand for nitrogen due to the high protein 

content (which is about 40 % or more on a dry weight basis) in the grain. The higher the 

soybean yield, the higher the nitrogen requirement (Salvagiotti et al. 2008). Demand for 

nitrogen in soybean peaks during pod development. An application of 22 to 44 kg N ha-1 

at the R3 stage of soybean could alleviate the effect of nitrogen deficiency that occurred 

during the time of pod set/seed fill on yield (Wortmann et al. 2018).  

Typically, nitrogen fertilizer is rarely applied in soybean fields. The atmosphere 

and the soil are the two major sources of nitrogen supply to soybean plants. Through 

nitrogen fixation process, soybean obtains nitrogen from the atmosphere. The Gram-

negative, rod-shaped diazotrophic bacteria (rhizobia) fixes atmospheric nitrogen after 

becoming established inside the root nodules of legumes. The specific rhizobia 

responsible for biological nitrogen fixation (BNF) in soybean is the Bradyrhizobium 

japonicum. The bacteria colonize soybean roots forming nodules. Within the nodule, B. 

japonicum convert nitrogen gas (N2) into ammonium (NH4
+) which is an available form 

of nitrogen for plant use. The process of root nodule initiation and development is 

complex and is regulated by several phytohormones like auxins, cytokinins, gibberellins, 

and brassinosteroids as positive regulators of nodule formation (Ferguson et al. 2005; 

Maekawa et al. 2009), while ethylene, jasmonic acid and abscisic acid are negative 

https://www.epa.gov/nutrientpollution/issue
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regulators (Ding et al. 2008; Nakagawa and Kawaguchi, 2006; Penmetsa et al. 2008). 

Root nodulation has been reported to be inhibited by excess natural auxin levels in 

soybean roots (Turner et al. 2013), and consequently influences the amount of nitrogen 

fixed by crop and yield. At a yield level of 4035 kg ha-1, N fixation provides 65% to 70% 

of the total nitrogen required by soybean. Between 50 to 100 kg N ha-1 has also been 

found to be provided typically by the mineralization process (Thies et al. 1995; Schmidt 

et al. 2000; Salvagiotti et al. 2009). Research also suggests that growers are unlikely to 

see yield increases when additional N fertilizer is applied to soybean, either as preplant or 

after the crop is up, except in the case of high-yielding, irrigated soybeans (Salvagiotti et 

al. 2008; Taylor, 2012; Cafaro La Menza et al. 2017). At increased soil nitrate (NO2
-) 

levels, or when nitrogen fertilizer is applied, N fixation by soybean is inhibited. However, 

when nitrogen fertilizers are applied at levels less than the required amounts (<34 kg ha-

1), N fixation compensates for the remaining N nutrient required to obtain maximum 

soybean yield (Schmidt et al. 2000). Some recommendations found in literature for 

obtaining maximum benefits from nitrogen applications to soybean, include keeping N 

rates low (<34 kg ha-1), applying fertilizer in season between growth stages R2 to R4 

when uptake is most rapid, and seed inoculation with rhizobia or foliar application of B. 

japonicum at a rate of 0.6 kg ha-1 in addition to N fertilization at < 34 kg ha-1 

(https://extension.sdstate.edu/late-season-nitrogen-soybean; Wesley et al. 1998; Ulzen et 

al. 2016; Leggett et al. 2017; Wortmann et al. 2018).  It is known that broadleaf weed 

management in soybean has been revised by the recent development of auxin tolerant 

soybean varieties in the United States. About 44 % of soybean acres in South Dakota are 

planted to genetically modified varieties that permit a postemergence application of auxin 

https://extension.sdstate.edu/late-season-nitrogen-soybean
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herbicide to soybean foliage for the purpose of controlling mostly broadleaf weeds 

resistant to ALS and glyphosate.  

These studies investigated the efficacy of 2,4-D and dicamba-based herbicide 

program for broadleaf weed control, and its impact on soybean greenness, nodule 

number, nodule activity, yield, 100-seed weight, seed oil, and seed protein contents of 

Roundup Ready 2 Xtend and Enlist soybean varieties planted at three timings across 

three eastern South Dakota locations in 2019 and 2020 crop seasons. The goal of the 

study was to confirm the efficacy of auxin herbicide applications, and to determine 

planting date yield responses for auxin tolerant soybean varieties grown in South Dakota. 

The result of this study will provide South Dakota soybean growers the information 

required to effectively manage weeds and improve soybean productivity.  

In the laboratory, the study examined how herbicide (glyphosate, dicamba), 

surfactant (Duce HSOC), adjuvant (AMS), and a mixture of herbicide + surfactant + 

adjuvant influenced the growth of Bradyrhizobium japonicum – the nitrogen fixing 

bacteria in soybean, when cultured in yeast extract media (YEM) broth and deionized 

water, respectively.  
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CHAPTER 2: HERBICIDE IMPACT ON GROWTH OF BRADYRHIZOBIUM 

JAPONICUM (USDA 110)  

2.1. Introduction 

Rhizobia are important group of rhizobacteria that live in the soil or in root 

nodules of legumes. In the root nodules, rhizobia form symbiotic association with the 

legume, capturing atmospheric nitrogen and making it available to the plant through a 

process called biological nitrogen fixation (Willey et al. 2011). Based on their growth in 

yeast extract media (YEM), they can be classified as either fast growing rhizobium or 

slow growing bradyrhizobium. The compatible rhizobacteria specie that nodulates the 

soybean crop is the Bradyrhizobium japonicum, and approximately 50 to 60 percent of 

soybean nitrogen requirement can be supplied by B. japonicum and B. elkanii. 

(Salvagiotti et al. 2008). It has been reported that nitrogen obtained through the biological 

nitrogen fixation process was more effective at promoting plant growth compared to 

chemical fertilizers (Esmailpour et al. 2012). The amount of nitrogen (N) supplied by the 

fixation process depends on the ability of rhizobia to effectively fix nitrogen, and on the 

ability of the plant to provide rhizobia with the energy required to drive the process. 

Several other factors like temperature, light, soil moisture, and soil pH have been 

reported to influence the growth of rhizobia (Dart 1977; Gibson 1977; Munns 1977; 

Gibson and Jordan 1983). The use of herbicide for weed control is essential for yield and 

profit maximization in large scale conventional cropping systems. In the United States, 

the most heavily used herbicides in soybean production include pendimethalin, 

metolachlor, imazethapyr, trifluralin, thifensulfuron, glyphosate 

(https://www.epa.gov/caddis-vol2/caddis-volume-2-sources-stressors-responses-

https://www.epa.gov/caddis-vol2/caddis-volume-2-sources-stressors-responses-herbicides
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herbicides), and recently, the auxin herbicides dicamba and 2,4-D (Heap I, 2021). Since 

the introduction of herbicide tolerant trait technology, crop acres sown to herbicide-

resistant varieties globally has increased significantly, thus causing a corresponding rise 

in the use of their approved herbicides for weed control by crop producers. It is known 

that auxin herbicides (for example 2,4-D and dicamba), which mimics natural plant 

hormones, provide another mode of action to kill weeds in tolerant soybean varieties. 

Research suggests that natural plant hormones, including auxins, influence root nodule 

formation. In a laboratory study, soybean root was found to be sensitive to auxin, and 

showed reduced nodule development when a set of repressor auxin response factor (ARF) 

was silenced by overexpressing microRNA160 (Turner et al. 2013).  

There are diverging reports on the effect of herbicides on soil microbial activities. 

While some studies found no adverse effect of herbicides on the growth of rhizobia 

[Cardina et al. 1986; Moorman, 1986; Mårtensson and Nilsson, 1989; Sprout et al. 1992; 

Yueh and Hensley, 1993; Gonzalez et al. 1996; Drouin et al. 2010], others reported 

rhizobial growth inhibition due to herbicide application (Clark and Mahanty, 1991; 

Mårtensson, 1992). The deleterious effect of 2,4-D herbicide on the growth of rhizobia 

(measured as changes in the optical density) is found in literature (Fabra de Peretti et al. 

1987; Arias and Peretti, 1993). Decreased turbidity was observed when 2,4-D was 

applied to rhizobium sp. at a concentration of 1 mM at the beginning of the incubation. 

The application of glyphosate herbicide in glyphosate-resistant soybean have also been 

reported to have negative impacts on rhizobial activities (Zablotwicz and Reddy, 2004; 

Bohm et al. 2009). In midwestern U.S., up to 623 kg ha-1 yield increase was reported 

when new fields were planted to seeds inoculated with Bradyrhizobium japonicum 

https://www.epa.gov/caddis-vol2/caddis-volume-2-sources-stressors-responses-herbicides
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(Abendroth et al. 2006). A supplementary application of 1L/ha foliar rhizobia at critical 

growth stages (V3 and R2) of soybean is reported to increase yields up to 5% 

(https://onfarmresearch.sdsoybean.org/archives/ reports/primo-foliar-inoculant-high-

yield-zone-location-1-55-bu-ac). However, a sole application of foliar rhizobia may not 

be economical to soybean growers, as yield increases have been modest. On the other 

hand, if rhizobia are foliar applied in combination with other management operations, for 

example a herbicide application, the net return may be profitable.  

Since beneficial soil organisms like rhizobia are well known to help in legume 

nodulation, and excess auxin in soybean roots has been shown to inhibit nodulation, and 

not much is known on the effect of auxin herbicides, surfactants, and adjuvants on the 

activities of rhizobia, the question remains: can rhizobia still be viable if mixed with 

herbicide solutions? There is the need to further investigate the direct effect of herbicides 

and surfactants on the viability of rhizobia. This study investigated the effects of 

herbicides (glyphosate and dicamba), and surfactants/adjuvants [Duce HSOC (designed 

for use with herbicides that require an oil or surfactant to improve absorption and 

spreading); Ammonium sulfate (AMS; 21-0-0 spray grade) – a fertilizer additive added at 

4 kg/379 L spray to overcome spray water antagonism of glyphosate] and herbicide 

mixtures containing dicamba + glyphosate + duce + AMS on the growth of 

Bradyrhizobium japonicum – USDA 110 strain when cultured in yeast extract mannitol 

(YEM) broth under laboratory conditions. The specific objectives of our study were to 

determine over a 3-day exposure: 

1. the effect of herbicides (glyphosate and dicamba) on the growth of 

Bradyrhizobium japonicum, strain USDA 110.  

https://onfarmresearch.sdsoybean.org/archives/reports/primo-foliar-inoculant-high-yield-zone-site-1-55-bu-ac
https://onfarmresearch.sdsoybean.org/archives/reports/primo-foliar-inoculant-high-yield-zone-site-1-55-bu-ac
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2. the effect of surfactants/adjuvants (Duce and ammonium sulfate) on the growth of 

Bradyrhizobium japonicum, strain USDA 110.  

3. herbicides combined with surfactant/adjuvant effects on the growth of 

Bradyrhizobium japonicum, strain USDA 110.  

 

Research hypothesis 

Null hypothesis (HO): herbicides alone, surfactant/adjuvant alone, and a 

combination of herbicides with surfactant/adjuvant will not inhibit Bradyrhizobium 

japonicum growth. 

 Alternative Hypothesis (HA): herbicides alone, surfactant/adjuvant alone, and a 

mixture of herbicides with surfactant/adjuvant will inhibit the growth of Bradyrhizobium 

japonicum. 
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2.2. Materials and methods 

Location, treatments, and experimental design 

The experiment was conducted in the laboratories of Agronomy, Horticulture and 

Plant Science Department (South Dakota State University, Brookings, SD). The 

experiment, which was performed under aseptic conditions at 30 0C, investigated how 

herbicides, surfactant and adjuvant influenced the growth of Bradyrhizobium japonicum, 

strain USDA 110 when treated cultures were inoculated in yeast extract mannitol (YEM) 

broth and deionized water. YEM broth is widely used for the cultivation of several 

agrobacterium species (Gram-negative bacteria), as well as the symbiotic nitrogen fixing 

microorganisms like Rhizobium species to make it suitable to produce legume inoculants. 

The broth contains mannitol as a carbon source and yeast extract as a source of both 

nitrogen and growth factor, and balances oxidation - reduction potential of medium in the 

range favorable for rhizobia and serves as hydrogen donor in respiratory process (Allen 

and Allen, 1950). 

Treatments used in the study include the potassium salt formulation of 49 % acid 

equivalent glyphosate [Roundup PowerMAX®], diglycolamine salt formulation of 43 % 

acid equivalent dicamba [Xtendimax®], ammonium sulfate (AMS 21-0-0) fertilizer 

additive, Duce HSOC manufactured by Helena Agri Enterprises, and a combination of 

herbicide and surfactant/adjuvant [glyphosate + dicamba + AMS + Duce + Strike zone (a 

drift reduction and deposition aid)], each cultured in yeast extract mannitol (YEM) and 

deionized water media. The experimental design for the study was a 5 x 2 factorial, with 

three replicates and repeated in time. Positive and negative control groups were included 

with the treatments. The positive control which had 9 ml of yeast extract mannitol (YEM) 
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broth and 1 ml of B. japonicum inoculant was used to compare the growth rate of B. 

japonicum in the treated cultures. The negative control contained 10 ml of sterile YEM 

broth and was used as a check to ensure there was no contamination in the setup. Optical 

density values obtained were analyzed using R-statistical software program. The runs 

across replicates were combined (n=6), and the treatment by time interaction was 

examined. Least significant difference values were calculated when the F value was 

found to be significant. 

Glassware/equipment and reagents   

All glassware was thoroughly washed with liquid detergent, rinsed, dried, and 

autoclaved (model SV120; manufacturer Steris; serial number 0114005-27) using the 

liquid 25 cycle for one hour. Sterile glassware was carefully set apart until needed. Work 

areas including benches and the fume hood was sterilized/disinfected with 70 % ethanol 

before starting the experiment. The materials used in this study are grouped into two 

categories: the glassware and equipment, and reagents. Glassware and equipment 

included the Erlenmeyer flask, conical flask, measuring cylinder, 500 ml glass 

jars/bottles, 55 ml test-tube with plastic stopper, micropipettes and micropipette tips, 

aluminum foil, masking tape, sterile toothpicks, spatula, stericup and steritop filtration 

system (0.22µm pore size rating), fume hood, autoclave, electronic weighing balance 

[Mettler Toledo, OH], pH meter [Mettler Toledo, OH], 28-degree orbit shaker [New 

Brunswick Scientific Excella E24 incubator shaker series], spectrophotometer cuvettes, 

and the ultrospec 10 cell density meter or spectrophotometer [Amersham Biosciences]. 

Reagents included glycerol stock of B. japonicum, strain USDA 110; chloramphenicol 

(20 mg/ml); yeast extract mannitol broth containing the following ingredients: yeast 
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extract agar (0.4 g), D-mannitol (10 g), potassium phosphate (0.65 g), sodium chloride 

(0.1 g), and magnesium sulphate (0.2 g); and herbicide stock solution. 

Ammonium sulfate fertilizer (AMS 21-0-0) is used in post-emergent glyphosate 

application at 4 kg / 379 L spray to enhance herbicide performance by increasing uptake. 

AMS helps to overcome hard water antagonism during glyphosate application (that is, it 

conditions hard water to help glyphosate work better). By preventing glyphosate from 

binding to calcium, magnesium or iron in the water, or dirt on the surface of the leaf, 

AMS forms an NH4+ glyphosate complex that enters the waxy layer on the leaf surface 

of target plants and kills it (http://www.ianrpubs. unl.edu/sendIt/ec130.pdf). Duce HSOC 

(Helena Agri-enterprises) is a blend of non-ionic surfactant and methylated seed oil, a 

kind of fatty acid from seed oil esterified with methyl alcohol (Miller and Westra, 1996; 

Young et al. 2016). Duce meets herbicide label requirement for high surfactant oil 

concentrate; it is compatible with multiple tank-mix partners and also improves herbicide 

absorption and spreading (https:// helenaagri.com/products/nonionic-surfact ants/duce/). 

Strike Zone® LC (Helena Agri-enterprises) is a drift reduction and deposition aid 

containing 95 % polyethoxylated hydroxyl aliphatics and carbohydrate polymers. This 

adjuvant mixes easily with tank-mix partners, improves drift control and deposition 

regardless of the nozzle chosen for the application, and also reduces spray droplet bounce 

and evaporation to enhance the absorption of active ingredients on target weeds 

(https://helenaagri.com/products/  drift-reduction-and-deposition-aids/strike-zone-lc/).  

Pre-bacterial culturing 

The liquid media (YEM broth) was prepared prior to the culturing of B. 

japonicum. In preparing the YEM broth, 1L of MilliQ water that had been purified using 

https://helenaagri.com/products/nonionic-surfact%20ants/duce/
https://helenaagri.com/products/
https://helenaagri.com/products/drift-reduction-and-deposition-aids/strike-zone-lc/
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resin filters and deionized to a high degree by a water purification system was measured 

into 1L Erlenmeyer flask, after which 0.65 g of potassium phosphate [Amresco 

biochemicals, Solon, Ohio], 0.1 g sodium chloride [Sigma Aldrich, St. Louis, MO], 0.2 g 

magnesium sulfate [VWR chemicals, Radnor, PA], 0.4 g yeast extract agar [Sigma 

Aldrich, St. Louis, MO], and 10.0 g D-mannitol [Sigma Aldrich, St. Louis, MO] were 

measured and added into the flask. The broth was mixed thoroughly using the Fisher 

Scientific Isotemp equipment and the pH adjusted to 6.8. To adjust the pH of the YEM 

broth solution, a pH probe (Mettler Toledo, OH) was inserted into the media, and one to 

two drops of concentrated HCL or NaOH was pipetted into the solution to either reduce 

or increase the pH of the YEM broth until a stable pH of 6.8 was attained as 

Bradyrhizobium japonicum prefer a neutral to slightly basic environment for optimal 

growth (Vincent 1970; Somasegaran and Hoben 1994). The broth was thereafter filter 

sterilized using the vacuum stericup and steritop system and stored in the refrigerator 

until needed. 

Culturing of Bradyrhizobium japonicum 

B. japonicum, strain USDA 110 was cultured under a sterile hood. A 50-ml 

aliquot of yeast extract mannitol (YEM) broth was measured into a conical flask and 50 

µl of chloramphenicol was added to the broth in the flask. Using a sterile toothpick, a 

fraction of glycerol stock of B. japonicum USDA 110 obtained from Subramanian 

laboratory at South Dakota State University was added to the broth. The bacteria culture 

was then incubated in a 28-degree rotary shaker at 30 oC for 3 days. Optical density 

readings at 650 nm wavelength (OD650) were taken using the spectrophotometer at 24-, 

48-, and 72-hours incubation period. Once the bacteria culture attained an OD650 value in 
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the range 0.20 to 0.30 (this was the starting OD range used for the entire experiment), and 

this occurred after 72 hours incubation, the culture was removed from the incubator and 

kept in the refrigerator until needed.  

Herbicide stock preparation 

Herbicide stock solutions were prepared in the CLAY herbicide degradation 

laboratory, McFadden Biostress Laboratory, South Dakota state University. The 

herbicide laboratory concentrations were derived using the method given by Fletcher 

(1956). Herbicide formulations containing potassium salt of glyphosate [2.5 ml of 

formulation containing 1.4 g a.e. of glyphosate (Bayer)] and diglycolamine salt of 

dicamba [1.4 ml of formulation containing 0.4 g a.e. of dicamba (Bayer)] were each 

measured into a 100 ml volumetric flask after which milliQ water was added into the 

flask to make a 100 ml of individual herbicide stock solution. To make the adjuvant stock 

solution, 2 g of ammonium sulfate salt was measured into a 100 ml volumetric flask and 

milliQ water added to make 100 ml stock solution. For the surfactant stock solution, 7.5 

ml of Duce HSOC was measured into a 100 ml volumetric flask and milliQ water added 

into the flask to make 100 ml stock. The stock solution that contained a mixture of 

herbicide, adjuvant and surfactants was made by weighing 2.5 ml glyphosate + 1.4 ml 

dicamba + 2.0 g dry ammonium sulfate + 7.5 ml Duce HSOC + 0.125 ml Strike zone, 

into a 100 ml volumetric flask and the solution made up to 100 ml by adding milliQ 

water (Table 2.1). All herbicide stock solutions were kept in a refrigerator maintained at 

4.4 0C temperature until needed. 
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Culturing of samples 

Bradyrhizobium japonicum (USDA 110) cultures were treated with glyphosate 

alone, dicamba alone, adjuvant (AMS) alone, surfactant (Duce HSOC) alone, and a 

herbicide mixture that contained glyphosate + dicamba + AMS + Duce HSOC+ Strike 

Zone). A 1-ml aliquot of Bradyrhizobium japonicum (USDA 110) was added into a 

sterile test tube containing 7 ml of yeast extract media (YEM) broth or DI water, and 2 ml 

of herbicide alone, or adjuvant alone, or surfactant alone, and herbicide mixture 

containing glyphosate, AMS, Duce HSOC, and Strike Zone. The treated cultures were 

then incubated in a 28-degree orbit shaker at 30 0C for 3 days (72- hours).  

Measurement of optical density in treated culture samples 

After 0, 24-, 48-, and 72-hours incubation period, respectively, A 1-ml aliquot of 

the treated bacteria culture was pipetted into a spectrophotometer cuvette for optical 

density measurement. The growth of Bradyrhizobium japonicum (USDA 110 strain) was 

measured as light absorbance at 650 nm wavelength (OD650) using a spectrophotometer 

[Ultrospec 10, Amershan Biosciences] calibrated with an uninoculated untreated blank 

that contained sterile YEM broth alone (Carpenter 1977; Cardina et al. 1986; Gonzalez et 

al. 1996).  
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Figure 2.1. Some equipment used in the laboratory for the in-vitro culturing and 

determination of the growth rate of B. japonicum (USDA 110) by optical density 

measurements at 650 nm wavelength.  

 

 

(A) fumehood; (B) spectrophotometer; (C) filter sterilization of water using steritop and stericup system;  

(D) culture incubation in 28-degree rotatory shaker at 30 0C to stimulate growth of B. japonicum (USDA 110 

strain). 
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2.3. Results 

Table 2.1. shows the laboratory concentration of herbicide stock, electrical 

conductivity, and pH of treated culture at day 0 to 3. The optical densities of treatment 

[measured at 650 nm wavelength (OD650)] at the start of the experiment (0-hour 

incubation) was in the range of 0.20 to 0.30. The positive control group which consisted 

of an aliquot of B. japonicum, and yeast extract media (YEM) had an optical density 

value that increased over 72-hours incubation time. An interaction was observed between 

culture media and incubation time (p ≤ 0.01) for all treatments [herbicide (glyphosate, 

dicamba), adjuvant (AMS), surfactant (Duce HSOC), and herbicide mixture (glyphosate 

+ dicamba + AMS + Duce HSOC + Strike Zone)] (Table 2.2).  

