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ABSTRACT 

 

STUDYING MORPHOLOGICAL, PHYSIOLOGICAL, AND MOLECULAR 

REGULATION OF STOMATAL CONDUCTANCE AND ITS RELATIONSHIP TO 

WATER USE EFFICIENCY IN ALFALFA 

SURBHI GUPTA 

2021 

Alfalfa (Medicago sativa), being a leguminous, highly fibrous, and proteinaceous plant has 

always been one of the top choices for the forage production but has high cost of irrigation 

in many dry and warm areas such as California and Arizona. Thus, a reduction of irrigation 

by using the higher water use efficiency (WUE) varieties can help the growers in reducing 

the cost and is critical for sustainable agriculture production. WUE is closely related to 

water loss through transpiring stomata. A study in our lab reported that Riverside (RS) an 

alfalfa genotype that has naturized in the national grassland in South Dakota, showed a 

higher WUE, compared to various commercial varieties and collections. Further studies in 

the lab revealed that RS showed a greater stomatal sensitivity to ABA in closure. In this 

study we examined if the stomatal density in different genotypes could play a role in the 

WUE of the plant by having impact on stomatal conductance. Alfalfa exhibits high density 

of stomata on adaxial surfaces. We found that variations in stomatal densities among 

genotypes exist, but stomatal density did not show correlation with the stomatal 

conductance, a contributing factor to WUE, emphasizing on the importance of stomatal 

sensitivity to ABA for higher WUE. One of the families of ABA receptors, Pyrobactin 

resistant like (PYL) in Arabidopsis is found to play essential role in drought conditions. 



x 
 

We hypothesized that homologs of PYL in alfalfa could be involved in regulating stomatal 

conductance and hence play an essential role in WUE of the plants. The current study 

involved identifying the PYL-like gene family in alfalfa and analyzing the change in gene 

expression levels during water stress conditions. The 15 identified MsPYL proteins showed 

conserved domains and ABA receptor properties with START-like sequences. We 

demonstrated that MsPYL9 gene shows upregulation in RS genotype while showing no 

change in AF, genotype with lower WUE. This suggests that possibly, MsPYL9 could be 

related with higher WUE of RS.  For this study we used two germplasms of alfalfa, but an 

understanding of candidate genes correlated with better WUE will bring new insights and 

potentially help improving alfalfa production in dry areas.  
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1 Chapter 1 Review of literature 

1.1 Alfalfa, a very important crop 

Alfalfa (Medicago sativa L.) is one of the most important forage crop and has been grown 

worldwide (Michaud et al. 1988). It is a perennial, outcrossing, and autotetraploid 

(2n=4x=32) leguminous crop of family Fabaceae with high nutritional value and cultivated 

for hay, pasture and silage (Radović et al. 2009; Acharya et al. 2020). In the United States, 

alfalfa is the fourth largest produced crop after corn, soy and wheat (Zhang et al. 2017b). 

According to the 2020 NASS report, total alfalfa hay and haylage produced was 53,067,000 

tons with a value of approximately $8.8 billion.  

 

Alfalfa has been recorded to be native from different parts of Asia. Documents from 

Southwestern Iran and Syria have records of charred remains of seeds from about 10,000 

B.C. In USA, alfalfa earlier known as Lucerne, was introduced by English, French and 

German colonists as early as 1735 but the crop did not get commercially accepted until 19th 

century when Mexican alfalfa was introduced in southwest U.S. where the pH, drainage 

and soil composition was well suited for this crop. The alfalfa seeds introduced from Chile 

to California were the most successful using irrigation (Russelle 2001).  
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1.2 Importance of alfalfa 

 

Alfalfa is a crop grown since ancient times worldwide and is extensively adapted to 

weather conditions ranging from winter to tropical as well as arid lands. Alfalfa has a 

symbiotic relationship with a nitrogen fixing soil bacterium Sinorhizobium meliloti. This 

relationship not only meet the needs of plant for nitrogen but also increases the soil fertility 

in terms of (N). Alfalfa can provide as high as 300 lb./acre/year of biologically fixed 

nitrogen in the soil which reduces the cost of nitrogen fertilizers for other crops (Kumar et 

al. 2018). Alfalfa has a unique deep root system and the taproots can grow up to 6m or 

more making it more drought resilient (Michaud et al. 1988). Alfalfa has been used in on-

site phytoremediation because of the sponge nature of the extensive tap root system and 

the microorganisms associated with it which helps decomposing organic compounds like 

polyaromatic hydrocarbons and petroleum compounds some of which are carcinogenic as 

well. It is known to protect ground water quality as it absorbs excessive nitrates and other 

contaminants. According to USDA report, alfalfa was grown on site of Canadian Pacific 

train derailment in North Dakota to clean up a spill of 45,000 gallons. Transgenic alfalfa 

plants produced by ARS and University of Minnesota researchers have shown ability to 

breakdown atrazine, a widely used herbicide (Russelle 2001).  

 

1.2.1 Forage 

Alfalfa has a high nutritional value for animal feed as it has 15-22% of crude protein and 

ten kinds of vitamins including A, D, E, K, U, C, B1, B2, B6, B12 along with many 
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minerals (Soto-Zarazúa et al. 2016). Alfalfa is essentially grown to feed dairy cows, beef 

cattle and horses, but is also used for other farm animals like sheep, chickens, and turkeys.  

 

1.2.2 Other use 

Alfalfa shows many qualities which can be explored in different aspects. The sprouts of 

alfalfa have high antioxidants and phytoestrogen which may prevent impairments like 

osteoporosis, cancer, heart disease and menopausal symptoms. Transgenic alfalfa is used 

to produce monoclonal antibodies for human IgG (Khoudi et al. 1999) . Alfalfa with poly-

b-hydroxybutyrate (PHB) gene has been used for producing biodegradable plastic polymer 

(Saruul et al. 2002).It was proposed that alfalfa be used for a biofuel crop since its high 

yield of cellulosic biomass with low input of fertilizers in biomass production (Monteros 

and Bouton 2009). Researchers have been working on finding many other uses of the plant 

in terms of nutrient and medicinal values. 

 

1.3 Challenges in alfalfa production 

Alfalfa is one of the highest biomass producing crop, but it faces many challenges from 

abiotic and biotic stresses as other crops.  

 

1.3.1 Biotic challenges 

Alfalfa is known to be home for around 1000 different insect species. Around 100-150 of 

these are pathogenic to the plant at different stages of their life. According to a USDA 

report, annually alfalfa production loses hundreds of million dollars due to insect pests. 
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Alfalfa weevil, blue and spotted aphids, alfalfa snout beetle are some of the most serious 

pests. Other than insects alfalfa is also susceptible to alfalfa mosaic virus, downy mildew, 

Fusarium wilt and many other diseases (Flanders and Radcliffe 2000). 

 

1.3.2 Abiotic challenges 

 

The major abiotic challenges alfalfa agriculture faces are salinity, drought and freezing. 

Being a tetraploid, alfalfa shows huge variation from susceptible to tolerant to stresses.  

These stresses not only greatly reduce biomass production but also the quality of the crop. 

Over the past century alfalfa has been bred by researchers to improve the yield and nutrition 

value as well as its ability to cope with the abiotic stresses (Kingston-Smith et al. 2013). In 

the current study, our emphasis is the drought stress and the strategies of alfalfa to cope up 

with water deficit conditions. 

 

1.3.2.1 Drought 

Water is the most essential resource for any living being. Water deficit  leads to disruption 

of many cellular functions in plants, such as cell expansion, photosynthesis, development 

and hence affecting the overall growth of the plants (Chaves et al. 2003). Drought is the 

most common and detrimental abiotic challenge reducing the agricultural productivity 

around the world (Ghaderi and Siosemardeh 2011). Currently, maintenance of crops with 

high yields is depending on irrigation system as the irrigated crops produce 60% more yield 

than the rainfed crops around the globe (Rosegrant et al. 2009) but with rising population 

and scarcity of fresh water, the availability of water for irrigation has become increasingly 
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limited. Future climate forecasts increased global warming leading to longer and more 

frequent droughts which will further reduce the access to fresh water for irrigation (Joshua 

Elliott 2014). Thus developing and planting alfalfa with higher water use efficiency can be 

a solution to the forage industry (Gang et al. 2004).  

 

1.4 Water use efficiency (WUE) 

 

Water use efficiency can be defined in two ways, the biomass produced per unit water 

consumption or rate of CO2  assimilation to transpiration (Farquhar and Sharkey 1982; 

Dawson et al. 2002). Biomass is considered the fresh/dry weight of the plant at the time of 

harvest. Being a forage, biomass in case of alfalfa is the whole shoot system including 

leaves and stems. During water deficit conditions, plants tend to close the stomatal pore to 

avoid excess loss of water which impacts the CO2 intake hence, the biomass production 

and overall WUE (Zhang et al. 2017b). One of solution for this problem could be improving 

the moisture absorption from soil which is called efficient use of water. In theory, both 

enhancing photosynthesis and reducing transpirational water loss will result in greater 

WUE. As the molecular and biochemical processes of photosynthesis is quite complex, it 

is preferred by scientist to reduce the transpirational water loss from plants while 

maintaining the photosynthesis when improving WUE in plants (Blum 2009).  