A reduction in the growth rate of Bradyrhizobium japonicum was observed over 

72-hours incubation time when bacteria cultures in yeast extract media (YEM) and 

deionized (DI) water were treated with glyphosate and dicamba herbicides (Figure 2.2). 

Comparing the effect of the herbicides with the positive control group that had no 

herbicide, and over a 3-day incubation period, glyphosate in YEM and DI water reduced 

the optical density value of bacteria culture by 65 % and 98 %, respectively, whereas 

dicamba reduced optical density of B. japonicum culture by 64 % and 43 % in YEM and 

DI water media, respectively (Figure 2.2). 

Also, when compared to the positive control group, ammonium sulfate (AMS), 

both at low (0.2 mg/ml) and high (20 mg/ml) concentrations had a negative impact on the 

growth of B. japonicum in YEM and DI water media over the 72-hours incubation time 

(Figure 2.3). At a lower concentration of AMS (0.2 mg/ml), bacteria cultures in DI water 
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showed no growth and had an optical density reading of zero throughout the incubation 

time (Figure 2.3).  

The surfactant Duce HSOC, depending on the concentration and growth media 

(YEM or DI water), positively influenced the growth of B. japonicum. Bacteria cultures 

treated with low concentration (0.75 ml) of Duce HSOC and grown in YEM media had 

optical densities that were 117%, 115%, and 48% more than the positive control at 24-, 

48-, and 72-hours incubation time, respectively (Figure 2.4), whereas bacteria cultures 

treated with a higher Duce concentration (7.5 ml) and grown in deionized water (DI) 

media increased optical density value by 91% at the third day (72-hours) of incubation 

(Figure 2.4).  

Herbmix containing 2.5 ml glyphosate + 1.4 ml dicamba + 2.0 g AMS + 7.5 ml 

Duce HSOC + 0.13 ml Strike Zone LLC enhanced B. japonicum’s growth in deionized 

(DI) water only. At 24-, 48-, and 72-hours of incubation, the optical density value from 

bacteria (B. japonicum) culture was 22%, 29%, and 25% higher than what was found in 

the positive control, respectively, at p ≤ 0.01 (Figure 2.5). 
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Table 2.1. Herbicide, adjuvant, surfactants and herbicide mixture concentrations, electrical conductivity (EC), and pH of cultures 

after 3 days incubation period.  

 

 

Treatment 

 

Stock solution  

(ml/50ml H2O) 

 

laboratory concentration 

of solution (a.e./g/ml)  

Electrical 

conductivity 

(mS/cm) 

pH at start of 

experiment 

(Day 0) 

pH at end of 

experiment 

(Day 3) 

Glyphosate [K salt formulation (Bayer)] 2.50  1.40 5.80 4.27 4.00 

Dicamba [DGA salt formulation (Bayer)]a 1.40 0.40 2.20 5.65 5.16 

Ammonium sulfate [Winfield United] 2.00 2.0 28.00 5.38 3.13 

Ammonium sulfate [Winfield United] 0.20 0.20 18.10 5.12 3.07 

Duce HSOC [Helena Agri-sciences] 7.50 7.50 0.55 7.48 6.75 

Duce HSOC [Helena Agri-sciences] 0.75 0.75 0.55 7.48 5.39 

Strike zone [Helena Agri-sciences]b 0.125 0.125 0.61 7.96 NDc 

Herbicide + adjuvant + surfactant  12.38 32.50 6.98 6.51 

aDicamba [DGA salt formulation (Bayer) – DGA is the diglycolamide formulation used. 

bStrike zone (manufactured by Helena Agri-enterprises is a drift reduction and deposition aid that contains 95% polyethoxylated hydroxyl aliphatics and 

carbohydrate polymers) was added to the herbicide mixture, but not tested alone. 

cND: not determined 
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Table 2.2. Analysis of variance showing mean of treatment effect on Bradyrhizobium japonicum’s (USDA 110) growth in yeast extract 

media (YEM) and deionized (DI) water over 3-day incubation period. 

Source of variation DF glyphosate dicamba AMS 0.2 AMS 2.0 Duce 0.75 Duce 7.5 Herbmixa 

factor A (culture media)b 2 0.85 0.30 0.18 0.14 0.24 0.34 0.04 

factor B (incubation time)c 2 0.03 0.02 0.02 0.00 0.02 0.01 0.01 

factor A x factor B 4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Residuals 36        

         
standard error A (culture media)  0.01 0.01 0.00 0.00 0.01 0.01 0.01 

standard error B (incubation time)  0.01 0.01 0.00 0.00 0.01 0.01 0.01 

standard error A x B  0.01 0.01 0.01 0.01 0.01 0.02 0.01 

         
R square  0.99 0.98 1.00 1.00 0.99 0.99 0.91 

LSD (0.05)  0.02 0.03 0.02 0.01 0.03 0.05 0.02 

*Significant at probability level (α ≤ 0.05). 
aHerbmix contained a mixture of glyphosate (2.5 ml), dicamba (1.4 ml), ammonium sulfate (2.0 g), Duce HSOC (7.5 ml), and Strike Zone (0.13 ml).   
bCulture media 1: yeast extract mannitol (YEM) broth + herbicide or adjuvant or surfactant or herbmix + Bradyrhizobium japonicum (USDA 110). 
bCulture media 2: deionized water + herbicide or adjuvant or surfactant or herbmix + Bradyrhizobium japonicum (USDA 110).  
bControl: yeast extract mannitol (YEM) broth + Bradyrhizobium japonicum (USDA 110).  
cIncubation time – 24-hours, 48-hours, and 72-hours. 
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Figure 2.2. Effect of glyphosate and dicamba herbicides on the growth of Bradyrhizobium japonicum (USDA 110) in yeast extract 

media (YEM) and deionized (DI) water media over 3-day incubation period. 

 

* Optical density (OD) was measured at 650 nm wavelength in a spectrophotometer. 

* Control media had yeast extract mannitol broth (9 ml) and glycerol stock (1 ml) of Bradyrhizobium japonicum (USDA 110). 

* Each treatment had 2 ml glyphosate or dicamba + 7 ml yeast extract mannitol broth or deionized water + 1 ml Bradyrhizobium (USDA 110). 

* Incubation time: 24-,48-, and 72-hours. 

* Bars indicate standard deviation from treatment mean.  
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Figure 2.3. Effect of adjuvant [ammonium sulfate fertilizer (AMS 20-0-0)] on the growth of Bradyrhizobium japonicum (USDA 110) in 

yeast extract media (YEM) and deionized (DI) water media over 3-day incubation period. 

  

* Optical density (OD) reading in spectrophotometer was at 650 nm wavelength. 

* Control media had yeast extract mannitol broth (9 ml) and glycerol stock (1 ml) of Bradyrhizobium japonicum (USDA 110). 

* YEM: yeast extract mannitol broth 

* DI: deionized water. 

* Incubation time: 24-,48-, and 72-hours. 

* Bars indicate standard error of treatment mean. Different letters above the error bars are significantly different from each other at 0.05 probability level. 
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Figure 2.4. Impact of surfactant [Duce HSOC] on growth of Bradyrhizobium japonicum (USDA 110) in yeast extract media (YEM) 

and deionized (DI) water media over 3-day incubation period. 

  

* Optical density (OD) reading in spectrophotometer was at 650 nm wavelength. 

* Control media had yeast extract mannitol broth (9 ml) and glycerol stock (1 ml) of Bradyrhizobium japonicum (USDA 110). 

* YEM: yeast extract mannitol broth 

* DI: deionized water. 

* Incubation time: 24-,48-, and 72-hours. 

* Bars indicate standard error of treatment mean. Different letters above the error bars are significantly different from each other at 0.05 probability level. 
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Figure 2.5. Effect of Herbicide mixture on the growth of Bradyrhizobium japonicum (USDA 110) in yeast extract media (YEM) and 

deionized (DI) water media over 3-day incubation period. 

 
 

* Herbmix contained a mixture of glyphosate (2.5 ml), dicamba (1.4 ml), ammonium sulfate (2.0 g), Duce HSOC (7.5 ml), and Strike Zone (0.125 ml).  

* OD650 - optical density reading in spectrophotometer at 650 nm wavelength. 

* Control contained 9 ml of yeast extract mannitol (YEM) broth and 1ml glycerol stock of Bradyrhizobium japonicum (USDA 110). 

* YEM: yeast extract mannitol broth; DI: deionized water. 

* Incubation time: 24-,48-, and 72-hours.  

* Bars indicate standard error of treatment mean. Different letters above the error bars are significantly different from each other at 0.05 probability level. 
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2.4. Discussion  

Bradyrhizobium japonicum’s growth over an incubation period of 72-hours was 

influenced by the additions to the culture media. In deionized water, all the additions 

except Duce HSOC at a higher concentration (7.5 mg/ml) and herbmix reduced 

Bradyrhizobium japonicum growth compared to the untreated control. Changes in the pH 

of the media environment for the duration of the study may be responsible for the 

increase or decrease in the growth rate of Bradyrhizobium japonicum. The optimum pH 

suitable for the culturing of B. japonicum is 6.8 (Vincent 1970; Somasegaran and Hoben, 

1994). Our data supports previous literature that herbicide, adjuvant, and surfactant 

influenced rhizobial growth in agitated liquid media (Mallik and Tesfai, 1985; Schuls et 

al. 1985; Eberbach and Douglas, 1989; Moorman et al. 1992; Singh and Wright 2002; 

Santos et al. 2005).  

Past studies that investigated the effect of herbicides on the growth of rhizobia 

species obtained different results. Bentazon was found to have an inhibitory effect on the 

growth of R. trifolii when applied at the recommended rate (2.50 µg g-1 soil), and ten 

times above the recommended rate (25.0 µg g-1 soil), as well as when grown on agar 

plates, but not in broth cultures (Clark and Mahanty, 1991). Results presented in Figure 

2.2. showed a growth retarding effect of glyphosate on soybean N- fixing bacteria 

(Bradyrhizobium japonicum – USDA 110 strain) cultured in yeast extract mannitol broth 

and deionized water, when compared to the control.  

Glyphosate inhibits the synthesis of aromatic amino acids (phenylalanine, 

tyrosine, and tryptophan) in microorganisms (Jaworski, 1972; Fisher et al. 1986). 

Specifically, the herbicide inhibits 5-enolpyruvylshikimic acid-3-phosphate synthase 
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(EPSPS) enzyme which catalyzes the condensation of shikimic acid and 

phosphoenolpyruvate (Steinrucken and Amrhein, 1980). Inhibition of the shikimic acid 

pathway by glyphosate results in the accumulation of shikimic acid and/or certain 

hydroxybenzoic acids such as protocatechuic acid (PCA) and gallic acid (GA) in B.  

japonicum (Moorman et al. 1992; Hernandez et al. 1999). The PCA and GA are phenolic 

acids with antibacterial properties (www.ncbi.nlm.nih.gov/pmc/articles/PMC8216263/). 

Hence, the likely reasons for the growth inhibition of B. japonicum by glyphosate may be 

attributed to (i) the inability of the organism to synthesize aromatic amino acids; (ii) an 

energy drain on the organism resulting from adenosine triphosphate and 

phosphoenolpyruvate (PEP) spent in the accumulation of shikimate, 3-deoxy-D-arabino-

heptulose-7-phosphate (DAHP), and hydroxybenzoic acids; and (iii) toxicity of 

accumulated intermediates of the shikimic acid pathway (Fisher et al., 1986). Also, it is 

known that B. japonicum requires an optimum pH of 6.8 to maintain its metabolic 

activities (growth, respiration, and reproduction) (Somasegaran and Hoben, 1994). 

Therefore, the low pH (4.0) obtained in cultures treated with glyphosate at the end of the 

experiment may be responsible for the reduced growth observed. 

2,4-D, although not tested in the current study, has been reported to have an 

inhibitory effect on soil bacteria activity (Arias and Fabra, 1993; Balagué et al. 2001; 

Fabra et al. 1997; Fanous et al. 2007; and Jofré et al. 1996). However, soil bacteria like 

Pseudomonas, Alcaligenes, Ralstonia, Delftia, Arthrobacter, and Burkholderia were 

found to breakdown 2,4-D molecules. These organisms used the herbicide molecules as 

an energy source for their growth (Marron et al. 2006; Baelum et al. 2010; Sandoval-

Carrasco et al. 2013; Singh and Singh, 2014). Furthermore, microbial strains, including 
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Pseudomonas fluorescens bacteria, have been reported to be able to mineralize dicamba 

under aerobic conditions (Smith, 1973; Smith and Cullimore, 1975; Krueger et al. 1989; 

and Krueger et al. 1991) and at an optimal temperature of 30 0C (Speed, 1990). In our 

study, the optical density value of bacteria culture treated with dicamba in YEM and 

deionized (DI) water was lower than that of the positive control at 30 0C. A possible 

reason for the reduced growth rate of B. japonicum compared to the untreated control 

may be because of the inability of the bacteria to breakdown the dicamba molecules 

present in the media solution. Over time, nutrient sources present in YEM, and DI water 

media got depleted and bacterial metabolic activities declined as indicated by the low 

optical densities (OD650) measured in the dicamba-treated culture compared to the 

positive control.  

The pH of the media solution at the end of the experiment (72-hours) may be 

another reason for the reduced growth rate of B. japonicum. The dicamba-treated bacteria 

culture, with a pH of 5.7 at the start of the experiment, had a pH of 5.2 at the end of 72-

hours incubation period and this was below the optimum pH (6.8) needed to maintain the 

bacteria’s metabolic activities (Somasegaran and Hoben, 1994). This implies that the 

growth of Bradyrhizobium japonicum will be inhibited in a strongly acidic medium. The 

biodegradation of dicamba herbicide has been found to reduce at pH less than 6 

(Krueger,1989). In our study, the low pH or acidic environment obtained at the end of the 

incubation period (pH = 5.2) may be the most likely cause of the low optical density 

values found in bacteria cultures treated with dicamba herbicide. Therefore, it is possible 

that the acidic growth media caused a reduction in the metabolic activities (respiration, 

growth, and reproduction) of Bradyrhizobium japonicum.  
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Past studies have reported the negative effects of adjuvant and surfactants on the 

development of soil microorganisms (Katan and Eshel, 1973; Johal and Rahe, 1984; 

Sawada et al. 1988; Berner et al. 1991). Some special class of adjuvants/surfactants have 

the tendency to increase herbicide effects by decreasing or removing crop wax layer 

(Kissmann, 1997). By reducing surface tension, the penetration of herbicide is facilitated, 

and bacteria become more sensitive to their action (Malkones, 2000). It is hard to come 

by documented studies that report on the impact of ammonium sulfate (AMS) on B. 

japonicum growth in liquid media. Our study found that ammonium sulfate fertilizer 

[AMS; 28-0-0] typically used to enhance herbicide efficacy by preventing cations in hard 

water from binding to glyphosate, suppressed the growth of Bradyrhizobium japonicum 

in YEM and deionized water throughout the incubation time (Table 2.3.1). A likely 

explanation for the inhibitory effect of AMS on the growth of B. japonicum could be 

because of the low pH of the culture solution. At the end of the experiment, AMS-treated 

cultures at high (20 mg/ml) and low (0.2 mg/ml) levels had pH values of 3.07 and 3.13, 

respectively, thus indicating a strongly acidic environment that inhibited bacterial growth 

since B. japonicum is known to thrive in environments with an optimum pH of 6.8 

(Somasegaran and Hoben, 1994).  

According to Santos et al. 2005, the surfactant ethylamine used in commercial 

herbicide formulations (for example Roundup Transorb®) can affect beneficial 

microorganisms including some strains of Bradyrhizobium. Our study which examined 

surfactant impact on the growth of B. japonicum saw some measure of growth increase 

when bacterial cultures were treated with Duce high surfactant oil concentrate at low 

concentration (0.75 mg/ml) and grown in yeast extract mannitol broth, and at high 
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concentration (7.5 mg/ml) and cultured in deionized water. Duce HSOC contains a blend 

of methylated seed oil (a kind of fatty acid esterified with methyl alcohol) and non-ionic 

surfactants. Fatty acids or lipid molecules are reported to serve as a source of nutrient, 

storage form of carbon, energy storage molecules, or structural components of 

membranes and hormones (OpenStax, 2021). Also, according to Bergey et al. (1923), the 

rhizobia group of bacteria can metabolize glyoxylate, which is a degradation product of 

fatty acids. Therefore, it is possible that the bacteria (B.  japonicum) in our study 

expended its energy degrading the surfactant Duce as it may have used the fatty acid 

present in Duce as a nutrient and energy source to sustain its metabolic activities 

throughout the incubation period (24-, 48-, and 72-hours).  

In the present study, higher optical density (OD650) values obtained in culture 

solutions treated with Duce HSOC surfactant, compared to the positive control, is an 

indication of continued bacterial growth after 24-, 48-, and 72-hours of incubation. In a 

recent study, peanut Bradyrhizobium was found to have metabolized Tween 40 and 

Tween 80, both surfactants with fatty acid structures (Li et al. 2019). Their findings 

suggest that Bradyrhizobium japonicum  may have metabolized Duce HSOC (a surfactant 

with fatty acid structure) and used the fatty acid molecules as energy source for growth 

when cultures were treated at lower concentration (0.75 mg/ml) and grown in yeast 

extract media or at higher concentration (7.5 mg/ml) and grown in deionized water. Since 

the pH of the Duce-treated culture solutions were stable and within the optimum value of 

6.8, the metabolic activities of Bradyrhizobium japonicum, including its respiration, 

growth, and reproduction, could have been enhanced. This may explain the high OD650 

readings observed for the Duce-treated bacteria cultures.  
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Some herbicide mixtures have been reported to have no inhibitory effect on the 

growth of bacteria (Flores and Barbachano, 1992). In the present study, B. japonicum 

(USDA 110 strain) cultures treated with a mixture of herbicide and adjuvant and 

surfactants (glyphosate + dicamba + AMS + duce + strike zone) increased the growth rate 

of Bradyrhizobia in deionized water but not in yeast extract media when compared to the 

untreated control in our study (Figure 2.5). Strike zone LC (manufactured by Helena 

Agri-enterprises) contain 95% polyethoxylated hydroxyl aliphatics and carbohydrate 

polymers, whereas Duce HSOC (manufactured by Helena Agri-enterprises), contain a 

blend of methylated seed oil (a kind of fatty acid esterified with methyl alcohol). The 

increase in the growth of B. japonicum observed in this study may be due to the bacteria 

metabolizing Strike Zone and/or Duce HSOC in the herbicide mixture as a nutrient and 

energy source for sustained metabolic activities. However, since the surfactant Strike 

Zone was not tested alone, it is unknown if the growth of Bradyrhizobium in cultures 

treated with the herbicide mixture was caused by either Strike Zone or Duce HSOC or 

both. The pH of the herbicide mixture after 72-hours incubation was 6.51 and is suitable 

for the growth of Bradyrhizobium japonicum.  

In summary, the present study saw a reduction in the growth rate of B. japonicum 

when the bacteria cultures were treated with herbicide (glyphosate, dicamba), and 

adjuvant (AMS), and grown in YEM and DI water. The concentration of Duce HSOC 

(0.75 ml in YEM or 7.5 ml in DI water) enhanced the growth of bacteria, whereas higher 

optical densities were obtained for the bacteria cultures grown in deionized water and 

treated with herbicide mixtures containing 2.5 ml glyphosate + 1.4 ml dicamba + 2.0 g 

AMS + 7.5 ml Duce HSOC + 0.13 ml Strike Zone LLC compared to the positive control. 
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Throughout the incubation time of 72-hours, the pH of the non-treated control remained 

at a range of 6.8 ± 0.2. Therefore, the low optical density values found (which indicates 

reduced bacterial growth) in cultures treated with glyphosate, dicamba, and AMS were 

most likely due to low pH of these solutions. 

Any factor that affects the cell division process of rhizobia bacteria will also 

impact nodulation, nitrogen fixation and ultimately yield in legume crops. From the 

current research findings, the surfactant type, herbicide type, and the concentration used 

for herbicide application can either positively or negatively impact the growth of 

Bradyrhizobium japonicum in liquid (YEM or DI) media culture. Therefore, there is the 

need for further studies into the effect of other groups of adjuvant, surfactant, herbicide, 

and herbicide mixtures on nitrogen fixing bacteria as little is known about their effects on 

Bradyrhizobium japonicum.  

2.5. Conclusion  

The adjuvant (AMS; 20-0-0 grade) greatly reduced the growth of B. japonicum in 

agitated liquid (YEM or DI) media at low (0.2 mg/ml) and high (20 mg/ml) 

concentrations throughout the incubation time (24-, 48- and 72-hours). Compared to the 

control, B. japonicum’s growth rate increased when the bacteria were cultured in YEM 

media and treated with 0.75 ml Duce HSOC surfactant, whereas an increase in growth 

was observed when bacteria was grown in deionized water media and treated with high 

levels of Duce HSOC (7.5 ml). Glyphosate and dicamba herbicides reduced the growth 

rate of bacteria in agitated liquid media, but when mixed with adjuvant/surfactants, the 

herbicide mixture in deionized water did not inhibit B. japonicum’s growth as the optical 

density value of bacteria were similar to the positive control at 72-hours incubation time. 
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Nitrification or fermentation that occurred in the treated culture solutions over 72-hours 

incubation period may reduce pH of the solutions, and the reduction in the growth of B. 

japonicum may be attributed to this low pH.  

Based on the results of our findings, we can conclude that rhizobia inoculant may 

be mixed with some herbicide combinations and not be adversely impacted. However, if 

rhizobia are to be mixed with herbicide for foliar application on the field, those mixtures 

that have no impact or a positive impact would be preferable, rather than those that 

inhibit the growth of bacteria. 

2.6. Recommendation 

An ideal condition for the survival and growth of the Bradyrhizobium species must be 

ensured, as well as the use of aseptic techniques throughout the experiment period to 

ascertain that the changes in the growth pattern of the bacteria was due to the effect of the 

formulated herbicides, surfactants and adjuvant and not as a result of external 

contamination or protocol error. Since little is known about the effect of surfactant like 

Strike Zone on rhizobia, it is recommended that additional testing be carried out to 

validate the results obtained in this study. 