 

1.5 Relation between stomatal behavior and WUE 

Stomata are the pores in the epidermal layer of the leaf formed by guard cells which are 

specialized cells to regulate the stomatal movement. The stomates are the site of gaseous 
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exchange between plant and environment. Opening of stomates facilitates the uptake of 

CO2 by the plants and water loss due to transpiration (Kim et al. 2010). Thus, stomatal 

behavior directly impacts WUE.  

 

1.5.1 Stomata density and transpiration rate 

Stomatal density is generally measured in two ways. Number of stomata per unit area and 

number of stomata per unit epidermal cells. In past years there has been a lot of work done 

to understand the stomata formation and distribution (Torii 2012). The density on leaf 

surface are reported to vary due to ecosystems and environmental conditions along with 

genetic factors (Bertolino et al. 2019).  The average stomatal density in corn and wheat is 

reported to be between 40 and 90/mm2 whereas in rice and arabidopsis it is around 

200/mm2 suggesting the variation in different plant species (Zheng et al. 2013; Sakoda et 

al. 2020; Zhang et al. 2013; Kong et al. 2015). Recent study in our lab demonstrated that 

average stomatal density in alfalfa leaves is 225/mm2 (Ghimire et al. 2021). A study in 

Israel on 32 indigenous plant species reported that xerophytic plants had significantly 

higher stomatal density as compared to irrigated plant species controlling the amount of 

water loss (Gindel 1969). Stomatal density is genetically controlled, and many genes 

involved have been identified. The plant protein epidermal patterning factors (EPFs) have 

been studied by number of researchers for the physiological implications in regulating 

stomatal density (Wang et al. 2016). By manipulating the EPF levels various lines of A. 

thaliana having stomatal densities from 20% to 325% of normal levels have been 

developed. The lines with lower stomatal density had lower transpiration rates and showed 

larger growth in the conditions of water deficit, resulting in a higher WUE (Hunt and Gray 



 
 

 
 

7 

2009; Doheny-Adams et al. 2012; Tanaka et al. 2013). It has been shown that transpiration 

decreased with reduction in abaxial stomatal density in A. thaliana overexpressing PdEPF1 

(Wang et al. 2016).  

 

Regulation of stomatal density is a topic of interest when it comes to drought stress. The 

short and long term water deficit can cause some plastic modulations in the number of 

stomates allowing plant to adjust to the environment and regulate the gaseous exchanges 

(Bertolino et al. 2019). Differences among plant species responding to water deficit can be 

seen. For example, in a study, Arabidopsis plants did not show any changes in stomatal 

density when exposed to water stress condition (Xu and Zhou 2008; Doheny-Adams et al. 

2012). In alfalfa, however, (Ghimire et al. 2021) reported an increase in stomatal density 

after drought treatment. Studies on Arabidopsis and barley have shown that overexpression 

of EPF2 decreases the stomatal density without any deleterious effects on yield. The 

transformed plants showed higher WUE as compared to control plants (Hughes et al. 2017; 

Franks et al. 2015). 

 

1.5.2 Stomatal conductance 

Stomatal conductance is another important factor determining transpirational water loss 

thus water use efficiency. In the conditions of reduced vapor pressure and drought stress 

the stomatal pores are closed by the guard cells to reduce excess water loss and in 

angiosperms this response is regulated by abscisic acid (Lange et al. 1971; McAdam et al. 

2016). Along with ABA, stomatal movement is a quick response to factors like blue light, 

Ca2+, CO2, NO, H2O2 and ROS. These molecules essentially assist in the ABA signalling 
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pathway in stress response leading to the stomatal closure (Shimazaki et al. 2007; Kim et 

al. 2010; Chater et al. 2014).  

 

1.5.3 ABA signalling 

 

Abscisic acid (ABA) is the phytohormone involved in numerous vital aspects of plant 

growth and development starting from embryo maturation to cell division, seed dormancy 

and stress responses including cold, drought and salinity (Duarte et al. 2019; Miyakawa et 

al. 2013). ABA accumulates in leaves when the plant experiences stresses, especially 

drought and induces stomatal closure by modulating the solute efflux in guard cells along 

with regulating gene expression of many downstream proteins resulting in dehydration 

tolerance in the tissues (Miyazono et al. 2009; Corrêa de Souza et al. 2012).  

In plants, ABA is perceived by the ABA receptors which initiates the signalling cascades 

for different responses. The genetic analysis of ABA receptors in Arabidopsis lead to the 

discovery of three major components of the cascade: the ABA receptor PYR/PYL/RCAR 

(PYL) protein family, the negative regulator type 2C protein phosphatase (PP2C) and the 

positive regulator class III SNF-1-related protein kinase 2 (SnRK2) (Figure 1) (Duarte et 

al. 2019). Once the ABA binds to PYL receptors, the complex inhibits the phosphatase 

activity of PP2C leading to autophosphorylation of SnRK2s (Sang-Youl Park and Nicholas 

J. Provart 2009). Activated SnRK2s induce stomatal closure by targeting NADPH 

oxidases, and ion channels (Miyakawa et al. 2013; Joshi-Saha et al. 2011). In A. thaliana, 

it is reported that the SnRK2 protein kinase activates the anion channel (SLAC1) for the 

efflux of anions and thus activating potassium efflux channel. SnRK2 also inhibits the 
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cation inward channel (KAT1) through phosphorylation. Efflux of ions eventually leads to 

an efflux of water and a decrease in turgor pressure in guard cells, resulting in stomatal 

closure (Miyakawa et al. 2013; Joshi et al. 2011).  

 

 

Figure 1 ABA signalling pathway showing the interaction of ABA and PYLs in the 
cascade in the presence of stress. 

Binding of ABA to PYL receptors initiate the cascade by inhibiting PP2C proteins (Zhang 
et al. 2017a) 

 

1.5.4 PYL family and drought tolerance 

 

The PYR1(Pyrobactin Resistance 1) and PYL (Pyrobactin Resistance 1-like) proteins were 

first identified in A. thaliana for playing important role in ABA signalling. The 13 PYLs 

belong to START (Star-related lipid-transfer) protein superfamily of which AtPYR1, 
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AtPYL1, AtPYL2, AtPYL4, AtPYL5 and AtPYL8 play role in ABA dependent stomatal 

closure (Park et al. 2009; Gonzalez-Guzman et al. 2012). Different orthologs of AtPYLs 

have been reported to play crucial roles in drought and/or osmotic stress in many plants 

(Garcia-Maquilon et al. 2021; Bai et al. 2019; Nishimura et al. 2010; Zhang et al. 2017a; 

Di et al. 2018). Overexpression of AtPYL4 in A. thaliana has been reported to increase the 

WUE by improving the ABA dependent stomatal closure in drought conditions (Pizzio et 

al. 2013). Similar results were reported when overexpressing OsPYL5 increased the 

drought and stress tolerance in Oryza sativa with enhanced stomatal closure (Kim et al. 

2014). The work done on PYLs strongly suggests the vital role of this protein family in 

tolerance and resistance to abiotic stresses. 

 

1.6 Hypothesis and Objectives: 

 

As an effort to understand WUE and its regulation in alfalfa, our lab conducted a study to 

examine the genotypic variations in WUE under drought conditions. In that study, we 

found that River side (RS), an alfalfa genotype that has naturized in the national grassland 

in South Dakota, showed a higher WUE, compared to various commercial varieties and 

collections (Anower 2015). Further studies in the lab revealed that while RS showed a less 

accumulation of ABA, it showed a greater stomatal sensitivity to ABA in stomatal closure 

compared to a genotype of lower WUE, Alfagraze (AF). RS also showed a surprising 

increase in stomatal density under drought (Ghimire et al. 2021). This raises two important 

questions: 1) how stomatal density is regulated and contributes to WUE in alfalfa; 2) how 

stomata in RS achieves greater sensitivity to ABA in closure. We hypothesize that 1) a 
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genotypical variation in stomatal density exists in alfalfa, and stomatal density, and thus 

WUE, is regulated by growth conditions; 2) a greater stomatal sensitivity to ABA in RS 

under drought is due to an enhanced ABA signaling, such as more ABA receptors or more 

sensitive receptors. Thus, the main objectives of this study are: 1) examine stomatal density 

among alfalfa genotypes and determine the relationship between stomatal density and 

conductance; 2) identify ABA receptor genes in alfalfa and examine their transcript levels 

under drought conditions, as a greater transcript level may lead to more ABA receptors.  

Our ultimate goal is to improve WUE in alfalfa by manipulating stomatal density and 

stomatal sensitivity to ABA.  
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2 Chapter 2 Relationship between stomatal density and stomatal 

conductance in alfalfa 

2.1 Introduction 

2.1.1 Stomatal density and distribution in alfalfa  

Alfalfa production requires a high amount of water in comparison to other commercial 

crops. It is, however, considered a high WUE crop due to its higher biomass production, 

longer growing season, and dense canopy (Asseng and Hsiao 2000; Putnam 2012; Hanson 

et al. 2008). To sustain its high biomass production, irrigation is needed in many areas such 

as Arizona and California where alfalfa production is among the greatest while water 

supply is extremely limited. Thus, improving WUE in alfalfa is an urgent step for its 

sustainable production. 

Plants are reported to lose 95 to 99% of the total absorbed water via transpiration through 

stomatal pores (McElrone et al. 2013). According to a report from University of Idaho 

during the June-September duration in alfalfa crop, the amount of water lost through 

stomatal evapotranspiration can reach up to 45 tons per acre per day, increasing the water 

usage hence affecting the WUE of the crop overall (Shewmaker et al. 2011). One of the 

strategies to improve WUE in alfalfa would be to optimize stomatal density i.e., changing 

the stomatal density without impacting photosynthesis since stomatal opening is needed 

for CO2 fixation. Alfalfa shows several characteristics in stomatal density and distribution. 

First, it is an amphistomatous species, having stomates on both adaxial and abaxial surface. 

Second, unlike many other crops, alfalfa have more number of stomates on adaxial surface 

of leaf that is believed to be related with high CO2 assimilation and biomass production 
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(Cole and Dobrenz 1970; Anderson and Briske 1990). Third, alfalfa leaf shows high 

stomatal density, 220/mm2 in RS, and 210/mm2 in AF (Ghimire et al. 2021) compared to 

other crops, for example, stomatal density in wheat and corn in the commercial varieties 

are reported be between 40 to 90/mm2 (Kong et al. 2015; Zheng et al. 2013).  

 

2.1.2 Regulation of stomatal density and behavior in drought conditions 

Stomatal density and distribution vary from one species to another, clearly indicating a 

genetical control of these features. Stomatal density can also be adjusted under long-term 

drought conditions. Different studies on Banksia (Proteaceae) and wheat have shown that 

in arid conditions plants develop higher stomatal density with reduced size to help plants 

regulate the rate of transpiration as smaller stomata could open and close up to 6 times 

faster  (Raven 2014; Drake et al. 2013; Yongping et al. 2006). Similar results were reported 

in longer drought conditions on Arabidopsis plants with mutated EPF2 genes by altering 

their stomatal density and size to reduce the conductance and transpirational water loss 

(Doheny-Adams et al. 2012). Plants with smaller stomates have shown higher water use 

efficiency in couple of studies (Aasamaa et al. 2001; Hetherington and Woodward 2003). 

Theoretically, reducing stomatal density together with closing stomata as a rapid response 

to drought, will reduce the transpirational water loss but will also reduce photosynthesis. It 

has been shown that the decline in transpiration rate is much higher than in photosynthesis 

(Edwards et al. 2012), suggesting WUE can be improved in plants without strongly 

lowering the yield. As the plants with higher WUE manage to loose less water, they are 

expected to be better solutions for dry and more arid conditions (Franco et al. 2004; Ares 

et al. 2000).  
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2.1.3 Drought tolerance in alfalfa 

In past years numerous studies have been done on improving the abiotic stress tolerance of 

alfalfa using genomics, proteomics, and metabolomics. Many key genes responding to 

abiotic stresses have been identified in alfalfa (Song et al. 2019). Previous studies in our 

lab have identified a germplasm of alfalfa, Riverside (RS) naturally adapted to the Grand 

River National Grassland region in South Dakota. RS when exposed to water deficit 

conditions has demonstrated higher WUE compared to other commercial germplasms 

(Anower 2015). Further studies revealed that RS showed an increase in stomatal density 

under drought (Ghimire et al. 2021). This raised a question if stomatal density contributes 

to WUE in alfalfa. We hypothesize that a genotypical variation in stomatal density exists 

in alfalfa, and stomatal conductance, and thus WUE, is regulated by growth conditions. 

Thus, the main objectives of this study are 1) examine stomatal density among alfalfa 

genotypes; 2) find the impact of water deficit conditions on the stomatal density and 

stomatal conductance and to analyze if stomatal density as an independent variable has 

correlation with stomatal conductance in different germplasms of alfalfa. 

 

 

 

 

 

 

2.2 Materials & methods 
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2.2.1 Initial screening for variation in stomatal density 

2.2.1.1 Plant Materials 

Thirty-three genotypes of alfalfa were used in this initial test. Some of these were 

commercial varieties, and some are from the stock center at Germplasm Resources 

Information Network (GRIN) at USDA-ARS. The genotypes are CS 15-2 14-5, Alfagraze 

(AF), SD201, BC11-1, Melone, PI-262-243, LC 46, U2948, CUF, Carib, Class, Wrangler, 

Renovator, Mesa, CS 153-14-3, LC 48, Mesasirsa, Salt, PI-26-2 18-45, Amergras, BC-79, 

Cimmarron, Sarnac, LC 047, CS 15-2 12-64, RS6, Forage, PI-539-49, LC004, Foster ranch 

(FR), PI 634 125, Apica, and PI 634 124. The plants were grown in one-gallon pots filled 

with potting mix (Sunshine mix #3, Sun Gro Horticulture Canada Ltd., MA, USA). All 

plants were grown in the greenhouse with 16 hours photoperiod and kept well-watered. 

Plants were fertilized with Miracle-Gro (Scotts Miracle-Gro Products, Inc., Marysville, 

Ohio, USA) slow-release fertilizer. 

2.2.1.2 Leaf impressions for stomatal density measurement 

Leaf impressions technique was used to obtain the epidermal imprint of adaxial and abaxial 

surfaces of the leaves (Randall 1984). A thin layer of commercially available clear nail 

polish (Seche Vite, American International Industries, Los Angeles, CA) was applied on 

the respective leaf surface with a brush. The nail polish was allowed to dry for 10 minutes. 

The dry film was taken off the leaf with the help of a clear tape. These tapes with imprints 

were mounted on the microscopic slides and observed under a light microscope (ATC 

2000, Leica, IL, USA) with a total 400X magnification. The picture of total field of view 

was taken using a camera (COOLPIX 4500, Nikon, Melville, NY, USA). The number of 
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epidermal cells and stomata were counted for the area using ImageJ software. The stomatal 

density is calculated by:  

𝑆𝑡𝑜𝑚𝑎𝑡𝑎𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑡𝑜𝑚𝑎𝑡𝑒𝑠/𝑁𝑢𝑚𝑒𝑟	𝑜𝑓	𝑒𝑝𝑖𝑑𝑒𝑟𝑚𝑎𝑙	𝑐𝑒𝑙𝑙𝑠 

 

2.2.2 Impact of drought on stomatal density and conductance 

From the initial screening nine genotypes were selected for studying the effect of drought 

treatment on stomatal density and stomatal conductance. 

2.2.2.1 Vegetative propagation of plants 

The selected nine genotypes, BC11-1, LC 46, Melone, CUF, Class, RS6, FR, PI 634-125, 

and Apica were vegetatively propagated. The cuttings were taken from healthy shoot by 

making a slanting cut under the third node and were quickly dipped into the rooting 

hormone IBA (Hormex rooting power no. 16, Brooker Chemical Chatsworth, Westlake 

Village, CA). The cuttings were planted into the potting mix pre-saturated with water 

(Sunshine Mix #3) and covered with a clear lid.  The tray with cuttings were placed in the 

greenhouse. The lid was removed after 1 week as the cuttings started growing roots. The 

cuttings were allowed to grow for 3 weeks until the cuttings showed enough root growth. 

The young plants were then transplanted into cone containers of dimensions 3.8 x 21-cm 

filled with 38 grams of potting mix (Sunshine mix #3). The plantlets were grown in the 

greenhouse for 3 more weeks with 16-hour photoperiod and 70-75F temperature. The 

plantlets were watered every day and provided Miracle-Gro (Scotts Miracle-Gro Products, 

Inc.) nutrient solution (5 gm Miracle Gro/gallon of water) weekly (Anower et al. 2017a). 

After 3 weeks, 6 plants of each genotype with similar size were selected and used for the 

experiment.  
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2.2.2.2 Drought treatment 

All the selected plants were watered to saturation on the day of starting the treatment. An 

aluminum foil was wrapped around the stem to cover the top surface of each container to 

prevent evaporation from the soil surface, only exposing shoots to the light and air. The 

containers with plants were weighed for the initial weight. Two water regimes were 

maintained for 30 days. Three plants of each genotype were kept well-watered by 

providing equal amount of water lost through transpiration whereas other three were given 

drought stress, providing only 50% of the water lost due to transpiration. The cone 

containers with plants were weighted every three days to estimate water loss. A syringe 

was used to slowly add required amount of water to each plant through aluminum foil, 

ensuring there is no dripping from the containers. Drought stress developed and became 

increasingly severe with time (Ghimire et al. 2021).  

 

2.2.2.3 Stomatal density measurement 

To determine stomatal density, the leaf impressions method as described above was used. 