 

 

 

 

 



45 

 

 

 

CHAPTER 3: EVALUATING 2,4-D AND DICAMBA BASED HERBICIDE 

PROGRAM FOR WEED CONTROL IN AUXIN TOLERANT SOYBEAN 

3.1. Introduction 

Weeds pose a serious threat to successful soybean production worldwide as they 

can reduce crop yield if left uncontrolled, particularly during the critical weed free period 

of soybean. Tillage program, crop rotation practices and management inputs can 

influence weed species and densities present (Kegode et al. 1999). In large scale 

conventional farming, herbicides are relied upon for weed control. The repeated use of 

herbicides with the same mode of action increases weed selection pressure and 

contributes to the development of herbicide-resistant weed biotypes (Norsworthy et al. 

2012; William et al. 2012). About 522 unique cases of herbicide-resistant weeds (species 

x location of action) have been reported globally (Heap, 2021), with several weed species 

found to be resistant to 23 of the 26 known herbicide locations of action and to 167 

different herbicides (Heap, 2021).   

According to the international survey of herbicide resistant weeds, the most 

widespread herbicide resistant weed of South Dakota is kochia (Bassia scoparia) (Heap, 

2021). The ALSresistant kochia which infested wheat and soybean was first reported in 

South Dakota in 1988 (Wolf et al. 2000, Heap, 2021). A glyphosate-resistant kochia 

biotype was later reported in corn and soybean fields in 2009 (Heap, 2021). The herbicide 

resistant weeds found in soybean fields and their reported year in South Dakota include 

glyphosate resistant kochia (Bassia scoparia –2009), common ragweed (Ambrosia 

artemisiifolia –2007), tall or common waterhemp (Amaranthus tuberculatus (=A. rudis) –
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2010), and horseweed or marestail (Conyza canadensis –2010) (Heap, 2021). The 

presence of herbicide resistant weeds in soybean fields has increased grower’s production 

costs as several herbicide applications or an investment in herbicide tank-mix partners are 

needed to prevent weed stress to crops as this can lead to yield reductions if left 

uncontrolled. 

Biotechnology companies continue to seek new ways to combat the rise of “super 

weeds” by providing innovative technology to manage these resistant weeds in fields. 

The recent development and launching of auxin-tolerant crop traits by Monsanto [now 

Bayer (Roundup Ready 2 Xtend)] and Dow AgroSciences (Enlist E3) have provided 

another mode of action to control broadleaf weeds, including the glyphosate-resistant 

weeds found in soybean fields. Auxin-tolerant soybean varieties were developed using 

high-tech methods (genetic engineering) to insert desirable genes (herbicide-resistance) 

from one species (plant, animal, or micro-organism) into the genome of soybean. It is the 

inserted genes that confer the herbicide resistant trait to the crop 

(https://www.ecofarmingdaily.com/grow-crops/grow-soybeans/ choosing-soybean-

seeds/are-gmo-soybeans-the-way-to go/#:~:text=The%20major%20development%20 

in%20soybean%20agriculture%20over%20the,now%20planted%20on%2090%25%20of

%20U.S.%20soybean%20acres)(https://www.croplife.com/crop-inputs/herbicides/dow-

agrosciences-anno unces-new-enlist-e3-soybean-brand/).  

3.1.1. 2,4-D based herbicide program 

Dow Agrosciences, now Corteva, launched the Enlist E3™ soybean with multiple 

herbicide tolerant crop traits. This technology was developed to maximize weed control 

flexi-bility by providing tolerance to 2,4-D choline, glyphosate and glufosinate herbicides 

https://www.ecofarmingdaily.com/grow-crops/grow-soybeans/%20choosing-soybean-seeds/are-gmo-soybeans-the-way-to%20go/#:~:text=The%20major%20development%20 in%20soybean%20agriculture%20over%20the,now%20planted%20on%2090%25%20of%20U.S.%20soybean%20acres
https://www.ecofarmingdaily.com/grow-crops/grow-soybeans/%20choosing-soybean-seeds/are-gmo-soybeans-the-way-to%20go/#:~:text=The%20major%20development%20 in%20soybean%20agriculture%20over%20the,now%20planted%20on%2090%25%20of%20U.S.%20soybean%20acres
https://www.ecofarmingdaily.com/grow-crops/grow-soybeans/%20choosing-soybean-seeds/are-gmo-soybeans-the-way-to%20go/#:~:text=The%20major%20development%20 in%20soybean%20agriculture%20over%20the,now%20planted%20on%2090%25%20of%20U.S.%20soybean%20acres
https://www.ecofarmingdaily.com/grow-crops/grow-soybeans/%20choosing-soybean-seeds/are-gmo-soybeans-the-way-to%20go/#:~:text=The%20major%20development%20 in%20soybean%20agriculture%20over%20the,now%20planted%20on%2090%25%20of%20U.S.%20soybean%20acres
https://www.croplife.com/crop-inputs/herbicides/dow-agrosciences-anno%20unces-new-enlist-e3-soybean-brand/
https://www.croplife.com/crop-inputs/herbicides/dow-agrosciences-anno%20unces-new-enlist-e3-soybean-brand/
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(Simpson et al. 2014). By using the Enlist weed control system, soybean growers can 

make applications of approved Enlist herbicides (Enlist One and Enlist Duo) in-season to 

soybean for an effective control of both monocot and dicot weeds, including glyphosate-

resistant waterhemp, horseweed, and kochia. The Enlist Duo® herbicide with Colex-D™ 

technology combines 2,4-D choline and glyphosate to control weeds, whereas the Enlist 

One™ herbicide offers an additional tank-mix flexibility with glufosinate to provide 

weed control in Enlist E3 soybeans. 

The Enlist weed control program has some merits which include a near-zero 

volatility, reduced physical drift potential, better handling characteristics, and a longer 

application window through R2 or the full flowering growth stage. The three herbicide 

tolerances of Enlist E3 soybeans, 2,4-D, glyphosate, and glufosinate, are used in a variety 

of cropping situations (Anonymous 2014a, 2014b). 2,4-D (WSSA group 4) herbicide is 

effective against a wide range of broadleaf weeds. The herbicide imitates the natural 

hormone indole 3-acetic acid present in plants (Grossman 2010; Shaner 2014). In 

multiple environments, 2,4-D herbicides have been found to effectively control most 

dicot weeds including the Amaranthus species (Shaner 2014).  

2,4-D choline herbicides are currently labelled for pre and postemergence 

applications in Enlist E3™ (2,4-D tolerant) soybeans (Anonymous 2017a and b). The 

2,4-D choline formulation has a reduced drift potential from intended target during 

applications than 2,4-D ester and salt formulations. Susceptible plants show symptoms 

similar to those of other auxin herbicides when exposed to 2,4-D applications and 

symptoms include leaf cupping and curling, stem elongation and epinasty within hours 

after application. However, susceptible plants completely die in 3 to 5 weeks of exposure 
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to the herbicide (Shaner 2014). Therefore, the use of auxin (2,4-D) tolerant soybean 

provides growers more flexibility for controlling glyphosate-resistant broadleaf weeds 

common in fields (Johnson et al. 2012).  

Glyphosate, another herbicide used with the Enlist technology is a broad-

spectrum, non-selective herbicide developed in the 1970s (Davies, 2011; Heap, 2021). 

Glyphosate herbicide is commonly used in the control of many dicotyledonous and 

monocotyledonous weeds in both cropping and non-cropping situations (Anonymous 

2014b). In recent years, glyphosate applications over expansive croplands resulted in the 

selection of glyphosate-resistant weed biotypes (Franz et al. 1997; Heap and Duke, 

2018). However, glyphosate, applied post emergent, continues to control many species 

and is relatively inexpensive and therefore is a go-to-product for many producers.  

Miller and Norsworthy (2016) controlled Palmer amaranth up to 95 % with the 

sequential application of 2,4-D choline plus glyphosate at early-POST followed by mid-

POST timings. Another research study reports that an application of the herbicides 2,4-D 

choline plus glyphosate, followed by glufosinate, had 99 % control of Palmer amaranth 

when trifluralin was applied as a pre-plant incorporate (Manuchehri et al. 2017). In 

addition, herbicide applications that contained a mixture of glufosinate and 2,4-D has 

been reported to result in more than 96 % control of glyphosate-resistant horseweed, 

giant ragweed (Ambrosia trifida), and common lambsquarters (Chenopodium album) 

(Barnett et al. 2013; Chahal and Johnson 2012).  

Glufosinate (WSSA group 10) herbicide is in the phosphinic acid herbicide 

family. The herbicide is a non-selective, contact herbicide with limited translocation 
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within the plant and can be applied to the Enlist E3 soybean. Glufosinate provides control 

of several annual grass and broadleaf weeds, including Palmer amaranth and volunteer 

corn (Coetzer et al. 2002; Chahal and Johnson, 2012; Chahal et al. 2014, Chahal and 

Jhala, 2015). However, crop injury occurs with spray contact with non-tolerant crops. 

Common glufosinate trade names include Liberty® (BASF), Interline® (United 

Phosphorus, Inc.), and Ignite®(Bayer).  

Glufosinate inhibits the glutamine synthetase pathway by binding to the active 

location of glutamine synthetase and competing for glutamate (Manderscheid and Wild 

1986). The glutamine synthetase pathway is an efficient pathway for ammonia 

detoxification, which inhibits photosynthesis (Sauer et al. 1987; Wild and Manderscheid 

1984). Inhibition of this enzyme causes a buildup of phytotoxic ammonia in plants which 

disrupts cell membranes. Weed control with glufosinate is best when weeds are actively 

growing and not under stress. 

3.1.2. Dicamba based herbicide program 

Dicamba (WSSA group 4 herbicide) is a highly volatile auxin-mimic chemical 

with vapor pressure of 4.5 x 10-3 Pa at 25 0C (https://wssa.net/wp-

content/uploads/Dicamba-Report_6_30_2018.pdf), and can damage non-target plant 

species through spray drift and/or volatilization (vapor drift). Volatility is influenced by 

several factors including temperature, relative humidity, and application rates. The 

misuse of dicamba may cause serious damage to broadleaf plants including non-dicamba-

tolerant soybeans, grapes, peas, flax, canola, and non-crop plants (Strachan et al. 2010). 

Because of the problem with volatility, cutoff dates for dicamba application have been 

established. The cutoff date for use of dicamba products like XtendiMax and Engenia in 

https://wssa.net/wp-content/uploads/Dicamba-Report_6_30_2018.pdf
https://wssa.net/wp-content/uploads/Dicamba-Report_6_30_2018.pdf
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South Dakota is June 30 (https://www.sdaba.org/dicamba-information). Applicators can 

use dicamba products until soybeans reach the R1 growth stage, or 45 days after planting, 

or June 30, whichever comes first. 

Bayer’s Roundup Ready 2 Xtend soybean variety was developed in 2006. The 

Xtend soybean is the company's first biotech-stacked soybean trait having both dicamba 

and glyphosate tolerance. During the process of development, herbicide resistant genes 

were incorporated into the soybean genome which enabled the crop to metabolize the 

herbicide dicamba. The Xtend weed control system allows for the control of glyphosate 

resistant weeds in soybean fields by using another herbicide mode of action to kill weeds, 

while increasing yields. Glyphosate-resistant broadleaf weeds controlled by dicamba 

applications in fields planted to Xtend soybean include Palmer amaranth, waterhemp, and 

horseweed. 

Because glyphosate (for both Enlist™ and Xtend® soybeans) and glufosinate 

(Enlist™ only) are non-selective herbicides, their applications will help control grass 

weeds and provide another mode of action for controlling weeds present in fields. As the 

numbers of herbicide resistant weeds increase globally, using multiple modes of action at 

different application timings for weed control are critical as this will help slow down or 

prevent the selection of resistant weed biotypes. An understanding of POST control of 

glyphosate-resistant weeds (particularly those common in eastern South Dakota such as 

waterhemp, kochia, and horseweed) with multiple herbicide modes of action including 

auxinic herbicides is crucial to minimize the interference of these weeds within the 

broadleaf crop.  

https://www.sdaba.org/dicamba-information
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However, high auxin levels in soybean roots (Turner et al. 2013), as well as weed 

stress (Gal et al. 2015), other herbicide stress (Tortosa et al. 2021), and high soil nitrogen 

(Gresshoff, 1990) have all been reported to inhibit nodulation. An on-farm study 

suggested up to 5% yield increase with Primo foliar rhizobia inoculant (manufactured by 

Verdesian, Cary, NC) when applied to soybean at V3 and R2 stages of growth 

(https://onfarmresearch.sdsoybean.org/archives/ reports/primo-foliar-inoculant-high-

yield-zone-location-1-55-bu-ac). Research investigating the impact of auxin-based 

herbicides (2,4-D and dicamba) on auxin tolerant soybeans (Enlist E3 and Xtend) and on 

the nodulation potential of these varieties has not been done. Also, the application of 

foliar rhizobia with herbicide has not been studied. The objective of this study was to 

evaluate the efficacy of auxin-based herbicide programs (2,4-D and dicamba) and 

rhizobia application with herbicide in auxin tolerant soybean for weed control and 

nodulation potential in South Dakota soybean. This study specifically examined: 

1) the performance of 2,4-D alone for broadleaf weed control and with mixtures 

of glyphosate and glufosinate for annual grass and broadleaf weed control in 

Enlist E3 soybeans; 

2) the performance of dicamba for broadleaf weed control, and mixed with 

glyphosate for grasses and broadleaf weed control in Roundup Ready 2 Xtend 

soybean; 

3) planting date influence on auxin-tolerant soybean performance and weed 

control;  

4) if auxin-tolerant soybean nodulation was impacted by auxin herbicide; and  

https://onfarmresearch.sdsoybean.org/archives/%20reports/primo-foliar-inoculant-high-yield-zone-site-1-55-bu-ac
https://onfarmresearch.sdsoybean.org/archives/%20reports/primo-foliar-inoculant-high-yield-zone-site-1-55-bu-ac
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5) if foliar application of Bradyrhizobium japonicum (USDA 110) at V3 stage of 

soybean when combined with auxin herbicide would improve soybean 

nodulation, nodule activity, yield, 100-seed weight, seed protein and oil 

contents. 
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3.2. Materials and methods 

Location description 

Field experiments were conducted over five location years at three eastern South 

Dakota locations [northeast - South Shore (elevation:1831 ft, latitude:44 45N, 

longitude:096 41W, season: 2019); southeast - Beresford (elevation:1257 ft, latitude:43 

03N, longitude:096 54W, season: 2019 & 2020); east-central - Brookings (elevation:1637 

ft, latitude:44 18N, longitude:096 49W, season: 2019 & 2020). The Koppen climate 

classification subtype for the study locations is the “Dfa” (hot summer continental 

climate) for southeast location, and “Dfb” (warm humid continental climate) for northeast 

and east-central locations (https://www.weather-   

base.com/search/search.php3?query=south+dakota). The soil type at the experimental 

locations (northeast, southeast, and east-central) were Brookings clay loam, 0-2% slope 

(fine-silty, super- active, frigid Cumulic Hapludoll), Egan silty clay, 0-2% slope (fine-

silty, mixed, superactive, mesic Udic Hapludoll), and Brandt silty clay loam, 0-2% (fine-

silty, mixed, superactive, frigid Calcic Haplodolls), respectively. 

Land preparation and planting 

Study locations at northeast and east-central South Dakota were tilled with a field 

cultivator to a depth of about 10 cm before planting, whereas southeast was under no-till 

system. The previous crop at all locations was corn. Auxin tolerant soybeans (Enlist E3 

and Xtend) were planted at three timings (early-PD1, mid-PD2, and late-PD3), with 

approximately two weeks between planting dates, using a seeding rate of 350,000 seeds 

ha-1 at a planting depth of 2.5 cm. Planting dates and soybean genotypes differed based on 

climate. The relative maturity group (MG) of soybean planted at northeast was 1.0 – 1.1 

https://www.weather-/
https://www.weatherbase.com/search/search.php3?query=south+dakota
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MG (short maturity). The mid-maturity varieties (1.3 – 1.7 MG) were planted at east-

central, whereas southeast was planted to a longed maturity varieties (2.0 MG). 

Information on soybean variety planted with their relative maturity group is presented in 

Table 3.1. The planting dates, harvest dates and growing degree days (GDD) across 

locations are presented in Table 3.2.  

The Enlist seed was not treated whereas the Roundup Ready 2 Xtend seeds were 

treated with fungicide/insecticide combination that contained the active ingredients 

metalaxyl, fluxapyroxad, and pyraclostrobin (Acceleron, Monsanto, St. Louis Mo). 

Preemergence herbicide tank mix containing flumioxazin, metribuzin, glyphosate, S-

metolachlor, pendimethalin, ammonium sulfate and surfactants (Table 3.3) was applied 

over all plots at each planting date to burndown emerged weeds (mid-PD2 and late-PD3) 

and to provide early season residual weed control (all planting dates), especially for grass 

weeds. At northeast location (2019), the preemergence (PRE) treatment for early planting 

date had no glyphosate as tillage prior to planting left few emerged weeds. However, 

glyphosate and adjuvant (AMS) were added to the preemergence treatments for mid-PD2 

and late-PD3 planting dates. Also, the PRE herbicide was applied to all planting dates at 

southeast on May 11 in 2020 growing season, whereas at east central location, the PRE 

herbicide was applied to individual planting date in 2019 and 2020 (Table 3.3). 
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Table 3.1. Soybean varieties and relative maturity groups planted at northeast, east-

central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Experiment 

location 

Soybean 

variety 

Maturity 

group 

Days to 

maturity 

Northeasta Enlist E3 (Stine 11EC20) 1.1 ≤120 

 Xtend (Asgrow 10X9) 1.0  

East-centralb Enlist E3 (Stine 13EA12) 1.3 ≤127 

  Xtend (Asgrow 17X8) 1.7   

Southeastc Enlist E3 (Stine 22EB23) 2.0 ≤137 

 Xtend (Asgrow 20X7) 2.0  

aSouth Dakota State University northeast research farm (SDSU - NERF) located at South Shore, South 

Dakota. Elevation: 558 m, latitude: 44 45N, longitude: 096 41W. Study was conducted in 2019 

growing season only.  

bSouth Dakota State University Aurora experiment research station, South Dakota. Elevation: 499 m, 

latitude: 44 18N, longitude: 096 49W. Study was conducted at the location in 2019 and 2020 growing 

seasons. 

cSouth Dakota State University southeast research farm (SDSU – SERF) located at Beresford, South 

Dakota. Elevation: 383 m, latitude: 43 03N, longitude: 096 54W. Study was conducted at the location 

in 2019 and 2020 growing seasons.  
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Table 3.2. Planting date, growing degree days, and harvest date of Enlist and Xtend 

soybean varieties evaluated for weed control and nodulation potential at three eastern 

South Dakota. 

Planting date Growing degree days (GDD)a Harvest date 

Northeast 2019 

PD1 - May 15  1178 October 30 

PD2 - May 30 1136  

PD3 - June 15  1008  

East-central 2019 

PD1 - May 15  1279 October 29 

PD2 - June 2  1198  

PD3 - June 19  1047  

Southeast 2019   

PD1 - May 7  1535 October 19 

PD2 - June 5  1378  

PD3 - June 19  1236  

East-central 2020   

PD1 - May 20  1420 October 9 

PD2 - June 3  1314  

PD3 - June 16  1166  

Southeast 2020   

PD1 - May 15  1553 October 15 

PD2 - May 29  1458  

PD3 - June 12  1292  

aGDD: growing degree days from planting to harvest. A base temperature of 10 0C was used to calculate 

GDD. 
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Table 3.3. Preemergence herbicide applications to auxin-tolerant soybeans at northeast, 

east-central, and southeastern South Dakota in 2019 and 2020. 

Pre-herbicide Rate [a.i. or a.e. ha-1] Northeast location 

Flumioxazin1 0.42 2019 application date 2020 application date 

Metribuzin2 0.56 PD1 – May 6 N/A 

S-metolachlor3 0.12 PD2 – May 30 N/A 

Glyphosate4 0.34 PD3 – June 14 N/A 

Pendimethalin5 0.29 East-central location 

  2019 application date 2020 application date 

  PD1 – May 15 PD1 – May 15 

  PD2 – June 5 PD2 – June 2 

  PD3 – June 19 PD3 – June 19 

  Southeast location 

  2019 application date 2020 application date 

  PD1 – May 7 PD1 – May 11 

  PD2 – June 2 PD2 – May 11 

  PD3 – June 19 PD3 – May 11 

1Flumioxazin 51% [Valor SX (Valent BioSciences LLC USA, Walnut Creek, Ca) or Panther SC (Nufarm 

Americas Inc. Alsip, IL.)]. Flumioxazin is a light-dependent peroxidizing herbicide (LDPH), which acts by 

blocking heme and chlorophyll biosynthesis resulting in an endogenous accumulation of phototoxic 

porphyrins. 

2Metribuzin 75% [Glory (ADAMA USA. Raleigh, NC) or Dimetric (WinField United, Shoreview, MN)]. 

The mode of action of metribuzin is that it acts by inhibiting photosystem II of photosynthesis by disrupting 

electron transfer. 

3 S-metolachlor 82% [Me-Too-LachlorTM (Drexel chemical company. Memphis, TN) or Medal II EC 

(Syngenta, Greensboro, NC, USA)]. S-metolachlor act by inhibiting the biosynthesis of several plant 

components such as fatty acids, lipids, proteins, isoprenoids, and flavonoids. 

4Glyphosate 49% [Roundup PowerMax® (Bayer, Whippany,NJ) or Tomahawk (WinField United, 

Shoreview, MN)]. Glyphosate interferes with the shikimate pathway, which produces the aromatic amino 

acids phenylalanine, tyrosine and tryptophan in plants and microorganisms. 

8Prowl® [39% pendimethalin] manufactured by BASF. Pendimethalin acts both pre-emergence, that is 

before weed seedlings have emerged, and early post-emergence. Pendimethalin inhibits root and shoot 

growth. 