The newly fully developed leaves of new shoots produced after drought stress treatment 

were used for leaf impression to examine whether drought stress impact the stomatal 

development.  The images of leaf impressions were taken using Olympus BX53 Upright 

Compound Microscope and the images were analyzed using ImageJ for stomata and 

epidermal cells number.  
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2.2.2.4 Stomatal conductance 

The stomatal conductance was measured using a portable leaf porometer (SC-1, Decagon 

devices, Inc., Pullman, WA) The porometer was calibrated prior to use according to the 

manual instructions. The youngest mature leaves of young shoots developed after drought 

stress treatment were selected for measuring stomatal conductance at the end of 

experiment. The stomatal conductance was recorded between 10 am to 2 pm on both 

adaxial and abaxial surface of the leaves. Three biological replicates were used for stomatal 

conductance measurement. 

2.2.3 Data analysis 

Statistical analysis was performed using Microsoft Excel 365 and R programming 

language. ANOVA was done using completely randomized design. Tukey’s honestly 

significant difference test was performed to determine the significantly different mean 

values. Correlation test with a scatterplot was conducted to analyze the correlation between 

stomatal density and conductance. 

 

2.3 Results 

 

2.3.1 Variation in stomatal density in alfalfa 

In order to understand the relationship between stomal density and WUE in alfalfa, it is 

necessary to identify alfalfa genotypes that differ in stomatal density. Thus, stomatal 

density was first surveyed among 33 genotypes. Figure 2 showed typical images of leaf 

epidermal imprinting replica used for stomatal counting. Both abaxial and adaxial surfaces 
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were examined for the stomatal density, and the average stomatal density of abaxial and 

adaxial surface were calculated and presented in Figure 3. The average stomatal density 

ranges from 0.217 to 0.343 stomates per epidermal cell with the lowest density for CS15-

2, 14-5 and the greatest density for PI 634-124.  To show the distribution of stomata on 

both leaf surfaces, 9 genotypes representing different average density were shown in Fig. 

4. Two trends are noticeable. First, the adaxial surface has more stomates compared to the 

abaxial surface; second, the stomatal density on the adaxial surface appears to determine 

the order of the average stomatal density. 

 

 

Figure 2 Leaf epidermal imprinting replica from adaxial surface used for stomatal 
counting. 

 

Stomata
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Figure 3 Average stomatal density among 33 different genotypes in alfalfa. 

The data is shown as mean ± S.E (n=3) 
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Figure 4 Stomatal distribution in 9 different genotypes of alfalfa. 

The data is shown as mean ± S.E (n=3). A) Stomatal density on both surfaces of leaves. 
B) Average stomatal density for both the surfaces in the 9 genotypes. 

 

2.3.2 Changes in stomatal density and conductance under drought  

After a 30-days drought treatment we analyzed stomatal conductance and density in the 

control plants with 100% water replenishment and drought stressed plants with 50% water 

replenishment. The stomatal conductance was expected to decrease in the stressed plants. 

Most genotypes showed a significant decrease in stomatal conductance, while Apica, 
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PI634-125, and FR showed insignificant change under drought (Figure 5 A). Class, BC 11-

1, LCO46, CUF, Malone and RS show more than 50% decline in stomatal conductance. 

Interestingly, none of the genotype showed a significant change in stomatal density due to 

drought (Figure 5B)  

To study the impact of stomatal density on stomatal conductance a correlation test was 

performed using R programming. According to the scatter plot obtained and the correlation 

coefficient which is -0.14, it appears that stomatal density has very weak negative or no 

correlation with stomatal conductance in these genotypes (Figure 6).  
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Figure 5 Effect of drought stress on stomatal density and conductance. 

The data is shown as mean ± S.E (n=3). Different letters indicate significant difference 
(p<0.05). A) Stomatal conductance B) Stomatal density in well-watered and drought 

stressed conditions. 
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Figure 6 Correlation coefficient between Stomatal density and conductance of the 9 
alfalfa genotypes in drought stressed conditions 

 

 

2.4 Discussion 

While stomatal density and distribution directly impact the transpiration rate and thus 

potentially impact WUE in many plants, the genetical variation in stomatal density and its 

relation to WUE in alfalfa has not been examined. Our results from screening 33 

accessions/genotypes of alfalfa in well-watered condition demonstrated that variations in 

the stomatal density exist among alfalfa genotypes. In terms of total stomatal density RS, 

FR, PI-634-125, Apica showed almost similar values around 0.275 stomates/epidermal cell 
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whereas CS15-2, SD 201, BC11-1, Melone, LC 46, CUF and Class showed less than 0.25 

stomates/cell.  

 

Further study was conducted on 9 different germplasms to evaluate the impact of drought 

stress on stomatal density and conductance in different germplasms and to evaluate the 

relationship of the stomatal density with stomatal conductance. None of the nine genotypes 

showed a significant change in stomatal density in new leaves developed after drought 

treatment. Surprisingly, RS had shown a significantly increase in stomal density under 

drought in our previous study (Ghimire et al. 2021). While the reason is not clear, it might 

have something to do with the growth conditions in the greenhouse which could impact 

how drought stress was developed. In this experiment, we noticed a rapid wilting developed 

in few days after stress treatment due to high light and temp in the summer. As a support, 

studies have shown that, rice and chinensis leaves show an increase in stomatal density 

while exposed to moderate drought stress but decrease the same in response to severe 

drought (Xu and Zhou 2008). 

 

While stomatal density did not show a significant change in alfalfa under drought, most of 

the nine genotypes showed a significant decrease in stomatal conductance, including RS. 

The results suggest that controlling stomatal opening and closure can be the key to 

regulating transpirational water loss. Our results showed little to no correlation between 

stomatal density and conductance, further supporting the notion that controlling stomatal 

closure and opening is a more important process in regulating water loss and thus WUE.  
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To summarize, alfalfa genotypes demonstrated variation in stomatal density and behavior 

under well-watered and drought conditions. The stomatal conductance appears to be 

independent of the stomatal density which suggests the possibility of other factors like 

controlling stomatal pore size (closure) to be the key to transpirational water loss. This 

supports our previous study where a greater WUE in RS is related to greater sensitivity of 

stomatal closure to ABA. The next chapter is thus designed to address how this higher 

sensitivity of stomata to ABA is achieved. 
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3 Chapter 3 Identification and transcript analysis of ABA binding 

PYL like genes in Medicago sativa for drought stress response 

3.1 Introduction  

3.1.1 Abscisic acid an essential plant hormone 

Abscisic acid (ABA) is an important phytohormone found in all the terrestrial plants and 

almost all the fungi. ABA plays diverse roles in plants from embryo development to 

cellular division and growth, seed dormancy and senescence to abiotic and biotic stresses 

responses (Cutler et al. 2010). In angiosperms, ABA is synthesized in the roots and 

transported to shoots through xylem in response to drought to regulate the transpirational 

loss (Hartung et al. 2002).  

3.1.2 ABA in stomatal closure 

ABA plays an essential role in closure of stomata by mediating solute efflux in the guard 

cells.  Extensive studies in guard cells have revealed the core ABA signaling assembly 

used by plants to reduce water loss. It includes, the ABA, Pyrabactin Resistance 

[PYR]/[PYR1-Like (PYL] protein which is member of START protein family, Group-A 

protein phosphatases 2C (PP2C), and SNF1 related protein kinase 2 (SnRK2 or SRK2) 

(Weiner et al. 2010). In this assembly, PYR/PYL are the ABA receptor proteins, PP2C are 

the negative regulator and SnRK2 are the positive regulator in ABA dependent stomatal 

closing cascade.  

3.1.3 ABA signaling pathway 

ABA signaling pathway involves number of phosphorylation, ion channels and 

intermediate changes.  In the subthreshold levels of ABA, PP2Cs inactivate the SnRK2 
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protein kinases and the S-type anion channel SLC1 by dephosphorylation. PP2C also 

downregulate the Ca2+ permeable cation channels (ICa). In the presence of ABA, 

PYR/PYL receptors bind with ABA and the complex binds and inhibits the PP2Cs. 

Inactivation of PP2Cs activates the SnRK2s by autophosphorylation. ICa channels released 

from downregulation results in increased Ca2+ concentration in cytoplasm which further 

activates CPKs. The activated SnRK2s and CPKs phosphorylate the SLAC1 channels and 

activate the anion efflux resulting in depolarization of the plasma membrane. Due to which 

K+ efflux initiates through voltage dependent GORK channel. The loss of osmolytes causes 

a decrease in osmotic potential in the guard cell or an increase in water potential. As a 

result, water leaves guard cells. A collapse of turgor pressure in guard cells closes the 

stomata as shown in Figure 7 (Munemasa et al. 2015).  
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Figure 7 Schematic representation of the regulation of osmolyte movements in guard 
cells in absence and presence of ABA 

 (Munemasa et al., 2015) 

 

3.1.4 Pyrabactin Resistance [PYR]/ [PYR1-Like (PYL] protein  

PYL proteins being the receptors of ABA in guard cells play essential role in the signaling 

pathway, hence the stomatal closure. The different roles of PYR/PYL gene family were 

first studied in A. thaliana and until now fourteen PYLs have been discovered PYR1 and 

PYL1-13 (Park et al. 2009). Gonzalez-Guzman et al. in a study on A. thaliana 

demonstrated that recognition of ABA by PYR/PYL is essential for basic signal cascades 

involved in plant growth, seed production and stomatal regulation.  The study on sextuple 

pyr/pyl mutants demonstrated that PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 members 
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of PYR/PYL family are required for stomatal closure to different degrees (Gonzalez-

Guzman et al. 2012). Because of its significance in ABA-induced stomatal closure, 

expression of PYR and PYL genes have been studied frequently. In a study on B. napus, 

PYL1 and PYL8 like genes showed up-regulation in the drought stressed conditions (Di et 

al. 2018). In another study on A. thaliana, however, PYR1, PYL2, PYL4, and PYL8 were 

downregulated when the plant was exposed to dry air (Dittrich et al. 2019). More complex 

regulation was seen in the study on tobacco plant when the seedlings had higher expression 

values of PYLs after short term dehydration and downregulation after long term 

dehydration (Bai et al. 2019).  

 

3.2 Rationale and Hypothesis 

A previous study in our lab demonstrated that RS germplasm, showed higher WUE as 

compared to several other alfalfa genotypes under drought conditions (Anower et al. 

2017b). Further analysis showed the stomate in RS had higher sensitivity towards 

externally applied ABA (Ghimire et al. 2021). ABA accumulation or the number of stomate 

in RS appeared to be less important in relation to WUE. Since ABA receptors play a critical 

role in ABA signaling, we thus hypothesize that a higher sensitivity to ABA in RS in 

stomatal closure under drought is due to a higher level of PYR or PYL. As a first step, we 

examined the transcript level of PYR and PYL in the leaves of well-watered and water 

stressed RS.  
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3.3 Materials & methods 

 

3.3.1 Identification of homologs of AtPYLs in Medicago truncatula and 

Medicago sativa 

To find PYL genes in Medicago sativa, we first identified PYL like genes in a closely 

related plant species, Medicago truncatula using PYL protein sequences in Arabidopsis 

from NCBI database. These AtPYL protein sequences were used as queries in basic local 

alignment search tool (BLASTp) against Medicago truncatula genome in 

Ensembleplants.org with a scoring matrix set at BLOSUM 62 and E-value threshold at 1e-

1. The 23 non-redundant proteins (MtPYL) obtained were further used as queries in the 

BLASTp and BLASTn tool on the Noble research institute’s alfalfa breeder toolbox 

(alfalfatoolbox.org) against the alfalfa genome sequences. E-value cutoff for this search 

was 1e-5. PAM30 matrix was used for scoring the results. Redundant genes appeared due 

to the tetraploid complexity of the genome were removed manually.  

 

3.3.2 Multiple sequence alignment and phylogenetic tree analysis 

 

To see the evolutionary relationship of AtPYL gene family with the selected genes in M. 

truncatula and M. sativa, multiple sequence alignment was done using ClustalW in MegaX 

version 10.1.7 (Tamura et al. 2021). The phylogenetic tree of the protein sequences from 

the three plants was built using neighbor-joining method with bootstrap value of 1000.  

 



 
 

 
 

32 

3.3.3 Conserved motifs 

 

To identify the conserved motifs, the protein sequence from M. sativa and A. thaliana were 

analyzed on Multiple EM for Motif Elicitation version 5.3.3 (MEME) (Bailey et al. 2009). 

Search was set for 20 motifs.  

 

3.3.4 Primer designing 

Primers for the selected 15 genes of M. sativa were designed using online tool, Integrated 

DNA technologies (IDT). The CDS sequences for each gene were used for primer 

designing and the intron locations were mapped manually based on the data from alfalfa 

breeder’s toolbox (jbrowser) to design primers in flanking regions. To determine the 

efficiency and specificity of each primer, the PCR protocol was derived from previous 

study (Kanchupati et al. 2017). In brief, the primers were tested with genomic DNA of 

alfalfa (1 ng) in a 20 µl PCR reaction containing 2 µl of 10x PCR buffer, 2 µl of 2 mM 

deoxynucleotides, 1 µl each of 10 µM primers, 0.5 µl of Taq polymerase (5U µl-1, BioLabs) 

and autoclaved MQ water to make 20 µl volume. The reactions were further run-on 

gradient thermocycler (Eppendorf Mastercycler) with initial denaturation at 940C for 3 

mins, followed by 35 cycles of denaturation at 940C for 30 sec, annealing at the gradient 

temperature (R= 3 0C s-1, G= ± 3 0C) for 30 sec, extension at 720C for 30 sec/1min (based 

on product size). A final extension at 720C for 10 mins, followed by 1 min at 22 0C in the 

end was programmed to allow the products to efficiently get double stranded. The PCR 

products were separated on 1.5% agarose gel for 45 mins at 120V with 10 µl of DNA 
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ladder (quick load 1kb DNA ladder, Biolabs) and visualized using LI-COR Odyssey 

Infrared imaging system premium at 600 nm. The primers which showed specificity were 

continued for further gene expression studies. All the primers used in the gene expression 

study are listed in Table 1. 

 

Table 1 Primers used in PCR for PYL genes in Medicago sativa. 

 

 

3.3.5 Plant materials and treatments 

For the drought and dehydration treatment 60 plants each of RS and AF were grown in the 

cone containers with 38 g potting mix after vegetative propagation. All the plants were 

Gene Orientation Primers Length Tm (0C) Amplicon (bp)
MsPYL1 Forward CTTCCACCTCCGATCAAGATTC 22 62 123

Reverse AGGTGTGGTGTGAGTTGATG 20 62
MsPYL2 Forward GTCAATGTCATCTCCGGTCTC 21 62 123

Reverse ATGGTAATTCTTCAAACGGTGTTC 24 62
MsPYL3 Forward CTCGAAGTCTTAGACGATGAACG 23 62 107

Reverse ATCGGACTAGGGTGAAGAGTAG 22 62
MsPYL4 Forward GATGGAAACGTTGGTAGCATTAG 23 62 134

Reverse CGATGTTCACCACCAACAAC 20 62
MsPYL5 Forward CGACAATCCACAAGGCTACA 20 62 113

Reverse CAGGTAGACCGGAAACAAGTC 21 62
MsPYL6 Forward CGACAATCCACAAGGCTACA 20 62 113

Reverse CAGGTAGACCGGAAACAAGTC 21 62
MsPYL7 Forward CACGGTGATAGTTGAGTCCTATG 23 62 131

Reverse GTGTAATGTTCTCTGCGGTTTG 22 62
MsPYL8 Forward CACGGTGATAGTTGAGTCCTATG 23 62 131

Reverse GTGTAATGTTCTCTGCGGTTTG 22 62
MsPYL9 Forward CACATCAAAGCACCAGTTCATC 22 62 133

Reverse CATTCACTTCTCTTACACTTCCAATAC 27 62
MsPYL10 Forward CAACAGCCTGGACAGAATCA 20 62 127

Reverse ACCTGCTCACGAATGGTTTAT 21 62
MsPYL11 Forward GATGTCTCTCCACCCTGAAATTAT 24 62 110

Reverse CGAAGTAGCAGGTTTCGTCTT 21 62
MsPYL12 Forward GTGGACCTGGAACCATCAAA 20 62 134

Reverse ATCCAACCCTGTTCCTCCTA 20 62
MsPYL13 Forward AGGAACAGGGTTGGATGAAAG 21 62 143

Reverse CATCACGGACTGCATCAGATAG 22 62
MsPYL14 Forward TCATCCCAAAGGTGATTCCAG 21 62 98

Reverse GCCACCTTCAGACATGGATAA 21 62
MsPYL15 Forward GCAGTTCTATCTGAAGCAGTA 21 59 102

Reverse TGCTTAATAATTAGGGTTTGCC 22 59
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grown in the greenhouse with 16 hours photoperiod. The plants were kept well-watered 

and were provided the Miracle Gro nutrient solution as described in the previous chapter.  

 

3.3.6 MsPYL gene expression in leaf, stem, and root of well-watered alfalfa 

plants 

For studying the gene expression in different tissues in RS, youngest mature leaves were 

collected from the first 2-3 nodes. The stem tissue was collected between 4-6 nodes. For 

the root samples, the washed roots were quickly dried with paper towel and the living, 

young root tip areas were collected. All the tissues were collected separately and 

immediately frozen in liquid Nitrogen to ultimately store in -800C.  