*Adjuvant [AMS at 3 kg ha-1], and surfactants [Duce HSOC at 1.67 Lha-1) or Destiny HSOC (1.38 Lha-1), 

NIS (0.01 Lha-1), UAN (0.01 Lha-1) and StrikeZone (0.21 Lha-1)] were added into the preemergence spray 

tank.  N/A – not applicable. 
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Treatments 

Postemergence herbicide treatments used in the study are reported in Tables 3.4, 3.5, 

and 3.6. The postemergence herbicides applied to Enlist E3 soybean include 2,4-D (as 

choline salt) + clethodim or 2,4-D + glufosinate. A no POST herbicide treatment was 

included to determine weed problems after preemergence treatment application. 

Herbicide treatments to Xtend soybean varieties were diglycolamine salt of dicamba + 

glyphosate, acifluorfen + clethodim, and a no POST herbicide treatment. Rhizobia 

(Bradyrhizobium japonicum-USDA-110) inoculant cultured in yeast extract mannitol 

(YEM) media at 1 L/ha and delivering 2.7 ml inoculant per plot was foliar applied with 

each POST treatment to determine if inoculant addition with the herbicide improved 

nodulation.  

Postemergence auxin herbicide (2,4-D and dicamba) applications, although targeted 

for V3 soybean growth stage, were applied between V2 (PD3) to V5 (PD1) for Enlist 

variety (Table 3.4), and VC (PD3) to V3 (PD1) for Xtend variety (Table 3.5 and Table 

3.6), whereas acifluorfen + clethodim + rhizobia treatment was applied between V1 

(PD3) to V5 (PD1) growth stages (Table 3.5 and Table 3.6). Herbicides were applied 

with a CO2-pressurized bicycle-type sprayer calibrated to deliver 187 L ha-1 at 207 kPa at 

a ground speed of 4.5 km hr-1. The nozzles were set at 46 cm above the crop. Table 3.7 

and 3.8 shows the local environmental conditions at time of herbicide applications
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Table 3.4. Postemergence herbicide (+/- rhizobia) applications to Enlist E3 soybeans evaluated for weed control and 

nodulation potential at northeast, east-central, and southeastern South Dakota in 2019 and 2020 growing seasons.  

Enlist E3 herbicide treatments (2019 season) 

Postemergence applications 

 

Herbicide 

applied 

Rate 

(kg a.e.or 

a.i./ha) 

 

 

Location 

Planting  

date 

(PD) 

POST 

herbicide 

application 

date 

Soybean 

growth  

stage 

Harvest  

date 

 

2,4-D + clethodim  

 

Enlist One™ + Select Max® 

 

0.54 + 0.13 

 

Northeast 

 

May 15  July 15 

 

V5 

 

October 30 

2,4-D + glufosinate Enlist One™ + Liberty® 280 SL 0.54 + 0.30  May 30   V3   

    June 15  V2  

        

    East-central May 15 July 15 V5 October 29 

     June 2  V3  

    June 19  V2  

        

   Southeast May 7 July 16 V5 October 19 

    June 5  V3  

    June 19  V2  

Enlist E3 herbicide treatments (2020 season) 

 

2,4-D + clethodim 

 

Enlist One™ + select Max® 

 

0.54 + 0.13 

 

East-central 

 

May 20 July 19 

 

V5  

 

October 9 

2,4-D + glufosinate Enlist One™ + Liberty® 280 SL 0.54 + 0.30  June 3  V3   

    June 16  V2   

        

        

   Southeast May 15 July 22 V5 October 15 

     May 29  V3  

    June 12  V2  

* Herbicide treatments (2,4-D + clethodim and 2,4-D + glufosinate) were applied with +/- rhizobia. Bradyrhizobia (USDA 110) inoculant 

was applied at the rate of 1 L ha-1. Adjuvant [AMS at 3 kg ha-1 or Class Act® Ridion® at 1.2 L ha-1] and non-ionic surfactant [Chemsurf 

90 at 3.0 L ha-1] were added into the spray tank to enhance coverage and improve herbicide uptake on plant surfaces. 

* Soybeans took about 10 days from planting to emergence, 5days from VE – VC stage, and about 10 days in between growth stages. 
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Table 3.5. Postemergence herbicide (+/- rhizobia) applications to Xtend soybeans evaluated for weed control and nodulation 

potential at northeast, east-central, and southeastern South Dakota in 2019 growing seasons. 

Xtend herbicide treatments in 2019 growing season 

Postemergence 

applications 

 

Herbicide 

applied 

Rate (kg a.e. 

or a.i./ha) 

 

 

Location 

Planting  

date 

(PD) 

POST herbicide  

application date 

Soybean 

growth  

stage 

Harvest  

date 

 

Dicamba + glyphosate 

 

XtendiMax®+PowerMAX® 

 

0.28 + 0.34 

 

Northeast 

 

May 15  

May 30  

June 15 

June 27 (dicamba) 

 

V3  

 

October 30 

     V1  

     VC  

Acifluorfen + clethodim AcifinTM 2L + Select Max® 0.18 + 0.13     

 

   

July 15 (acifin) 

 

V5 

 

      V3  

      V1/V2  

   East-central May 7  

June 5  

June 19  

June 27 (dicamba) V4 October 29 

      V1  

     VC  

       

    July 15 (acifin) V5  

      V2/V3  

      V1  

   Southeast May 15 

June 2 

June 19 

June 25 (dicamba) V3 October 19 

     V1  

     VC  

 
      

     July 16 (acifin) V5  

      V3  

      V1  

* Herbicide treatments (Dicamba + glyphosate and acifluorfen + clethodim) were applied with +/- rhizobia. Bradyrhizobia (USDA 110) inoculant was 

applied at the rate of 1 L ha-1. Adjuvant [Class Act® Ridion® at 1.6 Lha-1] and surfactant [Strike Zone® LC at 3.0 Lha-1] were added into the spray tank 

to enhance coverage and improve herbicide uptake on plant surfaces. 

* Soybeans took about 10 days from planting to emergence, 5days from VE – VC stage, and about 10 days in between growth stages. 



 

61 

 

Table 3.6. Postemergence herbicide applications to Xtend soybeans evaluated for weed control and nodulation potential at 

east-central, and southeastern South Dakota in 2020 growing season. 

Xtend herbicide treatments in 2020 growing season 

Postemergence  

applications 

 

Herbicide 

applied 

Rate 

(kg a.e. or 

a.i./ha) 

 

 

Location 

Planting  

Date 

(PD) Date applied 

Soybean 

growth  

stage 

Harvest  

date 

Dicamba +  

glyphosate 

 

XtendiMax® + PowerMAX® 

 

0.28 + 0.34 

 

East-central 

 

May 15  June 24 (dicamba) 

 

V3  

 

October 9 

    May 29   V1   

    June 12  VC   

Acifluorfen + 

clethodim 

AcifinTM 2L + Select Max® 0.18 + 0.13   

 

  

 

 

 

 

 

  

July 16 (acifin) 

 

V5 

 

      V3  

      V2  

   Southeast May 20  June 24 (dicamba) V2/V3 October 15 

     June 3   V1  

    June 16   VE  

        

     July 22 (acifin) V5  

      V3  

      V2  

* Herbicide treatments (Dicamba + glyphosate and acifluorfen + clethodim) were applied with +/- rhizobia. Bradyrhizobia (USDA 110) inoculant was 

applied at the rate of 1 L ha-1. Adjuvant [AMS at 3 kg ha-1 or Class Act® Ridion® at 1.6 Lha-1] and OnTarget™ at 1.0 L ha-1] were added into the spray 

tank to enhance coverage and improve herbicide uptake on plant surfaces. 

* Soybeans took about 10 days from planting to emergence, 5days from VE – VC stage, and about 10 days in between growth stages. 
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Table 3.7. Environmental conditions at time of herbicide applications at northeast, southeast and east-central South Dakota in 

2019. 

 

*Weather: temperature (0C), wind speed (kph), and relative humidity (%).  

*RR2X: Roundup Ready 2 Xtend soybean variety. 

 

 

Location Date Variety Treatments Time Range 

Weather Start 

(Temp., Wind, RH) 

Weather Finish 

(Temp., Wind, RH) 

Northeast  6/27/2019 RR2X Dicamba 11:00 - noon 19, 10 SE, 84% 22, 16 SE, 73% 

 7/15/2019 RR2X Acifluorfen 3:40-4:30 32, 14 NW, 59% 32, 13 WNW, 48% 

 7/15/2019 Enlist 2,4-D  5:00-6:45 32, 13 WNW, 48% 31, 14 WNW, 48% 

 7/23/2019 Enlist 2,4-D (PD3) 1:30 - 3:20 24, 10 NW, 48% 25, 10 var, 46% 

       

Southeast 6/19/2019 RR2X Dicamba noon - 1:25 22, 3 S, 52% 22, 6 NE, 57% 

 6/25/2019 RR2X Dicamba 3:00-4:00  27, 16 NW, 43% 27, 13 NW, 41% 

 7/16/2019 RR2X Acifluorfen 4:00-5:00 31, 11 SE, 53% 30, 11 SE, 57% 

 7/16/2019 Enlist 2,4-D 2:30-3:30 29, 11 SE, 63% 30, 11 SE, 57% 

 7/24/2019 Enlist 2,4-D (PD 3) 1:15 - 3:15 27, 24 SE, 47% 27, 24 SE, 47% 

       

East-central 6/18/2019 RR2X Dicamba 4-5 pm 24, 8 E, 46% 24, 11 NNE, 46%  

 6/26/2019 RR2X Dicamba 10:00-11:00 am 22, 14 SE, 68% 23, 13 S, 64% 

 7/12/2019 RR2X Acifluorfen 8:00-8:30 am 22, 13 SSW, 81% 23, 13 SSW, 76% 

 7/12/2019 Enlist 2,4-D  9:00-11:15 am 23, 13 SSW, 76% 23, 5 SW, 85% 

 7/22/2019 Enlist 2,4-D (PD3) 1:45 - 3:15 23, 14 N, 49% 23, 10 NE, 53% 
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Table 3.8. Environmental conditions at the time of herbicide applications at southeast and east-central South Dakota in 2020 

season. 

Location Date Variety Time Range 

Weather Start 

(Temp., Wind, RH) 

Weather Finish 

(Temp., Wind, RH) 

Southeast 6/24/20 RR2X 6:00 - 7:00 PM 28, 5 SW, 37% 27, 5 S, 38% 

 7/22/20 Enlist 4:00-7:45 PM 29, 16 E, 48% 27, 14 SE, 57% 

 7/28/20 RR2X (acifin) 3:00-5:00 PM 31, 13 SW, 57% 32, 8 SW, 54% 

      

      

East-central 6/4/20 RR2X & Enlist 4-5 PM 28, calm, 41% 23, calm, 37% 

 6/19/20 RR2X & Enlist (PD1) 4-5 PM 23, 8 var, 55% 23, 8 N, 53% 

 6/24/20 RR2X 1-3 PM 26, 16 NNW, 37% 26, 16 WNW, 38% 

 7/16/20 RR2X  6:30 - 8:30 PM 27, 14 SW, 74% 25, calm, 79% 

 7/19/20 Enlist 9:45 - 11:00 AM 24, 23 W, 52% 26, 24 W, 48% 

 7/20/20 Enlist 8:45 - 10:30 AM 22, 13 SE, 66% 24, 19 SE, 62% 

      

Weather: temperature (0C), wind (kph), and relative humidity (%). 

*RR2X: Roundup Ready 2 Xtend soybean varieties. 
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Experimental design 

Treatments at all locations were arranged by soybean variety (Enlist E3 or Xtend) in a 

split plot design with four replications. Planting date (early-PD1, mid-PD2, or late-PD3) 

was the main plot whereas herbicide treatments were the sub-plots. Soybeans were 

planted at 0.76 m row spacing. Individual plots were 4 rows wide by 9 meters long. An 

untreated buffer of 15 m was also left between the two soybean varieties planted. 

Data collection 

Weed density (plant m-2) was collected between the middle soybean rows at 2, and 6 

weeks after POST herbicide treatment applications. Weed species per plot were 

identified, and samples dried in the oven [GRIEVE-model WRH6106-500] at 60 0C for 5 

days, and biomass quantified. At R5 stage of soybean growth (between late-July and 

early August), plant greenness index was measured using the chlorophyll meter SPAD-

502 plus [Konica Minolta] from four soybean plants within each plot and the average 

value recorded. The plants that were measured for leaf greenness were cut 2 cm above the 

soil, dried at 60 0C and biomass quantified. Also, soil samples (500 cm3) were collected 

from the two plants using a 11- cm diameter golf hole cutter centered over the stem at a 

depth of 0.08 m, with samples stored in a cooler (3 0C) for root nodule evaluation.  

In the laboratory, soil was removed from soybean roots by washing with Liquinox, a 

soap that consists of a homogeneous blend of sodium linear alkylaryl sulfonate, sodium 

xylene sulfonate, and ethoxylated alcohol. Nodules from the washed roots were counted 

and thereafter sliced to determine activity. When cut, a red/pink color indicated an active 

nodule, whereas green, white, and black coloration indicated inactive, immature, and 

dead nodules, respectively. At crop physiological maturity stage (when one pod on main 
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stem reached mature pod color), the aboveground weed density was collected from the 

field, dried to constant weight at 60 0C and biomass quantified. The middle two rows of 

the plots were harvested using a small plot combine and seeds dried at 600C for 7 days. 

Grain yield, seed oil and seed protein contents were reported at 13% moisture. A 100-

seed weight was also quantified 

Statistical analysis 

Data obtained from each variety/maturity group, location and year were analyzed 

independently using the R – statistical software package (www.r-project.org). Square root 

transformation of weed densities were performed to improve homogeneity of variances. 

Transformed data were subjected to ANOVA using the linear mixed effect procedure in 

R. Herbicide and planting dates parameters were fixed effects, whereas blocks were 

random. The fixed effects of herbicide and planting date were tested using the type II 

statistics. Treatment means were separated (p≤0.05) using the Fisher’s Least Significant 

Difference (LSD) (Steel et al. 1997) and back transformed data are reported. 

 

 

 

 

 

 

http://www.r-project.org/
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3.3. Results and Discussion. 

3.3.1. Climatic conditions of study locations 

Growing degree days from planting to POST herbicide application, soil sampling 

for root nodule evaluation, and harvest are presented in Tables 3.9 and 3.10. Also, 

temperature and rainfall data for northeast (Southshore), southeast (Beresford), and east-

central (Brookings) locations for 2019 and 2020 growing seasons are presented in Tables 

3.11 and 3.12, respectively. At each location, growing degree days and temperatures were 

near the 30-year average (1981-2010) for both years. Monthly total rainfall ranged from 5 

cm (southeast) to 17 cm (east-central). The summer of 2019 was wetter than normal. 

Rainfall in July at northeast, southeast, and east- was 103, 31, and 95 % above normal. 

However, in 2020, rainfall amounts were 50 % below normal at the two study locations 

(southeast and east-central) for all months, except July at east-central location where 

precipitation was 23 % above normal. Total growing season rainfall at east-central and 

southeast was 32 cm and 22 cm, which were 34 % and 112 % below the 30-year average 

and considered dry to drought conditions.  

 

 

 

 

 



67 

 

 

 

Table 3.9. Growing degree days (GDD) from planting to POST herbicide application 

(July), soil sampling for root nodule evaluation (August), and harvest (October) at 

northeast, east-central, and southeastern South Dakota in 2019 growing season.   

Planting date GDD 

POST 

Application 

GDD Soil 

Sampling 

GDD 

Harvest 

Date of 

Harvest 

30-year average  

temperature (oC) 

Northeast      

May 15 (PD1) 687 1001 1178 Oct. 30 17.8 

May 30 (PD2) 572 1015 1136   

June 15 (PD3) 416 887 1008   

East-central      

May 15 (PD1) 701 1101 1279 Oct. 29 17.6 

June 2 (PD2) 598 1023 1198   

June 19 (PD3) 473 915 1047   

Southeast      

May 7 (PD1) 1032 1310 1535 Oct. 19 19.6 

June 5 (PD2) 980 1211 1378   

June 19 (PD3) 562 1101 1236   

* A base temperature of 10 0C was used to calculate growing degree days for the period 

from soybean planting to postemergence herbicide application, soil sampling for root 

nodule evaluation, and harvest. 
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Table 3.10. Growing degree days (GDD) from planting to POST herbicide application 

(July), soil sampling for root nodule evaluation (August), and harvest (October) at 

northeast, east-central, and southeastern South Dakota in 2020 growing season.  

* A base temperature of 10 0C was used to calculate growing degree days for the period 

from soybean planting to postemergence herbicide application, soil sampling for root 

nodule evaluation, and harvest. 

 

 

 

 

 

 

 

 

 

Planting date GDD POST 

Application 

GDD Soil 

Sampling 

GDD 

Harvest 

Date of 

Harvest 

30-year average  

temperature (oC) 

East-central       

May 20 (PD1) 1100 1245 1420 Oct. 9 17.6 

June 3 (PD2) 1013 1210 1314   

June 16 (PD3) 800 953 1166   

Southeast        

May 15 (PD1) 1179 1326 1553 Oct. 15 19.6 

May 29 (PD2) 1011 1285 1458   

June 12 (PD3) 814 1002 1292   
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Table 3.11. Monthly average temperature (0C) at northeast, east-central and 

southeastern South Dakota (2019 and 2020), and 30-year average (1981-2010). 

Location 2019 growing season 

 May June July August September 

Northeasta  11 (13)  19 (19) 21 (22) 18 (20) 16 (15) 

East-centralb 11 (13) 19 (19) 22 (21) 19 (20) 18 (15) 

Southeastc 13 (15) 21 (21) 23 (23) 21 (22) 19 (17) 

 2020 growing season 

East-centralb 13 (13) 22 (19) 23 (21) 22 (20) 15 (15) 

Southeastc 14 (15) 24 (21) 24 (23) 22 (22) 17 (17) 

https://mesonet.sdstate.edu/archive). 

Table 3.12. Monthly rainfall (cm) at northeast, east-central, and southeastern South 

Dakota, and 30-year average (1981-2010). 

2019 growing season 

Location May  June  July August  September  Total 

Northeasta 8.6 (8.1) 6.2 (10.2) 16.9 (8.7) 10.5 (7.8) 10.0 (6.6) 52.2 (41.4) 

East-centralb 12.9 (8.7) 7.9 (10.5) 16.2 (8.4) 7.9 (8.4) 16.0 (7.5) 60.9 (43.5) 

Southeastc    15.7 (10.2) 9.8 (11.7) 10.9 (8.7) 8.2 (9.0) 7.4 (7.8) 52.0 (47.4) 

2020 growing season 

East-central 7.5 (8.7) 8.0 (10.5) 10.2 (8.4) 4.3 (8.4) 2.4 (7.5) 32.4 (43.5) 

Southeast  5.2 (10.2) 8.8 (11.7) 4.7 (8.7) 2.9 (9.0) 0.8 (7.8) 22.4 (47.4) 

astudy was conducted at northeastern location in 2019 only 

bstudy was conducted at east-central location in 2019 and 2020 growing seasons 

cstudy was conducted at southeastern location in 2019 and 2020 growing seasons 

*30-year long-term averages from 1981-2010 in parentheses (climate data were retrieved from 

https://mesonet.sdstate.edu/archive). 

https://mesonet.sdstate.edu/archive
https://mesonet.sdstate.edu/archive
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3.3.2. Enlist E3 soybean evaluated for weed control and nodulation potential at 

northeast, southeast, and east-central South Dakota in 2019 and 2020 growing 

seasons.  

Weed control  

The average weed density at 2 weeks after herbicide treatment application at all 

locations was about 20 plants m-2 for all sites in 2019, and in 2020 east-central had 3 

plants m-2, and southeast had 40 plants m-2, and the weed species found were volunteer 

corn (east-central and southeast) and volunteer wheat and woolly cupgrass (northeast). 

No planting date by herbicide interaction was found for weed density at two weeks 

following the POST application of treatment in either year (Table A1). However, at 

northeast location only, an interaction was observed between planting date and herbicide 

treatment [p ≤ 0.01] at 6 weeks after POST treatment application (Table A2). Weed 

density for PD1/pre-only herbicide treatment had more weeds (average 37 plants per m-2) 

than either PD2 or PD3 combination (average < 20 plants per m-2). Furthermore, pre-only 

treatments for all planting dates had greater weed density than the post applied treatments 

(≤ 15 plants m-2) when compared within a planting date (Figure 3.1).   

An interaction between herbicide treatment and planting date was observed [p ≤ 

0.01] for end-of-season weed biomass at the northeast location (Table A3). Pre-only 

treatments at PD1 and PD3 had greater weed biomass (consisting of both grass and 

broadleaf weeds) than the pre-only at PD2 and any of the POST herbicide treatments 

(2,4-D + clethodim, and 2,4-D + glufosinate) (Figure 3.2). The 2,4-D + clethodim, and 

2,4-D + glufosinate provided excellent weed control no weeds present in most of these 

treatments (Figure 3.2). Although the auxin herbicide (2,4-D) was combined with 
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clethodim or glufosinate, the uncontrolled weeds were mostly grasses (including 

barnyardgrass, volunteer wheat, and large crabgrass), and were found in the PD3 

treatment. The combined application of rhizobia with herbicide had no impact on weed 

density and biomass in the study and data were combined across rhizobia treatment. 

Dominant weed species present at end-of-season biomass sampling are presented in 

Table 3.13. Numerous weed species, both grasses and broadleaf were observed in the pre-

only treatment across planting dates (Table 3.13). At east-central and southeast, and for 

both growing seasons, volunteer corn was found in the early planting date, whereas 

volunteer wheat was present at northeast. Overall, plots that received pre-only treatment 

had more weeds than any other treatment at all three locations (Figure 3.3.). 
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Figure 3.1. Interaction effect of planting date and herbicide (averaged over rhizobia 

treatment) on weed density at 6 weeks after POST treatment application in Enlist 

soybean evaluated at northeastern South Dakota in 2019. 

 
 
* Different letters above the bars indicate significant differences among the planting date by herbicide 

treatment using the Fisher’s test for significance at p ≤ 0.10. Uppercase letters show the comparison 

between planting date by herbicide treatment interactions, whereas lowercase letters show comparison 

within each planting date by herbicide treatment interactions. Error bars show the standard deviation of 

planting date by herbicide treatment. 

* Planting dates: pd1–May 15; pd2–May 30; pd3–June 15. 

* Weed density values for all treatment +/- rhizobia were averaged. Average values are presented. 
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Figure 3.2. Effect of planting date by herbicide interaction on weed biomass at end-of-

season in Enlist soybean averaged over rhizobia treatment at northeastern South Dakota 

in 2019 season. 