3.3.7 Drought treatment 

For drought stress treatment, 2 weeks old plants with uniform growth of each type were 

selected. Half of the plants of RS and AF were kept well-watered, i.e., replenishing 100% 

of the water lost each day. The other half were subjected to water stress, i.e., replenishing 

50% of the water lost each day. We continued the treatment for 14 days and measured the 

stomatal conductance to monitor the stress condition along with morphological changes 

like wilting and ability of plants to recover from stress. The final harvest for both genotypes 

was done when the stomatal conductance reached the minimum level. Leaves from newly 

matured shoots were harvested from each of three biological replicates. All the harvested 

tissues were frozen in liquid nitrogen and stored at -800C.  
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3.3.8 Shoot dehydration treatment 

For studying the change in gene expression with a short-term water deficit condition, we 

conducted a dehydration experiment on young shoots of the RS and AF plants. Eighteen 

young shoots (1-3 nodes) were cut from different well-watered plants for each of the RS 

and AF genotypes and divided into 3 groups of well-watered  and 3 groups for dehydration 

with 3 shoots in each group (3 shoots * 3 replicates for each treatment). The well-watered 

shoots were dipped in water whereas the shoots used for dehydration were placed under 

white LED lights in a ventilated room with 26% humidity at 220C temperature. The weight 

of the shoots was monitored constantly. When 30% loss of weight was reached the samples 

were immediately frozen in liquid nitrogen and stored at -800C.  

 

3.3.9 RNA extraction and purification 

 

The extraction of total RNA from the tissues was performed using RNeasy plant mini kit, 

Qiagen. The isolated RNA samples were quantified for purity and concentration using a 

nanodrop, and RNA samples with 260/280 ratio between 1.8 to 2.2 were used for further 

analysis. To further test the integrity of RNA, the samples were separated on 1% agarose 

gel stained with ethidium bromide and the samples showing two clear bands were selected. 

To remove the trace genomic DNA in the RNA samples, 750 ng RNA was treated with 

TURBO DNase treatment and removal reagents in a 17.2 µl reaction (TURBO DNA-free 

kit, Invitrogen, fisher scientific, Carlsbad, California) following the instructions in manual. 

To check for genomic contamination, a PCR with the untreated and DNase treated RNA 

samples without reverse-transcription, as templates, was performed with genomic DNA 
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and cDNA as positive controls. Presence of bands in the untreated samples and positive 

controls while no amplification in DNase treated samples confirmed that RNA samples, 

after DNase treatment, are free of any genomic DNA contamination which was then used 

in gene expression analysis. 

 

3.3.10  cDNA synthesis and RT-PCR 

The DNase-treated RNA samples (~200 ng) were used for first strand cDNA synthesis 

using the Superscript III First Strand Synthesis System for RT-PCR (Invitrogen) in a 20 µl 

reaction. cDNA produced through this procedure was diluted 10 times before they were 

used for qPCR analysis.  

 

3.3.11  Quantitative analysis using real time qPCR 

 

We used Thermo Scientific DyNAmo Flash SYBR Green Hot Start qRT-PCR kit 

(ThermoFisher) for qPCR analysis. For each of the three biological replicate, 2 technical 

replicates were assayed in 10 µl reaction each, according to the manual. ABI 7900HT high-

throughput Real Time Thermocycler (Applied Biosystems, MA, USA) was used according 

to standardized cycling steps with minor changes, as follows: 95 0C for 15 mins to activate 

the reaction, followed by 40 cycles of denaturation at 94 0C for 15 sec, annealing at 61 0C 

for 30 sec, extension at 72 0C for 30 sec, a final extension of 10 mins at 72 0C before melt 

curve step. The data was collected at each extension cycle step for the Ct value and at the 

melt curve step to determine the specificity of the reaction. MsActin gene was used to 

normalize the Ct value of all samples. The change in the transcripts of PYL like genes in 
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different treatments was calculated using the DDCt method by calculating the fold change 

using 2^-DDCt formula (Livak and Schmittgen 2001).  

 

3.3.12 Data analysis 

 

Microsoft Excel 365 was used for statistical analysis. T- test was performed to determine 

the significantly different mean values. 

 

3.4 Results 

3.4.1 Identification of PYLs in Medicago truncatula and Medicago sativa 

We found 23 PYL protein family members in Medicago truncatula using 13 PYR/PYL 

protein sequences of Arabidopsis thaliana as query with scoring matrix BLOSUM 62 and 

E-value threshold of 1e-1 (Table 2). These proteins showed Polyketide cyclase/ dehydrase 

and START-like superfamily domains as identified on InterProScan tool. Using the 

physical location of the 23 MtPYLs, the genes were mapped on 8 chromosomes as shown 

in Figure 8. Although genes were found to be distributed on all 8 chromosomes, 

chromosome number 6, 7 and 8 had one gene on each whereas chromosome number 1 and 

3 have two genes on each of them. Chromosome number 2, 4 and 5 showed tandem genes 

as well as distantly located genes. Chromosome 2 had 8 of the 23 genes, MtPYL10, 12-16, 

18 and 20 in the tandem. Chromosome number 4 contained 5 of 23 genes, MtPYL11, 19, 

21 in tandem and MtPYL6 and 22 distantly. Chromosome 5 had 2 genes in tandem, 

MtPYL4 and 23.  
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Similarly, 15 PYL proteins in Medicago sativa were obtained using 23 M. truncatula 

proteins as query by performing BLASTP against the alfalfa database with E-value cutoff 

1e-5, BLASTp size 3 and PAM30 matrix for scoring the results (Table 2). These proteins 

are annotated to be involved in abscisic acid-activated signaling pathway and protein 

phosphatase inhibitor activity in the database. The 15 genes in alfalfa are found to be 

distributed on 7 of the 8 chromosomes but due to lack of genomic sequence of alfalfa, we 

were unable to locate the genes on the specific location on each chromosome.  
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Table 2 PYL gene family members names used in this study in Arabidopsis thaliana, 
Medicago truncatula and Medicago sativa with their Gene IDs according to NCBI 

database, Ensembleplants.org and alfalfatoolbox.org respectively 

Gene Name Gene ID Plant
AtPYL1 At5g46790 Arabidopsis thaliana
AtPYL2 At2g26040 Arabidopsis thaliana
AtPYL3 At1g73000 Arabidopsis thaliana
AtPYL4  At2g38310 Arabidopsis thaliana
AtPYL5 At5g05440 Arabidopsis thaliana
AtPYL6 At2g40330 Arabidopsis thaliana
AtPYL7 At4g01026 Arabidopsis thaliana
AtPYL8 At5g53160 Arabidopsis thaliana
AtPYL9 At1g01360 Arabidopsis thaliana
AtPYL10 At4g27920 Arabidopsis thaliana
AtPYL11 At5g45860 Arabidopsis thaliana
AtPYL12 At5g45870 Arabidopsis thaliana
AtPYL13 At4g18620 Arabidopsis thaliana
MtPYL1 MTR_5g030500 Medicago truncatula
MtPYL2 MTR_3g071740 Medicago truncatula
MtPYL3 MTR_7g070050 Medicago truncatula
MtPYL4 MTR_5g083270 Medicago truncatula
MtPYL5 MTR_1g016480 Medicago truncatula
MtPYL6 MTR_4g014460 Medicago truncatula
MtPYL7 MTR_8g027805 Medicago truncatula
MtPYL8 MTR_3g090980 Medicago truncatula
MtPYL9 MTR_1g028380 Medicago truncatula
MtPYL10 MTR_2g435310 Medicago truncatula
MtPYL11 MTR_4g120760 Medicago truncatula
MtPYL12 MTR_2g035150 Medicago truncatula
MtPYL13 MTR_2g035105 Medicago truncatula
MtPYL14 MTR_2g035100 Medicago truncatula
MtPYL15 MTR_2g035170 Medicago truncatula
MtPYL16 MTR_2g035130 Medicago truncatula
MtPYL17 MTR_6g033450 Medicago truncatula
MtPYL18 MTR_2g035190 Medicago truncatula
MtPYL19 MTR_4g120970 Medicago truncatula
MtPYL20 MTR_2g035320 Medicago truncatula
MtPYL21 MTR_4g120950 Medicago truncatula
MtPYL22 MTR_4g094532 Medicago truncatula
MtPYL23 MTR_5g081780 Medicago truncatula
MsPYL1 MSAD_307595 Medicago sativa
MsPYL2 MSAD_236253 Medicago sativa
MsPYL3 MSAD_291139 Medicago sativa
MsPYL4 MSAD_257700 Medicago sativa
MsPYL5 MSAD_276284 Medicago sativa
MsPYL6 MSAD_221395 Medicago sativa
MsPYL7 MSAD_264830 Medicago sativa
MsPYL8 MSAD_237211 Medicago sativa
MsPYL9 MSAD_224673 Medicago sativa
MsPYL10 MSAD_244845 Medicago sativa
MsPYL11 MSAD_280010 Medicago sativa
MsPYL12 MSAD_255399 Medicago sativa
MsPYL13 MSAD_255395 Medicago sativa
MsPYL14 MSAD_261603 Medicago sativa
MsPYL15 MSAD_255398 Medicago sativa
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Figure 8 Distribution of MtPYL genes on 8 chromosomes. 
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The lengths of chromosomes are shown in Mbp. Medicago truncatula genes illustrated in 
this figure are: MtPYL1 (MTR_5g030500), MtPYL2 (MTR_3g071740), MtPYL3 

(MTR_7g070050), MtPYL4 (MTR_5g083270), MtPYL5 (MTR_1g016480), MtPYL6 
(MTR_4g014460), MtPYL7 (MTR_8g027805), MtPYL8 (MTR_3g090980), MtPYL9 

(MTR_1g028380), MtPYL10 (MTR_2g435310), MtPYL11 (MTR_4g120760), MtPYL12 
(MTR_2g035150), MtPYL13 (MTR_2g035105), MtPYL14 (MTR_2g035100), MtPYL15 
(MTR_2g035170), MtPYL16 (MTR_2g035130), MtPYL17 (MTR_6g033450), MtPYL18  

(MTR_2g035190), MtPYL19 (MTR_4g120970), MtPYL20 (MTR_2g035320), 
MtPYL21(MTR_4g120950), MtPYL22 (MTR_4g094532), MtPYL23 (MTR_5g081780) 

 

 

3.4.2 Multiple sequence alignment and phylogenetic relationship of MtPYLs 

and MsPYLs with AtPYLs 

To analyze the evolutionary relationship of the PYL genes of M. truncatula and M. sativa 

with PYL gene family of Arabidopsis thaliana, we performed the multiple sequence 

alignment and phylogenetic tree analysis on the protein sequences of the selected genes. 