 
 
* Different letters above the bars indicate significant differences among the planting date by herbicide 

treatment using the Fisher’s test for significance at p ≤ 0.10. Error bars show the standard deviation of 

planting date by herbicide treatment. 

* Planting dates (pd1: May 15, pd2: May 30, pd3: June 15). 
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Table 3.13. Weed species present during end-of- season weed biomass sampling 

(September) in Enlist soybean at northeast, east-central and southeastern South Dakota. 

 Pre-only Treatment 

Location  Early planting (PD1) Mid-season planting (PD2) Late planting (PD3) 

Northeasta 

2019 only   

green foxtail, yellow 

foxtail, common 

lambsquarters, woolly 

cupgrass, redroot pigweed, 

large crabgrass, prostrate 

pigweed, dandelion, 

volunteer wheat 

green foxtail, yellow foxtail, 

dandelion, volunteer wheat 

volunteer wheat, dandelion, 

woolly cupgrass, common 

lambsquarters, barnyardgrass, 

large crabgrass  

East-centralb 

2019 & 2020 

volunteer corn, dandelion, 

barnyardgrass, wild 

buckwheat, common 

lambsquarters 

quackgrass, barnyardgrass, lady’s 

thumb, velvetleaf, green and 

yellow foxtail 

wild buckwheat, lady’s 

thumb, quackgrass, 

barnyardgrass, woolly 

cupgrass, velvetleaf, common 

lambsquarters, green and 

yellow foxtail, redroot 

pigweed, dandelion, wild four 

o’ clock,  

Southeastc 

2019 & 2020 

volunteer corn, redroot 

pigweed, barnyardgrass, 

waterhemp, marestail 

green and yellow foxtail, foxtail 

barley, fall panicum, field sandbur, 

large crabgrass, waterhemp, 

marestail 

barnyardgrass, green and 

yellow foxtail, foxtail barley, 

fall panicum, field sandbur, 

large crabgrass, dandelion, 

common waterhemp, redroot 

pigweed, marestail, wild 

buckwheat,  

 2,4-D + clethodim treatment  

 Early planting (PD1) Mid-season planting (PD2) Late planting (PD3) 

Northeasta 

2019 only 

barnyardgrass, volunteer 

wheat 

common lambsquarters, volunteer 

wheat 

 

East-centralb 

2019 & 2020 

 volunteer corn, green foxtail volunteer corn 

Southeastc 

2019 & 2020 

green foxtail, volunteer 

corn 

large crabgrass, green foxtail, and 

barnyardgrass 

large crabgrass, barnyardgrass 

 2,4-D + glufosinate treatment 

 Early planting (PD1) Mid-season planting (PD2) Late planting (PD3) 

Northeasta 

2019 only  

  barnyardgrass and volunteer 

wheat 

East-centralb 

2019 & 2020 

green foxtail, volunteer 

corn 

volunteer corn  

Southeastc 

2019 & 2020 

large crabgrass and 

barnyardgrass. 

 large crabgrass 

 

aNortheast experiment location was sampled on September 19, 2019. 
beast-central experiment location was sampled on September 9, 2019, and September 25, 2020. 
csoutheast experiment location was sampled on September 15, 2019, and September 16, 2020. 
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Figure 3.3. Impact of herbicide on weed biomass at end-of-season (g m-2) averaged over 

planting date and rhizobia treatment in Enlist soybean evaluated at east-central and 

southeastern South Dakota in 2019 and 2020. 

 
 
* Different letters above the bars indicate significant differences among herbicide treatment using the 

Fisher’s test for significance at p ≤ 0.10 
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Soybean greenness index (SPAD) 

Chlorophyll meter readings has been shown to be positively correlated with leaf 

nitrogen concentration (Wood et al. 1993). In 2019, SPAD values at R5 growth stage 

averaged about 41 among all treatments at northeast and east-central locations. However, 

at southeast location, SPAD values from Enlist soybean variety was impacted by 

herbicide treatment (Table A4) with the pre-only averaging 27 and the 2,4-D treatments 

averaging 38 (Table 3.14). In 2020 and at east-central location, the late planting date 

(June 16) had a lower SPAD value (40.2) than the earlier planting date (May 20) which 

had a SPAD value of 41.5 (Table 3.14). The low SPAD values obtained from the pre-

only treatment was probably due to weed stress. The application of herbicide treatments 

had no impact on SPAD values of Enlist soybean at east-central location.  

Soybean aboveground biomass 

Average biomass for Enlist soybean over all herbicide treatment was about 25 

g/plant (Northeast-2019), 17 g/plant (east-central), and 16 g/plant (southeast). No 

herbicide by planting date interaction was observed at any location in 2019 and 2020 

seasons (Table A5). In 2020, planting date, but not herbicide treatment, impacted soybean 

biomass at southeast (p ≤ 0.01) and east-central (p ≤ 0.05) locations. Delaying planting 

from May 15 (early) to June 12 (late) at southeast resulted in 38 % loss in soybean 

biomass. For each day of a delay in planting at southeast, the Enlist variety lost on 

average 8g of soybean biomass per plant. Also, delaying planting from May 20 to June 

16 at east-central in 2020 resulted in 13% reduction in soybean biomass (Table 3.15), and 

for each day that planting was delayed, the Enlist soybean lost on average 1.4g of plant 

biomass. 
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Table 3.14. Herbicide and planting date effect on SPAD/chlorophyll value of Enlist 

soybean evaluated at southeast (2019) and east-central (2020) South Dakota. 

Southeast (2019 season) 

Herbicide treatment SPAD value 

2,4-D + glufosinate 38.1 a 

2,4-D + clethodim 37.9 ab 

Pre-only 27.4 b 

LSD (0.10) = 0.3  

East-central (2020 season) 

Planting date SPAD value 

Early (May 20) 41.5 a 

Mid (June 3) 41.5 a 

Late (June 16) 40.2 b 

LSD (0.10) = 0.1  

* Different letters indicate differences among herbicide and planting date using the Fisher’s test 

for significance at p ≤ 0.10. 
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Table 3.15. Effect of planting date on aboveground biomass of Enlist soybean evaluated 

at southeast and east-central South Dakota in 2020 growing seasons. 

Southeast (2020 season) 

Planting date Soybean biomass (g/plant) 

May 15 33.7 a 

May 29 28.4 b 

June 12 20.9 c 

LSD (0.10) = 4.4  

East-central (2020 season) 

Planting date Soybean biomass (g/plant) 

May 30 17.0 a 

June 3 16.5 ab 

June 16 14.8 b 

LSD (0.10) = 1.7  

* Different letters indicate differences among planting date using the Fisher’s test for significance 

at p ≤ 0.10. 
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Nodule number  

In 2019, average nodule numbers per 500 cm3 of soil were 38, 68, and 59 at 

northeast, east-central, and southeast locations. Only herbicide treatment at northeast 

influenced the number of nodules (Table A6). Total nodule number from 2,4-D + 

clethodim and 2,4-D + glufosinate treatment at northeast averaged about 57 nodules per 

500 cm3 soil; and was more than what was found in the pre-only plots which had 27 

nodules per 500 cm3 soil (Table 3.16) Also, the application of rhizobia to 2,4-D + 

clethodim negatively impacted nodule numbers as nodulation was reduced by 47 % 

(Table 3.16). However, in 2020 growing season, foliar rhizobia application to 2,4-D + 

clethodim treatment increased nodule number by 3 % at east-central site (Table 3.17). 

Furthermore, planting Enlist soybeans early (May 20), rather than at a late date (June 16) 

at east-central location increased nodule numbers by about 30 % (Table 3.18).  

Active nodule number 

Active nodules ranged from 29 to 93% of the total nodules. The number of active 

nodules were above the number suggested in literature for good N fixation (Staton, 

2011). No planting date by herbicide interaction was found for active nodule number at 

all three study locations and in both 2019 and 2020 seasons (Table A7). However, the 

number of active nodules were impacted by herbicide only at east-central location in 

2020 season. The 2,4-D + glufosinate treatment with an active nodule number of 31 was 

34 % less than the 2,4-D + clethodim treatment (Table 3.17). Overall, the active nodule 

number was not influenced by application of rhizobia with herbicide. 

Planting date influenced active nodule numbers at southeast (2019 and 2020) and 

east-central (2020) locations. In 2019, and at southeast, active nodule numbers increased 
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by 144 % when planting was delayed from May 7 to June 19, whereas in 2020, active 

nodule numbers reduced by 48% when planting was delayed until June 12 (Table 3.18). 

Also, delaying planting at east-central location from May 20 until June 16 resulted in 50 

% reduction in active nodule numbers. 

Soil moisture levels from rainfall in the growing season influenced the number of 

active nodules. Since soybean roots were sampled in late July/early August, and rainfall 

amounts that month were above the 30-year average for all locations [except for 

southeast (2020)], the number of active nodules (regardless of the total nodule number) 

decreased considerably with increasing soil moisture. Having too wet or flooded soils at 

northeast location resulted in more nodules being decayed or rotten 

(http://msue.anr.msu.edu/news/evaluating_soybean_nodulation).   
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Table 3.16. Effect of herbicide on nodule number and active nodule number of Enlist 

soybean evaluated at northeast, east-central, and southeastern South Dakota in 2019 

season. 

Location/year Herbicide treatment Nodule number per 

500 cm3 soil 

Active nodule number 

per 500 cm3 soil 

Northeast 2019 2,4-D + clethodim 64 a 15 

 2,4-D + glufosinate 50 ab 14 

 2,4-D + glufosinate + rhizobia 49 ab 14 

 2,4-D + clethodim + rhizobia 34 bc 10 

 Pre-only 29 c 8 

 Pre + rhizobia 24 c 7 

 LSD (0.10)  1.3 N/S 

    

East-central 2019 2,4-D + clethodim 68 34 

 2,4-D + glufosinate 69 34 

 2,4-D + glufosinate + rhizobia 66 42 

 2,4-D + clethodim + rhizobia 65 33 

 Pre-only 66 40 

 Pre + rhizobia 71 40 

 LSD (0.10) N/S N/S 

    

Southeast 2019 2,4-D + clethodim 28 13 

 2,4-D + glufosinate 32 13 

 2,4-D + glufosinate + rhizobia 31 14 

 2,4-D + clethodim + rhizobia 31 16 

 Pre-only 41 23 

 Pre + rhizobia 38 22 

 LSD (0.10) N/S N/S 

* Different letters indicate differences among herbicide treatment using the Fisher’s test for significance at 

p ≤ 0.10. 

* N/S – not significant. 
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Table 3.17. Effect of herbicide on nodule number and active nodule number of Enlist 

soybean evaluated at northeast, east-central, and southeastern South Dakota in 2020 

season. 

Location/year Herbicide treatment Nodule number per 

500 cm3 soil 

Active nodule number 

per 500 cm3 soil 
 

East-central 2020 2,4-D + clethodim 61 bc 40 ab  

 2,4-D + glufosinate 46 c 31 b  

 2,4-D + glufosinate + rhizobia 54 bc 40 ab  

 2,4-D + clethodim + rhizobia 63 a 47 a  

 Pre-only 52 bc 33 b  

 Pre + rhizobia 59 ab 39 ab  

 LSD (0.10) 10.1 9.1  

     

Southeast 2020 2,4-D + clethodim 43 29  

 2,4-D + glufosinate 39 19  

 2,4-D + glufosinate + rhizobia 41 24  

 2,4-D + clethodim + rhizobia 43 28  

 Pre-only 43 26  

 Pre + rhizobia 38 25  

 LSD (0.10) N/S N/S  

* Different letters indicate differences among herbicide treatment using the Fisher’s test for significance at 

p ≤ 0.10. 

*N/S – not significant. 
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Table 3.18. Effect of planting date on total nodule number and active nodule number of 

Enlist soybean averaged over herbicide and rhizobia treatment at southeast (2019 and 

2020) and east-central (2020) South Dakota. 

 

Planting date 

Nodule number  

per 500 cm3 soil. 

Active nodule number  

per 500 cm3 soil. 

Northeast 2019   

May 15 43 10 

May 30 38 10 

June 15 45 14 

LSD (0.10) N/S N/S 

East-central 2019   

May 15 76 41 

June 2 59 36 

June 19 68 34 

LSD (0.10) N/S N/S 

Southeast 2019   

May 7 24  9 b 

June 5 37 19 ab 

June 19 39 22 a 

LSD (0.10) N/S 9.3 

Southeast 2020   

May 15 49 a 33 a 

May 29 44 a 25 ab 

June 12 30 b 17 b 

LSD  13.9 9.4 

East-central 2020   

May 20 66 a 50 a 

June 3 59 a 40 b 

June 16 43 b 25 c 

LSD (0.10) 9.4 10.1 

* Different letters indicate differences among planting date using the Fisher’s test for significance at p ≤ 

0.10. 

* N/S – not significant. 
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Grain yield 

Grain yield from 2019 season averaged 3443, 3080 and 3201 kg ha-1 at northeast, 

east-central, and southeastern locations, respectively. In 2020, grain yield averaged over 

herbicide and rhizobia treatments at east-central and southeast locations reduced by 19 % 

and 30 % when compared to 2019 season. There was no interaction between planting 

date and herbicide treatment for grain yield at any of the three study locations (northeast, 

southeast and east-central SD), and for both years (2019 and 2020) (Table A8). In 2019 

season, and only at northeast location, grain yield of Enlist soybean was influenced by 

planting date. When planting was delayed from the optimum date (May 15) to the latest 

date (June 15), Enlist soybean yield reduced by 12 %. Yield was more in the early and 

mid-planting dates (3591 and 3597 kg ha-1, respectively) than in the late planting date 

(3147 kg ha-1) (Table 3.19). In 2020, soybean yields at southeast and east-central 

locations were reduced by 38, and 49 %, respectively when planting was delayed from 

early to the late dates (Table 3.19).  

100-seed weight 

In 2019, the weight of a hundred seed of Enlist soybean across locations averaged 

15 g. There was no planting date by herbicide interaction at northeast, east-central and 

southeast locations. However, 100-seed weight was influenced by only herbicide at 

northeast (Table A9). 2,4-D + clethodim herbicide treatment increased 100-seed weight 

by 5% over the pre-only treatment which was heavily infested with weeds (Table 3.20). 

The foliar application of rhizobia inoculant with herbicide did not influence seed weight. 

In 2020, 100-seed weight was influenced by planting date at east-central and southeastern 

location with higher seed weights found in the early and mid-planting dates than in the 
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late planting date (Table 3.20). The 100-seed weight of Enlist soybean was reduced by 6 

% (southeast) and 4 % (east-central) when planting was delayed until June 12 and June 

16, respectively.  
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Table 3.19. Grain yield of Enlist soybean evaluated at northeast (2019), east-central 

(2019 and 2020) and southeastern (2019 and 2020) South Dakota locations. 

Location/year Planting date GDDa Yield (kg ha-

1) 

Harvest date 

Northeast 2019 May 15 1178 3591.2 October 30 

 May 30 1136 3597.9  

 June 15 1008 3147.4  

 LSD (0.10) = 255.6    

East-central 2019 May 15 1279 2999.4 October 29 

 June 2 1198 3261.7  

 June 19 1047 2993.0  

 LSD (0.10) = N/A    

Southeast 2019 May 7 1535 3584.5 October 19 

 June 5 1378 3490.3  

 June 19 1236 2528.6  

 LSD (0.10) = N/A    

East-central 2020  May 20 1420 3207.9 October 9 

 June 3 1314 2797.6  

 June 16 1166 1634.2  

 LSD (0.10) = 457.3    

Southeast 2020 May 15 1553 2770.7 October 15 

 May 29 1458 2232.7  

 June 12 1292 1728.4  

 LSD (0.10) = 282.5    

aGDD – growing degree days. N/A = not applicable. 
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Table 3.20. Effect of herbicide (northeast, 2019 season) and planting date (east-central, 

2020 season) averaged over rhizobia and herbicide treatment on 100-seed weight of 

Enlist soybean. 

Location/year Herbicide treatment 100-seed weight (g) 

Northeast 2019 2,4-D + clethodim 16.0 a 

 2,4-D + glufosinate 15.6 ab 

 Pre-only 15.3 b 

  LSD (0.10) = 0.5 

Location/year Planting date 100-seed weight (g) 

East-central 2020 May 20 14.9 a 

 June 3 14.7 a 

 June 16 14.3 b 

  LSD (0.10) = 0.3 

   

Southeast 2020 May 15 14.6 a 

 May 29 14.6 a 

 June 12 13.7 b 

  LSD (0.10) = 0.7 

* Different letters indicate differences among herbicide and planting date treatment using the Fisher’s test 

for significance at p ≤ 0.10. 
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Seed oil content 

Soybean seeds have an oil content of approximately 18-22% (Willis, 2003; Patil 

et al. 2018). Average seed oil in the 5-location year study was 19 %. There was no 

planting date by herbicide treatment interaction for seed oil [at 13 % moisture] at all 

study locations in 2019 and 2020 (Table A10). The seed oil of Enlist soybean was 1 to 2 

% greater at east-central location with 2,4-D + clethodim treatment compared to the pre-

only treatment (Table 3.21). A combined application of rhizobia with herbicide did not 

increase seed oil of Enlist soybean. In 2020, seed oil content was influenced by planting 

date at east-central and southeast locations, with the early and mid-planting dates having 

2 % and 9 % greater oil content than the late planting date at southeast and east-central 

locations, respectively (Table 3.22).  

Seed protein content 

Soybean seed protein has been reported to be about 38-48% on a dry weight basis 

(Willis, 2003). Average seed protein content of Enlist soybean in the 5-location year 

study was 34 %. No planting date by herbicide interaction was found at northeast, east-

central and southeast locations in 2019 season (Table A11). However, in 2020, there was 

an interaction between planting date and herbicide treatment at southeast (p≤0.05) and 

east-central (p≤0.00) locations. At both locations, seed protein content for early and mid- 

planting dates with auxin-based herbicide (2,4-D + clethodim or 2,4-D + glufosinate) 

treatment combination was greater (average protein value = 35 %) than the late planting 

date/herbicide combination (average protein value = 34 %). The pre-only treatment for 

early or mid-planting date had lesser protein values than the post applied treatment [2,4-D 

+ clethodim or 2,4-D + glufosinate] when compared within a planting date at east-central 
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location (Figure 3.4). The pre-only treatment for mid-planting date at southeast location 

had lower seed protein value (33.7 %) than the post applied treatments when compared 

within a planting date [(2,4-D + clethodim = 34.1 %; 2,4-D + glufosinate = 34.9 %)] 

(Figure 3.5). Overall, as seed protein increased, seed oil levels decreased for Enlist 

soybean variety planted. 
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Table 3.21. Herbicide effect on seed oil (at 13% moisture) of Enlist soybean evaluated at 

east-central South Dakota in 2019 season.  

* Different letters indicate differences among herbicide treatment using the Fisher’s test for significance at 

p ≤ 0.10. 

 

Table 3.22. Effect of planting date on seed oil content of Enlist soybean evaluated at 

southeast and east-central locations in 2020 cropping season. 

 

Planting date 

Seed oil at  

13% moisture 

Southeast 2020  

May 15 19.3 a 

May 29 19.3 a 

June 12 18.9 b 

LSD (0.10) = 0.3  

East-central 2020  

May 20 19.0 a 

June 3 18.2 b 

June 16 17.5 b 

LSD (0.10) = 0.4  

Different letters indicate differences among planting date using the Fisher’s test for significance at p ≤ 0.10. 

 

 

East-central (2019 season) 

Herbicide treatment Seed oil content at 13% moisture 

2,4-D + clethodim 19.1 a 

2,4-D + glufosinate 19.1 a 

Pre-only 18.9 b 

 LSD (0.10) = 0.7 
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Figure 3.4.  Interaction effect of planting date and herbicide (averaged over rhizobia 

treatment) on seed protein content [at 13% moisture] of Enlist E3 soybean evaluated at 

east-central South Dakota in 2020 season. 

 

*Different letters above the bars indicate differences among the planting date by herbicide treatment using 

Fisher’s test for significance at p ≤ 0.10. Bars show standard deviation of treatment. 

* pd1 = early planting date: May 20. 

* pd2 = mid-planting date: June 3. 

* pd3 = late planting date: June16. 
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Figure 3.5.  Interaction effect of planting date and herbicide (averaged over rhizobia 

treatment) on seed protein content [at 13% moisture] of Enlist E3 soybean evaluated at 

southeastern South Dakota in 2020 season. 

 

*Different letters above the bars indicate differences among the planting date by herbicide treatment using 

Fisher’s test for significance at p ≤ 0.10. Bars show standard deviation of treatment. 

* pd1-early planting date: May 15, 2020.  

* pd2-mid-planting date: May 29, 2020.  

* pd3-late planting date: June 12, 2020.  
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3.3.3. Roundup ready 2 Xtend soybean evaluated for weed control and nodulation 

potential at northeast, southeast, and east-central South Dakota in 2019 and 2020 

growing seasons.  

Weed control 

No planting date by herbicide interaction was found in Xtend soybean variety 

evaluated for weed density (plants m-2) at two weeks after treatment application at 

northeast, east-central, and southeastern South Dakota in 2019 and 2020 seasons (Table 

A12). However, the number of weeds found at the three study locations were influenced 

by herbicide application (Table A12). Dicamba + glyphosate controlled the annual 

grasses [for example, woolly cupgrass at east-central location; green and yellow foxtails 

at northeast; and barnyardgrass at southeast locations] and the broadleaf weeds (mostly 

pigweed species) present. At southeast, the acifluorfen + clethodim treatment had higher 

densities of large crabgrass, barnyardgrass, and green foxtail. The pre-only and 

acifluorfen treatments had greater number of weeds than dicamba + glyphosate at 2 

weeks following treatment application at all locations (Table 3.23 and Table 3.24).  

An interaction between planting date and herbicide treatment was found at 6 

weeks after treatment application at the northeast location (2019 season) (Table A13). At 

6 weeks, all planting dates plots treated with dicamba + glyphosate had no weeds, 

whereas the pre-only treatment at early and mid-planting dates had greater weed densities 

when compared to acifluorfen + clethodim treatments (Figure 3.6). Weeds such as green 

foxtail, yellow foxtail, barnyardgrass, woolly cupgrass, large crabgrass, wild buckwheat, 

redroot pigweed, and eastern black nightshade were controlled by dicamba + glyphosate 

at the three study locations in 2019 and 2020. Uncontrolled weeds in acifluorfen + 
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clethodim treatment included waterhemp, marestail, large crabgrass, and at the southeast 

location, field sandbur. 