The PYL proteins in A. thaliana are divided into three groups based on the divergence. 

Figure 9 shows that AtPYL1, 2 and 3 are in one group whereas AtPYL 4, 5, 6, 13, 11, 12, 

13 form one group. Similarly, AtPYL7, 8, 9, 10 make a separate group. The sequence 

alignment of MsPYL proteins with AtPYL proteins is shown in Figure 10. 

 

The rooted phylogenetic tree of AtPYLs, MtPYLs and MsPYLs with a bootstrap value of 

1000 shows the closely related PYL proteins in A. thaliana, M. truncatula and M. sativa 

(Figure 11). Based on the distribution, the MtPYL and MsPYL proteins are divided into 

four subgroups. Subgroup I (indicated in red) contain the closely related orthologs of 

AtPYL4, 5 and 6, similarly subgroup II (indicated in violet) contains the closely related 
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orthologs of AtPYL7, 8, 9 and 10 and subgroup III (indicated in green) shows the close 

relatives of AtPYL1, 2 and 3. Subgroup IV contain no AtPYL protein but only MtPYL and 

MsPYL proteins. A rooted phylogenetic analysis was also conducted using tomato EPF1 

sequence as outgroup, showing similar grouping of these PYL protein sequences among 

three species (data not shown). The proteins in similar group might perform similar 

functions.  

 

 

Figure 9 Phylogenetic tree of PYL gene family in Arabidopsis thaliana. 

 

The Arabidopsis thaliana protein sequence include: AtPYL1 (At5g46790), AtPYL2 
(At2g26040), AtPYL3 (At1g73000), AtPYL4 (At2g38310), AtPYL5 (At5g05440), 
AtPYL6 (At2g40330), AtPYL7 (At4g01026), AtPYL8 (At5g53160), AtPYL9 

(At1g01360), AtPYL10 (At4g27920), AtPYL11 (At5g45860), AtPYL12 (At5g45870), 
AtPYL13 (At4g18620) 
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Figure 10 Multiple sequence alignment of the PYL gene family in A. thaliana & 
Medicago sativa. 

 

The Arabidopsis thaliana protein sequence include: AtPYL1 (At5g46790), AtPYL2 
(At2g26040), AtPYL3 (At1g73000), AtPYL4 (At2g38310), AtPYL5 (At5g05440), 

AtPYL6 (At2g40330), AtPYL7 (At4g01026), AtPYL8 (At5g53160), AtPYL9 
(At1g01360), AtPYL10 (At4g27920), AtPYL11 (At5g45860), AtPYL12 (At5g45870), 
AtPYL13 (At4g18620)Medicago sativa sequences include: MsPYL1 (MSAD_307595), 
MsPYL2 (MSAD_236253), MsPYL3 (MSAD_291139), MsPYL4 (MSAD_257700), 
MsPYL5 (MSAD_276284), MsPYL6 (MSAD_221395), MsPYL7 (MSAD_264830), 
MsPYL8 (MSAD_237211), MsPYL9 (MSAD_224673), MsPYL10 (MSAD_244845), 

MsPYL11 (MSAD_280010), MsPYL12 (MSAD_255399), MsPYL13 (MSAD_255395), 
MsPYL14 (MSAD_261603), MsPYL15 (MSAD_255398) 
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Figure 11 Phylogenetic tree of PYL Protein sequences in A. thaliana, M. truncatula & M. 
sativa. 

 

The colors are representing the three subgroups of AtPYLs. The Arabidopsis thaliana 
protein sequence include: AtPYL1 (At5g46790), AtPYL2 (At2g26040), AtPYL3 

(At1g73000), AtPYL4 (At2g38310), AtPYL5 (At5g05440), AtPYL6 (At2g40330), 
AtPYL7 (At4g01026), AtPYL8 (At5g53160), AtPYL9 (At1g01360), AtPYL10 

(At4g27920), AtPYL11 (At5g45860), AtPYL12 (At5g45870), AtPYL13 
(At4g18620)Medicago sativa sequences include: MsPYL1 (MSAD_307595), MsPYL2 
(MSAD_236253), MsPYL3 (MSAD_291139), MsPYL4 (MSAD_257700), MsPYL5 
(MSAD_276284), MsPYL6 (MSAD_221395), MsPYL7 (MSAD_264830), MsPYL8 

(MSAD_237211), MsPYL9 (MSAD_224673), MsPYL10 (MSAD_244845), MsPYL11 
(MSAD_280010), MsPYL12 (MSAD_255399), MsPYL13 (MSAD_255395), MsPYL14 
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(MSAD_261603), MsPYL15 (MSAD_255398) Medicago truncatula proteins illustrated 
in this figure are: MtPYL1 (MTR_5g030500), MtPYL2 (MTR_3g071740), MtPYL3 

(MTR_7g070050), MtPYL4 (MTR_5g083270), MtPYL5 (MTR_1g016480), MtPYL6 
(MTR_4g014460), MtPYL7 (MTR_8g027805), MtPYL8 (MTR_3g090980), MtPYL9 

(MTR_1g028380), MtPYL10 (MTR_2g435310), MtPYL11 (MTR_4g120760), 
MtPYL12 (MTR_2g035150), MtPYL13 (MTR_2g035105), MtPYL14

 (MTR_2g035100), MtPYL15 (MTR_2g035170), MtPYL16 (MTR_2g035130), 
MtPYL17 (MTR_6g033450), MtPYL18  (MTR_2g035190), MtPYL19 

(MTR_4g120970), MtPYL20 (MTR_2g035320), MtPYL21(MTR_4g120950), MtPYL22 
(MTR_4g094532), MtPYL23 (MTR_5g081780) 

 

3.4.3 Conserved motifs 

In this study, a total of 28 protein sequences including 13 AtPYL and 15 MsPYL proteins, 

were tested for conserved motifs using MEME software. 10 motifs were found with the E- 

value cutoff at 1.2e-004 (Figure 12). Three motifs showed higher conservation in most of 

the protein sequences as compared to other motifs. (Figure 12A) The same three motifs 

show START-like conserved domain. Motif 1 containing 50 amino acid residues 

“GSLREVNVVSGLPATTSTERLEILDDERHVJSFSIVGGDHRLKNYRSVTT” was 

found to be highly conserved in all proteins (Figure 12B). Motif 2 with 43 residues 

“HEVGPNQCSSAVVQHIKAPVSLVWSLVRRFDNPQKYKHFIKSC” and 3 with 50 

amino acid residues 

“ETIDGRSGTVVVESYVVDVPEGNTKEETCYFVDTIVRCNLQSLAKVAERL” were 

conserved in 23 out 28 proteins (Figure 12C, D). The five other motifs found were short in 

length and were conserved in fewer proteins between A. thaliana and M. sativa (Figure 

12E-G). Overall, the results suggest that PYL family has highly conserved domains hence 

might perform similar functions in alfalfa.  
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Figure 12 Conserved motifs of MsPYL proteins in comparison to AtPYL protein family. 

 

A) Boxes with same color represent conserved motifs. B-D) Highly conserved motifs 
found in most of the selected proteins. E-G) Motifs conserved in specific protein 

sequences 

 

 

3.4.4 MsPYL gene expression in different tissues of well-watered alfalfa  

In order to identify the genes mainly expressed in leaves and understand the potential 

functions of these genes, the expression of the 15 MsPYL genes in healthy leaf, stem, and 

root tissues of RS genotype was analyzed. The expression of all the genes in stem and root 

tissue were normalized using expression levels in leaf as the base for the comparison 

(Figure 13). MsPYL1-4, 7-11showed relatively higher expression in leaves as compared to 

stems and roots. MsPYL5, 6, 13 and 15 showed multiple folds in roots as compared to 

leaves. Gene MsPYL5, 6, 13-15 were highly expressed in stem as compared to leaves. 