Weed species present at the end-of-season weed biomass sampling at the three 

experiment locations are presented in Table 3.24. Green foxtail, yellow foxtail, 

dandelion, and redroot pigweed are weed species common to the three study locations. 

The analysis of variance (ANOVA) showed no planting date by herbicide interaction for 

weed biomass at harvest at the three study locations, and for either growing season (2019 

and 2020) (Table A14). However, weed biomass was impacted by herbicide (p<0.00) at 

northeast (2019), southeast (2019 and 2020), and east-central (2020) locations (Table 

A14). For the two growing seasons, and across study locations, soybean plots treated with 

dicamba + glyphosate had fewer weeds when compared to the acifluorfen + clethodim 

and pre-only treatments (Table 3.25). Weed biomass at harvest was also impacted by 

planting date at northeast (p=0.04) and southeast (p=0.01) locations in 2019 and 2020 

seasons, respectively, with the early planting date having 65 % more weed biomass than 

the late planting date at northeast. However, at southeast location, weed biomass was 58 

% less in early planting date compared to the late planting date (Table 3.26) as soybean 

canopy was dense and provided shading to weeds that emerged later in the season.  
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Table 3.23. Herbicide treatment and planting date effect on weed density at 2 weeks after 

POST treatment application in Xtend soybean evaluated at northeast, east-central, and 

southeastern South Dakota in 2019 and 2020 growing season.  

Weed density (plants m-2) at 2 weeks after POST treatment application in Xtend soybean 

 2019 season 2020 season 

Herbicide  

(Averaged over planting date) 

 

Northeast  

 

East-central 

 

Southeast  

 

East-central 

 

Southeast  

Pre-only 79 a 16 a 66 a 32 a 72 a 

Acifluorfen + clethodim 32 a 8 ab 26 b 18 ab 70 a 

Dicamba 1 app. + glyphosate 4 c 3 b 4 b 4 b 13 b 

Dicamba 2 apps. + glyphosate N/A 6 b 8 b N/A N/A 

LSD (0.10) 7.0 3.0 13.0 6.0 7.0 

 

Planting date  

(Averaged over herbicide 

treatment) 

 

 

Northeast 2019 season 

May 15 20 a 

May 30 14 b 

June 15 11 b 

LSD (0.10) 13.0 

*N/A – not applicable. Common lambsquarters and barnyardgrass were the weeds present at 2 

weeks following POST treatment application at northeast. Barnyardgrass, redroot pigweed, wild 

buckwheat and volunteer corn were the weeds present at two weeks after POST treatment 

application at east central and southeastern locations. Planting date was significant at northeast 

location only. 
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Table 3.24. weed species present in Xtend soybean at 2 weeks and 6 weeks after 

herbicide treatment application, and at end-of-season (September) weed biomass 

sampling. 

Weeds present at 2 weeks after herbicide treatment application 

 Northeast  East-central Southeast 

Pre-only common lambsquarters, 

common purslane, 

prostrate pigweed, green 

foxtail, yellow foxtail 

woolly cupgrass, 

common lambsquarters, 

wild buckwheat, green 

foxtail 

barnyardgrass, large 

crabgrass, green foxtail, 

Acifluorfen + 

clethodim 

green foxtail, yellow 

foxtail 

woollycupgrass large crabgrass, 

barnyardgrass, and green 

foxtail 

Dicamba + glyphosate common lambsquarters volunteer corn volunteer corn 

Weeds present at 6 weeks after herbicide treatment application 

Pre-only common lambsquarters, 

common purslane, 

prostrate pigweed, 

dandelion, green foxtail, 

yellow foxtail, woolly 

cupgrass, wild buckwheat 

woolly cupgrass, green 

foxtail, yellow foxtail, 

quackgrass, dandelion, 

common lambsquarters, 

redroot pigweed, wild 

buckwheat 

barnyardgrass, large 

crabgrass, green foxtail, 

yellow foxtail, fall 

panicum, waterhemp, 

marestail, field sandbur 

Acifluorfen + 

clethodim 

Common lambsquarters,  Waterhemp, dandelion Waterhemp, marestail, 

field sandbur 

Dicamba + glyphosate No weeds No weeds field sandbur 

*The weed species present did not change across planting dates. 
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Weeds present at end-of-season weed biomass sampling 

 Pre-only Herbicide Treatment 

Location  Early planting (PD1) Mid-season planting (PD2) Late planting (PD3) 

Northeasta  

2019 only   

similar weeds were found in all three planting dates, and they include the following: green foxtail, yellow foxtail, woolly 

cupgrass, barnyardgrass, large crabgrass, common lambsquarters, common purslane, prostrate pigweed, dandelion, redroot 

pigweed, volunteer wheat 

East-centralb  

2019 & 2020 

velvetleaf, dandelion, 

barnyardgrass, wild buckwheat, 

common lambsquarters, dandelion 

quackgrass, barnyardgrass, lady’s thumb, 

velvetleaf, green and yellow foxtail, woolly 

cupgrass, common lambsquarters, wild 

buckwheat 

wild buckwheat, lady’s thumb, quackgrass, 

barnyardgrass, woolly cupgrass, 

velvetleaf, common lambsquarters, green 

and yellow foxtail, redroot pigweed, 

dandelion, wild four o’ clock, waterhemp 

Southeastc  

2019 & 2020 

volunteer corn, redroot pigweed, 

barnyardgrass, waterhemp, 

marestail 

green and yellow foxtail, foxtail barley, fall 

panicum, field sandbur, large crabgrass, 

waterhemp, marestail 

barnyardgrass, green and yellow foxtail, 

foxtail barley, fall panicum, field sandbur, 

large crabgrass, dandelion, common 

waterhemp, redroot pigweed, marestail, 

wild buckwheat,  

 Acifluorfen + clethodim treatment  

 Early planting (PD1) Mid-season planting (PD2) Late planting (PD3) 

Northeasta   

2019 only 

volunteer wheat common lambsquarters, volunteer wheat barnyardgrass, green foxtail and volunteer 

wheat. 

East-centralb  

2019 & 2020 

volunteer corn volunteer corn, green foxtail volunteer corn, green foxtail 

Southeastc  

2019 & 2020 

volunteer corn large crabgrass, barnyardgrass, fall panicum Common waterhemp, marestail, field 

sandbur 

 Dicamba + glyphosate treatment 

 Early planting Mid-season planting Late planting 

Northeasta  2019 only    barnyardgrass and volunteer wheat 

East-centralb  

2019 & 2020 

green foxtail, volunteer corn volunteer corn  

Southeastc  

2019 & 2020 

large crabgrass and barnyardgrass.  large crabgrass 

aNortheast experiment location was sampled on September 19, 2019. 
beast-central experiment location was sampled on September 9, 2019, and September 25, 2020. 
csoutheast experiment location was sampled on September 15, 2019, and September 16, 2020. 
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Figure 3.6.  Interaction effect of planting date and herbicide on weed density [plant m- 2] 

at 6 weeks after POST treatment application in Xtend soybean evaluated at northeast 

location in 2019. 

 

* Different letters above the bars indicate significant differences among the planting date by herbicide 

treatment using the Fisher’s test for significance at p ≤ 0.10. Error bars show the standard deviation of 

treatment mean. 
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Table 3.25. Effect of herbicide on end-of-season weed biomass (g m-2) averaged over 

planting date in Xtend soybean evaluated at northeast (2019), southeast (2019 and 2020), 

and east-central (2020) locations. 

End-of-season weed biomass (g m-2) 

Herbicide treatment Northeast 2019 

(p≤0.001) 

Southeast 2019 

(p≤0.001) 

Southeast 2020 

(p<0.001) 

East-central 2020 

(p<0.001) 

Dicamba 1 app. + glyphosate 23 b 37 bc 58 d 28 c 

Dicamba 2apps. + glyphosate - 33 bc - - 

Pre-only 188a 172 a 427 a 179 a 

Acifluorfen + clethodim 67 b 85 b 245 c 64 bc 

LSD (0.10) 60 104 100 62 

* Different letters indicate significant differences among herbicide treatment using the Fisher’s test for 

significance at p ≤ 0.10.  

 

Table 3.26.  Effect of planting date on end-of-season weed biomass (g m-2) averaged over 

herbicide treatment in Xtend soybean evaluated at northeast (2019) and southeast (2020). 

 

Location/year Planting date 

weed biomass  

(g m-2) 

Northeast 2019 May 15 112 a 

 May 30 110 a 

 June 15 40 b 

 LSD (0.10) 56 

   

Southeast 2020 May 15 144 b 

 May 29 212 b 

 June 12 341 a 

 LSD (0.10) 96 

* Different letters indicate significant differences among herbicide treatment using the Fisher’s test for 

significance at p ≤ 0.10.  



100 
 

 

 

Soybean greenness index (SPAD) measured at R5  

The SPAD values measured at R5 growth stage averaged 41 in the 5-location year 

study. No planting date by herbicide interaction was found for Xtend soybean SPAD 

readings at the study locations [northeast, southeast, and east-central South Dakota] in 

2019 and 2020 (Table A15). In 2019, and at southeast location, the Xtend soybean SPAD 

value was influenced by herbicide application (p<0.05) (Table A15). Plots treated with 

dicamba + glyphosate and acifluorfen + clethodim herbicide had higher SPAD values 

(average = 41) than the pre-only treated plots (40) (Table 3.27). SPAD values when 

rhizobia inoculant was applied with dicamba + glyphosate and pre-only treatments 

increased by 3 %, whereas rhizobia application with acifluorfen + clethodim reduced 

SPAD value by 1 %. However, in 2020, rhizobia application with herbicide had no 

impact on SPAD readings at southeast and east-central locations. 

Planting date impacted the SPAD values obtained at east-central and southeast 

locations in 2019 and 2020 growth season, respectively (Table 3.28). Delaying soybean 

planting from May 15 (early) to June 19 (late) increased SPAD value by 1% at east-

central location in 2019, whereas planting late reduced SPAD values by 2% at southeast 

location in 2020 season (Table 3.28).  
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Table 3.27. Effect of herbicide on the greenness index averaged over planting date in Xtend 

soybean evaluated at southeast (2019 and 2020) and east-central (2020) South Dakota. 

Xtend soybean SPAD value taken at R5 growth stage 

Herbicide Southeast (2019) Southeast (2020) East-central (2020) 

Dicamba + glyphosate + rhizobia 41.8a 39.8 a 40.8 a 

Acifluorfen + clethodim 41.5 a 39.3 ab 40.8 a 

Dicamba 2apps. + glyphosate + rhizobia 41.1 b N/A N/A 

Acifluorfen + clethodim + rhizobia 41.1 b 39. 1 b 41.1 a 

Pre + rhizobia 41.0 b 39.3 ab 39.7 b 

Dicamba + glyphosate  40.7 c 39.8 a 40.9 a 

Dicamba 2apps. + glyphosate 40.6 c N/A N/A 

Pre-only 40.1 c 39.8 a 39.2 b 

LSD (0.10) 1.3 0.5 0.6 

* Different letters within the same column indicate significant differences among herbicide treatment using 

the Fisher’s test for significance at p ≤ 0.10.  *N/A means not applicable. 

Table 3.28. Effect of planting date on the greenness index averaged over herbicide treatment in 

Xtend soybean evaluated at east-central (2019) and southeast (2020) South Dakota. 

Xtend soybean SPAD value at R5 growth stage 

East-central (2019)  

May 15 40.6 b 

June 2 40.6 b 

June 19 41.0 a 

LSD (0.10) 0.3 

Southeast (2020)  

May 15 39.9 a 

May 29 39.6 a 

June 12 39.1 b 

LSD (0.10) 0.5 

* Different letters within the same column indicate significant differences among herbicide treatment using 

the Fisher’s test for significance at p ≤ 0.10.   
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Soybean aboveground biomass 

Average biomass for Xtend soybean in the study was about 22 g/plant. An 

interaction was observed between planting date and herbicide treatment in 2019 

(northeast only; p≤0.05) and 2020 (east-central only; p≤0.01) seasons (Table A16). When 

comparing within planting dates at northeast, soybean from plots treated with dicamba + 

glyphosate treatment at early (May 15) and late (June 15) planting dates had more 

biomass (average = 27 g/plant) than acifluorfen + clethodim (average = 24 g/plant) 

(Figure 3.7). Also, when comparing within the mid-planting date (May 30), dicamba + 

glyphosate treatment had greater biomass (18 % increase) than the pre-only treatment 

(Figure 3.7).  

At east-central location (2020 season), dicamba + glyphosate herbicide treatment 

at an early (May 20) and late (June 16) planting dates had greater biomass (average = 16 

g/plant) than the pre-only (average = 13 g/plant) and acifluorfen + clethodim (12 g/plant) 

treatments (Figure 3.8). Also, acifluorfen + clethodim treatment at late (June 16) planting 

date combination had the lowest soybean biomass (8 g/plant) (Figure 3.8). Delaying 

Xtend soybean planting from the optimum sowing date (May 15) until a later date at 

southeast (June 12) and east-central (June 16) sites in 2020 resulted in about 49 and 23 % 

loss in biomass (Table 3.29).  
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Figure 3.7.  Interaction effect of planting date and herbicide treatment (averaged over 

rhizobia treatment) on soybean (Xtend) aboveground biomass (g/plant) evaluated at 

northeast location in 2019.      

 

* Different letters above the bars indicate significant differences among the planting date by herbicide 

treatment using the Fisher’s test for significance at p ≤ 0.10. Error bars show the standard deviation of 

treatment mean. 

*pd1/early planting date = May 15; pd2/mid-planting date = May 30; pd3/late planting date = June 15. 
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Figure 3.8.  Interaction effect of planting date and herbicide on soybean (Xtend) 

aboveground biomass (g/plant) evaluated at east-central location in 2020 season.    

 

* Different letters above the bars indicate significant differences among the planting date by herbicide 

treatment using the Fisher’s test for significance at p ≤ 0.10. Uppercase letters show the comparison 

between planting date by herbicide treatment interactions, whereas lowercase letters show comparison 

within each planting date by herbicide treatment interactions. Error bars show the standard deviation of 

planting date by herbicide treatment. 

*pd1/early planting date = May 20; pd2/mid-planting date = June 3; pd3/late planting date = June 16. 
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Table 3.29. Effect of planting date (averaged over herbicide and rhizobia treatments) on 

aboveground soybean biomass in Xtend soybean evaluated at southeast (2019 and 2020) 

and east-central (2020) experiment locations  

Location Planting date Plant biomass (g/plant) 

Southeast 2019 May 7 14.4 ab 

 June 5 10.0 b 

 June 19 17.3 a 

 LSD (0.10) 2.0 

   

Southeast 2020 May 15 22.3 a 

 May 29 21.7 a 

 June 12 11.3 b 

 LSD (0.10) 2.6 

   

East-central 2020 May 20 15.1 a 

 June 3 14.9 a 

 June 16 11.7 b 

 LSD (0.10) 1.4 

* Different letters within the same column indicate significant differences among planting dates using the 

Fisher’s test for significance at p ≤ 0.10.   
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Nodule number 

In 2019, total nodule numbers at northeast, southeast and east-central sites 

averaged 38, 23 and 72 nodules per 500 cm3 soil, respectively. However, in 2020 season, 

average nodule numbers at southeast and east-central sites were 42 and 48 nodules per 

500 cm3 soil. No interaction was found between planting date and herbicide treatment at 

all three locations, and for both years. Only herbicide treatment at east-central location 

influenced nodule numbers (Table A17). The number of nodules from soybean (Xtend 

variety) treated with dicamba + glyphosate averaged about 84 nodules/500cm3 soil and 

was more than what was found in acifluorfen + clethodim treated plots which had about 

50 nodules/500 cm3 soil (Table 3.30). An application of herbicide with rhizobia had no 

impact on nodule numbers in 2019 growing season. However, in 2020, nodule numbers 

were influenced by rhizobia application (Table 3.30). Dicamba + glyphosate + rhizobia, 

pre-only + rhizobia, and acifluorfen + clethodim + rhizobia treatments all increased 

nodule number by 2, 18, and 25%, respectively at east-central site, whereas dicamba + 

glyphosate + rhizobia at southeast increased nodule number by 32 % (Table 3.30). Also, 

delaying planting from the optimum sowing date (May 15) to later in the season (June) 

decreased nodule number by 38 % (Table 3.31) 

Active nodule number 

Active nodules ranged from 22 to 94% of the total nodules. No planting date by 

herbicide interactions were found for number of active nodules in the Xtend soybean 

variety evaluated at northeast, southeast, and east-central South Dakota in 2019 and 2020 

(Table A18). In 2019, only herbicide impacted active nodule numbers at east-central site. 

Dicamba + glyphosate treatment had greater active nodule number (average = 84 active 
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nodules per 500 cm3 soil) than pre-only (average = 66 active nodules per 500 cm3 soil) 

and acifluorfen + clethodim (average = 48 active nodules per 500 cm3 soil) treatments 

(Table 3.32). Foliar application of rhizobia with herbicide did not increase active nodule 

number of Xtend soybean. However, in 2020, acifluorfen + clethodim increased active 

nodule number by 39 % at east-central site, whereas dicamba + rhizobia treatment 

increased active nodule number by 55 % at southeast when compared to the pre-only 

herbicide treatment. (Table 3.32). Also, compared to the early planting date, active 

nodule numbers at southeast and east-central locations reduced by 43 % and 62 %, 

respectively, when Xtend soybean was planted late in the season (mid-June) (Table 3.33). 
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Table 3.30. Effect of herbicide on total nodule number (per 500 cm-3 soil) (averaged over 

planting date) of Xtend soybean evaluated at east-central (2019 and 2020) and southeast 

(2020) experiment locations. 

Nodule number (500 cm-3 soil) at R5 stage of Xtend soybean 

 

Herbicide treatment 

 

East-central 2019  

 

East-central 2020  

 

Southeast 2020 

Dicamba 1 app. + glyphosate 90 a 51.7 a 39.5 bc 

Dicamba 2apps. + glyphosate 83 a - - 

Dicamba 2apps. + glyphosate + rhizobia 80 a - - 

Pre-only 69 bc 42.7 b 42.4 b 

Pre + rhizobia 65 bc 50.4 a 42.8 b 

Acifluorfen + clethodim + rhizobia 62 cd 50.1 a 41.6 bc 

Acifluorfen + clethodim  50 d 40.2 b 35.9 c 

Dicamba + glyphosate + rhizobia - 52.8 a 52.2 a 

LSD (0.10) 28.2 6.4 7.1 

* Different letters within the same column indicate significant differences among herbicide treatment using 

the Fisher’s test for significance at p ≤ 0.10.   

 

Table 3.31. Effect of planting date on total nodule number (per 500 cm-3 soil) of Xtend 

soybean evaluated at southeast and east-central experiment locations in 2020 season. 

 

Location 
Planting date 

Nodule number/500 cm-3 soil 

Southeast 2020 May 15 49.8 a 

 May 29 43.7 a 

 June 12 33.7 b 

 LSD (0.10) 
9.8 

   

East-central 2020 May 20 59.1 a 

 June 3 51.9 a 

 June 16 32.9 b 

 LSD (0.10) 
9.8 

* Different letters within the same column indicate significant differences among planting dates using the 

Fisher’s test for significance at p ≤ 0.10.   
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Table 3.32. Effect of herbicide and rhizobial treatments on active nodule number (per 

500 cm-3 soil) of Xtend soybean evaluated at east-central (2019 and 2020) and southeast 

(2020) experiment locations. 

Active nodule number per 500 cm3 soil 

 

Herbicide treatment 

 

East-central 2019  

 

East-central 2020  

 

Southeast 2020 

Dicamba 1 app. + glyphosate 83.7 a 32.4 ab 24.1 b 

Dicamba 2apps. + glyphosate 85.9 a - - 

Dicamba 2apps. + glyphosate + rhizobia 75.3 ab - - 

Pre-only 66.0 bc 27.3 bc 25.5 b 

Pre + rhizobia 58.1 cd 33.4 ab 25.4 b 

Acifluorfen + clethodim + rhizobia 48.3 d 33.8 ab 23.8 b 

Acifluorfen + clethodim 48.0 d 24.3 c 19.8 b 

Dicamba + glyphosate + rhizobia - 38.5 a 37.4 a 

LSD (0.10) 19.0 6.9 6.4 

* Different letters within the same column indicate significant differences among herbicide treatment using 

the Fisher’s test for significance at p ≤ 0.10.   

 

Table 3.33. Effect of planting date on active nodule number (per 500 cm-3 soil) of Roundup Ready 

2 Xtend soybean evaluated at southeast and east-central locations in 2020  

Location Planting date Active nodule number/500 cm-3 soil 

Southeast 2020 May 15 33.3 a 

 May 29 25.7 ab 

 June 12 19.0 b 

 LSD (0.10) 10.7 

   

East-central 2020 May 20 42.3 a 

 June 3 36.5 a 

 June 16 16.0 b 

 LSD (0.10) 7.5 

* Different letters within the same column indicate significant differences among herbicide treatment using 

the Fisher’s test for significance at p ≤ 0.10.   
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Grain yield  

Average grain yields at northeast, southeast, and east-central locations were 3221, 

3789, and 3006 kg ha-1, respectively in 2019 growing season. However, about 32 % yield 

reduction was observed in 2020. There was no interaction between planting date and 

herbicide at the three locations for both years (2019 and 2020) (Table A19). Herbicide 

treatment application impacted grain yield at southeast (2019 and 2020) and east-central 

(2020) locations. In 2019, the pre-only treatment had the lowest grain yield (3369 kg ha-1) 

compared to Dicamba + glyphosate (3874 kg ha-1) and acifluorfen + clethodim (3880 kg 

ha-1) treatments. (Table 3.34). In 2020, dicamba + glyphosate application increased yield 

by about 27 % when compared to acifluorfen + clethodim and pre-only treatments at 

southeast. However, at east-central site, Dicamba + glyphosate application increased 

grain yield by 4 and 12 % when compared with acifluorfen + clethodim and the pre-only 

treatments, respectively (Table 3.34). Rhizobia application with herbicide treatments did 

not impact grain yield (Table 3.34). 