Overall, the results suggest that all the 15 genes are expressed in leaves but to a variable 

degree. This gives an idea that genes expressed in leaves could be involved in the ABA 

sensitivity hence closure of stomata.  

 

 E-value 1.2e-004 
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Figure 13 Relative transcript level of the 15 genes in leaf, stem & root of well-watered RS 
genotype of alfalfa. 

The expression values in each tissue represent the mean fold change when compared to 
the leaf 

 

3.4.5 MsPYL gene expression due to drought stress 

In order to examine the changes in the level of gene expression due to drought stress, two 

genotypes of alfalfa, RS and AF were given drought treatment for 14 days and the newly 

matured leaves were collected and examined for real time transcript level changes. The 2^-

DDCt values for all the samples were normalized with the expression in well-watered leaves 

for each sample. Figure 14 shows the comparison of the relative transcript levels in well-

watered, and drought stressed RS and AF leaves. MsPYL1, 2, and 4 did not show any 

change in both the genotypes whereas MsPYL5 showed downregulation in both the 

genotypes and MsPYL10 showed upregulation in both RS and AF upon drought treatment. 

MsPYL 3, 6-8 showed downregulation in RS and MsPYL9 showed more than 1.5-fold 
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increase in transcript level in RS whereas in AF the expression for these genes stayed the 

same. MsPYL11-15 on the other hand showed multiple fold increase in drought treated AF 

shoot tissues where in RS they did not show any change. Overall, it suggests that different 

genes might perform different functions hence are expressed to different levels at the time 

of stress.  

 

Figure 14 Relative Transcript level of the 15 MsPYL genes in well-watered and 14 days 
drought treated RS and AF leaf tissues. 
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 The expression values represent the mean fold change±S.E (n=3) when compared to the 
expression in well-watered tissue for the each gene. *,**, *** signify P value £ 0.05, 

0.01, 0.001 respectively representing statistically significant difference 

 

 

3.4.6 MsPYL gene expression under dehydration treatment 

To examine the changes in the level of gene expression due to short term water stress, 

young shoots (1-3 nodes) of two genotypes of alfalfa, RS and AF were exposed to 

dehydration for 6 hours and were collected and examined for real time transcript level 

changes. The 2^-DDCt values for all the samples were normalized using expression in well-

watered shoots of similar sizes. Figure 15 shows the comparison of the relative transcript 

levels in well-watered and dehydrated RS and AF shoots. Eight of the fifteen genes, 

MsPYL1-8 showed downregulation in the dehydrated conditions in both the genotypes. 

MsPYL9 and 13 showed upregulation in RS whereas in AF it did not show any change. 

MsPYL10-12, 14 and 15 did not show any change in both the genotypes. 
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Figure 15 Relative Transcript level of the 15 MsPYL genes in well-watered and 6 hour 
dehydrated RS and AF shoot tissues. 

The expression values represent the mean fold change±S.E (n=3) when compared to the 
expression in well-watered tissue for each gene. *,**, *** signify P value £ 0.05, 0.01, 

0.001respectively, representing statistically significant difference 
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3.5 Discussion 

A previous study in our lab demonstrated that RS germplasm, shows higher WUE and a 

potential reason was found to be the higher sensitivity of RS stomate towards ABA as 

compared to AF when drought treated (Ghimire et al. 2021; Anower 2015). To understand 

molecular mechanism underlying the higher sensitivity to ABA in RS, we examined 

expression of ABA receptor genes in alfalfa.  

 

 

3.5.1 PYL-like genes in M. truncatula and M. sativa and phylogenetic 

analysis 

We identified 23 and 15 PYL-like proteins in M. truncatula and M. sativa, respectively. 

The reason for fewer PYL-like proteins found in alfalfa is probably due to incomplete 

genome sequence in the alfalfa genome database. These proteins contain START-like 

superfamily domains which are known to play role as ABA receptor. For these 15 genes, 

we designed primers and were able to amplify gene sequences from alfalfa tissues. The 23 

genes for the identified proteins in M. truncatula are located on 8 chromosomes and 8 out 

of these 23 genes show tandem cluster on chromosome 2 which suggests the chances of 

gene duplication. The 15 genes in M. sativa are annotated to be present on 7 of the 8 

chromosomes and like M. truncatula, here also we see the chances of gene duplication but 

due to unavailability of exact location, it cannot be concluded.  As most genotypes of M. 

sativa are tetraploid, we can expect presence of more than 15 genes in different genotypes. 

Looking at the physical properties of proteins, most of the proteins show high similarity 

among the three plants. Three motifs of length 50, 43 and 50 with START like domains 
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were found to be conserved in all the selected proteins of alfalfa, suggesting that these 

proteins can be the potential ABA receptors. The lengths of MsPYL proteins also have 

high resemblance with AtPYLs as most of them are around 150-200 aa, except MsPYL14 

which is 459 amino acids long. In Arabidopsis the PYL family could be divided into three 

subgroups based on their phylogenetic relation and when we added the M. truncatula and 

M. sativa protein sequences in the phylogenetic study it appeared that some of the MtPYLs 

and MsPYLs were more closely related to AtPYLs. Subgroups 1, 2 and 3 contain AtPYLs, 

MtPYLs and MsPYLs showing high conservation and similarity in these proteins. 

Subgroup 4 however contains genes from M. truncatula and M. sativa, suggesting that 

these genes evolved after the divergence. This suggest that some of the PYL-like genes 

might act as ABA receptors and be involved in stomatal closure whereas others might be 

expressed in different tissues and perform different functions. As previously studied in 

Arabidopsis, in the family of 13 PYLs, AtPYR1, AtPYL1, AtPYL2, AtPYL4, AtPYL5 and 

AtPYL8 have been found to play role in ABA dependent stomatal closure (Park et al. 2009; 

Gonzalez-Guzman et al. 2012). It can be implied from this study that the genes and proteins 

with high similarity and conserved domains might have higher probability of having same 

functions.  

3.5.2 PYL gene expression in different tissues of well-watered alfalfa  

PYL-like genes have been studied and reported to express in different tissues in different 

plants like seeds in soybean, latex of rubber tree (Di et al. 2018). In this study, we analyzed 

the expression of 15 MsPYL genes in leaves, stem and root tissues of healthy RS plants and 

found that all the studied MsPYLs are expressed in leaves but to a different degree. 

MsPYL1-4 and 7-11 were highly expressed in leaves as compared to the tissues, suggesting 
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that these proteins have high probability of being ABA receptors and might involve in 

stomatal closure. Whereas MsPYL5, 6 and 13-15 had a higher level of expression in stem 

and roots and very slightly expressed in leaves. This indicates that these PYLs might be 

involved in other roles in roots and stem tissues.  

3.5.3 MsPYL gene expression under water stress conditions 

Drought and dehydration stress have been reported to impact the expression of PYL in 

plants. In a study on B. napus, PYL1 and PYL8 like genes showed up-regulation in the 

drought stressed conditions (Di et al. 2018). The gene expression also changed in some of 

PYL genes in M. sativa under water stress conditions. In short term dehydration stress, 8 

of 15 genes showed downregulation in both the genotypes whereas in 14 days water stress 

condition, fewer genes were downregulated in both the plants. Similar results were reported 

when arabidopsis plants were exposed to dry air, number of genes were downregulated 

(Dittrich et al. 2019). Although, a study on tobacco showed that short term duration led to 

higher expression levels and long-term dehydration, resulted in downregulation (Bai et al. 

2019). This suggests that different genes can express differently depending on the plants. 

In our study, MsPYL11-15 showed upregulation in drought stressed AF plants while 

showing no significant changes in RS, but these genes showed no change in the dehydrated 

AF tissues. MsPYL9 is the one gene which showed higher expression levels in RS and did 

not show any change in AF plants when treated with both short term dehydration as well 

as in long term drought stress. This suggests that possibly, MsPYL9 is the key candidate 

gene that contributes to higher sensitivity to ABA and thus higher WUE in RS. 
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4 Conclusion 

While alfalfa is an important forage crop known for its drought resilience and higher water 

use efficiency than other forage crops (Michaud et al. 1988), its high yield in many areas 

requires irrigation. Thus, improving WUE in alfalfa can save water and improve the 

economic return for producers. WUE in alfalfa has been closely related to the stomatal 

conductance and sensitivity to ABA in RS, a genotype showing high WUE (Ghimire et al. 

2021). In this study, we reveal that, while there is a variation in stomatal density among 

alfalfa genotypes, stomatal density does not correlate with stomatal conductance and thus 

WUE, further suggesting stomatal sensitivity to ABA play a more important role in 

controlling stomatal conductance. After examining 15 PYL like genes in alfalfa, we 

identified MsPYL9 is the only gene specifically upregulated in RS compared to AF. Our 

results may have identified a key player in controlling WUE in alfalfa, since higher 

expression of MsPYL9 may lead to more receptor proteins and higher sensitivity to ABA. 

Further study is needed to identify other contributing factors and molecular mechanisms 

underlying high WUE in alfalfa.    
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