Planting date influenced the grain yield of Xtend soybean at southeast and east-

central locations in both years (Table A19). Overall, the early and mid-planting dates had 

higher yields than late planting date (Table 3.35). At southeast, a yield loss of about 7 % 

(2019 season) and 32 % (2020 season) occurred when Xtend soybean was planted late 

(around mid-June). Also, at east-central site, delaying planting from the optimum date 

(mid-May) to a late date (mid-June) resulted in 13 and 71 % yield loss in 2019 and 2020 

seasons, respectively. 
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Table 3.34. Effect of herbicide on grain yield (kg ha-1) of Xtend soybean evaluated at 

southeast (2019 and 2020), and east-central (2020) experiment locations. 

Grain yield (kg ha-1) 

 

Herbicide treatment 

 

Southeast 2019 

 

Southeast 2020 

 

East-central 2020 

Dicamba 1 app. + glyphosate 3954.4 a 2535.4 a 2380.7 ab 

Dicamba 2apps. + glyphosate 4203.2 a - - 

Dicamba 2apps. + glyphosate + rhizobia 3645.0 ab - - 

Pre-only 3369.3 b 2165.5 b 2293.3 abc 

Pre + rhizobia - 1977.2 b 2340.3 ab 

Acifluorfen + clethodim + rhizobia 3799.7 a 2098.2 b 2219.3 bc 

Acifluorfen + clethodim 3961.1 a 2091.5 b 2098.2 c 

Dicamba 1 app + glyphosate + rhizobia 3692.1 ab 2723.7 a 2454.7 a 

LSD (0.10) 300.1 252.3 347.2 

* Different letters within the same column indicate significant differences among herbicide treatments 

using the Fisher’s test for significance at p ≤ 0.10.   

 

Table 3.35. Effect of planting date on grain yield (kg ha-1) of Xtend soybean evaluated at 

northeast, southeast and east-central experiment locations in 2019 and 2020 growing seasons. 

Grain yield (kg ha-1) of Xtend soybean 

 Northeast 2019a  Southeast 2019b  East-central 2019c  Southeast 2020d East-central 2020e 

PD1 3262  3679 b 3208 a 2688 a 3093 a 

PD2 3255  4250 a 3033 ab 2285 b 2905 a 

PD3 3147 3437 b 2778 b 1827 c 894 b 

Mean 3221 3789 3006 2267 2297 

* Different letters within the same column indicate significant differences among planting dates using the 

Fisher’s test for significance at p ≤ 0.10. *Planting date [(Northeast/2019 season: PD1 – May 15; PD2 – 

May 30; PD3 – June 15); (Southeast/2019 season: PD1 – May 7, PD2 – June 5, PD3 – June 19); (East-

central/2019 season: PD1 – May 15; PD2 – June 2, PD3 – June 19); (Southeast/2020 season: PD1 – May 

15; PD2 – May 29; PD3 – June 12); (East-central/2020 season: PD1 – May 20; PD2 – June 3; PD3 – June 

16). 
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100-seed weight 

Average 100-seed weight in 2019 were 14.2 g (northeast), 18.3 g (southeast) and 

17.8 g (east-central). In 2020, and at east-central and southeast sites, the 100-seed weight 

of Xtend soybean reduced by 16 and 39 %, respectively, compared to 2019 season. There 

was an interaction between planting date and herbicide at southeast, in 2020 (Table A20). 

Dicamba + glyphosate herbicide, when compared to pre-only treatment, and within the 

early planting date increased 100 -seed weight by 18 % (Figure 3.9). Regardless of 

herbicide treatment, the 100-seed weight of soybean (Xtend variety) at northeast location 

was 14.2 g, excluding dicamba + glyphosate + rhizobia treatment which had 4 % increase 

in seed weight over other treatments (Table 3.36). In 2019, and at east-central location, 

acifluorfen + clethodim and dicamba + glyphosate (2x application) treatments had the 

lowest 100-seed weight (17.5 and 17.8 g, respectively). In addition, dicamba + 

glyphosate (1x application) increased 100-seed weight by 2 % over a double application 

of dicamba + glyphosate herbicide treatment (Table 3.36). From the study, delaying 

soybean planting from the optimum sowing date (May 15) to June 19 increased seed 

weight by 5 % in 2019 season, whereas about 11 % loss occurred with a delay in planting 

from May 20 to June 16 in 2020 season (Table 3.37).   
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Figure 3.9.  Interaction effect of planting date and herbicide on 100-seed weight of Xtend 

soybean evaluated at southeast location in 2020 season. 

 

 

* Different letters above the bars indicate significant differences among the planting date by herbicide 

treatment using the Fisher’s test for significance at p ≤ 0.10. Error bars show the standard deviation of 

planting date by herbicide treatment. *Planting date (pd1- May 15, pd2 – May 29, pd3 – June 12). 
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Table 3.36. Effect of herbicide on 100-seed weight (g) of Xtend soybean evaluated at 

northeast and east-central experiment locations in 2019 growing seasons. 

100-seed weight (g) of Xtend soybean 

Herbicide treatment Northeast 2019 East-central 2019 

Dicamba 1 app. + glyphosate 14.2 b 18.2 a 

Dicamba 2apps. + glyphosate - 17.8 bc 

Pre-only 14.2 b 17.9 ab 

Acifluorfen + clethodim 14.2 b 17.5 c 

Dicamba 1 app. + glyphosate + rhizobia 14.8 a - 

LSD (0.10) 0.4 0.3 

* Different letters within the same column indicate significant differences among herbicide treatments 

using the Fisher’s test for significance at p ≤ 0.10. 

 

Table 3.37. Effect of planting date on 100-seed weight (g) of Xtend soybean evaluated at 

east-central experiment locations in 2019 and 2020 growing seasons. 

Location/Year Planting date 100-seed weight (g) 

East-central 2019 May 15 17.4 c 

 June 2 17.8 b 

 June 19 18.2 a 

 LSD (0.10) 0.3 

   

East-central 2020 May 20 15.7 a 

 June 3 15.3 a 

 June 16 13.9 b 

 LSD (0.10) 1.0 

* Different letters within the same column indicate significant differences among planting dates using the 

Fisher’s test for significance at p ≤ 0.10. 
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Seed oil content at 13 % moisture 

Average seed oil of Xtend soybean evaluated across location (northeast, 

southeast, and east-central), and seasons (2019, 2020) was 19 %. No planting date by 

herbicide interaction was observed at any location, and year (Table A21). In 2019, only 

herbicide influenced seed oil content at the east-central location (Table A21). Acifluorfen 

+ clethodim treatment (with seed oil content of 19.8) had greater seed oil than the other 

two treatments (dicamba + glyphosate and pre-only), and it increased seed oil by 1% 

(Table 3.38). 

Planting date impacted seed oil at northeast (2019), southeast (2019) and east-

central (2020) locations (Table A21). In 2019, and at northeast location, seed oil content 

was reduced by 2 % when planting was delayed from May 15 to June 15. However, at 

southeast, a 2 % increase in seed oil content occurred with a delay in planting from May 

7 to June 19. In 2020 at east-central location, 11 % reduction in seed oil content occurred 

when soybean was planted at a late date (June 16) (Table 3.39). 

Seed protein content at 13 % moisture 

Seed protein content of Xtend soybean averaged 35 %. No planting date by 

herbicide interaction was observed at any location for either year (Table A22). Herbicide 

treatment application influenced seed protein levels at east-central (2019) and southeast 

(2020) locations (Table A22). Dicamba + glyphosate and the pre-only treatments had 

greater seed protein (average = 35 %) than acifluorfen + clethodim (Average = 34 %) 

(Table 3.40). Compared to acifluorfen + clethodim, the pre-only treatment increased seed 

protein by 2 and 5 %, whereas dicamba + glyphosate treatment increased seed protein by 

1 and 3 %, at east-central and southeast locations, respectively (Table 3.40). 
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Also, seed protein levels were impacted by planting date at east-central location in 

2019 and 2020 seasons (Table A22). In 2019, seed protein content increased by 1 % in 

the late planting date (June 19) compared to the early (May 15) and mid-planting (June 2) 

dates (Table 3.41). In 2020, delaying soybean planting from May 20 to June 3 resulted in 

about 2 % increase in seed protein. However, when planting was further delayed to June 

16, seed protein content was reduced by 2 % (Table 3.41). Overall, as seed protein 

increased, seed oil levels decreased for Xtend soybean variety planted. 
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Table 3.38. Effect of herbicide on seed oil content of Xtend soybean variety evaluated at 

east-central experiment location in 2019 growing season.  

Herbicide treatment Seed oil at 13 % moisture 

Acifluorfen + clethodim 19.8 a 

Dicamba + glyphosate 19.7 b 

Pre-only 19.7 b 

Dicamba 2apps. + glyphosate 19.7 b 

LSD (0.10) 0.4 

* Different letters within the same column indicate significant differences among herbicide treatments 

using the Fisher’s test for significance at p ≤ 0.10. 

 

Table 3.39. Effect of planting date on seed oil content of Xtend soybean evaluated at 

northeast (2019), southeast (2019), and east-central (2020) experiment locations. 

 

Location/Year Planting date 

 

Seed oil content at 13% moisture 

Northeast 2019 May 15 18.2 a 

 May 30 18.0 b 

 June 15 17.9 b 

  LSD (0.10) = 0.3 

Southeast 2019 May 7 19.4 b 

 June 5 19.5 ab 

 June 19 19.7 a 

  LSD (0.10) = 0.4 

East-central 2020 May 20 20.2 a 

 June 3 19.4 b 

 June 16 17.9 c 

  LSD (0.10) = 0.2 

* Different letters within the same column indicate significant differences among planting date using the 

Fisher’s test for significance at p ≤ 0.10. 
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Table 3.40. Effect of herbicide on seed protein content of Xtend soybean variety 

evaluated at east-central (2019) and southeast (2020) experiment locations. 

Seed protein at 13 % moisture 

Herbicide treatment East-central location 2019 Southeast location 2020 

Acifluorfen + clethodim 33.9 b 34.3 b 

Dicamba + glyphosate 34.4 a 35.5 a 

Pre-only 34.5 a 35.9 a 

LSD (0.10)  0.2 0.1 

* Different letters within the same column indicate significant differences among herbicide treatments 

using the Fisher’s test for significance at p ≤ 0.10. 

 

Table 3.41. Effect of planting date on seed protein content of Xtend soybean evaluated at 

east-central experiment location in 2019 and 2020 growing seasons. 

 

Location/Year Planting date 

 

Seed protein content at 13% moisture 

East-central 2019 May 15 34.1 b 

 June 2 34.2 b 

 June 19 34.6 a 

  LSD (0.10) = 0.1 

East-central 2020 May 20 32.8 b 

 June 3 33.3 a 

 June 16 32.3 c 

  LSD (0.10) = 0.2 

* Different letters within the same column indicate significant differences among planting date using the 

Fisher’s test for significance at p ≤ 0.10. 
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3.4. Discussion 

Postemergence herbicide applications to Enlist™ and Xtend® soybean varieties 

evaluated in the present study were tank-mixed with either clethodim (2,4-D, 

acifluorfen), or glyphosate (dicamba). Overall, grass weeds present at the three study 

locations (northeast, southeast, and east-central South Dakota) were poorly controlled by 

the auxin-based herbicide treatments (2,4-D + clethodim, 2,4-D + glufosinate and 

dicamba + glyphosate) whereas excellent control of broadleaf weeds, except for 

glyphosate resistant waterhemp and marestail at southeast location, was achieved by 

auxin herbicides. The poor grass weed control obtained could be due to the antagonism 

between auxin herbicide, 2,4-D and clethodim or dicamba and glyphosate in the tank-mix 

at application, which has been reported to reduce translocation of clethodim and 

glyphosate herbicides (Merritt et al. 2020). Herbicide antagonism is a phenomenon 

wherein two or more herbicides in a tank mix produce poorer weed control than 

individual herbicide components would supply alone (Colby S.R., 1967). Evidence of 

synthetic auxin herbicide (2,4-D and dicamba) antagonism with clethodim and 

glyphosate is documented in literature (Merritt et al. 2020). 2,4-D antagonism with 

clethodim has been reported in the control of volunteer wheat (Triticum aestivum) 

(Blackshaw et al. 2006). Dicamba applied POST with clethodim has also been found to 

result in lesser control of glyphosate-resistant volunteer corn in dicamba-tolerant soybean 

(Underwood et al. 2016). Poor control of Johnson grass (Sorghum halepense) and kochia 

(Bassia scoparia) have been reported when dicamba herbicide was applied in a tank-mix 

with glyphosate (Flint and Barrett, 1989; Ou et al. 2018).  
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The postemergence application of 2,4-D + glufosinate has been reported to 

provide an effective control (about 85%) of annual grasses and broadleaf weeds, 

including the control of barnyardgrass and common waterhemp, compared to when either 

2,4-D or glufosinate was applied alone (Craigmyle et al. 2013). The study also reports a 

poor control of large crabgrass with an application of 2,4-D + glufosinate compared to 

when glufosinate was applied alone. Similar to our findings, Frane et al. (2018) reported 

about 98% control of glyphosate resistant weeds with POST applications of Enlist Duo 

(2,4-D choline + glyphosate) and Enlist One (2,4-D + glyphosate + glufosinate) in Enlist 

soybean. These reports support a component of our hypothesis that auxin-based herbicide 

programs will reduce weeds (broadleaf + grass) and provide weed control alternatives in 

auxin-tolerant soybeans.  

Planting date by herbicide interactions were not found to be significant for 

chlorophyll values, soybean biomass, nodule number, and active nodule number of Enlist 

and Xtend soybean evaluated in the present study. Like our findings, Silva et al. (2021) 

reported no herbicide effects of 2,4-D choline, glyphosate and glufosinate on chlorophyll 

indices of E3 soybean. However, Albrecht et al. (2018) reported reductions in chlorophyll 

indices when higher rates (2,880 g ae ha-1) of glyphosate were applied at V4 growth stage 

in Roundup Ready soybeans. Previous studies also suggest that an adequate supply of 

energy by photosynthesis is required for an efficient nodule initiation and development in 

soybean crop (Fransisco and Harper, 1995; Schultze and Kondorosi, 1998). Therefore, 

any reduction in soybean biomass result in a corresponding decrease in the supply of 

photosynthate to the nodules (Walsh, 1995), which will in turn impact nodulation and 

nodule function. 
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Auxin herbicide applications, in some cases, increased nodule number and active 

nodule number of Enlist and Xtend soybeans in the current study. This result however 

contrast with that of Turner et al. (2013) who reported that higher auxin concentrations 

inhibited root nodulation in soybean. The indirect effect of weed competition coupled 

with the negative allelopathic effects of some weeds to crop roots may inhibit nodulation 

and nodule function. Recent studies have shown that weed stress can inhibit root 

nodulation in soybean (Irawati et al 2012; Gal et al. 2015; Tortosa et al. 2021). Number 

of nodules were reported to be reduced when weeds were allowed to compete with 

soybean crop in field (Gal et al. 2015). Reduction in nodule number observed by Gal et 

al. (2015) was partly ascribed to the down regulation of the GmN93 gene caused by weed 

stress to crop. These findings provide an explanation for the higher nodule numbers 

obtained from the weed-free plots in the present study.  

By using weed extracts in the laboratory, Irawati et al. (2012) was able to show 

that allelopathic weeds like nutgrass (Cyperus rotundus), Powell’s amaranth (Amaranthus 

powellii) and paspalum (Paspalum dilatatum) inhibited root nodulation and nodule 

function in soybean by reducing nitrogenase enzyme activity. Similar nodule inhibition 

by plant residues and their extracts, leaf leachates and root exudates are found in 

literature. The extracts of common lambsquarters (at 1% level) was found to be inhibitory 

to soybean root nodulation as it reduced nodule numbers by 60% (Mallik and Tesfai, 

1985). Our study recorded higher nodule number with auxin-based herbicide treatments 

as they provided a better control of weeds (some of which may have allelopathic trait) 

present at the three study locations. 
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Planting date in the present study influenced the yields of Enlist and Xtend 

soybeans evaluated at all study locations. Early and mid-planting dates had higher yields 

than the late planting dates. Early sowing allows more nodes to accumulate throughout 

the growing season. Across locations and for both study years, we observed that the late-

planted soybean was shorter and had fewer nodes compared to the soybean planted early 

in the growth season (data not collected for statistical analysis). Past study reports a 

strong correlation between soybean nodes and yield (Ball et al. 2001). Soybean nodes 

have also been found to develop at a consistent rate of 0.27 nodes per day regardless of 

weather conditions (Bastidas et al. 2008). Therefore, delaying planting from the optimum 

planting date (which is May 15 in South Dakota) to later dates reduces the duration of 

vegetative and reproductive phases of growth available to crop. The morphological 

changes observed in the present study when soybean planting was delayed to mid-June 

may be a possible reason for some, but not all, of the yield differences observed. Data 

from multiple universities and grower’s experiences suggests a potential yield gain when 

soybean is planted early in the season, and their findings corroborates our results 

(Bastisdas et al. 2008; Staton, 2011; Roozeboom, 2012; Licht et al. 2013; and Nleya et al. 

2020).  

The 2019 season was a very wet year with rainfall amounts exceeding the 30-year 

average by 50% (https://mesonet.sdstate.edu/archive). Early rains in 2019 season 

prevented the planting of most crops as fields were too wet thereby leaving most fields 

uncultivated. Also, the mid-summer rains in 2019 drowned out many areas and the few 

acres that were planted got flooded in July thus resulting in low crop yields. In 2020, low 

rainfalls and higher temperatures that occurred within the months of July and September 

https://mesonet.sdstate.edu/archive).
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at southeast, and August to September at east-central study location may have caused 

some drought stress on soybean planted in the summer of 2020, and this could be the 

reason for lower yields obtained in the second growing season. Soybean plants are most 

sensitive to drought during flowering and early pod fill growth stages. During water 

stress in soybean plant, floral abortion, reduced pod number, fewer seeds, and reduced 

seed size occur. A moderate drought stress has also been reported to reduce or stop 

nitrogen fixation, and this disrupts the seed development process (Lenssen, 2012). 

Drought conditions during R4 through R6 (full pod through full seed) stages of soybean 

growth can have devastating effect on yield potential as flowering stops and plants cannot 

compensate for lost pods (Hall and Twidwell, 2002). Early drought stress occurring 

during seed fill can reduce the number of seeds per pod, whereas later drought stress 

result in a reduced seed weight (Desclaux et al. 2000). However, if weather conditions 

improve, soybean flowering will re-initiate into the early seed filling stage and pod 

setting can occur into mid seed filling stage. Hence, rains in August could benefit 

soybean yields. 

The literature reports on the response of soybean seed protein content to planting 

date vary. Some studies found no improvement in seed protein concentration of soybean 

when planting was delayed (Bajaj et al. 2008; Nleya et al. 2020), whereas others reported 

a decrease (Muhammad et al. 2009) or an increase (Mourtzinis and Conley, 2017); 

Tremblay et al. 2006) in soybean seed protein contents. A previous study conducted in 

Arkansas reports an increase in soybean seed protein concentration when planting was 

done in early May (Jaureguy et al. 2013). The present study found variable seed protein 

levels across study location and planting dates. This is similar to the findings of Nleya et 
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al. (2020) who reported variable seed protein level among planting dates and between 

soybean maturity groups. Overall, as protein concentration in seed increased, seed oil 

levels decreased for both soybean varieties evaluated in the study. 
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3.5. Conclusion 

Synthetic auxin herbicides [Weed Science Society of America (WSSA) and 

Herbicide Resistance Action Committee (HRAC) Group 4] provided excellent broadleaf 

weed control in auxin-tolerant soybean. A renewed concern of 2,4-D and dicamba trait 

technologies (Enlist and Xtend) in soybean may be that of antagonistic response with 

tank-mixes of common grass herbicides (for example, clethodim, ACCase inhibitor – 

WSSA/HRAC Group 1) with 2,4-D and dicamba herbicides. Although tank-mixing 

herbicides is an effortless way to apply multiple herbicides at one time, controlling both 

grasses and broadleaf weeds may be difficult if antagonism occurs in the plant. Applying 

herbicides separately with a specified interval between applications may prevent 

antagonism and increase herbicide activity for optimum control of weeds.  

Results from our study found decreased grass weed control when grass or broad-

spectrum herbicides were applied in a tank-mix with auxin herbicides. Since all 

postemergence treatment applications were tank-mixed with clethodim, antagonism may 

have reduced grass weed control. Also, hard water used for mixing herbicides can 

antagonize glyphosate in the plant. Cations like calcium (Ca2+) or magnesium (Mg2+) 

binds to negatively charged 2,4-D molecule and form large spray molecules that are less 

efficient in penetrating the waxy leaf cuticle of target plants, thereby resulting in poor 

control of weeds as seen in our study for Enlist soybean.  

Dicamba can cause both metabolic and physical reactions to plants within hours 

of application and can inhibit plant’s growth. Like the dicamba herbicide, glyphosate is 

transported through the phloem. However, dicamba herbicide can cause phloem plugging 

thus restricting glyphosate movement within the plant. If the ability of glyphosate to be 
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translocated within the plant is restricted, then the optimum control of the plant may be 

reduced. Glyphosate can equally reduce the translocation of dicamba through the plant by 

inhibiting the EPSPS enzymes. This affects amino acid production and may indirectly 

influence phloem function (Amrhein et al. 1980; De Maria et al. 2006). Like glyphosate, 

dicamba needs the phloem to move throughout the plant and if the phloem tissue is 

damage, dicamba translocation to target locations in plant is cutoff. Therefore, the 

antagonism theory of dicamba and glyphosate can be the reason for the poor control of 

grasses (green foxtail, large crabgrass, volunteer wheat and volunteer corn) and broadleaf 

weeds (marestail and common waterhemp) observed in Xtend soybean variety evaluated 

in the study. 

Foliar application of rhizobia combined with synthetic auxins, in most cases, did 

not increase nodule number, active nodule number, and grain yield as hypothesized in the 

study. A combination of factors including weather and soil conditions (temperature, 

rainfall, and pH) in field may account for reduced or no impact of rhizobia on soybean 

performance found in the study. A water-logged field condition, temperatures above or 

below the optimum requirement (27 to 350C) with highly acidic or alkaline soil pH will 

reduce rhizobia performance in field.  
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3.6. Recommendations for future research. 

Herbicides and their surfactant and adjuvants used to control unwanted vegetation 

on croplands may have an indirect effect on the activities of beneficial soil 

microorganisms. Since weeds pose a serious threat to the income of farmers and may 

only be effectively managed (both in time and in space) using these chemicals, the sale 

and application of herbicides will continue to rise on a global scale. Therefore, there is 

need to engage in cutting edge research that investigates how to circumvent herbicide 

resistance (a global dilemma facing today’s growers, the agroindustry, and other 

agricultural stakeholders) and promote agricultural sustainability. This current research 

studied the effect of herbicides, adjuvant, and surfactant on the growth of soybean 

rhizobacteria (Bradyrhizobium japonicum - USDA 110). We saw a growth increase when 

bacteria were treated with herbicide mixture that contained glyphosate, dicamba, AMS, 

Duce and Strike Zone, and cultured in both deionized water and yeast extract media. 

However, the rate of growth of the bacteria was influenced by the concentration of the 

herbicide, adjuvant, or surfactant. The effect of surfactant alone on the growth of soybean 

bacteria was not carried out in the present study and is recommended for further research.  

The field study investigated the effect of auxin-based herbicides and rhizobia 

application to auxin-tolerant soybean in eastern South Dakota locations. Climate and soil 

conditions, in addition to COVID-19 outbreak influenced our result. High rainfall and 

soil moisture promoted decay of nodules and thus reduced nodule activity in 2019. The 

rhizobia application effect was too variable across location to account for yield increase, 

and travel restrictions made timely POST applications impossible. Therefore, a follow up 
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study on rhizobia and herbicide application effect to soybean is recommended to 

corroborate the results in the present study. 
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Appendix 
 

Figure A1. Structure of herbicides. 

  

  

 

   

 

 

(1) 2,4-Dichlorophenoxyacetic acid (2) Dicamba 

(3) Glyphosate (4) Glufosinate 

(5) Acifluorfen 
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Table A1. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for weed density 2 weeks after POST treatment 

application at northeast, east-central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Weed density (plant/m2) at 2 weeks after treatment application  

  Northeast East-central Southeast East-central Southeast  

Effect Degree of 

freedom 

…………2019 season (p-value) ………. ……2020 season (p-value)…….. 

Block 3 0.20 0.12 0.19 0.98 0.19 

PDa 2 0.40 0.95 0.34 0.02 0.76 

Ea 6      

Herbicide 5 0.00 0.01 0.22 0.39 0.80 

PD:Herbicide 10 0.81 0.33 0.36 0.06 0.59 

Eb 45      

CV (a)  52.4  54.2 64.1  36.9 31.7  

CV (b)  61.3  48.5 58.0 19.4 35.7  

R square  0.5 0.6 0.5 0.7 0.3 

  aPlanting date: - [(Northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15), (East-central 2019: PD1-May 15, PD2-June 2, PD3-June 

19), (East-central 2020: PD1-May 20, PD2-June 3, PD3-June 16), (Southeast 2019: PD1-May7, PD2-June 5, PD3-June 19), (Southeast 

2020: PD1-May 15, PD2-May 29, PD3-June 12). 

*Weed density data were transformed using the square root transformation √(𝑥) + 1; back transformed data are reported. 
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Table A2. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for weed density 6 weeks after POST treatment 

application at northeast, east-central, and southeast South Dakota in 2019 and 2020 growing seasons. 

Weed density (plant/m2) at 6 weeks after treatment (WAT) application  

  Northeast East-central Southeast East-central Southeast 

Effect Degree of 

freedom 

……2019 season (p-value).….… ……2020 season (p-value).….… 

Block 3 0.24 0.91 0.56 0.75 0.26 

PDa 2 0.42 0.83 0.23 0.22 0.14 

Ea 6      

Herbicide 5 0.00 0.10 0.88 0.00 0.00 

PD:Herbicide 10 0.01 0.34 0.55 0.23 0.10 

Eb 45      

CV (a)  62.6  60.2 118.7 55.9 24.4  

CV (b)  52.7  48.8 48.6 46.9 28.0  

R square  0.7 0.4 0.7 0.6 0.7 

  aPlanting date: - [(Northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15), (East-central 2019: PD1-May 15, PD2-June 2, PD3-June 

19), (East-central 2020: PD1-May 20, PD2-June 3, PD3-June 16), (Southeast 2019: PD1-May7, PD2-June 5, PD3-June 19), (Southeast 

2020: PD1-May 15, PD2-May 29, PD3-June 12). 

*Weed density data were transformed using the square root transformation √(𝑥) + 1; back transformed data are reported. 
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Table A3. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for weed biomass (g/ m2) at harvest at northeast, 

east-central, and southeast South Dakota in 2019 and 2020 growing seasons. 

Weed biomass (g/m2) sampled at harvest in Enlist soybean variety  

Effect Degree of 

freedom 

 

Northeast 

 

East-central 

 

Southeast 

 

East-central 

 

Southeast 

  .………….2019 season (p-value) ………. ………2020 season (p-value) 

…... 

Block 3 0.18 0.92 0.67 0.71 0.31 

PDa 2 0.25 0.54 0.32 0.25 0.52 

Ea 6      

Herbicide 5 0.00 0.01 0.63 0.00 0.00 

PD:Herbicide 10 0.01 0.15 0.69 0.15 0.09 

Eb 45      

CV (a)  89.1  177.3 318.4  88.8 68.9  

CV (b)  99.7  161.2 210.5  65.6 74.8  

R square  0.7 0.5 0.5 0.8 0.8 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); (southeast 

2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: PD1-May 15, PD2-May 

29, PD3-June 12)]. 
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Table A4. Analysis of variance (ANOVA) for soybean greenness (SPAD) in Enlist variety evaluated at northeast, east-central, 

and southeastern South Dakota in 2019 and 2020 growing seasons. 

Soybean greenness at R5 stage of Enlist soybean  

  Northeast East-central Southeast East-central Southeast 

Effect Degree of 

freedom 

….2019 season (p-value) …. ….2020 season (p-value)….. 

Block 3 0.49 0.16 0.49 <0.05 <0.05 

PDa 2 0.30 0.52 0.42 <0.05 0.08 

Ea 6      

Herbicide 5 0.35 0.18 <0.00 0.17 0.99 

PD:Herbicide 10 0.31 0.49 0.16 0.54 0.29 

Eb 45      

CV (a)  5.2  3.1 6.9  3.2 1.6  

CV (b)  5.8  2.5 2.9  1.9 1.6  

R square  0.4 0.5 1.0 0.7 0.5 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); (southeast 

2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: PD1-May 15, PD2-May 

29, PD3-June 12)]. 
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Table A5. Analysis of variance (ANOVA) for soybean biomass (g/plant) in Enlist variety evaluated at northeast, east-central, 

and southeast South Dakota in 2019 and 2020 growing seasons. 

Soybean biomass (g/plant) sampled at R5 stage of Enlist soybean 

  Northeast East-central Southeast East-central Southeast  

Effect Degree of 

freedom 

2019 season (p-value) 2020 season (p-value) 

Block 3 0.67 0.85 0.71 0.00 0.06 

PDa 2 0.35 0.75 0.66 0.05 <0.01 

Ea 6      

Herbicide 5 0.06 0.74 0.99 0.17 0.64 

PD:Herbicide 10 0.38 0.22 1.00 0.50 0.25 

Eb 45      

CV (a)  50.6  76.0 41.9  15.0  22.3 

CV (b)  18.2  17.5 33.7  19.2  21.7 

R square  0.7 0.8 0.3 0.5 0.7 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A6. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for nodule number (500 cm3 soil) at northeast, 

east-central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Nodule number (500 cm-3 soil) at R5 stage of Enlist soybean  

  Northeast East-central Southeast East-central Southeast 

Effect Degree of 

freedom 

2019 season (p-value) 2020 season (p-value) 

Block 3 0.10 0.68 0.06 0.12 0.41 

PDa 2 0.31 0.24 0.10 <0.01 <0.05 

Ea 6      

Herbicide 5 <0.00 0.98 0.29 <0.05 0.68 

PD:Herbicide 10 0.81 0.94 0.49 0.85 0.35 

Eb 45      

CV (a)  26.9  43.8 57.8  24.1 47.9  

CV (b)  26.2  29.2 24.8  21.9 22.9  

R square  0.6 0.4 0.8 0.6 0.7 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: PD1-

May 15, PD2-May 29, PD3-June 12)]. 
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Table A7. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for active nodule number (500 cm3 soil) at 

northeast, east-central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Active nodule number (500 cm3 soil) at R5 stage of Enlist soybean  

  Northeast East-central Southeast East-central Southeast  

Effect Degree of 

freedom 

2019 season (p-value) 2020 season (p-value) 

Block 3 0.44 0.73 <0.05 0.16 0.13 

PDa 2 0.41 0.64 <0.05 <0.01 <0.05 

Ea 6      

Herbicide 5 0.10 0.64 0.25 <0.05 0.12 

PD:Herbicide 10 0.33 0.91 0.44 0.63 0.56 

Eb 45      

CV (a)  93.2  73.4 78.3  37.2  52.8 

CV (b)  74.9  45.1 76.4  28.9  35.1 

R square  0.5 0.4 0.6 0.7 0.7 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A8. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for grain yield (kg ha-1) at northeast, east-central 

and southeastern South Dakota in 2019 and 2020 growing seasons. 

Grain yield (kg ha-1) of Enlist soybean evaluated at three eastern South Dakota locations. 

  Northeast East-central Southeast East-central Southeast 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.26 0.73 0.89 0.11 0.72 

PDa 2 <0.01 0.24 0.14 <0.00 <0.00 

Ea 6      

Herbicide 5 0.07 0.78 0.53 0.16 0.96 

PD:Herbicide 10 0.14 0.60 0.87 0.85 0.44 

Eb 45      

CV (a)  10.6 16.8 48.9 26.2 17.9 

CV (b)  13.1 9.1 31.4 18.3 23.1 

R square  0.5 0.6 0.5 0.8 0.6 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A9. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for 100-seed weight (g) at northeast, east-central 

and southeastern South Dakota in 2019 and 2020 growing seasons. 

100-seed weight (g) of Enlist soybean evaluated at three eastern South Dakota locations. 

  Northeast East-central Southeast East-central Southeast 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.09 0.68 0.32 0.00 0.85 

PDa 2 0.30 0.07 0.09 <0.01 <0.05 

Ea 6      

Herbicide 5 <0.05 0.60 0.22 0.13 0.20 

PD:Herbicide 10 0.74 0.16 0.73 0.33 0.19 

Eb 45      

CV (a)  3.9 3.0 12.6 3.2 6.8 

CV (b)  4.0 2.4 15.8 6.4 5.7 

R square  0.5 0.5 0.4 0.5 0.5 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A10. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for seed oil content at northeast, east-central 

and southeastern South Dakota in 2019 and 2020 growing seasons. 

Seed oil content (13 % moisture) of Enlist soybean evaluated at three eastern South Dakota locations. 

  Northeast East-central Southeast East-central Southeast  

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.42 0.08 0.46 0.42 0.31 

PDa 2 0.13 0.26 0.38 <0.00 <0.01 

Ea 6      

Herbicide 5 0.80 <0.01 0.38 0.09 0.53 

PD:Herbicide 10 0.84 0.07 0.37 0.13 0.97 

Eb 45      

CV (a)  3.4 1.0 27.2 2.4 1.8 

CV (b)  1.3 0.8 15.9 1.3 2.1 

R square  0.7 0.7 0.6 0.9 0.5 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A11. Analysis of variance (ANOVA) of Enlist soybean variety evaluated for seed protein content at northeast, east-

central and southeastern South Dakota in 2019 and 2020 growing seasons. 

Seed protein content (13 % moisture) of Enlist soybean evaluated at three eastern South Dakota locations. 

  Northeast East-central Southeast East-central  Southeast 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.12 0.00 0.50 0.56 0.82 

PDa 2 <0.05 <0.00 0.46 <0.05 <0.05 

Ea 6      

Herbicide 5 <0.05 0.34 0.38 0.19 <0.01 

PD:Herbicide 10 0.83 0.76 0.50 <0.05 <0.00 

Eb 45      

CV (a)  1.5 0.7 27.5 2.5 2.0 

CV (b)  0.8 1.2 16.4 1.4 1.4 

R square  0.7 0.5 0.5 0.7 0.7 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 

 

 



 

167 

 

Table A12. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for weed density 2 weeks after POST 

treatment application at northeast, east-central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Weed density (plants m-2) at 2 weeks after POST treatment application in Xtend soybean  

  Northeast East-central Southeast  East-central Southeast 

 

Effect 

Degree of 

freedom 

 

2019 growing season (p-value) 

 

2020 growing season (p-value) 

Block 3 0.00 <0.01 0.02 0.59 0.01 

PDa 2 <0.05 0.30 0.13 0.58 0.28 

Ea 6      

Herbicide 5 <0.00 <0.05 <0.01 <0.01 <0.00 

PD:Herbicide 10 0.11 0.70 0.64 0.70 0.42 

Eb 45      

CV (a)  103.6 129.1 71.0 214.1 74.0 

CV (b)  129.1 174.2 147.2 140.4 82.8 

R square  0.7 0.6 0.5 0.5 0.6 

  aPlanting date: - [(Northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15), (East-central 2019: PD1-May 15, PD2-June 2, PD3-June 

19), (East-central 2020: PD1-May 20, PD2-June 3, PD3-June 16), (Southeast 2019: PD1-May7, PD2-June 5, PD3-June 19), (Southeast 

2020: PD1-May 15, PD2-May 29, PD3-June 12). 

*Weed density data were transformed using the square root transformation √(𝑥) + 1; back transformed data are reported. 
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Table A13. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for weed density 6 weeks after POST 

treatment application at northeast, east-central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Weed density (plant/m2) at 6 weeks after POST treatment application in Xtend soybean.  

  Northeast East-central Southeast East-central Southeast  

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.02 0.18 0.09 0.06 0.00 

PDa 2 <0.01 0.58 0.39 0.43 0.08 

Ea 6      

Herbicide 5 <0.00 0.15 0.11 <0.01 <0.00 

PD:Herbicide 10 <0.01 0.87 0.73 0.49 0.89 

Eb 45      

CV (a)  49.0 56.1 228.4 57.2 19.4 

CV (b)  52.4 44.4 268.3 52.3 38.8 

R square  0.8 0.4 0.4 0.6 0.5 

  aPlanting date: - [(Northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15), (East-central 2019: PD1-May 15, PD2-June 2, PD3-June 

19), (East-central 2020: PD1-May 20, PD2-June 3, PD3-June 16), (Southeast 2019: PD1-May7, PD2-June 5, PD3-June 19), (Southeast 

2020: PD1-May 15, PD2-May 29, PD3-June 12). 

*Weed density data were transformed using the square root transformation √(𝑥) + 1; back transformed data are reported. 
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Table A14. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for weed biomass (g/m2) sampled at harvest at 

northeast, east-central, and southeastern South Dakota in 2019 and 2020 growing seasons. 

Weed biomass (g/m2) sampled at harvest in Xtend soybean  

  Northeast East-central Southeast  East-central Southeast  

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.06 0.35 0.63 0.50 0.08 

PDa 2 0.03 0.82 0.12 0.26 0.01 

Ea 6      

Herbicide 5 <0.00 0.06 <0.00 <0.00 <0.00 

PD:Herbicide 10 0.13 0.97 0.77 0.36 0.09 

Eb 45      

CV (a)  91.6 244.0 131.1 118.7 58.7 

CV (b)  83.8 159.7 97.5 102.2 51.2 

R square  0.7 0.5 0.6 0.6 0.8 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A15. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for plant greenness (SPAD) at northeast, 

southeast, and east-central South Dakota in 2019 and 2020 growing seasons. 

Plant greenness (SPAD) at R5 stage of Xtend soybean  

  Northeast East-central Southeast  East-central Southeast 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.84 0.09 0.96 0.61 0.20 

PDa 2 0.82 0.03 0.12 0.09 0.02 

Ea 6      

Herbicide 5 0.39 0.25 0.02 0.05 0.05 

PD:Herbicide 10 0.97 0.24 0.46 0.28 0.28 

Eb 45      

CV (a)  3.2 1.3 1.8 3.3 1.9 

CV (b)  2.4 1.5 2.2 1.7 1.6 

R square  0.3 0.5 0.4 0.7 0.6 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A16. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for plant biomass (g/plant) at northeast, 

southeast, and east-central South Dakota in 2019 and 2020 growing seasons. 

Plant biomass (g/plant) sampled at R5 stage of Xtend soybean 

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.42 0.17 0.18 0.50 0.00 

PDa 2 0.21 0.03 0.53 0.00 0.00 

Ea 6      

Herbicide 5 0.11 0.02 0.02 0.01 0.01 

PD:Herbicide 10 0.05 0.10 0.25 0.08 0.01 

Eb 45      

CV (a)  29.4 47.5 68.3 20.1 14.5 

CV (b)  15.8 31.4 20.0 21.2 18.7 

R square  0.6 0.7 0.8 0.8 0.7 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A17. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for nodule number (500 cm3 soil) at northeast, 

southeast, and east-central South Dakota in 2019 and 2020 growing seasons. 

Nodule number (500 cm-3 soil) at R5 stage of Xtend soybean  

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.09 0.04 0.00 0.93 0.20 

PDa 2 0.82 0.89 0.18 0.02 0.00 

Ea 6      

Herbicide 5 0.48 0.65 0.00 0.00 0.00 

PD:Herbicide 10 0.89 0.92 0.45 0.40 0.30 

Eb 45      

CV (a)  14.1 32.0 35.3 32.8 29.1 

CV (b)  15.1 25.6 34.1 18.4 17.9 

R square  0.3 0.5 0.7 0.7 0.8 

Mean  38.0 23.1 71.1 42.4 48.0 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A18. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for active nodule number (500 cm3 soil) at 

northeast, southeast, and east-central South Dakota in 2019 and 2020 growing seasons. 

Active nodule number (500 cm3 soil) at R5 stage of Xtend soybean  

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.75 0.01 0.02 0.75 0.07 

PDa 2 0.64 0.37 0.13 0.05 <0.001 

Ea 6      

Herbicide 5 0.53 0.71 <0.001 <0.001 <0.01 

PD:Herbicide 10 0.92 0.75 0.06 0.42 0.48 

Eb 45      

CV (a)  72.2 38.4 50.9 58.1 33.8 

CV (b)  57.6 40.8 35.0 29.8 26.4 

R square  0.3 0.5 0.7 0.72 0.8 

Mean  23.3 5.4 66.5 26.0 31.6 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A19. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for grain yield (kg ha-1) at northeast, southeast, 

and east-central South Dakota in 2019 and 2020 growing seasons. 

Grain yield (kg ha-1) of Xtend soybean evaluated at three eastern South Dakota locations. 

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

[2019 growing season (p-value)] [2020 growing season (p-value)] 

Block 3 0.11 0.51 0.16 0.07 0.69 

PDa 2 0.78 0.03 0.02 0.01 <0.001 

Ea 6      

Herbicide 5 0.61 0.03 0.13 <0.001 0.01 

PD:Herbicide 10 0.58 0.71 0.08 0.91 0.41 

Eb 45      

CV (a)  18.8 19.8 12.1 24.9 12.2 

CV (b)  14.4 13.8 11.2 19.4 10.4 

R square  0.5 0.6 0.6 0.7 1.0 

Mean  3221 3789 3006 2267 2300 

LSDb  N/A 746.5 255.6 363.2 195.0 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A20. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for 100-seed weight (g) at northeast, southeast, 

and east-central South Dakota in 2019 and 2020 growing seasons. 

100-seed weight (g) of Xtend soybean evaluated at three eastern South Dakota locations. 

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.02 0.00 0.04 0.15 0.48 

PDa 2 0.07 0.23 <0.01 0.81 0.01 

Ea 6      

Herbicide 5 <0.01 0.35 0.01 0.18 0.42 

PD:Herbicide 10 0.68 0.93 0.45 0.01 0.93 

Eb 45      

CV (a)  1.7 3.8 2.6 14.3 9.0 

CV (b)  3.6 10.1 2.3 8.4 7.5 

R square  0.5 0.3 0.7 0.6 0.5 

Mean  14.2 18.3 17.8 11.2 15.0 

       

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A21. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for seed oil content at northeast, southeast, and 

east-central South Dakota in 2019 and 2020 growing seasons. 

Seed oil content (13 % moisture) of Xtend soybean evaluated at three eastern South Dakota locations. 

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.39 0.02 0.29 0.44 0.03 

PDa 2 0.02 0.02 0.82 0.18 <0.001 

Ea 6      

Herbicide 5 0.66 0.16 0.03 0.12 0.42 

PD:Herbicide 10 0.53 0.83 0.28 0.17 0.90 

Eb 45      

CV (a)  1.4 1.1 1.0 2.9 2.6 

CV (b)  1.5 0.9 0.9 2.7 3.8 

R square  0.5 0.7 0.5 0.5 0.8 

Mean  18.0 19.5 19.7 18.5 19.2 

LSDb  0.2 0.2 0.2 N/A 0.4 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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Table A22. Analysis of variance (ANOVA) of Xtend soybean variety evaluated for seed protein content at northeast, southeast, 

and east-central South Dakota in 2019 and 2020 growing seasons. 

Seed protein content (13 % moisture) of Xtend soybean evaluated at three eastern South Dakota locations. 

  Northeast Southeast East-central Southeast East-central 

Effect Degree of 

freedom 

2019 growing season (p-value) 2020 growing season (p-value) 

Block 3 0.06 0.02 0.06 0.53 0.15 

PDa 2 0.24 0.91 <0.05 0.73 <0.01 

Ea 6      

Herbicide 5 0.43 0.24 <0.01 <0.001 0.74 

PD:Herbicide 10 0.29 0.88 0.07 0.11 0.27 

Eb 45      

CV (a)  1.7 1.8 1.1 3.3 1.7 

CV (b)  2.1 1.1 1.2 2.4 2.7 

R square  0.4 0.7 0.6 0.6 0.5 

Mean  36.1 34.8 34.3 35.4 32.8 

LSDb  0.4 N/A 0.3 0.7 0.4 

aPlanting date [(northeast 2019: PD1-May 15, PD2-May 30, PD3-June 15); (east-central 2019: PD1-May 15, PD2-June 2, PD3-June 19); 

(southeast 2019: PD1-May7, PD2-June 5, PD3-June 19); (east-central 2020: PD1-May 20, PD2-June 3, PD3-June 16); (southeast 2020: 

PD1-May 15, PD2-May 29, PD3-June 12)]. 
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